Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- wemm/lib/python3.10/site-packages/networkx/algorithms/assortativity/__pycache__/mixing.cpython-310.pyc +0 -0
- wemm/lib/python3.10/site-packages/networkx/algorithms/coloring/greedy_coloring.py +565 -0
- wemm/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/biconnected.cpython-310.pyc +0 -0
- wemm/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/connected.cpython-310.pyc +0 -0
- wemm/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/semiconnected.cpython-310.pyc +0 -0
- wemm/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/weakly_connected.cpython-310.pyc +0 -0
- wemm/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- wemm/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/test_attracting.cpython-310.pyc +0 -0
- wemm/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/test_biconnected.cpython-310.pyc +0 -0
- wemm/lib/python3.10/site-packages/networkx/algorithms/components/tests/test_biconnected.py +248 -0
- wemm/lib/python3.10/site-packages/networkx/algorithms/components/tests/test_connected.py +138 -0
- wemm/lib/python3.10/site-packages/networkx/algorithms/components/tests/test_weakly_connected.py +96 -0
- wemm/lib/python3.10/site-packages/networkx/algorithms/operators/__init__.py +4 -0
- wemm/lib/python3.10/site-packages/networkx/algorithms/operators/__pycache__/__init__.cpython-310.pyc +0 -0
- wemm/lib/python3.10/site-packages/networkx/algorithms/operators/__pycache__/binary.cpython-310.pyc +0 -0
- wemm/lib/python3.10/site-packages/networkx/algorithms/operators/__pycache__/product.cpython-310.pyc +0 -0
- wemm/lib/python3.10/site-packages/networkx/algorithms/operators/all.py +321 -0
- wemm/lib/python3.10/site-packages/networkx/algorithms/operators/binary.py +450 -0
- wemm/lib/python3.10/site-packages/networkx/algorithms/operators/product.py +633 -0
- wemm/lib/python3.10/site-packages/networkx/algorithms/operators/tests/__init__.py +0 -0
- wemm/lib/python3.10/site-packages/networkx/algorithms/operators/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- wemm/lib/python3.10/site-packages/networkx/algorithms/operators/tests/__pycache__/test_all.cpython-310.pyc +0 -0
- wemm/lib/python3.10/site-packages/networkx/algorithms/operators/tests/__pycache__/test_binary.cpython-310.pyc +0 -0
- wemm/lib/python3.10/site-packages/networkx/algorithms/operators/tests/__pycache__/test_product.cpython-310.pyc +0 -0
- wemm/lib/python3.10/site-packages/networkx/algorithms/operators/tests/__pycache__/test_unary.cpython-310.pyc +0 -0
- wemm/lib/python3.10/site-packages/networkx/algorithms/operators/unary.py +77 -0
- wemm/lib/python3.10/site-packages/networkx/drawing/__pycache__/__init__.cpython-310.pyc +0 -0
- wemm/lib/python3.10/site-packages/networkx/drawing/__pycache__/nx_agraph.cpython-310.pyc +0 -0
- wemm/lib/python3.10/site-packages/networkx/drawing/__pycache__/nx_latex.cpython-310.pyc +0 -0
- wemm/lib/python3.10/site-packages/networkx/drawing/__pycache__/nx_pydot.cpython-310.pyc +0 -0
- wemm/lib/python3.10/site-packages/networkx/drawing/layout.py +1630 -0
- wemm/lib/python3.10/site-packages/networkx/drawing/nx_pydot.py +352 -0
- wemm/lib/python3.10/site-packages/networkx/drawing/nx_pylab.py +1979 -0
- wemm/lib/python3.10/site-packages/networkx/drawing/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- wemm/lib/python3.10/site-packages/networkx/drawing/tests/__pycache__/test_agraph.cpython-310.pyc +0 -0
- wemm/lib/python3.10/site-packages/networkx/drawing/tests/__pycache__/test_layout.cpython-310.pyc +0 -0
- wemm/lib/python3.10/site-packages/networkx/drawing/tests/__pycache__/test_pydot.cpython-310.pyc +0 -0
- wemm/lib/python3.10/site-packages/networkx/drawing/tests/__pycache__/test_pylab.cpython-310.pyc +0 -0
- wemm/lib/python3.10/site-packages/networkx/drawing/tests/baseline/test_house_with_colors.png +3 -0
- wemm/lib/python3.10/site-packages/networkx/drawing/tests/test_agraph.py +241 -0
- wemm/lib/python3.10/site-packages/networkx/drawing/tests/test_pydot.py +146 -0
- wemm/lib/python3.10/site-packages/networkx/drawing/tests/test_pylab.py +1029 -0
- wemm/lib/python3.10/site-packages/networkx/generators/__init__.py +34 -0
- wemm/lib/python3.10/site-packages/networkx/generators/classic.py +1068 -0
- wemm/lib/python3.10/site-packages/networkx/generators/degree_seq.py +867 -0
- wemm/lib/python3.10/site-packages/networkx/generators/expanders.py +474 -0
- wemm/lib/python3.10/site-packages/networkx/generators/mycielski.py +110 -0
- wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_spectral_graph_forge.cpython-310.pyc +0 -0
- wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_stochastic.cpython-310.pyc +0 -0
- wemm/lib/python3.10/site-packages/networkx/generators/tests/test_cographs.py +18 -0
wemm/lib/python3.10/site-packages/networkx/algorithms/assortativity/__pycache__/mixing.cpython-310.pyc
ADDED
|
Binary file (7.59 kB). View file
|
|
|
wemm/lib/python3.10/site-packages/networkx/algorithms/coloring/greedy_coloring.py
ADDED
|
@@ -0,0 +1,565 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Greedy graph coloring using various strategies.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import itertools
|
| 6 |
+
from collections import defaultdict, deque
|
| 7 |
+
|
| 8 |
+
import networkx as nx
|
| 9 |
+
from networkx.utils import arbitrary_element, py_random_state
|
| 10 |
+
|
| 11 |
+
__all__ = [
|
| 12 |
+
"greedy_color",
|
| 13 |
+
"strategy_connected_sequential",
|
| 14 |
+
"strategy_connected_sequential_bfs",
|
| 15 |
+
"strategy_connected_sequential_dfs",
|
| 16 |
+
"strategy_independent_set",
|
| 17 |
+
"strategy_largest_first",
|
| 18 |
+
"strategy_random_sequential",
|
| 19 |
+
"strategy_saturation_largest_first",
|
| 20 |
+
"strategy_smallest_last",
|
| 21 |
+
]
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def strategy_largest_first(G, colors):
|
| 25 |
+
"""Returns a list of the nodes of ``G`` in decreasing order by
|
| 26 |
+
degree.
|
| 27 |
+
|
| 28 |
+
``G`` is a NetworkX graph. ``colors`` is ignored.
|
| 29 |
+
|
| 30 |
+
"""
|
| 31 |
+
return sorted(G, key=G.degree, reverse=True)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
@py_random_state(2)
|
| 35 |
+
def strategy_random_sequential(G, colors, seed=None):
|
| 36 |
+
"""Returns a random permutation of the nodes of ``G`` as a list.
|
| 37 |
+
|
| 38 |
+
``G`` is a NetworkX graph. ``colors`` is ignored.
|
| 39 |
+
|
| 40 |
+
seed : integer, random_state, or None (default)
|
| 41 |
+
Indicator of random number generation state.
|
| 42 |
+
See :ref:`Randomness<randomness>`.
|
| 43 |
+
"""
|
| 44 |
+
nodes = list(G)
|
| 45 |
+
seed.shuffle(nodes)
|
| 46 |
+
return nodes
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def strategy_smallest_last(G, colors):
|
| 50 |
+
"""Returns a deque of the nodes of ``G``, "smallest" last.
|
| 51 |
+
|
| 52 |
+
Specifically, the degrees of each node are tracked in a bucket queue.
|
| 53 |
+
From this, the node of minimum degree is repeatedly popped from the
|
| 54 |
+
graph, updating its neighbors' degrees.
|
| 55 |
+
|
| 56 |
+
``G`` is a NetworkX graph. ``colors`` is ignored.
|
| 57 |
+
|
| 58 |
+
This implementation of the strategy runs in $O(n + m)$ time
|
| 59 |
+
(ignoring polylogarithmic factors), where $n$ is the number of nodes
|
| 60 |
+
and $m$ is the number of edges.
|
| 61 |
+
|
| 62 |
+
This strategy is related to :func:`strategy_independent_set`: if we
|
| 63 |
+
interpret each node removed as an independent set of size one, then
|
| 64 |
+
this strategy chooses an independent set of size one instead of a
|
| 65 |
+
maximal independent set.
|
| 66 |
+
|
| 67 |
+
"""
|
| 68 |
+
H = G.copy()
|
| 69 |
+
result = deque()
|
| 70 |
+
|
| 71 |
+
# Build initial degree list (i.e. the bucket queue data structure)
|
| 72 |
+
degrees = defaultdict(set) # set(), for fast random-access removals
|
| 73 |
+
lbound = float("inf")
|
| 74 |
+
for node, d in H.degree():
|
| 75 |
+
degrees[d].add(node)
|
| 76 |
+
lbound = min(lbound, d) # Lower bound on min-degree.
|
| 77 |
+
|
| 78 |
+
def find_min_degree():
|
| 79 |
+
# Save time by starting the iterator at `lbound`, not 0.
|
| 80 |
+
# The value that we find will be our new `lbound`, which we set later.
|
| 81 |
+
return next(d for d in itertools.count(lbound) if d in degrees)
|
| 82 |
+
|
| 83 |
+
for _ in G:
|
| 84 |
+
# Pop a min-degree node and add it to the list.
|
| 85 |
+
min_degree = find_min_degree()
|
| 86 |
+
u = degrees[min_degree].pop()
|
| 87 |
+
if not degrees[min_degree]: # Clean up the degree list.
|
| 88 |
+
del degrees[min_degree]
|
| 89 |
+
result.appendleft(u)
|
| 90 |
+
|
| 91 |
+
# Update degrees of removed node's neighbors.
|
| 92 |
+
for v in H[u]:
|
| 93 |
+
degree = H.degree(v)
|
| 94 |
+
degrees[degree].remove(v)
|
| 95 |
+
if not degrees[degree]: # Clean up the degree list.
|
| 96 |
+
del degrees[degree]
|
| 97 |
+
degrees[degree - 1].add(v)
|
| 98 |
+
|
| 99 |
+
# Finally, remove the node.
|
| 100 |
+
H.remove_node(u)
|
| 101 |
+
lbound = min_degree - 1 # Subtract 1 in case of tied neighbors.
|
| 102 |
+
|
| 103 |
+
return result
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def _maximal_independent_set(G):
|
| 107 |
+
"""Returns a maximal independent set of nodes in ``G`` by repeatedly
|
| 108 |
+
choosing an independent node of minimum degree (with respect to the
|
| 109 |
+
subgraph of unchosen nodes).
|
| 110 |
+
|
| 111 |
+
"""
|
| 112 |
+
result = set()
|
| 113 |
+
remaining = set(G)
|
| 114 |
+
while remaining:
|
| 115 |
+
G = G.subgraph(remaining)
|
| 116 |
+
v = min(remaining, key=G.degree)
|
| 117 |
+
result.add(v)
|
| 118 |
+
remaining -= set(G[v]) | {v}
|
| 119 |
+
return result
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def strategy_independent_set(G, colors):
|
| 123 |
+
"""Uses a greedy independent set removal strategy to determine the
|
| 124 |
+
colors.
|
| 125 |
+
|
| 126 |
+
This function updates ``colors`` **in-place** and return ``None``,
|
| 127 |
+
unlike the other strategy functions in this module.
|
| 128 |
+
|
| 129 |
+
This algorithm repeatedly finds and removes a maximal independent
|
| 130 |
+
set, assigning each node in the set an unused color.
|
| 131 |
+
|
| 132 |
+
``G`` is a NetworkX graph.
|
| 133 |
+
|
| 134 |
+
This strategy is related to :func:`strategy_smallest_last`: in that
|
| 135 |
+
strategy, an independent set of size one is chosen at each step
|
| 136 |
+
instead of a maximal independent set.
|
| 137 |
+
|
| 138 |
+
"""
|
| 139 |
+
remaining_nodes = set(G)
|
| 140 |
+
while len(remaining_nodes) > 0:
|
| 141 |
+
nodes = _maximal_independent_set(G.subgraph(remaining_nodes))
|
| 142 |
+
remaining_nodes -= nodes
|
| 143 |
+
yield from nodes
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def strategy_connected_sequential_bfs(G, colors):
|
| 147 |
+
"""Returns an iterable over nodes in ``G`` in the order given by a
|
| 148 |
+
breadth-first traversal.
|
| 149 |
+
|
| 150 |
+
The generated sequence has the property that for each node except
|
| 151 |
+
the first, at least one neighbor appeared earlier in the sequence.
|
| 152 |
+
|
| 153 |
+
``G`` is a NetworkX graph. ``colors`` is ignored.
|
| 154 |
+
|
| 155 |
+
"""
|
| 156 |
+
return strategy_connected_sequential(G, colors, "bfs")
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
def strategy_connected_sequential_dfs(G, colors):
|
| 160 |
+
"""Returns an iterable over nodes in ``G`` in the order given by a
|
| 161 |
+
depth-first traversal.
|
| 162 |
+
|
| 163 |
+
The generated sequence has the property that for each node except
|
| 164 |
+
the first, at least one neighbor appeared earlier in the sequence.
|
| 165 |
+
|
| 166 |
+
``G`` is a NetworkX graph. ``colors`` is ignored.
|
| 167 |
+
|
| 168 |
+
"""
|
| 169 |
+
return strategy_connected_sequential(G, colors, "dfs")
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
def strategy_connected_sequential(G, colors, traversal="bfs"):
|
| 173 |
+
"""Returns an iterable over nodes in ``G`` in the order given by a
|
| 174 |
+
breadth-first or depth-first traversal.
|
| 175 |
+
|
| 176 |
+
``traversal`` must be one of the strings ``'dfs'`` or ``'bfs'``,
|
| 177 |
+
representing depth-first traversal or breadth-first traversal,
|
| 178 |
+
respectively.
|
| 179 |
+
|
| 180 |
+
The generated sequence has the property that for each node except
|
| 181 |
+
the first, at least one neighbor appeared earlier in the sequence.
|
| 182 |
+
|
| 183 |
+
``G`` is a NetworkX graph. ``colors`` is ignored.
|
| 184 |
+
|
| 185 |
+
"""
|
| 186 |
+
if traversal == "bfs":
|
| 187 |
+
traverse = nx.bfs_edges
|
| 188 |
+
elif traversal == "dfs":
|
| 189 |
+
traverse = nx.dfs_edges
|
| 190 |
+
else:
|
| 191 |
+
raise nx.NetworkXError(
|
| 192 |
+
"Please specify one of the strings 'bfs' or"
|
| 193 |
+
" 'dfs' for connected sequential ordering"
|
| 194 |
+
)
|
| 195 |
+
for component in nx.connected_components(G):
|
| 196 |
+
source = arbitrary_element(component)
|
| 197 |
+
# Yield the source node, then all the nodes in the specified
|
| 198 |
+
# traversal order.
|
| 199 |
+
yield source
|
| 200 |
+
for _, end in traverse(G.subgraph(component), source):
|
| 201 |
+
yield end
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
def strategy_saturation_largest_first(G, colors):
|
| 205 |
+
"""Iterates over all the nodes of ``G`` in "saturation order" (also
|
| 206 |
+
known as "DSATUR").
|
| 207 |
+
|
| 208 |
+
``G`` is a NetworkX graph. ``colors`` is a dictionary mapping nodes of
|
| 209 |
+
``G`` to colors, for those nodes that have already been colored.
|
| 210 |
+
|
| 211 |
+
"""
|
| 212 |
+
distinct_colors = {v: set() for v in G}
|
| 213 |
+
|
| 214 |
+
# Add the node color assignments given in colors to the
|
| 215 |
+
# distinct colors set for each neighbor of that node
|
| 216 |
+
for node, color in colors.items():
|
| 217 |
+
for neighbor in G[node]:
|
| 218 |
+
distinct_colors[neighbor].add(color)
|
| 219 |
+
|
| 220 |
+
# Check that the color assignments in colors are valid
|
| 221 |
+
# i.e. no neighboring nodes have the same color
|
| 222 |
+
if len(colors) >= 2:
|
| 223 |
+
for node, color in colors.items():
|
| 224 |
+
if color in distinct_colors[node]:
|
| 225 |
+
raise nx.NetworkXError("Neighboring nodes must have different colors")
|
| 226 |
+
|
| 227 |
+
# If 0 nodes have been colored, simply choose the node of highest degree.
|
| 228 |
+
if not colors:
|
| 229 |
+
node = max(G, key=G.degree)
|
| 230 |
+
yield node
|
| 231 |
+
# Add the color 0 to the distinct colors set for each
|
| 232 |
+
# neighbor of that node.
|
| 233 |
+
for v in G[node]:
|
| 234 |
+
distinct_colors[v].add(0)
|
| 235 |
+
|
| 236 |
+
while len(G) != len(colors):
|
| 237 |
+
# Update the distinct color sets for the neighbors.
|
| 238 |
+
for node, color in colors.items():
|
| 239 |
+
for neighbor in G[node]:
|
| 240 |
+
distinct_colors[neighbor].add(color)
|
| 241 |
+
|
| 242 |
+
# Compute the maximum saturation and the set of nodes that
|
| 243 |
+
# achieve that saturation.
|
| 244 |
+
saturation = {v: len(c) for v, c in distinct_colors.items() if v not in colors}
|
| 245 |
+
# Yield the node with the highest saturation, and break ties by
|
| 246 |
+
# degree.
|
| 247 |
+
node = max(saturation, key=lambda v: (saturation[v], G.degree(v)))
|
| 248 |
+
yield node
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
#: Dictionary mapping name of a strategy as a string to the strategy function.
|
| 252 |
+
STRATEGIES = {
|
| 253 |
+
"largest_first": strategy_largest_first,
|
| 254 |
+
"random_sequential": strategy_random_sequential,
|
| 255 |
+
"smallest_last": strategy_smallest_last,
|
| 256 |
+
"independent_set": strategy_independent_set,
|
| 257 |
+
"connected_sequential_bfs": strategy_connected_sequential_bfs,
|
| 258 |
+
"connected_sequential_dfs": strategy_connected_sequential_dfs,
|
| 259 |
+
"connected_sequential": strategy_connected_sequential,
|
| 260 |
+
"saturation_largest_first": strategy_saturation_largest_first,
|
| 261 |
+
"DSATUR": strategy_saturation_largest_first,
|
| 262 |
+
}
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
@nx._dispatchable
|
| 266 |
+
def greedy_color(G, strategy="largest_first", interchange=False):
|
| 267 |
+
"""Color a graph using various strategies of greedy graph coloring.
|
| 268 |
+
|
| 269 |
+
Attempts to color a graph using as few colors as possible, where no
|
| 270 |
+
neighbors of a node can have same color as the node itself. The
|
| 271 |
+
given strategy determines the order in which nodes are colored.
|
| 272 |
+
|
| 273 |
+
The strategies are described in [1]_, and smallest-last is based on
|
| 274 |
+
[2]_.
|
| 275 |
+
|
| 276 |
+
Parameters
|
| 277 |
+
----------
|
| 278 |
+
G : NetworkX graph
|
| 279 |
+
|
| 280 |
+
strategy : string or function(G, colors)
|
| 281 |
+
A function (or a string representing a function) that provides
|
| 282 |
+
the coloring strategy, by returning nodes in the ordering they
|
| 283 |
+
should be colored. ``G`` is the graph, and ``colors`` is a
|
| 284 |
+
dictionary of the currently assigned colors, keyed by nodes. The
|
| 285 |
+
function must return an iterable over all the nodes in ``G``.
|
| 286 |
+
|
| 287 |
+
If the strategy function is an iterator generator (that is, a
|
| 288 |
+
function with ``yield`` statements), keep in mind that the
|
| 289 |
+
``colors`` dictionary will be updated after each ``yield``, since
|
| 290 |
+
this function chooses colors greedily.
|
| 291 |
+
|
| 292 |
+
If ``strategy`` is a string, it must be one of the following,
|
| 293 |
+
each of which represents one of the built-in strategy functions.
|
| 294 |
+
|
| 295 |
+
* ``'largest_first'``
|
| 296 |
+
* ``'random_sequential'``
|
| 297 |
+
* ``'smallest_last'``
|
| 298 |
+
* ``'independent_set'``
|
| 299 |
+
* ``'connected_sequential_bfs'``
|
| 300 |
+
* ``'connected_sequential_dfs'``
|
| 301 |
+
* ``'connected_sequential'`` (alias for the previous strategy)
|
| 302 |
+
* ``'saturation_largest_first'``
|
| 303 |
+
* ``'DSATUR'`` (alias for the previous strategy)
|
| 304 |
+
|
| 305 |
+
interchange: bool
|
| 306 |
+
Will use the color interchange algorithm described by [3]_ if set
|
| 307 |
+
to ``True``.
|
| 308 |
+
|
| 309 |
+
Note that ``saturation_largest_first`` and ``independent_set``
|
| 310 |
+
do not work with interchange. Furthermore, if you use
|
| 311 |
+
interchange with your own strategy function, you cannot rely
|
| 312 |
+
on the values in the ``colors`` argument.
|
| 313 |
+
|
| 314 |
+
Returns
|
| 315 |
+
-------
|
| 316 |
+
A dictionary with keys representing nodes and values representing
|
| 317 |
+
corresponding coloring.
|
| 318 |
+
|
| 319 |
+
Examples
|
| 320 |
+
--------
|
| 321 |
+
>>> G = nx.cycle_graph(4)
|
| 322 |
+
>>> d = nx.coloring.greedy_color(G, strategy="largest_first")
|
| 323 |
+
>>> d in [{0: 0, 1: 1, 2: 0, 3: 1}, {0: 1, 1: 0, 2: 1, 3: 0}]
|
| 324 |
+
True
|
| 325 |
+
|
| 326 |
+
Raises
|
| 327 |
+
------
|
| 328 |
+
NetworkXPointlessConcept
|
| 329 |
+
If ``strategy`` is ``saturation_largest_first`` or
|
| 330 |
+
``independent_set`` and ``interchange`` is ``True``.
|
| 331 |
+
|
| 332 |
+
References
|
| 333 |
+
----------
|
| 334 |
+
.. [1] Adrian Kosowski, and Krzysztof Manuszewski,
|
| 335 |
+
Classical Coloring of Graphs, Graph Colorings, 2-19, 2004.
|
| 336 |
+
ISBN 0-8218-3458-4.
|
| 337 |
+
.. [2] David W. Matula, and Leland L. Beck, "Smallest-last
|
| 338 |
+
ordering and clustering and graph coloring algorithms." *J. ACM* 30,
|
| 339 |
+
3 (July 1983), 417–427. <https://doi.org/10.1145/2402.322385>
|
| 340 |
+
.. [3] Maciej M. Sysło, Narsingh Deo, Janusz S. Kowalik,
|
| 341 |
+
Discrete Optimization Algorithms with Pascal Programs, 415-424, 1983.
|
| 342 |
+
ISBN 0-486-45353-7.
|
| 343 |
+
|
| 344 |
+
"""
|
| 345 |
+
if len(G) == 0:
|
| 346 |
+
return {}
|
| 347 |
+
# Determine the strategy provided by the caller.
|
| 348 |
+
strategy = STRATEGIES.get(strategy, strategy)
|
| 349 |
+
if not callable(strategy):
|
| 350 |
+
raise nx.NetworkXError(
|
| 351 |
+
f"strategy must be callable or a valid string. {strategy} not valid."
|
| 352 |
+
)
|
| 353 |
+
# Perform some validation on the arguments before executing any
|
| 354 |
+
# strategy functions.
|
| 355 |
+
if interchange:
|
| 356 |
+
if strategy is strategy_independent_set:
|
| 357 |
+
msg = "interchange cannot be used with independent_set"
|
| 358 |
+
raise nx.NetworkXPointlessConcept(msg)
|
| 359 |
+
if strategy is strategy_saturation_largest_first:
|
| 360 |
+
msg = "interchange cannot be used with" " saturation_largest_first"
|
| 361 |
+
raise nx.NetworkXPointlessConcept(msg)
|
| 362 |
+
colors = {}
|
| 363 |
+
nodes = strategy(G, colors)
|
| 364 |
+
if interchange:
|
| 365 |
+
return _greedy_coloring_with_interchange(G, nodes)
|
| 366 |
+
for u in nodes:
|
| 367 |
+
# Set to keep track of colors of neighbors
|
| 368 |
+
nbr_colors = {colors[v] for v in G[u] if v in colors}
|
| 369 |
+
# Find the first unused color.
|
| 370 |
+
for color in itertools.count():
|
| 371 |
+
if color not in nbr_colors:
|
| 372 |
+
break
|
| 373 |
+
# Assign the new color to the current node.
|
| 374 |
+
colors[u] = color
|
| 375 |
+
return colors
|
| 376 |
+
|
| 377 |
+
|
| 378 |
+
# Tools for coloring with interchanges
|
| 379 |
+
class _Node:
|
| 380 |
+
__slots__ = ["node_id", "color", "adj_list", "adj_color"]
|
| 381 |
+
|
| 382 |
+
def __init__(self, node_id, n):
|
| 383 |
+
self.node_id = node_id
|
| 384 |
+
self.color = -1
|
| 385 |
+
self.adj_list = None
|
| 386 |
+
self.adj_color = [None for _ in range(n)]
|
| 387 |
+
|
| 388 |
+
def __repr__(self):
|
| 389 |
+
return (
|
| 390 |
+
f"Node_id: {self.node_id}, Color: {self.color}, "
|
| 391 |
+
f"Adj_list: ({self.adj_list}), adj_color: ({self.adj_color})"
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
def assign_color(self, adj_entry, color):
|
| 395 |
+
adj_entry.col_prev = None
|
| 396 |
+
adj_entry.col_next = self.adj_color[color]
|
| 397 |
+
self.adj_color[color] = adj_entry
|
| 398 |
+
if adj_entry.col_next is not None:
|
| 399 |
+
adj_entry.col_next.col_prev = adj_entry
|
| 400 |
+
|
| 401 |
+
def clear_color(self, adj_entry, color):
|
| 402 |
+
if adj_entry.col_prev is None:
|
| 403 |
+
self.adj_color[color] = adj_entry.col_next
|
| 404 |
+
else:
|
| 405 |
+
adj_entry.col_prev.col_next = adj_entry.col_next
|
| 406 |
+
if adj_entry.col_next is not None:
|
| 407 |
+
adj_entry.col_next.col_prev = adj_entry.col_prev
|
| 408 |
+
|
| 409 |
+
def iter_neighbors(self):
|
| 410 |
+
adj_node = self.adj_list
|
| 411 |
+
while adj_node is not None:
|
| 412 |
+
yield adj_node
|
| 413 |
+
adj_node = adj_node.next
|
| 414 |
+
|
| 415 |
+
def iter_neighbors_color(self, color):
|
| 416 |
+
adj_color_node = self.adj_color[color]
|
| 417 |
+
while adj_color_node is not None:
|
| 418 |
+
yield adj_color_node.node_id
|
| 419 |
+
adj_color_node = adj_color_node.col_next
|
| 420 |
+
|
| 421 |
+
|
| 422 |
+
class _AdjEntry:
|
| 423 |
+
__slots__ = ["node_id", "next", "mate", "col_next", "col_prev"]
|
| 424 |
+
|
| 425 |
+
def __init__(self, node_id):
|
| 426 |
+
self.node_id = node_id
|
| 427 |
+
self.next = None
|
| 428 |
+
self.mate = None
|
| 429 |
+
self.col_next = None
|
| 430 |
+
self.col_prev = None
|
| 431 |
+
|
| 432 |
+
def __repr__(self):
|
| 433 |
+
col_next = None if self.col_next is None else self.col_next.node_id
|
| 434 |
+
col_prev = None if self.col_prev is None else self.col_prev.node_id
|
| 435 |
+
return (
|
| 436 |
+
f"Node_id: {self.node_id}, Next: ({self.next}), "
|
| 437 |
+
f"Mate: ({self.mate.node_id}), "
|
| 438 |
+
f"col_next: ({col_next}), col_prev: ({col_prev})"
|
| 439 |
+
)
|
| 440 |
+
|
| 441 |
+
|
| 442 |
+
def _greedy_coloring_with_interchange(G, nodes):
|
| 443 |
+
"""Return a coloring for `original_graph` using interchange approach
|
| 444 |
+
|
| 445 |
+
This procedure is an adaption of the algorithm described by [1]_,
|
| 446 |
+
and is an implementation of coloring with interchange. Please be
|
| 447 |
+
advised, that the datastructures used are rather complex because
|
| 448 |
+
they are optimized to minimize the time spent identifying
|
| 449 |
+
subcomponents of the graph, which are possible candidates for color
|
| 450 |
+
interchange.
|
| 451 |
+
|
| 452 |
+
Parameters
|
| 453 |
+
----------
|
| 454 |
+
G : NetworkX graph
|
| 455 |
+
The graph to be colored
|
| 456 |
+
|
| 457 |
+
nodes : list
|
| 458 |
+
nodes ordered using the strategy of choice
|
| 459 |
+
|
| 460 |
+
Returns
|
| 461 |
+
-------
|
| 462 |
+
dict :
|
| 463 |
+
A dictionary keyed by node to a color value
|
| 464 |
+
|
| 465 |
+
References
|
| 466 |
+
----------
|
| 467 |
+
.. [1] Maciej M. Syslo, Narsingh Deo, Janusz S. Kowalik,
|
| 468 |
+
Discrete Optimization Algorithms with Pascal Programs, 415-424, 1983.
|
| 469 |
+
ISBN 0-486-45353-7.
|
| 470 |
+
"""
|
| 471 |
+
n = len(G)
|
| 472 |
+
|
| 473 |
+
graph = {node: _Node(node, n) for node in G}
|
| 474 |
+
|
| 475 |
+
for node1, node2 in G.edges():
|
| 476 |
+
adj_entry1 = _AdjEntry(node2)
|
| 477 |
+
adj_entry2 = _AdjEntry(node1)
|
| 478 |
+
adj_entry1.mate = adj_entry2
|
| 479 |
+
adj_entry2.mate = adj_entry1
|
| 480 |
+
node1_head = graph[node1].adj_list
|
| 481 |
+
adj_entry1.next = node1_head
|
| 482 |
+
graph[node1].adj_list = adj_entry1
|
| 483 |
+
node2_head = graph[node2].adj_list
|
| 484 |
+
adj_entry2.next = node2_head
|
| 485 |
+
graph[node2].adj_list = adj_entry2
|
| 486 |
+
|
| 487 |
+
k = 0
|
| 488 |
+
for node in nodes:
|
| 489 |
+
# Find the smallest possible, unused color
|
| 490 |
+
neighbors = graph[node].iter_neighbors()
|
| 491 |
+
col_used = {graph[adj_node.node_id].color for adj_node in neighbors}
|
| 492 |
+
col_used.discard(-1)
|
| 493 |
+
k1 = next(itertools.dropwhile(lambda x: x in col_used, itertools.count()))
|
| 494 |
+
|
| 495 |
+
# k1 is now the lowest available color
|
| 496 |
+
if k1 > k:
|
| 497 |
+
connected = True
|
| 498 |
+
visited = set()
|
| 499 |
+
col1 = -1
|
| 500 |
+
col2 = -1
|
| 501 |
+
while connected and col1 < k:
|
| 502 |
+
col1 += 1
|
| 503 |
+
neighbor_cols = graph[node].iter_neighbors_color(col1)
|
| 504 |
+
col1_adj = list(neighbor_cols)
|
| 505 |
+
|
| 506 |
+
col2 = col1
|
| 507 |
+
while connected and col2 < k:
|
| 508 |
+
col2 += 1
|
| 509 |
+
visited = set(col1_adj)
|
| 510 |
+
frontier = list(col1_adj)
|
| 511 |
+
i = 0
|
| 512 |
+
while i < len(frontier):
|
| 513 |
+
search_node = frontier[i]
|
| 514 |
+
i += 1
|
| 515 |
+
col_opp = col2 if graph[search_node].color == col1 else col1
|
| 516 |
+
neighbor_cols = graph[search_node].iter_neighbors_color(col_opp)
|
| 517 |
+
|
| 518 |
+
for neighbor in neighbor_cols:
|
| 519 |
+
if neighbor not in visited:
|
| 520 |
+
visited.add(neighbor)
|
| 521 |
+
frontier.append(neighbor)
|
| 522 |
+
|
| 523 |
+
# Search if node is not adj to any col2 vertex
|
| 524 |
+
connected = (
|
| 525 |
+
len(
|
| 526 |
+
visited.intersection(graph[node].iter_neighbors_color(col2))
|
| 527 |
+
)
|
| 528 |
+
> 0
|
| 529 |
+
)
|
| 530 |
+
|
| 531 |
+
# If connected is false then we can swap !!!
|
| 532 |
+
if not connected:
|
| 533 |
+
# Update all the nodes in the component
|
| 534 |
+
for search_node in visited:
|
| 535 |
+
graph[search_node].color = (
|
| 536 |
+
col2 if graph[search_node].color == col1 else col1
|
| 537 |
+
)
|
| 538 |
+
col2_adj = graph[search_node].adj_color[col2]
|
| 539 |
+
graph[search_node].adj_color[col2] = graph[search_node].adj_color[
|
| 540 |
+
col1
|
| 541 |
+
]
|
| 542 |
+
graph[search_node].adj_color[col1] = col2_adj
|
| 543 |
+
|
| 544 |
+
# Update all the neighboring nodes
|
| 545 |
+
for search_node in visited:
|
| 546 |
+
col = graph[search_node].color
|
| 547 |
+
col_opp = col1 if col == col2 else col2
|
| 548 |
+
for adj_node in graph[search_node].iter_neighbors():
|
| 549 |
+
if graph[adj_node.node_id].color != col_opp:
|
| 550 |
+
# Direct reference to entry
|
| 551 |
+
adj_mate = adj_node.mate
|
| 552 |
+
graph[adj_node.node_id].clear_color(adj_mate, col_opp)
|
| 553 |
+
graph[adj_node.node_id].assign_color(adj_mate, col)
|
| 554 |
+
k1 = col1
|
| 555 |
+
|
| 556 |
+
# We can color this node color k1
|
| 557 |
+
graph[node].color = k1
|
| 558 |
+
k = max(k1, k)
|
| 559 |
+
|
| 560 |
+
# Update the neighbors of this node
|
| 561 |
+
for adj_node in graph[node].iter_neighbors():
|
| 562 |
+
adj_mate = adj_node.mate
|
| 563 |
+
graph[adj_node.node_id].assign_color(adj_mate, k1)
|
| 564 |
+
|
| 565 |
+
return {node.node_id: node.color for node in graph.values()}
|
wemm/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/biconnected.cpython-310.pyc
ADDED
|
Binary file (11.3 kB). View file
|
|
|
wemm/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/connected.cpython-310.pyc
ADDED
|
Binary file (4.83 kB). View file
|
|
|
wemm/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/semiconnected.cpython-310.pyc
ADDED
|
Binary file (2.4 kB). View file
|
|
|
wemm/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/weakly_connected.cpython-310.pyc
ADDED
|
Binary file (4.5 kB). View file
|
|
|
wemm/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (186 Bytes). View file
|
|
|
wemm/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/test_attracting.cpython-310.pyc
ADDED
|
Binary file (2.74 kB). View file
|
|
|
wemm/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/test_biconnected.cpython-310.pyc
ADDED
|
Binary file (6.7 kB). View file
|
|
|
wemm/lib/python3.10/site-packages/networkx/algorithms/components/tests/test_biconnected.py
ADDED
|
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pytest
|
| 2 |
+
|
| 3 |
+
import networkx as nx
|
| 4 |
+
from networkx import NetworkXNotImplemented
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def assert_components_edges_equal(x, y):
|
| 8 |
+
sx = {frozenset(frozenset(e) for e in c) for c in x}
|
| 9 |
+
sy = {frozenset(frozenset(e) for e in c) for c in y}
|
| 10 |
+
assert sx == sy
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def assert_components_equal(x, y):
|
| 14 |
+
sx = {frozenset(c) for c in x}
|
| 15 |
+
sy = {frozenset(c) for c in y}
|
| 16 |
+
assert sx == sy
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def test_barbell():
|
| 20 |
+
G = nx.barbell_graph(8, 4)
|
| 21 |
+
nx.add_path(G, [7, 20, 21, 22])
|
| 22 |
+
nx.add_cycle(G, [22, 23, 24, 25])
|
| 23 |
+
pts = set(nx.articulation_points(G))
|
| 24 |
+
assert pts == {7, 8, 9, 10, 11, 12, 20, 21, 22}
|
| 25 |
+
|
| 26 |
+
answer = [
|
| 27 |
+
{12, 13, 14, 15, 16, 17, 18, 19},
|
| 28 |
+
{0, 1, 2, 3, 4, 5, 6, 7},
|
| 29 |
+
{22, 23, 24, 25},
|
| 30 |
+
{11, 12},
|
| 31 |
+
{10, 11},
|
| 32 |
+
{9, 10},
|
| 33 |
+
{8, 9},
|
| 34 |
+
{7, 8},
|
| 35 |
+
{21, 22},
|
| 36 |
+
{20, 21},
|
| 37 |
+
{7, 20},
|
| 38 |
+
]
|
| 39 |
+
assert_components_equal(list(nx.biconnected_components(G)), answer)
|
| 40 |
+
|
| 41 |
+
G.add_edge(2, 17)
|
| 42 |
+
pts = set(nx.articulation_points(G))
|
| 43 |
+
assert pts == {7, 20, 21, 22}
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def test_articulation_points_repetitions():
|
| 47 |
+
G = nx.Graph()
|
| 48 |
+
G.add_edges_from([(0, 1), (1, 2), (1, 3)])
|
| 49 |
+
assert list(nx.articulation_points(G)) == [1]
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def test_articulation_points_cycle():
|
| 53 |
+
G = nx.cycle_graph(3)
|
| 54 |
+
nx.add_cycle(G, [1, 3, 4])
|
| 55 |
+
pts = set(nx.articulation_points(G))
|
| 56 |
+
assert pts == {1}
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def test_is_biconnected():
|
| 60 |
+
G = nx.cycle_graph(3)
|
| 61 |
+
assert nx.is_biconnected(G)
|
| 62 |
+
nx.add_cycle(G, [1, 3, 4])
|
| 63 |
+
assert not nx.is_biconnected(G)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def test_empty_is_biconnected():
|
| 67 |
+
G = nx.empty_graph(5)
|
| 68 |
+
assert not nx.is_biconnected(G)
|
| 69 |
+
G.add_edge(0, 1)
|
| 70 |
+
assert not nx.is_biconnected(G)
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def test_biconnected_components_cycle():
|
| 74 |
+
G = nx.cycle_graph(3)
|
| 75 |
+
nx.add_cycle(G, [1, 3, 4])
|
| 76 |
+
answer = [{0, 1, 2}, {1, 3, 4}]
|
| 77 |
+
assert_components_equal(list(nx.biconnected_components(G)), answer)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def test_biconnected_components1():
|
| 81 |
+
# graph example from
|
| 82 |
+
# https://web.archive.org/web/20121229123447/http://www.ibluemojo.com/school/articul_algorithm.html
|
| 83 |
+
edges = [
|
| 84 |
+
(0, 1),
|
| 85 |
+
(0, 5),
|
| 86 |
+
(0, 6),
|
| 87 |
+
(0, 14),
|
| 88 |
+
(1, 5),
|
| 89 |
+
(1, 6),
|
| 90 |
+
(1, 14),
|
| 91 |
+
(2, 4),
|
| 92 |
+
(2, 10),
|
| 93 |
+
(3, 4),
|
| 94 |
+
(3, 15),
|
| 95 |
+
(4, 6),
|
| 96 |
+
(4, 7),
|
| 97 |
+
(4, 10),
|
| 98 |
+
(5, 14),
|
| 99 |
+
(6, 14),
|
| 100 |
+
(7, 9),
|
| 101 |
+
(8, 9),
|
| 102 |
+
(8, 12),
|
| 103 |
+
(8, 13),
|
| 104 |
+
(10, 15),
|
| 105 |
+
(11, 12),
|
| 106 |
+
(11, 13),
|
| 107 |
+
(12, 13),
|
| 108 |
+
]
|
| 109 |
+
G = nx.Graph(edges)
|
| 110 |
+
pts = set(nx.articulation_points(G))
|
| 111 |
+
assert pts == {4, 6, 7, 8, 9}
|
| 112 |
+
comps = list(nx.biconnected_component_edges(G))
|
| 113 |
+
answer = [
|
| 114 |
+
[(3, 4), (15, 3), (10, 15), (10, 4), (2, 10), (4, 2)],
|
| 115 |
+
[(13, 12), (13, 8), (11, 13), (12, 11), (8, 12)],
|
| 116 |
+
[(9, 8)],
|
| 117 |
+
[(7, 9)],
|
| 118 |
+
[(4, 7)],
|
| 119 |
+
[(6, 4)],
|
| 120 |
+
[(14, 0), (5, 1), (5, 0), (14, 5), (14, 1), (6, 14), (6, 0), (1, 6), (0, 1)],
|
| 121 |
+
]
|
| 122 |
+
assert_components_edges_equal(comps, answer)
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def test_biconnected_components2():
|
| 126 |
+
G = nx.Graph()
|
| 127 |
+
nx.add_cycle(G, "ABC")
|
| 128 |
+
nx.add_cycle(G, "CDE")
|
| 129 |
+
nx.add_cycle(G, "FIJHG")
|
| 130 |
+
nx.add_cycle(G, "GIJ")
|
| 131 |
+
G.add_edge("E", "G")
|
| 132 |
+
comps = list(nx.biconnected_component_edges(G))
|
| 133 |
+
answer = [
|
| 134 |
+
[
|
| 135 |
+
tuple("GF"),
|
| 136 |
+
tuple("FI"),
|
| 137 |
+
tuple("IG"),
|
| 138 |
+
tuple("IJ"),
|
| 139 |
+
tuple("JG"),
|
| 140 |
+
tuple("JH"),
|
| 141 |
+
tuple("HG"),
|
| 142 |
+
],
|
| 143 |
+
[tuple("EG")],
|
| 144 |
+
[tuple("CD"), tuple("DE"), tuple("CE")],
|
| 145 |
+
[tuple("AB"), tuple("BC"), tuple("AC")],
|
| 146 |
+
]
|
| 147 |
+
assert_components_edges_equal(comps, answer)
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
def test_biconnected_davis():
|
| 151 |
+
D = nx.davis_southern_women_graph()
|
| 152 |
+
bcc = list(nx.biconnected_components(D))[0]
|
| 153 |
+
assert set(D) == bcc # All nodes in a giant bicomponent
|
| 154 |
+
# So no articulation points
|
| 155 |
+
assert len(list(nx.articulation_points(D))) == 0
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
def test_biconnected_karate():
|
| 159 |
+
K = nx.karate_club_graph()
|
| 160 |
+
answer = [
|
| 161 |
+
{
|
| 162 |
+
0,
|
| 163 |
+
1,
|
| 164 |
+
2,
|
| 165 |
+
3,
|
| 166 |
+
7,
|
| 167 |
+
8,
|
| 168 |
+
9,
|
| 169 |
+
12,
|
| 170 |
+
13,
|
| 171 |
+
14,
|
| 172 |
+
15,
|
| 173 |
+
17,
|
| 174 |
+
18,
|
| 175 |
+
19,
|
| 176 |
+
20,
|
| 177 |
+
21,
|
| 178 |
+
22,
|
| 179 |
+
23,
|
| 180 |
+
24,
|
| 181 |
+
25,
|
| 182 |
+
26,
|
| 183 |
+
27,
|
| 184 |
+
28,
|
| 185 |
+
29,
|
| 186 |
+
30,
|
| 187 |
+
31,
|
| 188 |
+
32,
|
| 189 |
+
33,
|
| 190 |
+
},
|
| 191 |
+
{0, 4, 5, 6, 10, 16},
|
| 192 |
+
{0, 11},
|
| 193 |
+
]
|
| 194 |
+
bcc = list(nx.biconnected_components(K))
|
| 195 |
+
assert_components_equal(bcc, answer)
|
| 196 |
+
assert set(nx.articulation_points(K)) == {0}
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
def test_biconnected_eppstein():
|
| 200 |
+
# tests from http://www.ics.uci.edu/~eppstein/PADS/Biconnectivity.py
|
| 201 |
+
G1 = nx.Graph(
|
| 202 |
+
{
|
| 203 |
+
0: [1, 2, 5],
|
| 204 |
+
1: [0, 5],
|
| 205 |
+
2: [0, 3, 4],
|
| 206 |
+
3: [2, 4, 5, 6],
|
| 207 |
+
4: [2, 3, 5, 6],
|
| 208 |
+
5: [0, 1, 3, 4],
|
| 209 |
+
6: [3, 4],
|
| 210 |
+
}
|
| 211 |
+
)
|
| 212 |
+
G2 = nx.Graph(
|
| 213 |
+
{
|
| 214 |
+
0: [2, 5],
|
| 215 |
+
1: [3, 8],
|
| 216 |
+
2: [0, 3, 5],
|
| 217 |
+
3: [1, 2, 6, 8],
|
| 218 |
+
4: [7],
|
| 219 |
+
5: [0, 2],
|
| 220 |
+
6: [3, 8],
|
| 221 |
+
7: [4],
|
| 222 |
+
8: [1, 3, 6],
|
| 223 |
+
}
|
| 224 |
+
)
|
| 225 |
+
assert nx.is_biconnected(G1)
|
| 226 |
+
assert not nx.is_biconnected(G2)
|
| 227 |
+
answer_G2 = [{1, 3, 6, 8}, {0, 2, 5}, {2, 3}, {4, 7}]
|
| 228 |
+
bcc = list(nx.biconnected_components(G2))
|
| 229 |
+
assert_components_equal(bcc, answer_G2)
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
def test_null_graph():
|
| 233 |
+
G = nx.Graph()
|
| 234 |
+
assert not nx.is_biconnected(G)
|
| 235 |
+
assert list(nx.biconnected_components(G)) == []
|
| 236 |
+
assert list(nx.biconnected_component_edges(G)) == []
|
| 237 |
+
assert list(nx.articulation_points(G)) == []
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
def test_connected_raise():
|
| 241 |
+
DG = nx.DiGraph()
|
| 242 |
+
with pytest.raises(NetworkXNotImplemented):
|
| 243 |
+
next(nx.biconnected_components(DG))
|
| 244 |
+
with pytest.raises(NetworkXNotImplemented):
|
| 245 |
+
next(nx.biconnected_component_edges(DG))
|
| 246 |
+
with pytest.raises(NetworkXNotImplemented):
|
| 247 |
+
next(nx.articulation_points(DG))
|
| 248 |
+
pytest.raises(NetworkXNotImplemented, nx.is_biconnected, DG)
|
wemm/lib/python3.10/site-packages/networkx/algorithms/components/tests/test_connected.py
ADDED
|
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pytest
|
| 2 |
+
|
| 3 |
+
import networkx as nx
|
| 4 |
+
from networkx import NetworkXNotImplemented
|
| 5 |
+
from networkx import convert_node_labels_to_integers as cnlti
|
| 6 |
+
from networkx.classes.tests import dispatch_interface
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class TestConnected:
|
| 10 |
+
@classmethod
|
| 11 |
+
def setup_class(cls):
|
| 12 |
+
G1 = cnlti(nx.grid_2d_graph(2, 2), first_label=0, ordering="sorted")
|
| 13 |
+
G2 = cnlti(nx.lollipop_graph(3, 3), first_label=4, ordering="sorted")
|
| 14 |
+
G3 = cnlti(nx.house_graph(), first_label=10, ordering="sorted")
|
| 15 |
+
cls.G = nx.union(G1, G2)
|
| 16 |
+
cls.G = nx.union(cls.G, G3)
|
| 17 |
+
cls.DG = nx.DiGraph([(1, 2), (1, 3), (2, 3)])
|
| 18 |
+
cls.grid = cnlti(nx.grid_2d_graph(4, 4), first_label=1)
|
| 19 |
+
|
| 20 |
+
cls.gc = []
|
| 21 |
+
G = nx.DiGraph()
|
| 22 |
+
G.add_edges_from(
|
| 23 |
+
[
|
| 24 |
+
(1, 2),
|
| 25 |
+
(2, 3),
|
| 26 |
+
(2, 8),
|
| 27 |
+
(3, 4),
|
| 28 |
+
(3, 7),
|
| 29 |
+
(4, 5),
|
| 30 |
+
(5, 3),
|
| 31 |
+
(5, 6),
|
| 32 |
+
(7, 4),
|
| 33 |
+
(7, 6),
|
| 34 |
+
(8, 1),
|
| 35 |
+
(8, 7),
|
| 36 |
+
]
|
| 37 |
+
)
|
| 38 |
+
C = [[3, 4, 5, 7], [1, 2, 8], [6]]
|
| 39 |
+
cls.gc.append((G, C))
|
| 40 |
+
|
| 41 |
+
G = nx.DiGraph()
|
| 42 |
+
G.add_edges_from([(1, 2), (1, 3), (1, 4), (4, 2), (3, 4), (2, 3)])
|
| 43 |
+
C = [[2, 3, 4], [1]]
|
| 44 |
+
cls.gc.append((G, C))
|
| 45 |
+
|
| 46 |
+
G = nx.DiGraph()
|
| 47 |
+
G.add_edges_from([(1, 2), (2, 3), (3, 2), (2, 1)])
|
| 48 |
+
C = [[1, 2, 3]]
|
| 49 |
+
cls.gc.append((G, C))
|
| 50 |
+
|
| 51 |
+
# Eppstein's tests
|
| 52 |
+
G = nx.DiGraph({0: [1], 1: [2, 3], 2: [4, 5], 3: [4, 5], 4: [6], 5: [], 6: []})
|
| 53 |
+
C = [[0], [1], [2], [3], [4], [5], [6]]
|
| 54 |
+
cls.gc.append((G, C))
|
| 55 |
+
|
| 56 |
+
G = nx.DiGraph({0: [1], 1: [2, 3, 4], 2: [0, 3], 3: [4], 4: [3]})
|
| 57 |
+
C = [[0, 1, 2], [3, 4]]
|
| 58 |
+
cls.gc.append((G, C))
|
| 59 |
+
|
| 60 |
+
G = nx.DiGraph()
|
| 61 |
+
C = []
|
| 62 |
+
cls.gc.append((G, C))
|
| 63 |
+
|
| 64 |
+
def test_connected_components(self):
|
| 65 |
+
# Test duplicated below
|
| 66 |
+
cc = nx.connected_components
|
| 67 |
+
G = self.G
|
| 68 |
+
C = {
|
| 69 |
+
frozenset([0, 1, 2, 3]),
|
| 70 |
+
frozenset([4, 5, 6, 7, 8, 9]),
|
| 71 |
+
frozenset([10, 11, 12, 13, 14]),
|
| 72 |
+
}
|
| 73 |
+
assert {frozenset(g) for g in cc(G)} == C
|
| 74 |
+
|
| 75 |
+
def test_connected_components_nx_loopback(self):
|
| 76 |
+
# This tests the @nx._dispatchable mechanism, treating nx.connected_components
|
| 77 |
+
# as if it were a re-implementation from another package.
|
| 78 |
+
# Test duplicated from above
|
| 79 |
+
cc = nx.connected_components
|
| 80 |
+
G = dispatch_interface.convert(self.G)
|
| 81 |
+
C = {
|
| 82 |
+
frozenset([0, 1, 2, 3]),
|
| 83 |
+
frozenset([4, 5, 6, 7, 8, 9]),
|
| 84 |
+
frozenset([10, 11, 12, 13, 14]),
|
| 85 |
+
}
|
| 86 |
+
if "nx_loopback" in nx.config.backends or not nx.config.backends:
|
| 87 |
+
# If `nx.config.backends` is empty, then `_dispatchable.__call__` takes a
|
| 88 |
+
# "fast path" and does not check graph inputs, so using an unknown backend
|
| 89 |
+
# here will still work.
|
| 90 |
+
assert {frozenset(g) for g in cc(G)} == C
|
| 91 |
+
else:
|
| 92 |
+
# This raises, because "nx_loopback" is not registered as a backend.
|
| 93 |
+
with pytest.raises(
|
| 94 |
+
ImportError, match="'nx_loopback' backend is not installed"
|
| 95 |
+
):
|
| 96 |
+
cc(G)
|
| 97 |
+
|
| 98 |
+
def test_number_connected_components(self):
|
| 99 |
+
ncc = nx.number_connected_components
|
| 100 |
+
assert ncc(self.G) == 3
|
| 101 |
+
|
| 102 |
+
def test_number_connected_components2(self):
|
| 103 |
+
ncc = nx.number_connected_components
|
| 104 |
+
assert ncc(self.grid) == 1
|
| 105 |
+
|
| 106 |
+
def test_connected_components2(self):
|
| 107 |
+
cc = nx.connected_components
|
| 108 |
+
G = self.grid
|
| 109 |
+
C = {frozenset([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16])}
|
| 110 |
+
assert {frozenset(g) for g in cc(G)} == C
|
| 111 |
+
|
| 112 |
+
def test_node_connected_components(self):
|
| 113 |
+
ncc = nx.node_connected_component
|
| 114 |
+
G = self.grid
|
| 115 |
+
C = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}
|
| 116 |
+
assert ncc(G, 1) == C
|
| 117 |
+
|
| 118 |
+
def test_is_connected(self):
|
| 119 |
+
assert nx.is_connected(self.grid)
|
| 120 |
+
G = nx.Graph()
|
| 121 |
+
G.add_nodes_from([1, 2])
|
| 122 |
+
assert not nx.is_connected(G)
|
| 123 |
+
|
| 124 |
+
def test_connected_raise(self):
|
| 125 |
+
with pytest.raises(NetworkXNotImplemented):
|
| 126 |
+
next(nx.connected_components(self.DG))
|
| 127 |
+
pytest.raises(NetworkXNotImplemented, nx.number_connected_components, self.DG)
|
| 128 |
+
pytest.raises(NetworkXNotImplemented, nx.node_connected_component, self.DG, 1)
|
| 129 |
+
pytest.raises(NetworkXNotImplemented, nx.is_connected, self.DG)
|
| 130 |
+
pytest.raises(nx.NetworkXPointlessConcept, nx.is_connected, nx.Graph())
|
| 131 |
+
|
| 132 |
+
def test_connected_mutability(self):
|
| 133 |
+
G = self.grid
|
| 134 |
+
seen = set()
|
| 135 |
+
for component in nx.connected_components(G):
|
| 136 |
+
assert len(seen & component) == 0
|
| 137 |
+
seen.update(component)
|
| 138 |
+
component.clear()
|
wemm/lib/python3.10/site-packages/networkx/algorithms/components/tests/test_weakly_connected.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pytest
|
| 2 |
+
|
| 3 |
+
import networkx as nx
|
| 4 |
+
from networkx import NetworkXNotImplemented
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class TestWeaklyConnected:
|
| 8 |
+
@classmethod
|
| 9 |
+
def setup_class(cls):
|
| 10 |
+
cls.gc = []
|
| 11 |
+
G = nx.DiGraph()
|
| 12 |
+
G.add_edges_from(
|
| 13 |
+
[
|
| 14 |
+
(1, 2),
|
| 15 |
+
(2, 3),
|
| 16 |
+
(2, 8),
|
| 17 |
+
(3, 4),
|
| 18 |
+
(3, 7),
|
| 19 |
+
(4, 5),
|
| 20 |
+
(5, 3),
|
| 21 |
+
(5, 6),
|
| 22 |
+
(7, 4),
|
| 23 |
+
(7, 6),
|
| 24 |
+
(8, 1),
|
| 25 |
+
(8, 7),
|
| 26 |
+
]
|
| 27 |
+
)
|
| 28 |
+
C = [[3, 4, 5, 7], [1, 2, 8], [6]]
|
| 29 |
+
cls.gc.append((G, C))
|
| 30 |
+
|
| 31 |
+
G = nx.DiGraph()
|
| 32 |
+
G.add_edges_from([(1, 2), (1, 3), (1, 4), (4, 2), (3, 4), (2, 3)])
|
| 33 |
+
C = [[2, 3, 4], [1]]
|
| 34 |
+
cls.gc.append((G, C))
|
| 35 |
+
|
| 36 |
+
G = nx.DiGraph()
|
| 37 |
+
G.add_edges_from([(1, 2), (2, 3), (3, 2), (2, 1)])
|
| 38 |
+
C = [[1, 2, 3]]
|
| 39 |
+
cls.gc.append((G, C))
|
| 40 |
+
|
| 41 |
+
# Eppstein's tests
|
| 42 |
+
G = nx.DiGraph({0: [1], 1: [2, 3], 2: [4, 5], 3: [4, 5], 4: [6], 5: [], 6: []})
|
| 43 |
+
C = [[0], [1], [2], [3], [4], [5], [6]]
|
| 44 |
+
cls.gc.append((G, C))
|
| 45 |
+
|
| 46 |
+
G = nx.DiGraph({0: [1], 1: [2, 3, 4], 2: [0, 3], 3: [4], 4: [3]})
|
| 47 |
+
C = [[0, 1, 2], [3, 4]]
|
| 48 |
+
cls.gc.append((G, C))
|
| 49 |
+
|
| 50 |
+
def test_weakly_connected_components(self):
|
| 51 |
+
for G, C in self.gc:
|
| 52 |
+
U = G.to_undirected()
|
| 53 |
+
w = {frozenset(g) for g in nx.weakly_connected_components(G)}
|
| 54 |
+
c = {frozenset(g) for g in nx.connected_components(U)}
|
| 55 |
+
assert w == c
|
| 56 |
+
|
| 57 |
+
def test_number_weakly_connected_components(self):
|
| 58 |
+
for G, C in self.gc:
|
| 59 |
+
U = G.to_undirected()
|
| 60 |
+
w = nx.number_weakly_connected_components(G)
|
| 61 |
+
c = nx.number_connected_components(U)
|
| 62 |
+
assert w == c
|
| 63 |
+
|
| 64 |
+
def test_is_weakly_connected(self):
|
| 65 |
+
for G, C in self.gc:
|
| 66 |
+
U = G.to_undirected()
|
| 67 |
+
assert nx.is_weakly_connected(G) == nx.is_connected(U)
|
| 68 |
+
|
| 69 |
+
def test_null_graph(self):
|
| 70 |
+
G = nx.DiGraph()
|
| 71 |
+
assert list(nx.weakly_connected_components(G)) == []
|
| 72 |
+
assert nx.number_weakly_connected_components(G) == 0
|
| 73 |
+
with pytest.raises(nx.NetworkXPointlessConcept):
|
| 74 |
+
next(nx.is_weakly_connected(G))
|
| 75 |
+
|
| 76 |
+
def test_connected_raise(self):
|
| 77 |
+
G = nx.Graph()
|
| 78 |
+
with pytest.raises(NetworkXNotImplemented):
|
| 79 |
+
next(nx.weakly_connected_components(G))
|
| 80 |
+
pytest.raises(NetworkXNotImplemented, nx.number_weakly_connected_components, G)
|
| 81 |
+
pytest.raises(NetworkXNotImplemented, nx.is_weakly_connected, G)
|
| 82 |
+
|
| 83 |
+
def test_connected_mutability(self):
|
| 84 |
+
DG = nx.path_graph(5, create_using=nx.DiGraph)
|
| 85 |
+
G = nx.disjoint_union(DG, DG)
|
| 86 |
+
seen = set()
|
| 87 |
+
for component in nx.weakly_connected_components(G):
|
| 88 |
+
assert len(seen & component) == 0
|
| 89 |
+
seen.update(component)
|
| 90 |
+
component.clear()
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def test_is_weakly_connected_empty_graph_raises():
|
| 94 |
+
G = nx.DiGraph()
|
| 95 |
+
with pytest.raises(nx.NetworkXPointlessConcept, match="Connectivity is undefined"):
|
| 96 |
+
nx.is_weakly_connected(G)
|
wemm/lib/python3.10/site-packages/networkx/algorithms/operators/__init__.py
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from networkx.algorithms.operators.all import *
|
| 2 |
+
from networkx.algorithms.operators.binary import *
|
| 3 |
+
from networkx.algorithms.operators.product import *
|
| 4 |
+
from networkx.algorithms.operators.unary import *
|
wemm/lib/python3.10/site-packages/networkx/algorithms/operators/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (373 Bytes). View file
|
|
|
wemm/lib/python3.10/site-packages/networkx/algorithms/operators/__pycache__/binary.cpython-310.pyc
ADDED
|
Binary file (12.6 kB). View file
|
|
|
wemm/lib/python3.10/site-packages/networkx/algorithms/operators/__pycache__/product.cpython-310.pyc
ADDED
|
Binary file (18.2 kB). View file
|
|
|
wemm/lib/python3.10/site-packages/networkx/algorithms/operators/all.py
ADDED
|
@@ -0,0 +1,321 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Operations on many graphs."""
|
| 2 |
+
|
| 3 |
+
from itertools import chain, repeat
|
| 4 |
+
|
| 5 |
+
import networkx as nx
|
| 6 |
+
|
| 7 |
+
__all__ = ["union_all", "compose_all", "disjoint_union_all", "intersection_all"]
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
@nx._dispatchable(graphs="[graphs]", preserve_all_attrs=True, returns_graph=True)
|
| 11 |
+
def union_all(graphs, rename=()):
|
| 12 |
+
"""Returns the union of all graphs.
|
| 13 |
+
|
| 14 |
+
The graphs must be disjoint, otherwise an exception is raised.
|
| 15 |
+
|
| 16 |
+
Parameters
|
| 17 |
+
----------
|
| 18 |
+
graphs : iterable
|
| 19 |
+
Iterable of NetworkX graphs
|
| 20 |
+
|
| 21 |
+
rename : iterable , optional
|
| 22 |
+
Node names of graphs can be changed by specifying the tuple
|
| 23 |
+
rename=('G-','H-') (for example). Node "u" in G is then renamed
|
| 24 |
+
"G-u" and "v" in H is renamed "H-v". Infinite generators (like itertools.count)
|
| 25 |
+
are also supported.
|
| 26 |
+
|
| 27 |
+
Returns
|
| 28 |
+
-------
|
| 29 |
+
U : a graph with the same type as the first graph in list
|
| 30 |
+
|
| 31 |
+
Raises
|
| 32 |
+
------
|
| 33 |
+
ValueError
|
| 34 |
+
If `graphs` is an empty list.
|
| 35 |
+
|
| 36 |
+
NetworkXError
|
| 37 |
+
In case of mixed type graphs, like MultiGraph and Graph, or directed and undirected graphs.
|
| 38 |
+
|
| 39 |
+
Notes
|
| 40 |
+
-----
|
| 41 |
+
For operating on mixed type graphs, they should be converted to the same type.
|
| 42 |
+
>>> G = nx.Graph()
|
| 43 |
+
>>> H = nx.DiGraph()
|
| 44 |
+
>>> GH = union_all([nx.DiGraph(G), H])
|
| 45 |
+
|
| 46 |
+
To force a disjoint union with node relabeling, use
|
| 47 |
+
disjoint_union_all(G,H) or convert_node_labels_to integers().
|
| 48 |
+
|
| 49 |
+
Graph, edge, and node attributes are propagated to the union graph.
|
| 50 |
+
If a graph attribute is present in multiple graphs, then the value
|
| 51 |
+
from the last graph in the list with that attribute is used.
|
| 52 |
+
|
| 53 |
+
Examples
|
| 54 |
+
--------
|
| 55 |
+
>>> G1 = nx.Graph([(1, 2), (2, 3)])
|
| 56 |
+
>>> G2 = nx.Graph([(4, 5), (5, 6)])
|
| 57 |
+
>>> result_graph = nx.union_all([G1, G2])
|
| 58 |
+
>>> result_graph.nodes()
|
| 59 |
+
NodeView((1, 2, 3, 4, 5, 6))
|
| 60 |
+
>>> result_graph.edges()
|
| 61 |
+
EdgeView([(1, 2), (2, 3), (4, 5), (5, 6)])
|
| 62 |
+
|
| 63 |
+
See Also
|
| 64 |
+
--------
|
| 65 |
+
union
|
| 66 |
+
disjoint_union_all
|
| 67 |
+
"""
|
| 68 |
+
R = None
|
| 69 |
+
seen_nodes = set()
|
| 70 |
+
|
| 71 |
+
# rename graph to obtain disjoint node labels
|
| 72 |
+
def add_prefix(graph, prefix):
|
| 73 |
+
if prefix is None:
|
| 74 |
+
return graph
|
| 75 |
+
|
| 76 |
+
def label(x):
|
| 77 |
+
return f"{prefix}{x}"
|
| 78 |
+
|
| 79 |
+
return nx.relabel_nodes(graph, label)
|
| 80 |
+
|
| 81 |
+
rename = chain(rename, repeat(None))
|
| 82 |
+
graphs = (add_prefix(G, name) for G, name in zip(graphs, rename))
|
| 83 |
+
|
| 84 |
+
for i, G in enumerate(graphs):
|
| 85 |
+
G_nodes_set = set(G.nodes)
|
| 86 |
+
if i == 0:
|
| 87 |
+
# Union is the same type as first graph
|
| 88 |
+
R = G.__class__()
|
| 89 |
+
elif G.is_directed() != R.is_directed():
|
| 90 |
+
raise nx.NetworkXError("All graphs must be directed or undirected.")
|
| 91 |
+
elif G.is_multigraph() != R.is_multigraph():
|
| 92 |
+
raise nx.NetworkXError("All graphs must be graphs or multigraphs.")
|
| 93 |
+
elif not seen_nodes.isdisjoint(G_nodes_set):
|
| 94 |
+
raise nx.NetworkXError(
|
| 95 |
+
"The node sets of the graphs are not disjoint.\n"
|
| 96 |
+
"Use `rename` to specify prefixes for the graphs or use\n"
|
| 97 |
+
"disjoint_union(G1, G2, ..., GN)."
