Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/__init__.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/atlas.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/classic.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/cographs.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/community.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/degree_seq.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/directed.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/duplication.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/expanders.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/harary_graph.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/interval_graph.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/joint_degree_seq.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/lattice.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/line.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/mycielski.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/nonisomorphic_trees.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/social.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/spectral_graph_forge.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/stochastic.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/sudoku.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/time_series.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/trees.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/triads.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/linalg/__init__.py +13 -0
- minigpt2/lib/python3.10/site-packages/networkx/linalg/__pycache__/__init__.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/linalg/__pycache__/algebraicconnectivity.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/linalg/__pycache__/attrmatrix.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/linalg/__pycache__/bethehessianmatrix.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/linalg/__pycache__/graphmatrix.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/linalg/__pycache__/laplacianmatrix.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/linalg/__pycache__/modularitymatrix.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/linalg/__pycache__/spectrum.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/linalg/algebraicconnectivity.py +657 -0
- minigpt2/lib/python3.10/site-packages/networkx/linalg/attrmatrix.py +465 -0
- minigpt2/lib/python3.10/site-packages/networkx/linalg/bethehessianmatrix.py +79 -0
- minigpt2/lib/python3.10/site-packages/networkx/linalg/graphmatrix.py +168 -0
- minigpt2/lib/python3.10/site-packages/networkx/linalg/laplacianmatrix.py +617 -0
- minigpt2/lib/python3.10/site-packages/networkx/linalg/modularitymatrix.py +166 -0
- minigpt2/lib/python3.10/site-packages/networkx/linalg/spectrum.py +186 -0
- minigpt2/lib/python3.10/site-packages/networkx/linalg/tests/__init__.py +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/test_algebraic_connectivity.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/test_attrmatrix.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/test_bethehessian.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/test_graphmatrix.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/test_laplacian.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/test_modularity.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/test_spectrum.cpython-310.pyc +0 -0
- minigpt2/lib/python3.10/site-packages/networkx/linalg/tests/test_algebraic_connectivity.py +402 -0
- minigpt2/lib/python3.10/site-packages/networkx/linalg/tests/test_attrmatrix.py +108 -0
minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (1.47 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/atlas.cpython-310.pyc
ADDED
|
Binary file (4.32 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/classic.cpython-310.pyc
ADDED
|
Binary file (29.9 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/cographs.cpython-310.pyc
ADDED
|
Binary file (2.23 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/community.cpython-310.pyc
ADDED
|
Binary file (31.2 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/degree_seq.cpython-310.pyc
ADDED
|
Binary file (25.6 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/directed.cpython-310.pyc
ADDED
|
Binary file (15 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/duplication.cpython-310.pyc
ADDED
|
Binary file (5.06 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/expanders.cpython-310.pyc
ADDED
|
Binary file (12.4 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/harary_graph.cpython-310.pyc
ADDED
|
Binary file (4.79 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/interval_graph.cpython-310.pyc
ADDED
|
Binary file (2.32 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/joint_degree_seq.cpython-310.pyc
ADDED
|
Binary file (17.2 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/lattice.cpython-310.pyc
ADDED
|
Binary file (15 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/line.cpython-310.pyc
ADDED
|
Binary file (15.3 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/mycielski.cpython-310.pyc
ADDED
|
Binary file (3.84 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/nonisomorphic_trees.cpython-310.pyc
ADDED
|
Binary file (5.64 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/social.cpython-310.pyc
ADDED
|
Binary file (13.4 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/spectral_graph_forge.cpython-310.pyc
ADDED
|
Binary file (4.22 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/stochastic.cpython-310.pyc
ADDED
|
Binary file (1.99 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/sudoku.cpython-310.pyc
ADDED
|
Binary file (4.04 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/time_series.cpython-310.pyc
ADDED
|
Binary file (2.59 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/trees.cpython-310.pyc
ADDED
|
Binary file (34.3 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/generators/__pycache__/triads.cpython-310.pyc
ADDED
|
Binary file (2.28 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/linalg/__init__.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from networkx.linalg.attrmatrix import *
|
| 2 |
+
from networkx.linalg import attrmatrix
|
| 3 |
+
from networkx.linalg.spectrum import *
|
| 4 |
+
from networkx.linalg import spectrum
|
| 5 |
+
from networkx.linalg.graphmatrix import *
|
| 6 |
+
from networkx.linalg import graphmatrix
|
| 7 |
+
from networkx.linalg.laplacianmatrix import *
|
| 8 |
+
from networkx.linalg import laplacianmatrix
|
| 9 |
+
from networkx.linalg.algebraicconnectivity import *
|
| 10 |
+
from networkx.linalg.modularitymatrix import *
|
| 11 |
+
from networkx.linalg import modularitymatrix
|
| 12 |
+
from networkx.linalg.bethehessianmatrix import *
|
| 13 |
+
from networkx.linalg import bethehessianmatrix
|
minigpt2/lib/python3.10/site-packages/networkx/linalg/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (702 Bytes). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/linalg/__pycache__/algebraicconnectivity.cpython-310.pyc
ADDED
|
Binary file (20 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/linalg/__pycache__/attrmatrix.cpython-310.pyc
ADDED
|
Binary file (14.7 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/linalg/__pycache__/bethehessianmatrix.cpython-310.pyc
ADDED
|
Binary file (2.96 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/linalg/__pycache__/graphmatrix.cpython-310.pyc
ADDED
|
Binary file (5.56 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/linalg/__pycache__/laplacianmatrix.cpython-310.pyc
ADDED
|
Binary file (18.9 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/linalg/__pycache__/modularitymatrix.cpython-310.pyc
ADDED
|
Binary file (4.71 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/linalg/__pycache__/spectrum.cpython-310.pyc
ADDED
|
Binary file (4.41 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/linalg/algebraicconnectivity.py
ADDED
|
@@ -0,0 +1,657 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Algebraic connectivity and Fiedler vectors of undirected graphs.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from functools import partial
|
| 6 |
+
|
| 7 |
+
import networkx as nx
|
| 8 |
+
from networkx.utils import (
|
| 9 |
+
not_implemented_for,
|
| 10 |
+
np_random_state,
|
| 11 |
+
reverse_cuthill_mckee_ordering,
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
__all__ = [
|
| 15 |
+
"algebraic_connectivity",
|
| 16 |
+
"fiedler_vector",
|
| 17 |
+
"spectral_ordering",
|
| 18 |
+
"spectral_bisection",
|
| 19 |
+
]
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class _PCGSolver:
|
| 23 |
+
"""Preconditioned conjugate gradient method.
|
| 24 |
+
|
| 25 |
+
To solve Ax = b:
|
| 26 |
+
M = A.diagonal() # or some other preconditioner
|
| 27 |
+
solver = _PCGSolver(lambda x: A * x, lambda x: M * x)
|
| 28 |
+
x = solver.solve(b)
|
| 29 |
+
|
| 30 |
+
The inputs A and M are functions which compute
|
| 31 |
+
matrix multiplication on the argument.
|
| 32 |
+
A - multiply by the matrix A in Ax=b
|
| 33 |
+
M - multiply by M, the preconditioner surrogate for A
|
| 34 |
+
|
| 35 |
+
Warning: There is no limit on number of iterations.
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
def __init__(self, A, M):
|
| 39 |
+
self._A = A
|
| 40 |
+
self._M = M
|
| 41 |
+
|
| 42 |
+
def solve(self, B, tol):
|
| 43 |
+
import numpy as np
|
| 44 |
+
|
| 45 |
+
# Densifying step - can this be kept sparse?
|
| 46 |
+
B = np.asarray(B)
|
| 47 |
+
X = np.ndarray(B.shape, order="F")
|
| 48 |
+
for j in range(B.shape[1]):
|
| 49 |
+
X[:, j] = self._solve(B[:, j], tol)
|
| 50 |
+
return X
|
| 51 |
+
|
| 52 |
+
def _solve(self, b, tol):
|
| 53 |
+
import numpy as np
|
| 54 |
+
import scipy as sp
|
| 55 |
+
|
| 56 |
+
A = self._A
|
| 57 |
+
M = self._M
|
| 58 |
+
tol *= sp.linalg.blas.dasum(b)
|
| 59 |
+
# Initialize.
|
| 60 |
+
x = np.zeros(b.shape)
|
| 61 |
+
r = b.copy()
|
| 62 |
+
z = M(r)
|
| 63 |
+
rz = sp.linalg.blas.ddot(r, z)
|
| 64 |
+
p = z.copy()
|
| 65 |
+
# Iterate.
|
| 66 |
+
while True:
|
| 67 |
+
Ap = A(p)
|
| 68 |
+
alpha = rz / sp.linalg.blas.ddot(p, Ap)
|
| 69 |
+
x = sp.linalg.blas.daxpy(p, x, a=alpha)
|
| 70 |
+
r = sp.linalg.blas.daxpy(Ap, r, a=-alpha)
|
| 71 |
+
if sp.linalg.blas.dasum(r) < tol:
|
| 72 |
+
return x
|
| 73 |
+
z = M(r)
|
| 74 |
+
beta = sp.linalg.blas.ddot(r, z)
|
| 75 |
+
beta, rz = beta / rz, beta
|
| 76 |
+
p = sp.linalg.blas.daxpy(p, z, a=beta)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
class _LUSolver:
|
| 80 |
+
"""LU factorization.
|
| 81 |
+
|
| 82 |
+
To solve Ax = b:
|
| 83 |
+
solver = _LUSolver(A)
|
| 84 |
+
x = solver.solve(b)
|
| 85 |
+
|
| 86 |
+
optional argument `tol` on solve method is ignored but included
|
| 87 |
+
to match _PCGsolver API.
|
| 88 |
+
"""
|
| 89 |
+
|
| 90 |
+
def __init__(self, A):
|
| 91 |
+
import scipy as sp
|
| 92 |
+
|
| 93 |
+
self._LU = sp.sparse.linalg.splu(
|
| 94 |
+
A,
|
| 95 |
+
permc_spec="MMD_AT_PLUS_A",
|
| 96 |
+
diag_pivot_thresh=0.0,
|
| 97 |
+
options={"Equil": True, "SymmetricMode": True},
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
def solve(self, B, tol=None):
|
| 101 |
+
import numpy as np
|
| 102 |
+
|
| 103 |
+
B = np.asarray(B)
|
| 104 |
+
X = np.ndarray(B.shape, order="F")
|
| 105 |
+
for j in range(B.shape[1]):
|
| 106 |
+
X[:, j] = self._LU.solve(B[:, j])
|
| 107 |
+
return X
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def _preprocess_graph(G, weight):
|
| 111 |
+
"""Compute edge weights and eliminate zero-weight edges."""
|
| 112 |
+
if G.is_directed():
|
| 113 |
+
H = nx.MultiGraph()
|
| 114 |
+
H.add_nodes_from(G)
|
| 115 |
+
H.add_weighted_edges_from(
|
| 116 |
+
((u, v, e.get(weight, 1.0)) for u, v, e in G.edges(data=True) if u != v),
|
| 117 |
+
weight=weight,
|
| 118 |
+
)
|
| 119 |
+
G = H
|
| 120 |
+
if not G.is_multigraph():
|
| 121 |
+
edges = (
|
| 122 |
+
(u, v, abs(e.get(weight, 1.0))) for u, v, e in G.edges(data=True) if u != v
|
| 123 |
+
)
|
| 124 |
+
else:
|
| 125 |
+
edges = (
|
| 126 |
+
(u, v, sum(abs(e.get(weight, 1.0)) for e in G[u][v].values()))
|
| 127 |
+
for u, v in G.edges()
|
| 128 |
+
if u != v
|
| 129 |
+
)
|
| 130 |
+
H = nx.Graph()
|
| 131 |
+
H.add_nodes_from(G)
|
| 132 |
+
H.add_weighted_edges_from((u, v, e) for u, v, e in edges if e != 0)
|
| 133 |
+
return H
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
def _rcm_estimate(G, nodelist):
|
| 137 |
+
"""Estimate the Fiedler vector using the reverse Cuthill-McKee ordering."""
|
| 138 |
+
import numpy as np
|
| 139 |
+
|
| 140 |
+
G = G.subgraph(nodelist)
|
| 141 |
+
order = reverse_cuthill_mckee_ordering(G)
|
| 142 |
+
n = len(nodelist)
|
| 143 |
+
index = dict(zip(nodelist, range(n)))
|
| 144 |
+
x = np.ndarray(n, dtype=float)
|
| 145 |
+
for i, u in enumerate(order):
|
| 146 |
+
x[index[u]] = i
|
| 147 |
+
x -= (n - 1) / 2.0
|
| 148 |
+
return x
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
def _tracemin_fiedler(L, X, normalized, tol, method):
|
| 152 |
+
"""Compute the Fiedler vector of L using the TraceMIN-Fiedler algorithm.
|
| 153 |
+
|
| 154 |
+
The Fiedler vector of a connected undirected graph is the eigenvector
|
| 155 |
+
corresponding to the second smallest eigenvalue of the Laplacian matrix
|
| 156 |
+
of the graph. This function starts with the Laplacian L, not the Graph.
|
| 157 |
+
|
| 158 |
+
Parameters
|
| 159 |
+
----------
|
| 160 |
+
L : Laplacian of a possibly weighted or normalized, but undirected graph
|
| 161 |
+
|
| 162 |
+
X : Initial guess for a solution. Usually a matrix of random numbers.
|
| 163 |
+
This function allows more than one column in X to identify more than
|
| 164 |
+
one eigenvector if desired.
|
| 165 |
+
|
| 166 |
+
normalized : bool
|
| 167 |
+
Whether the normalized Laplacian matrix is used.
|
| 168 |
+
|
| 169 |
+
tol : float
|
| 170 |
+
Tolerance of relative residual in eigenvalue computation.
|
| 171 |
+
Warning: There is no limit on number of iterations.
|
| 172 |
+
|
| 173 |
+
method : string
|
| 174 |
+
Should be 'tracemin_pcg' or 'tracemin_lu'.
|
| 175 |
+
Otherwise exception is raised.
|
| 176 |
+
|
| 177 |
+
Returns
|
| 178 |
+
-------
|
| 179 |
+
sigma, X : Two NumPy arrays of floats.
|
| 180 |
+
The lowest eigenvalues and corresponding eigenvectors of L.
|
| 181 |
+
The size of input X determines the size of these outputs.
|
| 182 |
+
As this is for Fiedler vectors, the zero eigenvalue (and
|
| 183 |
+
constant eigenvector) are avoided.
|
| 184 |
+
"""
|
| 185 |
+
import numpy as np
|
| 186 |
+
import scipy as sp
|
| 187 |
+
|
| 188 |
+
n = X.shape[0]
|
| 189 |
+
|
| 190 |
+
if normalized:
|
| 191 |
+
# Form the normalized Laplacian matrix and determine the eigenvector of
|
| 192 |
+
# its nullspace.
|
| 193 |
+
e = np.sqrt(L.diagonal())
|
| 194 |
+
# TODO: rm csr_array wrapper when spdiags array creation becomes available
|
| 195 |
+
D = sp.sparse.csr_array(sp.sparse.spdiags(1 / e, 0, n, n, format="csr"))
|
| 196 |
+
L = D @ L @ D
|
| 197 |
+
e *= 1.0 / np.linalg.norm(e, 2)
|
| 198 |
+
|
| 199 |
+
if normalized:
|
| 200 |
+
|
| 201 |
+
def project(X):
|
| 202 |
+
"""Make X orthogonal to the nullspace of L."""
|
| 203 |
+
X = np.asarray(X)
|
| 204 |
+
for j in range(X.shape[1]):
|
| 205 |
+
X[:, j] -= (X[:, j] @ e) * e
|
| 206 |
+
|
| 207 |
+
else:
|
| 208 |
+
|
| 209 |
+
def project(X):
|
| 210 |
+
"""Make X orthogonal to the nullspace of L."""
|
| 211 |
+
X = np.asarray(X)
|
| 212 |
+
for j in range(X.shape[1]):
|
| 213 |
+
X[:, j] -= X[:, j].sum() / n
|
| 214 |
+
|
| 215 |
+
if method == "tracemin_pcg":
|
| 216 |
+
D = L.diagonal().astype(float)
|
| 217 |
+
solver = _PCGSolver(lambda x: L @ x, lambda x: D * x)
|
| 218 |
+
elif method == "tracemin_lu":
|
| 219 |
+
# Convert A to CSC to suppress SparseEfficiencyWarning.
|
| 220 |
+
A = sp.sparse.csc_array(L, dtype=float, copy=True)
|
| 221 |
+
# Force A to be nonsingular. Since A is the Laplacian matrix of a
|
| 222 |
+
# connected graph, its rank deficiency is one, and thus one diagonal
|
| 223 |
+
# element needs to modified. Changing to infinity forces a zero in the
|
| 224 |
+
# corresponding element in the solution.
|
| 225 |
+
i = (A.indptr[1:] - A.indptr[:-1]).argmax()
|
| 226 |
+
A[i, i] = np.inf
|
| 227 |
+
solver = _LUSolver(A)
|
| 228 |
+
else:
|
| 229 |
+
raise nx.NetworkXError(f"Unknown linear system solver: {method}")
|
| 230 |
+
|
| 231 |
+
# Initialize.
|
| 232 |
+
Lnorm = abs(L).sum(axis=1).flatten().max()
|
| 233 |
+
project(X)
|
| 234 |
+
W = np.ndarray(X.shape, order="F")
|
| 235 |
+
|
| 236 |
+
while True:
|
| 237 |
+
# Orthonormalize X.
|
| 238 |
+
X = np.linalg.qr(X)[0]
|
| 239 |
+
# Compute iteration matrix H.
|
| 240 |
+
W[:, :] = L @ X
|
| 241 |
+
H = X.T @ W
|
| 242 |
+
sigma, Y = sp.linalg.eigh(H, overwrite_a=True)
|
| 243 |
+
# Compute the Ritz vectors.
|
| 244 |
+
X = X @ Y
|
| 245 |
+
# Test for convergence exploiting the fact that L * X == W * Y.
|
| 246 |
+
res = sp.linalg.blas.dasum(W @ Y[:, 0] - sigma[0] * X[:, 0]) / Lnorm
|
| 247 |
+
if res < tol:
|
| 248 |
+
break
|
| 249 |
+
# Compute X = L \ X / (X' * (L \ X)).
|
| 250 |
+
# L \ X can have an arbitrary projection on the nullspace of L,
|
| 251 |
+
# which will be eliminated.
|
| 252 |
+
W[:, :] = solver.solve(X, tol)
|
| 253 |
+
X = (sp.linalg.inv(W.T @ X) @ W.T).T # Preserves Fortran storage order.
|
| 254 |
+
project(X)
|
| 255 |
+
|
| 256 |
+
return sigma, np.asarray(X)
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
def _get_fiedler_func(method):
|
| 260 |
+
"""Returns a function that solves the Fiedler eigenvalue problem."""
|
| 261 |
+
import numpy as np
|
| 262 |
+
|
| 263 |
+
if method == "tracemin": # old style keyword <v2.1
|
| 264 |
+
method = "tracemin_pcg"
|
| 265 |
+
if method in ("tracemin_pcg", "tracemin_lu"):
|
| 266 |
+
|
| 267 |
+
def find_fiedler(L, x, normalized, tol, seed):
|
| 268 |
+
q = 1 if method == "tracemin_pcg" else min(4, L.shape[0] - 1)
|
| 269 |
+
X = np.asarray(seed.normal(size=(q, L.shape[0]))).T
|
| 270 |
+
sigma, X = _tracemin_fiedler(L, X, normalized, tol, method)
|
| 271 |
+
return sigma[0], X[:, 0]
|
| 272 |
+
|
| 273 |
+
elif method == "lanczos" or method == "lobpcg":
|
| 274 |
+
|
| 275 |
+
def find_fiedler(L, x, normalized, tol, seed):
|
| 276 |
+
import scipy as sp
|
| 277 |
+
|
| 278 |
+
L = sp.sparse.csc_array(L, dtype=float)
|
| 279 |
+
n = L.shape[0]
|
| 280 |
+
if normalized:
|
| 281 |
+
# TODO: rm csc_array wrapping when spdiags array becomes available
|
| 282 |
+
D = sp.sparse.csc_array(
|
| 283 |
+
sp.sparse.spdiags(
|
| 284 |
+
1.0 / np.sqrt(L.diagonal()), [0], n, n, format="csc"
|
| 285 |
+
)
|
| 286 |
+
)
|
| 287 |
+
L = D @ L @ D
|
| 288 |
+
if method == "lanczos" or n < 10:
|
| 289 |
+
# Avoid LOBPCG when n < 10 due to
|
| 290 |
+
# https://github.com/scipy/scipy/issues/3592
|
| 291 |
+
# https://github.com/scipy/scipy/pull/3594
|
| 292 |
+
sigma, X = sp.sparse.linalg.eigsh(
|
| 293 |
+
L, 2, which="SM", tol=tol, return_eigenvectors=True
|
| 294 |
+
)
|
| 295 |
+
return sigma[1], X[:, 1]
|
| 296 |
+
else:
|
| 297 |
+
X = np.asarray(np.atleast_2d(x).T)
|
| 298 |
+
# TODO: rm csr_array wrapping when spdiags array becomes available
|
| 299 |
+
M = sp.sparse.csr_array(sp.sparse.spdiags(1.0 / L.diagonal(), 0, n, n))
|
| 300 |
+
Y = np.ones(n)
|
| 301 |
+
if normalized:
|
| 302 |
+
Y /= D.diagonal()
|
| 303 |
+
sigma, X = sp.sparse.linalg.lobpcg(
|
| 304 |
+
L, X, M=M, Y=np.atleast_2d(Y).T, tol=tol, maxiter=n, largest=False
|
| 305 |
+
)
|
| 306 |
+
return sigma[0], X[:, 0]
|
| 307 |
+
|
| 308 |
+
else:
|
| 309 |
+
raise nx.NetworkXError(f"unknown method {method!r}.")
|
| 310 |
+
|
| 311 |
+
return find_fiedler
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
@not_implemented_for("directed")
|
| 315 |
+
@np_random_state(5)
|
| 316 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 317 |
+
def algebraic_connectivity(
|
| 318 |
+
G, weight="weight", normalized=False, tol=1e-8, method="tracemin_pcg", seed=None
|
| 319 |
+
):
|
| 320 |
+
r"""Returns the algebraic connectivity of an undirected graph.
|
| 321 |
+
|
| 322 |
+
The algebraic connectivity of a connected undirected graph is the second
|
| 323 |
+
smallest eigenvalue of its Laplacian matrix.
|
| 324 |
+
|
| 325 |
+
Parameters
|
| 326 |
+
----------
|
| 327 |
+
G : NetworkX graph
|
| 328 |
+
An undirected graph.
|
| 329 |
+
|
| 330 |
+
weight : object, optional (default: None)
|
| 331 |
+
The data key used to determine the weight of each edge. If None, then
|
| 332 |
+
each edge has unit weight.
|
| 333 |
+
|
| 334 |
+
normalized : bool, optional (default: False)
|
| 335 |
+
Whether the normalized Laplacian matrix is used.
|
| 336 |
+
|
| 337 |
+
tol : float, optional (default: 1e-8)
|
| 338 |
+
Tolerance of relative residual in eigenvalue computation.
|
| 339 |
+
|
| 340 |
+
method : string, optional (default: 'tracemin_pcg')
|
| 341 |
+
Method of eigenvalue computation. It must be one of the tracemin
|
| 342 |
+
options shown below (TraceMIN), 'lanczos' (Lanczos iteration)
|
| 343 |
+
or 'lobpcg' (LOBPCG).
|
| 344 |
+
|
| 345 |
+
The TraceMIN algorithm uses a linear system solver. The following
|
| 346 |
+
values allow specifying the solver to be used.
|
| 347 |
+
|
| 348 |
+
=============== ========================================
|
| 349 |
+
Value Solver
|
| 350 |
+
=============== ========================================
|
| 351 |
+
'tracemin_pcg' Preconditioned conjugate gradient method
|
| 352 |
+
'tracemin_lu' LU factorization
|
| 353 |
+
=============== ========================================
|
| 354 |
+
|
| 355 |
+
seed : integer, random_state, or None (default)
|
| 356 |
+
Indicator of random number generation state.
|
| 357 |
+
See :ref:`Randomness<randomness>`.
|
| 358 |
+
|
| 359 |
+
Returns
|
| 360 |
+
-------
|
| 361 |
+
algebraic_connectivity : float
|
| 362 |
+
Algebraic connectivity.
|
| 363 |
+
|
| 364 |
+
Raises
|
| 365 |
+
------
|
| 366 |
+
NetworkXNotImplemented
|
| 367 |
+
If G is directed.
|
| 368 |
+
|
| 369 |
+
NetworkXError
|
| 370 |
+
If G has less than two nodes.
|
| 371 |
+
|
| 372 |
+
Notes
|
| 373 |
+
-----
|
| 374 |
+
Edge weights are interpreted by their absolute values. For MultiGraph's,
|
| 375 |
+
weights of parallel edges are summed. Zero-weighted edges are ignored.
|
| 376 |
+
|
| 377 |
+
See Also
|
| 378 |
+
--------
|
| 379 |
+
laplacian_matrix
|
| 380 |
+
|
| 381 |
+
Examples
|
| 382 |
+
--------
|
| 383 |
+
For undirected graphs algebraic connectivity can tell us if a graph is connected or not
|
| 384 |
+
`G` is connected iff ``algebraic_connectivity(G) > 0``:
|
| 385 |
+
|
| 386 |
+
>>> G = nx.complete_graph(5)
|
| 387 |
+
>>> nx.algebraic_connectivity(G) > 0
|
| 388 |
+
True
|
| 389 |
+
>>> G.add_node(10) # G is no longer connected
|
| 390 |
+
>>> nx.algebraic_connectivity(G) > 0
|
| 391 |
+
False
|
| 392 |
+
|
| 393 |
+
"""
|
| 394 |
+
if len(G) < 2:
|
| 395 |
+
raise nx.NetworkXError("graph has less than two nodes.")
|
| 396 |
+
G = _preprocess_graph(G, weight)
|
| 397 |
+
if not nx.is_connected(G):
|
| 398 |
+
return 0.0
|
| 399 |
+
|
| 400 |
+
L = nx.laplacian_matrix(G)
|
| 401 |
+
if L.shape[0] == 2:
|
| 402 |
+
return 2.0 * float(L[0, 0]) if not normalized else 2.0
|
| 403 |
+
|
| 404 |
+
find_fiedler = _get_fiedler_func(method)
|
| 405 |
+
x = None if method != "lobpcg" else _rcm_estimate(G, G)
|
| 406 |
+
sigma, fiedler = find_fiedler(L, x, normalized, tol, seed)
|
| 407 |
+
return float(sigma)
|
| 408 |
+
|
| 409 |
+
|
| 410 |
+
@not_implemented_for("directed")
|
| 411 |
+
@np_random_state(5)
|
| 412 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 413 |
+
def fiedler_vector(
|
| 414 |
+
G, weight="weight", normalized=False, tol=1e-8, method="tracemin_pcg", seed=None
|
| 415 |
+
):
|
| 416 |
+
"""Returns the Fiedler vector of a connected undirected graph.
|
| 417 |
+
|
| 418 |
+
The Fiedler vector of a connected undirected graph is the eigenvector
|
| 419 |
+
corresponding to the second smallest eigenvalue of the Laplacian matrix
|
| 420 |
+
of the graph.
|
| 421 |
+
|
| 422 |
+
Parameters
|
| 423 |
+
----------
|
| 424 |
+
G : NetworkX graph
|
| 425 |
+
An undirected graph.
|
| 426 |
+
|
| 427 |
+
weight : object, optional (default: None)
|
| 428 |
+
The data key used to determine the weight of each edge. If None, then
|
| 429 |
+
each edge has unit weight.
|
| 430 |
+
|
| 431 |
+
normalized : bool, optional (default: False)
|
| 432 |
+
Whether the normalized Laplacian matrix is used.
|
| 433 |
+
|
| 434 |
+
tol : float, optional (default: 1e-8)
|
| 435 |
+
Tolerance of relative residual in eigenvalue computation.
|
| 436 |
+
|
| 437 |
+
method : string, optional (default: 'tracemin_pcg')
|
| 438 |
+
Method of eigenvalue computation. It must be one of the tracemin
|
| 439 |
+
options shown below (TraceMIN), 'lanczos' (Lanczos iteration)
|
| 440 |
+
or 'lobpcg' (LOBPCG).
|
| 441 |
+
|
| 442 |
+
The TraceMIN algorithm uses a linear system solver. The following
|
| 443 |
+
values allow specifying the solver to be used.
|
| 444 |
+
|
| 445 |
+
=============== ========================================
|
| 446 |
+
Value Solver
|
| 447 |
+
=============== ========================================
|
| 448 |
+
'tracemin_pcg' Preconditioned conjugate gradient method
|
| 449 |
+
'tracemin_lu' LU factorization
|
| 450 |
+
=============== ========================================
|
| 451 |
+
|
| 452 |
+
seed : integer, random_state, or None (default)
|
| 453 |
+
Indicator of random number generation state.
|
| 454 |
+
See :ref:`Randomness<randomness>`.
|
| 455 |
+
|
| 456 |
+
Returns
|
| 457 |
+
-------
|
| 458 |
+
fiedler_vector : NumPy array of floats.
|
| 459 |
+
Fiedler vector.
|
| 460 |
+
|
| 461 |
+
Raises
|
| 462 |
+
------
|
| 463 |
+
NetworkXNotImplemented
|
| 464 |
+
If G is directed.
|
| 465 |
+
|
| 466 |
+
NetworkXError
|
| 467 |
+
If G has less than two nodes or is not connected.
|
| 468 |
+
|
| 469 |
+
Notes
|
| 470 |
+
-----
|
| 471 |
+
Edge weights are interpreted by their absolute values. For MultiGraph's,
|
| 472 |
+
weights of parallel edges are summed. Zero-weighted edges are ignored.
|
| 473 |
+
|
| 474 |
+
See Also
|
| 475 |
+
--------
|
| 476 |
+
laplacian_matrix
|
| 477 |
+
|
| 478 |
+
Examples
|
| 479 |
+
--------
|
| 480 |
+
Given a connected graph the signs of the values in the Fiedler vector can be
|
| 481 |
+
used to partition the graph into two components.
|
| 482 |
+
|
| 483 |
+
>>> G = nx.barbell_graph(5, 0)
|
| 484 |
+
>>> nx.fiedler_vector(G, normalized=True, seed=1)
|
| 485 |
+
array([-0.32864129, -0.32864129, -0.32864129, -0.32864129, -0.26072899,
|
| 486 |
+
0.26072899, 0.32864129, 0.32864129, 0.32864129, 0.32864129])
|
| 487 |
+
|
| 488 |
+
The connected components are the two 5-node cliques of the barbell graph.
|
| 489 |
+
"""
|
| 490 |
+
import numpy as np
|
| 491 |
+
|
| 492 |
+
if len(G) < 2:
|
| 493 |
+
raise nx.NetworkXError("graph has less than two nodes.")
|
| 494 |
+
G = _preprocess_graph(G, weight)
|
| 495 |
+
if not nx.is_connected(G):
|
| 496 |
+
raise nx.NetworkXError("graph is not connected.")
|
| 497 |
+
|
| 498 |
+
if len(G) == 2:
|
| 499 |
+
return np.array([1.0, -1.0])
|
| 500 |
+
|
| 501 |
+
find_fiedler = _get_fiedler_func(method)
|
| 502 |
+
L = nx.laplacian_matrix(G)
|
| 503 |
+
x = None if method != "lobpcg" else _rcm_estimate(G, G)
|
| 504 |
+
sigma, fiedler = find_fiedler(L, x, normalized, tol, seed)
|
| 505 |
+
return fiedler
|
| 506 |
+
|
| 507 |
+
|
| 508 |
+
@np_random_state(5)
|
| 509 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 510 |
+
def spectral_ordering(
|
| 511 |
+
G, weight="weight", normalized=False, tol=1e-8, method="tracemin_pcg", seed=None
|
| 512 |
+
):
|
| 513 |
+
"""Compute the spectral_ordering of a graph.
|
| 514 |
+
|
| 515 |
+
The spectral ordering of a graph is an ordering of its nodes where nodes
|
| 516 |
+
in the same weakly connected components appear contiguous and ordered by
|
| 517 |
+
their corresponding elements in the Fiedler vector of the component.
|
| 518 |
+
|
| 519 |
+
Parameters
|
| 520 |
+
----------
|
| 521 |
+
G : NetworkX graph
|
| 522 |
+
A graph.
|
| 523 |
+
|
| 524 |
+
weight : object, optional (default: None)
|
| 525 |
+
The data key used to determine the weight of each edge. If None, then
|
| 526 |
+
each edge has unit weight.
|
| 527 |
+
|
| 528 |
+
normalized : bool, optional (default: False)
|
| 529 |
+
Whether the normalized Laplacian matrix is used.
|
| 530 |
+
|
| 531 |
+
tol : float, optional (default: 1e-8)
|
| 532 |
+
Tolerance of relative residual in eigenvalue computation.
|
| 533 |
+
|
| 534 |
+
method : string, optional (default: 'tracemin_pcg')
|
| 535 |
+
Method of eigenvalue computation. It must be one of the tracemin
|
| 536 |
+
options shown below (TraceMIN), 'lanczos' (Lanczos iteration)
|
| 537 |
+
or 'lobpcg' (LOBPCG).
|
| 538 |
+
|
| 539 |
+
The TraceMIN algorithm uses a linear system solver. The following
|
| 540 |
+
values allow specifying the solver to be used.
|
| 541 |
+
|
| 542 |
+
=============== ========================================
|
| 543 |
+
Value Solver
|
| 544 |
+
=============== ========================================
|
| 545 |
+
'tracemin_pcg' Preconditioned conjugate gradient method
|
| 546 |
+
'tracemin_lu' LU factorization
|
| 547 |
+
=============== ========================================
|
| 548 |
+
|
| 549 |
+
seed : integer, random_state, or None (default)
|
| 550 |
+
Indicator of random number generation state.
|
| 551 |
+
See :ref:`Randomness<randomness>`.
|
| 552 |
+
|
| 553 |
+
Returns
|
| 554 |
+
-------
|
| 555 |
+
spectral_ordering : NumPy array of floats.
|
| 556 |
+
Spectral ordering of nodes.