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
seen_nodes |= G_nodes_set
|
| 101 |
+
R.graph.update(G.graph)
|
| 102 |
+
R.add_nodes_from(G.nodes(data=True))
|
| 103 |
+
R.add_edges_from(
|
| 104 |
+
G.edges(keys=True, data=True) if G.is_multigraph() else G.edges(data=True)
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
if R is None:
|
| 108 |
+
raise ValueError("cannot apply union_all to an empty list")
|
| 109 |
+
|
| 110 |
+
return R
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
@nx._dispatchable(graphs="[graphs]", preserve_all_attrs=True, returns_graph=True)
|
| 114 |
+
def disjoint_union_all(graphs):
|
| 115 |
+
"""Returns the disjoint union of all graphs.
|
| 116 |
+
|
| 117 |
+
This operation forces distinct integer node labels starting with 0
|
| 118 |
+
for the first graph in the list and numbering consecutively.
|
| 119 |
+
|
| 120 |
+
Parameters
|
| 121 |
+
----------
|
| 122 |
+
graphs : iterable
|
| 123 |
+
Iterable of NetworkX graphs
|
| 124 |
+
|
| 125 |
+
Returns
|
| 126 |
+
-------
|
| 127 |
+
U : A graph with the same type as the first graph in list
|
| 128 |
+
|
| 129 |
+
Raises
|
| 130 |
+
------
|
| 131 |
+
ValueError
|
| 132 |
+
If `graphs` is an empty list.
|
| 133 |
+
|
| 134 |
+
NetworkXError
|
| 135 |
+
In case of mixed type graphs, like MultiGraph and Graph, or directed and undirected graphs.
|
| 136 |
+
|
| 137 |
+
Examples
|
| 138 |
+
--------
|
| 139 |
+
>>> G1 = nx.Graph([(1, 2), (2, 3)])
|
| 140 |
+
>>> G2 = nx.Graph([(4, 5), (5, 6)])
|
| 141 |
+
>>> U = nx.disjoint_union_all([G1, G2])
|
| 142 |
+
>>> list(U.nodes())
|
| 143 |
+
[0, 1, 2, 3, 4, 5]
|
| 144 |
+
>>> list(U.edges())
|
| 145 |
+
[(0, 1), (1, 2), (3, 4), (4, 5)]
|
| 146 |
+
|
| 147 |
+
Notes
|
| 148 |
+
-----
|
| 149 |
+
For operating on mixed type graphs, they should be converted to the same type.
|
| 150 |
+
|
| 151 |
+
Graph, edge, and node attributes are propagated to the union graph.
|
| 152 |
+
If a graph attribute is present in multiple graphs, then the value
|
| 153 |
+
from the last graph in the list with that attribute is used.
|
| 154 |
+
"""
|
| 155 |
+
|
| 156 |
+
def yield_relabeled(graphs):
|
| 157 |
+
first_label = 0
|
| 158 |
+
for G in graphs:
|
| 159 |
+
yield nx.convert_node_labels_to_integers(G, first_label=first_label)
|
| 160 |
+
first_label += len(G)
|
| 161 |
+
|
| 162 |
+
R = union_all(yield_relabeled(graphs))
|
| 163 |
+
|
| 164 |
+
return R
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
@nx._dispatchable(graphs="[graphs]", preserve_all_attrs=True, returns_graph=True)
|
| 168 |
+
def compose_all(graphs):
|
| 169 |
+
"""Returns the composition of all graphs.
|
| 170 |
+
|
| 171 |
+
Composition is the simple union of the node sets and edge sets.
|
| 172 |
+
The node sets of the supplied graphs need not be disjoint.
|
| 173 |
+
|
| 174 |
+
Parameters
|
| 175 |
+
----------
|
| 176 |
+
graphs : iterable
|
| 177 |
+
Iterable of NetworkX graphs
|
| 178 |
+
|
| 179 |
+
Returns
|
| 180 |
+
-------
|
| 181 |
+
C : A graph with the same type as the first graph in list
|
| 182 |
+
|
| 183 |
+
Raises
|
| 184 |
+
------
|
| 185 |
+
ValueError
|
| 186 |
+
If `graphs` is an empty list.
|
| 187 |
+
|
| 188 |
+
NetworkXError
|
| 189 |
+
In case of mixed type graphs, like MultiGraph and Graph, or directed and undirected graphs.
|
| 190 |
+
|
| 191 |
+
Examples
|
| 192 |
+
--------
|
| 193 |
+
>>> G1 = nx.Graph([(1, 2), (2, 3)])
|
| 194 |
+
>>> G2 = nx.Graph([(3, 4), (5, 6)])
|
| 195 |
+
>>> C = nx.compose_all([G1, G2])
|
| 196 |
+
>>> list(C.nodes())
|
| 197 |
+
[1, 2, 3, 4, 5, 6]
|
| 198 |
+
>>> list(C.edges())
|
| 199 |
+
[(1, 2), (2, 3), (3, 4), (5, 6)]
|
| 200 |
+
|
| 201 |
+
Notes
|
| 202 |
+
-----
|
| 203 |
+
For operating on mixed type graphs, they should be converted to the same type.
|
| 204 |
+
|
| 205 |
+
Graph, edge, and node attributes are propagated to the union graph.
|
| 206 |
+
If a graph attribute is present in multiple graphs, then the value
|
| 207 |
+
from the last graph in the list with that attribute is used.
|
| 208 |
+
"""
|
| 209 |
+
R = None
|
| 210 |
+
|
| 211 |
+
# add graph attributes, H attributes take precedent over G attributes
|
| 212 |
+
for i, G in enumerate(graphs):
|
| 213 |
+
if i == 0:
|
| 214 |
+
# create new graph
|
| 215 |
+
R = G.__class__()
|
| 216 |
+
elif G.is_directed() != R.is_directed():
|
| 217 |
+
raise nx.NetworkXError("All graphs must be directed or undirected.")
|
| 218 |
+
elif G.is_multigraph() != R.is_multigraph():
|
| 219 |
+
raise nx.NetworkXError("All graphs must be graphs or multigraphs.")
|
| 220 |
+
|
| 221 |
+
R.graph.update(G.graph)
|
| 222 |
+
R.add_nodes_from(G.nodes(data=True))
|
| 223 |
+
R.add_edges_from(
|
| 224 |
+
G.edges(keys=True, data=True) if G.is_multigraph() else G.edges(data=True)
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
if R is None:
|
| 228 |
+
raise ValueError("cannot apply compose_all to an empty list")
|
| 229 |
+
|
| 230 |
+
return R
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
@nx._dispatchable(graphs="[graphs]", returns_graph=True)
|
| 234 |
+
def intersection_all(graphs):
|
| 235 |
+
"""Returns a new graph that contains only the nodes and the edges that exist in
|
| 236 |
+
all graphs.
|
| 237 |
+
|
| 238 |
+
Parameters
|
| 239 |
+
----------
|
| 240 |
+
graphs : iterable
|
| 241 |
+
Iterable of NetworkX graphs
|
| 242 |
+
|
| 243 |
+
Returns
|
| 244 |
+
-------
|
| 245 |
+
R : A new graph with the same type as the first graph in list
|
| 246 |
+
|
| 247 |
+
Raises
|
| 248 |
+
------
|
| 249 |
+
ValueError
|
| 250 |
+
If `graphs` is an empty list.
|
| 251 |
+
|
| 252 |
+
NetworkXError
|
| 253 |
+
In case of mixed type graphs, like MultiGraph and Graph, or directed and undirected graphs.
|
| 254 |
+
|
| 255 |
+
Notes
|
| 256 |
+
-----
|
| 257 |
+
For operating on mixed type graphs, they should be converted to the same type.
|
| 258 |
+
|
| 259 |
+
Attributes from the graph, nodes, and edges are not copied to the new
|
| 260 |
+
graph.
|
| 261 |
+
|
| 262 |
+
The resulting graph can be updated with attributes if desired. For example, code which adds the minimum attribute for each node across all graphs could work.
|
| 263 |
+
>>> g = nx.Graph()
|
| 264 |
+
>>> g.add_node(0, capacity=4)
|
| 265 |
+
>>> g.add_node(1, capacity=3)
|
| 266 |
+
>>> g.add_edge(0, 1)
|
| 267 |
+
|
| 268 |
+
>>> h = g.copy()
|
| 269 |
+
>>> h.nodes[0]["capacity"] = 2
|
| 270 |
+
|
| 271 |
+
>>> gh = nx.intersection_all([g, h])
|
| 272 |
+
|
| 273 |
+
>>> new_node_attr = {
|
| 274 |
+
... n: min(*(anyG.nodes[n].get("capacity", float("inf")) for anyG in [g, h]))
|
| 275 |
+
... for n in gh
|
| 276 |
+
... }
|
| 277 |
+
>>> nx.set_node_attributes(gh, new_node_attr, "new_capacity")
|
| 278 |
+
>>> gh.nodes(data=True)
|
| 279 |
+
NodeDataView({0: {'new_capacity': 2}, 1: {'new_capacity': 3}})
|
| 280 |
+
|
| 281 |
+
Examples
|
| 282 |
+
--------
|
| 283 |
+
>>> G1 = nx.Graph([(1, 2), (2, 3)])
|
| 284 |
+
>>> G2 = nx.Graph([(2, 3), (3, 4)])
|
| 285 |
+
>>> R = nx.intersection_all([G1, G2])
|
| 286 |
+
>>> list(R.nodes())
|
| 287 |
+
[2, 3]
|
| 288 |
+
>>> list(R.edges())
|
| 289 |
+
[(2, 3)]
|
| 290 |
+
|
| 291 |
+
"""
|
| 292 |
+
R = None
|
| 293 |
+
|
| 294 |
+
for i, G in enumerate(graphs):
|
| 295 |
+
G_nodes_set = set(G.nodes)
|
| 296 |
+
G_edges_set = set(G.edges)
|
| 297 |
+
if not G.is_directed():
|
| 298 |
+
if G.is_multigraph():
|
| 299 |
+
G_edges_set.update((v, u, k) for u, v, k in list(G_edges_set))
|
| 300 |
+
else:
|
| 301 |
+
G_edges_set.update((v, u) for u, v in list(G_edges_set))
|
| 302 |
+
if i == 0:
|
| 303 |
+
# create new graph
|
| 304 |
+
R = G.__class__()
|
| 305 |
+
node_intersection = G_nodes_set
|
| 306 |
+
edge_intersection = G_edges_set
|
| 307 |
+
elif G.is_directed() != R.is_directed():
|
| 308 |
+
raise nx.NetworkXError("All graphs must be directed or undirected.")
|
| 309 |
+
elif G.is_multigraph() != R.is_multigraph():
|
| 310 |
+
raise nx.NetworkXError("All graphs must be graphs or multigraphs.")
|
| 311 |
+
else:
|
| 312 |
+
node_intersection &= G_nodes_set
|
| 313 |
+
edge_intersection &= G_edges_set
|
| 314 |
+
|
| 315 |
+
if R is None:
|
| 316 |
+
raise ValueError("cannot apply intersection_all to an empty list")
|
| 317 |
+
|
| 318 |
+
R.add_nodes_from(node_intersection)
|
| 319 |
+
R.add_edges_from(edge_intersection)
|
| 320 |
+
|
| 321 |
+
return R
|
wemm/lib/python3.10/site-packages/networkx/algorithms/operators/binary.py
ADDED
|
@@ -0,0 +1,450 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Operations on graphs including union, intersection, difference.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import networkx as nx
|
| 6 |
+
|
| 7 |
+
__all__ = [
|
| 8 |
+
"union",
|
| 9 |
+
"compose",
|
| 10 |
+
"disjoint_union",
|
| 11 |
+
"intersection",
|
| 12 |
+
"difference",
|
| 13 |
+
"symmetric_difference",
|
| 14 |
+
"full_join",
|
| 15 |
+
]
|
| 16 |
+
_G_H = {"G": 0, "H": 1}
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
@nx._dispatchable(graphs=_G_H, preserve_all_attrs=True, returns_graph=True)
|
| 20 |
+
def union(G, H, rename=()):
|
| 21 |
+
"""Combine graphs G and H. The names of nodes must be unique.
|
| 22 |
+
|
| 23 |
+
A name collision between the graphs will raise an exception.
|
| 24 |
+
|
| 25 |
+
A renaming facility is provided to avoid name collisions.
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
Parameters
|
| 29 |
+
----------
|
| 30 |
+
G, H : graph
|
| 31 |
+
A NetworkX graph
|
| 32 |
+
|
| 33 |
+
rename : iterable , optional
|
| 34 |
+
Node names of G and H can be changed by specifying the tuple
|
| 35 |
+
rename=('G-','H-') (for example). Node "u" in G is then renamed
|
| 36 |
+
"G-u" and "v" in H is renamed "H-v".
|
| 37 |
+
|
| 38 |
+
Returns
|
| 39 |
+
-------
|
| 40 |
+
U : A union graph with the same type as G.
|
| 41 |
+
|
| 42 |
+
See Also
|
| 43 |
+
--------
|
| 44 |
+
compose
|
| 45 |
+
:func:`~networkx.Graph.update`
|
| 46 |
+
disjoint_union
|
| 47 |
+
|
| 48 |
+
Notes
|
| 49 |
+
-----
|
| 50 |
+
To combine graphs that have common nodes, consider compose(G, H)
|
| 51 |
+
or the method, Graph.update().
|
| 52 |
+
|
| 53 |
+
disjoint_union() is similar to union() except that it avoids name clashes
|
| 54 |
+
by relabeling the nodes with sequential integers.
|
| 55 |
+
|
| 56 |
+
Edge and node attributes are propagated from G and H to the union graph.
|
| 57 |
+
Graph attributes are also propagated, but if they are present in both G and H,
|
| 58 |
+
then the value from H is used.
|
| 59 |
+
|
| 60 |
+
Examples
|
| 61 |
+
--------
|
| 62 |
+
>>> G = nx.Graph([(0, 1), (0, 2), (1, 2)])
|
| 63 |
+
>>> H = nx.Graph([(0, 1), (0, 3), (1, 3), (1, 2)])
|
| 64 |
+
>>> U = nx.union(G, H, rename=("G", "H"))
|
| 65 |
+
>>> U.nodes
|
| 66 |
+
NodeView(('G0', 'G1', 'G2', 'H0', 'H1', 'H3', 'H2'))
|
| 67 |
+
>>> U.edges
|
| 68 |
+
EdgeView([('G0', 'G1'), ('G0', 'G2'), ('G1', 'G2'), ('H0', 'H1'), ('H0', 'H3'), ('H1', 'H3'), ('H1', 'H2')])
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
"""
|
| 72 |
+
return nx.union_all([G, H], rename)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
@nx._dispatchable(graphs=_G_H, preserve_all_attrs=True, returns_graph=True)
|
| 76 |
+
def disjoint_union(G, H):
|
| 77 |
+
"""Combine graphs G and H. The nodes are assumed to be unique (disjoint).
|
| 78 |
+
|
| 79 |
+
This algorithm automatically relabels nodes to avoid name collisions.
|
| 80 |
+
|
| 81 |
+
Parameters
|
| 82 |
+
----------
|
| 83 |
+
G,H : graph
|
| 84 |
+
A NetworkX graph
|
| 85 |
+
|
| 86 |
+
Returns
|
| 87 |
+
-------
|
| 88 |
+
U : A union graph with the same type as G.
|
| 89 |
+
|
| 90 |
+
See Also
|
| 91 |
+
--------
|
| 92 |
+
union
|
| 93 |
+
compose
|
| 94 |
+
:func:`~networkx.Graph.update`
|
| 95 |
+
|
| 96 |
+
Notes
|
| 97 |
+
-----
|
| 98 |
+
A new graph is created, of the same class as G. It is recommended
|
| 99 |
+
that G and H be either both directed or both undirected.
|
| 100 |
+
|
| 101 |
+
The nodes of G are relabeled 0 to len(G)-1, and the nodes of H are
|
| 102 |
+
relabeled len(G) to len(G)+len(H)-1.
|
| 103 |
+
|
| 104 |
+
Renumbering forces G and H to be disjoint, so no exception is ever raised for a name collision.
|
| 105 |
+
To preserve the check for common nodes, use union().
|
| 106 |
+
|
| 107 |
+
Edge and node attributes are propagated from G and H to the union graph.
|
| 108 |
+
Graph attributes are also propagated, but if they are present in both G and H,
|
| 109 |
+
then the value from H is used.
|
| 110 |
+
|
| 111 |
+
To combine graphs that have common nodes, consider compose(G, H)
|
| 112 |
+
or the method, Graph.update().
|
| 113 |
+
|
| 114 |
+
Examples
|
| 115 |
+
--------
|
| 116 |
+
>>> G = nx.Graph([(0, 1), (0, 2), (1, 2)])
|
| 117 |
+
>>> H = nx.Graph([(0, 3), (1, 2), (2, 3)])
|
| 118 |
+
>>> G.nodes[0]["key1"] = 5
|
| 119 |
+
>>> H.nodes[0]["key2"] = 10
|
| 120 |
+
>>> U = nx.disjoint_union(G, H)
|
| 121 |
+
>>> U.nodes(data=True)
|
| 122 |
+
NodeDataView({0: {'key1': 5}, 1: {}, 2: {}, 3: {'key2': 10}, 4: {}, 5: {}, 6: {}})
|
| 123 |
+
>>> U.edges
|
| 124 |
+
EdgeView([(0, 1), (0, 2), (1, 2), (3, 4), (4, 6), (5, 6)])
|
| 125 |
+
"""
|
| 126 |
+
return nx.disjoint_union_all([G, H])
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
@nx._dispatchable(graphs=_G_H, returns_graph=True)
|
| 130 |
+
def intersection(G, H):
|
| 131 |
+
"""Returns a new graph that contains only the nodes and the edges that exist in
|
| 132 |
+
both G and H.
|
| 133 |
+
|
| 134 |
+
Parameters
|
| 135 |
+
----------
|
| 136 |
+
G,H : graph
|
| 137 |
+
A NetworkX graph. G and H can have different node sets but must be both graphs or both multigraphs.
|
| 138 |
+
|
| 139 |
+
Raises
|
| 140 |
+
------
|
| 141 |
+
NetworkXError
|
| 142 |
+
If one is a MultiGraph and the other one is a graph.
|
| 143 |
+
|
| 144 |
+
Returns
|
| 145 |
+
-------
|
| 146 |
+
GH : A new graph with the same type as G.
|
| 147 |
+
|
| 148 |
+
Notes
|
| 149 |
+
-----
|
| 150 |
+
Attributes from the graph, nodes, and edges are not copied to the new
|
| 151 |
+
graph. If you want a new graph of the intersection of G and H
|
| 152 |
+
with the attributes (including edge data) from G use remove_nodes_from()
|
| 153 |
+
as follows
|
| 154 |
+
|
| 155 |
+
>>> G = nx.path_graph(3)
|
| 156 |
+
>>> H = nx.path_graph(5)
|
| 157 |
+
>>> R = G.copy()
|
| 158 |
+
>>> R.remove_nodes_from(n for n in G if n not in H)
|
| 159 |
+
>>> R.remove_edges_from(e for e in G.edges if e not in H.edges)
|
| 160 |
+
|
| 161 |
+
Examples
|
| 162 |
+
--------
|
| 163 |
+
>>> G = nx.Graph([(0, 1), (0, 2), (1, 2)])
|
| 164 |
+
>>> H = nx.Graph([(0, 3), (1, 2), (2, 3)])
|
| 165 |
+
>>> R = nx.intersection(G, H)
|
| 166 |
+
>>> R.nodes
|
| 167 |
+
NodeView((0, 1, 2))
|
| 168 |
+
>>> R.edges
|
| 169 |
+
EdgeView([(1, 2)])
|
| 170 |
+
"""
|
| 171 |
+
return nx.intersection_all([G, H])
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
@nx._dispatchable(graphs=_G_H, returns_graph=True)
|
| 175 |
+
def difference(G, H):
|
| 176 |
+
"""Returns a new graph that contains the edges that exist in G but not in H.
|
| 177 |
+
|
| 178 |
+
The node sets of H and G must be the same.
|
| 179 |
+
|
| 180 |
+
Parameters
|
| 181 |
+
----------
|
| 182 |
+
G,H : graph
|
| 183 |
+
A NetworkX graph. G and H must have the same node sets.
|
| 184 |
+
|
| 185 |
+
Returns
|
| 186 |
+
-------
|
| 187 |
+
D : A new graph with the same type as G.
|
| 188 |
+
|
| 189 |
+
Notes
|
| 190 |
+
-----
|
| 191 |
+
Attributes from the graph, nodes, and edges are not copied to the new
|
| 192 |
+
graph. If you want a new graph of the difference of G and H with
|
| 193 |
+
the attributes (including edge data) from G use remove_nodes_from()
|
| 194 |
+
as follows:
|
| 195 |
+
|
| 196 |
+
>>> G = nx.path_graph(3)
|
| 197 |
+
>>> H = nx.path_graph(5)
|
| 198 |
+
>>> R = G.copy()
|
| 199 |
+
>>> R.remove_nodes_from(n for n in G if n in H)
|
| 200 |
+
|
| 201 |
+
Examples
|
| 202 |
+
--------
|
| 203 |
+
>>> G = nx.Graph([(0, 1), (0, 2), (1, 2), (1, 3)])
|
| 204 |
+
>>> H = nx.Graph([(0, 1), (1, 2), (0, 3)])
|
| 205 |
+
>>> R = nx.difference(G, H)
|
| 206 |
+
>>> R.nodes
|
| 207 |
+
NodeView((0, 1, 2, 3))
|
| 208 |
+
>>> R.edges
|
| 209 |
+
EdgeView([(0, 2), (1, 3)])
|
| 210 |
+
"""
|
| 211 |
+
# create new graph
|
| 212 |
+
if not G.is_multigraph() == H.is_multigraph():
|
| 213 |
+
raise nx.NetworkXError("G and H must both be graphs or multigraphs.")
|
| 214 |
+
R = nx.create_empty_copy(G, with_data=False)
|
| 215 |
+
|
| 216 |
+
if set(G) != set(H):
|
| 217 |
+
raise nx.NetworkXError("Node sets of graphs not equal")
|
| 218 |
+
|
| 219 |
+
if G.is_multigraph():
|
| 220 |
+
edges = G.edges(keys=True)
|
| 221 |
+
else:
|
| 222 |
+
edges = G.edges()
|
| 223 |
+
for e in edges:
|
| 224 |
+
if not H.has_edge(*e):
|
| 225 |
+
R.add_edge(*e)
|
| 226 |
+
return R
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
@nx._dispatchable(graphs=_G_H, returns_graph=True)
|
| 230 |
+
def symmetric_difference(G, H):
|
| 231 |
+
"""Returns new graph with edges that exist in either G or H but not both.
|
| 232 |
+
|
| 233 |
+
The node sets of H and G must be the same.
|
| 234 |
+
|
| 235 |
+
Parameters
|
| 236 |
+
----------
|
| 237 |
+
G,H : graph
|
| 238 |
+
A NetworkX graph. G and H must have the same node sets.
|
| 239 |
+
|
| 240 |
+
Returns
|
| 241 |
+
-------
|
| 242 |
+
D : A new graph with the same type as G.
|
| 243 |
+
|
| 244 |
+
Notes
|
| 245 |
+
-----
|
| 246 |
+
Attributes from the graph, nodes, and edges are not copied to the new
|
| 247 |
+
graph.
|
| 248 |
+
|
| 249 |
+
Examples
|
| 250 |
+
--------
|
| 251 |
+
>>> G = nx.Graph([(0, 1), (0, 2), (1, 2), (1, 3)])
|
| 252 |
+
>>> H = nx.Graph([(0, 1), (1, 2), (0, 3)])
|
| 253 |
+
>>> R = nx.symmetric_difference(G, H)
|
| 254 |
+
>>> R.nodes
|
| 255 |
+
NodeView((0, 1, 2, 3))
|
| 256 |
+
>>> R.edges
|
| 257 |
+
EdgeView([(0, 2), (0, 3), (1, 3)])
|
| 258 |
+
"""
|
| 259 |
+
# create new graph
|
| 260 |
+
if not G.is_multigraph() == H.is_multigraph():
|
| 261 |
+
raise nx.NetworkXError("G and H must both be graphs or multigraphs.")
|
| 262 |
+
R = nx.create_empty_copy(G, with_data=False)
|
| 263 |
+
|
| 264 |
+
if set(G) != set(H):
|
| 265 |
+
raise nx.NetworkXError("Node sets of graphs not equal")
|
| 266 |
+
|
| 267 |
+
gnodes = set(G) # set of nodes in G
|
| 268 |
+
hnodes = set(H) # set of nodes in H
|
| 269 |
+
nodes = gnodes.symmetric_difference(hnodes)
|
| 270 |
+
R.add_nodes_from(nodes)
|
| 271 |
+
|
| 272 |
+
if G.is_multigraph():
|
| 273 |
+
edges = G.edges(keys=True)
|
| 274 |
+
else:
|
| 275 |
+
edges = G.edges()
|
| 276 |
+
# we could copy the data here but then this function doesn't
|
| 277 |
+
# match intersection and difference
|
| 278 |
+
for e in edges:
|
| 279 |
+
if not H.has_edge(*e):
|
| 280 |
+
R.add_edge(*e)
|
| 281 |
+
|
| 282 |
+
if H.is_multigraph():
|
| 283 |
+
edges = H.edges(keys=True)
|
| 284 |
+
else:
|
| 285 |
+
edges = H.edges()
|
| 286 |
+
for e in edges:
|
| 287 |
+
if not G.has_edge(*e):
|
| 288 |
+
R.add_edge(*e)
|
| 289 |
+
return R
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
@nx._dispatchable(graphs=_G_H, preserve_all_attrs=True, returns_graph=True)
|
| 293 |
+
def compose(G, H):
|
| 294 |
+
"""Compose graph G with H by combining nodes and edges into a single graph.
|
| 295 |
+
|
| 296 |
+
The node sets and edges sets do not need to be disjoint.
|
| 297 |
+
|
| 298 |
+
Composing preserves the attributes of nodes and edges.
|
| 299 |
+
Attribute values from H take precedent over attribute values from G.
|
| 300 |
+
|
| 301 |
+
Parameters
|
| 302 |
+
----------
|
| 303 |
+
G, H : graph
|
| 304 |
+
A NetworkX graph
|
| 305 |
+
|
| 306 |
+
Returns
|
| 307 |
+
-------
|
| 308 |
+
C: A new graph with the same type as G
|
| 309 |
+
|
| 310 |
+
See Also
|
| 311 |
+
--------
|
| 312 |
+
:func:`~networkx.Graph.update`
|
| 313 |
+
union
|
| 314 |
+
disjoint_union
|
| 315 |
+
|
| 316 |
+
Notes
|
| 317 |
+
-----
|
| 318 |
+
It is recommended that G and H be either both directed or both undirected.
|
| 319 |
+
|
| 320 |
+
For MultiGraphs, the edges are identified by incident nodes AND edge-key.
|
| 321 |
+
This can cause surprises (i.e., edge `(1, 2)` may or may not be the same
|
| 322 |
+
in two graphs) if you use MultiGraph without keeping track of edge keys.
|
| 323 |
+
|
| 324 |
+
If combining the attributes of common nodes is not desired, consider union(),
|
| 325 |
+
which raises an exception for name collisions.
|
| 326 |
+
|
| 327 |
+
Examples
|
| 328 |
+
--------
|
| 329 |
+
>>> G = nx.Graph([(0, 1), (0, 2)])
|
| 330 |
+
>>> H = nx.Graph([(0, 1), (1, 2)])
|
| 331 |
+
>>> R = nx.compose(G, H)
|
| 332 |
+
>>> R.nodes
|
| 333 |
+
NodeView((0, 1, 2))
|
| 334 |
+
>>> R.edges
|
| 335 |
+
EdgeView([(0, 1), (0, 2), (1, 2)])
|
| 336 |
+
|
| 337 |
+
By default, the attributes from `H` take precedent over attributes from `G`.
|
| 338 |
+
If you prefer another way of combining attributes, you can update them after the compose operation:
|
| 339 |
+
|
| 340 |
+
>>> G = nx.Graph([(0, 1, {"weight": 2.0}), (3, 0, {"weight": 100.0})])
|
| 341 |
+
>>> H = nx.Graph([(0, 1, {"weight": 10.0}), (1, 2, {"weight": -1.0})])
|
| 342 |
+
>>> nx.set_node_attributes(G, {0: "dark", 1: "light", 3: "black"}, name="color")
|
| 343 |
+
>>> nx.set_node_attributes(H, {0: "green", 1: "orange", 2: "yellow"}, name="color")
|
| 344 |
+
>>> GcomposeH = nx.compose(G, H)
|
| 345 |
+
|
| 346 |
+
Normally, color attribute values of nodes of GcomposeH come from H. We can workaround this as follows:
|
| 347 |
+
|
| 348 |
+
>>> node_data = {
|
| 349 |
+
... n: G.nodes[n]["color"] + " " + H.nodes[n]["color"]
|
| 350 |
+
... for n in G.nodes & H.nodes
|
| 351 |
+
... }
|
| 352 |
+
>>> nx.set_node_attributes(GcomposeH, node_data, "color")
|
| 353 |
+
>>> print(GcomposeH.nodes[0]["color"])
|
| 354 |
+
dark green
|
| 355 |
+
|
| 356 |
+
>>> print(GcomposeH.nodes[3]["color"])
|
| 357 |
+
black
|
| 358 |
+
|
| 359 |
+
Similarly, we can update edge attributes after the compose operation in a way we prefer:
|
| 360 |
+
|
| 361 |
+
>>> edge_data = {
|
| 362 |
+
... e: G.edges[e]["weight"] * H.edges[e]["weight"] for e in G.edges & H.edges
|
| 363 |
+
... }
|
| 364 |
+
>>> nx.set_edge_attributes(GcomposeH, edge_data, "weight")
|
| 365 |
+
>>> print(GcomposeH.edges[(0, 1)]["weight"])
|
| 366 |
+
20.0
|
| 367 |
+
|
| 368 |
+
>>> print(GcomposeH.edges[(3, 0)]["weight"])
|
| 369 |
+
100.0
|
| 370 |
+
"""
|
| 371 |
+
return nx.compose_all([G, H])
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
@nx._dispatchable(graphs=_G_H, preserve_all_attrs=True, returns_graph=True)
|
| 375 |
+
def full_join(G, H, rename=(None, None)):
|
| 376 |
+
"""Returns the full join of graphs G and H.
|
| 377 |
+
|
| 378 |
+
Full join is the union of G and H in which all edges between
|
| 379 |
+
G and H are added.
|
| 380 |
+
The node sets of G and H must be disjoint,
|
| 381 |
+
otherwise an exception is raised.
|
| 382 |
+
|
| 383 |
+
Parameters
|
| 384 |
+
----------
|
| 385 |
+
G, H : graph
|
| 386 |
+
A NetworkX graph
|
| 387 |
+
|
| 388 |
+
rename : tuple , default=(None, None)
|
| 389 |
+
Node names of G and H can be changed by specifying the tuple
|
| 390 |
+
rename=('G-','H-') (for example). Node "u" in G is then renamed
|
| 391 |
+
"G-u" and "v" in H is renamed "H-v".
|
| 392 |
+
|
| 393 |
+
Returns
|
| 394 |
+
-------
|
| 395 |
+
U : The full join graph with the same type as G.
|
| 396 |
+
|
| 397 |
+
Notes
|
| 398 |
+
-----
|
| 399 |
+
It is recommended that G and H be either both directed or both undirected.
|
| 400 |
+
|
| 401 |
+
If G is directed, then edges from G to H are added as well as from H to G.
|
| 402 |
+
|
| 403 |
+
Note that full_join() does not produce parallel edges for MultiGraphs.
|
| 404 |
+
|
| 405 |
+
The full join operation of graphs G and H is the same as getting
|
| 406 |
+
their complement, performing a disjoint union, and finally getting
|
| 407 |
+
the complement of the resulting graph.
|
| 408 |
+
|
| 409 |
+
Graph, edge, and node attributes are propagated from G and H
|
| 410 |
+
to the union graph. If a graph attribute is present in both
|
| 411 |
+
G and H the value from H is used.
|
| 412 |
+
|
| 413 |
+
Examples
|
| 414 |
+
--------
|
| 415 |
+
>>> G = nx.Graph([(0, 1), (0, 2)])
|
| 416 |
+
>>> H = nx.Graph([(3, 4)])
|
| 417 |
+
>>> R = nx.full_join(G, H, rename=("G", "H"))
|
| 418 |
+
>>> R.nodes
|
| 419 |
+
NodeView(('G0', 'G1', 'G2', 'H3', 'H4'))
|
| 420 |
+
>>> R.edges
|
| 421 |
+
EdgeView([('G0', 'G1'), ('G0', 'G2'), ('G0', 'H3'), ('G0', 'H4'), ('G1', 'H3'), ('G1', 'H4'), ('G2', 'H3'), ('G2', 'H4'), ('H3', 'H4')])
|
| 422 |
+
|
| 423 |
+
See Also
|
| 424 |
+
--------
|
| 425 |
+
union
|
| 426 |
+
disjoint_union
|
| 427 |
+
"""
|
| 428 |
+
R = union(G, H, rename)
|
| 429 |
+
|
| 430 |
+
def add_prefix(graph, prefix):
|
| 431 |
+
if prefix is None:
|
| 432 |
+
return graph
|
| 433 |
+
|
| 434 |
+
def label(x):
|
| 435 |
+
return f"{prefix}{x}"
|
| 436 |
+
|
| 437 |
+
return nx.relabel_nodes(graph, label)
|
| 438 |
+
|
| 439 |
+
G = add_prefix(G, rename[0])
|
| 440 |
+
H = add_prefix(H, rename[1])
|
| 441 |
+
|
| 442 |
+
for i in G:
|
| 443 |
+
for j in H:
|
| 444 |
+
R.add_edge(i, j)
|
| 445 |
+
if R.is_directed():
|
| 446 |
+
for i in H:
|
| 447 |
+
for j in G:
|
| 448 |
+
R.add_edge(i, j)
|
| 449 |
+
|
| 450 |
+
return R
|
wemm/lib/python3.10/site-packages/networkx/algorithms/operators/product.py
ADDED
|
@@ -0,0 +1,633 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Graph products.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from itertools import product
|
| 6 |
+
|
| 7 |
+
import networkx as nx
|
| 8 |
+
from networkx.utils import not_implemented_for
|
| 9 |
+
|
| 10 |
+
__all__ = [
|
| 11 |
+
"tensor_product",
|
| 12 |
+
"cartesian_product",
|
| 13 |
+
"lexicographic_product",
|
| 14 |
+
"strong_product",
|
| 15 |
+
"power",
|
| 16 |
+
"rooted_product",
|
| 17 |
+
"corona_product",
|
| 18 |
+
"modular_product",
|
| 19 |
+
]
|
| 20 |
+
_G_H = {"G": 0, "H": 1}
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def _dict_product(d1, d2):
|
| 24 |
+
return {k: (d1.get(k), d2.get(k)) for k in set(d1) | set(d2)}
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# Generators for producing graph products
|
| 28 |
+
def _node_product(G, H):
|
| 29 |
+
for u, v in product(G, H):
|
| 30 |
+
yield ((u, v), _dict_product(G.nodes[u], H.nodes[v]))
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def _directed_edges_cross_edges(G, H):
|
| 34 |
+
if not G.is_multigraph() and not H.is_multigraph():
|
| 35 |
+
for u, v, c in G.edges(data=True):
|
| 36 |
+
for x, y, d in H.edges(data=True):
|
| 37 |
+
yield (u, x), (v, y), _dict_product(c, d)
|
| 38 |
+
if not G.is_multigraph() and H.is_multigraph():
|
| 39 |
+
for u, v, c in G.edges(data=True):
|
| 40 |
+
for x, y, k, d in H.edges(data=True, keys=True):
|
| 41 |
+
yield (u, x), (v, y), k, _dict_product(c, d)
|
| 42 |
+
if G.is_multigraph() and not H.is_multigraph():
|
| 43 |
+
for u, v, k, c in G.edges(data=True, keys=True):
|
| 44 |
+
for x, y, d in H.edges(data=True):
|
| 45 |
+
yield (u, x), (v, y), k, _dict_product(c, d)
|
| 46 |
+
if G.is_multigraph() and H.is_multigraph():
|
| 47 |
+
for u, v, j, c in G.edges(data=True, keys=True):
|
| 48 |
+
for x, y, k, d in H.edges(data=True, keys=True):
|
| 49 |
+
yield (u, x), (v, y), (j, k), _dict_product(c, d)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def _undirected_edges_cross_edges(G, H):
|
| 53 |
+
if not G.is_multigraph() and not H.is_multigraph():
|
| 54 |
+
for u, v, c in G.edges(data=True):
|
| 55 |
+
for x, y, d in H.edges(data=True):
|
| 56 |
+
yield (v, x), (u, y), _dict_product(c, d)
|
| 57 |
+
if not G.is_multigraph() and H.is_multigraph():
|
| 58 |
+
for u, v, c in G.edges(data=True):
|
| 59 |
+
for x, y, k, d in H.edges(data=True, keys=True):
|
| 60 |
+
yield (v, x), (u, y), k, _dict_product(c, d)
|
| 61 |
+
if G.is_multigraph() and not H.is_multigraph():
|
| 62 |
+
for u, v, k, c in G.edges(data=True, keys=True):
|
| 63 |
+
for x, y, d in H.edges(data=True):
|
| 64 |
+
yield (v, x), (u, y), k, _dict_product(c, d)
|
| 65 |
+
if G.is_multigraph() and H.is_multigraph():
|
| 66 |
+
for u, v, j, c in G.edges(data=True, keys=True):
|
| 67 |
+
for x, y, k, d in H.edges(data=True, keys=True):
|
| 68 |
+
yield (v, x), (u, y), (j, k), _dict_product(c, d)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def _edges_cross_nodes(G, H):
|
| 72 |
+
if G.is_multigraph():
|
| 73 |
+
for u, v, k, d in G.edges(data=True, keys=True):
|
| 74 |
+
for x in H:
|
| 75 |
+
yield (u, x), (v, x), k, d
|
| 76 |
+
else:
|
| 77 |
+
for u, v, d in G.edges(data=True):
|
| 78 |
+
for x in H:
|
| 79 |
+
if H.is_multigraph():
|
| 80 |
+
yield (u, x), (v, x), None, d
|
| 81 |
+
else:
|
| 82 |
+
yield (u, x), (v, x), d
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def _nodes_cross_edges(G, H):
|
| 86 |
+
if H.is_multigraph():
|
| 87 |
+
for x in G:
|
| 88 |
+
for u, v, k, d in H.edges(data=True, keys=True):
|
| 89 |
+
yield (x, u), (x, v), k, d
|
| 90 |
+
else:
|
| 91 |
+
for x in G:
|
| 92 |
+
for u, v, d in H.edges(data=True):
|
| 93 |
+
if G.is_multigraph():
|
| 94 |
+
yield (x, u), (x, v), None, d
|
| 95 |
+
else:
|
| 96 |
+
yield (x, u), (x, v), d
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def _edges_cross_nodes_and_nodes(G, H):
|
| 100 |
+
if G.is_multigraph():
|
| 101 |
+
for u, v, k, d in G.edges(data=True, keys=True):
|
| 102 |
+
for x in H:
|
| 103 |
+
for y in H:
|
| 104 |
+
yield (u, x), (v, y), k, d
|
| 105 |
+
else:
|
| 106 |
+
for u, v, d in G.edges(data=True):
|
| 107 |
+
for x in H:
|
| 108 |
+
for y in H:
|
| 109 |
+
if H.is_multigraph():
|
| 110 |
+
yield (u, x), (v, y), None, d
|
| 111 |
+
else:
|
| 112 |
+
yield (u, x), (v, y), d
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def _init_product_graph(G, H):
|
| 116 |
+
if G.is_directed() != H.is_directed():
|
| 117 |
+
msg = "G and H must be both directed or both undirected"
|
| 118 |
+
raise nx.NetworkXError(msg)
|
| 119 |
+
if G.is_multigraph() or H.is_multigraph():
|
| 120 |
+
GH = nx.MultiGraph()
|
| 121 |
+
else:
|
| 122 |
+
GH = nx.Graph()
|
| 123 |
+
if G.is_directed():
|
| 124 |
+
GH = GH.to_directed()
|
| 125 |
+
return GH
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
@nx._dispatchable(graphs=_G_H, preserve_node_attrs=True, returns_graph=True)
|
| 129 |
+
def tensor_product(G, H):
|
| 130 |
+
r"""Returns the tensor product of G and H.
|
| 131 |
+
|
| 132 |
+
The tensor product $P$ of the graphs $G$ and $H$ has a node set that
|
| 133 |
+
is the Cartesian product of the node sets, $V(P)=V(G) \times V(H)$.
|
| 134 |
+
$P$ has an edge $((u,v), (x,y))$ if and only if $(u,x)$ is an edge in $G$
|
| 135 |
+
and $(v,y)$ is an edge in $H$.
|
| 136 |
+
|
| 137 |
+
Tensor product is sometimes also referred to as the categorical product,
|
| 138 |
+
direct product, cardinal product or conjunction.
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
Parameters
|
| 142 |
+
----------
|
| 143 |
+
G, H: graphs
|
| 144 |
+
Networkx graphs.
|
| 145 |
+
|
| 146 |
+
Returns
|
| 147 |
+
-------
|
| 148 |
+
P: NetworkX graph
|
| 149 |
+
The tensor product of G and H. P will be a multi-graph if either G
|
| 150 |
+
or H is a multi-graph, will be a directed if G and H are directed,
|
| 151 |
+
and undirected if G and H are undirected.
|
| 152 |
+
|
| 153 |
+
Raises
|
| 154 |
+
------
|
| 155 |
+
NetworkXError
|
| 156 |
+
If G and H are not both directed or both undirected.
|
| 157 |
+
|
| 158 |
+
Notes
|
| 159 |
+
-----
|
| 160 |
+
Node attributes in P are two-tuple of the G and H node attributes.
|
| 161 |
+
Missing attributes are assigned None.
|
| 162 |
+
|
| 163 |
+
Examples
|
| 164 |
+
--------
|
| 165 |
+
>>> G = nx.Graph()
|
| 166 |
+
>>> H = nx.Graph()
|
| 167 |
+
>>> G.add_node(0, a1=True)
|
| 168 |
+
>>> H.add_node("a", a2="Spam")
|
| 169 |
+
>>> P = nx.tensor_product(G, H)
|
| 170 |
+
>>> list(P)
|
| 171 |
+
[(0, 'a')]
|
| 172 |
+
|
| 173 |
+
Edge attributes and edge keys (for multigraphs) are also copied to the
|
| 174 |
+
new product graph
|
| 175 |
+
"""
|
| 176 |
+
GH = _init_product_graph(G, H)
|
| 177 |
+
GH.add_nodes_from(_node_product(G, H))
|
| 178 |
+
GH.add_edges_from(_directed_edges_cross_edges(G, H))
|
| 179 |
+
if not GH.is_directed():
|
| 180 |
+
GH.add_edges_from(_undirected_edges_cross_edges(G, H))
|
| 181 |
+
return GH
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
@nx._dispatchable(graphs=_G_H, preserve_node_attrs=True, returns_graph=True)
|
| 185 |
+
def cartesian_product(G, H):
|
| 186 |
+
r"""Returns the Cartesian product of G and H.
|
| 187 |
+
|
| 188 |
+
The Cartesian product $P$ of the graphs $G$ and $H$ has a node set that
|
| 189 |
+
is the Cartesian product of the node sets, $V(P)=V(G) \times V(H)$.
|
| 190 |
+
$P$ has an edge $((u,v),(x,y))$ if and only if either $u$ is equal to $x$
|
| 191 |
+
and both $v$ and $y$ are adjacent in $H$ or if $v$ is equal to $y$ and
|
| 192 |
+
both $u$ and $x$ are adjacent in $G$.
|
| 193 |
+
|
| 194 |
+
Parameters
|
| 195 |
+
----------
|
| 196 |
+
G, H: graphs
|
| 197 |
+
Networkx graphs.
|
| 198 |
+
|
| 199 |
+
Returns
|
| 200 |
+
-------
|
| 201 |
+
P: NetworkX graph
|
| 202 |
+
The Cartesian product of G and H. P will be a multi-graph if either G
|
| 203 |
+
or H is a multi-graph. Will be a directed if G and H are directed,
|
| 204 |
+
and undirected if G and H are undirected.
|
| 205 |
+
|
| 206 |
+
Raises
|
| 207 |
+
------
|
| 208 |
+
NetworkXError
|
| 209 |
+
If G and H are not both directed or both undirected.
|
| 210 |
+
|
| 211 |
+
Notes
|
| 212 |
+
-----
|
| 213 |
+
Node attributes in P are two-tuple of the G and H node attributes.
|
| 214 |
+
Missing attributes are assigned None.
|
| 215 |
+
|
| 216 |
+
Examples
|
| 217 |
+
--------
|
| 218 |
+
>>> G = nx.Graph()
|
| 219 |
+
>>> H = nx.Graph()
|
| 220 |
+
>>> G.add_node(0, a1=True)
|
| 221 |
+
>>> H.add_node("a", a2="Spam")
|
| 222 |
+
>>> P = nx.cartesian_product(G, H)
|
| 223 |
+
>>> list(P)
|
| 224 |
+
[(0, 'a')]
|
| 225 |
+
|
| 226 |
+
Edge attributes and edge keys (for multigraphs) are also copied to the
|
| 227 |
+
new product graph
|
| 228 |
+
"""
|
| 229 |
+
GH = _init_product_graph(G, H)
|
| 230 |
+
GH.add_nodes_from(_node_product(G, H))
|
| 231 |
+
GH.add_edges_from(_edges_cross_nodes(G, H))
|
| 232 |
+
GH.add_edges_from(_nodes_cross_edges(G, H))
|
| 233 |
+
return GH
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
@nx._dispatchable(graphs=_G_H, preserve_node_attrs=True, returns_graph=True)
|
| 237 |
+
def lexicographic_product(G, H):
|
| 238 |
+
r"""Returns the lexicographic product of G and H.
|
| 239 |
+
|
| 240 |
+
The lexicographical product $P$ of the graphs $G$ and $H$ has a node set
|
| 241 |
+
that is the Cartesian product of the node sets, $V(P)=V(G) \times V(H)$.
|
| 242 |
+
$P$ has an edge $((u,v), (x,y))$ if and only if $(u,v)$ is an edge in $G$
|
| 243 |
+
or $u==v$ and $(x,y)$ is an edge in $H$.
|
| 244 |
+
|
| 245 |
+
Parameters
|
| 246 |
+
----------
|
| 247 |
+
G, H: graphs
|
| 248 |
+
Networkx graphs.
|
| 249 |
+
|
| 250 |
+
Returns
|
| 251 |
+
-------
|
| 252 |
+
P: NetworkX graph
|
| 253 |
+
The Cartesian product of G and H. P will be a multi-graph if either G
|
| 254 |
+
or H is a multi-graph. Will be a directed if G and H are directed,
|
| 255 |
+
and undirected if G and H are undirected.
|
| 256 |
+
|
| 257 |
+
Raises
|
| 258 |
+
------
|
| 259 |
+
NetworkXError
|
| 260 |
+
If G and H are not both directed or both undirected.
|
| 261 |
+
|
| 262 |
+
Notes
|
| 263 |
+
-----
|
| 264 |
+
Node attributes in P are two-tuple of the G and H node attributes.
|
| 265 |
+
Missing attributes are assigned None.
|
| 266 |
+
|
| 267 |
+
Examples
|
| 268 |
+
--------
|
| 269 |
+
>>> G = nx.Graph()
|
| 270 |
+
>>> H = nx.Graph()
|
| 271 |
+
>>> G.add_node(0, a1=True)
|
| 272 |
+
>>> H.add_node("a", a2="Spam")
|
| 273 |
+
>>> P = nx.lexicographic_product(G, H)
|
| 274 |
+
>>> list(P)
|
| 275 |
+
[(0, 'a')]
|
| 276 |
+
|
| 277 |
+
Edge attributes and edge keys (for multigraphs) are also copied to the
|
| 278 |
+
new product graph
|
| 279 |
+
"""
|
| 280 |
+
GH = _init_product_graph(G, H)
|
| 281 |
+
GH.add_nodes_from(_node_product(G, H))
|
| 282 |
+
# Edges in G regardless of H designation
|
| 283 |
+
GH.add_edges_from(_edges_cross_nodes_and_nodes(G, H))
|
| 284 |
+
# For each x in G, only if there is an edge in H
|
| 285 |
+
GH.add_edges_from(_nodes_cross_edges(G, H))
|
| 286 |
+
return GH
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
@nx._dispatchable(graphs=_G_H, preserve_node_attrs=True, returns_graph=True)
|
| 290 |
+
def strong_product(G, H):
|
| 291 |
+
r"""Returns the strong product of G and H.
|
| 292 |
+
|
| 293 |
+
The strong product $P$ of the graphs $G$ and $H$ has a node set that
|
| 294 |
+
is the Cartesian product of the node sets, $V(P)=V(G) \times V(H)$.
|
| 295 |
+
$P$ has an edge $((u,x), (v,y))$ if any of the following conditions
|
| 296 |
+
are met:
|
| 297 |
+
|
| 298 |
+
- $u=v$ and $(x,y)$ is an edge in $H$
|
| 299 |
+
- $x=y$ and $(u,v)$ is an edge in $G$
|
| 300 |
+
- $(u,v)$ is an edge in $G$ and $(x,y)$ is an edge in $H$
|
| 301 |
+
|
| 302 |
+
Parameters
|
| 303 |
+
----------
|
| 304 |
+
G, H: graphs
|
| 305 |
+
Networkx graphs.
|
| 306 |
+
|
| 307 |
+
Returns
|
| 308 |
+
-------
|
| 309 |
+
P: NetworkX graph
|
| 310 |
+
The Cartesian product of G and H. P will be a multi-graph if either G
|
| 311 |
+
or H is a multi-graph. Will be a directed if G and H are directed,
|
| 312 |
+
and undirected if G and H are undirected.
|
| 313 |
+
|
| 314 |
+
Raises
|
| 315 |
+
------
|
| 316 |
+
NetworkXError
|
| 317 |
+
If G and H are not both directed or both undirected.
|
| 318 |
+
|
| 319 |
+
Notes
|
| 320 |
+
-----
|
| 321 |
+
Node attributes in P are two-tuple of the G and H node attributes.
|
| 322 |
+
Missing attributes are assigned None.
|
| 323 |
+
|
| 324 |
+
Examples
|
| 325 |
+
--------
|
| 326 |
+
>>> G = nx.Graph()
|
| 327 |
+
>>> H = nx.Graph()
|
| 328 |
+
>>> G.add_node(0, a1=True)
|
| 329 |
+
>>> H.add_node("a", a2="Spam")
|
| 330 |
+
>>> P = nx.strong_product(G, H)
|
| 331 |
+
>>> list(P)
|
| 332 |
+
[(0, 'a')]
|
| 333 |
+
|
| 334 |
+
Edge attributes and edge keys (for multigraphs) are also copied to the
|
| 335 |
+
new product graph
|
| 336 |
+
"""
|
| 337 |
+
GH = _init_product_graph(G, H)
|
| 338 |
+
GH.add_nodes_from(_node_product(G, H))
|
| 339 |
+
GH.add_edges_from(_nodes_cross_edges(G, H))
|
| 340 |
+
GH.add_edges_from(_edges_cross_nodes(G, H))
|
| 341 |
+
GH.add_edges_from(_directed_edges_cross_edges(G, H))
|
| 342 |
+
if not GH.is_directed():
|
| 343 |
+
GH.add_edges_from(_undirected_edges_cross_edges(G, H))
|
| 344 |
+
return GH
|
| 345 |
+
|
| 346 |
+
|
| 347 |
+
@not_implemented_for("directed")
|
| 348 |
+
@not_implemented_for("multigraph")
|
| 349 |
+
@nx._dispatchable(returns_graph=True)
|
| 350 |
+
def power(G, k):
|
| 351 |
+
"""Returns the specified power of a graph.
|
| 352 |
+
|
| 353 |
+
The $k$th power of a simple graph $G$, denoted $G^k$, is a
|
| 354 |
+
graph on the same set of nodes in which two distinct nodes $u$ and
|
| 355 |
+
$v$ are adjacent in $G^k$ if and only if the shortest path
|
| 356 |
+
distance between $u$ and $v$ in $G$ is at most $k$.
|
| 357 |
+
|
| 358 |
+
Parameters
|
| 359 |
+
----------
|
| 360 |
+
G : graph
|
| 361 |
+
A NetworkX simple graph object.
|
| 362 |
+
|
| 363 |
+
k : positive integer
|
| 364 |
+
The power to which to raise the graph `G`.
|
| 365 |
+
|
| 366 |
+
Returns
|
| 367 |
+
-------
|
| 368 |
+
NetworkX simple graph
|
| 369 |
+
`G` to the power `k`.
|
| 370 |
+
|
| 371 |
+
Raises
|
| 372 |
+
------
|
| 373 |
+
ValueError
|
| 374 |
+
If the exponent `k` is not positive.
|
| 375 |
+
|
| 376 |
+
NetworkXNotImplemented
|
| 377 |
+
If `G` is not a simple graph.
|
| 378 |
+
|
| 379 |
+
Examples
|
| 380 |
+
--------
|
| 381 |
+
The number of edges will never decrease when taking successive
|
| 382 |
+
powers:
|
| 383 |
+
|
| 384 |
+
>>> G = nx.path_graph(4)
|
| 385 |
+
>>> list(nx.power(G, 2).edges)
|
| 386 |
+
[(0, 1), (0, 2), (1, 2), (1, 3), (2, 3)]
|
| 387 |
+
>>> list(nx.power(G, 3).edges)
|
| 388 |
+
[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
|
| 389 |
+
|
| 390 |
+
The `k` th power of a cycle graph on *n* nodes is the complete graph
|
| 391 |
+
on *n* nodes, if `k` is at least ``n // 2``:
|
| 392 |
+
|
| 393 |
+
>>> G = nx.cycle_graph(5)
|
| 394 |
+
>>> H = nx.complete_graph(5)
|
| 395 |
+
>>> nx.is_isomorphic(nx.power(G, 2), H)
|
| 396 |
+
True
|
| 397 |
+
>>> G = nx.cycle_graph(8)
|
| 398 |
+
>>> H = nx.complete_graph(8)
|
| 399 |
+
>>> nx.is_isomorphic(nx.power(G, 4), H)
|
| 400 |
+
True
|
| 401 |
+
|
| 402 |
+
References
|
| 403 |
+
----------
|
| 404 |
+
.. [1] J. A. Bondy, U. S. R. Murty, *Graph Theory*. Springer, 2008.
|
| 405 |
+
|
| 406 |
+
Notes
|
| 407 |
+
-----
|
| 408 |
+
This definition of "power graph" comes from Exercise 3.1.6 of
|
| 409 |
+
*Graph Theory* by Bondy and Murty [1]_.
|
| 410 |
+
|
| 411 |
+
"""
|
| 412 |
+
if k <= 0:
|
| 413 |
+
raise ValueError("k must be a positive integer")
|
| 414 |
+
H = nx.Graph()
|
| 415 |
+
H.add_nodes_from(G)
|
| 416 |
+
# update BFS code to ignore self loops.
|
| 417 |
+
for n in G:
|
| 418 |
+
seen = {} # level (number of hops) when seen in BFS
|
| 419 |
+
level = 1 # the current level
|
| 420 |
+
nextlevel = G[n]
|
| 421 |
+
while nextlevel:
|
| 422 |
+
thislevel = nextlevel # advance to next level
|
| 423 |
+
nextlevel = {} # and start a new list (fringe)
|
| 424 |
+
for v in thislevel:
|
| 425 |
+
if v == n: # avoid self loop
|
| 426 |
+
continue
|
| 427 |
+
if v not in seen:
|
| 428 |
+
seen[v] = level # set the level of vertex v
|
| 429 |
+
nextlevel.update(G[v]) # add neighbors of v
|
| 430 |
+
if k <= level:
|
| 431 |
+
break
|
| 432 |
+
level += 1
|
| 433 |
+
H.add_edges_from((n, nbr) for nbr in seen)
|
| 434 |
+
return H
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
@not_implemented_for("multigraph")
|
| 438 |
+
@nx._dispatchable(graphs=_G_H, returns_graph=True)
|
| 439 |
+
def rooted_product(G, H, root):
|
| 440 |
+
"""Return the rooted product of graphs G and H rooted at root in H.
|
| 441 |
+
|
| 442 |
+
A new graph is constructed representing the rooted product of
|
| 443 |
+
the inputted graphs, G and H, with a root in H.
|
| 444 |
+
A rooted product duplicates H for each nodes in G with the root
|
| 445 |
+
of H corresponding to the node in G. Nodes are renamed as the direct
|
| 446 |
+
product of G and H. The result is a subgraph of the cartesian product.
|
| 447 |
+
|
| 448 |
+
Parameters
|
| 449 |
+
----------
|
| 450 |
+
G,H : graph
|
| 451 |
+
A NetworkX graph
|
| 452 |
+
root : node
|
| 453 |
+
A node in H
|
| 454 |
+
|
| 455 |
+
Returns
|
| 456 |
+
-------
|
| 457 |
+
R : The rooted product of G and H with a specified root in H
|
| 458 |
+
|
| 459 |
+
Notes
|
| 460 |
+
-----
|
| 461 |
+
The nodes of R are the Cartesian Product of the nodes of G and H.
|
| 462 |
+
The nodes of G and H are not relabeled.
|
| 463 |
+
"""
|
| 464 |
+
if root not in H:
|
| 465 |
+
raise nx.NodeNotFound("root must be a vertex in H")
|
| 466 |
+
|
| 467 |
+
R = nx.Graph()
|
| 468 |
+
R.add_nodes_from(product(G, H))
|
| 469 |
+
|
| 470 |
+
R.add_edges_from(((e[0], root), (e[1], root)) for e in G.edges())
|
| 471 |
+
R.add_edges_from(((g, e[0]), (g, e[1])) for g in G for e in H.edges())
|
| 472 |
+
|
| 473 |
+
return R
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
@not_implemented_for("directed")
|
| 477 |
+
@not_implemented_for("multigraph")
|
| 478 |
+
@nx._dispatchable(graphs=_G_H, returns_graph=True)
|
| 479 |
+
def corona_product(G, H):
|
| 480 |
+
r"""Returns the Corona product of G and H.
|
| 481 |
+
|
| 482 |
+
The corona product of $G$ and $H$ is the graph $C = G \circ H$ obtained by
|
| 483 |
+
taking one copy of $G$, called the center graph, $|V(G)|$ copies of $H$,
|
| 484 |
+
called the outer graph, and making the $i$-th vertex of $G$ adjacent to
|
| 485 |
+
every vertex of the $i$-th copy of $H$, where $1 ≤ i ≤ |V(G)|$.
|
| 486 |
+
|
| 487 |
+
Parameters
|
| 488 |
+
----------
|
| 489 |
+
G, H: NetworkX graphs
|
| 490 |
+
The graphs to take the carona product of.
|
| 491 |
+
`G` is the center graph and `H` is the outer graph
|
| 492 |
+
|
| 493 |
+
Returns
|
| 494 |
+
-------
|
| 495 |
+
C: NetworkX graph
|
| 496 |
+
The Corona product of G and H.
|
| 497 |
+
|
| 498 |
+
Raises
|
| 499 |
+
------
|
| 500 |
+
NetworkXError
|
| 501 |
+
If G and H are not both directed or both undirected.
|
| 502 |
+
|
| 503 |
+
Examples
|
| 504 |
+
--------
|
| 505 |
+
>>> G = nx.cycle_graph(4)
|
| 506 |
+
>>> H = nx.path_graph(2)
|
| 507 |
+
>>> C = nx.corona_product(G, H)
|
| 508 |
+
>>> list(C)
|
| 509 |
+
[0, 1, 2, 3, (0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)]
|
| 510 |
+
>>> print(C)
|
| 511 |
+
Graph with 12 nodes and 16 edges
|
| 512 |
+
|
| 513 |
+
References
|
| 514 |
+
----------
|
| 515 |
+
[1] M. Tavakoli, F. Rahbarnia, and A. R. Ashrafi,
|
| 516 |
+
"Studying the corona product of graphs under some graph invariants,"
|
| 517 |
+
Transactions on Combinatorics, vol. 3, no. 3, pp. 43–49, Sep. 2014,
|
| 518 |
+
doi: 10.22108/toc.2014.5542.
|
| 519 |
+
[2] A. Faraji, "Corona Product in Graph Theory," Ali Faraji, May 11, 2021.
|
| 520 |
+
https://blog.alifaraji.ir/math/graph-theory/corona-product.html (accessed Dec. 07, 2021).
|
| 521 |
+
"""
|
| 522 |
+
GH = _init_product_graph(G, H)
|
| 523 |
+
GH.add_nodes_from(G)
|
| 524 |
+
GH.add_edges_from(G.edges)
|
| 525 |
+
|
| 526 |
+
for G_node in G:
|
| 527 |
+
# copy nodes of H in GH, call it H_i
|
| 528 |
+
GH.add_nodes_from((G_node, v) for v in H)
|
| 529 |
+
|
| 530 |
+
# copy edges of H_i based on H
|
| 531 |
+
GH.add_edges_from(
|
| 532 |
+
((G_node, e0), (G_node, e1), d) for e0, e1, d in H.edges.data()
|
| 533 |
+
)
|
| 534 |
+
|
| 535 |
+
# creating new edges between H_i and a G's node
|
| 536 |
+
GH.add_edges_from((G_node, (G_node, H_node)) for H_node in H)
|
| 537 |
+
|
| 538 |
+
return GH
|
| 539 |
+
|
| 540 |
+
|
| 541 |
+
@nx._dispatchable(
|
| 542 |
+
graphs=_G_H, preserve_edge_attrs=True, preserve_node_attrs=True, returns_graph=True
|
| 543 |
+
)
|
| 544 |
+
def modular_product(G, H):
|
| 545 |
+
r"""Returns the Modular product of G and H.
|
| 546 |
+
|
| 547 |
+
The modular product of `G` and `H` is the graph $M = G \nabla H$,
|
| 548 |
+
consisting of the node set $V(M) = V(G) \times V(H)$ that is the Cartesian
|
| 549 |
+
product of the node sets of `G` and `H`. Further, M contains an edge ((u, v), (x, y)):
|
| 550 |
+
|
| 551 |
+
- if u is adjacent to x in `G` and v is adjacent to y in `H`, or
|
| 552 |
+
- if u is not adjacent to x in `G` and v is not adjacent to y in `H`.
|
| 553 |
+
|
| 554 |
+
More formally::
|
| 555 |
+
|
| 556 |
+
E(M) = {((u, v), (x, y)) | ((u, x) in E(G) and (v, y) in E(H)) or
|
| 557 |
+
((u, x) not in E(G) and (v, y) not in E(H))}
|
| 558 |
+
|
| 559 |
+
Parameters
|
| 560 |
+
----------
|
| 561 |
+
G, H: NetworkX graphs
|
| 562 |
+
The graphs to take the modular product of.
|
| 563 |
+
|
| 564 |
+
Returns
|
| 565 |
+
-------
|
| 566 |
+
M: NetworkX graph
|
| 567 |
+
The Modular product of `G` and `H`.
|
| 568 |
+
|
| 569 |
+
Raises
|
| 570 |
+
------
|
| 571 |
+
NetworkXNotImplemented
|
| 572 |
+
If `G` is not a simple graph.
|
| 573 |
+
|
| 574 |
+
Examples
|
| 575 |
+
--------
|
| 576 |
+
>>> G = nx.cycle_graph(4)
|
| 577 |
+
>>> H = nx.path_graph(2)
|
| 578 |
+
>>> M = nx.modular_product(G, H)
|
| 579 |
+
>>> list(M)
|
| 580 |
+
[(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)]
|
| 581 |
+
>>> print(M)
|
| 582 |
+
Graph with 8 nodes and 8 edges
|
| 583 |
+
|
| 584 |
+
Notes
|
| 585 |
+
-----
|
| 586 |
+
The *modular product* is defined in [1]_ and was first
|
| 587 |
+
introduced as the *weak modular product*.
|
| 588 |
+
|
| 589 |
+
The modular product reduces the problem of counting isomorphic subgraphs
|
| 590 |
+
in `G` and `H` to the problem of counting cliques in M. The subgraphs of
|
| 591 |
+
`G` and `H` that are induced by the nodes of a clique in M are
|
| 592 |
+
isomorphic [2]_ [3]_.
|
| 593 |
+
|
| 594 |
+
References
|
| 595 |
+
----------
|
| 596 |
+
.. [1] R. Hammack, W. Imrich, and S. Klavžar,
|
| 597 |
+
"Handbook of Product Graphs", CRC Press, 2011.
|
| 598 |
+
|
| 599 |
+
.. [2] H. G. Barrow and R. M. Burstall,
|
| 600 |
+
"Subgraph isomorphism, matching relational structures and maximal
|
| 601 |
+
cliques", Information Processing Letters, vol. 4, issue 4, pp. 83-84,
|
| 602 |
+
1976, https://doi.org/10.1016/0020-0190(76)90049-1.
|
| 603 |
+
|
| 604 |
+
.. [3] V. G. Vizing, "Reduction of the problem of isomorphism and isomorphic
|
| 605 |
+
entrance to the task of finding the nondensity of a graph." Proc. Third
|
| 606 |
+
All-Union Conference on Problems of Theoretical Cybernetics. 1974.
|
| 607 |
+
"""
|
| 608 |
+
if G.is_directed() or H.is_directed():
|
| 609 |
+
raise nx.NetworkXNotImplemented(
|
| 610 |
+
"Modular product not implemented for directed graphs"
|
| 611 |
+
)
|
| 612 |
+
if G.is_multigraph() or H.is_multigraph():
|
| 613 |
+
raise nx.NetworkXNotImplemented(
|
| 614 |
+
"Modular product not implemented for multigraphs"
|
| 615 |
+
)
|
| 616 |
+
|
| 617 |
+
GH = _init_product_graph(G, H)
|
| 618 |
+
GH.add_nodes_from(_node_product(G, H))
|
| 619 |
+
|
| 620 |
+
for u, v, c in G.edges(data=True):
|
| 621 |
+
for x, y, d in H.edges(data=True):
|
| 622 |
+
GH.add_edge((u, x), (v, y), **_dict_product(c, d))
|
| 623 |
+
GH.add_edge((v, x), (u, y), **_dict_product(c, d))
|
| 624 |
+
|
| 625 |
+
G = nx.complement(G)
|
| 626 |
+
H = nx.complement(H)
|
| 627 |
+
|
| 628 |
+
for u, v, c in G.edges(data=True):
|
| 629 |
+
for x, y, d in H.edges(data=True):
|
| 630 |
+
GH.add_edge((u, x), (v, y), **_dict_product(c, d))
|
| 631 |
+
GH.add_edge((v, x), (u, y), **_dict_product(c, d))
|
| 632 |
+
|
| 633 |
+
return GH
|
wemm/lib/python3.10/site-packages/networkx/algorithms/operators/tests/__init__.py
ADDED
|
File without changes
|
wemm/lib/python3.10/site-packages/networkx/algorithms/operators/tests/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (185 Bytes). View file
|
|
|
wemm/lib/python3.10/site-packages/networkx/algorithms/operators/tests/__pycache__/test_all.cpython-310.pyc
ADDED
|
Binary file (7.84 kB). View file
|
|
|
wemm/lib/python3.10/site-packages/networkx/algorithms/operators/tests/__pycache__/test_binary.cpython-310.pyc
ADDED
|
Binary file (11.3 kB). View file
|
|
|
wemm/lib/python3.10/site-packages/networkx/algorithms/operators/tests/__pycache__/test_product.cpython-310.pyc
ADDED
|
Binary file (10.2 kB). View file
|
|
|
wemm/lib/python3.10/site-packages/networkx/algorithms/operators/tests/__pycache__/test_unary.cpython-310.pyc
ADDED
|
Binary file (1.39 kB). View file
|
|
|
wemm/lib/python3.10/site-packages/networkx/algorithms/operators/unary.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Unary operations on graphs"""
|
| 2 |
+
|
| 3 |
+
import networkx as nx
|
| 4 |
+
|
| 5 |
+
__all__ = ["complement", "reverse"]
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
@nx._dispatchable(returns_graph=True)
|
| 9 |
+
def complement(G):
|
| 10 |
+
"""Returns the graph complement of G.
|
| 11 |
+
|
| 12 |
+
Parameters
|
| 13 |
+
----------
|
| 14 |
+
G : graph
|
| 15 |
+
A NetworkX graph
|
| 16 |
+
|
| 17 |
+
Returns
|
| 18 |
+
-------
|
| 19 |
+
GC : A new graph.
|
| 20 |
+
|
| 21 |
+
Notes
|
| 22 |
+
-----
|
| 23 |
+
Note that `complement` does not create self-loops and also
|
| 24 |
+
does not produce parallel edges for MultiGraphs.
|
| 25 |
+
|
| 26 |
+
Graph, node, and edge data are not propagated to the new graph.
|
| 27 |
+
|
| 28 |
+
Examples
|
| 29 |
+
--------
|
| 30 |
+
>>> G = nx.Graph([(1, 2), (1, 3), (2, 3), (3, 4), (3, 5)])
|
| 31 |
+
>>> G_complement = nx.complement(G)
|
| 32 |
+
>>> G_complement.edges() # This shows the edges of the complemented graph
|
| 33 |
+
EdgeView([(1, 4), (1, 5), (2, 4), (2, 5), (4, 5)])
|
| 34 |
+
|
| 35 |
+
"""
|
| 36 |
+
R = G.__class__()
|
| 37 |
+
R.add_nodes_from(G)
|
| 38 |
+
R.add_edges_from(
|
| 39 |
+
((n, n2) for n, nbrs in G.adjacency() for n2 in G if n2 not in nbrs if n != n2)
|
| 40 |
+
)
|
| 41 |
+
return R
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
@nx._dispatchable(returns_graph=True)
|
| 45 |
+
def reverse(G, copy=True):
|
| 46 |
+
"""Returns the reverse directed graph of G.
|
| 47 |
+
|
| 48 |
+
Parameters
|
| 49 |
+
----------
|
| 50 |
+
G : directed graph
|
| 51 |
+
A NetworkX directed graph
|
| 52 |
+
copy : bool
|
| 53 |
+
If True, then a new graph is returned. If False, then the graph is
|
| 54 |
+
reversed in place.
|
| 55 |
+
|
| 56 |
+
Returns
|
| 57 |
+
-------
|
| 58 |
+
H : directed graph
|
| 59 |
+
The reversed G.
|
| 60 |
+
|
| 61 |
+
Raises
|
| 62 |
+
------
|
| 63 |
+
NetworkXError
|
| 64 |
+
If graph is undirected.
|
| 65 |
+
|
| 66 |
+
Examples
|
| 67 |
+
--------
|
| 68 |
+
>>> G = nx.DiGraph([(1, 2), (1, 3), (2, 3), (3, 4), (3, 5)])
|
| 69 |
+
>>> G_reversed = nx.reverse(G)
|
| 70 |
+
>>> G_reversed.edges()
|
| 71 |
+
OutEdgeView([(2, 1), (3, 1), (3, 2), (4, 3), (5, 3)])
|
| 72 |
+
|
| 73 |
+
"""
|
| 74 |
+
if not G.is_directed():
|
| 75 |
+
raise nx.NetworkXError("Cannot reverse an undirected graph.")
|
| 76 |
+
else:
|
| 77 |
+
return G.reverse(copy=copy)
|
wemm/lib/python3.10/site-packages/networkx/drawing/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (294 Bytes). View file
|
|
|
wemm/lib/python3.10/site-packages/networkx/drawing/__pycache__/nx_agraph.cpython-310.pyc
ADDED
|
Binary file (12.4 kB). View file
|
|
|
wemm/lib/python3.10/site-packages/networkx/drawing/__pycache__/nx_latex.cpython-310.pyc
ADDED
|
Binary file (22.2 kB). View file
|
|
|
wemm/lib/python3.10/site-packages/networkx/drawing/__pycache__/nx_pydot.cpython-310.pyc
ADDED
|
Binary file (8.45 kB). View file
|
|
|
wemm/lib/python3.10/site-packages/networkx/drawing/layout.py
ADDED
|
@@ -0,0 +1,1630 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
******
|
| 3 |
+
Layout
|
| 4 |
+
******
|
| 5 |
+
|
| 6 |
+
Node positioning algorithms for graph drawing.
|
| 7 |
+
|
| 8 |
+
For `random_layout()` the possible resulting shape
|
| 9 |
+
is a square of side [0, scale] (default: [0, 1])
|
| 10 |
+
Changing `center` shifts the layout by that amount.
|
| 11 |
+
|
| 12 |
+
For the other layout routines, the extent is
|
| 13 |
+
[center - scale, center + scale] (default: [-1, 1]).
|
| 14 |
+
|
| 15 |
+
Warning: Most layout routines have only been tested in 2-dimensions.
|
| 16 |
+
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
import networkx as nx
|
| 20 |
+
from networkx.utils import np_random_state
|
| 21 |
+
|
| 22 |
+
__all__ = [
|
| 23 |
+
"bipartite_layout",
|
| 24 |
+
"circular_layout",
|
| 25 |
+
"forceatlas2_layout",
|
| 26 |
+
"kamada_kawai_layout",
|
| 27 |
+
"random_layout",
|
| 28 |
+
"rescale_layout",
|
| 29 |
+
"rescale_layout_dict",
|
| 30 |
+
"shell_layout",
|
| 31 |
+
"spring_layout",
|
| 32 |
+
"spectral_layout",
|
| 33 |
+
"planar_layout",
|
| 34 |
+
"fruchterman_reingold_layout",
|
| 35 |
+
"spiral_layout",
|
| 36 |
+
"multipartite_layout",
|
| 37 |
+
"bfs_layout",
|
| 38 |
+
"arf_layout",
|
| 39 |
+
]
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def _process_params(G, center, dim):
|
| 43 |
+
# Some boilerplate code.
|
| 44 |
+
import numpy as np
|
| 45 |
+
|
| 46 |
+
if not isinstance(G, nx.Graph):
|
| 47 |
+
empty_graph = nx.Graph()
|
| 48 |
+
empty_graph.add_nodes_from(G)
|
| 49 |
+
G = empty_graph
|
| 50 |
+
|
| 51 |
+
if center is None:
|
| 52 |
+
center = np.zeros(dim)
|
| 53 |
+
else:
|
| 54 |
+
center = np.asarray(center)
|
| 55 |
+
|
| 56 |
+
if len(center) != dim:
|
| 57 |
+
msg = "length of center coordinates must match dimension of layout"
|
| 58 |
+
raise ValueError(msg)
|
| 59 |
+
|
| 60 |
+
return G, center
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
@np_random_state(3)
|
| 64 |
+
def random_layout(G, center=None, dim=2, seed=None):
|
| 65 |
+
"""Position nodes uniformly at random in the unit square.