|
| 557 |
+
|
| 558 |
+
Raises
|
| 559 |
+
------
|
| 560 |
+
NetworkXError
|
| 561 |
+
If G is empty.
|
| 562 |
+
|
| 563 |
+
Notes
|
| 564 |
+
-----
|
| 565 |
+
Edge weights are interpreted by their absolute values. For MultiGraph's,
|
| 566 |
+
weights of parallel edges are summed. Zero-weighted edges are ignored.
|
| 567 |
+
|
| 568 |
+
See Also
|
| 569 |
+
--------
|
| 570 |
+
laplacian_matrix
|
| 571 |
+
"""
|
| 572 |
+
if len(G) == 0:
|
| 573 |
+
raise nx.NetworkXError("graph is empty.")
|
| 574 |
+
G = _preprocess_graph(G, weight)
|
| 575 |
+
|
| 576 |
+
find_fiedler = _get_fiedler_func(method)
|
| 577 |
+
order = []
|
| 578 |
+
for component in nx.connected_components(G):
|
| 579 |
+
size = len(component)
|
| 580 |
+
if size > 2:
|
| 581 |
+
L = nx.laplacian_matrix(G, component)
|
| 582 |
+
x = None if method != "lobpcg" else _rcm_estimate(G, component)
|
| 583 |
+
sigma, fiedler = find_fiedler(L, x, normalized, tol, seed)
|
| 584 |
+
sort_info = zip(fiedler, range(size), component)
|
| 585 |
+
order.extend(u for x, c, u in sorted(sort_info))
|
| 586 |
+
else:
|
| 587 |
+
order.extend(component)
|
| 588 |
+
|
| 589 |
+
return order
|
| 590 |
+
|
| 591 |
+
|
| 592 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 593 |
+
def spectral_bisection(
|
| 594 |
+
G, weight="weight", normalized=False, tol=1e-8, method="tracemin_pcg", seed=None
|
| 595 |
+
):
|
| 596 |
+
"""Bisect the graph using the Fiedler vector.
|
| 597 |
+
|
| 598 |
+
This method uses the Fiedler vector to bisect a graph.
|
| 599 |
+
The partition is defined by the nodes which are associated with
|
| 600 |
+
either positive or negative values in the vector.
|
| 601 |
+
|
| 602 |
+
Parameters
|
| 603 |
+
----------
|
| 604 |
+
G : NetworkX Graph
|
| 605 |
+
|
| 606 |
+
weight : str, optional (default: weight)
|
| 607 |
+
The data key used to determine the weight of each edge. If None, then
|
| 608 |
+
each edge has unit weight.
|
| 609 |
+
|
| 610 |
+
normalized : bool, optional (default: False)
|
| 611 |
+
Whether the normalized Laplacian matrix is used.
|
| 612 |
+
|
| 613 |
+
tol : float, optional (default: 1e-8)
|
| 614 |
+
Tolerance of relative residual in eigenvalue computation.
|
| 615 |
+
|
| 616 |
+
method : string, optional (default: 'tracemin_pcg')
|
| 617 |
+
Method of eigenvalue computation. It must be one of the tracemin
|
| 618 |
+
options shown below (TraceMIN), 'lanczos' (Lanczos iteration)
|
| 619 |
+
or 'lobpcg' (LOBPCG).
|
| 620 |
+
|
| 621 |
+
The TraceMIN algorithm uses a linear system solver. The following
|
| 622 |
+
values allow specifying the solver to be used.
|
| 623 |
+
|
| 624 |
+
=============== ========================================
|
| 625 |
+
Value Solver
|
| 626 |
+
=============== ========================================
|
| 627 |
+
'tracemin_pcg' Preconditioned conjugate gradient method
|
| 628 |
+
'tracemin_lu' LU factorization
|
| 629 |
+
=============== ========================================
|
| 630 |
+
|
| 631 |
+
seed : integer, random_state, or None (default)
|
| 632 |
+
Indicator of random number generation state.
|
| 633 |
+
See :ref:`Randomness<randomness>`.
|
| 634 |
+
|
| 635 |
+
Returns
|
| 636 |
+
-------
|
| 637 |
+
bisection : tuple of sets
|
| 638 |
+
Sets with the bisection of nodes
|
| 639 |
+
|
| 640 |
+
Examples
|
| 641 |
+
--------
|
| 642 |
+
>>> G = nx.barbell_graph(3, 0)
|
| 643 |
+
>>> nx.spectral_bisection(G)
|
| 644 |
+
({0, 1, 2}, {3, 4, 5})
|
| 645 |
+
|
| 646 |
+
References
|
| 647 |
+
----------
|
| 648 |
+
.. [1] M. E. J Newman 'Networks: An Introduction', pages 364-370
|
| 649 |
+
Oxford University Press 2011.
|
| 650 |
+
"""
|
| 651 |
+
import numpy as np
|
| 652 |
+
|
| 653 |
+
v = nx.fiedler_vector(G, weight, normalized, tol, method, seed)
|
| 654 |
+
nodes = np.array(list(G))
|
| 655 |
+
pos_vals = v >= 0
|
| 656 |
+
|
| 657 |
+
return set(nodes[~pos_vals].tolist()), set(nodes[pos_vals].tolist())
|
minigpt2/lib/python3.10/site-packages/networkx/linalg/attrmatrix.py
ADDED
|
@@ -0,0 +1,465 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Functions for constructing matrix-like objects from graph attributes.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import networkx as nx
|
| 6 |
+
|
| 7 |
+
__all__ = ["attr_matrix", "attr_sparse_matrix"]
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def _node_value(G, node_attr):
|
| 11 |
+
"""Returns a function that returns a value from G.nodes[u].
|
| 12 |
+
|
| 13 |
+
We return a function expecting a node as its sole argument. Then, in the
|
| 14 |
+
simplest scenario, the returned function will return G.nodes[u][node_attr].
|
| 15 |
+
However, we also handle the case when `node_attr` is None or when it is a
|
| 16 |
+
function itself.
|
| 17 |
+
|
| 18 |
+
Parameters
|
| 19 |
+
----------
|
| 20 |
+
G : graph
|
| 21 |
+
A NetworkX graph
|
| 22 |
+
|
| 23 |
+
node_attr : {None, str, callable}
|
| 24 |
+
Specification of how the value of the node attribute should be obtained
|
| 25 |
+
from the node attribute dictionary.
|
| 26 |
+
|
| 27 |
+
Returns
|
| 28 |
+
-------
|
| 29 |
+
value : function
|
| 30 |
+
A function expecting a node as its sole argument. The function will
|
| 31 |
+
returns a value from G.nodes[u] that depends on `edge_attr`.
|
| 32 |
+
|
| 33 |
+
"""
|
| 34 |
+
if node_attr is None:
|
| 35 |
+
|
| 36 |
+
def value(u):
|
| 37 |
+
return u
|
| 38 |
+
|
| 39 |
+
elif not callable(node_attr):
|
| 40 |
+
# assume it is a key for the node attribute dictionary
|
| 41 |
+
def value(u):
|
| 42 |
+
return G.nodes[u][node_attr]
|
| 43 |
+
|
| 44 |
+
else:
|
| 45 |
+
# Advanced: Allow users to specify something else.
|
| 46 |
+
#
|
| 47 |
+
# For example,
|
| 48 |
+
# node_attr = lambda u: G.nodes[u].get('size', .5) * 3
|
| 49 |
+
#
|
| 50 |
+
value = node_attr
|
| 51 |
+
|
| 52 |
+
return value
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def _edge_value(G, edge_attr):
|
| 56 |
+
"""Returns a function that returns a value from G[u][v].
|
| 57 |
+
|
| 58 |
+
Suppose there exists an edge between u and v. Then we return a function
|
| 59 |
+
expecting u and v as arguments. For Graph and DiGraph, G[u][v] is
|
| 60 |
+
the edge attribute dictionary, and the function (essentially) returns
|
| 61 |
+
G[u][v][edge_attr]. However, we also handle cases when `edge_attr` is None
|
| 62 |
+
and when it is a function itself. For MultiGraph and MultiDiGraph, G[u][v]
|
| 63 |
+
is a dictionary of all edges between u and v. In this case, the returned
|
| 64 |
+
function sums the value of `edge_attr` for every edge between u and v.
|
| 65 |
+
|
| 66 |
+
Parameters
|
| 67 |
+
----------
|
| 68 |
+
G : graph
|
| 69 |
+
A NetworkX graph
|
| 70 |
+
|
| 71 |
+
edge_attr : {None, str, callable}
|
| 72 |
+
Specification of how the value of the edge attribute should be obtained
|
| 73 |
+
from the edge attribute dictionary, G[u][v]. For multigraphs, G[u][v]
|
| 74 |
+
is a dictionary of all the edges between u and v. This allows for
|
| 75 |
+
special treatment of multiedges.
|
| 76 |
+
|
| 77 |
+
Returns
|
| 78 |
+
-------
|
| 79 |
+
value : function
|
| 80 |
+
A function expecting two nodes as parameters. The nodes should
|
| 81 |
+
represent the from- and to- node of an edge. The function will
|
| 82 |
+
return a value from G[u][v] that depends on `edge_attr`.
|
| 83 |
+
|
| 84 |
+
"""
|
| 85 |
+
|
| 86 |
+
if edge_attr is None:
|
| 87 |
+
# topological count of edges
|
| 88 |
+
|
| 89 |
+
if G.is_multigraph():
|
| 90 |
+
|
| 91 |
+
def value(u, v):
|
| 92 |
+
return len(G[u][v])
|
| 93 |
+
|
| 94 |
+
else:
|
| 95 |
+
|
| 96 |
+
def value(u, v):
|
| 97 |
+
return 1
|
| 98 |
+
|
| 99 |
+
elif not callable(edge_attr):
|
| 100 |
+
# assume it is a key for the edge attribute dictionary
|
| 101 |
+
|
| 102 |
+
if edge_attr == "weight":
|
| 103 |
+
# provide a default value
|
| 104 |
+
if G.is_multigraph():
|
| 105 |
+
|
| 106 |
+
def value(u, v):
|
| 107 |
+
return sum(d.get(edge_attr, 1) for d in G[u][v].values())
|
| 108 |
+
|
| 109 |
+
else:
|
| 110 |
+
|
| 111 |
+
def value(u, v):
|
| 112 |
+
return G[u][v].get(edge_attr, 1)
|
| 113 |
+
|
| 114 |
+
else:
|
| 115 |
+
# otherwise, the edge attribute MUST exist for each edge
|
| 116 |
+
if G.is_multigraph():
|
| 117 |
+
|
| 118 |
+
def value(u, v):
|
| 119 |
+
return sum(d[edge_attr] for d in G[u][v].values())
|
| 120 |
+
|
| 121 |
+
else:
|
| 122 |
+
|
| 123 |
+
def value(u, v):
|
| 124 |
+
return G[u][v][edge_attr]
|
| 125 |
+
|
| 126 |
+
else:
|
| 127 |
+
# Advanced: Allow users to specify something else.
|
| 128 |
+
#
|
| 129 |
+
# Alternative default value:
|
| 130 |
+
# edge_attr = lambda u,v: G[u][v].get('thickness', .5)
|
| 131 |
+
#
|
| 132 |
+
# Function on an attribute:
|
| 133 |
+
# edge_attr = lambda u,v: abs(G[u][v]['weight'])
|
| 134 |
+
#
|
| 135 |
+
# Handle Multi(Di)Graphs differently:
|
| 136 |
+
# edge_attr = lambda u,v: numpy.prod([d['size'] for d in G[u][v].values()])
|
| 137 |
+
#
|
| 138 |
+
# Ignore multiple edges
|
| 139 |
+
# edge_attr = lambda u,v: 1 if len(G[u][v]) else 0
|
| 140 |
+
#
|
| 141 |
+
value = edge_attr
|
| 142 |
+
|
| 143 |
+
return value
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
@nx._dispatchable(edge_attrs={"edge_attr": None}, node_attrs="node_attr")
|
| 147 |
+
def attr_matrix(
|
| 148 |
+
G,
|
| 149 |
+
edge_attr=None,
|
| 150 |
+
node_attr=None,
|
| 151 |
+
normalized=False,
|
| 152 |
+
rc_order=None,
|
| 153 |
+
dtype=None,
|
| 154 |
+
order=None,
|
| 155 |
+
):
|
| 156 |
+
"""Returns the attribute matrix using attributes from `G` as a numpy array.
|
| 157 |
+
|
| 158 |
+
If only `G` is passed in, then the adjacency matrix is constructed.
|
| 159 |
+
|
| 160 |
+
Let A be a discrete set of values for the node attribute `node_attr`. Then
|
| 161 |
+
the elements of A represent the rows and columns of the constructed matrix.
|
| 162 |
+
Now, iterate through every edge e=(u,v) in `G` and consider the value
|
| 163 |
+
of the edge attribute `edge_attr`. If ua and va are the values of the
|
| 164 |
+
node attribute `node_attr` for u and v, respectively, then the value of
|
| 165 |
+
the edge attribute is added to the matrix element at (ua, va).
|
| 166 |
+
|
| 167 |
+
Parameters
|
| 168 |
+
----------
|
| 169 |
+
G : graph
|
| 170 |
+
The NetworkX graph used to construct the attribute matrix.
|
| 171 |
+
|
| 172 |
+
edge_attr : str, optional
|
| 173 |
+
Each element of the matrix represents a running total of the
|
| 174 |
+
specified edge attribute for edges whose node attributes correspond
|
| 175 |
+
to the rows/cols of the matrix. The attribute must be present for
|
| 176 |
+
all edges in the graph. If no attribute is specified, then we
|
| 177 |
+
just count the number of edges whose node attributes correspond
|
| 178 |
+
to the matrix element.
|
| 179 |
+
|
| 180 |
+
node_attr : str, optional
|
| 181 |
+
Each row and column in the matrix represents a particular value
|
| 182 |
+
of the node attribute. The attribute must be present for all nodes
|
| 183 |
+
in the graph. Note, the values of this attribute should be reliably
|
| 184 |
+
hashable. So, float values are not recommended. If no attribute is
|
| 185 |
+
specified, then the rows and columns will be the nodes of the graph.
|
| 186 |
+
|
| 187 |
+
normalized : bool, optional
|
| 188 |
+
If True, then each row is normalized by the summation of its values.
|
| 189 |
+
|
| 190 |
+
rc_order : list, optional
|
| 191 |
+
A list of the node attribute values. This list specifies the ordering
|
| 192 |
+
of rows and columns of the array. If no ordering is provided, then
|
| 193 |
+
the ordering will be random (and also, a return value).
|
| 194 |
+
|
| 195 |
+
Other Parameters
|
| 196 |
+
----------------
|
| 197 |
+
dtype : NumPy data-type, optional
|
| 198 |
+
A valid NumPy dtype used to initialize the array. Keep in mind certain
|
| 199 |
+
dtypes can yield unexpected results if the array is to be normalized.
|
| 200 |
+
The parameter is passed to numpy.zeros(). If unspecified, the NumPy
|
| 201 |
+
default is used.
|
| 202 |
+
|
| 203 |
+
order : {'C', 'F'}, optional
|
| 204 |
+
Whether to store multidimensional data in C- or Fortran-contiguous
|
| 205 |
+
(row- or column-wise) order in memory. This parameter is passed to
|
| 206 |
+
numpy.zeros(). If unspecified, the NumPy default is used.
|
| 207 |
+
|
| 208 |
+
Returns
|
| 209 |
+
-------
|
| 210 |
+
M : 2D NumPy ndarray
|
| 211 |
+
The attribute matrix.
|
| 212 |
+
|
| 213 |
+
ordering : list
|
| 214 |
+
If `rc_order` was specified, then only the attribute matrix is returned.
|
| 215 |
+
However, if `rc_order` was None, then the ordering used to construct
|
| 216 |
+
the matrix is returned as well.
|
| 217 |
+
|
| 218 |
+
Examples
|
| 219 |
+
--------
|
| 220 |
+
Construct an adjacency matrix:
|
| 221 |
+
|
| 222 |
+
>>> G = nx.Graph()
|
| 223 |
+
>>> G.add_edge(0, 1, thickness=1, weight=3)
|
| 224 |
+
>>> G.add_edge(0, 2, thickness=2)
|
| 225 |
+
>>> G.add_edge(1, 2, thickness=3)
|
| 226 |
+
>>> nx.attr_matrix(G, rc_order=[0, 1, 2])
|
| 227 |
+
array([[0., 1., 1.],
|
| 228 |
+
[1., 0., 1.],
|
| 229 |
+
[1., 1., 0.]])
|
| 230 |
+
|
| 231 |
+
Alternatively, we can obtain the matrix describing edge thickness.
|
| 232 |
+
|
| 233 |
+
>>> nx.attr_matrix(G, edge_attr="thickness", rc_order=[0, 1, 2])
|
| 234 |
+
array([[0., 1., 2.],
|
| 235 |
+
[1., 0., 3.],
|
| 236 |
+
[2., 3., 0.]])