|
| 66 |
+
|
| 67 |
+
For every node, a position is generated by choosing each of dim
|
| 68 |
+
coordinates uniformly at random on the interval [0.0, 1.0).
|
| 69 |
+
|
| 70 |
+
NumPy (http://scipy.org) is required for this function.
|
| 71 |
+
|
| 72 |
+
Parameters
|
| 73 |
+
----------
|
| 74 |
+
G : NetworkX graph or list of nodes
|
| 75 |
+
A position will be assigned to every node in G.
|
| 76 |
+
|
| 77 |
+
center : array-like or None
|
| 78 |
+
Coordinate pair around which to center the layout.
|
| 79 |
+
|
| 80 |
+
dim : int
|
| 81 |
+
Dimension of layout.
|
| 82 |
+
|
| 83 |
+
seed : int, RandomState instance or None optional (default=None)
|
| 84 |
+
Set the random state for deterministic node layouts.
|
| 85 |
+
If int, `seed` is the seed used by the random number generator,
|
| 86 |
+
if numpy.random.RandomState instance, `seed` is the random
|
| 87 |
+
number generator,
|
| 88 |
+
if None, the random number generator is the RandomState instance used
|
| 89 |
+
by numpy.random.
|
| 90 |
+
|
| 91 |
+
Returns
|
| 92 |
+
-------
|
| 93 |
+
pos : dict
|
| 94 |
+
A dictionary of positions keyed by node
|
| 95 |
+
|
| 96 |
+
Examples
|
| 97 |
+
--------
|
| 98 |
+
>>> G = nx.lollipop_graph(4, 3)
|
| 99 |
+
>>> pos = nx.random_layout(G)
|
| 100 |
+
|
| 101 |
+
"""
|
| 102 |
+
import numpy as np
|
| 103 |
+
|
| 104 |
+
G, center = _process_params(G, center, dim)
|
| 105 |
+
pos = seed.rand(len(G), dim) + center
|
| 106 |
+
pos = pos.astype(np.float32)
|
| 107 |
+
pos = dict(zip(G, pos))
|
| 108 |
+
|
| 109 |
+
return pos
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def circular_layout(G, scale=1, center=None, dim=2):
|
| 113 |
+
# dim=2 only
|
| 114 |
+
"""Position nodes on a circle.
|
| 115 |
+
|
| 116 |
+
Parameters
|
| 117 |
+
----------
|
| 118 |
+
G : NetworkX graph or list of nodes
|
| 119 |
+
A position will be assigned to every node in G.
|
| 120 |
+
|
| 121 |
+
scale : number (default: 1)
|
| 122 |
+
Scale factor for positions.
|
| 123 |
+
|
| 124 |
+
center : array-like or None
|
| 125 |
+
Coordinate pair around which to center the layout.
|
| 126 |
+
|
| 127 |
+
dim : int
|
| 128 |
+
Dimension of layout.
|
| 129 |
+
If dim>2, the remaining dimensions are set to zero
|
| 130 |
+
in the returned positions.
|
| 131 |
+
If dim<2, a ValueError is raised.
|
| 132 |
+
|
| 133 |
+
Returns
|
| 134 |
+
-------
|
| 135 |
+
pos : dict
|
| 136 |
+
A dictionary of positions keyed by node
|
| 137 |
+
|
| 138 |
+
Raises
|
| 139 |
+
------
|
| 140 |
+
ValueError
|
| 141 |
+
If dim < 2
|
| 142 |
+
|
| 143 |
+
Examples
|
| 144 |
+
--------
|
| 145 |
+
>>> G = nx.path_graph(4)
|
| 146 |
+
>>> pos = nx.circular_layout(G)
|
| 147 |
+
|
| 148 |
+
Notes
|
| 149 |
+
-----
|
| 150 |
+
This algorithm currently only works in two dimensions and does not
|
| 151 |
+
try to minimize edge crossings.
|
| 152 |
+
|
| 153 |
+
"""
|
| 154 |
+
import numpy as np
|
| 155 |
+
|
| 156 |
+
if dim < 2:
|
| 157 |
+
raise ValueError("cannot handle dimensions < 2")
|
| 158 |
+
|
| 159 |
+
G, center = _process_params(G, center, dim)
|
| 160 |
+
|
| 161 |
+
paddims = max(0, (dim - 2))
|
| 162 |
+
|
| 163 |
+
if len(G) == 0:
|
| 164 |
+
pos = {}
|
| 165 |
+
elif len(G) == 1:
|
| 166 |
+
pos = {nx.utils.arbitrary_element(G): center}
|
| 167 |
+
else:
|
| 168 |
+
# Discard the extra angle since it matches 0 radians.
|
| 169 |
+
theta = np.linspace(0, 1, len(G) + 1)[:-1] * 2 * np.pi
|
| 170 |
+
theta = theta.astype(np.float32)
|
| 171 |
+
pos = np.column_stack(
|
| 172 |
+
[np.cos(theta), np.sin(theta), np.zeros((len(G), paddims))]
|
| 173 |
+
)
|
| 174 |
+
pos = rescale_layout(pos, scale=scale) + center
|
| 175 |
+
pos = dict(zip(G, pos))
|
| 176 |
+
|
| 177 |
+
return pos
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
def shell_layout(G, nlist=None, rotate=None, scale=1, center=None, dim=2):
|
| 181 |
+
"""Position nodes in concentric circles.
|
| 182 |
+
|
| 183 |
+
Parameters
|
| 184 |
+
----------
|
| 185 |
+
G : NetworkX graph or list of nodes
|
| 186 |
+
A position will be assigned to every node in G.
|
| 187 |
+
|
| 188 |
+
nlist : list of lists
|
| 189 |
+
List of node lists for each shell.
|
| 190 |
+
|
| 191 |
+
rotate : angle in radians (default=pi/len(nlist))
|
| 192 |
+
Angle by which to rotate the starting position of each shell
|
| 193 |
+
relative to the starting position of the previous shell.
|
| 194 |
+
To recreate behavior before v2.5 use rotate=0.
|
| 195 |
+
|
| 196 |
+
scale : number (default: 1)
|
| 197 |
+
Scale factor for positions.
|
| 198 |
+
|
| 199 |
+
center : array-like or None
|
| 200 |
+
Coordinate pair around which to center the layout.
|
| 201 |
+
|
| 202 |
+
dim : int
|
| 203 |
+
Dimension of layout, currently only dim=2 is supported.
|
| 204 |
+
Other dimension values result in a ValueError.
|
| 205 |
+
|
| 206 |
+
Returns
|
| 207 |
+
-------
|
| 208 |
+
pos : dict
|
| 209 |
+
A dictionary of positions keyed by node
|
| 210 |
+
|
| 211 |
+
Raises
|
| 212 |
+
------
|
| 213 |
+
ValueError
|
| 214 |
+
If dim != 2
|
| 215 |
+
|
| 216 |
+
Examples
|
| 217 |
+
--------
|
| 218 |
+
>>> G = nx.path_graph(4)
|
| 219 |
+
>>> shells = [[0], [1, 2, 3]]
|
| 220 |
+
>>> pos = nx.shell_layout(G, shells)
|
| 221 |
+
|
| 222 |
+
Notes
|
| 223 |
+
-----
|
| 224 |
+
This algorithm currently only works in two dimensions and does not
|
| 225 |
+
try to minimize edge crossings.
|
| 226 |
+
|
| 227 |
+
"""
|
| 228 |
+
import numpy as np
|
| 229 |
+
|
| 230 |
+
if dim != 2:
|
| 231 |
+
raise ValueError("can only handle 2 dimensions")
|
| 232 |
+
|
| 233 |
+
G, center = _process_params(G, center, dim)
|
| 234 |
+
|
| 235 |
+
if len(G) == 0:
|
| 236 |
+
return {}
|
| 237 |
+
if len(G) == 1:
|
| 238 |
+
return {nx.utils.arbitrary_element(G): center}
|
| 239 |
+
|
| 240 |
+
if nlist is None:
|
| 241 |
+
# draw the whole graph in one shell
|
| 242 |
+
nlist = [list(G)]
|
| 243 |
+
|
| 244 |
+
radius_bump = scale / len(nlist)
|
| 245 |
+
|
| 246 |
+
if len(nlist[0]) == 1:
|
| 247 |
+
# single node at center
|
| 248 |
+
radius = 0.0
|
| 249 |
+
else:
|
| 250 |
+
# else start at r=1
|
| 251 |
+
radius = radius_bump
|
| 252 |
+
|
| 253 |
+
if rotate is None:
|
| 254 |
+
rotate = np.pi / len(nlist)
|
| 255 |
+
first_theta = rotate
|
| 256 |
+
npos = {}
|
| 257 |
+
for nodes in nlist:
|
| 258 |
+
# Discard the last angle (endpoint=False) since 2*pi matches 0 radians
|
| 259 |
+
theta = (
|
| 260 |
+
np.linspace(0, 2 * np.pi, len(nodes), endpoint=False, dtype=np.float32)
|
| 261 |
+
+ first_theta
|
| 262 |
+
)
|
| 263 |
+
pos = radius * np.column_stack([np.cos(theta), np.sin(theta)]) + center
|
| 264 |
+
npos.update(zip(nodes, pos))
|
| 265 |
+
radius += radius_bump
|
| 266 |
+
first_theta += rotate
|
| 267 |
+
|
| 268 |
+
return npos
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
def bipartite_layout(
|
| 272 |
+
G, nodes, align="vertical", scale=1, center=None, aspect_ratio=4 / 3
|
| 273 |
+
):
|
| 274 |
+
"""Position nodes in two straight lines.
|
| 275 |
+
|
| 276 |
+
Parameters
|
| 277 |
+
----------
|
| 278 |
+
G : NetworkX graph or list of nodes
|
| 279 |
+
A position will be assigned to every node in G.
|
| 280 |
+
|
| 281 |
+
nodes : list or container
|
| 282 |
+
Nodes in one node set of the bipartite graph.
|
| 283 |
+
This set will be placed on left or top.
|
| 284 |
+
|
| 285 |
+
align : string (default='vertical')
|
| 286 |
+
The alignment of nodes. Vertical or horizontal.
|
| 287 |
+
|
| 288 |
+
scale : number (default: 1)
|
| 289 |
+
Scale factor for positions.
|
| 290 |
+
|
| 291 |
+
center : array-like or None
|
| 292 |
+
Coordinate pair around which to center the layout.
|
| 293 |
+
|
| 294 |
+
aspect_ratio : number (default=4/3):
|
| 295 |
+
The ratio of the width to the height of the layout.
|
| 296 |
+
|
| 297 |
+
Returns
|
| 298 |
+
-------
|
| 299 |
+
pos : dict
|
| 300 |
+
A dictionary of positions keyed by node.
|
| 301 |
+
|
| 302 |
+
Examples
|
| 303 |
+
--------
|
| 304 |
+
>>> G = nx.bipartite.gnmk_random_graph(3, 5, 10, seed=123)
|
| 305 |
+
>>> top = nx.bipartite.sets(G)[0]
|
| 306 |
+
>>> pos = nx.bipartite_layout(G, top)
|
| 307 |
+
|
| 308 |
+
Notes
|
| 309 |
+
-----
|
| 310 |
+
This algorithm currently only works in two dimensions and does not
|
| 311 |
+
try to minimize edge crossings.
|
| 312 |
+
|
| 313 |
+
"""
|
| 314 |
+
|
| 315 |
+
import numpy as np
|
| 316 |
+
|
| 317 |
+
if align not in ("vertical", "horizontal"):
|
| 318 |
+
msg = "align must be either vertical or horizontal."
|
| 319 |
+
raise ValueError(msg)
|
| 320 |
+
|
| 321 |
+
G, center = _process_params(G, center=center, dim=2)
|
| 322 |
+
if len(G) == 0:
|
| 323 |
+
return {}
|
| 324 |
+
|
| 325 |
+
height = 1
|
| 326 |
+
width = aspect_ratio * height
|
| 327 |
+
offset = (width / 2, height / 2)
|
| 328 |
+
|
| 329 |
+
top = dict.fromkeys(nodes)
|
| 330 |
+
bottom = [v for v in G if v not in top]
|
| 331 |
+
nodes = list(top) + bottom
|
| 332 |
+
|
| 333 |
+
left_xs = np.repeat(0, len(top))
|
| 334 |
+
right_xs = np.repeat(width, len(bottom))
|
| 335 |
+
left_ys = np.linspace(0, height, len(top))
|
| 336 |
+
right_ys = np.linspace(0, height, len(bottom))
|
| 337 |
+
|
| 338 |
+
top_pos = np.column_stack([left_xs, left_ys]) - offset
|
| 339 |
+
bottom_pos = np.column_stack([right_xs, right_ys]) - offset
|
| 340 |
+
|
| 341 |
+
pos = np.concatenate([top_pos, bottom_pos])
|
| 342 |
+
pos = rescale_layout(pos, scale=scale) + center
|
| 343 |
+
if align == "horizontal":
|
| 344 |
+
pos = pos[:, ::-1] # swap x and y coords
|
| 345 |
+
pos = dict(zip(nodes, pos))
|
| 346 |
+
return pos
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
@np_random_state(10)
|
| 350 |
+
def spring_layout(
|
| 351 |
+
G,
|
| 352 |
+
k=None,
|
| 353 |
+
pos=None,
|
| 354 |
+
fixed=None,
|
| 355 |
+
iterations=50,
|
| 356 |
+
threshold=1e-4,
|
| 357 |
+
weight="weight",
|
| 358 |
+
scale=1,
|
| 359 |
+
center=None,
|
| 360 |
+
dim=2,
|
| 361 |
+
seed=None,
|
| 362 |
+
):
|
| 363 |
+
"""Position nodes using Fruchterman-Reingold force-directed algorithm.
|
| 364 |
+
|
| 365 |
+
The algorithm simulates a force-directed representation of the network
|
| 366 |
+
treating edges as springs holding nodes close, while treating nodes
|
| 367 |
+
as repelling objects, sometimes called an anti-gravity force.
|
| 368 |
+
Simulation continues until the positions are close to an equilibrium.
|
| 369 |
+
|
| 370 |
+
There are some hard-coded values: minimal distance between
|
| 371 |
+
nodes (0.01) and "temperature" of 0.1 to ensure nodes don't fly away.
|
| 372 |
+
During the simulation, `k` helps determine the distance between nodes,
|
| 373 |
+
though `scale` and `center` determine the size and place after
|
| 374 |
+
rescaling occurs at the end of the simulation.
|
| 375 |
+
|
| 376 |
+
Fixing some nodes doesn't allow them to move in the simulation.
|
| 377 |
+
It also turns off the rescaling feature at the simulation's end.
|
| 378 |
+
In addition, setting `scale` to `None` turns off rescaling.
|
| 379 |
+
|
| 380 |
+
Parameters
|
| 381 |
+
----------
|
| 382 |
+
G : NetworkX graph or list of nodes
|
| 383 |
+
A position will be assigned to every node in G.
|
| 384 |
+
|
| 385 |
+
k : float (default=None)
|
| 386 |
+
Optimal distance between nodes. If None the distance is set to
|
| 387 |
+
1/sqrt(n) where n is the number of nodes. Increase this value
|
| 388 |
+
to move nodes farther apart.
|
| 389 |
+
|
| 390 |
+
pos : dict or None optional (default=None)
|
| 391 |
+
Initial positions for nodes as a dictionary with node as keys
|
| 392 |
+
and values as a coordinate list or tuple. If None, then use
|
| 393 |
+
random initial positions.
|
| 394 |
+
|
| 395 |
+
fixed : list or None optional (default=None)
|
| 396 |
+
Nodes to keep fixed at initial position.
|
| 397 |
+
Nodes not in ``G.nodes`` are ignored.
|
| 398 |
+
ValueError raised if `fixed` specified and `pos` not.
|
| 399 |
+
|
| 400 |
+
iterations : int optional (default=50)
|
| 401 |
+
Maximum number of iterations taken
|
| 402 |
+
|
| 403 |
+
threshold: float optional (default = 1e-4)
|
| 404 |
+
Threshold for relative error in node position changes.
|
| 405 |
+
The iteration stops if the error is below this threshold.
|
| 406 |
+
|
| 407 |
+
weight : string or None optional (default='weight')
|
| 408 |
+
The edge attribute that holds the numerical value used for
|
| 409 |
+
the edge weight. Larger means a stronger attractive force.
|
| 410 |
+
If None, then all edge weights are 1.
|
| 411 |
+
|
| 412 |
+
scale : number or None (default: 1)
|
| 413 |
+
Scale factor for positions. Not used unless `fixed is None`.
|
| 414 |
+
If scale is None, no rescaling is performed.
|
| 415 |
+
|
| 416 |
+
center : array-like or None
|
| 417 |
+
Coordinate pair around which to center the layout.
|
| 418 |
+
Not used unless `fixed is None`.
|
| 419 |
+
|
| 420 |
+
dim : int
|
| 421 |
+
Dimension of layout.
|
| 422 |
+
|
| 423 |
+
seed : int, RandomState instance or None optional (default=None)
|
| 424 |
+
Used only for the initial positions in the algorithm.
|
| 425 |
+
Set the random state for deterministic node layouts.
|
| 426 |
+
If int, `seed` is the seed used by the random number generator,
|
| 427 |
+
if numpy.random.RandomState instance, `seed` is the random
|
| 428 |
+
number generator,
|
| 429 |
+
if None, the random number generator is the RandomState instance used
|
| 430 |
+
by numpy.random.
|
| 431 |
+
|
| 432 |
+
Returns
|
| 433 |
+
-------
|
| 434 |
+
pos : dict
|
| 435 |
+
A dictionary of positions keyed by node
|
| 436 |
+
|
| 437 |
+
Examples
|
| 438 |
+
--------
|
| 439 |
+
>>> G = nx.path_graph(4)
|
| 440 |
+
>>> pos = nx.spring_layout(G)
|
| 441 |
+
|
| 442 |
+
# The same using longer but equivalent function name
|
| 443 |
+
>>> pos = nx.fruchterman_reingold_layout(G)
|
| 444 |
+
"""
|
| 445 |
+
import numpy as np
|
| 446 |
+
|
| 447 |
+
G, center = _process_params(G, center, dim)
|
| 448 |
+
|
| 449 |
+
if fixed is not None:
|
| 450 |
+
if pos is None:
|
| 451 |
+
raise ValueError("nodes are fixed without positions given")
|
| 452 |
+
for node in fixed:
|
| 453 |
+
if node not in pos:
|
| 454 |
+
raise ValueError("nodes are fixed without positions given")
|
| 455 |
+
nfixed = {node: i for i, node in enumerate(G)}
|
| 456 |
+
fixed = np.asarray([nfixed[node] for node in fixed if node in nfixed])
|
| 457 |
+
|
| 458 |
+
if pos is not None:
|
| 459 |
+
# Determine size of existing domain to adjust initial positions
|
| 460 |
+
dom_size = max(coord for pos_tup in pos.values() for coord in pos_tup)
|
| 461 |
+
if dom_size == 0:
|
| 462 |
+
dom_size = 1
|
| 463 |
+
pos_arr = seed.rand(len(G), dim) * dom_size + center
|
| 464 |
+
|
| 465 |
+
for i, n in enumerate(G):
|
| 466 |
+
if n in pos:
|
| 467 |
+
pos_arr[i] = np.asarray(pos[n])
|
| 468 |
+
else:
|
| 469 |
+
pos_arr = None
|
| 470 |
+
dom_size = 1
|
| 471 |
+
|
| 472 |
+
if len(G) == 0:
|
| 473 |
+
return {}
|
| 474 |
+
if len(G) == 1:
|
| 475 |
+
return {nx.utils.arbitrary_element(G.nodes()): center}
|
| 476 |
+
|
| 477 |
+
try:
|
| 478 |
+
# Sparse matrix
|
| 479 |
+
if len(G) < 500: # sparse solver for large graphs
|
| 480 |
+
raise ValueError
|
| 481 |
+
A = nx.to_scipy_sparse_array(G, weight=weight, dtype="f")
|
| 482 |
+
if k is None and fixed is not None:
|
| 483 |
+
# We must adjust k by domain size for layouts not near 1x1
|
| 484 |
+
nnodes, _ = A.shape
|
| 485 |
+
k = dom_size / np.sqrt(nnodes)
|
| 486 |
+
pos = _sparse_fruchterman_reingold(
|
| 487 |
+
A, k, pos_arr, fixed, iterations, threshold, dim, seed
|
| 488 |
+
)
|
| 489 |
+
except ValueError:
|
| 490 |
+
A = nx.to_numpy_array(G, weight=weight)
|
| 491 |
+
if k is None and fixed is not None:
|
| 492 |
+
# We must adjust k by domain size for layouts not near 1x1
|
| 493 |
+
nnodes, _ = A.shape
|
| 494 |
+
k = dom_size / np.sqrt(nnodes)
|
| 495 |
+
pos = _fruchterman_reingold(
|
| 496 |
+
A, k, pos_arr, fixed, iterations, threshold, dim, seed
|
| 497 |
+
)
|
| 498 |
+
if fixed is None and scale is not None:
|
| 499 |
+
pos = rescale_layout(pos, scale=scale) + center
|
| 500 |
+
pos = dict(zip(G, pos))
|
| 501 |
+
return pos
|
| 502 |
+
|
| 503 |
+
|
| 504 |
+
fruchterman_reingold_layout = spring_layout
|
| 505 |
+
|
| 506 |
+
|
| 507 |
+
@np_random_state(7)
|
| 508 |
+
def _fruchterman_reingold(
|
| 509 |
+
A, k=None, pos=None, fixed=None, iterations=50, threshold=1e-4, dim=2, seed=None
|
| 510 |
+
):
|
| 511 |
+
# Position nodes in adjacency matrix A using Fruchterman-Reingold
|
| 512 |
+
# Entry point for NetworkX graph is fruchterman_reingold_layout()
|
| 513 |
+
import numpy as np
|
| 514 |
+
|
| 515 |
+
try:
|
| 516 |
+
nnodes, _ = A.shape
|
| 517 |
+
except AttributeError as err:
|
| 518 |
+
msg = "fruchterman_reingold() takes an adjacency matrix as input"
|
| 519 |
+
raise nx.NetworkXError(msg) from err
|
| 520 |
+
|
| 521 |
+
if pos is None:
|
| 522 |
+
# random initial positions
|
| 523 |
+
pos = np.asarray(seed.rand(nnodes, dim), dtype=A.dtype)
|
| 524 |
+
else:
|
| 525 |
+
# make sure positions are of same type as matrix
|
| 526 |
+
pos = pos.astype(A.dtype)
|
| 527 |
+
|
| 528 |
+
# optimal distance between nodes
|
| 529 |
+
if k is None:
|
| 530 |
+
k = np.sqrt(1.0 / nnodes)
|
| 531 |
+
# the initial "temperature" is about .1 of domain area (=1x1)
|
| 532 |
+
# this is the largest step allowed in the dynamics.
|
| 533 |
+
# We need to calculate this in case our fixed positions force our domain
|
| 534 |
+
# to be much bigger than 1x1
|
| 535 |
+
t = max(max(pos.T[0]) - min(pos.T[0]), max(pos.T[1]) - min(pos.T[1])) * 0.1
|
| 536 |
+
# simple cooling scheme.
|
| 537 |
+
# linearly step down by dt on each iteration so last iteration is size dt.
|
| 538 |
+
dt = t / (iterations + 1)
|
| 539 |
+
delta = np.zeros((pos.shape[0], pos.shape[0], pos.shape[1]), dtype=A.dtype)
|
| 540 |
+
# the inscrutable (but fast) version
|
| 541 |
+
# this is still O(V^2)
|
| 542 |
+
# could use multilevel methods to speed this up significantly
|
| 543 |
+
for iteration in range(iterations):
|
| 544 |
+
# matrix of difference between points
|
| 545 |
+
delta = pos[:, np.newaxis, :] - pos[np.newaxis, :, :]
|
| 546 |
+
# distance between points
|
| 547 |
+
distance = np.linalg.norm(delta, axis=-1)
|
| 548 |
+
# enforce minimum distance of 0.01
|
| 549 |
+
np.clip(distance, 0.01, None, out=distance)
|
| 550 |
+
# displacement "force"
|
| 551 |
+
displacement = np.einsum(
|
| 552 |
+
"ijk,ij->ik", delta, (k * k / distance**2 - A * distance / k)
|
| 553 |
+
)
|
| 554 |
+
# update positions
|
| 555 |
+
length = np.linalg.norm(displacement, axis=-1)
|
| 556 |
+
length = np.where(length < 0.01, 0.1, length)
|
| 557 |
+
delta_pos = np.einsum("ij,i->ij", displacement, t / length)
|
| 558 |
+
if fixed is not None:
|
| 559 |
+
# don't change positions of fixed nodes
|
| 560 |
+
delta_pos[fixed] = 0.0
|
| 561 |
+
pos += delta_pos
|
| 562 |
+
# cool temperature
|
| 563 |
+
t -= dt
|
| 564 |
+
if (np.linalg.norm(delta_pos) / nnodes) < threshold:
|
| 565 |
+
break
|
| 566 |
+
return pos
|
| 567 |
+
|
| 568 |
+
|
| 569 |
+
@np_random_state(7)
|
| 570 |
+
def _sparse_fruchterman_reingold(
|
| 571 |
+
A, k=None, pos=None, fixed=None, iterations=50, threshold=1e-4, dim=2, seed=None
|
| 572 |
+
):
|
| 573 |
+
# Position nodes in adjacency matrix A using Fruchterman-Reingold
|
| 574 |
+
# Entry point for NetworkX graph is fruchterman_reingold_layout()
|
| 575 |
+
# Sparse version
|
| 576 |
+
import numpy as np
|
| 577 |
+
import scipy as sp
|
| 578 |
+
|
| 579 |
+
try:
|
| 580 |
+
nnodes, _ = A.shape
|
| 581 |
+
except AttributeError as err:
|
| 582 |
+
msg = "fruchterman_reingold() takes an adjacency matrix as input"
|
| 583 |
+
raise nx.NetworkXError(msg) from err
|
| 584 |
+
# make sure we have a LIst of Lists representation
|
| 585 |
+
try:
|
| 586 |
+
A = A.tolil()
|
| 587 |
+
except AttributeError:
|
| 588 |
+
A = (sp.sparse.coo_array(A)).tolil()
|
| 589 |
+
|
| 590 |
+
if pos is None:
|
| 591 |
+
# random initial positions
|
| 592 |
+
pos = np.asarray(seed.rand(nnodes, dim), dtype=A.dtype)
|
| 593 |
+
else:
|
| 594 |
+
# make sure positions are of same type as matrix
|
| 595 |
+
pos = pos.astype(A.dtype)
|
| 596 |
+
|
| 597 |
+
# no fixed nodes
|
| 598 |
+
if fixed is None:
|
| 599 |
+
fixed = []
|
| 600 |
+
|
| 601 |
+
# optimal distance between nodes
|
| 602 |
+
if k is None:
|
| 603 |
+
k = np.sqrt(1.0 / nnodes)
|
| 604 |
+
# the initial "temperature" is about .1 of domain area (=1x1)
|
| 605 |
+
# this is the largest step allowed in the dynamics.
|
| 606 |
+
t = max(max(pos.T[0]) - min(pos.T[0]), max(pos.T[1]) - min(pos.T[1])) * 0.1
|
| 607 |
+
# simple cooling scheme.
|
| 608 |
+
# linearly step down by dt on each iteration so last iteration is size dt.
|
| 609 |
+
dt = t / (iterations + 1)
|
| 610 |
+
|
| 611 |
+
displacement = np.zeros((dim, nnodes))
|
| 612 |
+
for iteration in range(iterations):
|
| 613 |
+
displacement *= 0
|
| 614 |
+
# loop over rows
|
| 615 |
+
for i in range(A.shape[0]):
|
| 616 |
+
if i in fixed:
|
| 617 |
+
continue
|
| 618 |
+
# difference between this row's node position and all others
|
| 619 |
+
delta = (pos[i] - pos).T
|
| 620 |
+
# distance between points
|
| 621 |
+
distance = np.sqrt((delta**2).sum(axis=0))
|
| 622 |
+
# enforce minimum distance of 0.01
|
| 623 |
+
distance = np.where(distance < 0.01, 0.01, distance)
|
| 624 |
+
# the adjacency matrix row
|
| 625 |
+
Ai = A.getrowview(i).toarray() # TODO: revisit w/ sparse 1D container
|
| 626 |
+
# displacement "force"
|
| 627 |
+
displacement[:, i] += (
|
| 628 |
+
delta * (k * k / distance**2 - Ai * distance / k)
|
| 629 |
+
).sum(axis=1)
|
| 630 |
+
# update positions
|
| 631 |
+
length = np.sqrt((displacement**2).sum(axis=0))
|
| 632 |
+
length = np.where(length < 0.01, 0.1, length)
|
| 633 |
+
delta_pos = (displacement * t / length).T
|
| 634 |
+
pos += delta_pos
|
| 635 |
+
# cool temperature
|
| 636 |
+
t -= dt
|
| 637 |
+
if (np.linalg.norm(delta_pos) / nnodes) < threshold:
|
| 638 |
+
break
|
| 639 |
+
return pos
|
| 640 |
+
|
| 641 |
+
|
| 642 |
+
def kamada_kawai_layout(
|
| 643 |
+
G, dist=None, pos=None, weight="weight", scale=1, center=None, dim=2
|
| 644 |
+
):
|
| 645 |
+
"""Position nodes using Kamada-Kawai path-length cost-function.
|
| 646 |
+
|
| 647 |
+
Parameters
|
| 648 |
+
----------
|
| 649 |
+
G : NetworkX graph or list of nodes
|
| 650 |
+
A position will be assigned to every node in G.
|
| 651 |
+
|
| 652 |
+
dist : dict (default=None)
|
| 653 |
+
A two-level dictionary of optimal distances between nodes,
|
| 654 |
+
indexed by source and destination node.
|
| 655 |
+
If None, the distance is computed using shortest_path_length().
|
| 656 |
+
|
| 657 |
+
pos : dict or None optional (default=None)
|
| 658 |
+
Initial positions for nodes as a dictionary with node as keys
|
| 659 |
+
and values as a coordinate list or tuple. If None, then use
|
| 660 |
+
circular_layout() for dim >= 2 and a linear layout for dim == 1.
|
| 661 |
+
|
| 662 |
+
weight : string or None optional (default='weight')
|
| 663 |
+
The edge attribute that holds the numerical value used for
|
| 664 |
+
the edge weight. If None, then all edge weights are 1.
|
| 665 |
+
|
| 666 |
+
scale : number (default: 1)
|
| 667 |
+
Scale factor for positions.
|
| 668 |
+
|
| 669 |
+
center : array-like or None
|
| 670 |
+
Coordinate pair around which to center the layout.
|
| 671 |
+
|
| 672 |
+
dim : int
|
| 673 |
+
Dimension of layout.
|
| 674 |
+
|
| 675 |
+
Returns
|
| 676 |
+
-------
|
| 677 |
+
pos : dict
|
| 678 |
+
A dictionary of positions keyed by node
|
| 679 |
+
|
| 680 |
+
Examples
|
| 681 |
+
--------
|
| 682 |
+
>>> G = nx.path_graph(4)
|
| 683 |
+
>>> pos = nx.kamada_kawai_layout(G)
|
| 684 |
+
"""
|
| 685 |
+
import numpy as np
|
| 686 |
+
|
| 687 |
+
G, center = _process_params(G, center, dim)
|
| 688 |
+
nNodes = len(G)
|
| 689 |
+
if nNodes == 0:
|
| 690 |
+
return {}
|
| 691 |
+
|
| 692 |
+
if dist is None:
|
| 693 |
+
dist = dict(nx.shortest_path_length(G, weight=weight))
|
| 694 |
+
dist_mtx = 1e6 * np.ones((nNodes, nNodes))
|
| 695 |
+
for row, nr in enumerate(G):
|
| 696 |
+
if nr not in dist:
|
| 697 |
+
continue
|
| 698 |
+
rdist = dist[nr]
|
| 699 |
+
for col, nc in enumerate(G):
|
| 700 |
+
if nc not in rdist:
|
| 701 |
+
continue
|
| 702 |
+
dist_mtx[row][col] = rdist[nc]
|
| 703 |
+
|
| 704 |
+
if pos is None:
|
| 705 |
+
if dim >= 3:
|
| 706 |
+
pos = random_layout(G, dim=dim)
|
| 707 |
+
elif dim == 2:
|
| 708 |
+
pos = circular_layout(G, dim=dim)
|
| 709 |
+
else:
|
| 710 |
+
pos = dict(zip(G, np.linspace(0, 1, len(G))))
|
| 711 |
+
pos_arr = np.array([pos[n] for n in G])
|
| 712 |
+
|
| 713 |
+
pos = _kamada_kawai_solve(dist_mtx, pos_arr, dim)
|
| 714 |
+
|
| 715 |
+
pos = rescale_layout(pos, scale=scale) + center
|
| 716 |
+
return dict(zip(G, pos))
|
| 717 |
+
|
| 718 |
+
|
| 719 |
+
def _kamada_kawai_solve(dist_mtx, pos_arr, dim):
|
| 720 |
+
# Anneal node locations based on the Kamada-Kawai cost-function,
|
| 721 |
+
# using the supplied matrix of preferred inter-node distances,
|
| 722 |
+
# and starting locations.
|
| 723 |
+
|
| 724 |
+
import numpy as np
|
| 725 |
+
import scipy as sp
|
| 726 |
+
|
| 727 |
+
meanwt = 1e-3
|
| 728 |
+
costargs = (np, 1 / (dist_mtx + np.eye(dist_mtx.shape[0]) * 1e-3), meanwt, dim)
|
| 729 |
+
|
| 730 |
+
optresult = sp.optimize.minimize(
|
| 731 |
+
_kamada_kawai_costfn,
|
| 732 |
+
pos_arr.ravel(),
|
| 733 |
+
method="L-BFGS-B",
|
| 734 |
+
args=costargs,
|
| 735 |
+
jac=True,
|
| 736 |
+
)
|
| 737 |
+
|
| 738 |
+
return optresult.x.reshape((-1, dim))
|
| 739 |
+
|
| 740 |
+
|
| 741 |
+
def _kamada_kawai_costfn(pos_vec, np, invdist, meanweight, dim):
|
| 742 |
+
# Cost-function and gradient for Kamada-Kawai layout algorithm
|
| 743 |
+
nNodes = invdist.shape[0]
|
| 744 |
+
pos_arr = pos_vec.reshape((nNodes, dim))
|
| 745 |
+
|
| 746 |
+
delta = pos_arr[:, np.newaxis, :] - pos_arr[np.newaxis, :, :]
|
| 747 |
+
nodesep = np.linalg.norm(delta, axis=-1)
|
| 748 |
+
direction = np.einsum("ijk,ij->ijk", delta, 1 / (nodesep + np.eye(nNodes) * 1e-3))
|
| 749 |
+
|
| 750 |
+
offset = nodesep * invdist - 1.0
|
| 751 |
+
offset[np.diag_indices(nNodes)] = 0
|
| 752 |
+
|
| 753 |
+
cost = 0.5 * np.sum(offset**2)
|
| 754 |
+
grad = np.einsum("ij,ij,ijk->ik", invdist, offset, direction) - np.einsum(
|
| 755 |
+
"ij,ij,ijk->jk", invdist, offset, direction
|
| 756 |
+
)
|
| 757 |
+
|
| 758 |
+
# Additional parabolic term to encourage mean position to be near origin:
|
| 759 |
+
sumpos = np.sum(pos_arr, axis=0)
|
| 760 |
+
cost += 0.5 * meanweight * np.sum(sumpos**2)
|
| 761 |
+
grad += meanweight * sumpos
|
| 762 |
+
|
| 763 |
+
return (cost, grad.ravel())
|
| 764 |
+
|
| 765 |
+
|
| 766 |
+
def spectral_layout(G, weight="weight", scale=1, center=None, dim=2):
|
| 767 |
+
"""Position nodes using the eigenvectors of the graph Laplacian.
|
| 768 |
+
|
| 769 |
+
Using the unnormalized Laplacian, the layout shows possible clusters of
|
| 770 |
+
nodes which are an approximation of the ratio cut. If dim is the number of
|
| 771 |
+
dimensions then the positions are the entries of the dim eigenvectors
|
| 772 |
+
corresponding to the ascending eigenvalues starting from the second one.
|
| 773 |
+
|
| 774 |
+
Parameters
|
| 775 |
+
----------
|
| 776 |
+
G : NetworkX graph or list of nodes
|
| 777 |
+
A position will be assigned to every node in G.
|
| 778 |
+
|
| 779 |
+
weight : string or None optional (default='weight')
|
| 780 |
+
The edge attribute that holds the numerical value used for
|
| 781 |
+
the edge weight. If None, then all edge weights are 1.
|
| 782 |
+
|
| 783 |
+
scale : number (default: 1)
|
| 784 |
+
Scale factor for positions.
|
| 785 |
+
|
| 786 |
+
center : array-like or None
|
| 787 |
+
Coordinate pair around which to center the layout.
|
| 788 |
+
|
| 789 |
+
dim : int
|
| 790 |
+
Dimension of layout.
|
| 791 |
+
|
| 792 |
+
Returns
|
| 793 |
+
-------
|
| 794 |
+
pos : dict
|
| 795 |
+
A dictionary of positions keyed by node
|
| 796 |
+
|
| 797 |
+
Examples
|
| 798 |
+
--------
|
| 799 |
+
>>> G = nx.path_graph(4)
|
| 800 |
+
>>> pos = nx.spectral_layout(G)
|
| 801 |
+
|
| 802 |
+
Notes
|
| 803 |
+
-----
|
| 804 |
+
Directed graphs will be considered as undirected graphs when
|
| 805 |
+
positioning the nodes.
|
| 806 |
+
|
| 807 |
+
For larger graphs (>500 nodes) this will use the SciPy sparse
|
| 808 |
+
eigenvalue solver (ARPACK).
|
| 809 |
+
"""
|
| 810 |
+
# handle some special cases that break the eigensolvers
|
| 811 |
+
import numpy as np
|
| 812 |
+
|
| 813 |
+
G, center = _process_params(G, center, dim)
|
| 814 |
+
|
| 815 |
+
if len(G) <= 2:
|
| 816 |
+
if len(G) == 0:
|
| 817 |
+
pos = np.array([])
|
| 818 |
+
elif len(G) == 1:
|
| 819 |
+
pos = np.array([center])
|
| 820 |
+
else:
|
| 821 |
+
pos = np.array([np.zeros(dim), np.array(center) * 2.0])
|
| 822 |
+
return dict(zip(G, pos))
|
| 823 |
+
try:
|
| 824 |
+
# Sparse matrix
|
| 825 |
+
if len(G) < 500: # dense solver is faster for small graphs
|
| 826 |
+
raise ValueError
|
| 827 |
+
A = nx.to_scipy_sparse_array(G, weight=weight, dtype="d")
|
| 828 |
+
# Symmetrize directed graphs
|
| 829 |
+
if G.is_directed():
|
| 830 |
+
A = A + np.transpose(A)
|
| 831 |
+
pos = _sparse_spectral(A, dim)
|
| 832 |
+
except (ImportError, ValueError):
|
| 833 |
+
# Dense matrix
|
| 834 |
+
A = nx.to_numpy_array(G, weight=weight)
|
| 835 |
+
# Symmetrize directed graphs
|
| 836 |
+
if G.is_directed():
|
| 837 |
+
A += A.T
|
| 838 |
+
pos = _spectral(A, dim)
|
| 839 |
+
|
| 840 |
+
pos = rescale_layout(pos, scale=scale) + center
|
| 841 |
+
pos = dict(zip(G, pos))
|
| 842 |
+
return pos
|
| 843 |
+
|
| 844 |
+
|
| 845 |
+
def _spectral(A, dim=2):
|
| 846 |
+
# Input adjacency matrix A
|
| 847 |
+
# Uses dense eigenvalue solver from numpy
|
| 848 |
+
import numpy as np
|
| 849 |
+
|
| 850 |
+
try:
|
| 851 |
+
nnodes, _ = A.shape
|
| 852 |
+
except AttributeError as err:
|
| 853 |
+
msg = "spectral() takes an adjacency matrix as input"
|
| 854 |
+
raise nx.NetworkXError(msg) from err
|
| 855 |
+
|
| 856 |
+
# form Laplacian matrix where D is diagonal of degrees
|
| 857 |
+
D = np.identity(nnodes, dtype=A.dtype) * np.sum(A, axis=1)
|
| 858 |
+
L = D - A
|
| 859 |
+
|
| 860 |
+
eigenvalues, eigenvectors = np.linalg.eig(L)
|
| 861 |
+
# sort and keep smallest nonzero
|
| 862 |
+
index = np.argsort(eigenvalues)[1 : dim + 1] # 0 index is zero eigenvalue
|
| 863 |
+
return np.real(eigenvectors[:, index])
|
| 864 |
+
|
| 865 |
+
|
| 866 |
+
def _sparse_spectral(A, dim=2):
|
| 867 |
+
# Input adjacency matrix A
|
| 868 |
+
# Uses sparse eigenvalue solver from scipy
|
| 869 |
+
# Could use multilevel methods here, see Koren "On spectral graph drawing"
|
| 870 |
+
import numpy as np
|
| 871 |
+
import scipy as sp
|
| 872 |
+
|
| 873 |
+
try:
|
| 874 |
+
nnodes, _ = A.shape
|
| 875 |
+
except AttributeError as err:
|
| 876 |
+
msg = "sparse_spectral() takes an adjacency matrix as input"
|
| 877 |
+
raise nx.NetworkXError(msg) from err
|
| 878 |
+
|
| 879 |
+
# form Laplacian matrix
|
| 880 |
+
# TODO: Rm csr_array wrapper in favor of spdiags array constructor when available
|
| 881 |
+
D = sp.sparse.csr_array(sp.sparse.spdiags(A.sum(axis=1), 0, nnodes, nnodes))
|
| 882 |
+
L = D - A
|
| 883 |
+
|
| 884 |
+
k = dim + 1
|
| 885 |
+
# number of Lanczos vectors for ARPACK solver.What is the right scaling?
|
| 886 |
+
ncv = max(2 * k + 1, int(np.sqrt(nnodes)))
|
| 887 |
+
# return smallest k eigenvalues and eigenvectors
|
| 888 |
+
eigenvalues, eigenvectors = sp.sparse.linalg.eigsh(L, k, which="SM", ncv=ncv)
|
| 889 |
+
index = np.argsort(eigenvalues)[1:k] # 0 index is zero eigenvalue
|
| 890 |
+
return np.real(eigenvectors[:, index])
|
| 891 |
+
|
| 892 |
+
|
| 893 |
+
def planar_layout(G, scale=1, center=None, dim=2):
|
| 894 |
+
"""Position nodes without edge intersections.
|
| 895 |
+
|
| 896 |
+
Parameters
|
| 897 |
+
----------
|
| 898 |
+
G : NetworkX graph or list of nodes
|
| 899 |
+
A position will be assigned to every node in G. If G is of type
|
| 900 |
+
nx.PlanarEmbedding, the positions are selected accordingly.
|
| 901 |
+
|
| 902 |
+
scale : number (default: 1)
|
| 903 |
+
Scale factor for positions.
|
| 904 |
+
|
| 905 |
+
center : array-like or None
|
| 906 |
+
Coordinate pair around which to center the layout.
|
| 907 |
+
|
| 908 |
+
dim : int
|
| 909 |
+
Dimension of layout.
|
| 910 |
+
|
| 911 |
+
Returns
|
| 912 |
+
-------
|
| 913 |
+
pos : dict
|
| 914 |
+
A dictionary of positions keyed by node
|
| 915 |
+
|
| 916 |
+
Raises
|
| 917 |
+
------
|
| 918 |
+
NetworkXException
|
| 919 |
+
If G is not planar
|
| 920 |
+
|
| 921 |
+
Examples
|
| 922 |
+
--------
|
| 923 |
+
>>> G = nx.path_graph(4)
|
| 924 |
+
>>> pos = nx.planar_layout(G)
|
| 925 |
+
"""
|
| 926 |
+
import numpy as np
|
| 927 |
+
|
| 928 |
+
if dim != 2:
|
| 929 |
+
raise ValueError("can only handle 2 dimensions")
|
| 930 |
+
|
| 931 |
+
G, center = _process_params(G, center, dim)
|
| 932 |
+
|
| 933 |
+
if len(G) == 0:
|
| 934 |
+
return {}
|
| 935 |
+
|
| 936 |
+
if isinstance(G, nx.PlanarEmbedding):
|
| 937 |
+
embedding = G
|
| 938 |
+
else:
|
| 939 |
+
is_planar, embedding = nx.check_planarity(G)
|
| 940 |
+
if not is_planar:
|
| 941 |
+
raise nx.NetworkXException("G is not planar.")
|
| 942 |
+
pos = nx.combinatorial_embedding_to_pos(embedding)
|
| 943 |
+
node_list = list(embedding)
|
| 944 |
+
pos = np.vstack([pos[x] for x in node_list])
|
| 945 |
+
pos = pos.astype(np.float64)
|
| 946 |
+
pos = rescale_layout(pos, scale=scale) + center
|
| 947 |
+
return dict(zip(node_list, pos))
|
| 948 |
+
|
| 949 |
+
|
| 950 |
+
def spiral_layout(G, scale=1, center=None, dim=2, resolution=0.35, equidistant=False):
|
| 951 |
+
"""Position nodes in a spiral layout.
|
| 952 |
+
|
| 953 |
+
Parameters
|
| 954 |
+
----------
|
| 955 |
+
G : NetworkX graph or list of nodes
|
| 956 |
+
A position will be assigned to every node in G.
|
| 957 |
+
scale : number (default: 1)
|
| 958 |
+
Scale factor for positions.
|
| 959 |
+
center : array-like or None
|
| 960 |
+
Coordinate pair around which to center the layout.
|
| 961 |
+
dim : int, default=2
|
| 962 |
+
Dimension of layout, currently only dim=2 is supported.
|
| 963 |
+
Other dimension values result in a ValueError.
|
| 964 |
+
resolution : float, default=0.35
|
| 965 |
+
The compactness of the spiral layout returned.
|
| 966 |
+
Lower values result in more compressed spiral layouts.
|
| 967 |
+
equidistant : bool, default=False
|
| 968 |
+
If True, nodes will be positioned equidistant from each other
|
| 969 |
+
by decreasing angle further from center.
|
| 970 |
+
If False, nodes will be positioned at equal angles
|
| 971 |
+
from each other by increasing separation further from center.
|
| 972 |
+
|
| 973 |
+
Returns
|
| 974 |
+
-------
|
| 975 |
+
pos : dict
|
| 976 |
+
A dictionary of positions keyed by node
|
| 977 |
+
|
| 978 |
+
Raises
|
| 979 |
+
------
|
| 980 |
+
ValueError
|
| 981 |
+
If dim != 2
|
| 982 |
+
|
| 983 |
+
Examples
|
| 984 |
+
--------
|
| 985 |
+
>>> G = nx.path_graph(4)
|
| 986 |
+
>>> pos = nx.spiral_layout(G)
|
| 987 |
+
>>> nx.draw(G, pos=pos)
|
| 988 |
+
|
| 989 |
+
Notes
|
| 990 |
+
-----
|
| 991 |
+
This algorithm currently only works in two dimensions.
|
| 992 |
+
|
| 993 |
+
"""
|
| 994 |
+
import numpy as np
|
| 995 |
+
|
| 996 |
+
if dim != 2:
|
| 997 |
+
raise ValueError("can only handle 2 dimensions")
|
| 998 |
+
|
| 999 |
+
G, center = _process_params(G, center, dim)
|
| 1000 |
+
|
| 1001 |
+
if len(G) == 0:
|
| 1002 |
+
return {}
|
| 1003 |
+
if len(G) == 1:
|
| 1004 |
+
return {nx.utils.arbitrary_element(G): center}
|
| 1005 |
+
|
| 1006 |
+
pos = []
|
| 1007 |
+
if equidistant:
|
| 1008 |
+
chord = 1
|
| 1009 |
+
step = 0.5
|
| 1010 |
+
theta = resolution
|
| 1011 |
+
theta += chord / (step * theta)
|
| 1012 |
+
for _ in range(len(G)):
|
| 1013 |
+
r = step * theta
|
| 1014 |
+
theta += chord / r
|
| 1015 |
+
pos.append([np.cos(theta) * r, np.sin(theta) * r])
|
| 1016 |
+
|
| 1017 |
+
else:
|
| 1018 |
+
dist = np.arange(len(G), dtype=float)
|
| 1019 |
+
angle = resolution * dist
|
| 1020 |
+
pos = np.transpose(dist * np.array([np.cos(angle), np.sin(angle)]))
|
| 1021 |
+
|
| 1022 |
+
pos = rescale_layout(np.array(pos), scale=scale) + center
|
| 1023 |
+
|
| 1024 |
+
pos = dict(zip(G, pos))
|
| 1025 |
+
|
| 1026 |
+
return pos
|
| 1027 |
+
|
| 1028 |
+
|
| 1029 |
+
def multipartite_layout(G, subset_key="subset", align="vertical", scale=1, center=None):
|
| 1030 |
+
"""Position nodes in layers of straight lines.
|
| 1031 |
+
|
| 1032 |
+
Parameters
|
| 1033 |
+
----------
|
| 1034 |
+
G : NetworkX graph or list of nodes
|
| 1035 |
+
A position will be assigned to every node in G.
|
| 1036 |
+
|
| 1037 |
+
subset_key : string or dict (default='subset')
|
| 1038 |
+
If a string, the key of node data in G that holds the node subset.
|
| 1039 |
+
If a dict, keyed by layer number to the nodes in that layer/subset.
|
| 1040 |
+
|
| 1041 |
+
align : string (default='vertical')
|
| 1042 |
+
The alignment of nodes. Vertical or horizontal.
|
| 1043 |
+
|
| 1044 |
+
scale : number (default: 1)
|
| 1045 |
+
Scale factor for positions.
|
| 1046 |
+
|
| 1047 |
+
center : array-like or None
|
| 1048 |
+
Coordinate pair around which to center the layout.
|
| 1049 |
+
|
| 1050 |
+
Returns
|
| 1051 |
+
-------
|
| 1052 |
+
pos : dict
|
| 1053 |
+
A dictionary of positions keyed by node.
|
| 1054 |
+
|
| 1055 |
+
Examples
|
| 1056 |
+
--------
|
| 1057 |
+
>>> G = nx.complete_multipartite_graph(28, 16, 10)
|
| 1058 |
+
>>> pos = nx.multipartite_layout(G)
|
| 1059 |
+
|
| 1060 |
+
or use a dict to provide the layers of the layout
|
| 1061 |
+
|
| 1062 |
+
>>> G = nx.Graph([(0, 1), (1, 2), (1, 3), (3, 4)])
|
| 1063 |
+
>>> layers = {"a": [0], "b": [1], "c": [2, 3], "d": [4]}
|
| 1064 |
+
>>> pos = nx.multipartite_layout(G, subset_key=layers)
|
| 1065 |
+
|
| 1066 |
+
Notes
|
| 1067 |
+
-----
|
| 1068 |
+
This algorithm currently only works in two dimensions and does not
|
| 1069 |
+
try to minimize edge crossings.
|
| 1070 |
+
|
| 1071 |
+
Network does not need to be a complete multipartite graph. As long as nodes
|
| 1072 |
+
have subset_key data, they will be placed in the corresponding layers.
|
| 1073 |
+
|
| 1074 |
+
"""
|
| 1075 |
+
import numpy as np
|
| 1076 |
+
|
| 1077 |
+
if align not in ("vertical", "horizontal"):
|
| 1078 |
+
msg = "align must be either vertical or horizontal."
|
| 1079 |
+
raise ValueError(msg)
|
| 1080 |
+
|
| 1081 |
+
G, center = _process_params(G, center=center, dim=2)
|
| 1082 |
+
if len(G) == 0:
|
| 1083 |
+
return {}
|
| 1084 |
+
|
| 1085 |
+
try:
|
| 1086 |
+
# check if subset_key is dict-like
|
| 1087 |
+
if len(G) != sum(len(nodes) for nodes in subset_key.values()):
|
| 1088 |
+
raise nx.NetworkXError(
|
| 1089 |
+
"all nodes must be in one subset of `subset_key` dict"
|
| 1090 |
+
)
|
| 1091 |
+
except AttributeError:
|
| 1092 |
+
# subset_key is not a dict, hence a string
|
| 1093 |
+
node_to_subset = nx.get_node_attributes(G, subset_key)
|
| 1094 |
+
if len(node_to_subset) != len(G):
|
| 1095 |
+
raise nx.NetworkXError(
|
| 1096 |
+
f"all nodes need a subset_key attribute: {subset_key}"
|
| 1097 |
+
)
|
| 1098 |
+
subset_key = nx.utils.groups(node_to_subset)
|
| 1099 |
+
|
| 1100 |
+
# Sort by layer, if possible
|
| 1101 |
+
try:
|
| 1102 |
+
layers = dict(sorted(subset_key.items()))
|
| 1103 |
+
except TypeError:
|
| 1104 |
+
layers = subset_key
|
| 1105 |
+
|
| 1106 |
+
pos = None
|
| 1107 |
+
nodes = []
|
| 1108 |
+
width = len(layers)
|
| 1109 |
+
for i, layer in enumerate(layers.values()):
|
| 1110 |
+
height = len(layer)
|
| 1111 |
+
xs = np.repeat(i, height)
|
| 1112 |
+
ys = np.arange(0, height, dtype=float)
|
| 1113 |
+
offset = ((width - 1) / 2, (height - 1) / 2)
|
| 1114 |
+
layer_pos = np.column_stack([xs, ys]) - offset
|
| 1115 |
+
if pos is None:
|
| 1116 |
+
pos = layer_pos
|
| 1117 |
+
else:
|
| 1118 |
+
pos = np.concatenate([pos, layer_pos])
|
| 1119 |
+
nodes.extend(layer)
|
| 1120 |
+
pos = rescale_layout(pos, scale=scale) + center
|
| 1121 |
+
if align == "horizontal":
|
| 1122 |
+
pos = pos[:, ::-1] # swap x and y coords
|
| 1123 |
+
pos = dict(zip(nodes, pos))
|
| 1124 |
+
return pos
|
| 1125 |
+
|
| 1126 |
+
|
| 1127 |
+
@np_random_state("seed")
|
| 1128 |
+
def arf_layout(
|
| 1129 |
+
G,
|
| 1130 |
+
pos=None,
|
| 1131 |
+
scaling=1,
|
| 1132 |
+
a=1.1,
|
| 1133 |
+
etol=1e-6,
|
| 1134 |
+
dt=1e-3,
|
| 1135 |
+
max_iter=1000,
|
| 1136 |
+
*,
|
| 1137 |
+
seed=None,
|
| 1138 |
+
):
|
| 1139 |
+
"""Arf layout for networkx
|
| 1140 |
+
|
| 1141 |
+
The attractive and repulsive forces (arf) layout [1]
|
| 1142 |
+
improves the spring layout in three ways. First, it
|
| 1143 |
+
prevents congestion of highly connected nodes due to
|
| 1144 |
+
strong forcing between nodes. Second, it utilizes the
|
| 1145 |
+
layout space more effectively by preventing large gaps
|
| 1146 |
+
that spring layout tends to create. Lastly, the arf
|
| 1147 |
+
layout represents symmetries in the layout better than
|
| 1148 |
+
the default spring layout.
|
| 1149 |
+
|
| 1150 |
+
Parameters
|
| 1151 |
+
----------
|
| 1152 |
+
G : nx.Graph or nx.DiGraph
|
| 1153 |
+
Networkx graph.
|
| 1154 |
+
pos : dict
|
| 1155 |
+
Initial position of the nodes. If set to None a
|
| 1156 |
+
random layout will be used.
|
| 1157 |
+
scaling : float
|
| 1158 |
+
Scales the radius of the circular layout space.
|
| 1159 |
+
a : float
|
| 1160 |
+
Strength of springs between connected nodes. Should be larger than 1. The greater a, the clearer the separation ofunconnected sub clusters.
|
| 1161 |
+
etol : float
|
| 1162 |
+
Gradient sum of spring forces must be larger than `etol` before successful termination.
|
| 1163 |
+
dt : float
|
| 1164 |
+
Time step for force differential equation simulations.
|
| 1165 |
+
max_iter : int
|
| 1166 |
+
Max iterations before termination of the algorithm.
|
| 1167 |
+
seed : int, RandomState instance or None optional (default=None)
|
| 1168 |
+
Set the random state for deterministic node layouts.
|
| 1169 |
+
If int, `seed` is the seed used by the random number generator,
|
| 1170 |
+
if numpy.random.RandomState instance, `seed` is the random
|
| 1171 |
+
number generator,
|
| 1172 |
+
if None, the random number generator is the RandomState instance used
|
| 1173 |
+
by numpy.random.
|
| 1174 |
+
|
| 1175 |
+
References
|
| 1176 |
+
.. [1] "Self-Organization Applied to Dynamic Network Layout", M. Geipel,
|
| 1177 |
+
International Journal of Modern Physics C, 2007, Vol 18, No 10, pp. 1537-1549.
|
| 1178 |
+
https://doi.org/10.1142/S0129183107011558 https://arxiv.org/abs/0704.1748
|
| 1179 |
+
|
| 1180 |
+
Returns
|
| 1181 |
+
-------
|
| 1182 |
+
pos : dict
|
| 1183 |
+
A dictionary of positions keyed by node.
|
| 1184 |
+
|
| 1185 |
+
Examples
|
| 1186 |
+
--------
|
| 1187 |
+
>>> G = nx.grid_graph((5, 5))
|
| 1188 |
+
>>> pos = nx.arf_layout(G)
|
| 1189 |
+
|
| 1190 |
+
"""
|
| 1191 |
+
import warnings
|
| 1192 |
+
|
| 1193 |
+
import numpy as np
|
| 1194 |
+
|
| 1195 |
+
if a <= 1:
|
| 1196 |
+
msg = "The parameter a should be larger than 1"
|
| 1197 |
+
raise ValueError(msg)
|
| 1198 |
+
|
| 1199 |
+
pos_tmp = nx.random_layout(G, seed=seed)
|
| 1200 |
+
if pos is None:
|
| 1201 |
+
pos = pos_tmp
|
| 1202 |
+
else:
|
| 1203 |
+
for node in G.nodes():
|
| 1204 |
+
if node not in pos:
|
| 1205 |
+
pos[node] = pos_tmp[node].copy()
|
| 1206 |
+
|
| 1207 |
+
# Initialize spring constant matrix
|
| 1208 |
+
N = len(G)
|
| 1209 |
+
# No nodes no computation
|
| 1210 |
+
if N == 0:
|
| 1211 |
+
return pos
|
| 1212 |
+
|
| 1213 |
+
# init force of springs
|
| 1214 |
+
K = np.ones((N, N)) - np.eye(N)
|
| 1215 |
+
node_order = {node: i for i, node in enumerate(G)}
|
| 1216 |
+
for x, y in G.edges():
|
| 1217 |
+
if x != y:
|
| 1218 |
+
idx, jdx = (node_order[i] for i in (x, y))
|
| 1219 |
+
K[idx, jdx] = a
|
| 1220 |
+
|
| 1221 |
+
# vectorize values
|
| 1222 |
+
p = np.asarray(list(pos.values()))
|
| 1223 |
+
|
| 1224 |
+
# equation 10 in [1]
|
| 1225 |
+
rho = scaling * np.sqrt(N)
|
| 1226 |
+
|
| 1227 |
+
# looping variables
|
| 1228 |
+
error = etol + 1
|
| 1229 |
+
n_iter = 0
|
| 1230 |
+
while error > etol:
|
| 1231 |
+
diff = p[:, np.newaxis] - p[np.newaxis]
|
| 1232 |
+
A = np.linalg.norm(diff, axis=-1)[..., np.newaxis]
|
| 1233 |
+
# attraction_force - repulsions force
|
| 1234 |
+
# suppress nans due to division; caused by diagonal set to zero.
|
| 1235 |
+
# Does not affect the computation due to nansum
|
| 1236 |
+
with warnings.catch_warnings():
|
| 1237 |
+
warnings.simplefilter("ignore")
|
| 1238 |
+
change = K[..., np.newaxis] * diff - rho / A * diff
|
| 1239 |
+
change = np.nansum(change, axis=0)
|
| 1240 |
+
p += change * dt
|
| 1241 |
+
|
| 1242 |
+
error = np.linalg.norm(change, axis=-1).sum()
|
| 1243 |
+
if n_iter > max_iter:
|
| 1244 |
+
break
|
| 1245 |
+
n_iter += 1
|
| 1246 |
+
return dict(zip(G.nodes(), p))
|
| 1247 |
+
|
| 1248 |
+
|
| 1249 |
+
@np_random_state("seed")
|
| 1250 |
+
def forceatlas2_layout(
|
| 1251 |
+
G,
|
| 1252 |
+
pos=None,
|
| 1253 |
+
*,
|
| 1254 |
+
max_iter=100,
|
| 1255 |
+
jitter_tolerance=1.0,
|
| 1256 |
+
scaling_ratio=2.0,
|
| 1257 |
+
gravity=1.0,
|
| 1258 |
+
distributed_action=False,
|
| 1259 |
+
strong_gravity=False,
|
| 1260 |
+
node_mass=None,
|
| 1261 |
+
node_size=None,
|
| 1262 |
+
weight=None,
|
| 1263 |
+
dissuade_hubs=False,
|
| 1264 |
+
linlog=False,
|
| 1265 |
+
seed=None,
|
| 1266 |
+
dim=2,
|
| 1267 |
+
):
|
| 1268 |
+
"""Position nodes using the ForceAtlas2 force-directed layout algorithm.
|
| 1269 |
+
|
| 1270 |
+
This function applies the ForceAtlas2 layout algorithm [1]_ to a NetworkX graph,
|
| 1271 |
+
positioning the nodes in a way that visually represents the structure of the graph.
|
| 1272 |
+
The algorithm uses physical simulation to minimize the energy of the system,
|
| 1273 |
+
resulting in a more readable layout.
|
| 1274 |
+
|
| 1275 |
+
Parameters
|
| 1276 |
+
----------
|
| 1277 |
+
G : nx.Graph
|
| 1278 |
+
A NetworkX graph to be laid out.
|
| 1279 |
+
pos : dict or None, optional
|
| 1280 |
+
Initial positions of the nodes. If None, random initial positions are used.
|
| 1281 |
+
max_iter : int (default: 100)
|
| 1282 |
+
Number of iterations for the layout optimization.
|
| 1283 |
+
jitter_tolerance : float (default: 1.0)
|
| 1284 |
+
Controls the tolerance for adjusting the speed of layout generation.
|
| 1285 |
+
scaling_ratio : float (default: 2.0)
|
| 1286 |
+
Determines the scaling of attraction and repulsion forces.
|
| 1287 |
+
distributed_attraction : bool (default: False)
|
| 1288 |
+
Distributes the attraction force evenly among nodes.
|
| 1289 |
+
strong_gravity : bool (default: False)
|
| 1290 |
+
Applies a strong gravitational pull towards the center.
|
| 1291 |
+
node_mass : dict or None, optional
|
| 1292 |
+
Maps nodes to their masses, influencing the attraction to other nodes.
|
| 1293 |
+
node_size : dict or None, optional
|
| 1294 |
+
Maps nodes to their sizes, preventing crowding by creating a halo effect.
|
| 1295 |
+
dissuade_hubs : bool (default: False)
|
| 1296 |
+
Prevents the clustering of hub nodes.
|
| 1297 |
+
linlog : bool (default: False)
|
| 1298 |
+
Uses logarithmic attraction instead of linear.
|
| 1299 |
+
seed : int, RandomState instance or None optional (default=None)
|
| 1300 |
+
Used only for the initial positions in the algorithm.
|
| 1301 |
+
Set the random state for deterministic node layouts.
|
| 1302 |
+
If int, `seed` is the seed used by the random number generator,
|
| 1303 |
+
if numpy.random.RandomState instance, `seed` is the random
|
| 1304 |
+
number generator,
|
| 1305 |
+
if None, the random number generator is the RandomState instance used
|
| 1306 |
+
by numpy.random.
|
| 1307 |
+
dim : int (default: 2)
|
| 1308 |
+
Sets the dimensions for the layout. Ignored if `pos` is provided.
|
| 1309 |
+
|
| 1310 |
+
Examples
|
| 1311 |
+
--------
|
| 1312 |
+
>>> import networkx as nx
|
| 1313 |
+
>>> G = nx.florentine_families_graph()
|
| 1314 |
+
>>> pos = nx.forceatlas2_layout(G)
|
| 1315 |
+
>>> nx.draw(G, pos=pos)
|
| 1316 |
+
|
| 1317 |
+
References
|
| 1318 |
+
----------
|
| 1319 |
+
.. [1] Jacomy, M., Venturini, T., Heymann, S., & Bastian, M. (2014).
|
| 1320 |
+
ForceAtlas2, a continuous graph layout algorithm for handy network
|
| 1321 |
+
visualization designed for the Gephi software. PloS one, 9(6), e98679.
|
| 1322 |
+
https://doi.org/10.1371/journal.pone.0098679
|
| 1323 |
+
"""
|
| 1324 |
+
import numpy as np
|
| 1325 |
+
|
| 1326 |
+
if len(G) == 0:
|
| 1327 |
+
return {}
|
| 1328 |
+
# parse optional pos positions
|
| 1329 |
+
if pos is None:
|
| 1330 |
+
pos = nx.random_layout(G, dim=dim, seed=seed)
|
| 1331 |
+
pos_arr = np.array(list(pos.values()))
|
| 1332 |
+
else:
|
| 1333 |
+
# set default node interval within the initial pos values
|
| 1334 |
+
pos_init = np.array(list(pos.values()))
|
| 1335 |
+
max_pos = pos_init.max(axis=0)
|
| 1336 |
+
min_pos = pos_init.min(axis=0)
|
| 1337 |
+
dim = max_pos.size
|
| 1338 |
+
pos_arr = min_pos + seed.rand(len(G), dim) * (max_pos - min_pos)
|
| 1339 |
+
for idx, node in enumerate(G):
|
| 1340 |
+
if node in pos:
|
| 1341 |
+
pos_arr[idx] = pos[node].copy()
|
| 1342 |
+
|
| 1343 |
+
mass = np.zeros(len(G))
|
| 1344 |
+
size = np.zeros(len(G))
|
| 1345 |
+
|
| 1346 |
+
# Only adjust for size when the users specifies size other than default (1)
|
| 1347 |
+
adjust_sizes = False
|
| 1348 |
+
if node_size is None:
|
| 1349 |
+
node_size = {}
|
| 1350 |
+
else:
|
| 1351 |
+
adjust_sizes = True
|
| 1352 |
+
|
| 1353 |
+
if node_mass is None:
|
| 1354 |
+
node_mass = {}
|
| 1355 |
+
|
| 1356 |
+
for idx, node in enumerate(G):
|
| 1357 |
+
mass[idx] = node_mass.get(node, G.degree(node) + 1)
|
| 1358 |
+
size[idx] = node_size.get(node, 1)
|
| 1359 |
+
|
| 1360 |
+
n = len(G)
|
| 1361 |
+
gravities = np.zeros((n, dim))
|
| 1362 |
+
attraction = np.zeros((n, dim))
|
| 1363 |
+
repulsion = np.zeros((n, dim))
|
| 1364 |
+
A = nx.to_numpy_array(G, weight=weight)
|
| 1365 |
+
|
| 1366 |
+
def estimate_factor(n, swing, traction, speed, speed_efficiency, jitter_tolerance):
|
| 1367 |
+
"""Computes the scaling factor for the force in the ForceAtlas2 layout algorithm.
|
| 1368 |
+
|
| 1369 |
+
This helper function adjusts the speed and
|
| 1370 |
+
efficiency of the layout generation based on the
|
| 1371 |
+
current state of the system, such as the number of
|
| 1372 |
+
nodes, current swing, and traction forces.
|
| 1373 |
+
|
| 1374 |
+
Parameters
|
| 1375 |
+
----------
|
| 1376 |
+
n : int
|
| 1377 |
+
Number of nodes in the graph.
|
| 1378 |
+
swing : float
|
| 1379 |
+
The current swing, representing the oscillation of the nodes.
|
| 1380 |
+
traction : float
|
| 1381 |
+
The current traction force, representing the attraction between nodes.
|
| 1382 |
+
speed : float
|
| 1383 |
+
The current speed of the layout generation.
|
| 1384 |
+
speed_efficiency : float
|
| 1385 |
+
The efficiency of the current speed, influencing how fast the layout converges.
|
| 1386 |
+
jitter_tolerance : float
|
| 1387 |
+
The tolerance for jitter, affecting how much speed adjustment is allowed.
|
| 1388 |
+
|
| 1389 |
+
Returns
|
| 1390 |
+
-------
|
| 1391 |
+
tuple
|
| 1392 |
+
A tuple containing the updated speed and speed efficiency.
|
| 1393 |
+
|
| 1394 |
+
Notes
|
| 1395 |
+
-----
|
| 1396 |
+
This function is a part of the ForceAtlas2 layout algorithm and is used to dynamically adjust the
|
| 1397 |
+
layout parameters to achieve an optimal and stable visualization.
|
| 1398 |
+
|
| 1399 |
+
"""
|
| 1400 |
+
import numpy as np
|
| 1401 |
+
|
| 1402 |
+
# estimate jitter
|
| 1403 |
+
opt_jitter = 0.05 * np.sqrt(n)
|
| 1404 |
+
min_jitter = np.sqrt(opt_jitter)
|
| 1405 |
+
max_jitter = 10
|
| 1406 |
+
min_speed_efficiency = 0.05
|
| 1407 |
+
|
| 1408 |
+
other = min(max_jitter, opt_jitter * traction / n**2)
|
| 1409 |
+
jitter = jitter_tolerance * max(min_jitter, other)
|
| 1410 |
+
|
| 1411 |
+
if swing / traction > 2.0:
|
| 1412 |
+
if speed_efficiency > min_speed_efficiency:
|
| 1413 |
+
speed_efficiency *= 0.5
|
| 1414 |
+
jitter = max(jitter, jitter_tolerance)
|
| 1415 |
+
if swing == 0:
|
| 1416 |
+
target_speed = np.inf
|
| 1417 |
+
else:
|
| 1418 |
+
target_speed = jitter * speed_efficiency * traction / swing
|
| 1419 |
+
|
| 1420 |
+
if swing > jitter * traction:
|
| 1421 |
+
if speed_efficiency > min_speed_efficiency:
|
| 1422 |
+
speed_efficiency *= 0.7
|
| 1423 |
+
elif speed < 1000:
|
| 1424 |
+
speed_efficiency *= 1.3
|
| 1425 |
+
|
| 1426 |
+
max_rise = 0.5
|
| 1427 |
+
speed = speed + min(target_speed - speed, max_rise * speed)
|
| 1428 |
+
return speed, speed_efficiency
|
| 1429 |
+
|
| 1430 |
+
speed = 1
|
| 1431 |
+
speed_efficiency = 1
|
| 1432 |
+
swing = 1
|
| 1433 |
+
traction = 1
|
| 1434 |
+
for _ in range(max_iter):
|
| 1435 |
+
# compute pairwise difference
|
| 1436 |
+
diff = pos_arr[:, None] - pos_arr[None]
|
| 1437 |
+
# compute pairwise distance
|
| 1438 |
+
distance = np.linalg.norm(diff, axis=-1)
|
| 1439 |
+
|
| 1440 |
+
# linear attraction
|
| 1441 |
+
if linlog:
|
| 1442 |
+
attraction = -np.log(1 + distance) / distance
|
| 1443 |
+
np.fill_diagonal(attraction, 0)
|
| 1444 |
+
attraction = np.einsum("ij, ij -> ij", attraction, A)
|
| 1445 |
+
attraction = np.einsum("ijk, ij -> ik", diff, attraction)
|
| 1446 |
+
|
| 1447 |
+
else:
|
| 1448 |
+
attraction = -np.einsum("ijk, ij -> ik", diff, A)
|
| 1449 |
+
|
| 1450 |
+
if distributed_action:
|
| 1451 |
+
attraction /= mass[:, None]
|
| 1452 |
+
|
| 1453 |
+
# repulsion
|
| 1454 |
+
tmp = mass[:, None] @ mass[None]
|
| 1455 |
+
if adjust_sizes:
|
| 1456 |
+
distance += -size[:, None] - size[None]
|
| 1457 |
+
|
| 1458 |
+
d2 = distance**2
|
| 1459 |
+
# remove self-interaction
|
| 1460 |
+
np.fill_diagonal(tmp, 0)
|
| 1461 |
+
np.fill_diagonal(d2, 1)
|
| 1462 |
+
factor = (tmp / d2) * scaling_ratio
|
| 1463 |
+
repulsion = np.einsum("ijk, ij -> ik", diff, factor)
|
| 1464 |
+
|
| 1465 |
+
# gravity
|
| 1466 |
+
gravities = (
|
| 1467 |
+
-gravity
|
| 1468 |
+
* mass[:, None]
|
| 1469 |
+
* pos_arr
|
| 1470 |
+
/ np.linalg.norm(pos_arr, axis=-1)[:, None]
|
| 1471 |
+
)
|
| 1472 |
+
|
| 1473 |
+
if strong_gravity:
|
| 1474 |
+
gravities *= np.linalg.norm(pos_arr, axis=-1)[:, None]
|
| 1475 |
+
# total forces
|
| 1476 |
+
update = attraction + repulsion + gravities
|
| 1477 |
+
|
| 1478 |
+
# compute total swing and traction
|
| 1479 |
+
swing += (mass * np.linalg.norm(pos_arr - update, axis=-1)).sum()
|
| 1480 |
+
traction += (0.5 * mass * np.linalg.norm(pos_arr + update, axis=-1)).sum()
|
| 1481 |
+
|
| 1482 |
+
speed, speed_efficiency = estimate_factor(
|
| 1483 |
+
n,
|
| 1484 |
+
swing,
|
| 1485 |
+
traction,
|
| 1486 |
+
speed,
|
| 1487 |
+
speed_efficiency,
|
| 1488 |
+
jitter_tolerance,
|
| 1489 |
+
)
|
| 1490 |
+
|
| 1491 |
+
# update pos
|
| 1492 |
+
if adjust_sizes:
|
| 1493 |
+
swinging = mass * np.linalg.norm(update, axis=-1)
|
| 1494 |
+
factor = 0.1 * speed / (1 + np.sqrt(speed * swinging))
|
| 1495 |
+
df = np.linalg.norm(update, axis=-1)
|
| 1496 |
+
factor = np.minimum(factor * df, 10.0 * np.ones(df.shape)) / df
|
| 1497 |
+
else:
|
| 1498 |
+
swinging = mass * np.linalg.norm(update, axis=-1)
|
| 1499 |
+
factor = speed / (1 + np.sqrt(speed * swinging))
|
| 1500 |
+
|
| 1501 |
+
pos_arr += update * factor[:, None]
|
| 1502 |
+
if abs((update * factor[:, None]).sum()) < 1e-10:
|
| 1503 |
+
break
|
| 1504 |
+
|
| 1505 |
+
return dict(zip(G, pos_arr))
|
| 1506 |
+
|
| 1507 |
+
|
| 1508 |
+
def rescale_layout(pos, scale=1):
|
| 1509 |
+
"""Returns scaled position array to (-scale, scale) in all axes.
|
| 1510 |
+
|
| 1511 |
+
The function acts on NumPy arrays which hold position information.
|
| 1512 |
+
Each position is one row of the array. The dimension of the space
|
| 1513 |
+
equals the number of columns. Each coordinate in one column.
|
| 1514 |
+
|
| 1515 |
+
To rescale, the mean (center) is subtracted from each axis separately.
|
| 1516 |
+
Then all values are scaled so that the largest magnitude value
|
| 1517 |
+
from all axes equals `scale` (thus, the aspect ratio is preserved).
|
| 1518 |
+
The resulting NumPy Array is returned (order of rows unchanged).
|
| 1519 |
+
|
| 1520 |
+
Parameters
|
| 1521 |
+
----------
|
| 1522 |
+
pos : numpy array
|
| 1523 |
+
positions to be scaled. Each row is a position.
|
| 1524 |
+
|
| 1525 |
+
scale : number (default: 1)
|
| 1526 |
+
The size of the resulting extent in all directions.
|
| 1527 |
+
|
| 1528 |
+
Returns
|
| 1529 |
+
-------
|
| 1530 |
+
pos : numpy array
|
| 1531 |
+
scaled positions. Each row is a position.
|
| 1532 |
+
|
| 1533 |
+
See Also
|
| 1534 |
+
--------
|
| 1535 |
+
rescale_layout_dict
|
| 1536 |
+
"""
|
| 1537 |
+
import numpy as np
|
| 1538 |
+
|
| 1539 |
+
# Find max length over all dimensions
|
| 1540 |
+
pos -= pos.mean(axis=0)
|
| 1541 |
+
lim = np.abs(pos).max() # max coordinate for all axes
|
| 1542 |
+
# rescale to (-scale, scale) in all directions, preserves aspect
|
| 1543 |
+
if lim > 0:
|
| 1544 |
+
pos *= scale / lim
|
| 1545 |
+
return pos
|
| 1546 |
+
|
| 1547 |
+
|
| 1548 |
+
def rescale_layout_dict(pos, scale=1):
|
| 1549 |
+
"""Return a dictionary of scaled positions keyed by node
|
| 1550 |
+
|
| 1551 |
+
Parameters
|
| 1552 |
+
----------
|
| 1553 |
+
pos : A dictionary of positions keyed by node
|
| 1554 |
+
|
| 1555 |
+
scale : number (default: 1)
|
| 1556 |
+
The size of the resulting extent in all directions.
|
| 1557 |
+
|
| 1558 |
+
Returns
|
| 1559 |
+
-------
|
| 1560 |
+
pos : A dictionary of positions keyed by node
|
| 1561 |
+
|
| 1562 |
+
Examples
|
| 1563 |
+
--------
|
| 1564 |
+
>>> import numpy as np
|
| 1565 |
+
>>> pos = {0: np.array((0, 0)), 1: np.array((1, 1)), 2: np.array((0.5, 0.5))}
|
| 1566 |
+
>>> nx.rescale_layout_dict(pos)
|
| 1567 |
+
{0: array([-1., -1.]), 1: array([1., 1.]), 2: array([0., 0.])}
|
| 1568 |
+
|
| 1569 |
+
>>> pos = {0: np.array((0, 0)), 1: np.array((-1, 1)), 2: np.array((-0.5, 0.5))}
|
| 1570 |
+
>>> nx.rescale_layout_dict(pos, scale=2)
|
| 1571 |
+
{0: array([ 2., -2.]), 1: array([-2., 2.]), 2: array([0., 0.])}
|
| 1572 |
+
|
| 1573 |
+
See Also
|
| 1574 |
+
--------
|
| 1575 |
+
rescale_layout
|
| 1576 |
+
"""
|
| 1577 |
+
import numpy as np
|
| 1578 |
+
|
| 1579 |
+
if not pos: # empty_graph
|
| 1580 |
+
return {}
|
| 1581 |
+
pos_v = np.array(list(pos.values()))
|
| 1582 |
+
pos_v = rescale_layout(pos_v, scale=scale)
|
| 1583 |
+
return dict(zip(pos, pos_v))
|
| 1584 |
+
|
| 1585 |
+
|
| 1586 |
+
def bfs_layout(G, start, *, align="vertical", scale=1, center=None):
|
| 1587 |
+
"""Position nodes according to breadth-first search algorithm.
|
| 1588 |
+
|
| 1589 |
+
Parameters
|
| 1590 |
+
----------
|
| 1591 |
+
G : NetworkX graph
|
| 1592 |
+
A position will be assigned to every node in G.
|
| 1593 |
+
|
| 1594 |
+
start : node in `G`
|
| 1595 |
+
Starting node for bfs
|
| 1596 |
+
|
| 1597 |
+
center : array-like or None
|
| 1598 |
+
Coordinate pair around which to center the layout.
|
| 1599 |
+
|
| 1600 |
+
Returns
|
| 1601 |
+
-------
|
| 1602 |
+
pos : dict
|
| 1603 |
+
A dictionary of positions keyed by node.
|
| 1604 |
+
|
| 1605 |
+
Examples
|
| 1606 |
+
--------
|
| 1607 |
+
>>> G = nx.path_graph(4)
|
| 1608 |
+
>>> pos = nx.bfs_layout(G, 0)
|
| 1609 |
+
|
| 1610 |
+
Notes
|
| 1611 |
+
-----
|
| 1612 |
+
This algorithm currently only works in two dimensions and does not
|
| 1613 |
+
try to minimize edge crossings.
|
| 1614 |
+
|
| 1615 |
+
"""
|
| 1616 |
+
G, center = _process_params(G, center, 2)
|
| 1617 |
+
|
| 1618 |
+
# Compute layers with BFS
|
| 1619 |
+
layers = dict(enumerate(nx.bfs_layers(G, start)))
|
| 1620 |
+
|
| 1621 |
+
if len(G) != sum(len(nodes) for nodes in layers.values()):
|
| 1622 |
+
raise nx.NetworkXError(
|
| 1623 |
+
"bfs_layout didn't include all nodes. Perhaps use input graph:\n"
|
| 1624 |
+
" G.subgraph(nx.node_connected_component(G, start))"
|
| 1625 |
+
)
|
| 1626 |
+
|
| 1627 |
+
# Compute node positions with multipartite_layout
|
| 1628 |
+
return multipartite_layout(
|
| 1629 |
+
G, subset_key=layers, align=align, scale=scale, center=center
|
| 1630 |
+
)
|
wemm/lib/python3.10/site-packages/networkx/drawing/nx_pydot.py
ADDED
|
@@ -0,0 +1,352 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
*****
|
| 3 |
+
Pydot
|
| 4 |
+
*****
|
| 5 |
+
|
| 6 |
+
Import and export NetworkX graphs in Graphviz dot format using pydot.
|
| 7 |
+
|
| 8 |
+
Either this module or nx_agraph can be used to interface with graphviz.
|
| 9 |
+
|
| 10 |
+
Examples
|
| 11 |
+
--------
|
| 12 |
+
>>> G = nx.complete_graph(5)
|
| 13 |
+
>>> PG = nx.nx_pydot.to_pydot(G)
|
| 14 |
+
>>> H = nx.nx_pydot.from_pydot(PG)
|
| 15 |
+
|
| 16 |
+
See Also
|
| 17 |
+
--------
|
| 18 |
+
- pydot: https://github.com/erocarrera/pydot
|
| 19 |
+
- Graphviz: https://www.graphviz.org
|
| 20 |
+
- DOT Language: http://www.graphviz.org/doc/info/lang.html
|
| 21 |
+
"""
|
| 22 |
+
|
| 23 |
+
from locale import getpreferredencoding
|
| 24 |
+
|
| 25 |
+
import networkx as nx
|
| 26 |
+
from networkx.utils import open_file
|
| 27 |
+
|
| 28 |
+
__all__ = [
|
| 29 |
+
"write_dot",
|
| 30 |
+
"read_dot",
|
| 31 |
+
"graphviz_layout",
|
| 32 |
+
"pydot_layout",
|
| 33 |
+
"to_pydot",
|
| 34 |
+
"from_pydot",
|
| 35 |
+
]
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
@open_file(1, mode="w")
|
| 39 |
+
def write_dot(G, path):
|
| 40 |
+
"""Write NetworkX graph G to Graphviz dot format on path.
|
| 41 |
+
|
| 42 |
+
Path can be a string or a file handle.
|
| 43 |
+
"""
|
| 44 |
+
P = to_pydot(G)
|
| 45 |
+
path.write(P.to_string())
|
| 46 |
+
return
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
@open_file(0, mode="r")
|
| 50 |
+
@nx._dispatchable(name="pydot_read_dot", graphs=None, returns_graph=True)
|
| 51 |
+
def read_dot(path):
|
| 52 |
+
"""Returns a NetworkX :class:`MultiGraph` or :class:`MultiDiGraph` from the
|
| 53 |
+
dot file with the passed path.
|
| 54 |
+
|
| 55 |
+
If this file contains multiple graphs, only the first such graph is
|
| 56 |
+
returned. All graphs _except_ the first are silently ignored.
|
| 57 |
+
|
| 58 |
+
Parameters
|
| 59 |
+
----------
|
| 60 |
+
path : str or file
|
| 61 |
+
Filename or file handle.
|
| 62 |
+
|
| 63 |
+
Returns
|
| 64 |
+
-------
|
| 65 |
+
G : MultiGraph or MultiDiGraph
|
| 66 |
+
A :class:`MultiGraph` or :class:`MultiDiGraph`.
|
| 67 |
+
|
| 68 |
+
Notes
|
| 69 |
+
-----
|
| 70 |
+
Use `G = nx.Graph(nx.nx_pydot.read_dot(path))` to return a :class:`Graph` instead of a
|
| 71 |
+
:class:`MultiGraph`.
|
| 72 |
+
"""
|
| 73 |
+
import pydot
|
| 74 |
+
|
| 75 |
+
data = path.read()
|
| 76 |
+
|
| 77 |
+
# List of one or more "pydot.Dot" instances deserialized from this file.
|
| 78 |
+
P_list = pydot.graph_from_dot_data(data)
|
| 79 |
+
|
| 80 |
+
# Convert only the first such instance into a NetworkX graph.
|
| 81 |
+
return from_pydot(P_list[0])
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
| 85 |
+
def from_pydot(P):
|
| 86 |
+
"""Returns a NetworkX graph from a Pydot graph.
|
| 87 |
+
|
| 88 |
+
Parameters
|
| 89 |
+
----------
|
| 90 |
+
P : Pydot graph
|
| 91 |
+
A graph created with Pydot
|
| 92 |
+
|
| 93 |
+
Returns
|
| 94 |
+
-------
|
| 95 |
+
G : NetworkX multigraph
|
| 96 |
+
A MultiGraph or MultiDiGraph.
|
| 97 |
+
|
| 98 |
+
Examples
|
| 99 |
+
--------
|
| 100 |
+
>>> K5 = nx.complete_graph(5)
|
| 101 |
+
>>> A = nx.nx_pydot.to_pydot(K5)
|
| 102 |
+
>>> G = nx.nx_pydot.from_pydot(A) # return MultiGraph
|
| 103 |
+
|
| 104 |
+
# make a Graph instead of MultiGraph
|
| 105 |
+
>>> G = nx.Graph(nx.nx_pydot.from_pydot(A))
|
| 106 |
+
|
| 107 |
+
"""
|
| 108 |
+
|
| 109 |
+
if P.get_strict(None): # pydot bug: get_strict() shouldn't take argument
|
| 110 |
+
multiedges = False
|
| 111 |
+
else:
|
| 112 |
+
multiedges = True
|
| 113 |
+
|
| 114 |
+
if P.get_type() == "graph": # undirected
|
| 115 |
+
if multiedges:
|
| 116 |
+
N = nx.MultiGraph()
|
| 117 |
+
else:
|
| 118 |
+
N = nx.Graph()
|
| 119 |
+
else:
|
| 120 |
+
if multiedges:
|
| 121 |
+
N = nx.MultiDiGraph()
|
| 122 |
+
else:
|
| 123 |
+
N = nx.DiGraph()
|
| 124 |
+
|
| 125 |
+
# assign defaults
|
| 126 |
+
name = P.get_name().strip('"')
|
| 127 |
+
if name != "":
|
| 128 |
+
N.name = name
|
| 129 |
+
|
| 130 |
+
# add nodes, attributes to N.node_attr
|
| 131 |
+
for p in P.get_node_list():
|
| 132 |
+
n = p.get_name().strip('"')
|
| 133 |
+
if n in ("node", "graph", "edge"):
|
| 134 |
+
continue
|
| 135 |
+
N.add_node(n, **p.get_attributes())
|
| 136 |
+
|
| 137 |
+
# add edges
|
| 138 |
+
for e in P.get_edge_list():
|
| 139 |
+
u = e.get_source()
|
| 140 |
+
v = e.get_destination()
|
| 141 |
+
attr = e.get_attributes()
|
| 142 |
+
s = []
|
| 143 |
+
d = []
|
| 144 |
+
|
| 145 |
+
if isinstance(u, str):
|
| 146 |
+
s.append(u.strip('"'))
|
| 147 |
+
else:
|
| 148 |
+
for unodes in u["nodes"]:
|
| 149 |
+
s.append(unodes.strip('"'))
|
| 150 |
+
|
| 151 |
+
if isinstance(v, str):
|
| 152 |
+
d.append(v.strip('"'))
|
| 153 |
+
else:
|
| 154 |
+
for vnodes in v["nodes"]:
|
| 155 |
+
d.append(vnodes.strip('"'))
|
| 156 |
+
|
| 157 |
+
for source_node in s:
|
| 158 |
+
for destination_node in d:
|
| 159 |
+
N.add_edge(source_node, destination_node, **attr)
|
| 160 |
+
|
| 161 |
+
# add default attributes for graph, nodes, edges
|
| 162 |
+
pattr = P.get_attributes()
|
| 163 |
+
if pattr:
|
| 164 |
+
N.graph["graph"] = pattr
|
| 165 |
+
try:
|
| 166 |
+
N.graph["node"] = P.get_node_defaults()[0]
|
| 167 |
+
except (IndexError, TypeError):
|
| 168 |
+
pass # N.graph['node']={}
|
| 169 |
+
try:
|
| 170 |
+
N.graph["edge"] = P.get_edge_defaults()[0]
|
| 171 |
+
except (IndexError, TypeError):
|
| 172 |
+
pass # N.graph['edge']={}
|
| 173 |
+
return N
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
def to_pydot(N):
|
| 177 |
+
"""Returns a pydot graph from a NetworkX graph N.
|
| 178 |
+
|
| 179 |
+
Parameters
|
| 180 |
+
----------
|
| 181 |
+
N : NetworkX graph
|
| 182 |
+
A graph created with NetworkX
|
| 183 |
+
|
| 184 |
+
Examples
|
| 185 |
+
--------
|
| 186 |
+
>>> K5 = nx.complete_graph(5)
|
| 187 |
+
>>> P = nx.nx_pydot.to_pydot(K5)
|
| 188 |
+
|
| 189 |
+
Notes
|
| 190 |
+
-----
|
| 191 |
+
|
| 192 |
+
"""
|
| 193 |
+
import pydot
|
| 194 |
+
|
| 195 |
+
# set Graphviz graph type
|
| 196 |
+
if N.is_directed():
|
| 197 |
+
graph_type = "digraph"
|
| 198 |
+
else:
|
| 199 |
+
graph_type = "graph"
|
| 200 |
+
strict = nx.number_of_selfloops(N) == 0 and not N.is_multigraph()
|
| 201 |
+
|
| 202 |
+
name = N.name
|
| 203 |
+
graph_defaults = N.graph.get("graph", {})
|
| 204 |
+
if name == "":
|
| 205 |
+
P = pydot.Dot("", graph_type=graph_type, strict=strict, **graph_defaults)
|
| 206 |
+
else:
|
| 207 |
+
P = pydot.Dot(
|
| 208 |
+
f'"{name}"', graph_type=graph_type, strict=strict, **graph_defaults
|
| 209 |
+
)
|
| 210 |
+
try:
|
| 211 |
+
P.set_node_defaults(**N.graph["node"])
|
| 212 |
+
except KeyError:
|
| 213 |
+
pass
|
| 214 |
+
try:
|
| 215 |
+
P.set_edge_defaults(**N.graph["edge"])
|
| 216 |
+
except KeyError:
|
| 217 |
+
pass
|
| 218 |
+
|
| 219 |
+
for n, nodedata in N.nodes(data=True):
|
| 220 |
+
str_nodedata = {str(k): str(v) for k, v in nodedata.items()}
|
| 221 |
+
n = str(n)
|
| 222 |
+
p = pydot.Node(n, **str_nodedata)
|
| 223 |
+
P.add_node(p)
|
| 224 |
+
|
| 225 |
+
if N.is_multigraph():
|
| 226 |
+
for u, v, key, edgedata in N.edges(data=True, keys=True):
|
| 227 |
+
str_edgedata = {str(k): str(v) for k, v in edgedata.items() if k != "key"}
|
| 228 |
+
u, v = str(u), str(v)
|
| 229 |
+
edge = pydot.Edge(u, v, key=str(key), **str_edgedata)
|
| 230 |
+
P.add_edge(edge)
|
| 231 |
+
|
| 232 |
+
else:
|
| 233 |
+
for u, v, edgedata in N.edges(data=True):
|
| 234 |
+
str_edgedata = {str(k): str(v) for k, v in edgedata.items()}
|
| 235 |
+
u, v = str(u), str(v)
|
| 236 |
+
edge = pydot.Edge(u, v, **str_edgedata)
|
| 237 |
+
P.add_edge(edge)
|
| 238 |
+
return P
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
def graphviz_layout(G, prog="neato", root=None):
|
| 242 |
+
"""Create node positions using Pydot and Graphviz.
|
| 243 |
+
|
| 244 |
+
Returns a dictionary of positions keyed by node.
|
| 245 |
+
|
| 246 |
+
Parameters
|
| 247 |
+
----------
|
| 248 |
+
G : NetworkX Graph
|
| 249 |
+
The graph for which the layout is computed.
|
| 250 |
+
prog : string (default: 'neato')
|
| 251 |
+
The name of the GraphViz program to use for layout.
|
| 252 |
+
Options depend on GraphViz version but may include:
|
| 253 |
+
'dot', 'twopi', 'fdp', 'sfdp', 'circo'
|
| 254 |
+
root : Node from G or None (default: None)
|
| 255 |
+
The node of G from which to start some layout algorithms.
|
| 256 |
+
|
| 257 |
+
Returns
|
| 258 |
+
-------
|
| 259 |
+
Dictionary of (x, y) positions keyed by node.
|
| 260 |
+
|
| 261 |
+
Examples
|
| 262 |
+
--------
|
| 263 |
+
>>> G = nx.complete_graph(4)
|
| 264 |
+
>>> pos = nx.nx_pydot.graphviz_layout(G)
|
| 265 |
+
>>> pos = nx.nx_pydot.graphviz_layout(G, prog="dot")
|
| 266 |
+
|
| 267 |
+
Notes
|
| 268 |
+
-----
|
| 269 |
+
This is a wrapper for pydot_layout.
|
| 270 |
+
"""
|
| 271 |
+
return pydot_layout(G=G, prog=prog, root=root)
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
def pydot_layout(G, prog="neato", root=None):
|
| 275 |
+
"""Create node positions using :mod:`pydot` and Graphviz.
|
| 276 |
+
|
| 277 |
+
Parameters
|
| 278 |
+
----------
|
| 279 |
+
G : Graph
|
| 280 |
+
NetworkX graph to be laid out.
|
| 281 |
+
prog : string (default: 'neato')
|
| 282 |
+
Name of the GraphViz command to use for layout.
|
| 283 |
+
Options depend on GraphViz version but may include:
|
| 284 |
+
'dot', 'twopi', 'fdp', 'sfdp', 'circo'
|
| 285 |
+
root : Node from G or None (default: None)
|
| 286 |
+
The node of G from which to start some layout algorithms.
|
| 287 |
+
|
| 288 |
+
Returns
|
| 289 |
+
-------
|
| 290 |
+
dict
|
| 291 |
+
Dictionary of positions keyed by node.
|
| 292 |
+
|
| 293 |
+
Examples
|
| 294 |
+
--------
|
| 295 |
+
>>> G = nx.complete_graph(4)
|
| 296 |
+
>>> pos = nx.nx_pydot.pydot_layout(G)
|
| 297 |
+
>>> pos = nx.nx_pydot.pydot_layout(G, prog="dot")
|
| 298 |
+
|
| 299 |
+
Notes
|
| 300 |
+
-----
|
| 301 |
+
If you use complex node objects, they may have the same string
|
| 302 |
+
representation and GraphViz could treat them as the same node.
|
| 303 |
+
The layout may assign both nodes a single location. See Issue #1568
|
| 304 |
+
If this occurs in your case, consider relabeling the nodes just
|
| 305 |
+
for the layout computation using something similar to::
|
| 306 |
+
|
| 307 |
+
H = nx.convert_node_labels_to_integers(G, label_attribute="node_label")
|
| 308 |
+
H_layout = nx.nx_pydot.pydot_layout(H, prog="dot")
|
| 309 |
+
G_layout = {H.nodes[n]["node_label"]: p for n, p in H_layout.items()}
|
| 310 |
+
|
| 311 |
+
"""
|
| 312 |
+
import pydot
|
| 313 |
+
|
| 314 |
+
P = to_pydot(G)
|
| 315 |
+
if root is not None:
|
| 316 |
+
P.set("root", str(root))
|
| 317 |
+
|
| 318 |
+
# List of low-level bytes comprising a string in the dot language converted
|
| 319 |
+
# from the passed graph with the passed external GraphViz command.
|
| 320 |
+
D_bytes = P.create_dot(prog=prog)
|
| 321 |
+
|
| 322 |
+
# Unique string decoded from these bytes with the preferred locale encoding
|
| 323 |
+
D = str(D_bytes, encoding=getpreferredencoding())
|
| 324 |
+
|
| 325 |
+
if D == "": # no data returned
|
| 326 |
+
print(f"Graphviz layout with {prog} failed")
|
| 327 |
+
print()
|
| 328 |
+
print("To debug what happened try:")
|
| 329 |
+
print("P = nx.nx_pydot.to_pydot(G)")
|
| 330 |
+
print('P.write_dot("file.dot")')
|
| 331 |
+
print(f"And then run {prog} on file.dot")
|
| 332 |
+
return
|
| 333 |
+
|
| 334 |
+
# List of one or more "pydot.Dot" instances deserialized from this string.
|
| 335 |
+
Q_list = pydot.graph_from_dot_data(D)
|
| 336 |
+
assert len(Q_list) == 1
|
| 337 |
+
|
| 338 |
+
# The first and only such instance, as guaranteed by the above assertion.
|
| 339 |
+
Q = Q_list[0]
|
| 340 |
+
|
| 341 |
+
node_pos = {}
|
| 342 |
+
for n in G.nodes():
|
| 343 |
+
str_n = str(n)
|
| 344 |
+
node = Q.get_node(pydot.quote_id_if_necessary(str_n))
|
| 345 |
+
|
| 346 |
+
if isinstance(node, list):
|
| 347 |
+
node = node[0]
|
| 348 |
+
pos = node.get_pos()[1:-1] # strip leading and trailing double quotes
|
| 349 |
+
if pos is not None:
|
| 350 |
+
xx, yy = pos.split(",")
|
| 351 |
+
node_pos[n] = (float(xx), float(yy))
|
| 352 |
+
return node_pos
|
wemm/lib/python3.10/site-packages/networkx/drawing/nx_pylab.py
ADDED
|
@@ -0,0 +1,1979 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
**********
|
| 3 |
+
Matplotlib
|
| 4 |
+
**********
|
| 5 |
+
|
| 6 |
+
Draw networks with matplotlib.
|
| 7 |
+
|
| 8 |
+
Examples
|
| 9 |
+
--------
|
| 10 |
+
>>> G = nx.complete_graph(5)
|
| 11 |
+
>>> nx.draw(G)
|
| 12 |
+
|
| 13 |
+
See Also
|
| 14 |
+
--------
|
| 15 |
+
- :doc:`matplotlib <matplotlib:index>`
|
| 16 |
+
- :func:`matplotlib.pyplot.scatter`
|
| 17 |
+
- :obj:`matplotlib.patches.FancyArrowPatch`
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
import collections
|
| 21 |
+
import itertools
|
| 22 |
+
from numbers import Number
|
| 23 |
+
|
| 24 |
+
import networkx as nx
|
| 25 |
+
from networkx.drawing.layout import (
|
| 26 |
+
circular_layout,
|
| 27 |
+
forceatlas2_layout,
|
| 28 |
+
kamada_kawai_layout,
|
| 29 |
+
planar_layout,
|
| 30 |
+
random_layout,
|
| 31 |
+
shell_layout,
|
| 32 |
+
spectral_layout,
|
| 33 |
+
spring_layout,
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
__all__ = [
|
| 37 |
+
"draw",
|
| 38 |
+
"draw_networkx",
|
| 39 |
+
"draw_networkx_nodes",
|
| 40 |
+
"draw_networkx_edges",
|
| 41 |
+
"draw_networkx_labels",
|
| 42 |
+
"draw_networkx_edge_labels",
|
| 43 |
+
"draw_circular",
|
| 44 |
+
"draw_kamada_kawai",
|
| 45 |
+
"draw_random",
|
| 46 |
+
"draw_spectral",
|
| 47 |
+
"draw_spring",
|
| 48 |
+
"draw_planar",
|
| 49 |
+
"draw_shell",
|
| 50 |
+
"draw_forceatlas2",
|
| 51 |
+
]
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def draw(G, pos=None, ax=None, **kwds):
|
| 55 |
+
"""Draw the graph G with Matplotlib.
|
| 56 |
+
|
| 57 |
+
Draw the graph as a simple representation with no node
|
| 58 |
+
labels or edge labels and using the full Matplotlib figure area
|
| 59 |
+
and no axis labels by default. See draw_networkx() for more
|
| 60 |
+
full-featured drawing that allows title, axis labels etc.
|
| 61 |
+
|
| 62 |
+
Parameters
|
| 63 |
+
----------
|
| 64 |
+
G : graph
|
| 65 |
+
A networkx graph
|
| 66 |
+
|
| 67 |
+
pos : dictionary, optional
|
| 68 |
+
A dictionary with nodes as keys and positions as values.
|
| 69 |
+
If not specified a spring layout positioning will be computed.
|
| 70 |
+
See :py:mod:`networkx.drawing.layout` for functions that
|
| 71 |
+
compute node positions.
|
| 72 |
+
|
| 73 |
+
ax : Matplotlib Axes object, optional
|
| 74 |
+
Draw the graph in specified Matplotlib axes.
|
| 75 |
+
|
| 76 |
+
kwds : optional keywords
|
| 77 |
+
See networkx.draw_networkx() for a description of optional keywords.
|
| 78 |
+
|
| 79 |
+
Examples
|
| 80 |
+
--------
|
| 81 |
+
>>> G = nx.dodecahedral_graph()
|
| 82 |
+
>>> nx.draw(G)
|
| 83 |
+
>>> nx.draw(G, pos=nx.spring_layout(G)) # use spring layout
|
| 84 |
+
|
| 85 |
+
See Also
|
| 86 |
+
--------
|
| 87 |
+
draw_networkx
|
| 88 |
+
draw_networkx_nodes
|
| 89 |
+
draw_networkx_edges
|
| 90 |
+
draw_networkx_labels
|
| 91 |
+
draw_networkx_edge_labels
|
| 92 |
+
|
| 93 |
+
Notes
|
| 94 |
+
-----
|
| 95 |
+
This function has the same name as pylab.draw and pyplot.draw
|
| 96 |
+
so beware when using `from networkx import *`
|
| 97 |
+
|
| 98 |
+
since you might overwrite the pylab.draw function.
|
| 99 |
+
|
| 100 |
+
With pyplot use
|
| 101 |
+
|
| 102 |
+
>>> import matplotlib.pyplot as plt
|
| 103 |
+
>>> G = nx.dodecahedral_graph()
|
| 104 |
+
>>> nx.draw(G) # networkx draw()
|
| 105 |
+
>>> plt.draw() # pyplot draw()
|
| 106 |
+
|
| 107 |
+
Also see the NetworkX drawing examples at
|
| 108 |
+
https://networkx.org/documentation/latest/auto_examples/index.html
|
| 109 |
+
"""
|
| 110 |
+
import matplotlib.pyplot as plt
|
| 111 |
+
|
| 112 |
+
if ax is None:
|
| 113 |
+
cf = plt.gcf()
|
| 114 |
+
else:
|
| 115 |
+
cf = ax.get_figure()
|
| 116 |
+
cf.set_facecolor("w")
|
| 117 |
+
if ax is None:
|
| 118 |
+
if cf.axes:
|
| 119 |
+
ax = cf.gca()
|
| 120 |
+
else:
|
| 121 |
+
ax = cf.add_axes((0, 0, 1, 1))
|
| 122 |
+
|
| 123 |
+
if "with_labels" not in kwds:
|
| 124 |
+
kwds["with_labels"] = "labels" in kwds
|
| 125 |
+
|
| 126 |
+
draw_networkx(G, pos=pos, ax=ax, **kwds)
|
| 127 |
+
ax.set_axis_off()
|
| 128 |
+
plt.draw_if_interactive()
|
| 129 |
+
return
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
def draw_networkx(G, pos=None, arrows=None, with_labels=True, **kwds):
|
| 133 |
+
r"""Draw the graph G using Matplotlib.
|
| 134 |
+
|
| 135 |
+
Draw the graph with Matplotlib with options for node positions,
|
| 136 |
+
labeling, titles, and many other drawing features.
|
| 137 |
+
See draw() for simple drawing without labels or axes.
|
| 138 |
+
|
| 139 |
+
Parameters
|
| 140 |
+
----------
|
| 141 |
+
G : graph
|
| 142 |
+
A networkx graph
|
| 143 |
+
|
| 144 |
+
pos : dictionary, optional
|
| 145 |
+
A dictionary with nodes as keys and positions as values.
|
| 146 |
+
If not specified a spring layout positioning will be computed.
|
| 147 |
+
See :py:mod:`networkx.drawing.layout` for functions that
|
| 148 |
+
compute node positions.
|
| 149 |
+
|
| 150 |
+
arrows : bool or None, optional (default=None)
|
| 151 |
+
If `None`, directed graphs draw arrowheads with
|
| 152 |
+
`~matplotlib.patches.FancyArrowPatch`, while undirected graphs draw edges
|
| 153 |
+
via `~matplotlib.collections.LineCollection` for speed.
|
| 154 |
+
If `True`, draw arrowheads with FancyArrowPatches (bendable and stylish).
|
| 155 |
+
If `False`, draw edges using LineCollection (linear and fast).
|
| 156 |
+
For directed graphs, if True draw arrowheads.
|
| 157 |
+
Note: Arrows will be the same color as edges.
|
| 158 |
+
|
| 159 |
+
arrowstyle : str (default='-\|>' for directed graphs)
|
| 160 |
+
For directed graphs, choose the style of the arrowsheads.
|
| 161 |
+
For undirected graphs default to '-'
|
| 162 |
+
|
| 163 |
+
See `matplotlib.patches.ArrowStyle` for more options.
|
| 164 |
+
|
| 165 |
+
arrowsize : int or list (default=10)
|
| 166 |
+
For directed graphs, choose the size of the arrow head's length and
|
| 167 |
+
width. A list of values can be passed in to assign a different size for arrow head's length and width.
|
| 168 |
+
See `matplotlib.patches.FancyArrowPatch` for attribute `mutation_scale`
|
| 169 |
+
for more info.
|
| 170 |
+
|
| 171 |
+
with_labels : bool (default=True)
|
| 172 |
+
Set to True to draw labels on the nodes.
|
| 173 |
+
|
| 174 |
+
ax : Matplotlib Axes object, optional
|
| 175 |
+
Draw the graph in the specified Matplotlib axes.
|
| 176 |
+
|
| 177 |
+
nodelist : list (default=list(G))
|
| 178 |
+
Draw only specified nodes
|
| 179 |
+
|
| 180 |
+
edgelist : list (default=list(G.edges()))
|
| 181 |
+
Draw only specified edges
|
| 182 |
+
|
| 183 |
+
node_size : scalar or array (default=300)
|
| 184 |
+
Size of nodes. If an array is specified it must be the
|
| 185 |
+
same length as nodelist.
|
| 186 |
+
|
| 187 |
+
node_color : color or array of colors (default='#1f78b4')
|
| 188 |
+
Node color. Can be a single color or a sequence of colors with the same
|
| 189 |
+
length as nodelist. Color can be string or rgb (or rgba) tuple of
|
| 190 |
+
floats from 0-1. If numeric values are specified they will be
|
| 191 |
+
mapped to colors using the cmap and vmin,vmax parameters. See
|
| 192 |
+
matplotlib.scatter for more details.
|
| 193 |
+
|
| 194 |
+
node_shape : string (default='o')
|
| 195 |
+
The shape of the node. Specification is as matplotlib.scatter
|
| 196 |
+
marker, one of 'so^>v<dph8'.
|
| 197 |
+
|
| 198 |
+
alpha : float or None (default=None)
|
| 199 |
+
The node and edge transparency
|
| 200 |
+
|
| 201 |
+
cmap : Matplotlib colormap, optional
|
| 202 |
+
Colormap for mapping intensities of nodes
|
| 203 |
+
|
| 204 |
+
vmin,vmax : float, optional
|
| 205 |
+
Minimum and maximum for node colormap scaling
|
| 206 |
+
|
| 207 |
+
linewidths : scalar or sequence (default=1.0)
|
| 208 |
+
Line width of symbol border
|
| 209 |
+
|
| 210 |
+
width : float or array of floats (default=1.0)
|
| 211 |
+
Line width of edges
|
| 212 |
+
|
| 213 |
+
edge_color : color or array of colors (default='k')
|
| 214 |
+
Edge color. Can be a single color or a sequence of colors with the same
|
| 215 |
+
length as edgelist. Color can be string or rgb (or rgba) tuple of
|
| 216 |
+
floats from 0-1. If numeric values are specified they will be
|
| 217 |
+
mapped to colors using the edge_cmap and edge_vmin,edge_vmax parameters.
|
| 218 |
+
|
| 219 |
+
edge_cmap : Matplotlib colormap, optional
|
| 220 |
+
Colormap for mapping intensities of edges
|
| 221 |
+
|
| 222 |
+
edge_vmin,edge_vmax : floats, optional
|
| 223 |
+
Minimum and maximum for edge colormap scaling
|
| 224 |
+
|
| 225 |
+
style : string (default=solid line)
|
| 226 |
+
Edge line style e.g.: '-', '--', '-.', ':'
|
| 227 |
+
or words like 'solid' or 'dashed'.
|
| 228 |
+
(See `matplotlib.patches.FancyArrowPatch`: `linestyle`)
|
| 229 |
+
|
| 230 |
+
labels : dictionary (default=None)
|
| 231 |
+
Node labels in a dictionary of text labels keyed by node
|
| 232 |
+
|
| 233 |
+
font_size : int (default=12 for nodes, 10 for edges)
|
| 234 |
+
Font size for text labels
|
| 235 |
+
|
| 236 |
+
font_color : color (default='k' black)
|
| 237 |
+
Font color string. Color can be string or rgb (or rgba) tuple of
|
| 238 |
+
floats from 0-1.
|
| 239 |
+
|
| 240 |
+
font_weight : string (default='normal')
|
| 241 |
+
Font weight
|
| 242 |
+
|
| 243 |
+
font_family : string (default='sans-serif')
|
| 244 |
+
Font family
|
| 245 |
+
|
| 246 |
+
label : string, optional
|
| 247 |
+
Label for graph legend
|
| 248 |
+
|
| 249 |
+
hide_ticks : bool, optional
|
| 250 |
+
Hide ticks of axes. When `True` (the default), ticks and ticklabels
|
| 251 |
+
are removed from the axes. To set ticks and tick labels to the pyplot default,
|
| 252 |
+
use ``hide_ticks=False``.
|
| 253 |
+
|
| 254 |
+
kwds : optional keywords
|
| 255 |
+
See networkx.draw_networkx_nodes(), networkx.draw_networkx_edges(), and
|
| 256 |
+
networkx.draw_networkx_labels() for a description of optional keywords.
|
| 257 |
+
|
| 258 |
+
Notes
|
| 259 |
+
-----
|
| 260 |
+
For directed graphs, arrows are drawn at the head end. Arrows can be
|
| 261 |
+
turned off with keyword arrows=False.
|
| 262 |
+
|
| 263 |
+
Examples
|
| 264 |
+
--------
|
| 265 |
+
>>> G = nx.dodecahedral_graph()
|
| 266 |
+
>>> nx.draw(G)
|
| 267 |
+
>>> nx.draw(G, pos=nx.spring_layout(G)) # use spring layout
|
| 268 |
+
|
| 269 |
+
>>> import matplotlib.pyplot as plt
|
| 270 |
+
>>> limits = plt.axis("off") # turn off axis
|
| 271 |
+
|
| 272 |
+
Also see the NetworkX drawing examples at
|
| 273 |
+
https://networkx.org/documentation/latest/auto_examples/index.html
|
| 274 |
+
|
| 275 |
+
See Also
|
| 276 |
+
--------
|
| 277 |
+
draw
|
| 278 |
+
draw_networkx_nodes
|
| 279 |
+
draw_networkx_edges
|
| 280 |
+
draw_networkx_labels
|
| 281 |
+
draw_networkx_edge_labels
|
| 282 |
+
"""
|
| 283 |
+
from inspect import signature
|
| 284 |
+
|
| 285 |
+
import matplotlib.pyplot as plt
|
| 286 |
+
|
| 287 |
+
# Get all valid keywords by inspecting the signatures of draw_networkx_nodes,
|
| 288 |
+
# draw_networkx_edges, draw_networkx_labels
|
| 289 |
+
|
| 290 |
+
valid_node_kwds = signature(draw_networkx_nodes).parameters.keys()
|
| 291 |
+
valid_edge_kwds = signature(draw_networkx_edges).parameters.keys()
|
| 292 |
+
valid_label_kwds = signature(draw_networkx_labels).parameters.keys()
|
| 293 |
+
|
| 294 |
+
# Create a set with all valid keywords across the three functions and
|
| 295 |
+
# remove the arguments of this function (draw_networkx)
|
| 296 |
+
valid_kwds = (valid_node_kwds | valid_edge_kwds | valid_label_kwds) - {
|
| 297 |
+
"G",
|
| 298 |
+
"pos",
|
| 299 |
+
"arrows",
|
| 300 |
+
"with_labels",
|
| 301 |
+
}
|
| 302 |
+
|
| 303 |
+
if any(k not in valid_kwds for k in kwds):
|
| 304 |
+
invalid_args = ", ".join([k for k in kwds if k not in valid_kwds])
|
| 305 |
+
raise ValueError(f"Received invalid argument(s): {invalid_args}")
|
| 306 |
+
|
| 307 |
+
node_kwds = {k: v for k, v in kwds.items() if k in valid_node_kwds}
|
| 308 |
+
edge_kwds = {k: v for k, v in kwds.items() if k in valid_edge_kwds}
|
| 309 |
+
label_kwds = {k: v for k, v in kwds.items() if k in valid_label_kwds}
|
| 310 |
+
|
| 311 |
+
if pos is None:
|
| 312 |
+
pos = nx.drawing.spring_layout(G) # default to spring layout
|
| 313 |
+
|
| 314 |
+
draw_networkx_nodes(G, pos, **node_kwds)
|
| 315 |
+
draw_networkx_edges(G, pos, arrows=arrows, **edge_kwds)
|
| 316 |
+
if with_labels:
|
| 317 |
+
draw_networkx_labels(G, pos, **label_kwds)
|
| 318 |
+
plt.draw_if_interactive()
|
| 319 |
+
|
| 320 |
+
|
| 321 |
+
def draw_networkx_nodes(
|
| 322 |
+
G,
|
| 323 |
+
pos,
|
| 324 |
+
nodelist=None,
|
| 325 |
+
node_size=300,
|
| 326 |
+
node_color="#1f78b4",
|
| 327 |
+
node_shape="o",
|
| 328 |
+
alpha=None,
|
| 329 |
+
cmap=None,
|
| 330 |
+
vmin=None,
|
| 331 |
+
vmax=None,
|
| 332 |
+
ax=None,
|
| 333 |
+
linewidths=None,
|
| 334 |
+
edgecolors=None,
|
| 335 |
+
label=None,
|
| 336 |
+
margins=None,
|
| 337 |
+
hide_ticks=True,
|
| 338 |
+
):
|
| 339 |
+
"""Draw the nodes of the graph G.
|
| 340 |
+
|
| 341 |
+
This draws only the nodes of the graph G.
|
| 342 |
+
|
| 343 |
+
Parameters
|
| 344 |
+
----------
|
| 345 |
+
G : graph
|
| 346 |
+
A networkx graph
|
| 347 |
+
|
| 348 |
+
pos : dictionary
|
| 349 |
+
A dictionary with nodes as keys and positions as values.
|
| 350 |
+
Positions should be sequences of length 2.
|
| 351 |
+
|
| 352 |
+
ax : Matplotlib Axes object, optional
|
| 353 |
+
Draw the graph in the specified Matplotlib axes.
|
| 354 |
+
|
| 355 |
+
nodelist : list (default list(G))
|
| 356 |
+
Draw only specified nodes
|
| 357 |
+
|
| 358 |
+
node_size : scalar or array (default=300)
|
| 359 |
+
Size of nodes. If an array it must be the same length as nodelist.
|
| 360 |
+
|
| 361 |
+
node_color : color or array of colors (default='#1f78b4')
|
| 362 |
+
Node color. Can be a single color or a sequence of colors with the same
|
| 363 |
+
length as nodelist. Color can be string or rgb (or rgba) tuple of
|
| 364 |
+
floats from 0-1. If numeric values are specified they will be
|
| 365 |
+
mapped to colors using the cmap and vmin,vmax parameters. See
|
| 366 |
+
matplotlib.scatter for more details.
|
| 367 |
+
|
| 368 |
+
node_shape : string (default='o')
|
| 369 |
+
The shape of the node. Specification is as matplotlib.scatter
|
| 370 |
+
marker, one of 'so^>v<dph8'.
|
| 371 |
+
|
| 372 |
+
alpha : float or array of floats (default=None)
|
| 373 |
+
The node transparency. This can be a single alpha value,
|
| 374 |
+
in which case it will be applied to all the nodes of color. Otherwise,
|
| 375 |
+
if it is an array, the elements of alpha will be applied to the colors
|
| 376 |
+
in order (cycling through alpha multiple times if necessary).
|
| 377 |
+
|
| 378 |
+
cmap : Matplotlib colormap (default=None)
|
| 379 |
+
Colormap for mapping intensities of nodes
|
| 380 |
+
|
| 381 |
+
vmin,vmax : floats or None (default=None)
|
| 382 |
+
Minimum and maximum for node colormap scaling
|
| 383 |
+
|
| 384 |
+
linewidths : [None | scalar | sequence] (default=1.0)
|
| 385 |
+
Line width of symbol border
|
| 386 |
+
|
| 387 |
+
edgecolors : [None | scalar | sequence] (default = node_color)
|
| 388 |
+
Colors of node borders. Can be a single color or a sequence of colors with the
|
| 389 |
+
same length as nodelist. Color can be string or rgb (or rgba) tuple of floats
|
| 390 |
+
from 0-1. If numeric values are specified they will be mapped to colors
|
| 391 |
+
using the cmap and vmin,vmax parameters. See `~matplotlib.pyplot.scatter` for more details.
|
| 392 |
+
|
| 393 |
+
label : [None | string]
|
| 394 |
+
Label for legend
|
| 395 |
+
|
| 396 |
+
margins : float or 2-tuple, optional
|
| 397 |
+
Sets the padding for axis autoscaling. Increase margin to prevent
|
| 398 |
+
clipping for nodes that are near the edges of an image. Values should
|
| 399 |
+
be in the range ``[0, 1]``. See :meth:`matplotlib.axes.Axes.margins`
|
| 400 |
+
for details. The default is `None`, which uses the Matplotlib default.
|
| 401 |
+
|
| 402 |
+
hide_ticks : bool, optional
|
| 403 |
+
Hide ticks of axes. When `True` (the default), ticks and ticklabels
|
| 404 |
+
are removed from the axes. To set ticks and tick labels to the pyplot default,
|
| 405 |
+
use ``hide_ticks=False``.
|
| 406 |
+
|
| 407 |
+
Returns
|
| 408 |
+
-------
|
| 409 |
+
matplotlib.collections.PathCollection
|
| 410 |
+
`PathCollection` of the nodes.
|
| 411 |
+
|
| 412 |
+
Examples
|
| 413 |
+
--------
|
| 414 |
+
>>> G = nx.dodecahedral_graph()
|
| 415 |
+
>>> nodes = nx.draw_networkx_nodes(G, pos=nx.spring_layout(G))
|
| 416 |
+
|
| 417 |
+
Also see the NetworkX drawing examples at
|
| 418 |
+
https://networkx.org/documentation/latest/auto_examples/index.html
|
| 419 |
+
|
| 420 |
+
See Also
|
| 421 |
+
--------
|
| 422 |
+
draw
|
| 423 |
+
draw_networkx
|
| 424 |
+
draw_networkx_edges
|
| 425 |
+
draw_networkx_labels
|
| 426 |
+
draw_networkx_edge_labels
|
| 427 |
+
"""
|
| 428 |
+
from collections.abc import Iterable
|
| 429 |
+
|
| 430 |
+
import matplotlib as mpl
|
| 431 |
+
import matplotlib.collections # call as mpl.collections
|
| 432 |
+
import matplotlib.pyplot as plt
|
| 433 |
+
import numpy as np
|
| 434 |
+
|
| 435 |
+
if ax is None:
|
| 436 |
+
ax = plt.gca()
|
| 437 |
+
|
| 438 |
+
if nodelist is None:
|
| 439 |
+
nodelist = list(G)
|
| 440 |
+
|
| 441 |
+
if len(nodelist) == 0: # empty nodelist, no drawing
|
| 442 |
+
return mpl.collections.PathCollection(None)
|
| 443 |
+
|
| 444 |
+
try:
|
| 445 |
+
xy = np.asarray([pos[v] for v in nodelist])
|
| 446 |
+
except KeyError as err:
|
| 447 |
+
raise nx.NetworkXError(f"Node {err} has no position.") from err
|
| 448 |
+
|
| 449 |
+
if isinstance(alpha, Iterable):
|
| 450 |
+
node_color = apply_alpha(node_color, alpha, nodelist, cmap, vmin, vmax)
|
| 451 |
+
alpha = None
|
| 452 |
+
|
| 453 |
+
if not isinstance(node_shape, np.ndarray) and not isinstance(node_shape, list):
|
| 454 |
+
node_shape = np.array([node_shape for _ in range(len(nodelist))])
|
| 455 |
+
|
| 456 |
+
for shape in np.unique(node_shape):
|
| 457 |
+
node_collection = ax.scatter(
|
| 458 |
+
xy[node_shape == shape, 0],
|
| 459 |
+
xy[node_shape == shape, 1],
|
| 460 |
+
s=node_size,
|
| 461 |
+
c=node_color,
|
| 462 |
+
marker=shape,
|
| 463 |
+
cmap=cmap,
|
| 464 |
+
vmin=vmin,
|
| 465 |
+
vmax=vmax,
|
| 466 |
+
alpha=alpha,
|
| 467 |
+
linewidths=linewidths,
|
| 468 |
+
edgecolors=edgecolors,
|
| 469 |
+
label=label,
|
| 470 |
+
)
|
| 471 |
+
if hide_ticks:
|
| 472 |
+
ax.tick_params(
|
| 473 |
+
axis="both",
|
| 474 |
+
which="both",
|
| 475 |
+
bottom=False,
|
| 476 |
+
left=False,
|
| 477 |
+
labelbottom=False,
|
| 478 |
+
labelleft=False,
|
| 479 |
+
)
|
| 480 |
+
|
| 481 |
+
if margins is not None:
|
| 482 |
+
if isinstance(margins, Iterable):
|
| 483 |
+
ax.margins(*margins)
|
| 484 |
+
else:
|
| 485 |
+
ax.margins(margins)
|
| 486 |
+
|
| 487 |
+
node_collection.set_zorder(2)
|
| 488 |
+
return node_collection
|
| 489 |
+
|
| 490 |
+
|
| 491 |
+
class FancyArrowFactory:
|
| 492 |
+
"""Draw arrows with `matplotlib.patches.FancyarrowPatch`"""
|
| 493 |
+
|
| 494 |
+
class ConnectionStyleFactory:
|
| 495 |
+
def __init__(self, connectionstyles, selfloop_height, ax=None):
|
| 496 |
+
import matplotlib as mpl
|
| 497 |
+
import matplotlib.path # call as mpl.path
|
| 498 |
+
import numpy as np
|
| 499 |
+
|
| 500 |
+
self.ax = ax
|
| 501 |
+
self.mpl = mpl
|
| 502 |
+
self.np = np
|
| 503 |
+
self.base_connection_styles = [
|
| 504 |
+
mpl.patches.ConnectionStyle(cs) for cs in connectionstyles
|
| 505 |
+
]
|
| 506 |
+
self.n = len(self.base_connection_styles)
|
| 507 |
+
self.selfloop_height = selfloop_height
|
| 508 |
+
|
| 509 |
+
def curved(self, edge_index):
|
| 510 |
+
return self.base_connection_styles[edge_index % self.n]
|
| 511 |
+
|
| 512 |
+
def self_loop(self, edge_index):
|
| 513 |
+
def self_loop_connection(posA, posB, *args, **kwargs):
|
| 514 |
+
if not self.np.all(posA == posB):
|
| 515 |
+
raise nx.NetworkXError(
|
| 516 |
+
"`self_loop` connection style method"
|
| 517 |
+
"is only to be used for self-loops"
|
| 518 |
+
)
|
| 519 |
+
# this is called with _screen space_ values
|
| 520 |
+
# so convert back to data space
|
| 521 |
+
data_loc = self.ax.transData.inverted().transform(posA)
|
| 522 |
+
v_shift = 0.1 * self.selfloop_height
|
| 523 |
+
h_shift = v_shift * 0.5
|
| 524 |
+
# put the top of the loop first so arrow is not hidden by node
|
| 525 |
+
path = self.np.asarray(
|
| 526 |
+
[
|
| 527 |
+
# 1
|
| 528 |
+
[0, v_shift],
|
| 529 |
+
# 4 4 4
|
| 530 |
+
[h_shift, v_shift],
|
| 531 |
+
[h_shift, 0],
|
| 532 |
+
[0, 0],
|
| 533 |
+
# 4 4 4
|
| 534 |
+
[-h_shift, 0],
|
| 535 |
+
[-h_shift, v_shift],
|
| 536 |
+
[0, v_shift],
|
| 537 |
+
]
|
| 538 |
+
)
|
| 539 |
+
# Rotate self loop 90 deg. if more than 1
|
| 540 |
+
# This will allow for maximum of 4 visible self loops
|
| 541 |
+
if edge_index % 4:
|
| 542 |
+
x, y = path.T
|
| 543 |
+
for _ in range(edge_index % 4):
|
| 544 |
+
x, y = y, -x
|
| 545 |
+
path = self.np.array([x, y]).T
|
| 546 |
+
return self.mpl.path.Path(
|
| 547 |
+
self.ax.transData.transform(data_loc + path), [1, 4, 4, 4, 4, 4, 4]
|
| 548 |
+
)
|
| 549 |
+
|
| 550 |
+
return self_loop_connection
|
| 551 |
+
|
| 552 |
+
def __init__(
|
| 553 |
+
self,
|
| 554 |
+
edge_pos,
|
| 555 |
+
edgelist,
|
| 556 |
+
nodelist,
|
| 557 |
+
edge_indices,
|
| 558 |
+
node_size,
|
| 559 |
+
selfloop_height,
|
| 560 |
+
connectionstyle="arc3",
|
| 561 |
+
node_shape="o",
|
| 562 |
+
arrowstyle="-",
|
| 563 |
+
arrowsize=10,
|
| 564 |
+
edge_color="k",
|
| 565 |
+
alpha=None,
|
| 566 |
+
linewidth=1.0,
|
| 567 |
+
style="solid",
|
| 568 |
+
min_source_margin=0,
|
| 569 |
+
min_target_margin=0,
|
| 570 |
+
ax=None,
|
| 571 |
+
):
|
| 572 |
+
import matplotlib as mpl
|
| 573 |
+
import matplotlib.patches # call as mpl.patches
|
| 574 |
+
import matplotlib.pyplot as plt
|
| 575 |
+
import numpy as np
|
| 576 |
+
|
| 577 |
+
if isinstance(connectionstyle, str):
|
| 578 |
+
connectionstyle = [connectionstyle]
|
| 579 |
+
elif np.iterable(connectionstyle):
|
| 580 |
+
connectionstyle = list(connectionstyle)
|
| 581 |
+
else:
|
| 582 |
+
msg = "ConnectionStyleFactory arg `connectionstyle` must be str or iterable"
|
| 583 |
+
raise nx.NetworkXError(msg)
|
| 584 |
+
self.ax = ax
|
| 585 |
+
self.mpl = mpl
|
| 586 |
+
self.np = np
|
| 587 |
+
self.edge_pos = edge_pos
|
| 588 |
+
self.edgelist = edgelist
|
| 589 |
+
self.nodelist = nodelist
|
| 590 |
+
self.node_shape = node_shape
|
| 591 |
+
self.min_source_margin = min_source_margin
|
| 592 |
+
self.min_target_margin = min_target_margin
|
| 593 |
+
self.edge_indices = edge_indices
|
| 594 |
+
self.node_size = node_size
|
| 595 |
+
self.connectionstyle_factory = self.ConnectionStyleFactory(
|
| 596 |
+
connectionstyle, selfloop_height, ax
|
| 597 |
+
)
|
| 598 |
+
self.arrowstyle = arrowstyle
|
| 599 |
+
self.arrowsize = arrowsize
|
| 600 |
+
self.arrow_colors = mpl.colors.colorConverter.to_rgba_array(edge_color, alpha)
|
| 601 |
+
self.linewidth = linewidth
|
| 602 |
+
self.style = style
|
| 603 |
+
if isinstance(arrowsize, list) and len(arrowsize) != len(edge_pos):
|
| 604 |
+
raise ValueError("arrowsize should have the same length as edgelist")
|
| 605 |
+
|
| 606 |
+
def __call__(self, i):
|
| 607 |
+
(x1, y1), (x2, y2) = self.edge_pos[i]
|
| 608 |
+
shrink_source = 0 # space from source to tail
|
| 609 |
+
shrink_target = 0 # space from head to target
|
| 610 |
+
if (
|
| 611 |
+
self.np.iterable(self.min_source_margin)
|
| 612 |
+
and not isinstance(self.min_source_margin, str)
|
| 613 |
+
and not isinstance(self.min_source_margin, tuple)
|
| 614 |
+
):
|
| 615 |
+
min_source_margin = self.min_source_margin[i]
|
| 616 |
+
else:
|
| 617 |
+
min_source_margin = self.min_source_margin
|
| 618 |
+
|
| 619 |
+
if (
|
| 620 |
+
self.np.iterable(self.min_target_margin)
|
| 621 |
+
and not isinstance(self.min_target_margin, str)
|
| 622 |
+
and not isinstance(self.min_target_margin, tuple)
|
| 623 |
+
):
|
| 624 |
+
min_target_margin = self.min_target_margin[i]
|
| 625 |
+
else:
|
| 626 |
+
min_target_margin = self.min_target_margin
|
| 627 |
+
|
| 628 |
+
if self.np.iterable(self.node_size): # many node sizes
|
| 629 |
+
source, target = self.edgelist[i][:2]
|
| 630 |
+
source_node_size = self.node_size[self.nodelist.index(source)]
|
| 631 |
+
target_node_size = self.node_size[self.nodelist.index(target)]
|
| 632 |
+
shrink_source = self.to_marker_edge(source_node_size, self.node_shape)
|
| 633 |
+
shrink_target = self.to_marker_edge(target_node_size, self.node_shape)
|
| 634 |
+
else:
|
| 635 |
+
shrink_source = self.to_marker_edge(self.node_size, self.node_shape)
|
| 636 |
+
shrink_target = shrink_source
|
| 637 |
+
shrink_source = max(shrink_source, min_source_margin)
|
| 638 |
+
shrink_target = max(shrink_target, min_target_margin)
|
| 639 |
+
|
| 640 |
+
# scale factor of arrow head
|
| 641 |
+
if isinstance(self.arrowsize, list):
|
| 642 |
+
mutation_scale = self.arrowsize[i]
|
| 643 |
+
else:
|
| 644 |
+
mutation_scale = self.arrowsize
|
| 645 |
+
|
| 646 |
+
if len(self.arrow_colors) > i:
|
| 647 |
+
arrow_color = self.arrow_colors[i]
|
| 648 |
+
elif len(self.arrow_colors) == 1:
|
| 649 |
+
arrow_color = self.arrow_colors[0]
|
| 650 |
+
else: # Cycle through colors
|
| 651 |
+
arrow_color = self.arrow_colors[i % len(self.arrow_colors)]
|
| 652 |
+
|
| 653 |
+
if self.np.iterable(self.linewidth):
|
| 654 |
+
if len(self.linewidth) > i:
|
| 655 |
+
linewidth = self.linewidth[i]
|
| 656 |
+
else:
|
| 657 |
+
linewidth = self.linewidth[i % len(self.linewidth)]
|
| 658 |
+
else:
|
| 659 |
+
linewidth = self.linewidth
|
| 660 |
+
|
| 661 |
+
if (
|
| 662 |
+
self.np.iterable(self.style)
|
| 663 |
+
and not isinstance(self.style, str)
|
| 664 |
+
and not isinstance(self.style, tuple)
|
| 665 |
+
):
|
| 666 |
+
if len(self.style) > i:
|
| 667 |
+
linestyle = self.style[i]
|
| 668 |
+
else: # Cycle through styles
|
| 669 |
+
linestyle = self.style[i % len(self.style)]
|
| 670 |
+
else:
|
| 671 |
+
linestyle = self.style
|
| 672 |
+
|
| 673 |
+
if x1 == x2 and y1 == y2:
|
| 674 |
+
connectionstyle = self.connectionstyle_factory.self_loop(
|
| 675 |
+
self.edge_indices[i]
|
| 676 |
+
)
|
| 677 |
+
else:
|
| 678 |
+
connectionstyle = self.connectionstyle_factory.curved(self.edge_indices[i])
|
| 679 |
+
|
| 680 |
+
if (
|
| 681 |
+
self.np.iterable(self.arrowstyle)
|
| 682 |
+
and not isinstance(self.arrowstyle, str)
|
| 683 |
+
and not isinstance(self.arrowstyle, tuple)
|
| 684 |
+
):
|
| 685 |
+
arrowstyle = self.arrowstyle[i]
|
| 686 |
+
else:
|
| 687 |
+
arrowstyle = self.arrowstyle
|
| 688 |
+
|
| 689 |
+
return self.mpl.patches.FancyArrowPatch(
|
| 690 |
+
(x1, y1),
|
| 691 |
+
(x2, y2),
|
| 692 |
+
arrowstyle=arrowstyle,
|
| 693 |
+
shrinkA=shrink_source,
|
| 694 |
+
shrinkB=shrink_target,
|
| 695 |
+
mutation_scale=mutation_scale,
|
| 696 |
+
color=arrow_color,
|
| 697 |
+
linewidth=linewidth,
|
| 698 |
+
connectionstyle=connectionstyle,
|
| 699 |
+
linestyle=linestyle,
|
| 700 |
+
zorder=1, # arrows go behind nodes
|
| 701 |
+
)
|
| 702 |
+
|
| 703 |
+
def to_marker_edge(self, marker_size, marker):
|
| 704 |
+
if marker in "s^>v<d": # `large` markers need extra space
|
| 705 |
+
return self.np.sqrt(2 * marker_size) / 2
|
| 706 |
+
else:
|
| 707 |
+
return self.np.sqrt(marker_size) / 2
|
| 708 |
+
|
| 709 |
+
|
| 710 |
+
def draw_networkx_edges(
|
| 711 |
+
G,
|
| 712 |
+
pos,
|
| 713 |
+
edgelist=None,
|
| 714 |
+
width=1.0,
|
| 715 |
+
edge_color="k",
|
| 716 |
+
style="solid",
|
| 717 |
+
alpha=None,
|
| 718 |
+
arrowstyle=None,
|
| 719 |
+
arrowsize=10,
|
| 720 |
+
edge_cmap=None,
|
| 721 |
+
edge_vmin=None,
|
| 722 |
+
edge_vmax=None,
|
| 723 |
+
ax=None,
|
| 724 |
+
arrows=None,
|
| 725 |
+
label=None,
|
| 726 |
+
node_size=300,
|
| 727 |
+
nodelist=None,
|
| 728 |
+
node_shape="o",
|
| 729 |
+
connectionstyle="arc3",
|
| 730 |
+
min_source_margin=0,
|
| 731 |
+
min_target_margin=0,
|
| 732 |
+
hide_ticks=True,
|
| 733 |
+
):
|
| 734 |
+
r"""Draw the edges of the graph G.
|
| 735 |
+
|
| 736 |
+
This draws only the edges of the graph G.
|
| 737 |
+
|
| 738 |
+
Parameters
|
| 739 |
+
----------
|
| 740 |
+
G : graph
|
| 741 |
+
A networkx graph
|
| 742 |
+
|
| 743 |
+
pos : dictionary
|
| 744 |
+
A dictionary with nodes as keys and positions as values.
|
| 745 |
+
Positions should be sequences of length 2.
|
| 746 |
+
|
| 747 |
+
edgelist : collection of edge tuples (default=G.edges())
|
| 748 |
+
Draw only specified edges
|
| 749 |
+
|
| 750 |
+
width : float or array of floats (default=1.0)
|
| 751 |
+
Line width of edges
|
| 752 |
+
|
| 753 |
+
edge_color : color or array of colors (default='k')
|
| 754 |
+
Edge color. Can be a single color or a sequence of colors with the same
|
| 755 |
+
length as edgelist. Color can be string or rgb (or rgba) tuple of
|
| 756 |
+
floats from 0-1. If numeric values are specified they will be
|
| 757 |
+
mapped to colors using the edge_cmap and edge_vmin,edge_vmax parameters.
|
| 758 |
+
|
| 759 |
+
style : string or array of strings (default='solid')
|
| 760 |
+
Edge line style e.g.: '-', '--', '-.', ':'
|
| 761 |
+
or words like 'solid' or 'dashed'.
|
| 762 |
+
Can be a single style or a sequence of styles with the same
|
| 763 |
+
length as the edge list.
|
| 764 |
+
If less styles than edges are given the styles will cycle.
|
| 765 |
+
If more styles than edges are given the styles will be used sequentially
|
| 766 |
+
and not be exhausted.
|
| 767 |
+
Also, `(offset, onoffseq)` tuples can be used as style instead of a strings.
|
| 768 |
+
(See `matplotlib.patches.FancyArrowPatch`: `linestyle`)
|
| 769 |
+
|
| 770 |
+
alpha : float or array of floats (default=None)
|
| 771 |
+
The edge transparency. This can be a single alpha value,
|
| 772 |
+
in which case it will be applied to all specified edges. Otherwise,
|
| 773 |
+
if it is an array, the elements of alpha will be applied to the colors
|
| 774 |
+
in order (cycling through alpha multiple times if necessary).
|
| 775 |
+
|
| 776 |
+
edge_cmap : Matplotlib colormap, optional
|
| 777 |
+
Colormap for mapping intensities of edges
|
| 778 |
+
|
| 779 |
+
edge_vmin,edge_vmax : floats, optional
|
| 780 |
+
Minimum and maximum for edge colormap scaling
|
| 781 |
+
|
| 782 |
+
ax : Matplotlib Axes object, optional
|
| 783 |
+
Draw the graph in the specified Matplotlib axes.
|
| 784 |
+
|
| 785 |
+
arrows : bool or None, optional (default=None)
|
| 786 |
+
If `None`, directed graphs draw arrowheads with
|
| 787 |
+
`~matplotlib.patches.FancyArrowPatch`, while undirected graphs draw edges
|
| 788 |
+
via `~matplotlib.collections.LineCollection` for speed.
|
| 789 |
+
If `True`, draw arrowheads with FancyArrowPatches (bendable and stylish).
|
| 790 |
+
If `False`, draw edges using LineCollection (linear and fast).
|
| 791 |
+
|
| 792 |
+
Note: Arrowheads will be the same color as edges.
|
| 793 |
+
|
| 794 |
+
arrowstyle : str or list of strs (default='-\|>' for directed graphs)
|
| 795 |
+
For directed graphs and `arrows==True` defaults to '-\|>',
|
| 796 |
+
For undirected graphs default to '-'.
|
| 797 |
+
|
| 798 |
+
See `matplotlib.patches.ArrowStyle` for more options.
|
| 799 |
+
|
| 800 |
+
arrowsize : int or list of ints(default=10)
|
| 801 |
+
For directed graphs, choose the size of the arrow head's length and
|
| 802 |
+
width. See `matplotlib.patches.FancyArrowPatch` for attribute
|
| 803 |
+
`mutation_scale` for more info.
|
| 804 |
+
|
| 805 |
+
connectionstyle : string or iterable of strings (default="arc3")
|
| 806 |
+
Pass the connectionstyle parameter to create curved arc of rounding
|
| 807 |
+
radius rad. For example, connectionstyle='arc3,rad=0.2'.
|
| 808 |
+
See `matplotlib.patches.ConnectionStyle` and
|
| 809 |
+
`matplotlib.patches.FancyArrowPatch` for more info.