|
| 237 |
+
|
| 238 |
+
We can also color the nodes and ask for the probability distribution over
|
| 239 |
+
all edges (u,v) describing:
|
| 240 |
+
|
| 241 |
+
Pr(v has color Y | u has color X)
|
| 242 |
+
|
| 243 |
+
>>> G.nodes[0]["color"] = "red"
|
| 244 |
+
>>> G.nodes[1]["color"] = "red"
|
| 245 |
+
>>> G.nodes[2]["color"] = "blue"
|
| 246 |
+
>>> rc = ["red", "blue"]
|
| 247 |
+
>>> nx.attr_matrix(G, node_attr="color", normalized=True, rc_order=rc)
|
| 248 |
+
array([[0.33333333, 0.66666667],
|
| 249 |
+
[1. , 0. ]])
|
| 250 |
+
|
| 251 |
+
For example, the above tells us that for all edges (u,v):
|
| 252 |
+
|
| 253 |
+
Pr( v is red | u is red) = 1/3
|
| 254 |
+
Pr( v is blue | u is red) = 2/3
|
| 255 |
+
|
| 256 |
+
Pr( v is red | u is blue) = 1
|
| 257 |
+
Pr( v is blue | u is blue) = 0
|
| 258 |
+
|
| 259 |
+
Finally, we can obtain the total weights listed by the node colors.
|
| 260 |
+
|
| 261 |
+
>>> nx.attr_matrix(G, edge_attr="weight", node_attr="color", rc_order=rc)
|
| 262 |
+
array([[3., 2.],
|
| 263 |
+
[2., 0.]])
|
| 264 |
+
|
| 265 |
+
Thus, the total weight over all edges (u,v) with u and v having colors:
|
| 266 |
+
|
| 267 |
+
(red, red) is 3 # the sole contribution is from edge (0,1)
|
| 268 |
+
(red, blue) is 2 # contributions from edges (0,2) and (1,2)
|
| 269 |
+
(blue, red) is 2 # same as (red, blue) since graph is undirected
|
| 270 |
+
(blue, blue) is 0 # there are no edges with blue endpoints
|
| 271 |
+
|
| 272 |
+
"""
|
| 273 |
+
import numpy as np
|
| 274 |
+
|
| 275 |
+
edge_value = _edge_value(G, edge_attr)
|
| 276 |
+
node_value = _node_value(G, node_attr)
|
| 277 |
+
|
| 278 |
+
if rc_order is None:
|
| 279 |
+
ordering = list({node_value(n) for n in G})
|
| 280 |
+
else:
|
| 281 |
+
ordering = rc_order
|
| 282 |
+
|
| 283 |
+
N = len(ordering)
|
| 284 |
+
undirected = not G.is_directed()
|
| 285 |
+
index = dict(zip(ordering, range(N)))
|
| 286 |
+
M = np.zeros((N, N), dtype=dtype, order=order)
|
| 287 |
+
|
| 288 |
+
seen = set()
|
| 289 |
+
for u, nbrdict in G.adjacency():
|
| 290 |
+
for v in nbrdict:
|
| 291 |
+
# Obtain the node attribute values.
|
| 292 |
+
i, j = index[node_value(u)], index[node_value(v)]
|
| 293 |
+
if v not in seen:
|
| 294 |
+
M[i, j] += edge_value(u, v)
|
| 295 |
+
if undirected:
|
| 296 |
+
M[j, i] = M[i, j]
|
| 297 |
+
|
| 298 |
+
if undirected:
|
| 299 |
+
seen.add(u)
|
| 300 |
+
|
| 301 |
+
if normalized:
|
| 302 |
+
M /= M.sum(axis=1).reshape((N, 1))
|
| 303 |
+
|
| 304 |
+
if rc_order is None:
|
| 305 |
+
return M, ordering
|
| 306 |
+
else:
|
| 307 |
+
return M
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
@nx._dispatchable(edge_attrs={"edge_attr": None}, node_attrs="node_attr")
|
| 311 |
+
def attr_sparse_matrix(
|
| 312 |
+
G, edge_attr=None, node_attr=None, normalized=False, rc_order=None, dtype=None
|
| 313 |
+
):
|
| 314 |
+
"""Returns a SciPy sparse array using attributes from G.
|
| 315 |
+
|
| 316 |
+
If only `G` is passed in, then the adjacency matrix is constructed.
|
| 317 |
+
|
| 318 |
+
Let A be a discrete set of values for the node attribute `node_attr`. Then
|
| 319 |
+
the elements of A represent the rows and columns of the constructed matrix.
|
| 320 |
+
Now, iterate through every edge e=(u,v) in `G` and consider the value
|
| 321 |
+
of the edge attribute `edge_attr`. If ua and va are the values of the
|
| 322 |
+
node attribute `node_attr` for u and v, respectively, then the value of
|
| 323 |
+
the edge attribute is added to the matrix element at (ua, va).
|
| 324 |
+
|
| 325 |
+
Parameters
|
| 326 |
+
----------
|
| 327 |
+
G : graph
|
| 328 |
+
The NetworkX graph used to construct the NumPy matrix.
|
| 329 |
+
|
| 330 |
+
edge_attr : str, optional
|
| 331 |
+
Each element of the matrix represents a running total of the
|
| 332 |
+
specified edge attribute for edges whose node attributes correspond
|
| 333 |
+
to the rows/cols of the matrix. The attribute must be present for
|
| 334 |
+
all edges in the graph. If no attribute is specified, then we
|
| 335 |
+
just count the number of edges whose node attributes correspond
|
| 336 |
+
to the matrix element.
|
| 337 |
+
|
| 338 |
+
node_attr : str, optional
|
| 339 |
+
Each row and column in the matrix represents a particular value
|
| 340 |
+
of the node attribute. The attribute must be present for all nodes
|
| 341 |
+
in the graph. Note, the values of this attribute should be reliably
|
| 342 |
+
hashable. So, float values are not recommended. If no attribute is
|
| 343 |
+
specified, then the rows and columns will be the nodes of the graph.
|
| 344 |
+
|
| 345 |
+
normalized : bool, optional
|
| 346 |
+
If True, then each row is normalized by the summation of its values.
|
| 347 |
+
|
| 348 |
+
rc_order : list, optional
|
| 349 |
+
A list of the node attribute values. This list specifies the ordering
|
| 350 |
+
of rows and columns of the array. If no ordering is provided, then
|
| 351 |
+
the ordering will be random (and also, a return value).
|
| 352 |
+
|
| 353 |
+
Other Parameters
|
| 354 |
+
----------------
|
| 355 |
+
dtype : NumPy data-type, optional
|
| 356 |
+
A valid NumPy dtype used to initialize the array. Keep in mind certain
|
| 357 |
+
dtypes can yield unexpected results if the array is to be normalized.
|
| 358 |
+
The parameter is passed to numpy.zeros(). If unspecified, the NumPy
|
| 359 |
+
default is used.
|
| 360 |
+
|
| 361 |
+
Returns
|
| 362 |
+
-------
|
| 363 |
+
M : SciPy sparse array
|
| 364 |
+
The attribute matrix.
|
| 365 |
+
|
| 366 |
+
ordering : list
|
| 367 |
+
If `rc_order` was specified, then only the matrix is returned.
|
| 368 |
+
However, if `rc_order` was None, then the ordering used to construct
|
| 369 |
+
the matrix is returned as well.
|
| 370 |
+
|
| 371 |
+
Examples
|
| 372 |
+
--------
|
| 373 |
+
Construct an adjacency matrix:
|
| 374 |
+
|
| 375 |
+
>>> G = nx.Graph()
|
| 376 |
+
>>> G.add_edge(0, 1, thickness=1, weight=3)
|
| 377 |
+
>>> G.add_edge(0, 2, thickness=2)
|
| 378 |
+
>>> G.add_edge(1, 2, thickness=3)
|
| 379 |
+
>>> M = nx.attr_sparse_matrix(G, rc_order=[0, 1, 2])
|
| 380 |
+
>>> M.toarray()
|
| 381 |
+
array([[0., 1., 1.],
|
| 382 |
+
[1., 0., 1.],
|
| 383 |
+
[1., 1., 0.]])
|
| 384 |
+
|
| 385 |
+
Alternatively, we can obtain the matrix describing edge thickness.
|
| 386 |
+
|
| 387 |
+
>>> M = nx.attr_sparse_matrix(G, edge_attr="thickness", rc_order=[0, 1, 2])
|
| 388 |
+
>>> M.toarray()
|
| 389 |
+
array([[0., 1., 2.],
|
| 390 |
+
[1., 0., 3.],
|
| 391 |
+
[2., 3., 0.]])
|
| 392 |
+
|
| 393 |
+
We can also color the nodes and ask for the probability distribution over
|
| 394 |
+
all edges (u,v) describing:
|
| 395 |
+
|
| 396 |
+
Pr(v has color Y | u has color X)
|
| 397 |
+
|
| 398 |
+
>>> G.nodes[0]["color"] = "red"
|
| 399 |
+
>>> G.nodes[1]["color"] = "red"
|
| 400 |
+
>>> G.nodes[2]["color"] = "blue"
|
| 401 |
+
>>> rc = ["red", "blue"]
|
| 402 |
+
>>> M = nx.attr_sparse_matrix(G, node_attr="color", normalized=True, rc_order=rc)
|
| 403 |
+
>>> M.toarray()
|
| 404 |
+
array([[0.33333333, 0.66666667],
|
| 405 |
+
[1. , 0. ]])
|
| 406 |
+
|
| 407 |
+
For example, the above tells us that for all edges (u,v):
|
| 408 |
+
|
| 409 |
+
Pr( v is red | u is red) = 1/3
|
| 410 |
+
Pr( v is blue | u is red) = 2/3
|
| 411 |
+
|
| 412 |
+
Pr( v is red | u is blue) = 1
|
| 413 |
+
Pr( v is blue | u is blue) = 0
|
| 414 |
+
|
| 415 |
+
Finally, we can obtain the total weights listed by the node colors.
|
| 416 |
+
|
| 417 |
+
>>> M = nx.attr_sparse_matrix(G, edge_attr="weight", node_attr="color", rc_order=rc)
|
| 418 |
+
>>> M.toarray()
|
| 419 |
+
array([[3., 2.],
|
| 420 |
+
[2., 0.]])
|
| 421 |
+
|
| 422 |
+
Thus, the total weight over all edges (u,v) with u and v having colors:
|
| 423 |
+
|
| 424 |
+
(red, red) is 3 # the sole contribution is from edge (0,1)
|
| 425 |
+
(red, blue) is 2 # contributions from edges (0,2) and (1,2)
|
| 426 |
+
(blue, red) is 2 # same as (red, blue) since graph is undirected
|
| 427 |
+
(blue, blue) is 0 # there are no edges with blue endpoints
|
| 428 |
+
|
| 429 |
+
"""
|
| 430 |
+
import numpy as np
|
| 431 |
+
import scipy as sp
|
| 432 |
+
|
| 433 |
+
edge_value = _edge_value(G, edge_attr)
|
| 434 |
+
node_value = _node_value(G, node_attr)
|
| 435 |
+
|
| 436 |
+
if rc_order is None:
|
| 437 |
+
ordering = list({node_value(n) for n in G})
|
| 438 |
+
else:
|
| 439 |
+
ordering = rc_order
|
| 440 |
+
|
| 441 |
+
N = len(ordering)
|
| 442 |
+
undirected = not G.is_directed()
|
| 443 |
+
index = dict(zip(ordering, range(N)))
|
| 444 |
+
M = sp.sparse.lil_array((N, N), dtype=dtype)
|
| 445 |
+
|
| 446 |
+
seen = set()
|
| 447 |
+
for u, nbrdict in G.adjacency():
|
| 448 |
+
for v in nbrdict:
|
| 449 |
+
# Obtain the node attribute values.
|
| 450 |
+
i, j = index[node_value(u)], index[node_value(v)]
|
| 451 |
+
if v not in seen:
|
| 452 |
+
M[i, j] += edge_value(u, v)
|
| 453 |
+
if undirected:
|
| 454 |
+
M[j, i] = M[i, j]
|
| 455 |
+
|
| 456 |
+
if undirected:
|
| 457 |
+
seen.add(u)
|
| 458 |
+
|
| 459 |
+
if normalized:
|
| 460 |
+
M *= 1 / M.sum(axis=1)[:, np.newaxis] # in-place mult preserves sparse
|
| 461 |
+
|
| 462 |
+
if rc_order is None:
|
| 463 |
+
return M, ordering
|
| 464 |
+
else:
|
| 465 |
+
return M
|
minigpt2/lib/python3.10/site-packages/networkx/linalg/bethehessianmatrix.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Bethe Hessian or deformed Laplacian matrix of graphs."""
|
| 2 |
+
|
| 3 |
+
import networkx as nx
|
| 4 |
+
from networkx.utils import not_implemented_for
|
| 5 |
+
|
| 6 |
+
__all__ = ["bethe_hessian_matrix"]
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
@not_implemented_for("directed")
|
| 10 |
+
@not_implemented_for("multigraph")
|
| 11 |
+
@nx._dispatchable
|
| 12 |
+
def bethe_hessian_matrix(G, r=None, nodelist=None):
|
| 13 |
+
r"""Returns the Bethe Hessian matrix of G.
|
| 14 |
+
|
| 15 |
+
The Bethe Hessian is a family of matrices parametrized by r, defined as
|
| 16 |
+
H(r) = (r^2 - 1) I - r A + D where A is the adjacency matrix, D is the
|
| 17 |
+
diagonal matrix of node degrees, and I is the identify matrix. It is equal
|
| 18 |
+
to the graph laplacian when the regularizer r = 1.
|
| 19 |
+
|
| 20 |
+
The default choice of regularizer should be the ratio [2]_
|
| 21 |
+
|
| 22 |
+
.. math::
|
| 23 |
+
r_m = \left(\sum k_i \right)^{-1}\left(\sum k_i^2 \right) - 1
|
| 24 |
+
|
| 25 |
+
Parameters
|
| 26 |
+
----------
|
| 27 |
+
G : Graph
|
| 28 |
+
A NetworkX graph
|
| 29 |
+
r : float
|
| 30 |
+
Regularizer parameter
|
| 31 |
+
nodelist : list, optional
|
| 32 |
+
The rows and columns are ordered according to the nodes in nodelist.
|
| 33 |
+
If nodelist is None, then the ordering is produced by ``G.nodes()``.
|
| 34 |
+
|
| 35 |
+
Returns
|
| 36 |
+
-------
|
| 37 |
+
H : scipy.sparse.csr_array
|
| 38 |
+
The Bethe Hessian matrix of `G`, with parameter `r`.
|
| 39 |
+
|
| 40 |
+
Examples
|
| 41 |
+
--------
|
| 42 |
+
>>> k = [3, 2, 2, 1, 0]
|
| 43 |
+
>>> G = nx.havel_hakimi_graph(k)
|
| 44 |
+
>>> H = nx.bethe_hessian_matrix(G)
|
| 45 |
+
>>> H.toarray()
|
| 46 |
+
array([[ 3.5625, -1.25 , -1.25 , -1.25 , 0. ],
|
| 47 |
+
[-1.25 , 2.5625, -1.25 , 0. , 0. ],
|
| 48 |
+
[-1.25 , -1.25 , 2.5625, 0. , 0. ],
|
| 49 |
+
[-1.25 , 0. , 0. , 1.5625, 0. ],
|
| 50 |
+
[ 0. , 0. , 0. , 0. , 0.5625]])
|
| 51 |
+
|
| 52 |
+
See Also
|
| 53 |
+
--------
|
| 54 |
+
bethe_hessian_spectrum
|
| 55 |
+
adjacency_matrix
|
| 56 |
+
laplacian_matrix
|
| 57 |
+
|
| 58 |
+
References
|
| 59 |
+
----------
|
| 60 |
+
.. [1] A. Saade, F. Krzakala and L. Zdeborová
|
| 61 |
+
"Spectral Clustering of Graphs with the Bethe Hessian",
|
| 62 |
+
Advances in Neural Information Processing Systems, 2014.
|
| 63 |
+
.. [2] C. M. Le, E. Levina
|
| 64 |
+
"Estimating the number of communities in networks by spectral methods"
|
| 65 |
+
arXiv:1507.00827, 2015.
|
| 66 |
+
"""
|
| 67 |
+
import scipy as sp
|
| 68 |
+
|
| 69 |
+
if nodelist is None:
|
| 70 |
+
nodelist = list(G)
|
| 71 |
+
if r is None:
|
| 72 |
+
r = sum(d**2 for v, d in nx.degree(G)) / sum(d for v, d in nx.degree(G)) - 1
|
| 73 |
+
A = nx.to_scipy_sparse_array(G, nodelist=nodelist, format="csr")
|
| 74 |
+
n, m = A.shape
|
| 75 |
+
# TODO: Rm csr_array wrapper when spdiags array creation becomes available
|
| 76 |
+
D = sp.sparse.csr_array(sp.sparse.spdiags(A.sum(axis=1), 0, m, n, format="csr"))
|
| 77 |
+
# TODO: Rm csr_array wrapper when eye array creation becomes available
|
| 78 |
+
I = sp.sparse.csr_array(sp.sparse.eye(m, n, format="csr"))
|
| 79 |
+
return (r**2 - 1) * I - r * A + D
|
minigpt2/lib/python3.10/site-packages/networkx/linalg/graphmatrix.py
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Adjacency matrix and incidence matrix of graphs.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import networkx as nx
|
| 6 |
+
|
| 7 |
+
__all__ = ["incidence_matrix", "adjacency_matrix"]
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 11 |
+
def incidence_matrix(
|
| 12 |
+
G, nodelist=None, edgelist=None, oriented=False, weight=None, *, dtype=None
|
| 13 |
+
):
|
| 14 |
+
"""Returns incidence matrix of G.
|
| 15 |
+
|
| 16 |
+
The incidence matrix assigns each row to a node and each column to an edge.
|
| 17 |
+
For a standard incidence matrix a 1 appears wherever a row's node is
|
| 18 |
+
incident on the column's edge. For an oriented incidence matrix each
|
| 19 |
+
edge is assigned an orientation (arbitrarily for undirected and aligning to
|
| 20 |
+
direction for directed). A -1 appears for the source (tail) of an edge and
|
| 21 |
+
1 for the destination (head) of the edge. The elements are zero otherwise.
|
| 22 |
+
|
| 23 |
+
Parameters
|
| 24 |
+
----------
|
| 25 |
+
G : graph
|
| 26 |
+
A NetworkX graph
|
| 27 |
+
|
| 28 |
+
nodelist : list, optional (default= all nodes in G)
|
| 29 |
+
The rows are ordered according to the nodes in nodelist.
|
| 30 |
+
If nodelist is None, then the ordering is produced by G.nodes().
|
| 31 |
+
|
| 32 |
+
edgelist : list, optional (default= all edges in G)
|
| 33 |
+
The columns are ordered according to the edges in edgelist.
|
| 34 |
+
If edgelist is None, then the ordering is produced by G.edges().
|
| 35 |
+
|
| 36 |
+
oriented: bool, optional (default=False)
|
| 37 |
+
If True, matrix elements are +1 or -1 for the head or tail node
|
| 38 |
+
respectively of each edge. If False, +1 occurs at both nodes.
|
| 39 |
+
|
| 40 |
+
weight : string or None, optional (default=None)
|
| 41 |
+
The edge data key used to provide each value in the matrix.
|
| 42 |
+
If None, then each edge has weight 1. Edge weights, if used,
|
| 43 |
+
should be positive so that the orientation can provide the sign.
|
| 44 |
+
|
| 45 |
+
dtype : a NumPy dtype or None (default=None)
|
| 46 |
+
The dtype of the output sparse array. This type should be a compatible
|
| 47 |
+
type of the weight argument, eg. if weight would return a float this
|
| 48 |
+
argument should also be a float.
|
| 49 |
+
If None, then the default for SciPy is used.
|
| 50 |
+
|
| 51 |
+
Returns
|
| 52 |
+
-------
|
| 53 |
+
A : SciPy sparse array
|
| 54 |
+
The incidence matrix of G.
|
| 55 |
+
|
| 56 |
+
Notes
|
| 57 |
+
-----
|
| 58 |
+
For MultiGraph/MultiDiGraph, the edges in edgelist should be
|
| 59 |
+
(u,v,key) 3-tuples.
|
| 60 |
+
|
| 61 |
+
"Networks are the best discrete model for so many problems in
|
| 62 |
+
applied mathematics" [1]_.
|
| 63 |
+
|
| 64 |
+
References
|
| 65 |
+
----------
|
| 66 |
+
.. [1] Gil Strang, Network applications: A = incidence matrix,
|
| 67 |
+
http://videolectures.net/mit18085f07_strang_lec03/
|
| 68 |
+
"""
|
| 69 |
+
import scipy as sp
|
| 70 |
+
|
| 71 |
+
if nodelist is None:
|
| 72 |
+
nodelist = list(G)
|
| 73 |
+
if edgelist is None:
|
| 74 |
+
if G.is_multigraph():
|
| 75 |
+
edgelist = list(G.edges(keys=True))
|
| 76 |
+
else:
|
| 77 |
+
edgelist = list(G.edges())
|
| 78 |
+
A = sp.sparse.lil_array((len(nodelist), len(edgelist)), dtype=dtype)
|
| 79 |
+
node_index = {node: i for i, node in enumerate(nodelist)}
|
| 80 |
+
for ei, e in enumerate(edgelist):
|
| 81 |
+
(u, v) = e[:2]
|
| 82 |
+
if u == v:
|
| 83 |
+
continue # self loops give zero column
|
| 84 |
+
try:
|
| 85 |
+
ui = node_index[u]
|
| 86 |
+
vi = node_index[v]
|
| 87 |
+
except KeyError as err:
|
| 88 |
+
raise nx.NetworkXError(
|
| 89 |
+
f"node {u} or {v} in edgelist but not in nodelist"
|
| 90 |
+
) from err
|
| 91 |
+
if weight is None:
|
| 92 |
+
wt = 1
|
| 93 |
+
else:
|
| 94 |
+
if G.is_multigraph():
|
| 95 |
+
ekey = e[2]
|
| 96 |
+
wt = G[u][v][ekey].get(weight, 1)
|
| 97 |
+
else:
|
| 98 |
+
wt = G[u][v].get(weight, 1)
|
| 99 |
+
if oriented:
|
| 100 |
+
A[ui, ei] = -wt
|
| 101 |
+
A[vi, ei] = wt
|
| 102 |
+
else:
|
| 103 |
+
A[ui, ei] = wt
|
| 104 |
+
A[vi, ei] = wt
|
| 105 |
+
return A.asformat("csc")
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 109 |
+
def adjacency_matrix(G, nodelist=None, dtype=None, weight="weight"):
|
| 110 |
+
"""Returns adjacency matrix of `G`.
|
| 111 |
+
|
| 112 |
+
Parameters
|
| 113 |
+
----------
|
| 114 |
+
G : graph
|
| 115 |
+
A NetworkX graph
|
| 116 |
+
|
| 117 |
+
nodelist : list, optional
|
| 118 |
+
The rows and columns are ordered according to the nodes in `nodelist`.
|
| 119 |
+
If ``nodelist=None`` (the default), then the ordering is produced by
|
| 120 |
+
``G.nodes()``.
|
| 121 |
+
|
| 122 |
+
dtype : NumPy data-type, optional
|
| 123 |
+
The desired data-type for the array.
|
| 124 |
+
If `None`, then the NumPy default is used.
|
| 125 |
+
|
| 126 |
+
weight : string or None, optional (default='weight')
|
| 127 |
+
The edge data key used to provide each value in the matrix.
|
| 128 |
+
If None, then each edge has weight 1.
|
| 129 |
+
|
| 130 |
+
Returns
|
| 131 |
+
-------
|
| 132 |
+
A : SciPy sparse array
|
| 133 |
+
Adjacency matrix representation of G.
|
| 134 |
+
|
| 135 |
+
Notes
|
| 136 |
+
-----
|
| 137 |
+
For directed graphs, entry ``i, j`` corresponds to an edge from ``i`` to ``j``.
|
| 138 |
+
|
| 139 |
+
If you want a pure Python adjacency matrix representation try
|
| 140 |
+
:func:`~networkx.convert.to_dict_of_dicts` which will return a
|
| 141 |
+
dictionary-of-dictionaries format that can be addressed as a
|
| 142 |
+
sparse matrix.
|
| 143 |
+
|
| 144 |
+
For multigraphs with parallel edges the weights are summed.
|
| 145 |
+
See :func:`networkx.convert_matrix.to_numpy_array` for other options.
|
| 146 |
+
|
| 147 |
+
The convention used for self-loop edges in graphs is to assign the
|
| 148 |
+
diagonal matrix entry value to the edge weight attribute
|
| 149 |
+
(or the number 1 if the edge has no weight attribute). If the
|
| 150 |
+
alternate convention of doubling the edge weight is desired the
|
| 151 |
+
resulting SciPy sparse array can be modified as follows::
|
| 152 |
+
|
| 153 |
+
>>> G = nx.Graph([(1, 1)])
|
| 154 |
+
>>> A = nx.adjacency_matrix(G)
|
| 155 |
+
>>> A.toarray()
|
| 156 |
+
array([[1]])
|
| 157 |
+
>>> A.setdiag(A.diagonal() * 2)
|
| 158 |
+
>>> A.toarray()
|
| 159 |
+
array([[2]])
|
| 160 |
+
|
| 161 |
+
See Also
|
| 162 |
+
--------
|
| 163 |
+
to_numpy_array
|
| 164 |
+
to_scipy_sparse_array
|
| 165 |
+
to_dict_of_dicts
|
| 166 |
+
adjacency_spectrum
|
| 167 |
+
"""
|
| 168 |
+
return nx.to_scipy_sparse_array(G, nodelist=nodelist, dtype=dtype, weight=weight)
|
minigpt2/lib/python3.10/site-packages/networkx/linalg/laplacianmatrix.py
ADDED
|
@@ -0,0 +1,617 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Laplacian matrix of graphs.
|
| 2 |
+
|
| 3 |
+
All calculations here are done using the out-degree. For Laplacians using
|
| 4 |
+
in-degree, use `G.reverse(copy=False)` instead of `G` and take the transpose.
|
| 5 |
+
|
| 6 |
+
The `laplacian_matrix` function provides an unnormalized matrix,
|
| 7 |
+
while `normalized_laplacian_matrix`, `directed_laplacian_matrix`,
|
| 8 |
+
and `directed_combinatorial_laplacian_matrix` are all normalized.
|
| 9 |
+
"""
|
| 10 |
+
|
| 11 |
+
import networkx as nx
|
| 12 |
+
from networkx.utils import not_implemented_for
|
| 13 |
+
|
| 14 |
+
__all__ = [
|
| 15 |
+
"laplacian_matrix",
|
| 16 |
+
"normalized_laplacian_matrix",
|
| 17 |
+
"total_spanning_tree_weight",
|
| 18 |
+
"directed_laplacian_matrix",
|
| 19 |
+
"directed_combinatorial_laplacian_matrix",
|
| 20 |
+
]
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 24 |
+
def laplacian_matrix(G, nodelist=None, weight="weight"):
|
| 25 |
+
"""Returns the Laplacian matrix of G.
|
| 26 |
+
|
| 27 |
+
The graph Laplacian is the matrix L = D - A, where
|
| 28 |
+
A is the adjacency matrix and D is the diagonal matrix of node degrees.
|
| 29 |
+
|
| 30 |
+
Parameters
|
| 31 |
+
----------
|
| 32 |
+
G : graph
|
| 33 |
+
A NetworkX graph
|
| 34 |
+
|
| 35 |
+
nodelist : list, optional
|
| 36 |
+
The rows and columns are ordered according to the nodes in nodelist.
|
| 37 |
+
If nodelist is None, then the ordering is produced by G.nodes().
|
| 38 |
+
|
| 39 |
+
weight : string or None, optional (default='weight')
|
| 40 |
+
The edge data key used to compute each value in the matrix.
|
| 41 |
+
If None, then each edge has weight 1.
|
| 42 |
+
|
| 43 |
+
Returns
|
| 44 |
+
-------
|
| 45 |
+
L : SciPy sparse array
|
| 46 |
+
The Laplacian matrix of G.
|
| 47 |
+
|
| 48 |
+
Notes
|
| 49 |
+
-----
|
| 50 |
+
For MultiGraph, the edges weights are summed.
|
| 51 |
+
|
| 52 |
+
This returns an unnormalized matrix. For a normalized output,
|
| 53 |
+
use `normalized_laplacian_matrix`, `directed_laplacian_matrix`,
|
| 54 |
+
or `directed_combinatorial_laplacian_matrix`.
|
| 55 |
+
|
| 56 |
+
This calculation uses the out-degree of the graph `G`. To use the
|
| 57 |
+
in-degree for calculations instead, use `G.reverse(copy=False)` and
|
| 58 |
+
take the transpose.
|
| 59 |
+
|
| 60 |
+
See Also
|
| 61 |
+
--------
|
| 62 |
+
:func:`~networkx.convert_matrix.to_numpy_array`
|
| 63 |
+
normalized_laplacian_matrix
|
| 64 |
+
directed_laplacian_matrix
|
| 65 |
+
directed_combinatorial_laplacian_matrix
|
| 66 |
+
:func:`~networkx.linalg.spectrum.laplacian_spectrum`
|
| 67 |
+
|
| 68 |
+
Examples
|
| 69 |
+
--------
|
| 70 |
+
For graphs with multiple connected components, L is permutation-similar
|
| 71 |
+
to a block diagonal matrix where each block is the respective Laplacian
|
| 72 |
+
matrix for each component.
|
| 73 |
+
|
| 74 |
+
>>> G = nx.Graph([(1, 2), (2, 3), (4, 5)])
|
| 75 |
+
>>> print(nx.laplacian_matrix(G).toarray())
|
| 76 |
+
[[ 1 -1 0 0 0]
|
| 77 |
+
[-1 2 -1 0 0]
|
| 78 |
+
[ 0 -1 1 0 0]
|
| 79 |
+
[ 0 0 0 1 -1]
|
| 80 |
+
[ 0 0 0 -1 1]]
|
| 81 |
+
|
| 82 |
+
>>> edges = [
|
| 83 |
+
... (1, 2),
|
| 84 |
+
... (2, 1),
|
| 85 |
+
... (2, 4),
|
| 86 |
+
... (4, 3),
|
| 87 |
+
... (3, 4),
|
| 88 |
+
... ]
|
| 89 |
+
>>> DiG = nx.DiGraph(edges)
|
| 90 |
+
>>> print(nx.laplacian_matrix(DiG).toarray())
|
| 91 |
+
[[ 1 -1 0 0]
|
| 92 |
+
[-1 2 -1 0]
|
| 93 |
+
[ 0 0 1 -1]
|
| 94 |
+
[ 0 0 -1 1]]
|
| 95 |
+
|
| 96 |
+
Notice that node 4 is represented by the third column and row. This is because
|
| 97 |
+
by default the row/column order is the order of `G.nodes` (i.e. the node added
|
| 98 |
+
order -- in the edgelist, 4 first appears in (2, 4), before node 3 in edge (4, 3).)
|
| 99 |
+
To control the node order of the matrix, use the `nodelist` argument.
|
| 100 |
+
|
| 101 |
+
>>> print(nx.laplacian_matrix(DiG, nodelist=[1, 2, 3, 4]).toarray())
|
| 102 |
+
[[ 1 -1 0 0]
|
| 103 |
+
[-1 2 0 -1]
|
| 104 |
+
[ 0 0 1 -1]
|
| 105 |
+
[ 0 0 -1 1]]
|
| 106 |
+
|
| 107 |
+
This calculation uses the out-degree of the graph `G`. To use the
|
| 108 |
+
in-degree for calculations instead, use `G.reverse(copy=False)` and
|
| 109 |
+
take the transpose.
|
| 110 |
+
|
| 111 |
+
>>> print(nx.laplacian_matrix(DiG.reverse(copy=False)).toarray().T)
|
| 112 |
+
[[ 1 -1 0 0]
|
| 113 |
+
[-1 1 -1 0]
|
| 114 |
+
[ 0 0 2 -1]
|
| 115 |
+
[ 0 0 -1 1]]
|
| 116 |
+
|
| 117 |
+
References
|
| 118 |
+
----------
|
| 119 |
+
.. [1] Langville, Amy N., and Carl D. Meyer. Google’s PageRank and Beyond:
|
| 120 |
+
The Science of Search Engine Rankings. Princeton University Press, 2006.
|
| 121 |
+
|
| 122 |
+
"""
|
| 123 |
+
import scipy as sp
|
| 124 |
+
|
| 125 |
+
if nodelist is None:
|
| 126 |
+
nodelist = list(G)
|
| 127 |
+
A = nx.to_scipy_sparse_array(G, nodelist=nodelist, weight=weight, format="csr")
|
| 128 |
+
n, m = A.shape
|
| 129 |
+
# TODO: rm csr_array wrapper when spdiags can produce arrays
|
| 130 |
+
D = sp.sparse.csr_array(sp.sparse.spdiags(A.sum(axis=1), 0, m, n, format="csr"))
|
| 131 |
+
return D - A
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 135 |
+
def normalized_laplacian_matrix(G, nodelist=None, weight="weight"):
|
| 136 |
+
r"""Returns the normalized Laplacian matrix of G.
|
| 137 |
+
|
| 138 |
+
The normalized graph Laplacian is the matrix
|
| 139 |
+
|
| 140 |
+
.. math::
|
| 141 |
+
|
| 142 |
+
N = D^{-1/2} L D^{-1/2}
|
| 143 |
+
|
| 144 |
+
where `L` is the graph Laplacian and `D` is the diagonal matrix of
|
| 145 |
+
node degrees [1]_.
|
| 146 |
+
|
| 147 |
+
Parameters
|
| 148 |
+
----------
|
| 149 |
+
G : graph
|
| 150 |
+
A NetworkX graph
|
| 151 |
+
|
| 152 |
+
nodelist : list, optional
|
| 153 |
+
The rows and columns are ordered according to the nodes in nodelist.
|
| 154 |
+
If nodelist is None, then the ordering is produced by G.nodes().
|
| 155 |
+
|
| 156 |
+
weight : string or None, optional (default='weight')
|
| 157 |
+
The edge data key used to compute each value in the matrix.
|
| 158 |
+
If None, then each edge has weight 1.
|
| 159 |
+
|
| 160 |
+
Returns
|
| 161 |
+
-------
|
| 162 |
+
N : SciPy sparse array
|
| 163 |
+
The normalized Laplacian matrix of G.
|
| 164 |
+
|
| 165 |
+
Notes
|
| 166 |
+
-----
|
| 167 |
+
For MultiGraph, the edges weights are summed.