|
| 810 |
+
If Iterable, index indicates i'th edge key of MultiGraph
|
| 811 |
+
|
| 812 |
+
node_size : scalar or array (default=300)
|
| 813 |
+
Size of nodes. Though the nodes are not drawn with this function, the
|
| 814 |
+
node size is used in determining edge positioning.
|
| 815 |
+
|
| 816 |
+
nodelist : list, optional (default=G.nodes())
|
| 817 |
+
This provides the node order for the `node_size` array (if it is an array).
|
| 818 |
+
|
| 819 |
+
node_shape : string (default='o')
|
| 820 |
+
The marker used for nodes, used in determining edge positioning.
|
| 821 |
+
Specification is as a `matplotlib.markers` marker, e.g. one of 'so^>v<dph8'.
|
| 822 |
+
|
| 823 |
+
label : None or string
|
| 824 |
+
Label for legend
|
| 825 |
+
|
| 826 |
+
min_source_margin : int or list of ints (default=0)
|
| 827 |
+
The minimum margin (gap) at the beginning of the edge at the source.
|
| 828 |
+
|
| 829 |
+
min_target_margin : int or list of ints (default=0)
|
| 830 |
+
The minimum margin (gap) at the end of the edge at the target.
|
| 831 |
+
|
| 832 |
+
hide_ticks : bool, optional
|
| 833 |
+
Hide ticks of axes. When `True` (the default), ticks and ticklabels
|
| 834 |
+
are removed from the axes. To set ticks and tick labels to the pyplot default,
|
| 835 |
+
use ``hide_ticks=False``.
|
| 836 |
+
|
| 837 |
+
Returns
|
| 838 |
+
-------
|
| 839 |
+
matplotlib.collections.LineCollection or a list of matplotlib.patches.FancyArrowPatch
|
| 840 |
+
If ``arrows=True``, a list of FancyArrowPatches is returned.
|
| 841 |
+
If ``arrows=False``, a LineCollection is returned.
|
| 842 |
+
If ``arrows=None`` (the default), then a LineCollection is returned if
|
| 843 |
+
`G` is undirected, otherwise returns a list of FancyArrowPatches.
|
| 844 |
+
|
| 845 |
+
Notes
|
| 846 |
+
-----
|
| 847 |
+
For directed graphs, arrows are drawn at the head end. Arrows can be
|
| 848 |
+
turned off with keyword arrows=False or by passing an arrowstyle without
|
| 849 |
+
an arrow on the end.
|
| 850 |
+
|
| 851 |
+
Be sure to include `node_size` as a keyword argument; arrows are
|
| 852 |
+
drawn considering the size of nodes.
|
| 853 |
+
|
| 854 |
+
Self-loops are always drawn with `~matplotlib.patches.FancyArrowPatch`
|
| 855 |
+
regardless of the value of `arrows` or whether `G` is directed.
|
| 856 |
+
When ``arrows=False`` or ``arrows=None`` and `G` is undirected, the
|
| 857 |
+
FancyArrowPatches corresponding to the self-loops are not explicitly
|
| 858 |
+
returned. They should instead be accessed via the ``Axes.patches``
|
| 859 |
+
attribute (see examples).
|
| 860 |
+
|
| 861 |
+
Examples
|
| 862 |
+
--------
|
| 863 |
+
>>> G = nx.dodecahedral_graph()
|
| 864 |
+
>>> edges = nx.draw_networkx_edges(G, pos=nx.spring_layout(G))
|
| 865 |
+
|
| 866 |
+
>>> G = nx.DiGraph()
|
| 867 |
+
>>> G.add_edges_from([(1, 2), (1, 3), (2, 3)])
|
| 868 |
+
>>> arcs = nx.draw_networkx_edges(G, pos=nx.spring_layout(G))
|
| 869 |
+
>>> alphas = [0.3, 0.4, 0.5]
|
| 870 |
+
>>> for i, arc in enumerate(arcs): # change alpha values of arcs
|
| 871 |
+
... arc.set_alpha(alphas[i])
|
| 872 |
+
|
| 873 |
+
The FancyArrowPatches corresponding to self-loops are not always
|
| 874 |
+
returned, but can always be accessed via the ``patches`` attribute of the
|
| 875 |
+
`matplotlib.Axes` object.
|
| 876 |
+
|
| 877 |
+
>>> import matplotlib.pyplot as plt
|
| 878 |
+
>>> fig, ax = plt.subplots()
|
| 879 |
+
>>> G = nx.Graph([(0, 1), (0, 0)]) # Self-loop at node 0
|
| 880 |
+
>>> edge_collection = nx.draw_networkx_edges(G, pos=nx.circular_layout(G), ax=ax)
|
| 881 |
+
>>> self_loop_fap = ax.patches[0]
|
| 882 |
+
|
| 883 |
+
Also see the NetworkX drawing examples at
|
| 884 |
+
https://networkx.org/documentation/latest/auto_examples/index.html
|
| 885 |
+
|
| 886 |
+
See Also
|
| 887 |
+
--------
|
| 888 |
+
draw
|
| 889 |
+
draw_networkx
|
| 890 |
+
draw_networkx_nodes
|
| 891 |
+
draw_networkx_labels
|
| 892 |
+
draw_networkx_edge_labels
|
| 893 |
+
|
| 894 |
+
"""
|
| 895 |
+
import warnings
|
| 896 |
+
|
| 897 |
+
import matplotlib as mpl
|
| 898 |
+
import matplotlib.collections # call as mpl.collections
|
| 899 |
+
import matplotlib.colors # call as mpl.colors
|
| 900 |
+
import matplotlib.pyplot as plt
|
| 901 |
+
import numpy as np
|
| 902 |
+
|
| 903 |
+
# The default behavior is to use LineCollection to draw edges for
|
| 904 |
+
# undirected graphs (for performance reasons) and use FancyArrowPatches
|
| 905 |
+
# for directed graphs.
|
| 906 |
+
# The `arrows` keyword can be used to override the default behavior
|
| 907 |
+
if arrows is None:
|
| 908 |
+
use_linecollection = not (G.is_directed() or G.is_multigraph())
|
| 909 |
+
else:
|
| 910 |
+
if not isinstance(arrows, bool):
|
| 911 |
+
raise TypeError("Argument `arrows` must be of type bool or None")
|
| 912 |
+
use_linecollection = not arrows
|
| 913 |
+
|
| 914 |
+
if isinstance(connectionstyle, str):
|
| 915 |
+
connectionstyle = [connectionstyle]
|
| 916 |
+
elif np.iterable(connectionstyle):
|
| 917 |
+
connectionstyle = list(connectionstyle)
|
| 918 |
+
else:
|
| 919 |
+
msg = "draw_networkx_edges arg `connectionstyle` must be str or iterable"
|
| 920 |
+
raise nx.NetworkXError(msg)
|
| 921 |
+
|
| 922 |
+
# Some kwargs only apply to FancyArrowPatches. Warn users when they use
|
| 923 |
+
# non-default values for these kwargs when LineCollection is being used
|
| 924 |
+
# instead of silently ignoring the specified option
|
| 925 |
+
if use_linecollection:
|
| 926 |
+
msg = (
|
| 927 |
+
"\n\nThe {0} keyword argument is not applicable when drawing edges\n"
|
| 928 |
+
"with LineCollection.\n\n"
|
| 929 |
+
"To make this warning go away, either specify `arrows=True` to\n"
|
| 930 |
+
"force FancyArrowPatches or use the default values.\n"
|
| 931 |
+
"Note that using FancyArrowPatches may be slow for large graphs.\n"
|
| 932 |
+
)
|
| 933 |
+
if arrowstyle is not None:
|
| 934 |
+
warnings.warn(msg.format("arrowstyle"), category=UserWarning, stacklevel=2)
|
| 935 |
+
if arrowsize != 10:
|
| 936 |
+
warnings.warn(msg.format("arrowsize"), category=UserWarning, stacklevel=2)
|
| 937 |
+
if min_source_margin != 0:
|
| 938 |
+
warnings.warn(
|
| 939 |
+
msg.format("min_source_margin"), category=UserWarning, stacklevel=2
|
| 940 |
+
)
|
| 941 |
+
if min_target_margin != 0:
|
| 942 |
+
warnings.warn(
|
| 943 |
+
msg.format("min_target_margin"), category=UserWarning, stacklevel=2
|
| 944 |
+
)
|
| 945 |
+
if any(cs != "arc3" for cs in connectionstyle):
|
| 946 |
+
warnings.warn(
|
| 947 |
+
msg.format("connectionstyle"), category=UserWarning, stacklevel=2
|
| 948 |
+
)
|
| 949 |
+
|
| 950 |
+
# NOTE: Arrowstyle modification must occur after the warnings section
|
| 951 |
+
if arrowstyle is None:
|
| 952 |
+
arrowstyle = "-|>" if G.is_directed() else "-"
|
| 953 |
+
|
| 954 |
+
if ax is None:
|
| 955 |
+
ax = plt.gca()
|
| 956 |
+
|
| 957 |
+
if edgelist is None:
|
| 958 |
+
edgelist = list(G.edges) # (u, v, k) for multigraph (u, v) otherwise
|
| 959 |
+
|
| 960 |
+
if len(edgelist):
|
| 961 |
+
if G.is_multigraph():
|
| 962 |
+
key_count = collections.defaultdict(lambda: itertools.count(0))
|
| 963 |
+
edge_indices = [next(key_count[tuple(e[:2])]) for e in edgelist]
|
| 964 |
+
else:
|
| 965 |
+
edge_indices = [0] * len(edgelist)
|
| 966 |
+
else: # no edges!
|
| 967 |
+
return []
|
| 968 |
+
|
| 969 |
+
if nodelist is None:
|
| 970 |
+
nodelist = list(G.nodes())
|
| 971 |
+
|
| 972 |
+
# FancyArrowPatch handles color=None different from LineCollection
|
| 973 |
+
if edge_color is None:
|
| 974 |
+
edge_color = "k"
|
| 975 |
+
|
| 976 |
+
# set edge positions
|
| 977 |
+
edge_pos = np.asarray([(pos[e[0]], pos[e[1]]) for e in edgelist])
|
| 978 |
+
|
| 979 |
+
# Check if edge_color is an array of floats and map to edge_cmap.
|
| 980 |
+
# This is the only case handled differently from matplotlib
|
| 981 |
+
if (
|
| 982 |
+
np.iterable(edge_color)
|
| 983 |
+
and (len(edge_color) == len(edge_pos))
|
| 984 |
+
and np.all([isinstance(c, Number) for c in edge_color])
|
| 985 |
+
):
|
| 986 |
+
if edge_cmap is not None:
|
| 987 |
+
assert isinstance(edge_cmap, mpl.colors.Colormap)
|
| 988 |
+
else:
|
| 989 |
+
edge_cmap = plt.get_cmap()
|
| 990 |
+
if edge_vmin is None:
|
| 991 |
+
edge_vmin = min(edge_color)
|
| 992 |
+
if edge_vmax is None:
|
| 993 |
+
edge_vmax = max(edge_color)
|
| 994 |
+
color_normal = mpl.colors.Normalize(vmin=edge_vmin, vmax=edge_vmax)
|
| 995 |
+
edge_color = [edge_cmap(color_normal(e)) for e in edge_color]
|
| 996 |
+
|
| 997 |
+
# compute initial view
|
| 998 |
+
minx = np.amin(np.ravel(edge_pos[:, :, 0]))
|
| 999 |
+
maxx = np.amax(np.ravel(edge_pos[:, :, 0]))
|
| 1000 |
+
miny = np.amin(np.ravel(edge_pos[:, :, 1]))
|
| 1001 |
+
maxy = np.amax(np.ravel(edge_pos[:, :, 1]))
|
| 1002 |
+
w = maxx - minx
|
| 1003 |
+
h = maxy - miny
|
| 1004 |
+
|
| 1005 |
+
# Self-loops are scaled by view extent, except in cases the extent
|
| 1006 |
+
# is 0, e.g. for a single node. In this case, fall back to scaling
|
| 1007 |
+
# by the maximum node size
|
| 1008 |
+
selfloop_height = h if h != 0 else 0.005 * np.array(node_size).max()
|
| 1009 |
+
fancy_arrow_factory = FancyArrowFactory(
|
| 1010 |
+
edge_pos,
|
| 1011 |
+
edgelist,
|
| 1012 |
+
nodelist,
|
| 1013 |
+
edge_indices,
|
| 1014 |
+
node_size,
|
| 1015 |
+
selfloop_height,
|
| 1016 |
+
connectionstyle,
|
| 1017 |
+
node_shape,
|
| 1018 |
+
arrowstyle,
|
| 1019 |
+
arrowsize,
|
| 1020 |
+
edge_color,
|
| 1021 |
+
alpha,
|
| 1022 |
+
width,
|
| 1023 |
+
style,
|
| 1024 |
+
min_source_margin,
|
| 1025 |
+
min_target_margin,
|
| 1026 |
+
ax=ax,
|
| 1027 |
+
)
|
| 1028 |
+
|
| 1029 |
+
# Draw the edges
|
| 1030 |
+
if use_linecollection:
|
| 1031 |
+
edge_collection = mpl.collections.LineCollection(
|
| 1032 |
+
edge_pos,
|
| 1033 |
+
colors=edge_color,
|
| 1034 |
+
linewidths=width,
|
| 1035 |
+
antialiaseds=(1,),
|
| 1036 |
+
linestyle=style,
|
| 1037 |
+
alpha=alpha,
|
| 1038 |
+
)
|
| 1039 |
+
edge_collection.set_cmap(edge_cmap)
|
| 1040 |
+
edge_collection.set_clim(edge_vmin, edge_vmax)
|
| 1041 |
+
edge_collection.set_zorder(1) # edges go behind nodes
|
| 1042 |
+
edge_collection.set_label(label)
|
| 1043 |
+
ax.add_collection(edge_collection)
|
| 1044 |
+
edge_viz_obj = edge_collection
|
| 1045 |
+
|
| 1046 |
+
# Make sure selfloop edges are also drawn
|
| 1047 |
+
# ---------------------------------------
|
| 1048 |
+
selfloops_to_draw = [loop for loop in nx.selfloop_edges(G) if loop in edgelist]
|
| 1049 |
+
if selfloops_to_draw:
|
| 1050 |
+
edgelist_tuple = list(map(tuple, edgelist))
|
| 1051 |
+
arrow_collection = []
|
| 1052 |
+
for loop in selfloops_to_draw:
|
| 1053 |
+
i = edgelist_tuple.index(loop)
|
| 1054 |
+
arrow = fancy_arrow_factory(i)
|
| 1055 |
+
arrow_collection.append(arrow)
|
| 1056 |
+
ax.add_patch(arrow)
|
| 1057 |
+
else:
|
| 1058 |
+
edge_viz_obj = []
|
| 1059 |
+
for i in range(len(edgelist)):
|
| 1060 |
+
arrow = fancy_arrow_factory(i)
|
| 1061 |
+
ax.add_patch(arrow)
|
| 1062 |
+
edge_viz_obj.append(arrow)
|
| 1063 |
+
|
| 1064 |
+
# update view after drawing
|
| 1065 |
+
padx, pady = 0.05 * w, 0.05 * h
|
| 1066 |
+
corners = (minx - padx, miny - pady), (maxx + padx, maxy + pady)
|
| 1067 |
+
ax.update_datalim(corners)
|
| 1068 |
+
ax.autoscale_view()
|
| 1069 |
+
|
| 1070 |
+
if hide_ticks:
|
| 1071 |
+
ax.tick_params(
|
| 1072 |
+
axis="both",
|
| 1073 |
+
which="both",
|
| 1074 |
+
bottom=False,
|
| 1075 |
+
left=False,
|
| 1076 |
+
labelbottom=False,
|
| 1077 |
+
labelleft=False,
|
| 1078 |
+
)
|
| 1079 |
+
|
| 1080 |
+
return edge_viz_obj
|
| 1081 |
+
|
| 1082 |
+
|
| 1083 |
+
def draw_networkx_labels(
|
| 1084 |
+
G,
|
| 1085 |
+
pos,
|
| 1086 |
+
labels=None,
|
| 1087 |
+
font_size=12,
|
| 1088 |
+
font_color="k",
|
| 1089 |
+
font_family="sans-serif",
|
| 1090 |
+
font_weight="normal",
|
| 1091 |
+
alpha=None,
|
| 1092 |
+
bbox=None,
|
| 1093 |
+
horizontalalignment="center",
|
| 1094 |
+
verticalalignment="center",
|
| 1095 |
+
ax=None,
|
| 1096 |
+
clip_on=True,
|
| 1097 |
+
hide_ticks=True,
|
| 1098 |
+
):
|
| 1099 |
+
"""Draw node labels on the graph G.
|
| 1100 |
+
|
| 1101 |
+
Parameters
|
| 1102 |
+
----------
|
| 1103 |
+
G : graph
|
| 1104 |
+
A networkx graph
|
| 1105 |
+
|
| 1106 |
+
pos : dictionary
|
| 1107 |
+
A dictionary with nodes as keys and positions as values.
|
| 1108 |
+
Positions should be sequences of length 2.
|
| 1109 |
+
|
| 1110 |
+
labels : dictionary (default={n: n for n in G})
|
| 1111 |
+
Node labels in a dictionary of text labels keyed by node.
|
| 1112 |
+
Node-keys in labels should appear as keys in `pos`.
|
| 1113 |
+
If needed use: `{n:lab for n,lab in labels.items() if n in pos}`
|
| 1114 |
+
|
| 1115 |
+
font_size : int or dictionary of nodes to ints (default=12)
|
| 1116 |
+
Font size for text labels.
|
| 1117 |
+
|
| 1118 |
+
font_color : color or dictionary of nodes to colors (default='k' black)
|
| 1119 |
+
Font color string. Color can be string or rgb (or rgba) tuple of
|
| 1120 |
+
floats from 0-1.
|
| 1121 |
+
|
| 1122 |
+
font_weight : string or dictionary of nodes to strings (default='normal')
|
| 1123 |
+
Font weight.
|
| 1124 |
+
|
| 1125 |
+
font_family : string or dictionary of nodes to strings (default='sans-serif')
|
| 1126 |
+
Font family.
|
| 1127 |
+
|
| 1128 |
+
alpha : float or None or dictionary of nodes to floats (default=None)
|
| 1129 |
+
The text transparency.
|
| 1130 |
+
|
| 1131 |
+
bbox : Matplotlib bbox, (default is Matplotlib's ax.text default)
|
| 1132 |
+
Specify text box properties (e.g. shape, color etc.) for node labels.
|
| 1133 |
+
|
| 1134 |
+
horizontalalignment : string or array of strings (default='center')
|
| 1135 |
+
Horizontal alignment {'center', 'right', 'left'}. If an array is
|
| 1136 |
+
specified it must be the same length as `nodelist`.
|
| 1137 |
+
|
| 1138 |
+
verticalalignment : string (default='center')
|
| 1139 |
+
Vertical alignment {'center', 'top', 'bottom', 'baseline', 'center_baseline'}.
|
| 1140 |
+
If an array is specified it must be the same length as `nodelist`.
|
| 1141 |
+
|
| 1142 |
+
ax : Matplotlib Axes object, optional
|
| 1143 |
+
Draw the graph in the specified Matplotlib axes.
|
| 1144 |
+
|
| 1145 |
+
clip_on : bool (default=True)
|
| 1146 |
+
Turn on clipping of node labels at axis boundaries
|
| 1147 |
+
|
| 1148 |
+
hide_ticks : bool, optional
|
| 1149 |
+
Hide ticks of axes. When `True` (the default), ticks and ticklabels
|
| 1150 |
+
are removed from the axes. To set ticks and tick labels to the pyplot default,
|
| 1151 |
+
use ``hide_ticks=False``.
|
| 1152 |
+
|
| 1153 |
+
Returns
|
| 1154 |
+
-------
|
| 1155 |
+
dict
|
| 1156 |
+
`dict` of labels keyed on the nodes
|
| 1157 |
+
|
| 1158 |
+
Examples
|
| 1159 |
+
--------
|
| 1160 |
+
>>> G = nx.dodecahedral_graph()
|
| 1161 |
+
>>> labels = nx.draw_networkx_labels(G, pos=nx.spring_layout(G))
|
| 1162 |
+
|
| 1163 |
+
Also see the NetworkX drawing examples at
|
| 1164 |
+
https://networkx.org/documentation/latest/auto_examples/index.html
|
| 1165 |
+
|
| 1166 |
+
See Also
|
| 1167 |
+
--------
|
| 1168 |
+
draw
|
| 1169 |
+
draw_networkx
|
| 1170 |
+
draw_networkx_nodes
|
| 1171 |
+
draw_networkx_edges
|
| 1172 |
+
draw_networkx_edge_labels
|
| 1173 |
+
"""
|
| 1174 |
+
import matplotlib.pyplot as plt
|
| 1175 |
+
|
| 1176 |
+
if ax is None:
|
| 1177 |
+
ax = plt.gca()
|
| 1178 |
+
|
| 1179 |
+
if labels is None:
|
| 1180 |
+
labels = {n: n for n in G.nodes()}
|
| 1181 |
+
|
| 1182 |
+
individual_params = set()
|
| 1183 |
+
|
| 1184 |
+
def check_individual_params(p_value, p_name):
|
| 1185 |
+
if isinstance(p_value, dict):
|
| 1186 |
+
if len(p_value) != len(labels):
|
| 1187 |
+
raise ValueError(f"{p_name} must have the same length as labels.")
|
| 1188 |
+
individual_params.add(p_name)
|
| 1189 |
+
|
| 1190 |
+
def get_param_value(node, p_value, p_name):
|
| 1191 |
+
if p_name in individual_params:
|
| 1192 |
+
return p_value[node]
|
| 1193 |
+
return p_value
|
| 1194 |
+
|
| 1195 |
+
check_individual_params(font_size, "font_size")
|
| 1196 |
+
check_individual_params(font_color, "font_color")
|
| 1197 |
+
check_individual_params(font_weight, "font_weight")
|
| 1198 |
+
check_individual_params(font_family, "font_family")
|
| 1199 |
+
check_individual_params(alpha, "alpha")
|
| 1200 |
+
|
| 1201 |
+
text_items = {} # there is no text collection so we'll fake one
|
| 1202 |
+
for n, label in labels.items():
|
| 1203 |
+
(x, y) = pos[n]
|
| 1204 |
+
if not isinstance(label, str):
|
| 1205 |
+
label = str(label) # this makes "1" and 1 labeled the same
|
| 1206 |
+
t = ax.text(
|
| 1207 |
+
x,
|
| 1208 |
+
y,
|
| 1209 |
+
label,
|
| 1210 |
+
size=get_param_value(n, font_size, "font_size"),
|
| 1211 |
+
color=get_param_value(n, font_color, "font_color"),
|
| 1212 |
+
family=get_param_value(n, font_family, "font_family"),
|
| 1213 |
+
weight=get_param_value(n, font_weight, "font_weight"),
|
| 1214 |
+
alpha=get_param_value(n, alpha, "alpha"),
|
| 1215 |
+
horizontalalignment=horizontalalignment,
|
| 1216 |
+
verticalalignment=verticalalignment,
|
| 1217 |
+
transform=ax.transData,
|
| 1218 |
+
bbox=bbox,
|
| 1219 |
+
clip_on=clip_on,
|
| 1220 |
+
)
|
| 1221 |
+
text_items[n] = t
|
| 1222 |
+
|
| 1223 |
+
if hide_ticks:
|
| 1224 |
+
ax.tick_params(
|
| 1225 |
+
axis="both",
|
| 1226 |
+
which="both",
|
| 1227 |
+
bottom=False,
|
| 1228 |
+
left=False,
|
| 1229 |
+
labelbottom=False,
|
| 1230 |
+
labelleft=False,
|
| 1231 |
+
)
|
| 1232 |
+
|
| 1233 |
+
return text_items
|
| 1234 |
+
|
| 1235 |
+
|
| 1236 |
+
def draw_networkx_edge_labels(
|
| 1237 |
+
G,
|
| 1238 |
+
pos,
|
| 1239 |
+
edge_labels=None,
|
| 1240 |
+
label_pos=0.5,
|
| 1241 |
+
font_size=10,
|
| 1242 |
+
font_color="k",
|
| 1243 |
+
font_family="sans-serif",
|
| 1244 |
+
font_weight="normal",
|
| 1245 |
+
alpha=None,
|
| 1246 |
+
bbox=None,
|
| 1247 |
+
horizontalalignment="center",
|
| 1248 |
+
verticalalignment="center",
|
| 1249 |
+
ax=None,
|
| 1250 |
+
rotate=True,
|
| 1251 |
+
clip_on=True,
|
| 1252 |
+
node_size=300,
|
| 1253 |
+
nodelist=None,
|
| 1254 |
+
connectionstyle="arc3",
|
| 1255 |
+
hide_ticks=True,
|
| 1256 |
+
):
|
| 1257 |
+
"""Draw edge labels.
|
| 1258 |
+
|
| 1259 |
+
Parameters
|
| 1260 |
+
----------
|
| 1261 |
+
G : graph
|
| 1262 |
+
A networkx graph
|
| 1263 |
+
|
| 1264 |
+
pos : dictionary
|
| 1265 |
+
A dictionary with nodes as keys and positions as values.
|
| 1266 |
+
Positions should be sequences of length 2.
|
| 1267 |
+
|
| 1268 |
+
edge_labels : dictionary (default=None)
|
| 1269 |
+
Edge labels in a dictionary of labels keyed by edge two-tuple.
|
| 1270 |
+
Only labels for the keys in the dictionary are drawn.
|
| 1271 |
+
|
| 1272 |
+
label_pos : float (default=0.5)
|
| 1273 |
+
Position of edge label along edge (0=head, 0.5=center, 1=tail)
|
| 1274 |
+
|
| 1275 |
+
font_size : int (default=10)
|
| 1276 |
+
Font size for text labels
|
| 1277 |
+
|
| 1278 |
+
font_color : color (default='k' black)
|
| 1279 |
+
Font color string. Color can be string or rgb (or rgba) tuple of
|
| 1280 |
+
floats from 0-1.
|
| 1281 |
+
|
| 1282 |
+
font_weight : string (default='normal')
|
| 1283 |
+
Font weight
|
| 1284 |
+
|
| 1285 |
+
font_family : string (default='sans-serif')
|
| 1286 |
+
Font family
|
| 1287 |
+
|
| 1288 |
+
alpha : float or None (default=None)
|
| 1289 |
+
The text transparency
|
| 1290 |
+
|
| 1291 |
+
bbox : Matplotlib bbox, optional
|
| 1292 |
+
Specify text box properties (e.g. shape, color etc.) for edge labels.
|
| 1293 |
+
Default is {boxstyle='round', ec=(1.0, 1.0, 1.0), fc=(1.0, 1.0, 1.0)}.
|
| 1294 |
+
|
| 1295 |
+
horizontalalignment : string (default='center')
|
| 1296 |
+
Horizontal alignment {'center', 'right', 'left'}
|
| 1297 |
+
|
| 1298 |
+
verticalalignment : string (default='center')
|
| 1299 |
+
Vertical alignment {'center', 'top', 'bottom', 'baseline', 'center_baseline'}
|
| 1300 |
+
|
| 1301 |
+
ax : Matplotlib Axes object, optional
|
| 1302 |
+
Draw the graph in the specified Matplotlib axes.
|
| 1303 |
+
|
| 1304 |
+
rotate : bool (default=True)
|
| 1305 |
+
Rotate edge labels to lie parallel to edges
|
| 1306 |
+
|
| 1307 |
+
clip_on : bool (default=True)
|
| 1308 |
+
Turn on clipping of edge labels at axis boundaries
|
| 1309 |
+
|
| 1310 |
+
node_size : scalar or array (default=300)
|
| 1311 |
+
Size of nodes. If an array it must be the same length as nodelist.
|
| 1312 |
+
|
| 1313 |
+
nodelist : list, optional (default=G.nodes())
|
| 1314 |
+
This provides the node order for the `node_size` array (if it is an array).
|
| 1315 |
+
|
| 1316 |
+
connectionstyle : string or iterable of strings (default="arc3")
|
| 1317 |
+
Pass the connectionstyle parameter to create curved arc of rounding
|
| 1318 |
+
radius rad. For example, connectionstyle='arc3,rad=0.2'.
|
| 1319 |
+
See `matplotlib.patches.ConnectionStyle` and
|
| 1320 |
+
`matplotlib.patches.FancyArrowPatch` for more info.
|
| 1321 |
+
If Iterable, index indicates i'th edge key of MultiGraph
|
| 1322 |
+
|
| 1323 |
+
hide_ticks : bool, optional
|
| 1324 |
+
Hide ticks of axes. When `True` (the default), ticks and ticklabels
|
| 1325 |
+
are removed from the axes. To set ticks and tick labels to the pyplot default,
|
| 1326 |
+
use ``hide_ticks=False``.
|
| 1327 |
+
|
| 1328 |
+
Returns
|
| 1329 |
+
-------
|
| 1330 |
+
dict
|
| 1331 |
+
`dict` of labels keyed by edge
|
| 1332 |
+
|
| 1333 |
+
Examples
|
| 1334 |
+
--------
|
| 1335 |
+
>>> G = nx.dodecahedral_graph()
|
| 1336 |
+
>>> edge_labels = nx.draw_networkx_edge_labels(G, pos=nx.spring_layout(G))
|
| 1337 |
+
|
| 1338 |
+
Also see the NetworkX drawing examples at
|
| 1339 |
+
https://networkx.org/documentation/latest/auto_examples/index.html
|
| 1340 |
+
|
| 1341 |
+
See Also
|
| 1342 |
+
--------
|
| 1343 |
+
draw
|
| 1344 |
+
draw_networkx
|
| 1345 |
+
draw_networkx_nodes
|
| 1346 |
+
draw_networkx_edges
|
| 1347 |
+
draw_networkx_labels
|
| 1348 |
+
"""
|
| 1349 |
+
import matplotlib as mpl
|
| 1350 |
+
import matplotlib.pyplot as plt
|
| 1351 |
+
import numpy as np
|
| 1352 |
+
|
| 1353 |
+
class CurvedArrowText(mpl.text.Text):
|
| 1354 |
+
def __init__(
|
| 1355 |
+
self,
|
| 1356 |
+
arrow,
|
| 1357 |
+
*args,
|
| 1358 |
+
label_pos=0.5,
|
| 1359 |
+
labels_horizontal=False,
|
| 1360 |
+
ax=None,
|
| 1361 |
+
**kwargs,
|
| 1362 |
+
):
|
| 1363 |
+
# Bind to FancyArrowPatch
|
| 1364 |
+
self.arrow = arrow
|
| 1365 |
+
# how far along the text should be on the curve,
|
| 1366 |
+
# 0 is at start, 1 is at end etc.
|
| 1367 |
+
self.label_pos = label_pos
|
| 1368 |
+
self.labels_horizontal = labels_horizontal
|
| 1369 |
+
if ax is None:
|
| 1370 |
+
ax = plt.gca()
|
| 1371 |
+
self.ax = ax
|
| 1372 |
+
self.x, self.y, self.angle = self._update_text_pos_angle(arrow)
|
| 1373 |
+
|
| 1374 |
+
# Create text object
|
| 1375 |
+
super().__init__(self.x, self.y, *args, rotation=self.angle, **kwargs)
|
| 1376 |
+
# Bind to axis
|
| 1377 |
+
self.ax.add_artist(self)
|
| 1378 |
+
|
| 1379 |
+
def _get_arrow_path_disp(self, arrow):
|
| 1380 |
+
"""
|
| 1381 |
+
This is part of FancyArrowPatch._get_path_in_displaycoord
|
| 1382 |
+
It omits the second part of the method where path is converted
|
| 1383 |
+
to polygon based on width
|
| 1384 |
+
The transform is taken from ax, not the object, as the object
|
| 1385 |
+
has not been added yet, and doesn't have transform
|
| 1386 |
+
"""
|
| 1387 |
+
dpi_cor = arrow._dpi_cor
|
| 1388 |
+
# trans_data = arrow.get_transform()
|
| 1389 |
+
trans_data = self.ax.transData
|
| 1390 |
+
if arrow._posA_posB is not None:
|
| 1391 |
+
posA = arrow._convert_xy_units(arrow._posA_posB[0])
|
| 1392 |
+
posB = arrow._convert_xy_units(arrow._posA_posB[1])
|
| 1393 |
+
(posA, posB) = trans_data.transform((posA, posB))
|
| 1394 |
+
_path = arrow.get_connectionstyle()(
|
| 1395 |
+
posA,
|
| 1396 |
+
posB,
|
| 1397 |
+
patchA=arrow.patchA,
|
| 1398 |
+
patchB=arrow.patchB,
|
| 1399 |
+
shrinkA=arrow.shrinkA * dpi_cor,
|
| 1400 |
+
shrinkB=arrow.shrinkB * dpi_cor,
|
| 1401 |
+
)
|
| 1402 |
+
else:
|
| 1403 |
+
_path = trans_data.transform_path(arrow._path_original)
|
| 1404 |
+
# Return is in display coordinates
|
| 1405 |
+
return _path
|
| 1406 |
+
|
| 1407 |
+
def _update_text_pos_angle(self, arrow):
|
| 1408 |
+
# Fractional label position
|
| 1409 |
+
path_disp = self._get_arrow_path_disp(arrow)
|
| 1410 |
+
(x1, y1), (cx, cy), (x2, y2) = path_disp.vertices
|
| 1411 |
+
# Text position at a proportion t along the line in display coords
|
| 1412 |
+
# default is 0.5 so text appears at the halfway point
|
| 1413 |
+
t = self.label_pos
|
| 1414 |
+
tt = 1 - t
|
| 1415 |
+
x = tt**2 * x1 + 2 * t * tt * cx + t**2 * x2
|
| 1416 |
+
y = tt**2 * y1 + 2 * t * tt * cy + t**2 * y2
|
| 1417 |
+
if self.labels_horizontal:
|
| 1418 |
+
# Horizontal text labels
|
| 1419 |
+
angle = 0
|
| 1420 |
+
else:
|
| 1421 |
+
# Labels parallel to curve
|
| 1422 |
+
change_x = 2 * tt * (cx - x1) + 2 * t * (x2 - cx)
|
| 1423 |
+
change_y = 2 * tt * (cy - y1) + 2 * t * (y2 - cy)
|
| 1424 |
+
angle = (np.arctan2(change_y, change_x) / (2 * np.pi)) * 360
|
| 1425 |
+
# Text is "right way up"
|
| 1426 |
+
if angle > 90:
|
| 1427 |
+
angle -= 180
|
| 1428 |
+
if angle < -90:
|
| 1429 |
+
angle += 180
|
| 1430 |
+
(x, y) = self.ax.transData.inverted().transform((x, y))
|
| 1431 |
+
return x, y, angle
|
| 1432 |
+
|
| 1433 |
+
def draw(self, renderer):
|
| 1434 |
+
# recalculate the text position and angle
|
| 1435 |
+
self.x, self.y, self.angle = self._update_text_pos_angle(self.arrow)
|
| 1436 |
+
self.set_position((self.x, self.y))
|
| 1437 |
+
self.set_rotation(self.angle)
|
| 1438 |
+
# redraw text
|
| 1439 |
+
super().draw(renderer)
|
| 1440 |
+
|
| 1441 |
+
# use default box of white with white border
|
| 1442 |
+
if bbox is None:
|
| 1443 |
+
bbox = {"boxstyle": "round", "ec": (1.0, 1.0, 1.0), "fc": (1.0, 1.0, 1.0)}
|
| 1444 |
+
|
| 1445 |
+
if isinstance(connectionstyle, str):
|
| 1446 |
+
connectionstyle = [connectionstyle]
|
| 1447 |
+
elif np.iterable(connectionstyle):
|
| 1448 |
+
connectionstyle = list(connectionstyle)
|
| 1449 |
+
else:
|
| 1450 |
+
raise nx.NetworkXError(
|
| 1451 |
+
"draw_networkx_edges arg `connectionstyle` must be"
|
| 1452 |
+
"string or iterable of strings"
|
| 1453 |
+
)
|
| 1454 |
+
|
| 1455 |
+
if ax is None:
|
| 1456 |
+
ax = plt.gca()
|
| 1457 |
+
|
| 1458 |
+
if edge_labels is None:
|
| 1459 |
+
kwds = {"keys": True} if G.is_multigraph() else {}
|
| 1460 |
+
edge_labels = {tuple(edge): d for *edge, d in G.edges(data=True, **kwds)}
|
| 1461 |
+
# NOTHING TO PLOT
|
| 1462 |
+
if not edge_labels:
|
| 1463 |
+
return {}
|
| 1464 |
+
edgelist, labels = zip(*edge_labels.items())
|
| 1465 |
+
|
| 1466 |
+
if nodelist is None:
|
| 1467 |
+
nodelist = list(G.nodes())
|
| 1468 |
+
|
| 1469 |
+
# set edge positions
|
| 1470 |
+
edge_pos = np.asarray([(pos[e[0]], pos[e[1]]) for e in edgelist])
|
| 1471 |
+
|
| 1472 |
+
if G.is_multigraph():
|
| 1473 |
+
key_count = collections.defaultdict(lambda: itertools.count(0))
|
| 1474 |
+
edge_indices = [next(key_count[tuple(e[:2])]) for e in edgelist]
|
| 1475 |
+
else:
|
| 1476 |
+
edge_indices = [0] * len(edgelist)
|
| 1477 |
+
|
| 1478 |
+
# Used to determine self loop mid-point
|
| 1479 |
+
# Note, that this will not be accurate,
|
| 1480 |
+
# if not drawing edge_labels for all edges drawn
|
| 1481 |
+
h = 0
|
| 1482 |
+
if edge_labels:
|
| 1483 |
+
miny = np.amin(np.ravel(edge_pos[:, :, 1]))
|
| 1484 |
+
maxy = np.amax(np.ravel(edge_pos[:, :, 1]))
|
| 1485 |
+
h = maxy - miny
|
| 1486 |
+
selfloop_height = h if h != 0 else 0.005 * np.array(node_size).max()
|
| 1487 |
+
fancy_arrow_factory = FancyArrowFactory(
|
| 1488 |
+
edge_pos,
|
| 1489 |
+
edgelist,
|
| 1490 |
+
nodelist,
|
| 1491 |
+
edge_indices,
|
| 1492 |
+
node_size,
|
| 1493 |
+
selfloop_height,
|
| 1494 |
+
connectionstyle,
|
| 1495 |
+
ax=ax,
|
| 1496 |
+
)
|
| 1497 |
+
|
| 1498 |
+
individual_params = {}
|
| 1499 |
+
|
| 1500 |
+
def check_individual_params(p_value, p_name):
|
| 1501 |
+
# TODO should this be list or array (as in a numpy array)?
|
| 1502 |
+
if isinstance(p_value, list):
|
| 1503 |
+
if len(p_value) != len(edgelist):
|
| 1504 |
+
raise ValueError(f"{p_name} must have the same length as edgelist.")
|
| 1505 |
+
individual_params[p_name] = p_value.iter()
|
| 1506 |
+
|
| 1507 |
+
# Don't need to pass in an edge because these are lists, not dicts
|
| 1508 |
+
def get_param_value(p_value, p_name):
|
| 1509 |
+
if p_name in individual_params:
|
| 1510 |
+
return next(individual_params[p_name])
|
| 1511 |
+
return p_value
|
| 1512 |
+
|
| 1513 |
+
check_individual_params(font_size, "font_size")
|
| 1514 |
+
check_individual_params(font_color, "font_color")
|
| 1515 |
+
check_individual_params(font_weight, "font_weight")
|
| 1516 |
+
check_individual_params(alpha, "alpha")
|
| 1517 |
+
check_individual_params(horizontalalignment, "horizontalalignment")
|
| 1518 |
+
check_individual_params(verticalalignment, "verticalalignment")
|
| 1519 |
+
check_individual_params(rotate, "rotate")
|
| 1520 |
+
check_individual_params(label_pos, "label_pos")
|
| 1521 |
+
|
| 1522 |
+
text_items = {}
|
| 1523 |
+
for i, (edge, label) in enumerate(zip(edgelist, labels)):
|
| 1524 |
+
if not isinstance(label, str):
|
| 1525 |
+
label = str(label) # this makes "1" and 1 labeled the same
|
| 1526 |
+
|
| 1527 |
+
n1, n2 = edge[:2]
|
| 1528 |
+
arrow = fancy_arrow_factory(i)
|
| 1529 |
+
if n1 == n2:
|
| 1530 |
+
connectionstyle_obj = arrow.get_connectionstyle()
|
| 1531 |
+
posA = ax.transData.transform(pos[n1])
|
| 1532 |
+
path_disp = connectionstyle_obj(posA, posA)
|
| 1533 |
+
path_data = ax.transData.inverted().transform_path(path_disp)
|
| 1534 |
+
x, y = path_data.vertices[0]
|
| 1535 |
+
text_items[edge] = ax.text(
|
| 1536 |
+
x,
|
| 1537 |
+
y,
|
| 1538 |
+
label,
|
| 1539 |
+
size=get_param_value(font_size, "font_size"),
|
| 1540 |
+
color=get_param_value(font_color, "font_color"),
|
| 1541 |
+
family=get_param_value(font_family, "font_family"),
|
| 1542 |
+
weight=get_param_value(font_weight, "font_weight"),
|
| 1543 |
+
alpha=get_param_value(alpha, "alpha"),
|
| 1544 |
+
horizontalalignment=get_param_value(
|
| 1545 |
+
horizontalalignment, "horizontalalignment"
|
| 1546 |
+
),
|
| 1547 |
+
verticalalignment=get_param_value(
|
| 1548 |
+
verticalalignment, "verticalalignment"
|
| 1549 |
+
),
|
| 1550 |
+
rotation=0,
|
| 1551 |
+
transform=ax.transData,
|
| 1552 |
+
bbox=bbox,
|
| 1553 |
+
zorder=1,
|
| 1554 |
+
clip_on=clip_on,
|
| 1555 |
+
)
|
| 1556 |
+
else:
|
| 1557 |
+
text_items[edge] = CurvedArrowText(
|
| 1558 |
+
arrow,
|
| 1559 |
+
label,
|
| 1560 |
+
size=get_param_value(font_size, "font_size"),
|
| 1561 |
+
color=get_param_value(font_color, "font_color"),
|
| 1562 |
+
family=get_param_value(font_family, "font_family"),
|
| 1563 |
+
weight=get_param_value(font_weight, "font_weight"),
|
| 1564 |
+
alpha=get_param_value(alpha, "alpha"),
|
| 1565 |
+
horizontalalignment=get_param_value(
|
| 1566 |
+
horizontalalignment, "horizontalalignment"
|
| 1567 |
+
),
|
| 1568 |
+
verticalalignment=get_param_value(
|
| 1569 |
+
verticalalignment, "verticalalignment"
|
| 1570 |
+
),
|
| 1571 |
+
transform=ax.transData,
|
| 1572 |
+
bbox=bbox,
|
| 1573 |
+
zorder=1,
|
| 1574 |
+
clip_on=clip_on,
|
| 1575 |
+
label_pos=get_param_value(label_pos, "label_pos"),
|
| 1576 |
+
labels_horizontal=not get_param_value(rotate, "rotate"),
|
| 1577 |
+
ax=ax,
|
| 1578 |
+
)
|
| 1579 |
+
|
| 1580 |
+
if hide_ticks:
|
| 1581 |
+
ax.tick_params(
|
| 1582 |
+
axis="both",
|
| 1583 |
+
which="both",
|
| 1584 |
+
bottom=False,
|
| 1585 |
+
left=False,
|
| 1586 |
+
labelbottom=False,
|
| 1587 |
+
labelleft=False,
|
| 1588 |
+
)
|
| 1589 |
+
|
| 1590 |
+
return text_items
|
| 1591 |
+
|
| 1592 |
+
|
| 1593 |
+
def draw_circular(G, **kwargs):
|
| 1594 |
+
"""Draw the graph `G` with a circular layout.
|
| 1595 |
+
|
| 1596 |
+
This is a convenience function equivalent to::
|
| 1597 |
+
|
| 1598 |
+
nx.draw(G, pos=nx.circular_layout(G), **kwargs)
|
| 1599 |
+
|
| 1600 |
+
Parameters
|
| 1601 |
+
----------
|
| 1602 |
+
G : graph
|
| 1603 |
+
A networkx graph
|
| 1604 |
+
|
| 1605 |
+
kwargs : optional keywords
|
| 1606 |
+
See `draw_networkx` for a description of optional keywords.
|
| 1607 |
+
|
| 1608 |
+
Notes
|
| 1609 |
+
-----
|
| 1610 |
+
The layout is computed each time this function is called. For
|
| 1611 |
+
repeated drawing it is much more efficient to call
|
| 1612 |
+
`~networkx.drawing.layout.circular_layout` directly and reuse the result::
|
| 1613 |
+
|
| 1614 |
+
>>> G = nx.complete_graph(5)
|
| 1615 |
+
>>> pos = nx.circular_layout(G)
|
| 1616 |
+
>>> nx.draw(G, pos=pos) # Draw the original graph
|
| 1617 |
+
>>> # Draw a subgraph, reusing the same node positions
|
| 1618 |
+
>>> nx.draw(G.subgraph([0, 1, 2]), pos=pos, node_color="red")
|
| 1619 |
+
|
| 1620 |
+
Examples
|
| 1621 |
+
--------
|
| 1622 |
+
>>> G = nx.path_graph(5)
|
| 1623 |
+
>>> nx.draw_circular(G)
|
| 1624 |
+
|
| 1625 |
+
See Also
|
| 1626 |
+
--------
|
| 1627 |
+
:func:`~networkx.drawing.layout.circular_layout`
|
| 1628 |
+
"""
|
| 1629 |
+
draw(G, circular_layout(G), **kwargs)
|
| 1630 |
+
|
| 1631 |
+
|
| 1632 |
+
def draw_kamada_kawai(G, **kwargs):
|
| 1633 |
+
"""Draw the graph `G` with a Kamada-Kawai force-directed layout.
|
| 1634 |
+
|
| 1635 |
+
This is a convenience function equivalent to::
|
| 1636 |
+
|
| 1637 |
+
nx.draw(G, pos=nx.kamada_kawai_layout(G), **kwargs)
|
| 1638 |
+
|
| 1639 |
+
Parameters
|
| 1640 |
+
----------
|
| 1641 |
+
G : graph
|
| 1642 |
+
A networkx graph
|
| 1643 |
+
|
| 1644 |
+
kwargs : optional keywords
|
| 1645 |
+
See `draw_networkx` for a description of optional keywords.
|
| 1646 |
+
|
| 1647 |
+
Notes
|
| 1648 |
+
-----
|
| 1649 |
+
The layout is computed each time this function is called.
|
| 1650 |
+
For repeated drawing it is much more efficient to call
|
| 1651 |
+
`~networkx.drawing.layout.kamada_kawai_layout` directly and reuse the
|
| 1652 |
+
result::
|
| 1653 |
+
|
| 1654 |
+
>>> G = nx.complete_graph(5)
|
| 1655 |
+
>>> pos = nx.kamada_kawai_layout(G)
|
| 1656 |
+
>>> nx.draw(G, pos=pos) # Draw the original graph
|
| 1657 |
+
>>> # Draw a subgraph, reusing the same node positions
|
| 1658 |
+
>>> nx.draw(G.subgraph([0, 1, 2]), pos=pos, node_color="red")
|
| 1659 |
+
|
| 1660 |
+
Examples
|
| 1661 |
+
--------
|
| 1662 |
+
>>> G = nx.path_graph(5)
|
| 1663 |
+
>>> nx.draw_kamada_kawai(G)
|
| 1664 |
+
|
| 1665 |
+
See Also
|
| 1666 |
+
--------
|
| 1667 |
+
:func:`~networkx.drawing.layout.kamada_kawai_layout`
|
| 1668 |
+
"""
|
| 1669 |
+
draw(G, kamada_kawai_layout(G), **kwargs)
|
| 1670 |
+
|
| 1671 |
+
|
| 1672 |
+
def draw_random(G, **kwargs):
|
| 1673 |
+
"""Draw the graph `G` with a random layout.
|
| 1674 |
+
|
| 1675 |
+
This is a convenience function equivalent to::
|
| 1676 |
+
|
| 1677 |
+
nx.draw(G, pos=nx.random_layout(G), **kwargs)
|
| 1678 |
+
|
| 1679 |
+
Parameters
|
| 1680 |
+
----------
|
| 1681 |
+
G : graph
|
| 1682 |
+
A networkx graph
|
| 1683 |
+
|
| 1684 |
+
kwargs : optional keywords
|
| 1685 |
+
See `draw_networkx` for a description of optional keywords.
|
| 1686 |
+
|
| 1687 |
+
Notes
|
| 1688 |
+
-----
|
| 1689 |
+
The layout is computed each time this function is called.
|
| 1690 |
+
For repeated drawing it is much more efficient to call
|
| 1691 |
+
`~networkx.drawing.layout.random_layout` directly and reuse the result::
|
| 1692 |
+
|
| 1693 |
+
>>> G = nx.complete_graph(5)
|
| 1694 |
+
>>> pos = nx.random_layout(G)
|
| 1695 |
+
>>> nx.draw(G, pos=pos) # Draw the original graph
|
| 1696 |
+
>>> # Draw a subgraph, reusing the same node positions
|
| 1697 |
+
>>> nx.draw(G.subgraph([0, 1, 2]), pos=pos, node_color="red")
|
| 1698 |
+
|
| 1699 |
+
Examples
|
| 1700 |
+
--------
|
| 1701 |
+
>>> G = nx.lollipop_graph(4, 3)
|
| 1702 |
+
>>> nx.draw_random(G)
|
| 1703 |
+
|
| 1704 |
+
See Also
|
| 1705 |
+
--------
|
| 1706 |
+
:func:`~networkx.drawing.layout.random_layout`
|
| 1707 |
+
"""
|
| 1708 |
+
draw(G, random_layout(G), **kwargs)
|
| 1709 |
+
|
| 1710 |
+
|
| 1711 |
+
def draw_spectral(G, **kwargs):
|
| 1712 |
+
"""Draw the graph `G` with a spectral 2D layout.
|
| 1713 |
+
|
| 1714 |
+
This is a convenience function equivalent to::
|
| 1715 |
+
|
| 1716 |
+
nx.draw(G, pos=nx.spectral_layout(G), **kwargs)
|
| 1717 |
+
|
| 1718 |
+
For more information about how node positions are determined, see
|
| 1719 |
+
`~networkx.drawing.layout.spectral_layout`.
|
| 1720 |
+
|
| 1721 |
+
Parameters
|
| 1722 |
+
----------
|
| 1723 |
+
G : graph
|
| 1724 |
+
A networkx graph
|
| 1725 |
+
|
| 1726 |
+
kwargs : optional keywords
|
| 1727 |
+
See `draw_networkx` for a description of optional keywords.
|
| 1728 |
+
|
| 1729 |
+
Notes
|
| 1730 |
+
-----
|
| 1731 |
+
The layout is computed each time this function is called.
|
| 1732 |
+
For repeated drawing it is much more efficient to call
|
| 1733 |
+
`~networkx.drawing.layout.spectral_layout` directly and reuse the result::
|
| 1734 |
+
|
| 1735 |
+
>>> G = nx.complete_graph(5)
|
| 1736 |
+
>>> pos = nx.spectral_layout(G)
|
| 1737 |
+
>>> nx.draw(G, pos=pos) # Draw the original graph
|
| 1738 |
+
>>> # Draw a subgraph, reusing the same node positions
|
| 1739 |
+
>>> nx.draw(G.subgraph([0, 1, 2]), pos=pos, node_color="red")
|
| 1740 |
+
|
| 1741 |
+
Examples
|
| 1742 |
+
--------
|
| 1743 |
+
>>> G = nx.path_graph(5)
|
| 1744 |
+
>>> nx.draw_spectral(G)
|
| 1745 |
+
|
| 1746 |
+
See Also
|
| 1747 |
+
--------
|
| 1748 |
+
:func:`~networkx.drawing.layout.spectral_layout`
|
| 1749 |
+
"""
|
| 1750 |
+
draw(G, spectral_layout(G), **kwargs)
|
| 1751 |
+
|
| 1752 |
+
|
| 1753 |
+
def draw_spring(G, **kwargs):
|
| 1754 |
+
"""Draw the graph `G` with a spring layout.
|
| 1755 |
+
|
| 1756 |
+
This is a convenience function equivalent to::
|
| 1757 |
+
|
| 1758 |
+
nx.draw(G, pos=nx.spring_layout(G), **kwargs)
|
| 1759 |
+
|
| 1760 |
+
Parameters
|
| 1761 |
+
----------
|
| 1762 |
+
G : graph
|
| 1763 |
+
A networkx graph
|
| 1764 |
+
|
| 1765 |
+
kwargs : optional keywords
|
| 1766 |
+
See `draw_networkx` for a description of optional keywords.
|
| 1767 |
+
|
| 1768 |
+
Notes
|
| 1769 |
+
-----
|
| 1770 |
+
`~networkx.drawing.layout.spring_layout` is also the default layout for
|
| 1771 |
+
`draw`, so this function is equivalent to `draw`.
|
| 1772 |
+
|
| 1773 |
+
The layout is computed each time this function is called.
|
| 1774 |
+
For repeated drawing it is much more efficient to call
|
| 1775 |
+
`~networkx.drawing.layout.spring_layout` directly and reuse the result::
|
| 1776 |
+
|
| 1777 |
+
>>> G = nx.complete_graph(5)
|
| 1778 |
+
>>> pos = nx.spring_layout(G)
|
| 1779 |
+
>>> nx.draw(G, pos=pos) # Draw the original graph
|
| 1780 |
+
>>> # Draw a subgraph, reusing the same node positions
|
| 1781 |
+
>>> nx.draw(G.subgraph([0, 1, 2]), pos=pos, node_color="red")
|
| 1782 |
+
|
| 1783 |
+
Examples
|
| 1784 |
+
--------
|
| 1785 |
+
>>> G = nx.path_graph(20)
|
| 1786 |
+
>>> nx.draw_spring(G)
|
| 1787 |
+
|
| 1788 |
+
See Also
|
| 1789 |
+
--------
|
| 1790 |
+
draw
|
| 1791 |
+
:func:`~networkx.drawing.layout.spring_layout`
|
| 1792 |
+
"""
|
| 1793 |
+
draw(G, spring_layout(G), **kwargs)
|
| 1794 |
+
|
| 1795 |
+
|
| 1796 |
+
def draw_shell(G, nlist=None, **kwargs):
|
| 1797 |
+
"""Draw networkx graph `G` with shell layout.
|
| 1798 |
+
|
| 1799 |
+
This is a convenience function equivalent to::
|
| 1800 |
+
|
| 1801 |
+
nx.draw(G, pos=nx.shell_layout(G, nlist=nlist), **kwargs)
|
| 1802 |
+
|
| 1803 |
+
Parameters
|
| 1804 |
+
----------
|
| 1805 |
+
G : graph
|
| 1806 |
+
A networkx graph
|
| 1807 |
+
|
| 1808 |
+
nlist : list of list of nodes, optional
|
| 1809 |
+
A list containing lists of nodes representing the shells.
|
| 1810 |
+
Default is `None`, meaning all nodes are in a single shell.
|
| 1811 |
+
See `~networkx.drawing.layout.shell_layout` for details.
|
| 1812 |
+
|
| 1813 |
+
kwargs : optional keywords
|
| 1814 |
+
See `draw_networkx` for a description of optional keywords.
|
| 1815 |
+
|
| 1816 |
+
Notes
|
| 1817 |
+
-----
|
| 1818 |
+
The layout is computed each time this function is called.
|
| 1819 |
+
For repeated drawing it is much more efficient to call
|
| 1820 |
+
`~networkx.drawing.layout.shell_layout` directly and reuse the result::
|
| 1821 |
+
|
| 1822 |
+
>>> G = nx.complete_graph(5)
|
| 1823 |
+
>>> pos = nx.shell_layout(G)
|
| 1824 |
+
>>> nx.draw(G, pos=pos) # Draw the original graph
|
| 1825 |
+
>>> # Draw a subgraph, reusing the same node positions
|
| 1826 |
+
>>> nx.draw(G.subgraph([0, 1, 2]), pos=pos, node_color="red")
|
| 1827 |
+
|
| 1828 |
+
Examples
|
| 1829 |
+
--------
|
| 1830 |
+
>>> G = nx.path_graph(4)
|
| 1831 |
+
>>> shells = [[0], [1, 2, 3]]
|
| 1832 |
+
>>> nx.draw_shell(G, nlist=shells)
|
| 1833 |
+
|
| 1834 |
+
See Also
|
| 1835 |
+
--------
|
| 1836 |
+
:func:`~networkx.drawing.layout.shell_layout`
|
| 1837 |
+
"""
|
| 1838 |
+
draw(G, shell_layout(G, nlist=nlist), **kwargs)
|
| 1839 |
+
|
| 1840 |
+
|
| 1841 |
+
def draw_planar(G, **kwargs):
|
| 1842 |
+
"""Draw a planar networkx graph `G` with planar layout.
|
| 1843 |
+
|
| 1844 |
+
This is a convenience function equivalent to::
|
| 1845 |
+
|
| 1846 |
+
nx.draw(G, pos=nx.planar_layout(G), **kwargs)
|
| 1847 |
+
|
| 1848 |
+
Parameters
|
| 1849 |
+
----------
|
| 1850 |
+
G : graph
|
| 1851 |
+
A planar networkx graph
|
| 1852 |
+
|
| 1853 |
+
kwargs : optional keywords
|
| 1854 |
+
See `draw_networkx` for a description of optional keywords.
|
| 1855 |
+
|
| 1856 |
+
Raises
|
| 1857 |
+
------
|
| 1858 |
+
NetworkXException
|
| 1859 |
+
When `G` is not planar
|
| 1860 |
+
|
| 1861 |
+
Notes
|
| 1862 |
+
-----
|
| 1863 |
+
The layout is computed each time this function is called.
|
| 1864 |
+
For repeated drawing it is much more efficient to call
|
| 1865 |
+
`~networkx.drawing.layout.planar_layout` directly and reuse the result::
|
| 1866 |
+
|
| 1867 |
+
>>> G = nx.path_graph(5)
|
| 1868 |
+
>>> pos = nx.planar_layout(G)
|
| 1869 |
+
>>> nx.draw(G, pos=pos) # Draw the original graph
|
| 1870 |
+
>>> # Draw a subgraph, reusing the same node positions
|
| 1871 |
+
>>> nx.draw(G.subgraph([0, 1, 2]), pos=pos, node_color="red")
|
| 1872 |
+
|
| 1873 |
+
Examples
|
| 1874 |
+
--------
|
| 1875 |
+
>>> G = nx.path_graph(4)
|
| 1876 |
+
>>> nx.draw_planar(G)
|
| 1877 |
+
|
| 1878 |
+
See Also
|
| 1879 |
+
--------
|
| 1880 |
+
:func:`~networkx.drawing.layout.planar_layout`
|
| 1881 |
+
"""
|
| 1882 |
+
draw(G, planar_layout(G), **kwargs)
|
| 1883 |
+
|
| 1884 |
+
|
| 1885 |
+
def draw_forceatlas2(G, **kwargs):
|
| 1886 |
+
"""Draw a networkx graph with forceatlas2 layout.
|
| 1887 |
+
|
| 1888 |
+
This is a convenience function equivalent to::
|
| 1889 |
+
|
| 1890 |
+
nx.draw(G, pos=nx.forceatlas2_layout(G), **kwargs)
|
| 1891 |
+
|
| 1892 |
+
Parameters
|
| 1893 |
+
----------
|
| 1894 |
+
G : graph
|
| 1895 |
+
A networkx graph
|
| 1896 |
+
|
| 1897 |
+
kwargs : optional keywords
|
| 1898 |
+
See networkx.draw_networkx() for a description of optional keywords,
|
| 1899 |
+
with the exception of the pos parameter which is not used by this
|
| 1900 |
+
function.
|
| 1901 |
+
"""
|
| 1902 |
+
draw(G, forceatlas2_layout(G), **kwargs)
|
| 1903 |
+
|
| 1904 |
+
|
| 1905 |
+
def apply_alpha(colors, alpha, elem_list, cmap=None, vmin=None, vmax=None):
|
| 1906 |
+
"""Apply an alpha (or list of alphas) to the colors provided.
|
| 1907 |
+
|
| 1908 |
+
Parameters
|
| 1909 |
+
----------
|
| 1910 |
+
|
| 1911 |
+
colors : color string or array of floats (default='r')
|
| 1912 |
+
Color of element. Can be a single color format string,
|
| 1913 |
+
or a sequence of colors with the same length as nodelist.
|
| 1914 |
+
If numeric values are specified they will be mapped to
|
| 1915 |
+
colors using the cmap and vmin,vmax parameters. See
|
| 1916 |
+
matplotlib.scatter for more details.
|
| 1917 |
+
|
| 1918 |
+
alpha : float or array of floats
|
| 1919 |
+
Alpha values for elements. This can be a single alpha value, in
|
| 1920 |
+
which case it will be applied to all the elements of color. Otherwise,
|
| 1921 |
+
if it is an array, the elements of alpha will be applied to the colors
|
| 1922 |
+
in order (cycling through alpha multiple times if necessary).
|
| 1923 |
+
|
| 1924 |
+
elem_list : array of networkx objects
|
| 1925 |
+
The list of elements which are being colored. These could be nodes,
|
| 1926 |
+
edges or labels.
|
| 1927 |
+
|
| 1928 |
+
cmap : matplotlib colormap
|
| 1929 |
+
Color map for use if colors is a list of floats corresponding to points
|
| 1930 |
+
on a color mapping.
|
| 1931 |
+
|
| 1932 |
+
vmin, vmax : float
|
| 1933 |
+
Minimum and maximum values for normalizing colors if a colormap is used
|
| 1934 |
+
|
| 1935 |
+
Returns
|
| 1936 |
+
-------
|
| 1937 |
+
|
| 1938 |
+
rgba_colors : numpy ndarray
|
| 1939 |
+
Array containing RGBA format values for each of the node colours.
|
| 1940 |
+
|
| 1941 |
+
"""
|
| 1942 |
+
from itertools import cycle, islice
|
| 1943 |
+
|
| 1944 |
+
import matplotlib as mpl
|
| 1945 |
+
import matplotlib.cm # call as mpl.cm
|
| 1946 |
+
import matplotlib.colors # call as mpl.colors
|
| 1947 |
+
import numpy as np
|
| 1948 |
+
|
| 1949 |
+
# If we have been provided with a list of numbers as long as elem_list,
|
| 1950 |
+
# apply the color mapping.
|
| 1951 |
+
if len(colors) == len(elem_list) and isinstance(colors[0], Number):
|
| 1952 |
+
mapper = mpl.cm.ScalarMappable(cmap=cmap)
|
| 1953 |
+
mapper.set_clim(vmin, vmax)
|
| 1954 |
+
rgba_colors = mapper.to_rgba(colors)
|
| 1955 |
+
# Otherwise, convert colors to matplotlib's RGB using the colorConverter
|
| 1956 |
+
# object. These are converted to numpy ndarrays to be consistent with the
|
| 1957 |
+
# to_rgba method of ScalarMappable.
|
| 1958 |
+
else:
|
| 1959 |
+
try:
|
| 1960 |
+
rgba_colors = np.array([mpl.colors.colorConverter.to_rgba(colors)])
|
| 1961 |
+
except ValueError:
|
| 1962 |
+
rgba_colors = np.array(
|
| 1963 |
+
[mpl.colors.colorConverter.to_rgba(color) for color in colors]
|
| 1964 |
+
)
|
| 1965 |
+
# Set the final column of the rgba_colors to have the relevant alpha values
|
| 1966 |
+
try:
|
| 1967 |
+
# If alpha is longer than the number of colors, resize to the number of
|
| 1968 |
+
# elements. Also, if rgba_colors.size (the number of elements of
|
| 1969 |
+
# rgba_colors) is the same as the number of elements, resize the array,
|
| 1970 |
+
# to avoid it being interpreted as a colormap by scatter()
|
| 1971 |
+
if len(alpha) > len(rgba_colors) or rgba_colors.size == len(elem_list):
|
| 1972 |
+
rgba_colors = np.resize(rgba_colors, (len(elem_list), 4))
|
| 1973 |
+
rgba_colors[1:, 0] = rgba_colors[0, 0]
|
| 1974 |
+
rgba_colors[1:, 1] = rgba_colors[0, 1]
|
| 1975 |
+
rgba_colors[1:, 2] = rgba_colors[0, 2]
|
| 1976 |
+
rgba_colors[:, 3] = list(islice(cycle(alpha), len(rgba_colors)))
|
| 1977 |
+
except TypeError:
|
| 1978 |
+
rgba_colors[:, -1] = alpha
|
| 1979 |
+
return rgba_colors
|
wemm/lib/python3.10/site-packages/networkx/drawing/tests/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (172 Bytes). View file
|
|
|
wemm/lib/python3.10/site-packages/networkx/drawing/tests/__pycache__/test_agraph.cpython-310.pyc
ADDED
|
Binary file (9.74 kB). View file
|
|
|
wemm/lib/python3.10/site-packages/networkx/drawing/tests/__pycache__/test_layout.cpython-310.pyc
ADDED
|
Binary file (18.7 kB). View file
|
|
|
wemm/lib/python3.10/site-packages/networkx/drawing/tests/__pycache__/test_pydot.cpython-310.pyc
ADDED
|
Binary file (4.34 kB). View file
|
|
|
wemm/lib/python3.10/site-packages/networkx/drawing/tests/__pycache__/test_pylab.cpython-310.pyc
ADDED
|
Binary file (31 kB). View file
|
|
|
wemm/lib/python3.10/site-packages/networkx/drawing/tests/baseline/test_house_with_colors.png
ADDED
|
Git LFS Details
|
wemm/lib/python3.10/site-packages/networkx/drawing/tests/test_agraph.py
ADDED
|
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Unit tests for PyGraphviz interface."""
|
| 2 |
+
|
| 3 |
+
import warnings
|
| 4 |
+
|
| 5 |
+
import pytest
|
| 6 |
+
|
| 7 |
+
pygraphviz = pytest.importorskip("pygraphviz")
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
import networkx as nx
|
| 11 |
+
from networkx.utils import edges_equal, graphs_equal, nodes_equal
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class TestAGraph:
|
| 15 |
+
def build_graph(self, G):
|
| 16 |
+
edges = [("A", "B"), ("A", "C"), ("A", "C"), ("B", "C"), ("A", "D")]
|
| 17 |
+
G.add_edges_from(edges)
|
| 18 |
+
G.add_node("E")
|
| 19 |
+
G.graph["metal"] = "bronze"
|
| 20 |
+
return G
|
| 21 |
+
|
| 22 |
+
def assert_equal(self, G1, G2):
|
| 23 |
+
assert nodes_equal(G1.nodes(), G2.nodes())
|
| 24 |
+
assert edges_equal(G1.edges(), G2.edges())
|
| 25 |
+
assert G1.graph["metal"] == G2.graph["metal"]
|
| 26 |
+
|
| 27 |
+
@pytest.mark.parametrize(
|
| 28 |
+
"G", (nx.Graph(), nx.DiGraph(), nx.MultiGraph(), nx.MultiDiGraph())
|
| 29 |
+
)
|
| 30 |
+
def test_agraph_roundtripping(self, G, tmp_path):
|
| 31 |
+
G = self.build_graph(G)
|
| 32 |
+
A = nx.nx_agraph.to_agraph(G)
|
| 33 |
+
H = nx.nx_agraph.from_agraph(A)
|
| 34 |
+
self.assert_equal(G, H)
|
| 35 |
+
|
| 36 |
+
fname = tmp_path / "test.dot"
|
| 37 |
+
nx.drawing.nx_agraph.write_dot(H, fname)
|
| 38 |
+
Hin = nx.nx_agraph.read_dot(fname)
|
| 39 |
+
self.assert_equal(H, Hin)
|
| 40 |
+
|
| 41 |
+
fname = tmp_path / "fh_test.dot"
|
| 42 |
+
with open(fname, "w") as fh:
|
| 43 |
+
nx.drawing.nx_agraph.write_dot(H, fh)
|
| 44 |
+
|
| 45 |
+
with open(fname) as fh:
|
| 46 |
+
Hin = nx.nx_agraph.read_dot(fh)
|
| 47 |
+
self.assert_equal(H, Hin)
|
| 48 |
+
|
| 49 |
+
def test_from_agraph_name(self):
|
| 50 |
+
G = nx.Graph(name="test")
|
| 51 |
+
A = nx.nx_agraph.to_agraph(G)
|
| 52 |
+
H = nx.nx_agraph.from_agraph(A)
|
| 53 |
+
assert G.name == "test"
|
| 54 |
+
|
| 55 |
+
@pytest.mark.parametrize(
|
| 56 |
+
"graph_class", (nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph)
|
| 57 |
+
)
|
| 58 |
+
def test_from_agraph_create_using(self, graph_class):
|
| 59 |
+
G = nx.path_graph(3)
|
| 60 |
+
A = nx.nx_agraph.to_agraph(G)
|
| 61 |
+
H = nx.nx_agraph.from_agraph(A, create_using=graph_class)
|
| 62 |
+
assert isinstance(H, graph_class)
|
| 63 |
+
|
| 64 |
+
def test_from_agraph_named_edges(self):
|
| 65 |
+
# Create an AGraph from an existing (non-multi) Graph
|
| 66 |
+
G = nx.Graph()
|
| 67 |
+
G.add_nodes_from([0, 1])
|
| 68 |
+
A = nx.nx_agraph.to_agraph(G)
|
| 69 |
+
# Add edge (+ name, given by key) to the AGraph
|
| 70 |
+
A.add_edge(0, 1, key="foo")
|
| 71 |
+
# Verify a.name roundtrips out to 'key' in from_agraph
|
| 72 |
+
H = nx.nx_agraph.from_agraph(A)
|
| 73 |
+
assert isinstance(H, nx.Graph)
|
| 74 |
+
assert ("0", "1", {"key": "foo"}) in H.edges(data=True)
|
| 75 |
+
|
| 76 |
+
def test_to_agraph_with_nodedata(self):
|
| 77 |
+
G = nx.Graph()
|
| 78 |
+
G.add_node(1, color="red")
|
| 79 |
+
A = nx.nx_agraph.to_agraph(G)
|
| 80 |
+
assert dict(A.nodes()[0].attr) == {"color": "red"}
|
| 81 |
+
|
| 82 |
+
@pytest.mark.parametrize("graph_class", (nx.Graph, nx.MultiGraph))
|
| 83 |
+
def test_to_agraph_with_edgedata(self, graph_class):
|
| 84 |
+
G = graph_class()
|
| 85 |
+
G.add_nodes_from([0, 1])
|
| 86 |
+
G.add_edge(0, 1, color="yellow")
|
| 87 |
+
A = nx.nx_agraph.to_agraph(G)
|
| 88 |
+
assert dict(A.edges()[0].attr) == {"color": "yellow"}
|
| 89 |
+
|
| 90 |
+
def test_view_pygraphviz_path(self, tmp_path):
|
| 91 |
+
G = nx.complete_graph(3)
|
| 92 |
+
input_path = str(tmp_path / "graph.png")
|
| 93 |
+
out_path, A = nx.nx_agraph.view_pygraphviz(G, path=input_path, show=False)
|
| 94 |
+
assert out_path == input_path
|
| 95 |
+
# Ensure file is not empty
|
| 96 |
+
with open(input_path, "rb") as fh:
|
| 97 |
+
data = fh.read()
|
| 98 |
+
assert len(data) > 0
|
| 99 |
+
|
| 100 |
+
def test_view_pygraphviz_file_suffix(self, tmp_path):
|
| 101 |
+
G = nx.complete_graph(3)
|
| 102 |
+
path, A = nx.nx_agraph.view_pygraphviz(G, suffix=1, show=False)
|
| 103 |
+
assert path[-6:] == "_1.png"
|
| 104 |
+
|
| 105 |
+
def test_view_pygraphviz(self):
|
| 106 |
+
G = nx.Graph() # "An empty graph cannot be drawn."