|
| 168 |
+
See :func:`to_numpy_array` for other options.
|
| 169 |
+
|
| 170 |
+
If the Graph contains selfloops, D is defined as ``diag(sum(A, 1))``, where A is
|
| 171 |
+
the adjacency matrix [2]_.
|
| 172 |
+
|
| 173 |
+
This calculation uses the out-degree of the graph `G`. To use the
|
| 174 |
+
in-degree for calculations instead, use `G.reverse(copy=False)` and
|
| 175 |
+
take the transpose.
|
| 176 |
+
|
| 177 |
+
For an unnormalized output, use `laplacian_matrix`.
|
| 178 |
+
|
| 179 |
+
Examples
|
| 180 |
+
--------
|
| 181 |
+
|
| 182 |
+
>>> import numpy as np
|
| 183 |
+
>>> edges = [
|
| 184 |
+
... (1, 2),
|
| 185 |
+
... (2, 1),
|
| 186 |
+
... (2, 4),
|
| 187 |
+
... (4, 3),
|
| 188 |
+
... (3, 4),
|
| 189 |
+
... ]
|
| 190 |
+
>>> DiG = nx.DiGraph(edges)
|
| 191 |
+
>>> print(nx.normalized_laplacian_matrix(DiG).toarray())
|
| 192 |
+
[[ 1. -0.70710678 0. 0. ]
|
| 193 |
+
[-0.70710678 1. -0.70710678 0. ]
|
| 194 |
+
[ 0. 0. 1. -1. ]
|
| 195 |
+
[ 0. 0. -1. 1. ]]
|
| 196 |
+
|
| 197 |
+
Notice that node 4 is represented by the third column and row. This is because
|
| 198 |
+
by default the row/column order is the order of `G.nodes` (i.e. the node added
|
| 199 |
+
order -- in the edgelist, 4 first appears in (2, 4), before node 3 in edge (4, 3).)
|
| 200 |
+
To control the node order of the matrix, use the `nodelist` argument.
|
| 201 |
+
|
| 202 |
+
>>> print(nx.normalized_laplacian_matrix(DiG, nodelist=[1, 2, 3, 4]).toarray())
|
| 203 |
+
[[ 1. -0.70710678 0. 0. ]
|
| 204 |
+
[-0.70710678 1. 0. -0.70710678]
|
| 205 |
+
[ 0. 0. 1. -1. ]
|
| 206 |
+
[ 0. 0. -1. 1. ]]
|
| 207 |
+
>>> G = nx.Graph(edges)
|
| 208 |
+
>>> print(nx.normalized_laplacian_matrix(G).toarray())
|
| 209 |
+
[[ 1. -0.70710678 0. 0. ]
|
| 210 |
+
[-0.70710678 1. -0.5 0. ]
|
| 211 |
+
[ 0. -0.5 1. -0.70710678]
|
| 212 |
+
[ 0. 0. -0.70710678 1. ]]
|
| 213 |
+
|
| 214 |
+
See Also
|
| 215 |
+
--------
|
| 216 |
+
laplacian_matrix
|
| 217 |
+
normalized_laplacian_spectrum
|
| 218 |
+
directed_laplacian_matrix
|
| 219 |
+
directed_combinatorial_laplacian_matrix
|
| 220 |
+
|
| 221 |
+
References
|
| 222 |
+
----------
|
| 223 |
+
.. [1] Fan Chung-Graham, Spectral Graph Theory,
|
| 224 |
+
CBMS Regional Conference Series in Mathematics, Number 92, 1997.
|
| 225 |
+
.. [2] Steve Butler, Interlacing For Weighted Graphs Using The Normalized
|
| 226 |
+
Laplacian, Electronic Journal of Linear Algebra, Volume 16, pp. 90-98,
|
| 227 |
+
March 2007.
|
| 228 |
+
.. [3] Langville, Amy N., and Carl D. Meyer. Google’s PageRank and Beyond:
|
| 229 |
+
The Science of Search Engine Rankings. Princeton University Press, 2006.
|
| 230 |
+
"""
|
| 231 |
+
import numpy as np
|
| 232 |
+
import scipy as sp
|
| 233 |
+
|
| 234 |
+
if nodelist is None:
|
| 235 |
+
nodelist = list(G)
|
| 236 |
+
A = nx.to_scipy_sparse_array(G, nodelist=nodelist, weight=weight, format="csr")
|
| 237 |
+
n, _ = A.shape
|
| 238 |
+
diags = A.sum(axis=1)
|
| 239 |
+
# TODO: rm csr_array wrapper when spdiags can produce arrays
|
| 240 |
+
D = sp.sparse.csr_array(sp.sparse.spdiags(diags, 0, n, n, format="csr"))
|
| 241 |
+
L = D - A
|
| 242 |
+
with np.errstate(divide="ignore"):
|
| 243 |
+
diags_sqrt = 1.0 / np.sqrt(diags)
|
| 244 |
+
diags_sqrt[np.isinf(diags_sqrt)] = 0
|
| 245 |
+
# TODO: rm csr_array wrapper when spdiags can produce arrays
|
| 246 |
+
DH = sp.sparse.csr_array(sp.sparse.spdiags(diags_sqrt, 0, n, n, format="csr"))
|
| 247 |
+
return DH @ (L @ DH)
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 251 |
+
def total_spanning_tree_weight(G, weight=None, root=None):
|
| 252 |
+
"""
|
| 253 |
+
Returns the total weight of all spanning trees of `G`.
|
| 254 |
+
|
| 255 |
+
Kirchoff's Tree Matrix Theorem [1]_, [2]_ states that the determinant of any
|
| 256 |
+
cofactor of the Laplacian matrix of a graph is the number of spanning trees
|
| 257 |
+
in the graph. For a weighted Laplacian matrix, it is the sum across all
|
| 258 |
+
spanning trees of the multiplicative weight of each tree. That is, the
|
| 259 |
+
weight of each tree is the product of its edge weights.
|
| 260 |
+
|
| 261 |
+
For unweighted graphs, the total weight equals the number of spanning trees in `G`.
|
| 262 |
+
|
| 263 |
+
For directed graphs, the total weight follows by summing over all directed
|
| 264 |
+
spanning trees in `G` that start in the `root` node [3]_.
|
| 265 |
+
|
| 266 |
+
.. deprecated:: 3.3
|
| 267 |
+
|
| 268 |
+
``total_spanning_tree_weight`` is deprecated and will be removed in v3.5.
|
| 269 |
+
Use ``nx.number_of_spanning_trees(G)`` instead.
|
| 270 |
+
|
| 271 |
+
Parameters
|
| 272 |
+
----------
|
| 273 |
+
G : NetworkX Graph
|
| 274 |
+
|
| 275 |
+
weight : string or None, optional (default=None)
|
| 276 |
+
The key for the edge attribute holding the edge weight.
|
| 277 |
+
If None, then each edge has weight 1.
|
| 278 |
+
|
| 279 |
+
root : node (only required for directed graphs)
|
| 280 |
+
A node in the directed graph `G`.
|
| 281 |
+
|
| 282 |
+
Returns
|
| 283 |
+
-------
|
| 284 |
+
total_weight : float
|
| 285 |
+
Undirected graphs:
|
| 286 |
+
The sum of the total multiplicative weights for all spanning trees in `G`.
|
| 287 |
+
Directed graphs:
|
| 288 |
+
The sum of the total multiplicative weights for all spanning trees of `G`,
|
| 289 |
+
rooted at node `root`.
|
| 290 |
+
|
| 291 |
+
Raises
|
| 292 |
+
------
|
| 293 |
+
NetworkXPointlessConcept
|
| 294 |
+
If `G` does not contain any nodes.
|
| 295 |
+
|
| 296 |
+
NetworkXError
|
| 297 |
+
If the graph `G` is not (weakly) connected,
|
| 298 |
+
or if `G` is directed and the root node is not specified or not in G.
|
| 299 |
+
|
| 300 |
+
Examples
|
| 301 |
+
--------
|
| 302 |
+
>>> G = nx.complete_graph(5)
|
| 303 |
+
>>> round(nx.total_spanning_tree_weight(G))
|
| 304 |
+
125
|
| 305 |
+
|
| 306 |
+
>>> G = nx.Graph()
|
| 307 |
+
>>> G.add_edge(1, 2, weight=2)
|
| 308 |
+
>>> G.add_edge(1, 3, weight=1)
|
| 309 |
+
>>> G.add_edge(2, 3, weight=1)
|
| 310 |
+
>>> round(nx.total_spanning_tree_weight(G, "weight"))
|
| 311 |
+
5
|
| 312 |
+
|
| 313 |
+
Notes
|
| 314 |
+
-----
|
| 315 |
+
Self-loops are excluded. Multi-edges are contracted in one edge
|
| 316 |
+
equal to the sum of the weights.
|
| 317 |
+
|
| 318 |
+
References
|
| 319 |
+
----------
|
| 320 |
+
.. [1] Wikipedia
|
| 321 |
+
"Kirchhoff's theorem."
|
| 322 |
+
https://en.wikipedia.org/wiki/Kirchhoff%27s_theorem
|
| 323 |
+
.. [2] Kirchhoff, G. R.
|
| 324 |
+
Über die Auflösung der Gleichungen, auf welche man
|
| 325 |
+
bei der Untersuchung der linearen Vertheilung
|
| 326 |
+
Galvanischer Ströme geführt wird
|
| 327 |
+
Annalen der Physik und Chemie, vol. 72, pp. 497-508, 1847.
|
| 328 |
+
.. [3] Margoliash, J.
|
| 329 |
+
"Matrix-Tree Theorem for Directed Graphs"
|
| 330 |
+
https://www.math.uchicago.edu/~may/VIGRE/VIGRE2010/REUPapers/Margoliash.pdf
|
| 331 |
+
"""
|
| 332 |
+
import warnings
|
| 333 |
+
|
| 334 |
+
warnings.warn(
|
| 335 |
+
(
|
| 336 |
+
"\n\ntotal_spanning_tree_weight is deprecated and will be removed in v3.5.\n"
|
| 337 |
+
"Use `nx.number_of_spanning_trees(G)` instead."
|
| 338 |
+
),
|
| 339 |
+
category=DeprecationWarning,
|
| 340 |
+
stacklevel=3,
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
return nx.number_of_spanning_trees(G, weight=weight, root=root)
|
| 344 |
+
|
| 345 |
+
|
| 346 |
+
###############################################################################
|
| 347 |
+
# Code based on work from https://github.com/bjedwards
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
@not_implemented_for("undirected")
|
| 351 |
+
@not_implemented_for("multigraph")
|
| 352 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 353 |
+
def directed_laplacian_matrix(
|
| 354 |
+
G, nodelist=None, weight="weight", walk_type=None, alpha=0.95
|
| 355 |
+
):
|
| 356 |
+
r"""Returns the directed Laplacian matrix of G.
|
| 357 |
+
|
| 358 |
+
The graph directed Laplacian is the matrix
|
| 359 |
+
|
| 360 |
+
.. math::
|
| 361 |
+
|
| 362 |
+
L = I - \frac{1}{2} \left (\Phi^{1/2} P \Phi^{-1/2} + \Phi^{-1/2} P^T \Phi^{1/2} \right )
|
| 363 |
+
|
| 364 |
+
where `I` is the identity matrix, `P` is the transition matrix of the
|
| 365 |
+
graph, and `\Phi` a matrix with the Perron vector of `P` in the diagonal and
|
| 366 |
+
zeros elsewhere [1]_.
|
| 367 |
+
|
| 368 |
+
Depending on the value of walk_type, `P` can be the transition matrix
|
| 369 |
+
induced by a random walk, a lazy random walk, or a random walk with
|
| 370 |
+
teleportation (PageRank).
|
| 371 |
+
|
| 372 |
+
Parameters
|
| 373 |
+
----------
|
| 374 |
+
G : DiGraph
|
| 375 |
+
A NetworkX graph
|
| 376 |
+
|
| 377 |
+
nodelist : list, optional
|
| 378 |
+
The rows and columns are ordered according to the nodes in nodelist.
|
| 379 |
+
If nodelist is None, then the ordering is produced by G.nodes().
|
| 380 |
+
|
| 381 |
+
weight : string or None, optional (default='weight')
|
| 382 |
+
The edge data key used to compute each value in the matrix.
|
| 383 |
+
If None, then each edge has weight 1.
|
| 384 |
+
|
| 385 |
+
walk_type : string or None, optional (default=None)
|
| 386 |
+
One of ``"random"``, ``"lazy"``, or ``"pagerank"``. If ``walk_type=None``
|
| 387 |
+
(the default), then a value is selected according to the properties of `G`:
|
| 388 |
+
- ``walk_type="random"`` if `G` is strongly connected and aperiodic
|
| 389 |
+
- ``walk_type="lazy"`` if `G` is strongly connected but not aperiodic
|
| 390 |
+
- ``walk_type="pagerank"`` for all other cases.
|
| 391 |
+
|
| 392 |
+
alpha : real
|
| 393 |
+
(1 - alpha) is the teleportation probability used with pagerank
|
| 394 |
+
|
| 395 |
+
Returns
|
| 396 |
+
-------
|
| 397 |
+
L : NumPy matrix
|
| 398 |
+
Normalized Laplacian of G.
|
| 399 |
+
|
| 400 |
+
Notes
|
| 401 |
+
-----
|
| 402 |
+
Only implemented for DiGraphs
|
| 403 |
+
|
| 404 |
+
The result is always a symmetric matrix.
|
| 405 |
+
|
| 406 |
+
This calculation uses the out-degree of the graph `G`. To use the
|
| 407 |
+
in-degree for calculations instead, use `G.reverse(copy=False)` and
|
| 408 |
+
take the transpose.
|
| 409 |
+
|
| 410 |
+
See Also
|
| 411 |
+
--------
|
| 412 |
+
laplacian_matrix
|
| 413 |
+
normalized_laplacian_matrix
|
| 414 |
+
directed_combinatorial_laplacian_matrix
|
| 415 |
+
|
| 416 |
+
References
|
| 417 |
+
----------
|
| 418 |
+
.. [1] Fan Chung (2005).
|
| 419 |
+
Laplacians and the Cheeger inequality for directed graphs.
|
| 420 |
+
Annals of Combinatorics, 9(1), 2005
|
| 421 |
+
"""
|
| 422 |
+
import numpy as np
|
| 423 |
+
import scipy as sp
|
| 424 |
+
|
| 425 |
+
# NOTE: P has type ndarray if walk_type=="pagerank", else csr_array
|
| 426 |
+
P = _transition_matrix(
|
| 427 |
+
G, nodelist=nodelist, weight=weight, walk_type=walk_type, alpha=alpha
|
| 428 |
+
)
|
| 429 |
+
|
| 430 |
+
n, m = P.shape
|
| 431 |
+
|
| 432 |
+
evals, evecs = sp.sparse.linalg.eigs(P.T, k=1)
|
| 433 |
+
v = evecs.flatten().real
|
| 434 |
+
p = v / v.sum()
|
| 435 |
+
# p>=0 by Perron-Frobenius Thm. Use abs() to fix roundoff across zero gh-6865
|
| 436 |
+
sqrtp = np.sqrt(np.abs(p))
|
| 437 |
+
Q = (
|
| 438 |
+
# TODO: rm csr_array wrapper when spdiags creates arrays
|
| 439 |
+
sp.sparse.csr_array(sp.sparse.spdiags(sqrtp, 0, n, n))
|
| 440 |
+
@ P
|
| 441 |
+
# TODO: rm csr_array wrapper when spdiags creates arrays
|
| 442 |
+
@ sp.sparse.csr_array(sp.sparse.spdiags(1.0 / sqrtp, 0, n, n))
|
| 443 |
+
)
|
| 444 |
+
# NOTE: This could be sparsified for the non-pagerank cases
|
| 445 |
+
I = np.identity(len(G))
|
| 446 |
+
|
| 447 |
+
return I - (Q + Q.T) / 2.0
|
| 448 |
+
|
| 449 |
+
|
| 450 |
+
@not_implemented_for("undirected")
|
| 451 |
+
@not_implemented_for("multigraph")
|
| 452 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 453 |
+
def directed_combinatorial_laplacian_matrix(
|
| 454 |
+
G, nodelist=None, weight="weight", walk_type=None, alpha=0.95
|
| 455 |
+
):
|
| 456 |
+
r"""Return the directed combinatorial Laplacian matrix of G.
|
| 457 |
+
|
| 458 |
+
The graph directed combinatorial Laplacian is the matrix
|
| 459 |
+
|
| 460 |
+
.. math::
|
| 461 |
+
|
| 462 |
+
L = \Phi - \frac{1}{2} \left (\Phi P + P^T \Phi \right)
|
| 463 |
+
|
| 464 |
+
where `P` is the transition matrix of the graph and `\Phi` a matrix
|
| 465 |
+
with the Perron vector of `P` in the diagonal and zeros elsewhere [1]_.
|
| 466 |
+
|
| 467 |
+
Depending on the value of walk_type, `P` can be the transition matrix
|
| 468 |
+
induced by a random walk, a lazy random walk, or a random walk with
|
| 469 |
+
teleportation (PageRank).
|
| 470 |
+
|
| 471 |
+
Parameters
|
| 472 |
+
----------
|
| 473 |
+
G : DiGraph
|
| 474 |
+
A NetworkX graph
|
| 475 |
+
|
| 476 |
+
nodelist : list, optional
|
| 477 |
+
The rows and columns are ordered according to the nodes in nodelist.
|
| 478 |
+
If nodelist is None, then the ordering is produced by G.nodes().
|
| 479 |
+
|
| 480 |
+
weight : string or None, optional (default='weight')
|
| 481 |
+
The edge data key used to compute each value in the matrix.
|
| 482 |
+
If None, then each edge has weight 1.
|
| 483 |
+
|
| 484 |
+
walk_type : string or None, optional (default=None)
|
| 485 |
+
One of ``"random"``, ``"lazy"``, or ``"pagerank"``. If ``walk_type=None``
|
| 486 |
+
(the default), then a value is selected according to the properties of `G`:
|
| 487 |
+
- ``walk_type="random"`` if `G` is strongly connected and aperiodic
|
| 488 |
+
- ``walk_type="lazy"`` if `G` is strongly connected but not aperiodic
|
| 489 |
+
- ``walk_type="pagerank"`` for all other cases.
|
| 490 |
+
|
| 491 |
+
alpha : real
|
| 492 |
+
(1 - alpha) is the teleportation probability used with pagerank
|
| 493 |
+
|
| 494 |
+
Returns
|
| 495 |
+
-------
|
| 496 |
+
L : NumPy matrix
|
| 497 |
+
Combinatorial Laplacian of G.
|
| 498 |
+
|
| 499 |
+
Notes
|
| 500 |
+
-----
|
| 501 |
+
Only implemented for DiGraphs
|
| 502 |
+
|
| 503 |
+
The result is always a symmetric matrix.
|
| 504 |
+
|
| 505 |
+
This calculation uses the out-degree of the graph `G`. To use the
|
| 506 |
+
in-degree for calculations instead, use `G.reverse(copy=False)` and
|
| 507 |
+
take the transpose.
|
| 508 |
+
|
| 509 |
+
See Also
|
| 510 |
+
--------
|
| 511 |
+
laplacian_matrix
|
| 512 |
+
normalized_laplacian_matrix
|
| 513 |
+
directed_laplacian_matrix
|
| 514 |
+
|
| 515 |
+
References
|
| 516 |
+
----------
|
| 517 |
+
.. [1] Fan Chung (2005).
|
| 518 |
+
Laplacians and the Cheeger inequality for directed graphs.
|
| 519 |
+
Annals of Combinatorics, 9(1), 2005
|
| 520 |
+
"""
|
| 521 |
+
import scipy as sp
|
| 522 |
+
|
| 523 |
+
P = _transition_matrix(
|
| 524 |
+
G, nodelist=nodelist, weight=weight, walk_type=walk_type, alpha=alpha
|
| 525 |
+
)
|
| 526 |
+
|
| 527 |
+
n, m = P.shape
|
| 528 |
+
|
| 529 |
+
evals, evecs = sp.sparse.linalg.eigs(P.T, k=1)
|
| 530 |
+
v = evecs.flatten().real
|
| 531 |
+
p = v / v.sum()
|
| 532 |
+
# NOTE: could be improved by not densifying
|
| 533 |
+
# TODO: Rm csr_array wrapper when spdiags array creation becomes available
|
| 534 |
+
Phi = sp.sparse.csr_array(sp.sparse.spdiags(p, 0, n, n)).toarray()
|
| 535 |
+
|
| 536 |
+
return Phi - (Phi @ P + P.T @ Phi) / 2.0
|
| 537 |
+
|
| 538 |
+
|
| 539 |
+
def _transition_matrix(G, nodelist=None, weight="weight", walk_type=None, alpha=0.95):
|
| 540 |
+
"""Returns the transition matrix of G.
|
| 541 |
+
|
| 542 |
+
This is a row stochastic giving the transition probabilities while
|
| 543 |
+
performing a random walk on the graph. Depending on the value of walk_type,
|
| 544 |
+
P can be the transition matrix induced by a random walk, a lazy random walk,
|
| 545 |
+
or a random walk with teleportation (PageRank).
|
| 546 |
+
|
| 547 |
+
Parameters
|
| 548 |
+
----------
|
| 549 |
+
G : DiGraph
|
| 550 |
+
A NetworkX graph
|
| 551 |
+
|
| 552 |
+
nodelist : list, optional
|
| 553 |
+
The rows and columns are ordered according to the nodes in nodelist.
|
| 554 |
+
If nodelist is None, then the ordering is produced by G.nodes().
|
| 555 |
+
|
| 556 |
+
weight : string or None, optional (default='weight')
|
| 557 |
+
The edge data key used to compute each value in the matrix.
|
| 558 |
+
If None, then each edge has weight 1.
|
| 559 |
+
|
| 560 |
+
walk_type : string or None, optional (default=None)
|
| 561 |
+
One of ``"random"``, ``"lazy"``, or ``"pagerank"``. If ``walk_type=None``
|
| 562 |
+
(the default), then a value is selected according to the properties of `G`:
|
| 563 |
+
- ``walk_type="random"`` if `G` is strongly connected and aperiodic
|
| 564 |
+
- ``walk_type="lazy"`` if `G` is strongly connected but not aperiodic
|
| 565 |
+
- ``walk_type="pagerank"`` for all other cases.
|
| 566 |
+
|
| 567 |
+
alpha : real
|
| 568 |
+
(1 - alpha) is the teleportation probability used with pagerank
|
| 569 |
+
|
| 570 |
+
Returns
|
| 571 |
+
-------
|
| 572 |
+
P : numpy.ndarray
|
| 573 |
+
transition matrix of G.
|
| 574 |
+
|
| 575 |
+
Raises
|
| 576 |
+
------
|
| 577 |
+
NetworkXError
|
| 578 |
+
If walk_type not specified or alpha not in valid range
|
| 579 |
+
"""
|
| 580 |
+
import numpy as np
|
| 581 |
+
import scipy as sp
|
| 582 |
+
|
| 583 |
+
if walk_type is None:
|
| 584 |
+
if nx.is_strongly_connected(G):
|
| 585 |
+
if nx.is_aperiodic(G):
|
| 586 |
+
walk_type = "random"
|
| 587 |
+
else:
|
| 588 |
+
walk_type = "lazy"
|
| 589 |
+
else:
|
| 590 |
+
walk_type = "pagerank"
|
| 591 |
+
|
| 592 |
+
A = nx.to_scipy_sparse_array(G, nodelist=nodelist, weight=weight, dtype=float)
|
| 593 |
+
n, m = A.shape
|
| 594 |
+
if walk_type in ["random", "lazy"]:
|
| 595 |
+
# TODO: Rm csr_array wrapper when spdiags array creation becomes available
|
| 596 |
+
DI = sp.sparse.csr_array(sp.sparse.spdiags(1.0 / A.sum(axis=1), 0, n, n))
|
| 597 |
+
if walk_type == "random":
|
| 598 |
+
P = DI @ A
|
| 599 |
+
else:
|
| 600 |
+
# TODO: Rm csr_array wrapper when identity array creation becomes available
|
| 601 |
+
I = sp.sparse.csr_array(sp.sparse.identity(n))
|
| 602 |
+
P = (I + DI @ A) / 2.0
|
| 603 |
+
|
| 604 |
+
elif walk_type == "pagerank":
|
| 605 |
+
if not (0 < alpha < 1):
|
| 606 |
+
raise nx.NetworkXError("alpha must be between 0 and 1")
|
| 607 |
+
# this is using a dense representation. NOTE: This should be sparsified!
|
| 608 |
+
A = A.toarray()
|
| 609 |
+
# add constant to dangling nodes' row
|
| 610 |
+
A[A.sum(axis=1) == 0, :] = 1 / n
|
| 611 |
+
# normalize
|
| 612 |
+
A = A / A.sum(axis=1)[np.newaxis, :].T
|
| 613 |
+
P = alpha * A + (1 - alpha) / n
|
| 614 |
+
else:
|
| 615 |
+
raise nx.NetworkXError("walk_type must be random, lazy, or pagerank")
|
| 616 |
+
|
| 617 |
+
return P
|
minigpt2/lib/python3.10/site-packages/networkx/linalg/modularitymatrix.py
ADDED
|
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Modularity matrix of graphs."""
|
| 2 |
+
|
| 3 |
+
import networkx as nx
|
| 4 |
+
from networkx.utils import not_implemented_for
|
| 5 |
+
|
| 6 |
+
__all__ = ["modularity_matrix", "directed_modularity_matrix"]
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
@not_implemented_for("directed")
|
| 10 |
+
@not_implemented_for("multigraph")
|
| 11 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 12 |
+
def modularity_matrix(G, nodelist=None, weight=None):
|
| 13 |
+
r"""Returns the modularity matrix of G.
|
| 14 |
+
|
| 15 |
+
The modularity matrix is the matrix B = A - <A>, where A is the adjacency
|
| 16 |
+
matrix and <A> is the average adjacency matrix, assuming that the graph
|
| 17 |
+
is described by the configuration model.
|
| 18 |
+
|
| 19 |
+
More specifically, the element B_ij of B is defined as
|
| 20 |
+
|
| 21 |
+
.. math::
|
| 22 |
+
A_{ij} - {k_i k_j \over 2 m}
|
| 23 |
+
|
| 24 |
+
where k_i is the degree of node i, and where m is the number of edges
|
| 25 |
+
in the graph. When weight is set to a name of an attribute edge, Aij, k_i,
|
| 26 |
+
k_j and m are computed using its value.
|
| 27 |
+
|
| 28 |
+
Parameters
|
| 29 |
+
----------
|
| 30 |
+
G : Graph
|
| 31 |
+
A NetworkX graph
|
| 32 |
+
|
| 33 |
+
nodelist : list, optional
|
| 34 |
+
The rows and columns are ordered according to the nodes in nodelist.
|
| 35 |
+
If nodelist is None, then the ordering is produced by G.nodes().
|
| 36 |
+
|
| 37 |
+
weight : string or None, optional (default=None)
|
| 38 |
+
The edge attribute that holds the numerical value used for
|
| 39 |
+
the edge weight. If None then all edge weights are 1.
|
| 40 |
+
|
| 41 |
+
Returns
|
| 42 |
+
-------
|
| 43 |
+
B : Numpy array
|
| 44 |
+
The modularity matrix of G.
|
| 45 |
+
|
| 46 |
+
Examples
|
| 47 |
+
--------
|
| 48 |
+
>>> k = [3, 2, 2, 1, 0]
|
| 49 |
+
>>> G = nx.havel_hakimi_graph(k)
|
| 50 |
+
>>> B = nx.modularity_matrix(G)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
See Also
|
| 54 |
+
--------
|
| 55 |
+
to_numpy_array
|
| 56 |
+
modularity_spectrum
|
| 57 |
+
adjacency_matrix
|
| 58 |
+
directed_modularity_matrix
|
| 59 |
+
|
| 60 |
+
References
|
| 61 |
+
----------
|
| 62 |
+
.. [1] M. E. J. Newman, "Modularity and community structure in networks",
|
| 63 |
+
Proc. Natl. Acad. Sci. USA, vol. 103, pp. 8577-8582, 2006.
|
| 64 |
+
"""
|
| 65 |
+
import numpy as np
|
| 66 |
+
|
| 67 |
+
if nodelist is None:
|
| 68 |
+
nodelist = list(G)
|
| 69 |
+
A = nx.to_scipy_sparse_array(G, nodelist=nodelist, weight=weight, format="csr")
|
| 70 |
+
k = A.sum(axis=1)
|
| 71 |
+
m = k.sum() * 0.5
|
| 72 |
+
# Expected adjacency matrix
|
| 73 |
+
X = np.outer(k, k) / (2 * m)
|
| 74 |
+
|
| 75 |
+
return A - X
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
@not_implemented_for("undirected")
|
| 79 |
+
@not_implemented_for("multigraph")
|
| 80 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 81 |
+
def directed_modularity_matrix(G, nodelist=None, weight=None):
|
| 82 |
+
"""Returns the directed modularity matrix of G.
|
| 83 |
+
|
| 84 |
+
The modularity matrix is the matrix B = A - <A>, where A is the adjacency
|
| 85 |
+
matrix and <A> is the expected adjacency matrix, assuming that the graph
|
| 86 |
+
is described by the configuration model.
|
| 87 |
+
|
| 88 |
+
More specifically, the element B_ij of B is defined as
|
| 89 |
+
|
| 90 |
+
.. math::
|
| 91 |
+
B_{ij} = A_{ij} - k_i^{out} k_j^{in} / m
|
| 92 |
+
|
| 93 |
+
where :math:`k_i^{in}` is the in degree of node i, and :math:`k_j^{out}` is the out degree
|
| 94 |
+
of node j, with m the number of edges in the graph. When weight is set
|
| 95 |
+
to a name of an attribute edge, Aij, k_i, k_j and m are computed using
|
| 96 |
+
its value.
|
| 97 |
+
|
| 98 |
+
Parameters
|
| 99 |
+
----------
|
| 100 |
+
G : DiGraph
|
| 101 |
+
A NetworkX DiGraph
|
| 102 |
+
|
| 103 |
+
nodelist : list, optional
|
| 104 |
+
The rows and columns are ordered according to the nodes in nodelist.
|
| 105 |
+
If nodelist is None, then the ordering is produced by G.nodes().
|
| 106 |
+
|
| 107 |
+
weight : string or None, optional (default=None)
|
| 108 |
+
The edge attribute that holds the numerical value used for
|
| 109 |
+
the edge weight. If None then all edge weights are 1.
|
| 110 |
+
|
| 111 |
+
Returns
|
| 112 |
+
-------
|
| 113 |
+
B : Numpy array
|
| 114 |
+
The modularity matrix of G.
|
| 115 |
+
|
| 116 |
+
Examples
|
| 117 |
+
--------
|
| 118 |
+
>>> G = nx.DiGraph()
|
| 119 |
+
>>> G.add_edges_from(
|
| 120 |
+
... (
|
| 121 |
+
... (1, 2),
|
| 122 |
+
... (1, 3),
|
| 123 |
+
... (3, 1),
|
| 124 |
+
... (3, 2),
|
| 125 |
+
... (3, 5),
|
| 126 |
+
... (4, 5),
|
| 127 |
+
... (4, 6),
|
| 128 |
+
... (5, 4),
|
| 129 |
+
... (5, 6),
|
| 130 |
+
... (6, 4),
|
| 131 |
+
... )
|
| 132 |
+
... )
|
| 133 |
+
>>> B = nx.directed_modularity_matrix(G)
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
Notes
|
| 137 |
+
-----
|
| 138 |
+
NetworkX defines the element A_ij of the adjacency matrix as 1 if there
|
| 139 |
+
is a link going from node i to node j. Leicht and Newman use the opposite
|
| 140 |
+
definition. This explains the different expression for B_ij.
|
| 141 |
+
|
| 142 |
+
See Also
|
| 143 |
+
--------
|
| 144 |
+
to_numpy_array
|
| 145 |
+
modularity_spectrum
|
| 146 |
+
adjacency_matrix
|
| 147 |
+
modularity_matrix
|
| 148 |
+
|
| 149 |
+
References
|
| 150 |
+
----------
|
| 151 |
+
.. [1] E. A. Leicht, M. E. J. Newman,
|
| 152 |
+
"Community structure in directed networks",
|
| 153 |
+
Phys. Rev Lett., vol. 100, no. 11, p. 118703, 2008.
|
| 154 |
+
"""
|
| 155 |
+
import numpy as np
|
| 156 |
+
|
| 157 |
+
if nodelist is None:
|
| 158 |
+
nodelist = list(G)
|
| 159 |
+
A = nx.to_scipy_sparse_array(G, nodelist=nodelist, weight=weight, format="csr")
|
| 160 |
+
k_in = A.sum(axis=0)
|
| 161 |
+
k_out = A.sum(axis=1)
|
| 162 |
+
m = k_in.sum()
|
| 163 |
+
# Expected adjacency matrix
|
| 164 |
+
X = np.outer(k_out, k_in) / m
|
| 165 |
+
|
| 166 |
+
return A - X
|
minigpt2/lib/python3.10/site-packages/networkx/linalg/spectrum.py
ADDED
|
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Eigenvalue spectrum of graphs.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import networkx as nx
|
| 6 |
+
|
| 7 |
+
__all__ = [
|
| 8 |
+
"laplacian_spectrum",
|
| 9 |
+
"adjacency_spectrum",
|
| 10 |
+
"modularity_spectrum",
|
| 11 |
+
"normalized_laplacian_spectrum",
|
| 12 |
+
"bethe_hessian_spectrum",
|
| 13 |
+
]
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 17 |
+
def laplacian_spectrum(G, weight="weight"):
|
| 18 |
+
"""Returns eigenvalues of the Laplacian of G
|
| 19 |
+
|
| 20 |
+
Parameters
|
| 21 |
+
----------
|
| 22 |
+
G : graph
|
| 23 |
+
A NetworkX graph
|
| 24 |
+
|
| 25 |
+
weight : string or None, optional (default='weight')
|
| 26 |
+
The edge data key used to compute each value in the matrix.
|
| 27 |
+
If None, then each edge has weight 1.