|
| 107 |
+
pytest.raises(nx.NetworkXException, nx.nx_agraph.view_pygraphviz, G)
|
| 108 |
+
G = nx.barbell_graph(4, 6)
|
| 109 |
+
nx.nx_agraph.view_pygraphviz(G, show=False)
|
| 110 |
+
|
| 111 |
+
def test_view_pygraphviz_edgelabel(self):
|
| 112 |
+
G = nx.Graph()
|
| 113 |
+
G.add_edge(1, 2, weight=7)
|
| 114 |
+
G.add_edge(2, 3, weight=8)
|
| 115 |
+
path, A = nx.nx_agraph.view_pygraphviz(G, edgelabel="weight", show=False)
|
| 116 |
+
for edge in A.edges():
|
| 117 |
+
assert edge.attr["weight"] in ("7", "8")
|
| 118 |
+
|
| 119 |
+
def test_view_pygraphviz_callable_edgelabel(self):
|
| 120 |
+
G = nx.complete_graph(3)
|
| 121 |
+
|
| 122 |
+
def foo_label(data):
|
| 123 |
+
return "foo"
|
| 124 |
+
|
| 125 |
+
path, A = nx.nx_agraph.view_pygraphviz(G, edgelabel=foo_label, show=False)
|
| 126 |
+
for edge in A.edges():
|
| 127 |
+
assert edge.attr["label"] == "foo"
|
| 128 |
+
|
| 129 |
+
def test_view_pygraphviz_multigraph_edgelabels(self):
|
| 130 |
+
G = nx.MultiGraph()
|
| 131 |
+
G.add_edge(0, 1, key=0, name="left_fork")
|
| 132 |
+
G.add_edge(0, 1, key=1, name="right_fork")
|
| 133 |
+
path, A = nx.nx_agraph.view_pygraphviz(G, edgelabel="name", show=False)
|
| 134 |
+
edges = A.edges()
|
| 135 |
+
assert len(edges) == 2
|
| 136 |
+
for edge in edges:
|
| 137 |
+
assert edge.attr["label"].strip() in ("left_fork", "right_fork")
|
| 138 |
+
|
| 139 |
+
def test_graph_with_reserved_keywords(self):
|
| 140 |
+
# test attribute/keyword clash case for #1582
|
| 141 |
+
# node: n
|
| 142 |
+
# edges: u,v
|
| 143 |
+
G = nx.Graph()
|
| 144 |
+
G = self.build_graph(G)
|
| 145 |
+
G.nodes["E"]["n"] = "keyword"
|
| 146 |
+
G.edges[("A", "B")]["u"] = "keyword"
|
| 147 |
+
G.edges[("A", "B")]["v"] = "keyword"
|
| 148 |
+
A = nx.nx_agraph.to_agraph(G)
|
| 149 |
+
|
| 150 |
+
def test_view_pygraphviz_no_added_attrs_to_input(self):
|
| 151 |
+
G = nx.complete_graph(2)
|
| 152 |
+
path, A = nx.nx_agraph.view_pygraphviz(G, show=False)
|
| 153 |
+
assert G.graph == {}
|
| 154 |
+
|
| 155 |
+
@pytest.mark.xfail(reason="known bug in clean_attrs")
|
| 156 |
+
def test_view_pygraphviz_leaves_input_graph_unmodified(self):
|
| 157 |
+
G = nx.complete_graph(2)
|
| 158 |
+
# Add entries to graph dict that to_agraph handles specially
|
| 159 |
+
G.graph["node"] = {"width": "0.80"}
|
| 160 |
+
G.graph["edge"] = {"fontsize": "14"}
|
| 161 |
+
path, A = nx.nx_agraph.view_pygraphviz(G, show=False)
|
| 162 |
+
assert G.graph == {"node": {"width": "0.80"}, "edge": {"fontsize": "14"}}
|
| 163 |
+
|
| 164 |
+
def test_graph_with_AGraph_attrs(self):
|
| 165 |
+
G = nx.complete_graph(2)
|
| 166 |
+
# Add entries to graph dict that to_agraph handles specially
|
| 167 |
+
G.graph["node"] = {"width": "0.80"}
|
| 168 |
+
G.graph["edge"] = {"fontsize": "14"}
|
| 169 |
+
path, A = nx.nx_agraph.view_pygraphviz(G, show=False)
|
| 170 |
+
# Ensure user-specified values are not lost
|
| 171 |
+
assert dict(A.node_attr)["width"] == "0.80"
|
| 172 |
+
assert dict(A.edge_attr)["fontsize"] == "14"
|
| 173 |
+
|
| 174 |
+
def test_round_trip_empty_graph(self):
|
| 175 |
+
G = nx.Graph()
|
| 176 |
+
A = nx.nx_agraph.to_agraph(G)
|
| 177 |
+
H = nx.nx_agraph.from_agraph(A)
|
| 178 |
+
# assert graphs_equal(G, H)
|
| 179 |
+
AA = nx.nx_agraph.to_agraph(H)
|
| 180 |
+
HH = nx.nx_agraph.from_agraph(AA)
|
| 181 |
+
assert graphs_equal(H, HH)
|
| 182 |
+
G.graph["graph"] = {}
|
| 183 |
+
G.graph["node"] = {}
|
| 184 |
+
G.graph["edge"] = {}
|
| 185 |
+
assert graphs_equal(G, HH)
|
| 186 |
+
|
| 187 |
+
@pytest.mark.xfail(reason="integer->string node conversion in round trip")
|
| 188 |
+
def test_round_trip_integer_nodes(self):
|
| 189 |
+
G = nx.complete_graph(3)
|
| 190 |
+
A = nx.nx_agraph.to_agraph(G)
|
| 191 |
+
H = nx.nx_agraph.from_agraph(A)
|
| 192 |
+
assert graphs_equal(G, H)
|
| 193 |
+
|
| 194 |
+
def test_graphviz_alias(self):
|
| 195 |
+
G = self.build_graph(nx.Graph())
|
| 196 |
+
pos_graphviz = nx.nx_agraph.graphviz_layout(G)
|
| 197 |
+
pos_pygraphviz = nx.nx_agraph.pygraphviz_layout(G)
|
| 198 |
+
assert pos_graphviz == pos_pygraphviz
|
| 199 |
+
|
| 200 |
+
@pytest.mark.parametrize("root", range(5))
|
| 201 |
+
def test_pygraphviz_layout_root(self, root):
|
| 202 |
+
# NOTE: test depends on layout prog being deterministic
|
| 203 |
+
G = nx.complete_graph(5)
|
| 204 |
+
A = nx.nx_agraph.to_agraph(G)
|
| 205 |
+
# Get layout with root arg is not None
|
| 206 |
+
pygv_layout = nx.nx_agraph.pygraphviz_layout(G, prog="circo", root=root)
|
| 207 |
+
# Equivalent layout directly on AGraph
|
| 208 |
+
A.layout(args=f"-Groot={root}", prog="circo")
|
| 209 |
+
# Parse AGraph layout
|
| 210 |
+
a1_pos = tuple(float(v) for v in dict(A.get_node("1").attr)["pos"].split(","))
|
| 211 |
+
assert pygv_layout[1] == a1_pos
|
| 212 |
+
|
| 213 |
+
def test_2d_layout(self):
|
| 214 |
+
G = nx.Graph()
|
| 215 |
+
G = self.build_graph(G)
|
| 216 |
+
G.graph["dimen"] = 2
|
| 217 |
+
pos = nx.nx_agraph.pygraphviz_layout(G, prog="neato")
|
| 218 |
+
pos = list(pos.values())
|
| 219 |
+
assert len(pos) == 5
|
| 220 |
+
assert len(pos[0]) == 2
|
| 221 |
+
|
| 222 |
+
def test_3d_layout(self):
|
| 223 |
+
G = nx.Graph()
|
| 224 |
+
G = self.build_graph(G)
|
| 225 |
+
G.graph["dimen"] = 3
|
| 226 |
+
pos = nx.nx_agraph.pygraphviz_layout(G, prog="neato")
|
| 227 |
+
pos = list(pos.values())
|
| 228 |
+
assert len(pos) == 5
|
| 229 |
+
assert len(pos[0]) == 3
|
| 230 |
+
|
| 231 |
+
def test_no_warnings_raised(self):
|
| 232 |
+
# Test that no warnings are raised when Networkx graph
|
| 233 |
+
# is converted to Pygraphviz graph and 'pos'
|
| 234 |
+
# attribute is given
|
| 235 |
+
G = nx.Graph()
|
| 236 |
+
G.add_node(0, pos=(0, 0))
|
| 237 |
+
G.add_node(1, pos=(1, 1))
|
| 238 |
+
A = nx.nx_agraph.to_agraph(G)
|
| 239 |
+
with warnings.catch_warnings(record=True) as record:
|
| 240 |
+
A.layout()
|
| 241 |
+
assert len(record) == 0
|
wemm/lib/python3.10/site-packages/networkx/drawing/tests/test_pydot.py
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Unit tests for pydot drawing functions."""
|
| 2 |
+
|
| 3 |
+
from io import StringIO
|
| 4 |
+
|
| 5 |
+
import pytest
|
| 6 |
+
|
| 7 |
+
import networkx as nx
|
| 8 |
+
from networkx.utils import graphs_equal
|
| 9 |
+
|
| 10 |
+
pydot = pytest.importorskip("pydot")
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class TestPydot:
|
| 14 |
+
@pytest.mark.parametrize("G", (nx.Graph(), nx.DiGraph()))
|
| 15 |
+
@pytest.mark.parametrize("prog", ("neato", "dot"))
|
| 16 |
+
def test_pydot(self, G, prog, tmp_path):
|
| 17 |
+
"""
|
| 18 |
+
Validate :mod:`pydot`-based usage of the passed NetworkX graph with the
|
| 19 |
+
passed basename of an external GraphViz command (e.g., `dot`, `neato`).
|
| 20 |
+
"""
|
| 21 |
+
|
| 22 |
+
# Set the name of this graph to... "G". Failing to do so will
|
| 23 |
+
# subsequently trip an assertion expecting this name.
|
| 24 |
+
G.graph["name"] = "G"
|
| 25 |
+
|
| 26 |
+
# Add arbitrary nodes and edges to the passed empty graph.
|
| 27 |
+
G.add_edges_from([("A", "B"), ("A", "C"), ("B", "C"), ("A", "D")])
|
| 28 |
+
G.add_node("E")
|
| 29 |
+
|
| 30 |
+
# Validate layout of this graph with the passed GraphViz command.
|
| 31 |
+
graph_layout = nx.nx_pydot.pydot_layout(G, prog=prog)
|
| 32 |
+
assert isinstance(graph_layout, dict)
|
| 33 |
+
|
| 34 |
+
# Convert this graph into a "pydot.Dot" instance.
|
| 35 |
+
P = nx.nx_pydot.to_pydot(G)
|
| 36 |
+
|
| 37 |
+
# Convert this "pydot.Dot" instance back into a graph of the same type.
|
| 38 |
+
G2 = G.__class__(nx.nx_pydot.from_pydot(P))
|
| 39 |
+
|
| 40 |
+
# Validate the original and resulting graphs to be the same.
|
| 41 |
+
assert graphs_equal(G, G2)
|
| 42 |
+
|
| 43 |
+
fname = tmp_path / "out.dot"
|
| 44 |
+
|
| 45 |
+
# Serialize this "pydot.Dot" instance to a temporary file in dot format
|
| 46 |
+
P.write_raw(fname)
|
| 47 |
+
|
| 48 |
+
# Deserialize a list of new "pydot.Dot" instances back from this file.
|
| 49 |
+
Pin_list = pydot.graph_from_dot_file(path=fname, encoding="utf-8")
|
| 50 |
+
|
| 51 |
+
# Validate this file to contain only one graph.
|
| 52 |
+
assert len(Pin_list) == 1
|
| 53 |
+
|
| 54 |
+
# The single "pydot.Dot" instance deserialized from this file.
|
| 55 |
+
Pin = Pin_list[0]
|
| 56 |
+
|
| 57 |
+
# Sorted list of all nodes in the original "pydot.Dot" instance.
|
| 58 |
+
n1 = sorted(p.get_name() for p in P.get_node_list())
|
| 59 |
+
|
| 60 |
+
# Sorted list of all nodes in the deserialized "pydot.Dot" instance.
|
| 61 |
+
n2 = sorted(p.get_name() for p in Pin.get_node_list())
|
| 62 |
+
|
| 63 |
+
# Validate these instances to contain the same nodes.
|
| 64 |
+
assert n1 == n2
|
| 65 |
+
|
| 66 |
+
# Sorted list of all edges in the original "pydot.Dot" instance.
|
| 67 |
+
e1 = sorted((e.get_source(), e.get_destination()) for e in P.get_edge_list())
|
| 68 |
+
|
| 69 |
+
# Sorted list of all edges in the original "pydot.Dot" instance.
|
| 70 |
+
e2 = sorted((e.get_source(), e.get_destination()) for e in Pin.get_edge_list())
|
| 71 |
+
|
| 72 |
+
# Validate these instances to contain the same edges.
|
| 73 |
+
assert e1 == e2
|
| 74 |
+
|
| 75 |
+
# Deserialize a new graph of the same type back from this file.
|
| 76 |
+
Hin = nx.nx_pydot.read_dot(fname)
|
| 77 |
+
Hin = G.__class__(Hin)
|
| 78 |
+
|
| 79 |
+
# Validate the original and resulting graphs to be the same.
|
| 80 |
+
assert graphs_equal(G, Hin)
|
| 81 |
+
|
| 82 |
+
def test_read_write(self):
|
| 83 |
+
G = nx.MultiGraph()
|
| 84 |
+
G.graph["name"] = "G"
|
| 85 |
+
G.add_edge("1", "2", key="0") # read assumes strings
|
| 86 |
+
fh = StringIO()
|
| 87 |
+
nx.nx_pydot.write_dot(G, fh)
|
| 88 |
+
fh.seek(0)
|
| 89 |
+
H = nx.nx_pydot.read_dot(fh)
|
| 90 |
+
assert graphs_equal(G, H)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def test_pydot_issue_7581(tmp_path):
|
| 94 |
+
"""Validate that `nx_pydot.pydot_layout` handles nodes
|
| 95 |
+
with characters like "\n", " ".
|
| 96 |
+
|
| 97 |
+
Those characters cause `pydot` to escape and quote them on output,
|
| 98 |
+
which caused #7581.
|
| 99 |
+
"""
|
| 100 |
+
G = nx.Graph()
|
| 101 |
+
G.add_edges_from([("A\nbig test", "B"), ("A\nbig test", "C"), ("B", "C")])
|
| 102 |
+
|
| 103 |
+
graph_layout = nx.nx_pydot.pydot_layout(G, prog="dot")
|
| 104 |
+
assert isinstance(graph_layout, dict)
|
| 105 |
+
|
| 106 |
+
# Convert the graph to pydot and back into a graph. There should be no difference.
|
| 107 |
+
P = nx.nx_pydot.to_pydot(G)
|
| 108 |
+
G2 = nx.Graph(nx.nx_pydot.from_pydot(P))
|
| 109 |
+
assert graphs_equal(G, G2)
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
@pytest.mark.parametrize(
|
| 113 |
+
"graph_type", [nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph]
|
| 114 |
+
)
|
| 115 |
+
def test_hashable_pydot(graph_type):
|
| 116 |
+
# gh-5790
|
| 117 |
+
G = graph_type()
|
| 118 |
+
G.add_edge("5", frozenset([1]), t='"Example:A"', l=False)
|
| 119 |
+
G.add_edge("1", 2, w=True, t=("node1",), l=frozenset(["node1"]))
|
| 120 |
+
G.add_edge("node", (3, 3), w="string")
|
| 121 |
+
|
| 122 |
+
assert [
|
| 123 |
+
{"t": '"Example:A"', "l": "False"},
|
| 124 |
+
{"w": "True", "t": "('node1',)", "l": "frozenset({'node1'})"},
|
| 125 |
+
{"w": "string"},
|
| 126 |
+
] == [
|
| 127 |
+
attr
|
| 128 |
+
for _, _, attr in nx.nx_pydot.from_pydot(nx.nx_pydot.to_pydot(G)).edges.data()
|
| 129 |
+
]
|
| 130 |
+
|
| 131 |
+
assert {str(i) for i in G.nodes()} == set(
|
| 132 |
+
nx.nx_pydot.from_pydot(nx.nx_pydot.to_pydot(G)).nodes
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
def test_pydot_numerical_name():
|
| 137 |
+
G = nx.Graph()
|
| 138 |
+
G.add_edges_from([("A", "B"), (0, 1)])
|
| 139 |
+
graph_layout = nx.nx_pydot.pydot_layout(G, prog="dot")
|
| 140 |
+
assert isinstance(graph_layout, dict)
|
| 141 |
+
assert "0" not in graph_layout
|
| 142 |
+
assert 0 in graph_layout
|
| 143 |
+
assert "1" not in graph_layout
|
| 144 |
+
assert 1 in graph_layout
|
| 145 |
+
assert "A" in graph_layout
|
| 146 |
+
assert "B" in graph_layout
|
wemm/lib/python3.10/site-packages/networkx/drawing/tests/test_pylab.py
ADDED
|
@@ -0,0 +1,1029 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Unit tests for matplotlib drawing functions."""
|
| 2 |
+
|
| 3 |
+
import itertools
|
| 4 |
+
import os
|
| 5 |
+
import warnings
|
| 6 |
+
|
| 7 |
+
import pytest
|
| 8 |
+
|
| 9 |
+
mpl = pytest.importorskip("matplotlib")
|
| 10 |
+
np = pytest.importorskip("numpy")
|
| 11 |
+
mpl.use("PS")
|
| 12 |
+
plt = pytest.importorskip("matplotlib.pyplot")
|
| 13 |
+
plt.rcParams["text.usetex"] = False
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
import networkx as nx
|
| 17 |
+
|
| 18 |
+
barbell = nx.barbell_graph(4, 6)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def test_draw():
|
| 22 |
+
try:
|
| 23 |
+
functions = [
|
| 24 |
+
nx.draw_circular,
|
| 25 |
+
nx.draw_kamada_kawai,
|
| 26 |
+
nx.draw_planar,
|
| 27 |
+
nx.draw_random,
|
| 28 |
+
nx.draw_spectral,
|
| 29 |
+
nx.draw_spring,
|
| 30 |
+
nx.draw_shell,
|
| 31 |
+
]
|
| 32 |
+
options = [{"node_color": "black", "node_size": 100, "width": 3}]
|
| 33 |
+
for function, option in itertools.product(functions, options):
|
| 34 |
+
function(barbell, **option)
|
| 35 |
+
plt.savefig("test.ps")
|
| 36 |
+
except ModuleNotFoundError: # draw_kamada_kawai requires scipy
|
| 37 |
+
pass
|
| 38 |
+
finally:
|
| 39 |
+
try:
|
| 40 |
+
os.unlink("test.ps")
|
| 41 |
+
except OSError:
|
| 42 |
+
pass
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def test_draw_shell_nlist():
|
| 46 |
+
try:
|
| 47 |
+
nlist = [list(range(4)), list(range(4, 10)), list(range(10, 14))]
|
| 48 |
+
nx.draw_shell(barbell, nlist=nlist)
|
| 49 |
+
plt.savefig("test.ps")
|
| 50 |
+
finally:
|
| 51 |
+
try:
|
| 52 |
+
os.unlink("test.ps")
|
| 53 |
+
except OSError:
|
| 54 |
+
pass
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def test_edge_colormap():
|
| 58 |
+
colors = range(barbell.number_of_edges())
|
| 59 |
+
nx.draw_spring(
|
| 60 |
+
barbell, edge_color=colors, width=4, edge_cmap=plt.cm.Blues, with_labels=True
|
| 61 |
+
)
|
| 62 |
+
# plt.show()
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def test_arrows():
|
| 66 |
+
nx.draw_spring(barbell.to_directed())
|
| 67 |
+
# plt.show()
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
@pytest.mark.parametrize(
|
| 71 |
+
("edge_color", "expected"),
|
| 72 |
+
(
|
| 73 |
+
(None, "black"), # Default
|
| 74 |
+
("r", "red"), # Non-default color string
|
| 75 |
+
(["r"], "red"), # Single non-default color in a list
|
| 76 |
+
((1.0, 1.0, 0.0), "yellow"), # single color as rgb tuple
|
| 77 |
+
([(1.0, 1.0, 0.0)], "yellow"), # single color as rgb tuple in list
|
| 78 |
+
((0, 1, 0, 1), "lime"), # single color as rgba tuple
|
| 79 |
+
([(0, 1, 0, 1)], "lime"), # single color as rgba tuple in list
|
| 80 |
+
("#0000ff", "blue"), # single color hex code
|
| 81 |
+
(["#0000ff"], "blue"), # hex code in list
|
| 82 |
+
),
|
| 83 |
+
)
|
| 84 |
+
@pytest.mark.parametrize("edgelist", (None, [(0, 1)]))
|
| 85 |
+
def test_single_edge_color_undirected(edge_color, expected, edgelist):
|
| 86 |
+
"""Tests ways of specifying all edges have a single color for edges
|
| 87 |
+
drawn with a LineCollection"""
|
| 88 |
+
|
| 89 |
+
G = nx.path_graph(3)
|
| 90 |
+
drawn_edges = nx.draw_networkx_edges(
|
| 91 |
+
G, pos=nx.random_layout(G), edgelist=edgelist, edge_color=edge_color
|
| 92 |
+
)
|
| 93 |
+
assert mpl.colors.same_color(drawn_edges.get_color(), expected)
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
@pytest.mark.parametrize(
|
| 97 |
+
("edge_color", "expected"),
|
| 98 |
+
(
|
| 99 |
+
(None, "black"), # Default
|
| 100 |
+
("r", "red"), # Non-default color string
|
| 101 |
+
(["r"], "red"), # Single non-default color in a list
|
| 102 |
+
((1.0, 1.0, 0.0), "yellow"), # single color as rgb tuple
|
| 103 |
+
([(1.0, 1.0, 0.0)], "yellow"), # single color as rgb tuple in list
|
| 104 |
+
((0, 1, 0, 1), "lime"), # single color as rgba tuple
|
| 105 |
+
([(0, 1, 0, 1)], "lime"), # single color as rgba tuple in list
|
| 106 |
+
("#0000ff", "blue"), # single color hex code
|
| 107 |
+
(["#0000ff"], "blue"), # hex code in list
|
| 108 |
+
),
|
| 109 |
+
)
|
| 110 |
+
@pytest.mark.parametrize("edgelist", (None, [(0, 1)]))
|
| 111 |
+
def test_single_edge_color_directed(edge_color, expected, edgelist):
|
| 112 |
+
"""Tests ways of specifying all edges have a single color for edges drawn
|
| 113 |
+
with FancyArrowPatches"""
|
| 114 |
+
|
| 115 |
+
G = nx.path_graph(3, create_using=nx.DiGraph)
|
| 116 |
+
drawn_edges = nx.draw_networkx_edges(
|
| 117 |
+
G, pos=nx.random_layout(G), edgelist=edgelist, edge_color=edge_color
|
| 118 |
+
)
|
| 119 |
+
for fap in drawn_edges:
|
| 120 |
+
assert mpl.colors.same_color(fap.get_edgecolor(), expected)
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def test_edge_color_tuple_interpretation():
|
| 124 |
+
"""If edge_color is a sequence with the same length as edgelist, then each
|
| 125 |
+
value in edge_color is mapped onto each edge via colormap."""
|
| 126 |
+
G = nx.path_graph(6, create_using=nx.DiGraph)
|
| 127 |
+
pos = {n: (n, n) for n in range(len(G))}
|
| 128 |
+
|
| 129 |
+
# num edges != 3 or 4 --> edge_color interpreted as rgb(a)
|
| 130 |
+
for ec in ((0, 0, 1), (0, 0, 1, 1)):
|
| 131 |
+
# More than 4 edges
|
| 132 |
+
drawn_edges = nx.draw_networkx_edges(G, pos, edge_color=ec)
|
| 133 |
+
for fap in drawn_edges:
|
| 134 |
+
assert mpl.colors.same_color(fap.get_edgecolor(), ec)
|
| 135 |
+
# Fewer than 3 edges
|
| 136 |
+
drawn_edges = nx.draw_networkx_edges(
|
| 137 |
+
G, pos, edgelist=[(0, 1), (1, 2)], edge_color=ec
|
| 138 |
+
)
|
| 139 |
+
for fap in drawn_edges:
|
| 140 |
+
assert mpl.colors.same_color(fap.get_edgecolor(), ec)
|
| 141 |
+
|
| 142 |
+
# num edges == 3, len(edge_color) == 4: interpreted as rgba
|
| 143 |
+
drawn_edges = nx.draw_networkx_edges(
|
| 144 |
+
G, pos, edgelist=[(0, 1), (1, 2), (2, 3)], edge_color=(0, 0, 1, 1)
|
| 145 |
+
)
|
| 146 |
+
for fap in drawn_edges:
|
| 147 |
+
assert mpl.colors.same_color(fap.get_edgecolor(), "blue")
|
| 148 |
+
|
| 149 |
+
# num edges == 4, len(edge_color) == 3: interpreted as rgb
|
| 150 |
+
drawn_edges = nx.draw_networkx_edges(
|
| 151 |
+
G, pos, edgelist=[(0, 1), (1, 2), (2, 3), (3, 4)], edge_color=(0, 0, 1)
|
| 152 |
+
)
|
| 153 |
+
for fap in drawn_edges:
|
| 154 |
+
assert mpl.colors.same_color(fap.get_edgecolor(), "blue")
|
| 155 |
+
|
| 156 |
+
# num edges == len(edge_color) == 3: interpreted with cmap, *not* as rgb
|
| 157 |
+
drawn_edges = nx.draw_networkx_edges(
|
| 158 |
+
G, pos, edgelist=[(0, 1), (1, 2), (2, 3)], edge_color=(0, 0, 1)
|
| 159 |
+
)
|
| 160 |
+
assert mpl.colors.same_color(
|
| 161 |
+
drawn_edges[0].get_edgecolor(), drawn_edges[1].get_edgecolor()
|
| 162 |
+
)
|
| 163 |
+
for fap in drawn_edges:
|
| 164 |
+
assert not mpl.colors.same_color(fap.get_edgecolor(), "blue")
|
| 165 |
+
|
| 166 |
+
# num edges == len(edge_color) == 4: interpreted with cmap, *not* as rgba
|
| 167 |
+
drawn_edges = nx.draw_networkx_edges(
|
| 168 |
+
G, pos, edgelist=[(0, 1), (1, 2), (2, 3), (3, 4)], edge_color=(0, 0, 1, 1)
|
| 169 |
+
)
|
| 170 |
+
assert mpl.colors.same_color(
|
| 171 |
+
drawn_edges[0].get_edgecolor(), drawn_edges[1].get_edgecolor()
|
| 172 |
+
)
|
| 173 |
+
assert mpl.colors.same_color(
|
| 174 |
+
drawn_edges[2].get_edgecolor(), drawn_edges[3].get_edgecolor()
|
| 175 |
+
)
|
| 176 |
+
for fap in drawn_edges:
|
| 177 |
+
assert not mpl.colors.same_color(fap.get_edgecolor(), "blue")
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
def test_fewer_edge_colors_than_num_edges_directed():
|
| 181 |
+
"""Test that the edge colors are cycled when there are fewer specified
|
| 182 |
+
colors than edges."""
|
| 183 |
+
G = barbell.to_directed()
|
| 184 |
+
pos = nx.random_layout(barbell)
|
| 185 |
+
edgecolors = ("r", "g", "b")
|
| 186 |
+
drawn_edges = nx.draw_networkx_edges(G, pos, edge_color=edgecolors)
|
| 187 |
+
for fap, expected in zip(drawn_edges, itertools.cycle(edgecolors)):
|
| 188 |
+
assert mpl.colors.same_color(fap.get_edgecolor(), expected)
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
def test_more_edge_colors_than_num_edges_directed():
|
| 192 |
+
"""Test that extra edge colors are ignored when there are more specified
|
| 193 |
+
colors than edges."""
|
| 194 |
+
G = nx.path_graph(4, create_using=nx.DiGraph) # 3 edges
|
| 195 |
+
pos = nx.random_layout(barbell)
|
| 196 |
+
edgecolors = ("r", "g", "b", "c") # 4 edge colors
|
| 197 |
+
drawn_edges = nx.draw_networkx_edges(G, pos, edge_color=edgecolors)
|
| 198 |
+
for fap, expected in zip(drawn_edges, edgecolors[:-1]):
|
| 199 |
+
assert mpl.colors.same_color(fap.get_edgecolor(), expected)
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
def test_edge_color_string_with_global_alpha_undirected():
|
| 203 |
+
edge_collection = nx.draw_networkx_edges(
|
| 204 |
+
barbell,
|
| 205 |
+
pos=nx.random_layout(barbell),
|
| 206 |
+
edgelist=[(0, 1), (1, 2)],
|
| 207 |
+
edge_color="purple",
|
| 208 |
+
alpha=0.2,
|
| 209 |
+
)
|
| 210 |
+
ec = edge_collection.get_color().squeeze() # as rgba tuple
|
| 211 |
+
assert len(edge_collection.get_paths()) == 2
|
| 212 |
+
assert mpl.colors.same_color(ec[:-1], "purple")
|
| 213 |
+
assert ec[-1] == 0.2
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
def test_edge_color_string_with_global_alpha_directed():
|
| 217 |
+
drawn_edges = nx.draw_networkx_edges(
|
| 218 |
+
barbell.to_directed(),
|
| 219 |
+
pos=nx.random_layout(barbell),
|
| 220 |
+
edgelist=[(0, 1), (1, 2)],
|
| 221 |
+
edge_color="purple",
|
| 222 |
+
alpha=0.2,
|
| 223 |
+
)
|
| 224 |
+
assert len(drawn_edges) == 2
|
| 225 |
+
for fap in drawn_edges:
|
| 226 |
+
ec = fap.get_edgecolor() # As rgba tuple
|
| 227 |
+
assert mpl.colors.same_color(ec[:-1], "purple")
|
| 228 |
+
assert ec[-1] == 0.2
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
@pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph))
|
| 232 |
+
def test_edge_width_default_value(graph_type):
|
| 233 |
+
"""Test the default linewidth for edges drawn either via LineCollection or
|
| 234 |
+
FancyArrowPatches."""
|
| 235 |
+
G = nx.path_graph(2, create_using=graph_type)
|
| 236 |
+
pos = {n: (n, n) for n in range(len(G))}
|
| 237 |
+
drawn_edges = nx.draw_networkx_edges(G, pos)
|
| 238 |
+
if isinstance(drawn_edges, list): # directed case: list of FancyArrowPatch
|
| 239 |
+
drawn_edges = drawn_edges[0]
|
| 240 |
+
assert drawn_edges.get_linewidth() == 1
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
@pytest.mark.parametrize(
|
| 244 |
+
("edgewidth", "expected"),
|
| 245 |
+
(
|
| 246 |
+
(3, 3), # single-value, non-default
|
| 247 |
+
([3], 3), # Single value as a list
|
| 248 |
+
),
|
| 249 |
+
)
|
| 250 |
+
def test_edge_width_single_value_undirected(edgewidth, expected):
|
| 251 |
+
G = nx.path_graph(4)
|
| 252 |
+
pos = {n: (n, n) for n in range(len(G))}
|
| 253 |
+
drawn_edges = nx.draw_networkx_edges(G, pos, width=edgewidth)
|
| 254 |
+
assert len(drawn_edges.get_paths()) == 3
|
| 255 |
+
assert drawn_edges.get_linewidth() == expected
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
@pytest.mark.parametrize(
|
| 259 |
+
("edgewidth", "expected"),
|
| 260 |
+
(
|
| 261 |
+
(3, 3), # single-value, non-default
|
| 262 |
+
([3], 3), # Single value as a list
|
| 263 |
+
),
|
| 264 |
+
)
|
| 265 |
+
def test_edge_width_single_value_directed(edgewidth, expected):
|
| 266 |
+
G = nx.path_graph(4, create_using=nx.DiGraph)
|
| 267 |
+
pos = {n: (n, n) for n in range(len(G))}
|
| 268 |
+
drawn_edges = nx.draw_networkx_edges(G, pos, width=edgewidth)
|
| 269 |
+
assert len(drawn_edges) == 3
|
| 270 |
+
for fap in drawn_edges:
|
| 271 |
+
assert fap.get_linewidth() == expected
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
@pytest.mark.parametrize(
|
| 275 |
+
"edgelist",
|
| 276 |
+
(
|
| 277 |
+
[(0, 1), (1, 2), (2, 3)], # one width specification per edge
|
| 278 |
+
None, # fewer widths than edges - widths cycle
|
| 279 |
+
[(0, 1), (1, 2)], # More widths than edges - unused widths ignored
|
| 280 |
+
),
|
| 281 |
+
)
|
| 282 |
+
def test_edge_width_sequence(edgelist):
|
| 283 |
+
G = barbell.to_directed()
|
| 284 |
+
pos = nx.random_layout(G)
|
| 285 |
+
widths = (0.5, 2.0, 12.0)
|
| 286 |
+
drawn_edges = nx.draw_networkx_edges(G, pos, edgelist=edgelist, width=widths)
|
| 287 |
+
for fap, expected_width in zip(drawn_edges, itertools.cycle(widths)):
|
| 288 |
+
assert fap.get_linewidth() == expected_width
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
def test_edge_color_with_edge_vmin_vmax():
|
| 292 |
+
"""Test that edge_vmin and edge_vmax properly set the dynamic range of the
|
| 293 |
+
color map when num edges == len(edge_colors)."""
|
| 294 |
+
G = nx.path_graph(3, create_using=nx.DiGraph)
|
| 295 |
+
pos = nx.random_layout(G)
|
| 296 |
+
# Extract colors from the original (unscaled) colormap
|
| 297 |
+
drawn_edges = nx.draw_networkx_edges(G, pos, edge_color=[0, 1.0])
|
| 298 |
+
orig_colors = [e.get_edgecolor() for e in drawn_edges]
|
| 299 |
+
# Colors from scaled colormap
|
| 300 |
+
drawn_edges = nx.draw_networkx_edges(
|
| 301 |
+
G, pos, edge_color=[0.2, 0.8], edge_vmin=0.2, edge_vmax=0.8
|
| 302 |
+
)
|
| 303 |
+
scaled_colors = [e.get_edgecolor() for e in drawn_edges]
|
| 304 |
+
assert mpl.colors.same_color(orig_colors, scaled_colors)
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
def test_directed_edges_linestyle_default():
|
| 308 |
+
"""Test default linestyle for edges drawn with FancyArrowPatches."""
|
| 309 |
+
G = nx.path_graph(4, create_using=nx.DiGraph) # Graph with 3 edges
|
| 310 |
+
pos = {n: (n, n) for n in range(len(G))}
|
| 311 |
+
|
| 312 |
+
# edge with default style
|
| 313 |
+
drawn_edges = nx.draw_networkx_edges(G, pos)
|
| 314 |
+
assert len(drawn_edges) == 3
|
| 315 |
+
for fap in drawn_edges:
|
| 316 |
+
assert fap.get_linestyle() == "solid"
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
@pytest.mark.parametrize(
|
| 320 |
+
"style",
|
| 321 |
+
(
|
| 322 |
+
"dashed", # edge with string style
|
| 323 |
+
"--", # edge with simplified string style
|
| 324 |
+
(1, (1, 1)), # edge with (offset, onoffseq) style
|
| 325 |
+
),
|
| 326 |
+
)
|
| 327 |
+
def test_directed_edges_linestyle_single_value(style):
|
| 328 |
+
"""Tests support for specifying linestyles with a single value to be applied to
|
| 329 |
+
all edges in ``draw_networkx_edges`` for FancyArrowPatch outputs
|
| 330 |
+
(e.g. directed edges)."""
|
| 331 |
+
|
| 332 |
+
G = nx.path_graph(4, create_using=nx.DiGraph) # Graph with 3 edges
|
| 333 |
+
pos = {n: (n, n) for n in range(len(G))}
|
| 334 |
+
|
| 335 |
+
drawn_edges = nx.draw_networkx_edges(G, pos, style=style)
|
| 336 |
+
assert len(drawn_edges) == 3
|
| 337 |
+
for fap in drawn_edges:
|
| 338 |
+
assert fap.get_linestyle() == style
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
@pytest.mark.parametrize(
|
| 342 |
+
"style_seq",
|
| 343 |
+
(
|
| 344 |
+
["dashed"], # edge with string style in list
|
| 345 |
+
["--"], # edge with simplified string style in list
|
| 346 |
+
[(1, (1, 1))], # edge with (offset, onoffseq) style in list
|
| 347 |
+
["--", "-", ":"], # edges with styles for each edge
|
| 348 |
+
["--", "-"], # edges with fewer styles than edges (styles cycle)
|
| 349 |
+
["--", "-", ":", "-."], # edges with more styles than edges (extra unused)
|
| 350 |
+
),
|
| 351 |
+
)
|
| 352 |
+
def test_directed_edges_linestyle_sequence(style_seq):
|
| 353 |
+
"""Tests support for specifying linestyles with sequences in
|
| 354 |
+
``draw_networkx_edges`` for FancyArrowPatch outputs (e.g. directed edges)."""
|
| 355 |
+
|
| 356 |
+
G = nx.path_graph(4, create_using=nx.DiGraph) # Graph with 3 edges
|
| 357 |
+
pos = {n: (n, n) for n in range(len(G))}
|
| 358 |
+
|
| 359 |
+
drawn_edges = nx.draw_networkx_edges(G, pos, style=style_seq)
|
| 360 |
+
assert len(drawn_edges) == 3
|
| 361 |
+
for fap, style in zip(drawn_edges, itertools.cycle(style_seq)):
|
| 362 |
+
assert fap.get_linestyle() == style
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
def test_return_types():
|
| 366 |
+
from matplotlib.collections import LineCollection, PathCollection
|
| 367 |
+
from matplotlib.patches import FancyArrowPatch
|
| 368 |
+
|
| 369 |
+
G = nx.cubical_graph(nx.Graph)
|
| 370 |
+
dG = nx.cubical_graph(nx.DiGraph)
|
| 371 |
+
pos = nx.spring_layout(G)
|
| 372 |
+
dpos = nx.spring_layout(dG)
|
| 373 |
+
# nodes
|
| 374 |
+
nodes = nx.draw_networkx_nodes(G, pos)
|
| 375 |
+
assert isinstance(nodes, PathCollection)
|
| 376 |
+
# edges
|
| 377 |
+
edges = nx.draw_networkx_edges(dG, dpos, arrows=True)
|
| 378 |
+
assert isinstance(edges, list)
|
| 379 |
+
if len(edges) > 0:
|
| 380 |
+
assert isinstance(edges[0], FancyArrowPatch)
|
| 381 |
+
edges = nx.draw_networkx_edges(dG, dpos, arrows=False)
|
| 382 |
+
assert isinstance(edges, LineCollection)
|
| 383 |
+
edges = nx.draw_networkx_edges(G, dpos, arrows=None)
|
| 384 |
+
assert isinstance(edges, LineCollection)
|
| 385 |
+
edges = nx.draw_networkx_edges(dG, pos, arrows=None)
|
| 386 |
+
assert isinstance(edges, list)
|
| 387 |
+
if len(edges) > 0:
|
| 388 |
+
assert isinstance(edges[0], FancyArrowPatch)
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
def test_labels_and_colors():
|
| 392 |
+
G = nx.cubical_graph()
|
| 393 |
+
pos = nx.spring_layout(G) # positions for all nodes
|
| 394 |
+
# nodes
|
| 395 |
+
nx.draw_networkx_nodes(
|
| 396 |
+
G, pos, nodelist=[0, 1, 2, 3], node_color="r", node_size=500, alpha=0.75
|
| 397 |
+
)
|
| 398 |
+
nx.draw_networkx_nodes(
|
| 399 |
+
G,
|
| 400 |
+
pos,
|
| 401 |
+
nodelist=[4, 5, 6, 7],
|
| 402 |
+
node_color="b",
|
| 403 |
+
node_size=500,
|
| 404 |
+
alpha=[0.25, 0.5, 0.75, 1.0],
|
| 405 |
+
)
|
| 406 |
+
# edges
|
| 407 |
+
nx.draw_networkx_edges(G, pos, width=1.0, alpha=0.5)
|
| 408 |
+
nx.draw_networkx_edges(
|
| 409 |
+
G,
|
| 410 |
+
pos,
|
| 411 |
+
edgelist=[(0, 1), (1, 2), (2, 3), (3, 0)],
|
| 412 |
+
width=8,
|
| 413 |
+
alpha=0.5,
|
| 414 |
+
edge_color="r",
|
| 415 |
+
)
|
| 416 |
+
nx.draw_networkx_edges(
|
| 417 |
+
G,
|
| 418 |
+
pos,
|
| 419 |
+
edgelist=[(4, 5), (5, 6), (6, 7), (7, 4)],
|
| 420 |
+
width=8,
|
| 421 |
+
alpha=0.5,
|
| 422 |
+
edge_color="b",
|
| 423 |
+
)
|
| 424 |
+
nx.draw_networkx_edges(
|
| 425 |
+
G,
|
| 426 |
+
pos,
|
| 427 |
+
edgelist=[(4, 5), (5, 6), (6, 7), (7, 4)],
|
| 428 |
+
arrows=True,
|
| 429 |
+
min_source_margin=0.5,
|
| 430 |
+
min_target_margin=0.75,
|
| 431 |
+
width=8,
|
| 432 |
+
edge_color="b",
|
| 433 |
+
)
|
| 434 |
+
# some math labels
|
| 435 |
+
labels = {}
|
| 436 |
+
labels[0] = r"$a$"
|
| 437 |
+
labels[1] = r"$b$"
|
| 438 |
+
labels[2] = r"$c$"
|
| 439 |
+
labels[3] = r"$d$"
|
| 440 |
+
labels[4] = r"$\alpha$"
|
| 441 |
+
labels[5] = r"$\beta$"
|
| 442 |
+
labels[6] = r"$\gamma$"
|
| 443 |
+
labels[7] = r"$\delta$"
|
| 444 |
+
colors = {n: "k" if n % 2 == 0 else "r" for n in range(8)}
|
| 445 |
+
nx.draw_networkx_labels(G, pos, labels, font_size=16)
|
| 446 |
+
nx.draw_networkx_labels(G, pos, labels, font_size=16, font_color=colors)
|
| 447 |
+
nx.draw_networkx_edge_labels(G, pos, edge_labels=None, rotate=False)
|
| 448 |
+
nx.draw_networkx_edge_labels(G, pos, edge_labels={(4, 5): "4-5"})
|
| 449 |
+
# plt.show()
|
| 450 |
+
|
| 451 |
+
|
| 452 |
+
@pytest.mark.mpl_image_compare
|
| 453 |
+
def test_house_with_colors():
|
| 454 |
+
G = nx.house_graph()
|
| 455 |
+
# explicitly set positions
|
| 456 |
+
fig, ax = plt.subplots()
|
| 457 |
+
pos = {0: (0, 0), 1: (1, 0), 2: (0, 1), 3: (1, 1), 4: (0.5, 2.0)}
|
| 458 |
+
|
| 459 |
+
# Plot nodes with different properties for the "wall" and "roof" nodes
|
| 460 |
+
nx.draw_networkx_nodes(
|
| 461 |
+
G,
|
| 462 |
+
pos,
|
| 463 |
+
node_size=3000,
|
| 464 |
+
nodelist=[0, 1, 2, 3],
|
| 465 |
+
node_color="tab:blue",
|
| 466 |
+
)
|
| 467 |
+
nx.draw_networkx_nodes(
|
| 468 |
+
G, pos, node_size=2000, nodelist=[4], node_color="tab:orange"
|
| 469 |
+
)
|
| 470 |
+
nx.draw_networkx_edges(G, pos, alpha=0.5, width=6)
|
| 471 |
+
# Customize axes
|
| 472 |
+
ax.margins(0.11)
|
| 473 |
+
plt.tight_layout()
|
| 474 |
+
plt.axis("off")
|
| 475 |
+
return fig
|
| 476 |
+
|
| 477 |
+
|
| 478 |
+
def test_axes():
|
| 479 |
+
fig, ax = plt.subplots()
|
| 480 |
+
nx.draw(barbell, ax=ax)
|
| 481 |
+
nx.draw_networkx_edge_labels(barbell, nx.circular_layout(barbell), ax=ax)
|
| 482 |
+
|
| 483 |
+
|
| 484 |
+
def test_empty_graph():
|
| 485 |
+
G = nx.Graph()
|
| 486 |
+
nx.draw(G)
|
| 487 |
+
|
| 488 |
+
|
| 489 |
+
def test_draw_empty_nodes_return_values():
|
| 490 |
+
# See Issue #3833
|
| 491 |
+
import matplotlib.collections # call as mpl.collections
|
| 492 |
+
|
| 493 |
+
G = nx.Graph([(1, 2), (2, 3)])
|
| 494 |
+
DG = nx.DiGraph([(1, 2), (2, 3)])
|
| 495 |
+
pos = nx.circular_layout(G)
|
| 496 |
+
assert isinstance(
|
| 497 |
+
nx.draw_networkx_nodes(G, pos, nodelist=[]), mpl.collections.PathCollection
|
| 498 |
+
)
|
| 499 |
+
assert isinstance(
|
| 500 |
+
nx.draw_networkx_nodes(DG, pos, nodelist=[]), mpl.collections.PathCollection
|
| 501 |
+
)
|
| 502 |
+
|
| 503 |
+
# drawing empty edges used to return an empty LineCollection or empty list.
|
| 504 |
+
# Now it is always an empty list (because edges are now lists of FancyArrows)
|
| 505 |
+
assert nx.draw_networkx_edges(G, pos, edgelist=[], arrows=True) == []
|
| 506 |
+
assert nx.draw_networkx_edges(G, pos, edgelist=[], arrows=False) == []
|
| 507 |
+
assert nx.draw_networkx_edges(DG, pos, edgelist=[], arrows=False) == []
|
| 508 |
+
assert nx.draw_networkx_edges(DG, pos, edgelist=[], arrows=True) == []
|
| 509 |
+
|
| 510 |
+
|
| 511 |
+
def test_multigraph_edgelist_tuples():
|
| 512 |
+
# See Issue #3295
|
| 513 |
+
G = nx.path_graph(3, create_using=nx.MultiDiGraph)
|
| 514 |
+
nx.draw_networkx(G, edgelist=[(0, 1, 0)])
|
| 515 |
+
nx.draw_networkx(G, edgelist=[(0, 1, 0)], node_size=[10, 20, 0])
|
| 516 |
+
|
| 517 |
+
|
| 518 |
+
def test_alpha_iter():
|
| 519 |
+
pos = nx.random_layout(barbell)
|
| 520 |
+
fig = plt.figure()
|
| 521 |
+
# with fewer alpha elements than nodes
|
| 522 |
+
fig.add_subplot(131) # Each test in a new axis object
|
| 523 |
+
nx.draw_networkx_nodes(barbell, pos, alpha=[0.1, 0.2])
|
| 524 |
+
# with equal alpha elements and nodes
|
| 525 |
+
num_nodes = len(barbell.nodes)
|
| 526 |
+
alpha = [x / num_nodes for x in range(num_nodes)]
|
| 527 |
+
colors = range(num_nodes)
|
| 528 |
+
fig.add_subplot(132)
|
| 529 |
+
nx.draw_networkx_nodes(barbell, pos, node_color=colors, alpha=alpha)
|
| 530 |
+
# with more alpha elements than nodes
|
| 531 |
+
alpha.append(1)
|
| 532 |
+
fig.add_subplot(133)
|
| 533 |
+
nx.draw_networkx_nodes(barbell, pos, alpha=alpha)
|
| 534 |
+
|
| 535 |
+
|
| 536 |
+
def test_multiple_node_shapes():
|
| 537 |
+
G = nx.path_graph(4)
|
| 538 |
+
ax = plt.figure().add_subplot(111)
|
| 539 |
+
nx.draw(G, node_shape=["o", "h", "s", "^"], ax=ax)
|
| 540 |
+
scatters = [
|
| 541 |
+
s for s in ax.get_children() if isinstance(s, mpl.collections.PathCollection)
|
| 542 |
+
]
|
| 543 |
+
assert len(scatters) == 4
|
| 544 |
+
|
| 545 |
+
|
| 546 |
+
def test_individualized_font_attributes():
|
| 547 |
+
G = nx.karate_club_graph()
|
| 548 |
+
ax = plt.figure().add_subplot(111)
|
| 549 |
+
nx.draw(
|
| 550 |
+
G,
|
| 551 |
+
ax=ax,
|
| 552 |
+
font_color={n: "k" if n % 2 else "r" for n in G.nodes()},
|
| 553 |
+
font_size={n: int(n / (34 / 15) + 5) for n in G.nodes()},
|
| 554 |
+
)
|
| 555 |
+
for n, t in zip(
|
| 556 |
+
G.nodes(),
|
| 557 |
+
[
|
| 558 |
+
t
|
| 559 |
+
for t in ax.get_children()
|
| 560 |
+
if isinstance(t, mpl.text.Text) and len(t.get_text()) > 0
|
| 561 |
+
],
|
| 562 |
+
):
|
| 563 |
+
expected = "black" if n % 2 else "red"
|
| 564 |
+
|
| 565 |
+
assert mpl.colors.same_color(t.get_color(), expected)
|
| 566 |
+
assert int(n / (34 / 15) + 5) == t.get_size()
|
| 567 |
+
|
| 568 |
+
|
| 569 |
+
def test_individualized_edge_attributes():
|
| 570 |
+
G = nx.karate_club_graph()
|
| 571 |
+
ax = plt.figure().add_subplot(111)
|
| 572 |
+
arrowstyles = ["-|>" if (u + v) % 2 == 0 else "-[" for u, v in G.edges()]
|
| 573 |
+
arrowsizes = [10 * (u % 2 + v % 2) + 10 for u, v in G.edges()]
|
| 574 |
+
nx.draw(G, ax=ax, arrows=True, arrowstyle=arrowstyles, arrowsize=arrowsizes)
|
| 575 |
+
arrows = [
|
| 576 |
+
f for f in ax.get_children() if isinstance(f, mpl.patches.FancyArrowPatch)
|
| 577 |
+
]
|
| 578 |
+
for e, a in zip(G.edges(), arrows):
|
| 579 |
+
assert a.get_mutation_scale() == 10 * (e[0] % 2 + e[1] % 2) + 10
|
| 580 |
+
expected = (
|
| 581 |
+
mpl.patches.ArrowStyle.BracketB
|
| 582 |
+
if sum(e) % 2
|
| 583 |
+
else mpl.patches.ArrowStyle.CurveFilledB
|
| 584 |
+
)
|
| 585 |
+
assert isinstance(a.get_arrowstyle(), expected)
|
| 586 |
+
|
| 587 |
+
|
| 588 |
+
def test_error_invalid_kwds():
|
| 589 |
+
with pytest.raises(ValueError, match="Received invalid argument"):
|
| 590 |
+
nx.draw(barbell, foo="bar")
|
| 591 |
+
|
| 592 |
+
|
| 593 |
+
def test_draw_networkx_arrowsize_incorrect_size():
|
| 594 |
+
G = nx.DiGraph([(0, 1), (0, 2), (0, 3), (1, 3)])
|
| 595 |
+
arrowsize = [1, 2, 3]
|
| 596 |
+
with pytest.raises(
|
| 597 |
+
ValueError, match="arrowsize should have the same length as edgelist"
|
| 598 |
+
):
|
| 599 |
+
nx.draw(G, arrowsize=arrowsize)
|
| 600 |
+
|
| 601 |
+
|
| 602 |
+
@pytest.mark.parametrize("arrowsize", (30, [10, 20, 30]))
|
| 603 |
+
def test_draw_edges_arrowsize(arrowsize):
|
| 604 |
+
G = nx.DiGraph([(0, 1), (0, 2), (1, 2)])
|
| 605 |
+
pos = {0: (0, 0), 1: (0, 1), 2: (1, 0)}
|
| 606 |
+
edges = nx.draw_networkx_edges(G, pos=pos, arrowsize=arrowsize)
|
| 607 |
+
|
| 608 |
+
arrowsize = itertools.repeat(arrowsize) if isinstance(arrowsize, int) else arrowsize
|
| 609 |
+
|
| 610 |
+
for fap, expected in zip(edges, arrowsize):
|
| 611 |
+
assert isinstance(fap, mpl.patches.FancyArrowPatch)
|
| 612 |
+
assert fap.get_mutation_scale() == expected
|
| 613 |
+
|
| 614 |
+
|
| 615 |
+
@pytest.mark.parametrize("arrowstyle", ("-|>", ["-|>", "-[", "<|-|>"]))
|
| 616 |
+
def test_draw_edges_arrowstyle(arrowstyle):
|
| 617 |
+
G = nx.DiGraph([(0, 1), (0, 2), (1, 2)])
|
| 618 |
+
pos = {0: (0, 0), 1: (0, 1), 2: (1, 0)}
|
| 619 |
+
edges = nx.draw_networkx_edges(G, pos=pos, arrowstyle=arrowstyle)
|
| 620 |
+
|
| 621 |
+
arrowstyle = (
|
| 622 |
+
itertools.repeat(arrowstyle) if isinstance(arrowstyle, str) else arrowstyle
|
| 623 |
+
)
|
| 624 |
+
|
| 625 |
+
arrow_objects = {
|
| 626 |
+
"-|>": mpl.patches.ArrowStyle.CurveFilledB,
|
| 627 |
+
"-[": mpl.patches.ArrowStyle.BracketB,
|
| 628 |
+
"<|-|>": mpl.patches.ArrowStyle.CurveFilledAB,
|
| 629 |
+
}
|
| 630 |
+
|
| 631 |
+
for fap, expected in zip(edges, arrowstyle):
|
| 632 |
+
assert isinstance(fap, mpl.patches.FancyArrowPatch)
|
| 633 |
+
assert isinstance(fap.get_arrowstyle(), arrow_objects[expected])
|
| 634 |
+
|
| 635 |
+
|
| 636 |
+
def test_np_edgelist():
|
| 637 |
+
# see issue #4129
|
| 638 |
+
nx.draw_networkx(barbell, edgelist=np.array([(0, 2), (0, 3)]))
|
| 639 |
+
|
| 640 |
+
|
| 641 |
+
def test_draw_nodes_missing_node_from_position():
|
| 642 |
+
G = nx.path_graph(3)
|
| 643 |
+
pos = {0: (0, 0), 1: (1, 1)} # No position for node 2
|
| 644 |
+
with pytest.raises(nx.NetworkXError, match="has no position"):
|
| 645 |
+
nx.draw_networkx_nodes(G, pos)
|
| 646 |
+
|
| 647 |
+
|
| 648 |
+
# NOTE: parametrizing on marker to test both branches of internal
|
| 649 |
+
# nx.draw_networkx_edges.to_marker_edge function
|
| 650 |
+
@pytest.mark.parametrize("node_shape", ("o", "s"))
|
| 651 |
+
def test_draw_edges_min_source_target_margins(node_shape):
|
| 652 |
+
"""Test that there is a wider gap between the node and the start of an
|
| 653 |
+
incident edge when min_source_margin is specified.
|
| 654 |
+
|
| 655 |
+
This test checks that the use of min_{source/target}_margin kwargs result
|
| 656 |
+
in shorter (more padding) between the edges and source and target nodes.
|
| 657 |
+
As a crude visual example, let 's' and 't' represent source and target
|
| 658 |
+
nodes, respectively:
|
| 659 |
+
|
| 660 |
+
Default:
|
| 661 |
+
s-----------------------------t
|
| 662 |
+
|
| 663 |
+
With margins:
|
| 664 |
+
s ----------------------- t
|
| 665 |
+
|
| 666 |
+
"""
|
| 667 |
+
# Create a single axis object to get consistent pixel coords across
|
| 668 |
+
# multiple draws
|
| 669 |
+
fig, ax = plt.subplots()
|
| 670 |
+
G = nx.DiGraph([(0, 1)])
|
| 671 |
+
pos = {0: (0, 0), 1: (1, 0)} # horizontal layout
|
| 672 |
+
# Get leftmost and rightmost points of the FancyArrowPatch object
|
| 673 |
+
# representing the edge between nodes 0 and 1 (in pixel coordinates)
|
| 674 |
+
default_patch = nx.draw_networkx_edges(G, pos, ax=ax, node_shape=node_shape)[0]
|
| 675 |
+
default_extent = default_patch.get_extents().corners()[::2, 0]
|
| 676 |
+
# Now, do the same but with "padding" for the source and target via the
|
| 677 |
+
# min_{source/target}_margin kwargs
|
| 678 |
+
padded_patch = nx.draw_networkx_edges(
|
| 679 |
+
G,
|
| 680 |
+
pos,
|
| 681 |
+
ax=ax,
|
| 682 |
+
node_shape=node_shape,
|
| 683 |
+
min_source_margin=100,
|
| 684 |
+
min_target_margin=100,
|
| 685 |
+
)[0]
|
| 686 |
+
padded_extent = padded_patch.get_extents().corners()[::2, 0]
|
| 687 |
+
|
| 688 |
+
# With padding, the left-most extent of the edge should be further to the
|
| 689 |
+
# right
|
| 690 |
+
assert padded_extent[0] > default_extent[0]
|
| 691 |
+
# And the rightmost extent of the edge, further to the left
|
| 692 |
+
assert padded_extent[1] < default_extent[1]
|
| 693 |
+
|
| 694 |
+
|
| 695 |
+
# NOTE: parametrizing on marker to test both branches of internal
|
| 696 |
+
# nx.draw_networkx_edges.to_marker_edge function
|
| 697 |
+
@pytest.mark.parametrize("node_shape", ("o", "s"))
|
| 698 |
+
def test_draw_edges_min_source_target_margins_individual(node_shape):
|
| 699 |
+
"""Test that there is a wider gap between the node and the start of an
|
| 700 |
+
incident edge when min_source_margin is specified.
|
| 701 |
+
|
| 702 |
+
This test checks that the use of min_{source/target}_margin kwargs result
|
| 703 |
+
in shorter (more padding) between the edges and source and target nodes.
|
| 704 |
+
As a crude visual example, let 's' and 't' represent source and target
|
| 705 |
+
nodes, respectively:
|
| 706 |
+
|
| 707 |
+
Default:
|
| 708 |
+
s-----------------------------t
|
| 709 |
+
|
| 710 |
+
With margins:
|
| 711 |
+
s ----------------------- t
|
| 712 |
+
|
| 713 |
+
"""
|
| 714 |
+
# Create a single axis object to get consistent pixel coords across
|
| 715 |
+
# multiple draws
|
| 716 |
+
fig, ax = plt.subplots()
|
| 717 |
+
G = nx.DiGraph([(0, 1), (1, 2)])
|
| 718 |
+
pos = {0: (0, 0), 1: (1, 0), 2: (2, 0)} # horizontal layout
|
| 719 |
+
# Get leftmost and rightmost points of the FancyArrowPatch object
|
| 720 |
+
# representing the edge between nodes 0 and 1 (in pixel coordinates)
|
| 721 |
+
default_patch = nx.draw_networkx_edges(G, pos, ax=ax, node_shape=node_shape)
|
| 722 |
+
default_extent = [d.get_extents().corners()[::2, 0] for d in default_patch]
|
| 723 |
+
# Now, do the same but with "padding" for the source and target via the
|
| 724 |
+
# min_{source/target}_margin kwargs
|
| 725 |
+
padded_patch = nx.draw_networkx_edges(
|
| 726 |
+
G,
|
| 727 |
+
pos,
|
| 728 |
+
ax=ax,
|
| 729 |
+
node_shape=node_shape,
|
| 730 |
+
min_source_margin=[98, 102],
|
| 731 |
+
min_target_margin=[98, 102],
|
| 732 |
+
)
|
| 733 |
+
padded_extent = [p.get_extents().corners()[::2, 0] for p in padded_patch]
|
| 734 |
+
for d, p in zip(default_extent, padded_extent):
|
| 735 |
+
print(f"{p=}, {d=}")
|
| 736 |
+
# With padding, the left-most extent of the edge should be further to the
|
| 737 |
+
# right
|
| 738 |
+
assert p[0] > d[0]
|
| 739 |
+
# And the rightmost extent of the edge, further to the left
|
| 740 |
+
assert p[1] < d[1]
|
| 741 |
+
|
| 742 |
+
|
| 743 |
+
def test_nonzero_selfloop_with_single_node():
|
| 744 |
+
"""Ensure that selfloop extent is non-zero when there is only one node."""
|
| 745 |
+
# Create explicit axis object for test
|
| 746 |
+
fig, ax = plt.subplots()
|
| 747 |
+
# Graph with single node + self loop
|
| 748 |
+
G = nx.DiGraph()
|
| 749 |
+
G.add_node(0)
|
| 750 |
+
G.add_edge(0, 0)
|
| 751 |
+
# Draw
|
| 752 |
+
patch = nx.draw_networkx_edges(G, {0: (0, 0)})[0]
|
| 753 |
+
# The resulting patch must have non-zero extent
|
| 754 |
+
bbox = patch.get_extents()
|
| 755 |
+
assert bbox.width > 0 and bbox.height > 0
|
| 756 |
+
# Cleanup
|
| 757 |
+
plt.delaxes(ax)
|
| 758 |
+
plt.close()
|
| 759 |
+
|
| 760 |
+
|
| 761 |
+
def test_nonzero_selfloop_with_single_edge_in_edgelist():
|
| 762 |
+
"""Ensure that selfloop extent is non-zero when only a single edge is
|
| 763 |
+
specified in the edgelist.
|
| 764 |
+
"""
|
| 765 |
+
# Create explicit axis object for test
|
| 766 |
+
fig, ax = plt.subplots()
|
| 767 |
+
# Graph with selfloop
|
| 768 |
+
G = nx.path_graph(2, create_using=nx.DiGraph)
|
| 769 |
+
G.add_edge(1, 1)
|
| 770 |
+
pos = {n: (n, n) for n in G.nodes}
|
| 771 |
+
# Draw only the selfloop edge via the `edgelist` kwarg
|
| 772 |
+
patch = nx.draw_networkx_edges(G, pos, edgelist=[(1, 1)])[0]
|
| 773 |
+
# The resulting patch must have non-zero extent
|
| 774 |
+
bbox = patch.get_extents()
|
| 775 |
+
assert bbox.width > 0 and bbox.height > 0
|
| 776 |
+
# Cleanup
|
| 777 |
+
plt.delaxes(ax)
|
| 778 |
+
plt.close()
|
| 779 |
+
|
| 780 |
+
|
| 781 |
+
def test_apply_alpha():
|
| 782 |
+
"""Test apply_alpha when there is a mismatch between the number of
|
| 783 |
+
supplied colors and elements.
|
| 784 |
+
"""
|
| 785 |
+
nodelist = [0, 1, 2]
|
| 786 |
+
colorlist = ["r", "g", "b"]
|
| 787 |
+
alpha = 0.5
|
| 788 |
+
rgba_colors = nx.drawing.nx_pylab.apply_alpha(colorlist, alpha, nodelist)
|
| 789 |
+
assert all(rgba_colors[:, -1] == alpha)
|
| 790 |
+
|
| 791 |
+
|
| 792 |
+
def test_draw_edges_toggling_with_arrows_kwarg():
|
| 793 |
+
"""
|
| 794 |
+
The `arrows` keyword argument is used as a 3-way switch to select which
|
| 795 |
+
type of object to use for drawing edges:
|
| 796 |
+
- ``arrows=None`` -> default (FancyArrowPatches for directed, else LineCollection)
|
| 797 |
+
- ``arrows=True`` -> FancyArrowPatches
|
| 798 |
+
- ``arrows=False`` -> LineCollection
|
| 799 |
+
"""
|
| 800 |
+
import matplotlib.collections
|
| 801 |
+
import matplotlib.patches
|
| 802 |
+
|
| 803 |
+
UG = nx.path_graph(3)
|
| 804 |
+
DG = nx.path_graph(3, create_using=nx.DiGraph)
|
| 805 |
+
pos = {n: (n, n) for n in UG}
|
| 806 |
+
|
| 807 |
+
# Use FancyArrowPatches when arrows=True, regardless of graph type
|
| 808 |
+
for G in (UG, DG):
|
| 809 |
+
edges = nx.draw_networkx_edges(G, pos, arrows=True)
|
| 810 |
+
assert len(edges) == len(G.edges)
|
| 811 |
+
assert isinstance(edges[0], mpl.patches.FancyArrowPatch)
|
| 812 |
+
|
| 813 |
+
# Use LineCollection when arrows=False, regardless of graph type
|
| 814 |
+
for G in (UG, DG):
|
| 815 |
+
edges = nx.draw_networkx_edges(G, pos, arrows=False)
|
| 816 |
+
assert isinstance(edges, mpl.collections.LineCollection)
|
| 817 |
+
|
| 818 |
+
# Default behavior when arrows=None: FAPs for directed, LC's for undirected
|
| 819 |
+
edges = nx.draw_networkx_edges(UG, pos)
|
| 820 |
+
assert isinstance(edges, mpl.collections.LineCollection)
|
| 821 |
+
edges = nx.draw_networkx_edges(DG, pos)
|
| 822 |
+
assert len(edges) == len(G.edges)
|
| 823 |
+
assert isinstance(edges[0], mpl.patches.FancyArrowPatch)
|
| 824 |
+
|
| 825 |
+
|
| 826 |
+
@pytest.mark.parametrize("drawing_func", (nx.draw, nx.draw_networkx))
|
| 827 |
+
def test_draw_networkx_arrows_default_undirected(drawing_func):
|
| 828 |
+
import matplotlib.collections
|
| 829 |
+
|
| 830 |
+
G = nx.path_graph(3)
|
| 831 |
+
fig, ax = plt.subplots()
|
| 832 |
+
drawing_func(G, ax=ax)
|
| 833 |
+
assert any(isinstance(c, mpl.collections.LineCollection) for c in ax.collections)
|
| 834 |
+
assert not ax.patches
|
| 835 |
+
plt.delaxes(ax)
|
| 836 |
+
plt.close()
|
| 837 |
+
|
| 838 |
+
|
| 839 |
+
@pytest.mark.parametrize("drawing_func", (nx.draw, nx.draw_networkx))
|
| 840 |
+
def test_draw_networkx_arrows_default_directed(drawing_func):
|
| 841 |
+
import matplotlib.collections
|
| 842 |
+
|
| 843 |
+
G = nx.path_graph(3, create_using=nx.DiGraph)
|
| 844 |
+
fig, ax = plt.subplots()
|
| 845 |
+
drawing_func(G, ax=ax)
|
| 846 |
+
assert not any(
|
| 847 |
+
isinstance(c, mpl.collections.LineCollection) for c in ax.collections
|
| 848 |
+
)
|
| 849 |
+
assert ax.patches
|
| 850 |
+
plt.delaxes(ax)
|
| 851 |
+
plt.close()
|
| 852 |
+
|
| 853 |
+
|
| 854 |
+
def test_edgelist_kwarg_not_ignored():
|
| 855 |
+
# See gh-4994
|
| 856 |
+
G = nx.path_graph(3)
|
| 857 |
+
G.add_edge(0, 0)
|
| 858 |
+
fig, ax = plt.subplots()
|
| 859 |
+
nx.draw(G, edgelist=[(0, 1), (1, 2)], ax=ax) # Exclude self-loop from edgelist
|
| 860 |
+
assert not ax.patches
|
| 861 |
+
plt.delaxes(ax)
|
| 862 |
+
plt.close()
|
| 863 |
+
|
| 864 |
+
|
| 865 |
+
@pytest.mark.parametrize(
|
| 866 |
+
("G", "expected_n_edges"),
|
| 867 |
+
([nx.DiGraph(), 2], [nx.MultiGraph(), 4], [nx.MultiDiGraph(), 4]),
|
| 868 |
+
)
|
| 869 |
+
def test_draw_networkx_edges_multiedge_connectionstyle(G, expected_n_edges):
|
| 870 |
+
"""Draws edges correctly for 3 types of graphs and checks for valid length"""
|
| 871 |
+
for i, (u, v) in enumerate([(0, 1), (0, 1), (0, 1), (0, 2)]):
|
| 872 |
+
G.add_edge(u, v, weight=round(i / 3, 2))
|
| 873 |
+
pos = {n: (n, n) for n in G}
|
| 874 |
+
# Raises on insufficient connectionstyle length
|
| 875 |
+
for conn_style in [
|
| 876 |
+
"arc3,rad=0.1",
|
| 877 |
+
["arc3,rad=0.1", "arc3,rad=0.1"],
|
| 878 |
+
["arc3,rad=0.1", "arc3,rad=0.1", "arc3,rad=0.2"],
|
| 879 |
+
]:
|
| 880 |
+
nx.draw_networkx_edges(G, pos, connectionstyle=conn_style)
|
| 881 |
+
arrows = nx.draw_networkx_edges(G, pos, connectionstyle=conn_style)
|
| 882 |
+
assert len(arrows) == expected_n_edges
|
| 883 |
+
|
| 884 |
+
|
| 885 |
+
@pytest.mark.parametrize(
|
| 886 |
+
("G", "expected_n_edges"),
|
| 887 |
+
([nx.DiGraph(), 2], [nx.MultiGraph(), 4], [nx.MultiDiGraph(), 4]),
|
| 888 |
+
)
|
| 889 |
+
def test_draw_networkx_edge_labels_multiedge_connectionstyle(G, expected_n_edges):
|
| 890 |
+
"""Draws labels correctly for 3 types of graphs and checks for valid length and class names"""
|
| 891 |
+
for i, (u, v) in enumerate([(0, 1), (0, 1), (0, 1), (0, 2)]):
|
| 892 |
+
G.add_edge(u, v, weight=round(i / 3, 2))
|
| 893 |
+
pos = {n: (n, n) for n in G}
|
| 894 |
+
# Raises on insufficient connectionstyle length
|
| 895 |
+
arrows = nx.draw_networkx_edges(
|
| 896 |
+
G, pos, connectionstyle=["arc3,rad=0.1", "arc3,rad=0.1", "arc3,rad=0.1"]
|
| 897 |
+
)
|
| 898 |
+
for conn_style in [
|
| 899 |
+
"arc3,rad=0.1",
|
| 900 |
+
["arc3,rad=0.1", "arc3,rad=0.2"],
|
| 901 |
+
["arc3,rad=0.1", "arc3,rad=0.1", "arc3,rad=0.1"],
|
| 902 |
+
]:
|
| 903 |
+
text_items = nx.draw_networkx_edge_labels(G, pos, connectionstyle=conn_style)
|
| 904 |
+
assert len(text_items) == expected_n_edges
|
| 905 |
+
for ti in text_items.values():
|
| 906 |
+
assert ti.__class__.__name__ == "CurvedArrowText"
|
| 907 |
+
|
| 908 |
+
|
| 909 |
+
def test_draw_networkx_edge_label_multiedge():
|
| 910 |
+
G = nx.MultiGraph()
|
| 911 |
+
G.add_edge(0, 1, weight=10)
|
| 912 |
+
G.add_edge(0, 1, weight=20)
|
| 913 |
+
edge_labels = nx.get_edge_attributes(G, "weight") # Includes edge keys
|
| 914 |
+
pos = {n: (n, n) for n in G}
|
| 915 |
+
text_items = nx.draw_networkx_edge_labels(
|
| 916 |
+
G,
|
| 917 |
+
pos,
|
| 918 |
+
edge_labels=edge_labels,
|
| 919 |
+
connectionstyle=["arc3,rad=0.1", "arc3,rad=0.2"],
|
| 920 |
+
)
|
| 921 |
+
assert len(text_items) == 2
|
| 922 |
+
|
| 923 |
+
|
| 924 |
+
def test_draw_networkx_edge_label_empty_dict():
|
| 925 |
+
"""Regression test for draw_networkx_edge_labels with empty dict. See
|
| 926 |
+
gh-5372."""
|
| 927 |
+
G = nx.path_graph(3)
|
| 928 |
+
pos = {n: (n, n) for n in G.nodes}
|
| 929 |
+
assert nx.draw_networkx_edge_labels(G, pos, edge_labels={}) == {}
|
| 930 |
+
|
| 931 |
+
|
| 932 |
+
def test_draw_networkx_edges_undirected_selfloop_colors():
|
| 933 |
+
"""When an edgelist is supplied along with a sequence of colors, check that
|
| 934 |
+
the self-loops have the correct colors."""
|
| 935 |
+
fig, ax = plt.subplots()
|
| 936 |
+
# Edge list and corresponding colors
|
| 937 |
+
edgelist = [(1, 3), (1, 2), (2, 3), (1, 1), (3, 3), (2, 2)]
|
| 938 |
+
edge_colors = ["pink", "cyan", "black", "red", "blue", "green"]
|
| 939 |
+
|
| 940 |
+
G = nx.Graph(edgelist)
|
| 941 |
+
pos = {n: (n, n) for n in G.nodes}
|
| 942 |
+
nx.draw_networkx_edges(G, pos, ax=ax, edgelist=edgelist, edge_color=edge_colors)
|
| 943 |
+
|
| 944 |
+
# Verify that there are three fancy arrow patches (1 per self loop)
|
| 945 |
+
assert len(ax.patches) == 3
|
| 946 |
+
|
| 947 |
+
# These are points that should be contained in the self loops. For example,
|
| 948 |
+
# sl_points[0] will be (1, 1.1), which is inside the "path" of the first
|
| 949 |
+
# self-loop but outside the others
|
| 950 |
+
sl_points = np.array(edgelist[-3:]) + np.array([0, 0.1])
|
| 951 |
+
|
| 952 |
+
# Check that the mapping between self-loop locations and their colors is
|
| 953 |
+
# correct
|
| 954 |
+
for fap, clr, slp in zip(ax.patches, edge_colors[-3:], sl_points):
|
| 955 |
+
assert fap.get_path().contains_point(slp)
|
| 956 |
+
assert mpl.colors.same_color(fap.get_edgecolor(), clr)
|
| 957 |
+
plt.delaxes(ax)
|
| 958 |
+
plt.close()
|
| 959 |
+
|
| 960 |
+
|
| 961 |
+
@pytest.mark.parametrize(
|
| 962 |
+
"fap_only_kwarg", # Non-default values for kwargs that only apply to FAPs
|
| 963 |
+
(
|
| 964 |
+
{"arrowstyle": "-"},
|
| 965 |
+
{"arrowsize": 20},
|
| 966 |
+
{"connectionstyle": "arc3,rad=0.2"},
|
| 967 |
+
{"min_source_margin": 10},
|
| 968 |
+
{"min_target_margin": 10},
|
| 969 |
+
),
|
| 970 |
+
)
|
| 971 |
+
def test_user_warnings_for_unused_edge_drawing_kwargs(fap_only_kwarg):
|
| 972 |
+
"""Users should get a warning when they specify a non-default value for
|
| 973 |
+
one of the kwargs that applies only to edges drawn with FancyArrowPatches,
|
| 974 |
+
but FancyArrowPatches aren't being used under the hood."""
|
| 975 |
+
G = nx.path_graph(3)
|
| 976 |
+
pos = {n: (n, n) for n in G}
|
| 977 |
+
fig, ax = plt.subplots()
|
| 978 |
+
# By default, an undirected graph will use LineCollection to represent
|
| 979 |
+
# the edges
|
| 980 |
+
kwarg_name = list(fap_only_kwarg.keys())[0]
|
| 981 |
+
with pytest.warns(
|
| 982 |
+
UserWarning, match=f"\n\nThe {kwarg_name} keyword argument is not applicable"
|
| 983 |
+
):
|
| 984 |
+
nx.draw_networkx_edges(G, pos, ax=ax, **fap_only_kwarg)
|
| 985 |
+
# FancyArrowPatches are always used when `arrows=True` is specified.
|
| 986 |
+
# Check that warnings are *not* raised in this case
|
| 987 |
+
with warnings.catch_warnings():
|
| 988 |
+
# Escalate warnings -> errors so tests fail if warnings are raised
|
| 989 |
+
warnings.simplefilter("error")
|
| 990 |
+
nx.draw_networkx_edges(G, pos, ax=ax, arrows=True, **fap_only_kwarg)
|
| 991 |
+
|
| 992 |
+
plt.delaxes(ax)
|
| 993 |
+
plt.close()
|
| 994 |
+
|
| 995 |
+
|
| 996 |
+
@pytest.mark.parametrize("draw_fn", (nx.draw, nx.draw_circular))
|
| 997 |
+
def test_no_warning_on_default_draw_arrowstyle(draw_fn):
|
| 998 |
+
# See gh-7284
|
| 999 |
+
fig, ax = plt.subplots()
|
| 1000 |
+
G = nx.cycle_graph(5)
|
| 1001 |
+
with warnings.catch_warnings(record=True) as w:
|
| 1002 |
+
draw_fn(G, ax=ax)
|
| 1003 |
+
assert len(w) == 0
|
| 1004 |
+
|
| 1005 |
+
plt.delaxes(ax)
|
| 1006 |
+
plt.close()
|
| 1007 |
+
|
| 1008 |
+
|
| 1009 |
+
@pytest.mark.parametrize("hide_ticks", [False, True])
|
| 1010 |
+
@pytest.mark.parametrize(
|
| 1011 |
+
"method",
|
| 1012 |
+
[
|
| 1013 |
+
nx.draw_networkx,
|
| 1014 |
+
nx.draw_networkx_edge_labels,
|
| 1015 |
+
nx.draw_networkx_edges,
|
| 1016 |
+
nx.draw_networkx_labels,
|
| 1017 |
+
nx.draw_networkx_nodes,
|
| 1018 |
+
],
|
| 1019 |
+
)
|
| 1020 |
+
def test_hide_ticks(method, hide_ticks):
|
| 1021 |
+
G = nx.path_graph(3)
|
| 1022 |
+
pos = {n: (n, n) for n in G.nodes}
|
| 1023 |
+
_, ax = plt.subplots()
|
| 1024 |
+
method(G, pos=pos, ax=ax, hide_ticks=hide_ticks)
|
| 1025 |
+
for axis in [ax.xaxis, ax.yaxis]:
|
| 1026 |
+
assert bool(axis.get_ticklabels()) != hide_ticks
|
| 1027 |
+
|
| 1028 |
+
plt.delaxes(ax)
|
| 1029 |
+
plt.close()
|
wemm/lib/python3.10/site-packages/networkx/generators/__init__.py
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
A package for generating various graphs in networkx.
|
| 3 |
+
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
from networkx.generators.atlas import *
|
| 7 |
+
from networkx.generators.classic import *
|
| 8 |
+
from networkx.generators.cographs import *
|
| 9 |
+
from networkx.generators.community import *
|
| 10 |
+
from networkx.generators.degree_seq import *
|
| 11 |
+
from networkx.generators.directed import *
|
| 12 |
+
from networkx.generators.duplication import *
|
| 13 |
+
from networkx.generators.ego import *
|
| 14 |
+
from networkx.generators.expanders import *
|
| 15 |
+
from networkx.generators.geometric import *
|
| 16 |
+
from networkx.generators.harary_graph import *
|
| 17 |
+
from networkx.generators.internet_as_graphs import *
|
| 18 |
+
from networkx.generators.intersection import *
|
| 19 |
+
from networkx.generators.interval_graph import *
|
| 20 |
+
from networkx.generators.joint_degree_seq import *
|
| 21 |
+
from networkx.generators.lattice import *
|
| 22 |
+
from networkx.generators.line import *
|
| 23 |
+
from networkx.generators.mycielski import *
|
| 24 |
+
from networkx.generators.nonisomorphic_trees import *
|
| 25 |
+
from networkx.generators.random_clustered import *
|
| 26 |
+
from networkx.generators.random_graphs import *
|
| 27 |
+
from networkx.generators.small import *
|
| 28 |
+
from networkx.generators.social import *
|
| 29 |
+
from networkx.generators.spectral_graph_forge import *
|
| 30 |
+
from networkx.generators.stochastic import *
|
| 31 |
+
from networkx.generators.sudoku import *
|
| 32 |
+
from networkx.generators.time_series import *
|
| 33 |
+
from networkx.generators.trees import *
|
| 34 |
+
from networkx.generators.triads import *
|
wemm/lib/python3.10/site-packages/networkx/generators/classic.py
ADDED
|
@@ -0,0 +1,1068 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Generators for some classic graphs.
|
| 2 |
+
|
| 3 |
+
The typical graph builder function is called as follows:
|
| 4 |
+
|
| 5 |
+
>>> G = nx.complete_graph(100)
|
| 6 |
+
|
| 7 |
+
returning the complete graph on n nodes labeled 0, .., 99
|
| 8 |
+
as a simple graph. Except for `empty_graph`, all the functions
|
| 9 |
+
in this module return a Graph class (i.e. a simple, undirected graph).
|
| 10 |
+
|
| 11 |
+
"""
|
| 12 |
+
|
| 13 |
+
import itertools
|
| 14 |
+
import numbers
|
| 15 |
+
|
| 16 |
+
import networkx as nx
|
| 17 |
+
from networkx.classes import Graph
|
| 18 |
+
from networkx.exception import NetworkXError
|
| 19 |
+
from networkx.utils import nodes_or_number, pairwise
|
| 20 |
+
|
| 21 |
+
__all__ = [
|
| 22 |
+
"balanced_tree",
|
| 23 |
+
"barbell_graph",
|
| 24 |
+
"binomial_tree",
|
| 25 |
+
"complete_graph",
|
| 26 |
+
"complete_multipartite_graph",
|
| 27 |
+
"circular_ladder_graph",
|
| 28 |
+
"circulant_graph",
|
| 29 |
+
"cycle_graph",
|
| 30 |
+
"dorogovtsev_goltsev_mendes_graph",
|
| 31 |
+
"empty_graph",
|
| 32 |
+
"full_rary_tree",
|
| 33 |
+
"kneser_graph",
|
| 34 |
+
"ladder_graph",
|
| 35 |
+
"lollipop_graph",
|
| 36 |
+
"null_graph",
|
| 37 |
+
"path_graph",
|
| 38 |
+
"star_graph",
|
| 39 |
+
"tadpole_graph",
|
| 40 |
+
"trivial_graph",
|
| 41 |
+
"turan_graph",
|
| 42 |
+
"wheel_graph",
|
| 43 |
+
]
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
# -------------------------------------------------------------------
|
| 47 |
+
# Some Classic Graphs
|
| 48 |
+
# -------------------------------------------------------------------
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def _tree_edges(n, r):
|
| 52 |
+
if n == 0:
|
| 53 |
+
return
|
| 54 |
+
# helper function for trees
|
| 55 |
+
# yields edges in rooted tree at 0 with n nodes and branching ratio r
|
| 56 |
+
nodes = iter(range(n))
|
| 57 |
+
parents = [next(nodes)] # stack of max length r
|
| 58 |
+
while parents:
|
| 59 |
+
source = parents.pop(0)
|
| 60 |
+
for i in range(r):
|
| 61 |
+
try:
|
| 62 |
+
target = next(nodes)
|
| 63 |
+
parents.append(target)
|
| 64 |
+
yield source, target
|
| 65 |
+
except StopIteration:
|
| 66 |
+
break
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
| 70 |
+
def full_rary_tree(r, n, create_using=None):
|
| 71 |
+
"""Creates a full r-ary tree of `n` nodes.
|
| 72 |
+
|
| 73 |
+
Sometimes called a k-ary, n-ary, or m-ary tree.
|
| 74 |
+
"... all non-leaf nodes have exactly r children and all levels
|
| 75 |
+
are full except for some rightmost position of the bottom level
|
| 76 |
+
(if a leaf at the bottom level is missing, then so are all of the
|
| 77 |
+
leaves to its right." [1]_
|
| 78 |
+
|
| 79 |
+
.. plot::
|
| 80 |
+
|
| 81 |
+
>>> nx.draw(nx.full_rary_tree(2, 10))
|
| 82 |
+
|
| 83 |
+
Parameters
|
| 84 |
+
----------
|
| 85 |
+
r : int
|
| 86 |
+
branching factor of the tree
|
| 87 |
+
n : int
|
| 88 |
+
Number of nodes in the tree
|
| 89 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
| 90 |
+
Graph type to create. If graph instance, then cleared before populated.
|
| 91 |
+
|
| 92 |
+
Returns
|
| 93 |
+
-------
|
| 94 |
+
G : networkx Graph
|
| 95 |
+
An r-ary tree with n nodes
|
| 96 |
+
|
| 97 |
+
References
|
| 98 |
+
----------
|
| 99 |
+
.. [1] An introduction to data structures and algorithms,
|
| 100 |
+
James Andrew Storer, Birkhauser Boston 2001, (page 225).
|
| 101 |
+
"""
|
| 102 |
+
G = empty_graph(n, create_using)
|
| 103 |
+
G.add_edges_from(_tree_edges(n, r))
|
| 104 |
+
return G
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
| 108 |
+
def kneser_graph(n, k):
|
| 109 |
+
"""Returns the Kneser Graph with parameters `n` and `k`.
|
| 110 |
+
|
| 111 |
+
The Kneser Graph has nodes that are k-tuples (subsets) of the integers
|
| 112 |
+
between 0 and ``n-1``. Nodes are adjacent if their corresponding sets are disjoint.
|
| 113 |
+
|
| 114 |
+
Parameters
|
| 115 |
+
----------
|
| 116 |
+
n: int
|
| 117 |
+
Number of integers from which to make node subsets.
|
| 118 |
+
Subsets are drawn from ``set(range(n))``.
|
| 119 |
+
k: int
|
| 120 |
+
Size of the subsets.
|
| 121 |
+
|
| 122 |
+
Returns
|
| 123 |
+
-------
|
| 124 |
+
G : NetworkX Graph
|
| 125 |
+
|
| 126 |
+
Examples
|
| 127 |
+
--------
|
| 128 |
+
>>> G = nx.kneser_graph(5, 2)
|
| 129 |
+
>>> G.number_of_nodes()
|
| 130 |
+
10
|
| 131 |
+
>>> G.number_of_edges()
|
| 132 |
+
15
|
| 133 |
+
>>> nx.is_isomorphic(G, nx.petersen_graph())
|
| 134 |
+
True
|
| 135 |
+
"""
|
| 136 |
+
if n <= 0:
|
| 137 |
+
raise NetworkXError("n should be greater than zero")
|
| 138 |
+
if k <= 0 or k > n:
|
| 139 |
+
raise NetworkXError("k should be greater than zero and smaller than n")
|
| 140 |
+
|
| 141 |
+
G = nx.Graph()
|
| 142 |
+
# Create all k-subsets of [0, 1, ..., n-1]
|
| 143 |
+
subsets = list(itertools.combinations(range(n), k))
|
| 144 |
+
|
| 145 |
+
if 2 * k > n:
|
| 146 |
+
G.add_nodes_from(subsets)
|
| 147 |
+
|
| 148 |
+
universe = set(range(n))
|
| 149 |
+
comb = itertools.combinations # only to make it all fit on one line
|
| 150 |
+
G.add_edges_from((s, t) for s in subsets for t in comb(universe - set(s), k))
|
| 151 |
+
return G
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
| 155 |
+
def balanced_tree(r, h, create_using=None):
|
| 156 |
+
"""Returns the perfectly balanced `r`-ary tree of height `h`.
|
| 157 |
+
|
| 158 |
+
.. plot::
|
| 159 |
+
|
| 160 |
+
>>> nx.draw(nx.balanced_tree(2, 3))
|
| 161 |
+
|
| 162 |
+
Parameters
|
| 163 |
+
----------
|
| 164 |
+
r : int
|
| 165 |
+
Branching factor of the tree; each node will have `r`
|
| 166 |
+
children.
|
| 167 |
+
|
| 168 |
+
h : int
|
| 169 |
+
Height of the tree.
|
| 170 |
+
|
| 171 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
| 172 |
+
Graph type to create. If graph instance, then cleared before populated.
|
| 173 |
+
|
| 174 |
+
Returns
|
| 175 |
+
-------
|
| 176 |
+
G : NetworkX graph
|
| 177 |
+
A balanced `r`-ary tree of height `h`.
|
| 178 |
+
|
| 179 |
+
Notes
|
| 180 |
+
-----
|
| 181 |
+
This is the rooted tree where all leaves are at distance `h` from
|
| 182 |
+
the root. The root has degree `r` and all other internal nodes
|
| 183 |
+
have degree `r + 1`.
|
| 184 |
+
|
| 185 |
+
Node labels are integers, starting from zero.
|
| 186 |
+
|
| 187 |
+
A balanced tree is also known as a *complete r-ary tree*.
|
| 188 |
+
|
| 189 |
+
"""
|
| 190 |
+
# The number of nodes in the balanced tree is `1 + r + ... + r^h`,
|
| 191 |
+
# which is computed by using the closed-form formula for a geometric
|
| 192 |
+
# sum with ratio `r`. In the special case that `r` is 1, the number
|
| 193 |
+
# of nodes is simply `h + 1` (since the tree is actually a path
|
| 194 |
+
# graph).
|
| 195 |
+
if r == 1:
|
| 196 |
+
n = h + 1
|
| 197 |
+
else:
|
| 198 |
+
# This must be an integer if both `r` and `h` are integers. If
|
| 199 |
+
# they are not, we force integer division anyway.
|
| 200 |
+
n = (1 - r ** (h + 1)) // (1 - r)
|
| 201 |
+
return full_rary_tree(r, n, create_using=create_using)
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
| 205 |
+
def barbell_graph(m1, m2, create_using=None):
|
| 206 |
+
"""Returns the Barbell Graph: two complete graphs connected by a path.
|
| 207 |
+
|
| 208 |
+
.. plot::
|
| 209 |
+
|
| 210 |
+
>>> nx.draw(nx.barbell_graph(4, 2))
|
| 211 |
+
|
| 212 |
+
Parameters
|
| 213 |
+
----------
|
| 214 |
+
m1 : int
|
| 215 |
+
Size of the left and right barbells, must be greater than 2.
|
| 216 |
+
|
| 217 |
+
m2 : int
|
| 218 |
+
Length of the path connecting the barbells.
|
| 219 |
+
|
| 220 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
| 221 |
+
Graph type to create. If graph instance, then cleared before populated.
|
| 222 |
+
Only undirected Graphs are supported.
|
| 223 |
+
|
| 224 |
+
Returns
|
| 225 |
+
-------
|
| 226 |
+
G : NetworkX graph
|
| 227 |
+
A barbell graph.
|
| 228 |
+
|
| 229 |
+
Notes
|
| 230 |
+
-----
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
Two identical complete graphs $K_{m1}$ form the left and right bells,
|
| 234 |
+
and are connected by a path $P_{m2}$.
|
| 235 |
+
|
| 236 |
+
The `2*m1+m2` nodes are numbered
|
| 237 |
+
`0, ..., m1-1` for the left barbell,
|
| 238 |
+
`m1, ..., m1+m2-1` for the path,
|
| 239 |
+
and `m1+m2, ..., 2*m1+m2-1` for the right barbell.
|
| 240 |
+
|
| 241 |
+
The 3 subgraphs are joined via the edges `(m1-1, m1)` and
|
| 242 |
+
`(m1+m2-1, m1+m2)`. If `m2=0`, this is merely two complete
|
| 243 |
+
graphs joined together.
|
| 244 |
+
|
| 245 |
+
This graph is an extremal example in David Aldous
|
| 246 |
+
and Jim Fill's e-text on Random Walks on Graphs.
|
| 247 |
+
|
| 248 |
+
"""
|
| 249 |
+
if m1 < 2:
|
| 250 |
+
raise NetworkXError("Invalid graph description, m1 should be >=2")
|
| 251 |
+
if m2 < 0:
|
| 252 |
+
raise NetworkXError("Invalid graph description, m2 should be >=0")
|
| 253 |
+
|
| 254 |
+
# left barbell
|
| 255 |
+
G = complete_graph(m1, create_using)
|
| 256 |
+
if G.is_directed():
|
| 257 |
+
raise NetworkXError("Directed Graph not supported")
|
| 258 |
+
|
| 259 |
+
# connecting path
|
| 260 |
+
G.add_nodes_from(range(m1, m1 + m2 - 1))
|
| 261 |
+
if m2 > 1:
|
| 262 |
+
G.add_edges_from(pairwise(range(m1, m1 + m2)))
|
| 263 |
+
|
| 264 |
+
# right barbell
|
| 265 |
+
G.add_edges_from(
|
| 266 |
+
(u, v) for u in range(m1 + m2, 2 * m1 + m2) for v in range(u + 1, 2 * m1 + m2)
|
| 267 |
+
)
|
| 268 |
+
|
| 269 |
+
# connect it up
|
| 270 |
+
G.add_edge(m1 - 1, m1)
|
| 271 |
+
if m2 > 0:
|
| 272 |
+
G.add_edge(m1 + m2 - 1, m1 + m2)
|
| 273 |
+
|
| 274 |
+
return G
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
| 278 |
+
def binomial_tree(n, create_using=None):
|
| 279 |
+
"""Returns the Binomial Tree of order n.
|
| 280 |
+
|
| 281 |
+
The binomial tree of order 0 consists of a single node. A binomial tree of order k
|
| 282 |
+
is defined recursively by linking two binomial trees of order k-1: the root of one is
|
| 283 |
+
the leftmost child of the root of the other.
|
| 284 |
+
|
| 285 |
+
.. plot::
|
| 286 |
+
|
| 287 |
+
>>> nx.draw(nx.binomial_tree(3))
|
| 288 |
+
|
| 289 |
+
Parameters
|
| 290 |
+
----------
|
| 291 |
+
n : int
|
| 292 |
+
Order of the binomial tree.
|
| 293 |
+
|
| 294 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
| 295 |
+
Graph type to create. If graph instance, then cleared before populated.
|
| 296 |
+
|
| 297 |
+
Returns
|
| 298 |
+
-------
|
| 299 |
+
G : NetworkX graph
|
| 300 |
+
A binomial tree of $2^n$ nodes and $2^n - 1$ edges.
|
| 301 |
+
|
| 302 |
+
"""
|
| 303 |
+
G = nx.empty_graph(1, create_using)
|
| 304 |
+
|
| 305 |
+
N = 1
|
| 306 |
+
for i in range(n):
|
| 307 |
+
# Use G.edges() to ensure 2-tuples. G.edges is 3-tuple for MultiGraph
|
| 308 |
+
edges = [(u + N, v + N) for (u, v) in G.edges()]
|
| 309 |
+
G.add_edges_from(edges)
|
| 310 |
+
G.add_edge(0, N)
|
| 311 |
+
N *= 2
|
| 312 |
+
return G
|
| 313 |
+
|
| 314 |
+
|
| 315 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
| 316 |
+
@nodes_or_number(0)
|
| 317 |
+
def complete_graph(n, create_using=None):
|
| 318 |
+
"""Return the complete graph `K_n` with n nodes.
|
| 319 |
+
|
| 320 |
+
A complete graph on `n` nodes means that all pairs
|
| 321 |
+
of distinct nodes have an edge connecting them.
|
| 322 |
+
|
| 323 |
+
.. plot::
|
| 324 |
+
|
| 325 |
+
>>> nx.draw(nx.complete_graph(5))
|
| 326 |
+
|
| 327 |
+
Parameters
|
| 328 |
+
----------
|
| 329 |
+
n : int or iterable container of nodes
|
| 330 |
+
If n is an integer, nodes are from range(n).
|
| 331 |
+
If n is a container of nodes, those nodes appear in the graph.
|
| 332 |
+
Warning: n is not checked for duplicates and if present the
|
| 333 |
+
resulting graph may not be as desired. Make sure you have no duplicates.
|
| 334 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
| 335 |
+
Graph type to create. If graph instance, then cleared before populated.
|
| 336 |
+
|
| 337 |
+
Examples
|
| 338 |
+
--------
|
| 339 |
+
>>> G = nx.complete_graph(9)
|
| 340 |
+
>>> len(G)
|
| 341 |
+
9
|
| 342 |
+
>>> G.size()
|
| 343 |
+
36
|
| 344 |
+
>>> G = nx.complete_graph(range(11, 14))
|
| 345 |
+
>>> list(G.nodes())
|
| 346 |
+
[11, 12, 13]
|
| 347 |
+
>>> G = nx.complete_graph(4, nx.DiGraph())
|
| 348 |
+
>>> G.is_directed()
|
| 349 |
+
True
|
| 350 |
+
|
| 351 |
+
"""
|
| 352 |
+
_, nodes = n
|
| 353 |
+
G = empty_graph(nodes, create_using)
|
| 354 |
+
if len(nodes) > 1:
|
| 355 |
+
if G.is_directed():
|
| 356 |
+
edges = itertools.permutations(nodes, 2)
|
| 357 |
+
else:
|
| 358 |
+
edges = itertools.combinations(nodes, 2)
|
| 359 |
+
G.add_edges_from(edges)
|
| 360 |
+
return G
|
| 361 |
+
|
| 362 |
+
|
| 363 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
| 364 |
+
def circular_ladder_graph(n, create_using=None):
|
| 365 |
+
"""Returns the circular ladder graph $CL_n$ of length n.
|
| 366 |
+
|
| 367 |
+
$CL_n$ consists of two concentric n-cycles in which
|
| 368 |
+
each of the n pairs of concentric nodes are joined by an edge.
|
| 369 |
+
|
| 370 |
+
Node labels are the integers 0 to n-1
|
| 371 |
+
|
| 372 |
+
.. plot::
|
| 373 |
+
|
| 374 |
+
>>> nx.draw(nx.circular_ladder_graph(5))
|
| 375 |
+
|
| 376 |
+
"""
|
| 377 |
+
G = ladder_graph(n, create_using)
|
| 378 |
+
G.add_edge(0, n - 1)
|
| 379 |
+
G.add_edge(n, 2 * n - 1)
|
| 380 |
+
return G
|
| 381 |
+
|
| 382 |
+
|
| 383 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
| 384 |
+
def circulant_graph(n, offsets, create_using=None):
|
| 385 |
+
r"""Returns the circulant graph $Ci_n(x_1, x_2, ..., x_m)$ with $n$ nodes.
|
| 386 |
+
|
| 387 |
+
The circulant graph $Ci_n(x_1, ..., x_m)$ consists of $n$ nodes $0, ..., n-1$
|
| 388 |
+
such that node $i$ is connected to nodes $(i + x) \mod n$ and $(i - x) \mod n$
|
| 389 |
+
for all $x$ in $x_1, ..., x_m$. Thus $Ci_n(1)$ is a cycle graph.
|
| 390 |
+
|
| 391 |
+
.. plot::
|
| 392 |
+
|
| 393 |
+
>>> nx.draw(nx.circulant_graph(10, [1]))
|
| 394 |
+
|
| 395 |
+
Parameters
|
| 396 |
+
----------
|
| 397 |
+
n : integer
|
| 398 |
+
The number of nodes in the graph.
|
| 399 |
+
offsets : list of integers
|
| 400 |
+
A list of node offsets, $x_1$ up to $x_m$, as described above.
|
| 401 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
| 402 |
+
Graph type to create. If graph instance, then cleared before populated.
|
| 403 |
+
|
| 404 |
+
Returns
|
| 405 |
+
-------
|
| 406 |
+
NetworkX Graph of type create_using
|
| 407 |
+
|
| 408 |
+
Examples
|
| 409 |
+
--------
|
| 410 |
+
Many well-known graph families are subfamilies of the circulant graphs;
|
| 411 |
+
for example, to create the cycle graph on n points, we connect every
|
| 412 |
+
node to nodes on either side (with offset plus or minus one). For n = 10,
|
| 413 |
+
|
| 414 |
+
>>> G = nx.circulant_graph(10, [1])
|
| 415 |
+
>>> edges = [
|
| 416 |
+
... (0, 9),
|
| 417 |
+
... (0, 1),
|
| 418 |
+
... (1, 2),
|
| 419 |
+
... (2, 3),
|
| 420 |
+
... (3, 4),
|
| 421 |
+
... (4, 5),
|
| 422 |
+
... (5, 6),
|
| 423 |
+
... (6, 7),
|
| 424 |
+
... (7, 8),
|
| 425 |
+
... (8, 9),
|
| 426 |
+
... ]
|
| 427 |
+
>>> sorted(edges) == sorted(G.edges())
|
| 428 |
+
True
|
| 429 |
+
|
| 430 |
+
Similarly, we can create the complete graph
|
| 431 |
+
on 5 points with the set of offsets [1, 2]:
|
| 432 |
+
|
| 433 |
+
>>> G = nx.circulant_graph(5, [1, 2])
|
| 434 |
+
>>> edges = [
|
| 435 |
+
... (0, 1),
|
| 436 |
+
... (0, 2),
|
| 437 |
+
... (0, 3),
|
| 438 |
+
... (0, 4),
|
| 439 |
+
... (1, 2),
|
| 440 |
+
... (1, 3),
|
| 441 |
+
... (1, 4),
|
| 442 |
+
... (2, 3),
|
| 443 |
+
... (2, 4),
|
| 444 |
+
... (3, 4),
|
| 445 |
+
... ]
|
| 446 |
+
>>> sorted(edges) == sorted(G.edges())
|
| 447 |
+
True
|
| 448 |
+
|
| 449 |
+
"""
|
| 450 |
+
G = empty_graph(n, create_using)
|
| 451 |
+
for i in range(n):
|
| 452 |
+
for j in offsets:
|
| 453 |
+
G.add_edge(i, (i - j) % n)
|
| 454 |
+
G.add_edge(i, (i + j) % n)
|
| 455 |
+
return G
|
| 456 |
+
|
| 457 |
+
|
| 458 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
| 459 |
+
@nodes_or_number(0)
|
| 460 |
+
def cycle_graph(n, create_using=None):
|
| 461 |
+
"""Returns the cycle graph $C_n$ of cyclically connected nodes.
|
| 462 |
+
|
| 463 |
+
$C_n$ is a path with its two end-nodes connected.
|
| 464 |
+
|
| 465 |
+
.. plot::
|
| 466 |
+
|
| 467 |
+
>>> nx.draw(nx.cycle_graph(5))
|
| 468 |
+
|
| 469 |
+
Parameters
|
| 470 |
+
----------
|
| 471 |
+
n : int or iterable container of nodes
|
| 472 |
+
If n is an integer, nodes are from `range(n)`.
|
| 473 |
+
If n is a container of nodes, those nodes appear in the graph.
|
| 474 |
+
Warning: n is not checked for duplicates and if present the
|
| 475 |
+
resulting graph may not be as desired. Make sure you have no duplicates.
|
| 476 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
| 477 |
+
Graph type to create. If graph instance, then cleared before populated.
|
| 478 |
+
|
| 479 |
+
Notes
|
| 480 |
+
-----
|
| 481 |
+
If create_using is directed, the direction is in increasing order.
|
| 482 |
+
|
| 483 |
+
"""
|
| 484 |
+
_, nodes = n
|
| 485 |
+
G = empty_graph(nodes, create_using)
|
| 486 |
+
G.add_edges_from(pairwise(nodes, cyclic=True))
|
| 487 |
+
return G
|
| 488 |
+
|
| 489 |
+
|
| 490 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
| 491 |
+
def dorogovtsev_goltsev_mendes_graph(n, create_using=None):
|
| 492 |
+
"""Returns the hierarchically constructed Dorogovtsev--Goltsev--Mendes graph.
|
| 493 |
+
|
| 494 |
+
The Dorogovtsev--Goltsev--Mendes [1]_ procedure deterministically produces a
|
| 495 |
+
scale-free graph with ``3/2 * (3**(n-1) + 1)`` nodes
|
| 496 |
+
and ``3**n`` edges for a given `n`.
|
| 497 |
+
|
| 498 |
+
Note that `n` denotes the number of times the state transition is applied,
|
| 499 |
+
starting from the base graph with ``n = 0`` (no transitions), as in [2]_.
|
| 500 |
+
This is different from the parameter ``t = n - 1`` in [1]_.
|
| 501 |
+
|
| 502 |
+
.. plot::
|
| 503 |
+
|
| 504 |
+
>>> nx.draw(nx.dorogovtsev_goltsev_mendes_graph(3))
|
| 505 |
+
|
| 506 |
+
Parameters
|
| 507 |
+
----------
|
| 508 |
+
n : integer
|
| 509 |
+
The generation number.
|
| 510 |
+
|
| 511 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
| 512 |
+
Graph type to create. Directed graphs and multigraphs are not supported.
|
| 513 |
+
|
| 514 |
+
Returns
|
| 515 |
+
-------
|
| 516 |
+
G : NetworkX `Graph`
|
| 517 |
+
|
| 518 |
+
Raises
|
| 519 |
+
------
|
| 520 |
+
NetworkXError
|
| 521 |
+
If `n` is less than zero.
|
| 522 |
+
|
| 523 |
+
If `create_using` is a directed graph or multigraph.
|
| 524 |
+
|
| 525 |
+
Examples
|
| 526 |
+
--------
|
| 527 |
+
>>> G = nx.dorogovtsev_goltsev_mendes_graph(3)
|
| 528 |
+
>>> G.number_of_nodes()
|
| 529 |
+
15
|
| 530 |
+
>>> G.number_of_edges()
|
| 531 |
+
27
|
| 532 |
+
>>> nx.is_planar(G)
|
| 533 |
+
True
|
| 534 |
+
|
| 535 |
+
References
|
| 536 |
+
----------
|
| 537 |
+
.. [1] S. N. Dorogovtsev, A. V. Goltsev and J. F. F. Mendes,
|
| 538 |
+
"Pseudofractal scale-free web", Physical Review E 65, 066122, 2002.
|
| 539 |
+
https://arxiv.org/pdf/cond-mat/0112143.pdf
|
| 540 |
+
.. [2] Weisstein, Eric W. "Dorogovtsev--Goltsev--Mendes Graph".
|
| 541 |
+
From MathWorld--A Wolfram Web Resource.
|
| 542 |
+
https://mathworld.wolfram.com/Dorogovtsev-Goltsev-MendesGraph.html
|
| 543 |
+
"""
|
| 544 |
+
if n < 0:
|
| 545 |
+
raise NetworkXError("n must be greater than or equal to 0")
|
| 546 |
+
|
| 547 |
+
G = empty_graph(0, create_using)
|
| 548 |
+
if G.is_directed():
|
| 549 |
+
raise NetworkXError("directed graph not supported")
|
| 550 |
+
if G.is_multigraph():
|
| 551 |
+
raise NetworkXError("multigraph not supported")
|
| 552 |
+
|
| 553 |
+
G.add_edge(0, 1)
|
| 554 |
+
new_node = 2 # next node to be added
|
| 555 |
+
for _ in range(n): # iterate over number of generations.
|
| 556 |
+
new_edges = []
|
| 557 |
+
for u, v in G.edges():
|
| 558 |
+
new_edges.append((u, new_node))
|
| 559 |
+
new_edges.append((v, new_node))
|
| 560 |
+
new_node += 1
|
| 561 |
+
|
| 562 |
+
G.add_edges_from(new_edges)
|
| 563 |
+
return G
|
| 564 |
+
|
| 565 |
+
|
| 566 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
| 567 |
+
@nodes_or_number(0)
|
| 568 |
+
def empty_graph(n=0, create_using=None, default=Graph):
|
| 569 |
+
"""Returns the empty graph with n nodes and zero edges.
|
| 570 |
+
|
| 571 |
+
.. plot::
|
| 572 |
+
|
| 573 |
+
>>> nx.draw(nx.empty_graph(5))
|
| 574 |
+
|
| 575 |
+
Parameters
|
| 576 |
+
----------
|
| 577 |
+
n : int or iterable container of nodes (default = 0)
|
| 578 |
+
If n is an integer, nodes are from `range(n)`.
|
| 579 |
+
If n is a container of nodes, those nodes appear in the graph.
|
| 580 |
+
create_using : Graph Instance, Constructor or None
|
| 581 |
+
Indicator of type of graph to return.
|
| 582 |
+
If a Graph-type instance, then clear and use it.
|
| 583 |
+
If None, use the `default` constructor.
|
| 584 |
+
If a constructor, call it to create an empty graph.
|
| 585 |
+
default : Graph constructor (optional, default = nx.Graph)
|
| 586 |
+
The constructor to use if create_using is None.
|
| 587 |
+
If None, then nx.Graph is used.
|
| 588 |
+
This is used when passing an unknown `create_using` value
|
| 589 |
+
through your home-grown function to `empty_graph` and
|
| 590 |
+
you want a default constructor other than nx.Graph.
|
| 591 |
+
|
| 592 |
+
Examples
|
| 593 |
+
--------
|
| 594 |
+
>>> G = nx.empty_graph(10)
|
| 595 |
+
>>> G.number_of_nodes()
|
| 596 |
+
10
|
| 597 |
+
>>> G.number_of_edges()
|
| 598 |
+
0
|
| 599 |
+
>>> G = nx.empty_graph("ABC")
|
| 600 |
+
>>> G.number_of_nodes()
|
| 601 |
+
3
|
| 602 |
+
>>> sorted(G)
|
| 603 |
+
['A', 'B', 'C']
|
| 604 |
+
|
| 605 |
+
Notes
|
| 606 |
+
-----
|
| 607 |
+
The variable create_using should be a Graph Constructor or a
|
| 608 |
+
"graph"-like object. Constructors, e.g. `nx.Graph` or `nx.MultiGraph`
|
| 609 |
+
will be used to create the returned graph. "graph"-like objects
|
| 610 |
+
will be cleared (nodes and edges will be removed) and refitted as
|
| 611 |
+
an empty "graph" with nodes specified in n. This capability
|
| 612 |
+
is useful for specifying the class-nature of the resulting empty
|
| 613 |
+
"graph" (i.e. Graph, DiGraph, MyWeirdGraphClass, etc.).
|
| 614 |
+
|
| 615 |
+
The variable create_using has three main uses:
|
| 616 |
+
Firstly, the variable create_using can be used to create an
|
| 617 |
+
empty digraph, multigraph, etc. For example,
|
| 618 |
+
|
| 619 |
+
>>> n = 10
|
| 620 |
+
>>> G = nx.empty_graph(n, create_using=nx.DiGraph)
|
| 621 |
+
|
| 622 |
+
will create an empty digraph on n nodes.
|
| 623 |
+
|
| 624 |
+
Secondly, one can pass an existing graph (digraph, multigraph,
|
| 625 |
+
etc.) via create_using. For example, if G is an existing graph
|
| 626 |
+
(resp. digraph, multigraph, etc.), then empty_graph(n, create_using=G)
|
| 627 |
+
will empty G (i.e. delete all nodes and edges using G.clear())
|
| 628 |
+
and then add n nodes and zero edges, and return the modified graph.
|
| 629 |
+
|
| 630 |
+
Thirdly, when constructing your home-grown graph creation function
|
| 631 |
+
you can use empty_graph to construct the graph by passing a user
|
| 632 |
+
defined create_using to empty_graph. In this case, if you want the
|
| 633 |
+
default constructor to be other than nx.Graph, specify `default`.
|
| 634 |
+
|
| 635 |
+
>>> def mygraph(n, create_using=None):
|
| 636 |
+
... G = nx.empty_graph(n, create_using, nx.MultiGraph)
|
| 637 |
+
... G.add_edges_from([(0, 1), (0, 1)])
|
| 638 |
+
... return G
|
| 639 |
+
>>> G = mygraph(3)
|
| 640 |
+
>>> G.is_multigraph()
|
| 641 |
+
True
|
| 642 |
+
>>> G = mygraph(3, nx.Graph)
|
| 643 |
+
>>> G.is_multigraph()
|
| 644 |
+
False
|
| 645 |
+
|
| 646 |
+
See also create_empty_copy(G).
|
| 647 |
+
|
| 648 |
+
"""
|
| 649 |
+
if create_using is None:
|
| 650 |
+
G = default()
|
| 651 |
+
elif isinstance(create_using, type):
|
| 652 |
+
G = create_using()
|
| 653 |
+
elif not hasattr(create_using, "adj"):
|
| 654 |
+
raise TypeError("create_using is not a valid NetworkX graph type or instance")
|
| 655 |
+
else:
|
| 656 |
+
# create_using is a NetworkX style Graph
|
| 657 |
+
create_using.clear()
|
| 658 |
+
G = create_using
|
| 659 |
+
|
| 660 |
+
_, nodes = n
|
| 661 |
+
G.add_nodes_from(nodes)
|
| 662 |
+
return G
|
| 663 |
+
|
| 664 |
+
|
| 665 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
| 666 |
+
def ladder_graph(n, create_using=None):
|
| 667 |
+
"""Returns the Ladder graph of length n.
|
| 668 |
+
|
| 669 |
+
This is two paths of n nodes, with
|
| 670 |
+
each pair connected by a single edge.
|
| 671 |
+
|
| 672 |
+
Node labels are the integers 0 to 2*n - 1.
|
| 673 |
+
|
| 674 |
+
.. plot::
|
| 675 |
+
|
| 676 |
+
>>> nx.draw(nx.ladder_graph(5))
|
| 677 |
+
|
| 678 |
+
"""
|
| 679 |
+
G = empty_graph(2 * n, create_using)
|
| 680 |
+
if G.is_directed():
|
| 681 |
+
raise NetworkXError("Directed Graph not supported")
|
| 682 |
+
G.add_edges_from(pairwise(range(n)))
|
| 683 |
+
G.add_edges_from(pairwise(range(n, 2 * n)))
|
| 684 |
+
G.add_edges_from((v, v + n) for v in range(n))
|
| 685 |
+
return G
|
| 686 |
+
|
| 687 |
+
|
| 688 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
| 689 |
+
@nodes_or_number([0, 1])
|
| 690 |
+
def lollipop_graph(m, n, create_using=None):
|
| 691 |
+
"""Returns the Lollipop Graph; ``K_m`` connected to ``P_n``.
|
| 692 |
+
|
| 693 |
+
This is the Barbell Graph without the right barbell.
|
| 694 |
+
|
| 695 |
+
.. plot::
|
| 696 |
+
|
| 697 |
+
>>> nx.draw(nx.lollipop_graph(3, 4))
|
| 698 |
+
|
| 699 |
+
Parameters
|
| 700 |
+
----------
|
| 701 |
+
m, n : int or iterable container of nodes
|
| 702 |
+
If an integer, nodes are from ``range(m)`` and ``range(m, m+n)``.
|
| 703 |
+
If a container of nodes, those nodes appear in the graph.
|
| 704 |
+
Warning: `m` and `n` are not checked for duplicates and if present the
|
| 705 |
+
resulting graph may not be as desired. Make sure you have no duplicates.
|
| 706 |
+
|
| 707 |
+
The nodes for `m` appear in the complete graph $K_m$ and the nodes
|
| 708 |
+
for `n` appear in the path $P_n$
|
| 709 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
| 710 |
+
Graph type to create. If graph instance, then cleared before populated.
|
| 711 |
+
|
| 712 |
+
Returns
|
| 713 |
+
-------
|
| 714 |
+
Networkx graph
|
| 715 |
+
A complete graph with `m` nodes connected to a path of length `n`.
|
| 716 |
+
|
| 717 |
+
Notes
|
| 718 |
+
-----
|
| 719 |
+
The 2 subgraphs are joined via an edge ``(m-1, m)``.
|
| 720 |
+
If ``n=0``, this is merely a complete graph.
|
| 721 |
+
|
| 722 |
+
(This graph is an extremal example in David Aldous and Jim
|
| 723 |
+
Fill's etext on Random Walks on Graphs.)
|
| 724 |
+
|
| 725 |
+
"""
|
| 726 |
+
m, m_nodes = m
|
| 727 |
+
M = len(m_nodes)
|
| 728 |
+
if M < 2:
|
| 729 |
+
raise NetworkXError("Invalid description: m should indicate at least 2 nodes")
|
| 730 |
+
|
| 731 |
+
n, n_nodes = n
|
| 732 |
+
if isinstance(m, numbers.Integral) and isinstance(n, numbers.Integral):
|
| 733 |
+
n_nodes = list(range(M, M + n))
|
| 734 |
+
N = len(n_nodes)
|
| 735 |
+
|
| 736 |
+
# the ball
|
| 737 |
+
G = complete_graph(m_nodes, create_using)
|
| 738 |
+
if G.is_directed():
|
| 739 |
+
raise NetworkXError("Directed Graph not supported")
|
| 740 |
+
|
| 741 |
+
# the stick
|
| 742 |
+
G.add_nodes_from(n_nodes)
|
| 743 |
+
if N > 1:
|
| 744 |
+
G.add_edges_from(pairwise(n_nodes))
|
| 745 |
+
|
| 746 |
+
if len(G) != M + N:
|
| 747 |
+
raise NetworkXError("Nodes must be distinct in containers m and n")
|
| 748 |
+
|
| 749 |
+
# connect ball to stick
|
| 750 |
+
if M > 0 and N > 0:
|
| 751 |
+
G.add_edge(m_nodes[-1], n_nodes[0])
|
| 752 |
+
return G
|
| 753 |
+
|
| 754 |
+
|
| 755 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
| 756 |
+
def null_graph(create_using=None):
|
| 757 |
+
"""Returns the Null graph with no nodes or edges.
|
| 758 |
+
|
| 759 |
+
See empty_graph for the use of create_using.
|
| 760 |
+
|
| 761 |
+
"""
|
| 762 |
+
G = empty_graph(0, create_using)
|
| 763 |
+
return G
|
| 764 |
+
|
| 765 |
+
|
| 766 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
| 767 |
+
@nodes_or_number(0)
|
| 768 |
+
def path_graph(n, create_using=None):
|
| 769 |
+
"""Returns the Path graph `P_n` of linearly connected nodes.
|
| 770 |
+
|
| 771 |
+
.. plot::
|
| 772 |
+
|
| 773 |
+
>>> nx.draw(nx.path_graph(5))
|
| 774 |
+
|
| 775 |
+
Parameters
|
| 776 |
+
----------
|
| 777 |
+
n : int or iterable
|
| 778 |
+
If an integer, nodes are 0 to n - 1.
|
| 779 |
+
If an iterable of nodes, in the order they appear in the path.
|
| 780 |
+
Warning: n is not checked for duplicates and if present the
|
| 781 |
+
resulting graph may not be as desired. Make sure you have no duplicates.
|
| 782 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
| 783 |
+
Graph type to create. If graph instance, then cleared before populated.
|
| 784 |
+
|
| 785 |
+
"""
|
| 786 |
+
_, nodes = n
|
| 787 |
+
G = empty_graph(nodes, create_using)
|
| 788 |
+
G.add_edges_from(pairwise(nodes))
|
| 789 |
+
return G
|
| 790 |
+
|
| 791 |
+
|
| 792 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
| 793 |
+
@nodes_or_number(0)
|
| 794 |
+
def star_graph(n, create_using=None):
|
| 795 |
+
"""Return the star graph
|
| 796 |
+
|
| 797 |
+
The star graph consists of one center node connected to n outer nodes.
|
| 798 |
+
|
| 799 |
+
.. plot::
|
| 800 |
+
|
| 801 |
+
>>> nx.draw(nx.star_graph(6))
|
| 802 |
+
|
| 803 |
+
Parameters
|
| 804 |
+
----------
|
| 805 |
+
n : int or iterable
|
| 806 |
+
If an integer, node labels are 0 to n with center 0.
|
| 807 |
+
If an iterable of nodes, the center is the first.
|
| 808 |
+
Warning: n is not checked for duplicates and if present the
|
| 809 |
+
resulting graph may not be as desired. Make sure you have no duplicates.
|
| 810 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
| 811 |
+
Graph type to create. If graph instance, then cleared before populated.
|
| 812 |
+
|
| 813 |
+
Notes
|
| 814 |
+
-----
|
| 815 |
+
The graph has n+1 nodes for integer n.
|
| 816 |
+
So star_graph(3) is the same as star_graph(range(4)).
|
| 817 |
+
"""
|
| 818 |
+
n, nodes = n
|
| 819 |
+
if isinstance(n, numbers.Integral):
|
| 820 |
+
nodes.append(int(n)) # there should be n+1 nodes
|
| 821 |
+
G = empty_graph(nodes, create_using)
|
| 822 |
+
if G.is_directed():
|
| 823 |
+
raise NetworkXError("Directed Graph not supported")
|
| 824 |
+
|
| 825 |
+
if len(nodes) > 1:
|
| 826 |
+
hub, *spokes = nodes
|
| 827 |
+
G.add_edges_from((hub, node) for node in spokes)
|
| 828 |
+
return G
|
| 829 |
+
|
| 830 |
+
|
| 831 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
| 832 |
+
@nodes_or_number([0, 1])
|
| 833 |
+
def tadpole_graph(m, n, create_using=None):
|
| 834 |
+
"""Returns the (m,n)-tadpole graph; ``C_m`` connected to ``P_n``.
|
| 835 |
+
|
| 836 |
+
This graph on m+n nodes connects a cycle of size `m` to a path of length `n`.
|
| 837 |
+
It looks like a tadpole. It is also called a kite graph or a dragon graph.
|
| 838 |
+
|
| 839 |
+
.. plot::
|
| 840 |
+
|
| 841 |
+
>>> nx.draw(nx.tadpole_graph(3, 5))
|
| 842 |
+
|
| 843 |
+
Parameters
|
| 844 |
+
----------
|
| 845 |
+
m, n : int or iterable container of nodes
|
| 846 |
+
If an integer, nodes are from ``range(m)`` and ``range(m,m+n)``.
|
| 847 |
+
If a container of nodes, those nodes appear in the graph.
|
| 848 |
+
Warning: `m` and `n` are not checked for duplicates and if present the
|
| 849 |
+
resulting graph may not be as desired.
|
| 850 |
+
|
| 851 |
+
The nodes for `m` appear in the cycle graph $C_m$ and the nodes
|
| 852 |
+
for `n` appear in the path $P_n$.
|
| 853 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
| 854 |
+
Graph type to create. If graph instance, then cleared before populated.
|
| 855 |
+
|
| 856 |
+
Returns
|
| 857 |
+
-------
|
| 858 |
+
Networkx graph
|
| 859 |
+
A cycle of size `m` connected to a path of length `n`.
|
| 860 |
+
|
| 861 |
+
Raises
|
| 862 |
+
------
|
| 863 |
+
NetworkXError
|
| 864 |
+
If ``m < 2``. The tadpole graph is undefined for ``m<2``.
|
| 865 |
+
|
| 866 |
+
Notes
|
| 867 |
+
-----
|
| 868 |
+
The 2 subgraphs are joined via an edge ``(m-1, m)``.
|
| 869 |
+
If ``n=0``, this is a cycle graph.
|
| 870 |
+
`m` and/or `n` can be a container of nodes instead of an integer.
|
| 871 |
+
|
| 872 |
+
"""
|
| 873 |
+
m, m_nodes = m
|
| 874 |
+
M = len(m_nodes)
|
| 875 |
+
if M < 2:
|
| 876 |
+
raise NetworkXError("Invalid description: m should indicate at least 2 nodes")
|
| 877 |
+
|
| 878 |
+
n, n_nodes = n
|
| 879 |
+
if isinstance(m, numbers.Integral) and isinstance(n, numbers.Integral):
|
| 880 |
+
n_nodes = list(range(M, M + n))
|
| 881 |
+
|
| 882 |
+
# the circle
|
| 883 |
+
G = cycle_graph(m_nodes, create_using)
|
| 884 |
+
if G.is_directed():
|
| 885 |
+
raise NetworkXError("Directed Graph not supported")
|
| 886 |
+
|
| 887 |
+
# the stick
|
| 888 |
+
nx.add_path(G, [m_nodes[-1]] + list(n_nodes))
|
| 889 |
+
|
| 890 |
+
return G
|
| 891 |
+
|
| 892 |
+
|
| 893 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
| 894 |
+
def trivial_graph(create_using=None):
|
| 895 |
+
"""Return the Trivial graph with one node (with label 0) and no edges.
|
| 896 |
+
|
| 897 |
+
.. plot::
|
| 898 |
+
|
| 899 |
+
>>> nx.draw(nx.trivial_graph(), with_labels=True)
|
| 900 |
+
|
| 901 |
+
"""
|
| 902 |
+
G = empty_graph(1, create_using)
|
| 903 |
+
return G
|
| 904 |
+
|
| 905 |
+
|
| 906 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
| 907 |
+
def turan_graph(n, r):
|
| 908 |
+
r"""Return the Turan Graph
|
| 909 |
+
|
| 910 |
+
The Turan Graph is a complete multipartite graph on $n$ nodes
|
| 911 |
+
with $r$ disjoint subsets. That is, edges connect each node to
|
| 912 |
+
every node not in its subset.
|
| 913 |
+
|
| 914 |
+
Given $n$ and $r$, we create a complete multipartite graph with
|
| 915 |
+
$r-(n \mod r)$ partitions of size $n/r$, rounded down, and
|
| 916 |
+
$n \mod r$ partitions of size $n/r+1$, rounded down.
|
| 917 |
+
|
| 918 |
+
.. plot::
|
| 919 |
+
|
| 920 |
+
>>> nx.draw(nx.turan_graph(6, 2))
|
| 921 |
+
|
| 922 |
+
Parameters
|
| 923 |
+
----------
|
| 924 |
+
n : int
|
| 925 |
+
The number of nodes.
|
| 926 |
+
r : int
|
| 927 |
+
The number of partitions.
|
| 928 |
+
Must be less than or equal to n.
|
| 929 |
+
|
| 930 |
+
Notes
|
| 931 |
+
-----
|
| 932 |
+
Must satisfy $1 <= r <= n$.
|
| 933 |
+
The graph has $(r-1)(n^2)/(2r)$ edges, rounded down.
|
| 934 |
+
"""
|
| 935 |
+
|
| 936 |
+
if not 1 <= r <= n:
|
| 937 |
+
raise NetworkXError("Must satisfy 1 <= r <= n")
|
| 938 |
+
|
| 939 |
+
partitions = [n // r] * (r - (n % r)) + [n // r + 1] * (n % r)
|
| 940 |
+
G = complete_multipartite_graph(*partitions)
|
| 941 |
+
return G
|
| 942 |
+
|
| 943 |
+
|
| 944 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
| 945 |
+
@nodes_or_number(0)
|
| 946 |
+
def wheel_graph(n, create_using=None):
|
| 947 |
+
"""Return the wheel graph
|
| 948 |
+
|
| 949 |
+
The wheel graph consists of a hub node connected to a cycle of (n-1) nodes.
|
| 950 |
+
|
| 951 |
+
.. plot::
|
| 952 |
+
|
| 953 |
+
>>> nx.draw(nx.wheel_graph(5))
|
| 954 |
+
|
| 955 |
+
Parameters
|
| 956 |
+
----------
|
| 957 |
+
n : int or iterable
|
| 958 |
+
If an integer, node labels are 0 to n with center 0.
|
| 959 |
+
If an iterable of nodes, the center is the first.
|
| 960 |
+
Warning: n is not checked for duplicates and if present the
|
| 961 |
+
resulting graph may not be as desired. Make sure you have no duplicates.
|
| 962 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
| 963 |
+
Graph type to create. If graph instance, then cleared before populated.
|
| 964 |
+
|
| 965 |
+
Node labels are the integers 0 to n - 1.
|
| 966 |
+
"""
|
| 967 |
+
_, nodes = n
|
| 968 |
+
G = empty_graph(nodes, create_using)
|
| 969 |
+
if G.is_directed():
|
| 970 |
+
raise NetworkXError("Directed Graph not supported")
|
| 971 |
+
|
| 972 |
+
if len(nodes) > 1:
|
| 973 |
+
hub, *rim = nodes
|
| 974 |
+
G.add_edges_from((hub, node) for node in rim)
|
| 975 |
+
if len(rim) > 1:
|
| 976 |
+
G.add_edges_from(pairwise(rim, cyclic=True))
|
| 977 |
+
return G
|
| 978 |
+
|
| 979 |
+
|
| 980 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
| 981 |
+
def complete_multipartite_graph(*subset_sizes):
|
| 982 |
+
"""Returns the complete multipartite graph with the specified subset sizes.
|
| 983 |
+
|
| 984 |
+
.. plot::
|
| 985 |
+
|
| 986 |
+
>>> nx.draw(nx.complete_multipartite_graph(1, 2, 3))
|
| 987 |
+
|
| 988 |
+
Parameters
|
| 989 |
+
----------
|
| 990 |
+
subset_sizes : tuple of integers or tuple of node iterables
|
| 991 |
+
The arguments can either all be integer number of nodes or they
|
| 992 |
+
can all be iterables of nodes. If integers, they represent the
|
| 993 |
+
number of nodes in each subset of the multipartite graph.
|
| 994 |
+
If iterables, each is used to create the nodes for that subset.
|
| 995 |
+
The length of subset_sizes is the number of subsets.
|
| 996 |
+
|
| 997 |
+
Returns
|
| 998 |
+
-------
|
| 999 |
+
G : NetworkX Graph
|
| 1000 |
+
Returns the complete multipartite graph with the specified subsets.
|
| 1001 |
+
|
| 1002 |
+
For each node, the node attribute 'subset' is an integer
|
| 1003 |
+
indicating which subset contains the node.
|
| 1004 |
+
|
| 1005 |
+
Examples
|
| 1006 |
+
--------
|
| 1007 |
+
Creating a complete tripartite graph, with subsets of one, two, and three
|
| 1008 |
+
nodes, respectively.
|
| 1009 |
+
|
| 1010 |
+
>>> G = nx.complete_multipartite_graph(1, 2, 3)
|
| 1011 |
+
>>> [G.nodes[u]["subset"] for u in G]
|
| 1012 |
+
[0, 1, 1, 2, 2, 2]
|
| 1013 |
+
>>> list(G.edges(0))
|
| 1014 |
+
[(0, 1), (0, 2), (0, 3), (0, 4), (0, 5)]
|
| 1015 |
+
>>> list(G.edges(2))
|
| 1016 |
+
[(2, 0), (2, 3), (2, 4), (2, 5)]
|
| 1017 |
+
>>> list(G.edges(4))
|
| 1018 |
+
[(4, 0), (4, 1), (4, 2)]
|
| 1019 |
+
|
| 1020 |
+
>>> G = nx.complete_multipartite_graph("a", "bc", "def")
|
| 1021 |
+
>>> [G.nodes[u]["subset"] for u in sorted(G)]
|
| 1022 |
+
[0, 1, 1, 2, 2, 2]
|
| 1023 |
+
|
| 1024 |
+
Notes
|
| 1025 |
+
-----
|
| 1026 |
+
This function generalizes several other graph builder functions.
|
| 1027 |
+
|
| 1028 |
+
- If no subset sizes are given, this returns the null graph.
|
| 1029 |
+
- If a single subset size `n` is given, this returns the empty graph on
|
| 1030 |
+
`n` nodes.
|
| 1031 |
+
- If two subset sizes `m` and `n` are given, this returns the complete
|
| 1032 |
+
bipartite graph on `m + n` nodes.
|
| 1033 |
+
- If subset sizes `1` and `n` are given, this returns the star graph on
|
| 1034 |
+
`n + 1` nodes.
|
| 1035 |
+
|
| 1036 |
+
See also
|
| 1037 |
+
--------
|
| 1038 |
+
complete_bipartite_graph
|
| 1039 |
+
"""
|
| 1040 |
+
# The complete multipartite graph is an undirected simple graph.
|
| 1041 |
+
G = Graph()
|
| 1042 |
+
|
| 1043 |
+
if len(subset_sizes) == 0:
|
| 1044 |
+
return G
|
| 1045 |
+
|
| 1046 |
+
# set up subsets of nodes
|
| 1047 |
+
try:
|
| 1048 |
+
extents = pairwise(itertools.accumulate((0,) + subset_sizes))
|
| 1049 |
+
subsets = [range(start, end) for start, end in extents]
|
| 1050 |
+
except TypeError:
|
| 1051 |
+
subsets = subset_sizes
|
| 1052 |
+
else:
|
| 1053 |
+
if any(size < 0 for size in subset_sizes):
|
| 1054 |
+
raise NetworkXError(f"Negative number of nodes not valid: {subset_sizes}")
|
| 1055 |
+
|
| 1056 |
+
# add nodes with subset attribute
|
| 1057 |
+
# while checking that ints are not mixed with iterables
|
| 1058 |
+
try:
|
| 1059 |
+
for i, subset in enumerate(subsets):
|
| 1060 |
+
G.add_nodes_from(subset, subset=i)
|
| 1061 |
+
except TypeError as err:
|
| 1062 |
+
raise NetworkXError("Arguments must be all ints or all iterables") from err
|
| 1063 |
+
|
| 1064 |
+
# Across subsets, all nodes should be adjacent.
|
| 1065 |
+
# We can use itertools.combinations() because undirected.
|
| 1066 |
+
for subset1, subset2 in itertools.combinations(subsets, 2):
|
| 1067 |
+
G.add_edges_from(itertools.product(subset1, subset2))
|
| 1068 |
+
return G
|
wemm/lib/python3.10/site-packages/networkx/generators/degree_seq.py
ADDED
|
@@ -0,0 +1,867 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Generate graphs with a given degree sequence or expected degree sequence."""
|
| 2 |
+
|
| 3 |
+
import heapq
|
| 4 |
+
import math
|
| 5 |
+
from itertools import chain, combinations, zip_longest
|
| 6 |
+
from operator import itemgetter
|
| 7 |
+
|
| 8 |
+
import networkx as nx
|
| 9 |
+
from networkx.utils import py_random_state, random_weighted_sample
|
| 10 |
+
|
| 11 |
+
__all__ = [
|
| 12 |
+
"configuration_model",
|
| 13 |
+
"directed_configuration_model",
|
| 14 |
+
"expected_degree_graph",
|
| 15 |
+
"havel_hakimi_graph",
|
| 16 |
+
"directed_havel_hakimi_graph",
|
| 17 |
+
"degree_sequence_tree",
|
| 18 |
+
"random_degree_sequence_graph",
|
| 19 |
+
]
|
| 20 |
+
|
| 21 |
+
chaini = chain.from_iterable
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def _to_stublist(degree_sequence):
|
| 25 |
+
"""Returns a list of degree-repeated node numbers.
|
| 26 |
+
|
| 27 |
+
``degree_sequence`` is a list of nonnegative integers representing
|
| 28 |
+
the degrees of nodes in a graph.
|
| 29 |
+
|
| 30 |
+
This function returns a list of node numbers with multiplicities
|
| 31 |
+
according to the given degree sequence. For example, if the first
|
| 32 |
+
element of ``degree_sequence`` is ``3``, then the first node number,
|
| 33 |
+
``0``, will appear at the head of the returned list three times. The
|
| 34 |
+
node numbers are assumed to be the numbers zero through
|
| 35 |
+
``len(degree_sequence) - 1``.
|
| 36 |
+
|
| 37 |
+
Examples
|
| 38 |
+
--------
|
| 39 |
+
|
| 40 |
+
>>> degree_sequence = [1, 2, 3]
|
| 41 |
+
>>> _to_stublist(degree_sequence)
|
| 42 |
+
[0, 1, 1, 2, 2, 2]
|
| 43 |
+
|
| 44 |
+
If a zero appears in the sequence, that means the node exists but
|
| 45 |
+
has degree zero, so that number will be skipped in the returned
|
| 46 |
+
list::
|
| 47 |
+
|
| 48 |
+
>>> degree_sequence = [2, 0, 1]
|
| 49 |
+
>>> _to_stublist(degree_sequence)
|
| 50 |
+
[0, 0, 2]
|
| 51 |
+
|
| 52 |
+
"""
|
| 53 |
+
return list(chaini([n] * d for n, d in enumerate(degree_sequence)))
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def _configuration_model(
|
| 57 |
+
deg_sequence, create_using, directed=False, in_deg_sequence=None, seed=None
|
| 58 |
+
):
|
| 59 |
+
"""Helper function for generating either undirected or directed
|
| 60 |
+
configuration model graphs.
|
| 61 |
+
|
| 62 |
+
``deg_sequence`` is a list of nonnegative integers representing the
|
| 63 |
+
degree of the node whose label is the index of the list element.
|
| 64 |
+
|
| 65 |
+
``create_using`` see :func:`~networkx.empty_graph`.
|
| 66 |
+
|
| 67 |
+
``directed`` and ``in_deg_sequence`` are required if you want the
|
| 68 |
+
returned graph to be generated using the directed configuration
|
| 69 |
+
model algorithm. If ``directed`` is ``False``, then ``deg_sequence``
|
| 70 |
+
is interpreted as the degree sequence of an undirected graph and
|
| 71 |
+
``in_deg_sequence`` is ignored. Otherwise, if ``directed`` is
|
| 72 |
+
``True``, then ``deg_sequence`` is interpreted as the out-degree
|
| 73 |
+
sequence and ``in_deg_sequence`` as the in-degree sequence of a
|
| 74 |
+
directed graph.
|
| 75 |
+
|
| 76 |
+
.. note::
|
| 77 |
+
|
| 78 |
+
``deg_sequence`` and ``in_deg_sequence`` need not be the same
|
| 79 |
+
length.
|
| 80 |
+
|
| 81 |
+
``seed`` is a random.Random or numpy.random.RandomState instance
|
| 82 |
+
|
| 83 |
+
This function returns a graph, directed if and only if ``directed``
|
| 84 |
+
is ``True``, generated according to the configuration model
|
| 85 |
+
algorithm. For more information on the algorithm, see the
|
| 86 |
+
:func:`configuration_model` or :func:`directed_configuration_model`
|
| 87 |
+
functions.
|
| 88 |
+
|
| 89 |
+
"""
|
| 90 |
+
n = len(deg_sequence)
|
| 91 |
+
G = nx.empty_graph(n, create_using)
|
| 92 |
+
# If empty, return the null graph immediately.
|
| 93 |
+
if n == 0:
|
| 94 |
+
return G
|
| 95 |
+
# Build a list of available degree-repeated nodes. For example,
|
| 96 |
+
# for degree sequence [3, 2, 1, 1, 1], the "stub list" is
|
| 97 |
+
# initially [0, 0, 0, 1, 1, 2, 3, 4], that is, node 0 has degree
|
| 98 |
+
# 3 and thus is repeated 3 times, etc.
|
| 99 |
+
#
|
| 100 |
+
# Also, shuffle the stub list in order to get a random sequence of
|
| 101 |
+
# node pairs.
|
| 102 |
+
if directed:
|
| 103 |
+
pairs = zip_longest(deg_sequence, in_deg_sequence, fillvalue=0)
|
| 104 |
+
# Unzip the list of pairs into a pair of lists.
|
| 105 |
+
out_deg, in_deg = zip(*pairs)
|
| 106 |
+
|
| 107 |
+
out_stublist = _to_stublist(out_deg)
|
| 108 |
+
in_stublist = _to_stublist(in_deg)
|
| 109 |
+
|
| 110 |
+
seed.shuffle(out_stublist)
|
| 111 |
+
seed.shuffle(in_stublist)
|
| 112 |
+
else:
|
| 113 |
+
stublist = _to_stublist(deg_sequence)
|
| 114 |
+
# Choose a random balanced bipartition of the stublist, which
|
| 115 |
+
# gives a random pairing of nodes. In this implementation, we
|
| 116 |
+
# shuffle the list and then split it in half.
|
| 117 |
+
n = len(stublist)
|
| 118 |
+
half = n // 2
|
| 119 |
+
seed.shuffle(stublist)
|
| 120 |
+
out_stublist, in_stublist = stublist[:half], stublist[half:]
|
| 121 |
+
G.add_edges_from(zip(out_stublist, in_stublist))
|
| 122 |
+
return G
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
@py_random_state(2)
|
| 126 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
| 127 |
+
def configuration_model(deg_sequence, create_using=None, seed=None):
|
| 128 |
+
"""Returns a random graph with the given degree sequence.
|
| 129 |
+
|
| 130 |
+
The configuration model generates a random pseudograph (graph with
|
| 131 |
+
parallel edges and self loops) by randomly assigning edges to
|
| 132 |
+
match the given degree sequence.
|
| 133 |
+
|
| 134 |
+
Parameters
|
| 135 |
+
----------
|
| 136 |
+
deg_sequence : list of nonnegative integers
|
| 137 |
+
Each list entry corresponds to the degree of a node.
|
| 138 |
+
create_using : NetworkX graph constructor, optional (default MultiGraph)
|
| 139 |
+
Graph type to create. If graph instance, then cleared before populated.
|
| 140 |
+
seed : integer, random_state, or None (default)
|
| 141 |
+
Indicator of random number generation state.
|
| 142 |
+
See :ref:`Randomness<randomness>`.
|
| 143 |
+
|
| 144 |
+
Returns
|
| 145 |
+
-------
|
| 146 |
+
G : MultiGraph
|
| 147 |
+
A graph with the specified degree sequence.
|
| 148 |
+
Nodes are labeled starting at 0 with an index
|
| 149 |
+
corresponding to the position in deg_sequence.
|
| 150 |
+
|
| 151 |
+
Raises
|
| 152 |
+
------
|
| 153 |
+
NetworkXError
|
| 154 |
+
If the degree sequence does not have an even sum.
|
| 155 |
+
|
| 156 |
+
See Also
|
| 157 |
+
--------
|
| 158 |
+
is_graphical
|
| 159 |
+
|
| 160 |
+
Notes
|
| 161 |
+
-----
|
| 162 |
+
As described by Newman [1]_.
|
| 163 |
+
|
| 164 |
+
A non-graphical degree sequence (not realizable by some simple
|
| 165 |
+
graph) is allowed since this function returns graphs with self
|
| 166 |
+
loops and parallel edges. An exception is raised if the degree
|
| 167 |
+
sequence does not have an even sum.
|
| 168 |
+
|
| 169 |
+
This configuration model construction process can lead to
|
| 170 |
+
duplicate edges and loops. You can remove the self-loops and
|
| 171 |
+
parallel edges (see below) which will likely result in a graph
|
| 172 |
+
that doesn't have the exact degree sequence specified.
|
| 173 |
+
|
| 174 |
+
The density of self-loops and parallel edges tends to decrease as
|
| 175 |
+
the number of nodes increases. However, typically the number of
|
| 176 |
+
self-loops will approach a Poisson distribution with a nonzero mean,
|
| 177 |
+
and similarly for the number of parallel edges. Consider a node
|
| 178 |
+
with *k* stubs. The probability of being joined to another stub of
|
| 179 |
+
the same node is basically (*k* - *1*) / *N*, where *k* is the
|
| 180 |
+
degree and *N* is the number of nodes. So the probability of a
|
| 181 |
+
self-loop scales like *c* / *N* for some constant *c*. As *N* grows,
|
| 182 |
+
this means we expect *c* self-loops. Similarly for parallel edges.
|
| 183 |
+
|
| 184 |
+
References
|
| 185 |
+
----------
|
| 186 |
+
.. [1] M.E.J. Newman, "The structure and function of complex networks",
|
| 187 |
+
SIAM REVIEW 45-2, pp 167-256, 2003.
|
| 188 |
+
|
| 189 |
+
Examples
|
| 190 |
+
--------
|
| 191 |
+
You can create a degree sequence following a particular distribution
|
| 192 |
+
by using the one of the distribution functions in
|
| 193 |
+
:mod:`~networkx.utils.random_sequence` (or one of your own). For
|
| 194 |
+
example, to create an undirected multigraph on one hundred nodes
|
| 195 |
+
with degree sequence chosen from the power law distribution:
|
| 196 |
+
|
| 197 |
+
>>> sequence = nx.random_powerlaw_tree_sequence(100, tries=5000)
|
| 198 |
+
>>> G = nx.configuration_model(sequence)
|
| 199 |
+
>>> len(G)
|
| 200 |
+
100
|
| 201 |
+
>>> actual_degrees = [d for v, d in G.degree()]
|
| 202 |
+
>>> actual_degrees == sequence
|
| 203 |
+
True
|
| 204 |
+
|
| 205 |
+
The returned graph is a multigraph, which may have parallel
|
| 206 |
+
edges. To remove any parallel edges from the returned graph:
|
| 207 |
+
|
| 208 |
+
>>> G = nx.Graph(G)
|
| 209 |
+
|
| 210 |
+
Similarly, to remove self-loops:
|
| 211 |
+
|
| 212 |
+
>>> G.remove_edges_from(nx.selfloop_edges(G))
|
| 213 |
+
|
| 214 |
+
"""
|
| 215 |
+
if sum(deg_sequence) % 2 != 0:
|
| 216 |
+
msg = "Invalid degree sequence: sum of degrees must be even, not odd"
|
| 217 |
+
raise nx.NetworkXError(msg)
|
| 218 |
+
|
| 219 |
+
G = nx.empty_graph(0, create_using, default=nx.MultiGraph)
|
| 220 |
+
if G.is_directed():
|
| 221 |
+
raise nx.NetworkXNotImplemented("not implemented for directed graphs")
|
| 222 |
+
|
| 223 |
+
G = _configuration_model(deg_sequence, G, seed=seed)
|
| 224 |
+
|
| 225 |
+
return G
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
@py_random_state(3)
|
| 229 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
| 230 |
+
def directed_configuration_model(
|
| 231 |
+
in_degree_sequence, out_degree_sequence, create_using=None, seed=None
|
| 232 |
+
):
|
| 233 |
+
"""Returns a directed_random graph with the given degree sequences.
|
| 234 |
+
|
| 235 |
+
The configuration model generates a random directed pseudograph
|
| 236 |
+
(graph with parallel edges and self loops) by randomly assigning
|
| 237 |
+
edges to match the given degree sequences.
|
| 238 |
+
|
| 239 |
+
Parameters
|
| 240 |
+
----------
|
| 241 |
+
in_degree_sequence : list of nonnegative integers
|
| 242 |
+
Each list entry corresponds to the in-degree of a node.
|
| 243 |
+
out_degree_sequence : list of nonnegative integers
|
| 244 |
+
Each list entry corresponds to the out-degree of a node.
|
| 245 |
+
create_using : NetworkX graph constructor, optional (default MultiDiGraph)
|
| 246 |
+
Graph type to create. If graph instance, then cleared before populated.
|
| 247 |
+
seed : integer, random_state, or None (default)
|
| 248 |
+
Indicator of random number generation state.
|
| 249 |
+
See :ref:`Randomness<randomness>`.
|
| 250 |
+
|
| 251 |
+
Returns
|
| 252 |
+
-------
|
| 253 |
+
G : MultiDiGraph
|
| 254 |
+
A graph with the specified degree sequences.
|
| 255 |
+
Nodes are labeled starting at 0 with an index
|
| 256 |
+
corresponding to the position in deg_sequence.
|
| 257 |
+
|
| 258 |
+
Raises
|
| 259 |
+
------
|
| 260 |
+
NetworkXError
|
| 261 |
+
If the degree sequences do not have the same sum.
|
| 262 |
+
|
| 263 |
+
See Also
|
| 264 |
+
--------
|
| 265 |
+
configuration_model
|
| 266 |
+
|
| 267 |
+
Notes
|
| 268 |
+
-----
|
| 269 |
+
Algorithm as described by Newman [1]_.
|
| 270 |
+
|
| 271 |
+
A non-graphical degree sequence (not realizable by some simple
|
| 272 |
+
graph) is allowed since this function returns graphs with self
|
| 273 |
+
loops and parallel edges. An exception is raised if the degree
|
| 274 |
+
sequences does not have the same sum.
|
| 275 |
+
|
| 276 |
+
This configuration model construction process can lead to
|
| 277 |
+
duplicate edges and loops. You can remove the self-loops and
|
| 278 |
+
parallel edges (see below) which will likely result in a graph
|
| 279 |
+
that doesn't have the exact degree sequence specified. This
|
| 280 |
+
"finite-size effect" decreases as the size of the graph increases.
|
| 281 |
+
|
| 282 |
+
References
|
| 283 |
+
----------
|
| 284 |
+
.. [1] Newman, M. E. J. and Strogatz, S. H. and Watts, D. J.
|
| 285 |
+
Random graphs with arbitrary degree distributions and their applications
|
| 286 |
+
Phys. Rev. E, 64, 026118 (2001)
|
| 287 |
+
|
| 288 |
+
Examples
|
| 289 |
+
--------
|
| 290 |
+
One can modify the in- and out-degree sequences from an existing
|
| 291 |
+
directed graph in order to create a new directed graph. For example,
|
| 292 |
+
here we modify the directed path graph:
|
| 293 |
+
|
| 294 |
+
>>> D = nx.DiGraph([(0, 1), (1, 2), (2, 3)])
|
| 295 |
+
>>> din = list(d for n, d in D.in_degree())
|
| 296 |
+
>>> dout = list(d for n, d in D.out_degree())
|
| 297 |
+
>>> din.append(1)
|
| 298 |
+
>>> dout[0] = 2
|
| 299 |
+
>>> # We now expect an edge from node 0 to a new node, node 3.
|
| 300 |
+
... D = nx.directed_configuration_model(din, dout)
|
| 301 |
+
|
| 302 |
+
The returned graph is a directed multigraph, which may have parallel
|
| 303 |
+
edges. To remove any parallel edges from the returned graph:
|
| 304 |
+
|
| 305 |
+
>>> D = nx.DiGraph(D)
|
| 306 |
+
|
| 307 |
+
Similarly, to remove self-loops:
|
| 308 |
+
|
| 309 |
+
>>> D.remove_edges_from(nx.selfloop_edges(D))
|
| 310 |
+
|
| 311 |
+
"""
|
| 312 |
+
if sum(in_degree_sequence) != sum(out_degree_sequence):
|
| 313 |
+
msg = "Invalid degree sequences: sequences must have equal sums"
|
| 314 |
+
raise nx.NetworkXError(msg)
|
| 315 |
+
|
| 316 |
+
if create_using is None:
|
| 317 |
+
create_using = nx.MultiDiGraph
|
| 318 |
+
|
| 319 |
+
G = _configuration_model(
|
| 320 |
+
out_degree_sequence,
|
| 321 |
+
create_using,
|
| 322 |
+
directed=True,
|
| 323 |
+
in_deg_sequence=in_degree_sequence,
|
| 324 |
+
seed=seed,
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
+
name = "directed configuration_model {} nodes {} edges"
|
| 328 |
+
return G
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
@py_random_state(1)
|
| 332 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
| 333 |
+
def expected_degree_graph(w, seed=None, selfloops=True):
|
| 334 |
+
r"""Returns a random graph with given expected degrees.
|
| 335 |
+
|
| 336 |
+
Given a sequence of expected degrees $W=(w_0,w_1,\ldots,w_{n-1})$
|
| 337 |
+
of length $n$ this algorithm assigns an edge between node $u$ and
|
| 338 |
+
node $v$ with probability
|
| 339 |
+
|
| 340 |
+
.. math::
|
| 341 |
+
|
| 342 |
+
p_{uv} = \frac{w_u w_v}{\sum_k w_k} .
|
| 343 |
+
|
| 344 |
+
Parameters
|
| 345 |
+
----------
|
| 346 |
+
w : list
|
| 347 |
+
The list of expected degrees.
|
| 348 |
+
selfloops: bool (default=True)
|
| 349 |
+
Set to False to remove the possibility of self-loop edges.
|
| 350 |
+
seed : integer, random_state, or None (default)
|
| 351 |
+
Indicator of random number generation state.
|
| 352 |
+
See :ref:`Randomness<randomness>`.
|
| 353 |
+
|
| 354 |
+
Returns
|
| 355 |
+
-------
|
| 356 |
+
Graph
|
| 357 |
+
|
| 358 |
+
Examples
|
| 359 |
+
--------
|
| 360 |
+
>>> z = [10 for i in range(100)]
|
| 361 |
+
>>> G = nx.expected_degree_graph(z)
|
| 362 |
+
|
| 363 |
+
Notes
|
| 364 |
+
-----
|
| 365 |
+
The nodes have integer labels corresponding to index of expected degrees
|
| 366 |
+
input sequence.
|
| 367 |
+
|
| 368 |
+
The complexity of this algorithm is $\mathcal{O}(n+m)$ where $n$ is the
|
| 369 |
+
number of nodes and $m$ is the expected number of edges.
|
| 370 |
+
|
| 371 |
+
The model in [1]_ includes the possibility of self-loop edges.
|
| 372 |
+
Set selfloops=False to produce a graph without self loops.
|
| 373 |
+
|
| 374 |
+
For finite graphs this model doesn't produce exactly the given
|
| 375 |
+
expected degree sequence. Instead the expected degrees are as
|
| 376 |
+
follows.
|
| 377 |
+
|
| 378 |
+
For the case without self loops (selfloops=False),
|
| 379 |
+
|
| 380 |
+
.. math::
|
| 381 |
+
|
| 382 |
+
E[deg(u)] = \sum_{v \ne u} p_{uv}
|
| 383 |
+
= w_u \left( 1 - \frac{w_u}{\sum_k w_k} \right) .
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
NetworkX uses the standard convention that a self-loop edge counts 2
|
| 387 |
+
in the degree of a node, so with self loops (selfloops=True),
|
| 388 |
+
|
| 389 |
+
.. math::
|
| 390 |
+
|
| 391 |
+
E[deg(u)] = \sum_{v \ne u} p_{uv} + 2 p_{uu}
|
| 392 |
+
= w_u \left( 1 + \frac{w_u}{\sum_k w_k} \right) .
|
| 393 |
+
|
| 394 |
+
References
|
| 395 |
+
----------
|
| 396 |
+
.. [1] Fan Chung and L. Lu, Connected components in random graphs with
|
| 397 |
+
given expected degree sequences, Ann. Combinatorics, 6,
|
| 398 |
+
pp. 125-145, 2002.
|
| 399 |
+
.. [2] Joel Miller and Aric Hagberg,
|
| 400 |
+
Efficient generation of networks with given expected degrees,
|
| 401 |
+
in Algorithms and Models for the Web-Graph (WAW 2011),
|
| 402 |
+
Alan Frieze, Paul Horn, and Paweł Prałat (Eds), LNCS 6732,
|
| 403 |
+
pp. 115-126, 2011.
|
| 404 |
+
"""
|
| 405 |
+
n = len(w)
|
| 406 |
+
G = nx.empty_graph(n)
|
| 407 |
+
|
| 408 |
+
# If there are no nodes are no edges in the graph, return the empty graph.
|
| 409 |
+
if n == 0 or max(w) == 0:
|
| 410 |
+
return G
|
| 411 |
+
|
| 412 |
+
rho = 1 / sum(w)
|
| 413 |
+
# Sort the weights in decreasing order. The original order of the
|
| 414 |
+
# weights dictates the order of the (integer) node labels, so we
|
| 415 |
+
# need to remember the permutation applied in the sorting.
|
| 416 |
+
order = sorted(enumerate(w), key=itemgetter(1), reverse=True)
|
| 417 |
+
mapping = {c: u for c, (u, v) in enumerate(order)}
|
| 418 |
+
seq = [v for u, v in order]
|
| 419 |
+
last = n
|
| 420 |
+
if not selfloops:
|
| 421 |
+
last -= 1
|
| 422 |
+
for u in range(last):
|
| 423 |
+
v = u
|
| 424 |
+
if not selfloops:
|
| 425 |
+
v += 1
|
| 426 |
+
factor = seq[u] * rho
|
| 427 |
+
p = min(seq[v] * factor, 1)
|
| 428 |
+
while v < n and p > 0:
|
| 429 |
+
if p != 1:
|
| 430 |
+
r = seed.random()
|
| 431 |
+
v += math.floor(math.log(r, 1 - p))
|
| 432 |
+
if v < n:
|
| 433 |
+
q = min(seq[v] * factor, 1)
|
| 434 |
+
if seed.random() < q / p:
|
| 435 |
+
G.add_edge(mapping[u], mapping[v])
|
| 436 |
+
v += 1
|
| 437 |
+
p = q
|
| 438 |
+
return G
|
| 439 |
+
|
| 440 |
+
|
| 441 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
| 442 |
+
def havel_hakimi_graph(deg_sequence, create_using=None):
|
| 443 |
+
"""Returns a simple graph with given degree sequence constructed
|
| 444 |
+
using the Havel-Hakimi algorithm.
|
| 445 |
+
|
| 446 |
+
Parameters
|
| 447 |
+
----------
|
| 448 |
+
deg_sequence: list of integers
|
| 449 |
+
Each integer corresponds to the degree of a node (need not be sorted).
|
| 450 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
| 451 |
+
Graph type to create. If graph instance, then cleared before populated.
|
| 452 |
+
Directed graphs are not allowed.
|
| 453 |
+
|
| 454 |
+
Raises
|
| 455 |
+
------
|
| 456 |
+
NetworkXException
|
| 457 |
+
For a non-graphical degree sequence (i.e. one
|
| 458 |
+
not realizable by some simple graph).
|
| 459 |
+
|
| 460 |
+
Notes
|
| 461 |
+
-----
|
| 462 |
+
The Havel-Hakimi algorithm constructs a simple graph by
|
| 463 |
+
successively connecting the node of highest degree to other nodes
|
| 464 |
+
of highest degree, resorting remaining nodes by degree, and
|
| 465 |
+
repeating the process. The resulting graph has a high
|
| 466 |
+
degree-associativity. Nodes are labeled 1,.., len(deg_sequence),
|
| 467 |
+
corresponding to their position in deg_sequence.
|
| 468 |
+
|
| 469 |
+
The basic algorithm is from Hakimi [1]_ and was generalized by
|
| 470 |
+
Kleitman and Wang [2]_.
|
| 471 |
+
|
| 472 |
+
References
|
| 473 |
+
----------
|
| 474 |
+
.. [1] Hakimi S., On Realizability of a Set of Integers as
|
| 475 |
+
Degrees of the Vertices of a Linear Graph. I,
|
| 476 |
+
Journal of SIAM, 10(3), pp. 496-506 (1962)
|
| 477 |
+
.. [2] Kleitman D.J. and Wang D.L.
|
| 478 |
+
Algorithms for Constructing Graphs and Digraphs with Given Valences
|
| 479 |
+
and Factors Discrete Mathematics, 6(1), pp. 79-88 (1973)
|
| 480 |
+
"""
|
| 481 |
+
if not nx.is_graphical(deg_sequence):
|
| 482 |
+
raise nx.NetworkXError("Invalid degree sequence")
|
| 483 |
+
|
| 484 |
+
p = len(deg_sequence)
|
| 485 |
+
G = nx.empty_graph(p, create_using)
|
| 486 |
+
if G.is_directed():
|
| 487 |
+
raise nx.NetworkXError("Directed graphs are not supported")
|
| 488 |
+
num_degs = [[] for i in range(p)]
|
| 489 |
+
dmax, dsum, n = 0, 0, 0
|
| 490 |
+
for d in deg_sequence:
|
| 491 |
+
# Process only the non-zero integers
|
| 492 |
+
if d > 0:
|
| 493 |
+
num_degs[d].append(n)
|
| 494 |
+
dmax, dsum, n = max(dmax, d), dsum + d, n + 1
|
| 495 |
+
# Return graph if no edges
|
| 496 |
+
if n == 0:
|
| 497 |
+
return G
|
| 498 |
+
|
| 499 |
+
modstubs = [(0, 0)] * (dmax + 1)
|
| 500 |
+
# Successively reduce degree sequence by removing the maximum degree
|
| 501 |
+
while n > 0:
|
| 502 |
+
# Retrieve the maximum degree in the sequence
|
| 503 |
+
while len(num_degs[dmax]) == 0:
|
| 504 |
+
dmax -= 1
|
| 505 |
+
# If there are not enough stubs to connect to, then the sequence is
|
| 506 |
+
# not graphical
|
| 507 |
+
if dmax > n - 1:
|
| 508 |
+
raise nx.NetworkXError("Non-graphical integer sequence")
|
| 509 |
+
|
| 510 |
+
# Remove largest stub in list
|
| 511 |
+
source = num_degs[dmax].pop()
|
| 512 |
+
n -= 1
|
| 513 |
+
# Reduce the next dmax largest stubs
|
| 514 |
+
mslen = 0
|
| 515 |
+
k = dmax
|
| 516 |
+
for i in range(dmax):
|
| 517 |
+
while len(num_degs[k]) == 0:
|
| 518 |
+
k -= 1
|
| 519 |
+
target = num_degs[k].pop()
|
| 520 |
+
G.add_edge(source, target)
|
| 521 |
+
n -= 1
|
| 522 |
+
if k > 1:
|
| 523 |
+
modstubs[mslen] = (k - 1, target)
|
| 524 |
+
mslen += 1
|
| 525 |
+
# Add back to the list any nonzero stubs that were removed
|
| 526 |
+
for i in range(mslen):
|
| 527 |
+
(stubval, stubtarget) = modstubs[i]
|
| 528 |
+
num_degs[stubval].append(stubtarget)
|
| 529 |
+
n += 1
|
| 530 |
+
|
| 531 |
+
return G
|
| 532 |
+
|
| 533 |
+
|
| 534 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
| 535 |
+
def directed_havel_hakimi_graph(in_deg_sequence, out_deg_sequence, create_using=None):
|
| 536 |
+
"""Returns a directed graph with the given degree sequences.
|
| 537 |
+
|
| 538 |
+
Parameters
|
| 539 |
+
----------
|
| 540 |
+
in_deg_sequence : list of integers
|
| 541 |
+
Each list entry corresponds to the in-degree of a node.
|
| 542 |
+
out_deg_sequence : list of integers
|
| 543 |
+
Each list entry corresponds to the out-degree of a node.
|
| 544 |
+
create_using : NetworkX graph constructor, optional (default DiGraph)
|
| 545 |
+
Graph type to create. If graph instance, then cleared before populated.
|
| 546 |
+
|
| 547 |
+
Returns
|
| 548 |
+
-------
|
| 549 |
+
G : DiGraph
|
| 550 |
+
A graph with the specified degree sequences.
|
| 551 |
+
Nodes are labeled starting at 0 with an index
|
| 552 |
+
corresponding to the position in deg_sequence
|
| 553 |
+
|
| 554 |
+
Raises
|
| 555 |
+
------
|
| 556 |
+
NetworkXError
|
| 557 |
+
If the degree sequences are not digraphical.
|
| 558 |
+
|
| 559 |
+
See Also
|
| 560 |
+
--------
|
| 561 |
+
configuration_model
|
| 562 |
+
|
| 563 |
+
Notes
|
| 564 |
+
-----
|
| 565 |
+
Algorithm as described by Kleitman and Wang [1]_.
|
| 566 |
+
|
| 567 |
+
References
|
| 568 |
+
----------
|
| 569 |
+
.. [1] D.J. Kleitman and D.L. Wang
|
| 570 |
+
Algorithms for Constructing Graphs and Digraphs with Given Valences
|
| 571 |
+
and Factors Discrete Mathematics, 6(1), pp. 79-88 (1973)
|
| 572 |
+
"""
|
| 573 |
+
in_deg_sequence = nx.utils.make_list_of_ints(in_deg_sequence)
|
| 574 |
+
out_deg_sequence = nx.utils.make_list_of_ints(out_deg_sequence)
|
| 575 |
+
|
| 576 |
+
# Process the sequences and form two heaps to store degree pairs with
|
| 577 |
+
# either zero or nonzero out degrees
|
| 578 |
+
sumin, sumout = 0, 0
|
| 579 |
+
nin, nout = len(in_deg_sequence), len(out_deg_sequence)
|
| 580 |
+
maxn = max(nin, nout)
|
| 581 |
+
G = nx.empty_graph(maxn, create_using, default=nx.DiGraph)
|
| 582 |
+
if maxn == 0:
|
| 583 |
+
return G
|
| 584 |
+
maxin = 0
|
| 585 |
+
stubheap, zeroheap = [], []
|
| 586 |
+
for n in range(maxn):
|
| 587 |
+
in_deg, out_deg = 0, 0
|
| 588 |
+
if n < nout:
|
| 589 |
+
out_deg = out_deg_sequence[n]
|
| 590 |
+
if n < nin:
|
| 591 |
+
in_deg = in_deg_sequence[n]
|
| 592 |
+
if in_deg < 0 or out_deg < 0:
|
| 593 |
+
raise nx.NetworkXError(
|
| 594 |
+
"Invalid degree sequences. Sequence values must be positive."
|
| 595 |
+
)
|
| 596 |
+
sumin, sumout, maxin = sumin + in_deg, sumout + out_deg, max(maxin, in_deg)
|
| 597 |
+
if in_deg > 0:
|
| 598 |
+
stubheap.append((-1 * out_deg, -1 * in_deg, n))
|
| 599 |
+
elif out_deg > 0:
|
| 600 |
+
zeroheap.append((-1 * out_deg, n))
|
| 601 |
+
if sumin != sumout:
|
| 602 |
+
raise nx.NetworkXError(
|
| 603 |
+
"Invalid degree sequences. Sequences must have equal sums."
|
| 604 |
+
)
|
| 605 |
+
heapq.heapify(stubheap)
|
| 606 |
+
heapq.heapify(zeroheap)
|
| 607 |
+
|
| 608 |
+
modstubs = [(0, 0, 0)] * (maxin + 1)
|
| 609 |
+
# Successively reduce degree sequence by removing the maximum
|
| 610 |
+
while stubheap:
|
| 611 |
+
# Remove first value in the sequence with a non-zero in degree
|
| 612 |
+
(freeout, freein, target) = heapq.heappop(stubheap)
|
| 613 |
+
freein *= -1
|
| 614 |
+
if freein > len(stubheap) + len(zeroheap):
|
| 615 |
+
raise nx.NetworkXError("Non-digraphical integer sequence")
|
| 616 |
+
|
| 617 |
+
# Attach arcs from the nodes with the most stubs
|
| 618 |
+
mslen = 0
|
| 619 |
+
for i in range(freein):
|
| 620 |
+
if zeroheap and (not stubheap or stubheap[0][0] > zeroheap[0][0]):
|
| 621 |
+
(stubout, stubsource) = heapq.heappop(zeroheap)
|
| 622 |
+
stubin = 0
|
| 623 |
+
else:
|
| 624 |
+
(stubout, stubin, stubsource) = heapq.heappop(stubheap)
|
| 625 |
+
if stubout == 0:
|
| 626 |
+
raise nx.NetworkXError("Non-digraphical integer sequence")
|
| 627 |
+
G.add_edge(stubsource, target)
|
| 628 |
+
# Check if source is now totally connected
|
| 629 |
+
if stubout + 1 < 0 or stubin < 0:
|
| 630 |
+
modstubs[mslen] = (stubout + 1, stubin, stubsource)
|
| 631 |
+
mslen += 1
|
| 632 |
+
|
| 633 |
+
# Add the nodes back to the heaps that still have available stubs
|
| 634 |
+
for i in range(mslen):
|
| 635 |
+
stub = modstubs[i]
|
| 636 |
+
if stub[1] < 0:
|
| 637 |
+
heapq.heappush(stubheap, stub)
|
| 638 |
+
else:
|
| 639 |
+
heapq.heappush(zeroheap, (stub[0], stub[2]))
|
| 640 |
+
if freeout < 0:
|
| 641 |
+
heapq.heappush(zeroheap, (freeout, target))
|
| 642 |
+
|
| 643 |
+
return G
|
| 644 |
+
|
| 645 |
+
|
| 646 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
| 647 |
+
def degree_sequence_tree(deg_sequence, create_using=None):
|
| 648 |
+
"""Make a tree for the given degree sequence.
|
| 649 |
+
|
| 650 |
+
A tree has #nodes-#edges=1 so
|
| 651 |
+
the degree sequence must have
|
| 652 |
+
len(deg_sequence)-sum(deg_sequence)/2=1
|
| 653 |
+
"""
|
| 654 |
+
# The sum of the degree sequence must be even (for any undirected graph).
|
| 655 |
+
degree_sum = sum(deg_sequence)
|
| 656 |
+
if degree_sum % 2 != 0:
|
| 657 |
+
msg = "Invalid degree sequence: sum of degrees must be even, not odd"
|
| 658 |
+
raise nx.NetworkXError(msg)
|
| 659 |
+
if len(deg_sequence) - degree_sum // 2 != 1:
|
| 660 |
+
msg = (
|
| 661 |
+
"Invalid degree sequence: tree must have number of nodes equal"
|
| 662 |
+
" to one less than the number of edges"
|
| 663 |
+
)
|
| 664 |
+
raise nx.NetworkXError(msg)
|
| 665 |
+
G = nx.empty_graph(0, create_using)
|
| 666 |
+
if G.is_directed():
|
| 667 |
+
raise nx.NetworkXError("Directed Graph not supported")
|
| 668 |
+
|
| 669 |
+
# Sort all degrees greater than 1 in decreasing order.
|
| 670 |
+
#
|
| 671 |
+
# TODO Does this need to be sorted in reverse order?
|
| 672 |
+
deg = sorted((s for s in deg_sequence if s > 1), reverse=True)
|
| 673 |
+
|
| 674 |
+
# make path graph as backbone
|
| 675 |
+
n = len(deg) + 2
|
| 676 |
+
nx.add_path(G, range(n))
|
| 677 |
+
last = n
|
| 678 |
+
|
| 679 |
+
# add the leaves
|
| 680 |
+
for source in range(1, n - 1):
|
| 681 |
+
nedges = deg.pop() - 2
|
| 682 |
+
for target in range(last, last + nedges):
|
| 683 |
+
G.add_edge(source, target)
|
| 684 |
+
last += nedges
|
| 685 |
+
|
| 686 |
+
# in case we added one too many
|
| 687 |
+
if len(G) > len(deg_sequence):
|
| 688 |
+
G.remove_node(0)
|
| 689 |
+
return G
|
| 690 |
+
|
| 691 |
+
|
| 692 |
+
@py_random_state(1)
|
| 693 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
| 694 |
+
def random_degree_sequence_graph(sequence, seed=None, tries=10):
|
| 695 |
+
r"""Returns a simple random graph with the given degree sequence.
|
| 696 |
+
|
| 697 |
+
If the maximum degree $d_m$ in the sequence is $O(m^{1/4})$ then the
|
| 698 |
+
algorithm produces almost uniform random graphs in $O(m d_m)$ time
|
| 699 |
+
where $m$ is the number of edges.
|
| 700 |
+
|
| 701 |
+
Parameters
|
| 702 |
+
----------
|
| 703 |
+
sequence : list of integers
|
| 704 |
+
Sequence of degrees
|
| 705 |
+
seed : integer, random_state, or None (default)
|
| 706 |
+
Indicator of random number generation state.
|
| 707 |
+
See :ref:`Randomness<randomness>`.
|
| 708 |
+
tries : int, optional
|
| 709 |
+
Maximum number of tries to create a graph
|
| 710 |
+
|
| 711 |
+
Returns
|
| 712 |
+
-------
|
| 713 |
+
G : Graph
|
| 714 |
+
A graph with the specified degree sequence.
|
| 715 |
+
Nodes are labeled starting at 0 with an index
|
| 716 |
+
corresponding to the position in the sequence.
|
| 717 |
+
|
| 718 |
+
Raises
|
| 719 |
+
------
|
| 720 |
+
NetworkXUnfeasible
|
| 721 |
+
If the degree sequence is not graphical.
|
| 722 |
+
NetworkXError
|
| 723 |
+
If a graph is not produced in specified number of tries
|
| 724 |
+
|
| 725 |
+
See Also
|
| 726 |
+
--------
|
| 727 |
+
is_graphical, configuration_model
|
| 728 |
+
|
| 729 |
+
Notes
|
| 730 |
+
-----
|
| 731 |
+
The generator algorithm [1]_ is not guaranteed to produce a graph.
|
| 732 |
+
|
| 733 |
+
References
|
| 734 |
+
----------
|
| 735 |
+
.. [1] Moshen Bayati, Jeong Han Kim, and Amin Saberi,
|
| 736 |
+
A sequential algorithm for generating random graphs.
|
| 737 |
+
Algorithmica, Volume 58, Number 4, 860-910,
|
| 738 |
+
DOI: 10.1007/s00453-009-9340-1
|
| 739 |
+
|
| 740 |
+
Examples
|
| 741 |
+
--------
|
| 742 |
+
>>> sequence = [1, 2, 2, 3]
|
| 743 |
+
>>> G = nx.random_degree_sequence_graph(sequence, seed=42)
|
| 744 |
+
>>> sorted(d for n, d in G.degree())
|
| 745 |
+
[1, 2, 2, 3]
|
| 746 |
+
"""
|
| 747 |
+
DSRG = DegreeSequenceRandomGraph(sequence, seed)
|
| 748 |
+
for try_n in range(tries):
|
| 749 |
+
try:
|
| 750 |
+
return DSRG.generate()
|
| 751 |
+
except nx.NetworkXUnfeasible:
|
| 752 |
+
pass
|
| 753 |
+
raise nx.NetworkXError(f"failed to generate graph in {tries} tries")
|
| 754 |
+
|
| 755 |
+
|
| 756 |
+
class DegreeSequenceRandomGraph:
|
| 757 |
+
# class to generate random graphs with a given degree sequence
|
| 758 |
+
# use random_degree_sequence_graph()
|
| 759 |
+
def __init__(self, degree, rng):
|
| 760 |
+
if not nx.is_graphical(degree):
|
| 761 |
+
raise nx.NetworkXUnfeasible("degree sequence is not graphical")
|
| 762 |
+
self.rng = rng
|
| 763 |
+
self.degree = list(degree)
|
| 764 |
+
# node labels are integers 0,...,n-1
|
| 765 |
+
self.m = sum(self.degree) / 2.0 # number of edges
|
| 766 |
+
try:
|
| 767 |
+
self.dmax = max(self.degree) # maximum degree
|
| 768 |
+
except ValueError:
|
| 769 |
+
self.dmax = 0
|
| 770 |
+
|
| 771 |
+
def generate(self):
|
| 772 |
+
# remaining_degree is mapping from int->remaining degree
|
| 773 |
+
self.remaining_degree = dict(enumerate(self.degree))
|
| 774 |
+
# add all nodes to make sure we get isolated nodes
|
| 775 |
+
self.graph = nx.Graph()
|
| 776 |
+
self.graph.add_nodes_from(self.remaining_degree)
|
| 777 |
+
# remove zero degree nodes
|
| 778 |
+
for n, d in list(self.remaining_degree.items()):
|
| 779 |
+
if d == 0:
|
| 780 |
+
del self.remaining_degree[n]
|
| 781 |
+
if len(self.remaining_degree) > 0:
|
| 782 |
+
# build graph in three phases according to how many unmatched edges
|
| 783 |
+
self.phase1()
|
| 784 |
+
self.phase2()
|
| 785 |
+
self.phase3()
|
| 786 |
+
return self.graph
|
| 787 |
+
|
| 788 |
+
def update_remaining(self, u, v, aux_graph=None):
|
| 789 |
+
# decrement remaining nodes, modify auxiliary graph if in phase3
|
| 790 |
+
if aux_graph is not None:
|
| 791 |
+
# remove edges from auxiliary graph
|
| 792 |
+
aux_graph.remove_edge(u, v)
|
| 793 |
+
if self.remaining_degree[u] == 1:
|
| 794 |
+
del self.remaining_degree[u]
|
| 795 |
+
if aux_graph is not None:
|
| 796 |
+
aux_graph.remove_node(u)
|
| 797 |
+
else:
|
| 798 |
+
self.remaining_degree[u] -= 1
|
| 799 |
+
if self.remaining_degree[v] == 1:
|
| 800 |
+
del self.remaining_degree[v]
|
| 801 |
+
if aux_graph is not None:
|
| 802 |
+
aux_graph.remove_node(v)
|
| 803 |
+
else:
|
| 804 |
+
self.remaining_degree[v] -= 1
|
| 805 |
+
|
| 806 |
+
def p(self, u, v):
|
| 807 |
+
# degree probability
|
| 808 |
+
return 1 - self.degree[u] * self.degree[v] / (4.0 * self.m)
|
| 809 |
+
|
| 810 |
+
def q(self, u, v):
|
| 811 |
+
# remaining degree probability
|
| 812 |
+
norm = max(self.remaining_degree.values()) ** 2
|
| 813 |
+
return self.remaining_degree[u] * self.remaining_degree[v] / norm
|
| 814 |
+
|
| 815 |
+
def suitable_edge(self):
|
| 816 |
+
"""Returns True if and only if an arbitrary remaining node can
|
| 817 |
+
potentially be joined with some other remaining node.
|
| 818 |
+
|
| 819 |
+
"""
|
| 820 |
+
nodes = iter(self.remaining_degree)
|
| 821 |
+
u = next(nodes)
|
| 822 |
+
return any(v not in self.graph[u] for v in nodes)
|
| 823 |
+
|
| 824 |
+
def phase1(self):
|
| 825 |
+
# choose node pairs from (degree) weighted distribution
|
| 826 |
+
rem_deg = self.remaining_degree
|
| 827 |
+
while sum(rem_deg.values()) >= 2 * self.dmax**2:
|
| 828 |
+
u, v = sorted(random_weighted_sample(rem_deg, 2, self.rng))
|
| 829 |
+
if self.graph.has_edge(u, v):
|
| 830 |
+
continue
|
| 831 |
+
if self.rng.random() < self.p(u, v): # accept edge
|
| 832 |
+
self.graph.add_edge(u, v)
|
| 833 |
+
self.update_remaining(u, v)
|
| 834 |
+
|
| 835 |
+
def phase2(self):
|
| 836 |
+
# choose remaining nodes uniformly at random and use rejection sampling
|
| 837 |
+
remaining_deg = self.remaining_degree
|
| 838 |
+
rng = self.rng
|
| 839 |
+
while len(remaining_deg) >= 2 * self.dmax:
|
| 840 |
+
while True:
|
| 841 |
+
u, v = sorted(rng.sample(list(remaining_deg.keys()), 2))
|
| 842 |
+
if self.graph.has_edge(u, v):
|
| 843 |
+
continue
|
| 844 |
+
if rng.random() < self.q(u, v):
|
| 845 |
+
break
|
| 846 |
+
if rng.random() < self.p(u, v): # accept edge
|
| 847 |
+
self.graph.add_edge(u, v)
|
| 848 |
+
self.update_remaining(u, v)
|
| 849 |
+
|
| 850 |
+
def phase3(self):
|
| 851 |
+
# build potential remaining edges and choose with rejection sampling
|
| 852 |
+
potential_edges = combinations(self.remaining_degree, 2)
|
| 853 |
+
# build auxiliary graph of potential edges not already in graph
|
| 854 |
+
H = nx.Graph(
|
| 855 |
+
[(u, v) for (u, v) in potential_edges if not self.graph.has_edge(u, v)]
|
| 856 |
+
)
|
| 857 |
+
rng = self.rng
|
| 858 |
+
while self.remaining_degree:
|
| 859 |
+
if not self.suitable_edge():
|
| 860 |
+
raise nx.NetworkXUnfeasible("no suitable edges left")
|
| 861 |
+
while True:
|
| 862 |
+
u, v = sorted(rng.choice(list(H.edges())))
|
| 863 |
+
if rng.random() < self.q(u, v):
|
| 864 |
+
break
|
| 865 |
+
if rng.random() < self.p(u, v): # accept edge
|
| 866 |
+
self.graph.add_edge(u, v)
|
| 867 |
+
self.update_remaining(u, v, aux_graph=H)
|
wemm/lib/python3.10/site-packages/networkx/generators/expanders.py
ADDED
|
@@ -0,0 +1,474 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Provides explicit constructions of expander graphs."""
|
| 2 |
+
|
| 3 |
+
import itertools
|
| 4 |
+
|
| 5 |
+
import networkx as nx
|
| 6 |
+
|
| 7 |
+
__all__ = [
|
| 8 |
+
"margulis_gabber_galil_graph",
|
| 9 |
+
"chordal_cycle_graph",
|
| 10 |
+
"paley_graph",
|
| 11 |
+
"maybe_regular_expander",
|
| 12 |
+
"is_regular_expander",
|
| 13 |
+
"random_regular_expander_graph",
|
| 14 |
+
]
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
# Other discrete torus expanders can be constructed by using the following edge
|
| 18 |
+
# sets. For more information, see Chapter 4, "Expander Graphs", in
|
| 19 |
+
# "Pseudorandomness", by Salil Vadhan.
|
| 20 |
+
#
|
| 21 |
+
# For a directed expander, add edges from (x, y) to:
|
| 22 |
+
#
|
| 23 |
+
# (x, y),
|
| 24 |
+
# ((x + 1) % n, y),
|
| 25 |
+
# (x, (y + 1) % n),
|
| 26 |
+
# (x, (x + y) % n),
|
| 27 |
+
# (-y % n, x)
|
| 28 |
+
#
|
| 29 |
+
# For an undirected expander, add the reverse edges.
|
| 30 |
+
#
|
| 31 |
+
# Also appearing in the paper of Gabber and Galil:
|
| 32 |
+
#
|
| 33 |
+
# (x, y),
|
| 34 |
+
# (x, (x + y) % n),
|
| 35 |
+
# (x, (x + y + 1) % n),
|
| 36 |
+
# ((x + y) % n, y),
|
| 37 |
+
# ((x + y + 1) % n, y)
|
| 38 |
+
#
|
| 39 |
+
# and:
|
| 40 |
+
#
|
| 41 |
+
# (x, y),
|
| 42 |
+
# ((x + 2*y) % n, y),
|
| 43 |
+
# ((x + (2*y + 1)) % n, y),
|
| 44 |
+
# ((x + (2*y + 2)) % n, y),
|
| 45 |
+
# (x, (y + 2*x) % n),
|
| 46 |
+
# (x, (y + (2*x + 1)) % n),
|
| 47 |
+
# (x, (y + (2*x + 2)) % n),
|
| 48 |
+
#
|
| 49 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
| 50 |
+
def margulis_gabber_galil_graph(n, create_using=None):
|
| 51 |
+
r"""Returns the Margulis-Gabber-Galil undirected MultiGraph on `n^2` nodes.
|
| 52 |
+
|
| 53 |
+
The undirected MultiGraph is regular with degree `8`. Nodes are integer
|
| 54 |
+
pairs. The second-largest eigenvalue of the adjacency matrix of the graph
|
| 55 |
+
is at most `5 \sqrt{2}`, regardless of `n`.
|
| 56 |
+
|
| 57 |
+
Parameters
|
| 58 |
+
----------
|
| 59 |
+
n : int
|
| 60 |
+
Determines the number of nodes in the graph: `n^2`.
|
| 61 |
+
create_using : NetworkX graph constructor, optional (default MultiGraph)
|
| 62 |
+
Graph type to create. If graph instance, then cleared before populated.
|
| 63 |
+
|
| 64 |
+
Returns
|
| 65 |
+
-------
|
| 66 |
+
G : graph
|
| 67 |
+
The constructed undirected multigraph.
|
| 68 |
+
|
| 69 |
+
Raises
|
| 70 |
+
------
|
| 71 |
+
NetworkXError
|
| 72 |
+
If the graph is directed or not a multigraph.
|
| 73 |
+
|
| 74 |
+
"""
|
| 75 |
+
G = nx.empty_graph(0, create_using, default=nx.MultiGraph)
|
| 76 |
+
if G.is_directed() or not G.is_multigraph():
|
| 77 |
+
msg = "`create_using` must be an undirected multigraph."
|
| 78 |
+
raise nx.NetworkXError(msg)
|
| 79 |
+
|
| 80 |
+
for x, y in itertools.product(range(n), repeat=2):
|
| 81 |
+
for u, v in (
|
| 82 |
+
((x + 2 * y) % n, y),
|
| 83 |
+
((x + (2 * y + 1)) % n, y),
|
| 84 |
+
(x, (y + 2 * x) % n),
|
| 85 |
+
(x, (y + (2 * x + 1)) % n),
|
| 86 |
+
):
|
| 87 |
+
G.add_edge((x, y), (u, v))
|
| 88 |
+
G.graph["name"] = f"margulis_gabber_galil_graph({n})"
|
| 89 |
+
return G
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
| 93 |
+
def chordal_cycle_graph(p, create_using=None):
|
| 94 |
+
"""Returns the chordal cycle graph on `p` nodes.
|
| 95 |
+
|
| 96 |
+
The returned graph is a cycle graph on `p` nodes with chords joining each
|
| 97 |
+
vertex `x` to its inverse modulo `p`. This graph is a (mildly explicit)
|
| 98 |
+
3-regular expander [1]_.
|
| 99 |
+
|
| 100 |
+
`p` *must* be a prime number.
|
| 101 |
+
|
| 102 |
+
Parameters
|
| 103 |
+
----------
|
| 104 |
+
p : a prime number
|
| 105 |
+
|
| 106 |
+
The number of vertices in the graph. This also indicates where the
|
| 107 |
+
chordal edges in the cycle will be created.
|
| 108 |
+
|
| 109 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
| 110 |
+
Graph type to create. If graph instance, then cleared before populated.
|
| 111 |
+
|
| 112 |
+
Returns
|
| 113 |
+
-------
|
| 114 |
+
G : graph
|
| 115 |
+
The constructed undirected multigraph.
|
| 116 |
+
|
| 117 |
+
Raises
|
| 118 |
+
------
|
| 119 |
+
NetworkXError
|
| 120 |
+
|
| 121 |
+
If `create_using` indicates directed or not a multigraph.
|
| 122 |
+
|
| 123 |
+
References
|
| 124 |
+
----------
|
| 125 |
+
|
| 126 |
+
.. [1] Theorem 4.4.2 in A. Lubotzky. "Discrete groups, expanding graphs and
|
| 127 |
+
invariant measures", volume 125 of Progress in Mathematics.
|
| 128 |
+
Birkhäuser Verlag, Basel, 1994.
|
| 129 |
+
|
| 130 |
+
"""
|
| 131 |
+
G = nx.empty_graph(0, create_using, default=nx.MultiGraph)
|
| 132 |
+
if G.is_directed() or not G.is_multigraph():
|
| 133 |
+
msg = "`create_using` must be an undirected multigraph."
|
| 134 |
+
raise nx.NetworkXError(msg)
|
| 135 |
+
|
| 136 |
+
for x in range(p):
|
| 137 |
+
left = (x - 1) % p
|
| 138 |
+
right = (x + 1) % p
|
| 139 |
+
# Here we apply Fermat's Little Theorem to compute the multiplicative
|
| 140 |
+
# inverse of x in Z/pZ. By Fermat's Little Theorem,
|
| 141 |
+
#
|
| 142 |
+
# x^p = x (mod p)
|
| 143 |
+
#
|
| 144 |
+
# Therefore,
|
| 145 |
+
#
|
| 146 |
+
# x * x^(p - 2) = 1 (mod p)
|
| 147 |
+
#
|
| 148 |
+
# The number 0 is a special case: we just let its inverse be itself.
|
| 149 |
+
chord = pow(x, p - 2, p) if x > 0 else 0
|
| 150 |
+
for y in (left, right, chord):
|
| 151 |
+
G.add_edge(x, y)
|
| 152 |
+
G.graph["name"] = f"chordal_cycle_graph({p})"
|
| 153 |
+
return G
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
| 157 |
+
def paley_graph(p, create_using=None):
|
| 158 |
+
r"""Returns the Paley $\frac{(p-1)}{2}$ -regular graph on $p$ nodes.
|
| 159 |
+
|
| 160 |
+
The returned graph is a graph on $\mathbb{Z}/p\mathbb{Z}$ with edges between $x$ and $y$
|
| 161 |
+
if and only if $x-y$ is a nonzero square in $\mathbb{Z}/p\mathbb{Z}$.
|
| 162 |
+
|
| 163 |
+
If $p \equiv 1 \pmod 4$, $-1$ is a square in $\mathbb{Z}/p\mathbb{Z}$ and therefore $x-y$ is a square if and
|
| 164 |
+
only if $y-x$ is also a square, i.e the edges in the Paley graph are symmetric.
|
| 165 |
+
|
| 166 |
+
If $p \equiv 3 \pmod 4$, $-1$ is not a square in $\mathbb{Z}/p\mathbb{Z}$ and therefore either $x-y$ or $y-x$
|
| 167 |
+
is a square in $\mathbb{Z}/p\mathbb{Z}$ but not both.
|
| 168 |
+
|
| 169 |
+
Note that a more general definition of Paley graphs extends this construction
|
| 170 |
+
to graphs over $q=p^n$ vertices, by using the finite field $F_q$ instead of $\mathbb{Z}/p\mathbb{Z}$.
|
| 171 |
+
This construction requires to compute squares in general finite fields and is
|
| 172 |
+
not what is implemented here (i.e `paley_graph(25)` does not return the true
|
| 173 |
+
Paley graph associated with $5^2$).
|
| 174 |
+
|
| 175 |
+
Parameters
|
| 176 |
+
----------
|
| 177 |
+
p : int, an odd prime number.
|
| 178 |
+
|
| 179 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
| 180 |
+
Graph type to create. If graph instance, then cleared before populated.
|
| 181 |
+
|
| 182 |
+
Returns
|
| 183 |
+
-------
|
| 184 |
+
G : graph
|
| 185 |
+
The constructed directed graph.
|
| 186 |
+
|
| 187 |
+
Raises
|
| 188 |
+
------
|
| 189 |
+
NetworkXError
|
| 190 |
+
If the graph is a multigraph.
|
| 191 |
+
|
| 192 |
+
References
|
| 193 |
+
----------
|
| 194 |
+
Chapter 13 in B. Bollobas, Random Graphs. Second edition.
|
| 195 |
+
Cambridge Studies in Advanced Mathematics, 73.
|
| 196 |
+
Cambridge University Press, Cambridge (2001).
|
| 197 |
+
"""
|
| 198 |
+
G = nx.empty_graph(0, create_using, default=nx.DiGraph)
|
| 199 |
+
if G.is_multigraph():
|
| 200 |
+
msg = "`create_using` cannot be a multigraph."
|
| 201 |
+
raise nx.NetworkXError(msg)
|
| 202 |
+
|
| 203 |
+
# Compute the squares in Z/pZ.
|
| 204 |
+
# Make it a set to uniquify (there are exactly (p-1)/2 squares in Z/pZ
|
| 205 |
+
# when is prime).
|
| 206 |
+
square_set = {(x**2) % p for x in range(1, p) if (x**2) % p != 0}
|
| 207 |
+
|
| 208 |
+
for x in range(p):
|
| 209 |
+
for x2 in square_set:
|
| 210 |
+
G.add_edge(x, (x + x2) % p)
|
| 211 |
+
G.graph["name"] = f"paley({p})"
|
| 212 |
+
return G
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
@nx.utils.decorators.np_random_state("seed")
|
| 216 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
| 217 |
+
def maybe_regular_expander(n, d, *, create_using=None, max_tries=100, seed=None):
|
| 218 |
+
r"""Utility for creating a random regular expander.
|
| 219 |
+
|
| 220 |
+
Returns a random $d$-regular graph on $n$ nodes which is an expander
|
| 221 |
+
graph with very good probability.
|
| 222 |
+
|
| 223 |
+
Parameters
|
| 224 |
+
----------
|
| 225 |
+
n : int
|
| 226 |
+
The number of nodes.
|
| 227 |
+
d : int
|
| 228 |
+
The degree of each node.
|
| 229 |
+
create_using : Graph Instance or Constructor
|
| 230 |
+
Indicator of type of graph to return.
|
| 231 |
+
If a Graph-type instance, then clear and use it.
|
| 232 |
+
If a constructor, call it to create an empty graph.
|
| 233 |
+
Use the Graph constructor by default.
|
| 234 |
+
max_tries : int. (default: 100)
|
| 235 |
+
The number of allowed loops when generating each independent cycle
|
| 236 |
+
seed : (default: None)
|
| 237 |
+
Seed used to set random number generation state. See :ref`Randomness<randomness>`.
|
| 238 |
+
|
| 239 |
+
Notes
|
| 240 |
+
-----
|
| 241 |
+
The nodes are numbered from $0$ to $n - 1$.
|
| 242 |
+
|
| 243 |
+
The graph is generated by taking $d / 2$ random independent cycles.
|
| 244 |
+
|
| 245 |
+
Joel Friedman proved that in this model the resulting
|
| 246 |
+
graph is an expander with probability
|
| 247 |
+
$1 - O(n^{-\tau})$ where $\tau = \lceil (\sqrt{d - 1}) / 2 \rceil - 1$. [1]_
|
| 248 |
+
|
| 249 |
+
Examples
|
| 250 |
+
--------
|
| 251 |
+
>>> G = nx.maybe_regular_expander(n=200, d=6, seed=8020)
|
| 252 |
+
|
| 253 |
+
Returns
|
| 254 |
+
-------
|
| 255 |
+
G : graph
|
| 256 |
+
The constructed undirected graph.
|
| 257 |
+
|
| 258 |
+
Raises
|
| 259 |
+
------
|
| 260 |
+
NetworkXError
|
| 261 |
+
If $d % 2 != 0$ as the degree must be even.
|
| 262 |
+
If $n - 1$ is less than $ 2d $ as the graph is complete at most.
|
| 263 |
+
If max_tries is reached
|
| 264 |
+
|
| 265 |
+
See Also
|
| 266 |
+
--------
|
| 267 |
+
is_regular_expander
|
| 268 |
+
random_regular_expander_graph
|
| 269 |
+
|
| 270 |
+
References
|
| 271 |
+
----------
|
| 272 |
+
.. [1] Joel Friedman,
|
| 273 |
+
A Proof of Alon’s Second Eigenvalue Conjecture and Related Problems, 2004
|
| 274 |
+
https://arxiv.org/abs/cs/0405020
|
| 275 |
+
|
| 276 |
+
"""
|
| 277 |
+
|
| 278 |
+
import numpy as np
|
| 279 |
+
|
| 280 |
+
if n < 1:
|
| 281 |
+
raise nx.NetworkXError("n must be a positive integer")
|
| 282 |
+
|
| 283 |
+
if not (d >= 2):
|
| 284 |
+
raise nx.NetworkXError("d must be greater than or equal to 2")
|
| 285 |
+
|
| 286 |
+
if not (d % 2 == 0):
|
| 287 |
+
raise nx.NetworkXError("d must be even")
|
| 288 |
+
|
| 289 |
+
if not (n - 1 >= d):
|
| 290 |
+
raise nx.NetworkXError(
|
| 291 |
+
f"Need n-1>= d to have room for {d//2} independent cycles with {n} nodes"
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
G = nx.empty_graph(n, create_using)
|
| 295 |
+
|
| 296 |
+
if n < 2:
|
| 297 |
+
return G
|
| 298 |
+
|
| 299 |
+
cycles = []
|
| 300 |
+
edges = set()
|
| 301 |
+
|
| 302 |
+
# Create d / 2 cycles
|
| 303 |
+
for i in range(d // 2):
|
| 304 |
+
iterations = max_tries
|
| 305 |
+
# Make sure the cycles are independent to have a regular graph
|
| 306 |
+
while len(edges) != (i + 1) * n:
|
| 307 |
+
iterations -= 1
|
| 308 |
+
# Faster than random.permutation(n) since there are only
|
| 309 |
+
# (n-1)! distinct cycles against n! permutations of size n
|
| 310 |
+
cycle = seed.permutation(n - 1).tolist()
|
| 311 |
+
cycle.append(n - 1)
|
| 312 |
+
|
| 313 |
+
new_edges = {
|
| 314 |
+
(u, v)
|
| 315 |
+
for u, v in nx.utils.pairwise(cycle, cyclic=True)
|
| 316 |
+
if (u, v) not in edges and (v, u) not in edges
|
| 317 |
+
}
|
| 318 |
+
# If the new cycle has no edges in common with previous cycles
|
| 319 |
+
# then add it to the list otherwise try again
|
| 320 |
+
if len(new_edges) == n:
|
| 321 |
+
cycles.append(cycle)
|
| 322 |
+
edges.update(new_edges)
|
| 323 |
+
|
| 324 |
+
if iterations == 0:
|
| 325 |
+
raise nx.NetworkXError("Too many iterations in maybe_regular_expander")
|
| 326 |
+
|
| 327 |
+
G.add_edges_from(edges)
|
| 328 |
+
|
| 329 |
+
return G
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
@nx.utils.not_implemented_for("directed")
|
| 333 |
+
@nx.utils.not_implemented_for("multigraph")
|
| 334 |
+
@nx._dispatchable(preserve_edge_attrs={"G": {"weight": 1}})
|
| 335 |
+
def is_regular_expander(G, *, epsilon=0):
|
| 336 |
+
r"""Determines whether the graph G is a regular expander. [1]_
|
| 337 |
+
|
| 338 |
+
An expander graph is a sparse graph with strong connectivity properties.
|
| 339 |
+
|
| 340 |
+
More precisely, this helper checks whether the graph is a
|
| 341 |
+
regular $(n, d, \lambda)$-expander with $\lambda$ close to
|
| 342 |
+
the Alon-Boppana bound and given by
|
| 343 |
+
$\lambda = 2 \sqrt{d - 1} + \epsilon$. [2]_
|
| 344 |
+
|
| 345 |
+
In the case where $\epsilon = 0$ then if the graph successfully passes the test
|
| 346 |
+
it is a Ramanujan graph. [3]_
|
| 347 |
+
|
| 348 |
+
A Ramanujan graph has spectral gap almost as large as possible, which makes them
|
| 349 |
+
excellent expanders.
|
| 350 |
+
|
| 351 |
+
Parameters
|
| 352 |
+
----------
|
| 353 |
+
G : NetworkX graph
|
| 354 |
+
epsilon : int, float, default=0
|
| 355 |
+
|
| 356 |
+
Returns
|
| 357 |
+
-------
|
| 358 |
+
bool
|
| 359 |
+
Whether the given graph is a regular $(n, d, \lambda)$-expander
|
| 360 |
+
where $\lambda = 2 \sqrt{d - 1} + \epsilon$.
|
| 361 |
+
|
| 362 |
+
Examples
|
| 363 |
+
--------
|
| 364 |
+
>>> G = nx.random_regular_expander_graph(20, 4)
|
| 365 |
+
>>> nx.is_regular_expander(G)
|
| 366 |
+
True
|
| 367 |
+
|
| 368 |
+
See Also
|
| 369 |
+
--------
|
| 370 |
+
maybe_regular_expander
|
| 371 |
+
random_regular_expander_graph
|
| 372 |
+
|
| 373 |
+
References
|
| 374 |
+
----------
|
| 375 |
+
.. [1] Expander graph, https://en.wikipedia.org/wiki/Expander_graph
|
| 376 |
+
.. [2] Alon-Boppana bound, https://en.wikipedia.org/wiki/Alon%E2%80%93Boppana_bound
|
| 377 |
+
.. [3] Ramanujan graphs, https://en.wikipedia.org/wiki/Ramanujan_graph
|
| 378 |
+
|
| 379 |
+
"""
|
| 380 |
+
|
| 381 |
+
import numpy as np
|
| 382 |
+
from scipy.sparse.linalg import eigsh
|
| 383 |
+
|
| 384 |
+
if epsilon < 0:
|
| 385 |
+
raise nx.NetworkXError("epsilon must be non negative")
|
| 386 |
+
|
| 387 |
+
if not nx.is_regular(G):
|
| 388 |
+
return False
|
| 389 |
+
|
| 390 |
+
_, d = nx.utils.arbitrary_element(G.degree)
|
| 391 |
+
|
| 392 |
+
A = nx.adjacency_matrix(G, dtype=float)
|
| 393 |
+
lams = eigsh(A, which="LM", k=2, return_eigenvectors=False)
|
| 394 |
+
|
| 395 |
+
# lambda2 is the second biggest eigenvalue
|
| 396 |
+
lambda2 = min(lams)
|
| 397 |
+
|
| 398 |
+
# Use bool() to convert numpy scalar to Python Boolean
|
| 399 |
+
return bool(abs(lambda2) < 2 ** np.sqrt(d - 1) + epsilon)
|
| 400 |
+
|
| 401 |
+
|
| 402 |
+
@nx.utils.decorators.np_random_state("seed")
|
| 403 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
| 404 |
+
def random_regular_expander_graph(
|
| 405 |
+
n, d, *, epsilon=0, create_using=None, max_tries=100, seed=None
|
| 406 |
+
):
|
| 407 |
+
r"""Returns a random regular expander graph on $n$ nodes with degree $d$.
|
| 408 |
+
|
| 409 |
+
An expander graph is a sparse graph with strong connectivity properties. [1]_
|
| 410 |
+
|
| 411 |
+
More precisely the returned graph is a $(n, d, \lambda)$-expander with
|
| 412 |
+
$\lambda = 2 \sqrt{d - 1} + \epsilon$, close to the Alon-Boppana bound. [2]_
|
| 413 |
+
|
| 414 |
+
In the case where $\epsilon = 0$ it returns a Ramanujan graph.
|
| 415 |
+
A Ramanujan graph has spectral gap almost as large as possible,
|
| 416 |
+
which makes them excellent expanders. [3]_
|
| 417 |
+
|
| 418 |
+
Parameters
|
| 419 |
+
----------
|
| 420 |
+
n : int
|
| 421 |
+
The number of nodes.
|
| 422 |
+
d : int
|
| 423 |
+
The degree of each node.
|
| 424 |
+
epsilon : int, float, default=0
|
| 425 |
+
max_tries : int, (default: 100)
|
| 426 |
+
The number of allowed loops, also used in the maybe_regular_expander utility
|
| 427 |
+
seed : (default: None)
|
| 428 |
+
Seed used to set random number generation state. See :ref`Randomness<randomness>`.
|
| 429 |
+
|
| 430 |
+
Raises
|
| 431 |
+
------
|
| 432 |
+
NetworkXError
|
| 433 |
+
If max_tries is reached
|
| 434 |
+
|
| 435 |
+
Examples
|
| 436 |
+
--------
|
| 437 |
+
>>> G = nx.random_regular_expander_graph(20, 4)
|
| 438 |
+
>>> nx.is_regular_expander(G)
|
| 439 |
+
True
|
| 440 |
+
|
| 441 |
+
Notes
|
| 442 |
+
-----
|
| 443 |
+
This loops over `maybe_regular_expander` and can be slow when
|
| 444 |
+
$n$ is too big or $\epsilon$ too small.
|
| 445 |
+
|
| 446 |
+
See Also
|
| 447 |
+
--------
|
| 448 |
+
maybe_regular_expander
|
| 449 |
+
is_regular_expander
|
| 450 |
+
|
| 451 |
+
References
|
| 452 |
+
----------
|
| 453 |
+
.. [1] Expander graph, https://en.wikipedia.org/wiki/Expander_graph
|
| 454 |
+
.. [2] Alon-Boppana bound, https://en.wikipedia.org/wiki/Alon%E2%80%93Boppana_bound
|
| 455 |
+
.. [3] Ramanujan graphs, https://en.wikipedia.org/wiki/Ramanujan_graph
|
| 456 |
+
|
| 457 |
+
"""
|
| 458 |
+
G = maybe_regular_expander(
|
| 459 |
+
n, d, create_using=create_using, max_tries=max_tries, seed=seed
|
| 460 |
+
)
|
| 461 |
+
iterations = max_tries
|
| 462 |
+
|
| 463 |
+
while not is_regular_expander(G, epsilon=epsilon):
|
| 464 |
+
iterations -= 1
|
| 465 |
+
G = maybe_regular_expander(
|
| 466 |
+
n=n, d=d, create_using=create_using, max_tries=max_tries, seed=seed
|
| 467 |
+
)
|
| 468 |
+
|
| 469 |
+
if iterations == 0:
|
| 470 |
+
raise nx.NetworkXError(
|
| 471 |
+
"Too many iterations in random_regular_expander_graph"
|
| 472 |
+
)
|
| 473 |
+
|
| 474 |
+
return G
|
wemm/lib/python3.10/site-packages/networkx/generators/mycielski.py
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Functions related to the Mycielski Operation and the Mycielskian family
|
| 2 |
+
of graphs.
|
| 3 |
+
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import networkx as nx
|
| 7 |
+
from networkx.utils import not_implemented_for
|
| 8 |
+
|
| 9 |
+
__all__ = ["mycielskian", "mycielski_graph"]
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
@not_implemented_for("directed")
|
| 13 |
+
@not_implemented_for("multigraph")
|
| 14 |
+
@nx._dispatchable(returns_graph=True)
|
| 15 |
+
def mycielskian(G, iterations=1):
|
| 16 |
+
r"""Returns the Mycielskian of a simple, undirected graph G
|
| 17 |
+
|
| 18 |
+
The Mycielskian of graph preserves a graph's triangle free
|
| 19 |
+
property while increasing the chromatic number by 1.
|
| 20 |
+
|
| 21 |
+
The Mycielski Operation on a graph, :math:`G=(V, E)`, constructs a new
|
| 22 |
+
graph with :math:`2|V| + 1` nodes and :math:`3|E| + |V|` edges.
|
| 23 |
+
|
| 24 |
+
The construction is as follows:
|
| 25 |
+
|
| 26 |
+
Let :math:`V = {0, ..., n-1}`. Construct another vertex set
|
| 27 |
+
:math:`U = {n, ..., 2n}` and a vertex, `w`.
|
| 28 |
+
Construct a new graph, `M`, with vertices :math:`U \bigcup V \bigcup w`.
|
| 29 |
+
For edges, :math:`(u, v) \in E` add edges :math:`(u, v), (u, v + n)`, and
|
| 30 |
+
:math:`(u + n, v)` to M. Finally, for all vertices :math:`u \in U`, add
|
| 31 |
+
edge :math:`(u, w)` to M.
|
| 32 |
+
|
| 33 |
+
The Mycielski Operation can be done multiple times by repeating the above
|
| 34 |
+
process iteratively.
|
| 35 |
+
|
| 36 |
+
More information can be found at https://en.wikipedia.org/wiki/Mycielskian
|
| 37 |
+
|
| 38 |
+
Parameters
|
| 39 |
+
----------
|
| 40 |
+
G : graph
|
| 41 |
+
A simple, undirected NetworkX graph
|
| 42 |
+
iterations : int
|
| 43 |
+
The number of iterations of the Mycielski operation to
|
| 44 |
+
perform on G. Defaults to 1. Must be a non-negative integer.
|
| 45 |
+
|
| 46 |
+
Returns
|
| 47 |
+
-------
|
| 48 |
+
M : graph
|
| 49 |
+
The Mycielskian of G after the specified number of iterations.
|
| 50 |
+
|
| 51 |
+
Notes
|
| 52 |
+
-----
|
| 53 |
+
Graph, node, and edge data are not necessarily propagated to the new graph.
|
| 54 |
+
|
| 55 |
+
"""
|
| 56 |
+
|
| 57 |
+
M = nx.convert_node_labels_to_integers(G)
|
| 58 |
+
|
| 59 |
+
for i in range(iterations):
|
| 60 |
+
n = M.number_of_nodes()
|
| 61 |
+
M.add_nodes_from(range(n, 2 * n))
|
| 62 |
+
old_edges = list(M.edges())
|
| 63 |
+
M.add_edges_from((u, v + n) for u, v in old_edges)
|
| 64 |
+
M.add_edges_from((u + n, v) for u, v in old_edges)
|
| 65 |
+
M.add_node(2 * n)
|
| 66 |
+
M.add_edges_from((u + n, 2 * n) for u in range(n))
|
| 67 |
+
|
| 68 |
+
return M
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
| 72 |
+
def mycielski_graph(n):
|
| 73 |
+
"""Generator for the n_th Mycielski Graph.
|
| 74 |
+
|
| 75 |
+
The Mycielski family of graphs is an infinite set of graphs.
|
| 76 |
+
:math:`M_1` is the singleton graph, :math:`M_2` is two vertices with an
|
| 77 |
+
edge, and, for :math:`i > 2`, :math:`M_i` is the Mycielskian of
|
| 78 |
+
:math:`M_{i-1}`.
|
| 79 |
+
|
| 80 |
+
More information can be found at
|
| 81 |
+
http://mathworld.wolfram.com/MycielskiGraph.html
|
| 82 |
+
|
| 83 |
+
Parameters
|
| 84 |
+
----------
|
| 85 |
+
n : int
|
| 86 |
+
The desired Mycielski Graph.
|
| 87 |
+
|
| 88 |
+
Returns
|
| 89 |
+
-------
|
| 90 |
+
M : graph
|
| 91 |
+
The n_th Mycielski Graph
|
| 92 |
+
|
| 93 |
+
Notes
|
| 94 |
+
-----
|
| 95 |
+
The first graph in the Mycielski sequence is the singleton graph.
|
| 96 |
+
The Mycielskian of this graph is not the :math:`P_2` graph, but rather the
|
| 97 |
+
:math:`P_2` graph with an extra, isolated vertex. The second Mycielski
|
| 98 |
+
graph is the :math:`P_2` graph, so the first two are hard coded.
|
| 99 |
+
The remaining graphs are generated using the Mycielski operation.
|
| 100 |
+
|
| 101 |
+
"""
|
| 102 |
+
|
| 103 |
+
if n < 1:
|
| 104 |
+
raise nx.NetworkXError("must satisfy n >= 1")
|
| 105 |
+
|
| 106 |
+
if n == 1:
|
| 107 |
+
return nx.empty_graph(1)
|
| 108 |
+
|
| 109 |
+
else:
|
| 110 |
+
return mycielskian(nx.path_graph(2), n - 2)
|
wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_spectral_graph_forge.cpython-310.pyc
ADDED
|
Binary file (1.12 kB). View file
|
|
|
wemm/lib/python3.10/site-packages/networkx/generators/tests/__pycache__/test_stochastic.cpython-310.pyc
ADDED
|
Binary file (2.84 kB). View file
|
|
|
wemm/lib/python3.10/site-packages/networkx/generators/tests/test_cographs.py
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Unit tests for the :mod:`networkx.generators.cographs` module."""
|
| 2 |
+
|
| 3 |
+
import networkx as nx
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def test_random_cograph():
|
| 7 |
+
n = 3
|
| 8 |
+
G = nx.random_cograph(n)
|
| 9 |
+
|
| 10 |
+
assert len(G) == 2**n
|
| 11 |
+
|
| 12 |
+
# Every connected subgraph of G has diameter <= 2
|
| 13 |
+
if nx.is_connected(G):
|
| 14 |
+
assert nx.diameter(G) <= 2
|
| 15 |
+
else:
|
| 16 |
+
components = nx.connected_components(G)
|
| 17 |
+
for component in components:
|
| 18 |
+
assert nx.diameter(G.subgraph(component)) <= 2
|