|
| 28 |
+
|
| 29 |
+
Returns
|
| 30 |
+
-------
|
| 31 |
+
evals : NumPy array
|
| 32 |
+
Eigenvalues
|
| 33 |
+
|
| 34 |
+
Notes
|
| 35 |
+
-----
|
| 36 |
+
For MultiGraph/MultiDiGraph, the edges weights are summed.
|
| 37 |
+
See :func:`~networkx.convert_matrix.to_numpy_array` for other options.
|
| 38 |
+
|
| 39 |
+
See Also
|
| 40 |
+
--------
|
| 41 |
+
laplacian_matrix
|
| 42 |
+
|
| 43 |
+
Examples
|
| 44 |
+
--------
|
| 45 |
+
The multiplicity of 0 as an eigenvalue of the laplacian matrix is equal
|
| 46 |
+
to the number of connected components of G.
|
| 47 |
+
|
| 48 |
+
>>> G = nx.Graph() # Create a graph with 5 nodes and 3 connected components
|
| 49 |
+
>>> G.add_nodes_from(range(5))
|
| 50 |
+
>>> G.add_edges_from([(0, 2), (3, 4)])
|
| 51 |
+
>>> nx.laplacian_spectrum(G)
|
| 52 |
+
array([0., 0., 0., 2., 2.])
|
| 53 |
+
|
| 54 |
+
"""
|
| 55 |
+
import scipy as sp
|
| 56 |
+
|
| 57 |
+
return sp.linalg.eigvalsh(nx.laplacian_matrix(G, weight=weight).todense())
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 61 |
+
def normalized_laplacian_spectrum(G, weight="weight"):
|
| 62 |
+
"""Return eigenvalues of the normalized Laplacian of G
|
| 63 |
+
|
| 64 |
+
Parameters
|
| 65 |
+
----------
|
| 66 |
+
G : graph
|
| 67 |
+
A NetworkX graph
|
| 68 |
+
|
| 69 |
+
weight : string or None, optional (default='weight')
|
| 70 |
+
The edge data key used to compute each value in the matrix.
|
| 71 |
+
If None, then each edge has weight 1.
|
| 72 |
+
|
| 73 |
+
Returns
|
| 74 |
+
-------
|
| 75 |
+
evals : NumPy array
|
| 76 |
+
Eigenvalues
|
| 77 |
+
|
| 78 |
+
Notes
|
| 79 |
+
-----
|
| 80 |
+
For MultiGraph/MultiDiGraph, the edges weights are summed.
|
| 81 |
+
See to_numpy_array for other options.
|
| 82 |
+
|
| 83 |
+
See Also
|
| 84 |
+
--------
|
| 85 |
+
normalized_laplacian_matrix
|
| 86 |
+
"""
|
| 87 |
+
import scipy as sp
|
| 88 |
+
|
| 89 |
+
return sp.linalg.eigvalsh(
|
| 90 |
+
nx.normalized_laplacian_matrix(G, weight=weight).todense()
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 95 |
+
def adjacency_spectrum(G, weight="weight"):
|
| 96 |
+
"""Returns eigenvalues of the adjacency matrix of G.
|
| 97 |
+
|
| 98 |
+
Parameters
|
| 99 |
+
----------
|
| 100 |
+
G : graph
|
| 101 |
+
A NetworkX graph
|
| 102 |
+
|
| 103 |
+
weight : string or None, optional (default='weight')
|
| 104 |
+
The edge data key used to compute each value in the matrix.
|
| 105 |
+
If None, then each edge has weight 1.
|
| 106 |
+
|
| 107 |
+
Returns
|
| 108 |
+
-------
|
| 109 |
+
evals : NumPy array
|
| 110 |
+
Eigenvalues
|
| 111 |
+
|
| 112 |
+
Notes
|
| 113 |
+
-----
|
| 114 |
+
For MultiGraph/MultiDiGraph, the edges weights are summed.
|
| 115 |
+
See to_numpy_array for other options.
|
| 116 |
+
|
| 117 |
+
See Also
|
| 118 |
+
--------
|
| 119 |
+
adjacency_matrix
|
| 120 |
+
"""
|
| 121 |
+
import scipy as sp
|
| 122 |
+
|
| 123 |
+
return sp.linalg.eigvals(nx.adjacency_matrix(G, weight=weight).todense())
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
@nx._dispatchable
|
| 127 |
+
def modularity_spectrum(G):
|
| 128 |
+
"""Returns eigenvalues of the modularity matrix of G.
|
| 129 |
+
|
| 130 |
+
Parameters
|
| 131 |
+
----------
|
| 132 |
+
G : Graph
|
| 133 |
+
A NetworkX Graph or DiGraph
|
| 134 |
+
|
| 135 |
+
Returns
|
| 136 |
+
-------
|
| 137 |
+
evals : NumPy array
|
| 138 |
+
Eigenvalues
|
| 139 |
+
|
| 140 |
+
See Also
|
| 141 |
+
--------
|
| 142 |
+
modularity_matrix
|
| 143 |
+
|
| 144 |
+
References
|
| 145 |
+
----------
|
| 146 |
+
.. [1] M. E. J. Newman, "Modularity and community structure in networks",
|
| 147 |
+
Proc. Natl. Acad. Sci. USA, vol. 103, pp. 8577-8582, 2006.
|
| 148 |
+
"""
|
| 149 |
+
import scipy as sp
|
| 150 |
+
|
| 151 |
+
if G.is_directed():
|
| 152 |
+
return sp.linalg.eigvals(nx.directed_modularity_matrix(G))
|
| 153 |
+
else:
|
| 154 |
+
return sp.linalg.eigvals(nx.modularity_matrix(G))
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
@nx._dispatchable
|
| 158 |
+
def bethe_hessian_spectrum(G, r=None):
|
| 159 |
+
"""Returns eigenvalues of the Bethe Hessian matrix of G.
|
| 160 |
+
|
| 161 |
+
Parameters
|
| 162 |
+
----------
|
| 163 |
+
G : Graph
|
| 164 |
+
A NetworkX Graph or DiGraph
|
| 165 |
+
|
| 166 |
+
r : float
|
| 167 |
+
Regularizer parameter
|
| 168 |
+
|
| 169 |
+
Returns
|
| 170 |
+
-------
|
| 171 |
+
evals : NumPy array
|
| 172 |
+
Eigenvalues
|
| 173 |
+
|
| 174 |
+
See Also
|
| 175 |
+
--------
|
| 176 |
+
bethe_hessian_matrix
|
| 177 |
+
|
| 178 |
+
References
|
| 179 |
+
----------
|
| 180 |
+
.. [1] A. Saade, F. Krzakala and L. Zdeborová
|
| 181 |
+
"Spectral clustering of graphs with the bethe hessian",
|
| 182 |
+
Advances in Neural Information Processing Systems. 2014.
|
| 183 |
+
"""
|
| 184 |
+
import scipy as sp
|
| 185 |
+
|
| 186 |
+
return sp.linalg.eigvalsh(nx.bethe_hessian_matrix(G, r).todense())
|
minigpt2/lib/python3.10/site-packages/networkx/linalg/tests/__init__.py
ADDED
|
File without changes
|
minigpt2/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (175 Bytes). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/test_algebraic_connectivity.cpython-310.pyc
ADDED
|
Binary file (12.2 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/test_attrmatrix.cpython-310.pyc
ADDED
|
Binary file (3.1 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/test_bethehessian.cpython-310.pyc
ADDED
|
Binary file (1.39 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/test_graphmatrix.cpython-310.pyc
ADDED
|
Binary file (5.61 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/test_laplacian.cpython-310.pyc
ADDED
|
Binary file (8.15 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/test_modularity.cpython-310.pyc
ADDED
|
Binary file (2.7 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/linalg/tests/__pycache__/test_spectrum.cpython-310.pyc
ADDED
|
Binary file (3.21 kB). View file
|
|
|
minigpt2/lib/python3.10/site-packages/networkx/linalg/tests/test_algebraic_connectivity.py
ADDED
|
@@ -0,0 +1,402 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from math import sqrt
|
| 2 |
+
|
| 3 |
+
import pytest
|
| 4 |
+
|
| 5 |
+
np = pytest.importorskip("numpy")
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
import networkx as nx
|
| 9 |
+
|
| 10 |
+
methods = ("tracemin_pcg", "tracemin_lu", "lanczos", "lobpcg")
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def test_algebraic_connectivity_tracemin_chol():
|
| 14 |
+
"""Test that "tracemin_chol" raises an exception."""
|
| 15 |
+
pytest.importorskip("scipy")
|
| 16 |
+
G = nx.barbell_graph(5, 4)
|
| 17 |
+
with pytest.raises(nx.NetworkXError):
|
| 18 |
+
nx.algebraic_connectivity(G, method="tracemin_chol")
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def test_fiedler_vector_tracemin_chol():
|
| 22 |
+
"""Test that "tracemin_chol" raises an exception."""
|
| 23 |
+
pytest.importorskip("scipy")
|
| 24 |
+
G = nx.barbell_graph(5, 4)
|
| 25 |
+
with pytest.raises(nx.NetworkXError):
|
| 26 |
+
nx.fiedler_vector(G, method="tracemin_chol")
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def test_spectral_ordering_tracemin_chol():
|
| 30 |
+
"""Test that "tracemin_chol" raises an exception."""
|
| 31 |
+
pytest.importorskip("scipy")
|
| 32 |
+
G = nx.barbell_graph(5, 4)
|
| 33 |
+
with pytest.raises(nx.NetworkXError):
|
| 34 |
+
nx.spectral_ordering(G, method="tracemin_chol")
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def test_fiedler_vector_tracemin_unknown():
|
| 38 |
+
"""Test that "tracemin_unknown" raises an exception."""
|
| 39 |
+
pytest.importorskip("scipy")
|
| 40 |
+
G = nx.barbell_graph(5, 4)
|
| 41 |
+
L = nx.laplacian_matrix(G)
|
| 42 |
+
X = np.asarray(np.random.normal(size=(1, L.shape[0]))).T
|
| 43 |
+
with pytest.raises(nx.NetworkXError, match="Unknown linear system solver"):
|
| 44 |
+
nx.linalg.algebraicconnectivity._tracemin_fiedler(
|
| 45 |
+
L, X, normalized=False, tol=1e-8, method="tracemin_unknown"
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def test_spectral_bisection():
|
| 50 |
+
pytest.importorskip("scipy")
|
| 51 |
+
G = nx.barbell_graph(3, 0)
|
| 52 |
+
C = nx.spectral_bisection(G)
|
| 53 |
+
assert C == ({0, 1, 2}, {3, 4, 5})
|
| 54 |
+
|
| 55 |
+
mapping = dict(enumerate("badfec"))
|
| 56 |
+
G = nx.relabel_nodes(G, mapping)
|
| 57 |
+
C = nx.spectral_bisection(G)
|
| 58 |
+
assert C == (
|
| 59 |
+
{mapping[0], mapping[1], mapping[2]},
|
| 60 |
+
{mapping[3], mapping[4], mapping[5]},
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def check_eigenvector(A, l, x):
|
| 65 |
+
nx = np.linalg.norm(x)
|
| 66 |
+
# Check zeroness.
|
| 67 |
+
assert nx != pytest.approx(0, abs=1e-07)
|
| 68 |
+
y = A @ x
|
| 69 |
+
ny = np.linalg.norm(y)
|
| 70 |
+
# Check collinearity.
|
| 71 |
+
assert x @ y == pytest.approx(nx * ny, abs=1e-7)
|
| 72 |
+
# Check eigenvalue.
|
| 73 |
+
assert ny == pytest.approx(l * nx, abs=1e-7)
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
class TestAlgebraicConnectivity:
|
| 77 |
+
@pytest.mark.parametrize("method", methods)
|
| 78 |
+
def test_directed(self, method):
|
| 79 |
+
G = nx.DiGraph()
|
| 80 |
+
pytest.raises(
|
| 81 |
+
nx.NetworkXNotImplemented, nx.algebraic_connectivity, G, method=method
|
| 82 |
+
)
|
| 83 |
+
pytest.raises(nx.NetworkXNotImplemented, nx.fiedler_vector, G, method=method)
|
| 84 |
+
|
| 85 |
+
@pytest.mark.parametrize("method", methods)
|
| 86 |
+
def test_null_and_singleton(self, method):
|
| 87 |
+
G = nx.Graph()
|
| 88 |
+
pytest.raises(nx.NetworkXError, nx.algebraic_connectivity, G, method=method)
|
| 89 |
+
pytest.raises(nx.NetworkXError, nx.fiedler_vector, G, method=method)
|
| 90 |
+
G.add_edge(0, 0)
|
| 91 |
+
pytest.raises(nx.NetworkXError, nx.algebraic_connectivity, G, method=method)
|
| 92 |
+
pytest.raises(nx.NetworkXError, nx.fiedler_vector, G, method=method)
|
| 93 |
+
|
| 94 |
+
@pytest.mark.parametrize("method", methods)
|
| 95 |
+
def test_disconnected(self, method):
|
| 96 |
+
G = nx.Graph()
|
| 97 |
+
G.add_nodes_from(range(2))
|
| 98 |
+
assert nx.algebraic_connectivity(G) == 0
|
| 99 |
+
pytest.raises(nx.NetworkXError, nx.fiedler_vector, G, method=method)
|
| 100 |
+
G.add_edge(0, 1, weight=0)
|
| 101 |
+
assert nx.algebraic_connectivity(G) == 0
|
| 102 |
+
pytest.raises(nx.NetworkXError, nx.fiedler_vector, G, method=method)
|
| 103 |
+
|
| 104 |
+
def test_unrecognized_method(self):
|
| 105 |
+
pytest.importorskip("scipy")
|
| 106 |
+
G = nx.path_graph(4)
|
| 107 |
+
pytest.raises(nx.NetworkXError, nx.algebraic_connectivity, G, method="unknown")
|
| 108 |
+
pytest.raises(nx.NetworkXError, nx.fiedler_vector, G, method="unknown")
|
| 109 |
+
|
| 110 |
+
@pytest.mark.parametrize("method", methods)
|
| 111 |
+
def test_two_nodes(self, method):
|
| 112 |
+
pytest.importorskip("scipy")
|
| 113 |
+
G = nx.Graph()
|
| 114 |
+
G.add_edge(0, 1, weight=1)
|
| 115 |
+
A = nx.laplacian_matrix(G)
|
| 116 |
+
assert nx.algebraic_connectivity(G, tol=1e-12, method=method) == pytest.approx(
|
| 117 |
+
2, abs=1e-7
|
| 118 |
+
)
|
| 119 |
+
x = nx.fiedler_vector(G, tol=1e-12, method=method)
|
| 120 |
+
check_eigenvector(A, 2, x)
|
| 121 |
+
|
| 122 |
+
@pytest.mark.parametrize("method", methods)
|
| 123 |
+
def test_two_nodes_multigraph(self, method):
|
| 124 |
+
pytest.importorskip("scipy")
|
| 125 |
+
G = nx.MultiGraph()
|
| 126 |
+
G.add_edge(0, 0, spam=1e8)
|
| 127 |
+
G.add_edge(0, 1, spam=1)
|
| 128 |
+
G.add_edge(0, 1, spam=-2)
|
| 129 |
+
A = -3 * nx.laplacian_matrix(G, weight="spam")
|
| 130 |
+
assert nx.algebraic_connectivity(
|
| 131 |
+
G, weight="spam", tol=1e-12, method=method
|
| 132 |
+
) == pytest.approx(6, abs=1e-7)
|
| 133 |
+
x = nx.fiedler_vector(G, weight="spam", tol=1e-12, method=method)
|
| 134 |
+
check_eigenvector(A, 6, x)
|
| 135 |
+
|
| 136 |
+
def test_abbreviation_of_method(self):
|
| 137 |
+
pytest.importorskip("scipy")
|
| 138 |
+
G = nx.path_graph(8)
|
| 139 |
+
A = nx.laplacian_matrix(G)
|
| 140 |
+
sigma = 2 - sqrt(2 + sqrt(2))
|
| 141 |
+
ac = nx.algebraic_connectivity(G, tol=1e-12, method="tracemin")
|
| 142 |
+
assert ac == pytest.approx(sigma, abs=1e-7)
|
| 143 |
+
x = nx.fiedler_vector(G, tol=1e-12, method="tracemin")
|
| 144 |
+
check_eigenvector(A, sigma, x)
|
| 145 |
+
|
| 146 |
+
@pytest.mark.parametrize("method", methods)
|
| 147 |
+
def test_path(self, method):
|
| 148 |
+
pytest.importorskip("scipy")
|
| 149 |
+
G = nx.path_graph(8)
|
| 150 |
+
A = nx.laplacian_matrix(G)
|
| 151 |
+
sigma = 2 - sqrt(2 + sqrt(2))
|
| 152 |
+
ac = nx.algebraic_connectivity(G, tol=1e-12, method=method)
|
| 153 |
+
assert ac == pytest.approx(sigma, abs=1e-7)
|
| 154 |
+
x = nx.fiedler_vector(G, tol=1e-12, method=method)
|
| 155 |
+
check_eigenvector(A, sigma, x)
|
| 156 |
+
|
| 157 |
+
@pytest.mark.parametrize("method", methods)
|
| 158 |
+
def test_problematic_graph_issue_2381(self, method):
|
| 159 |
+
pytest.importorskip("scipy")
|
| 160 |
+
G = nx.path_graph(4)
|
| 161 |
+
G.add_edges_from([(4, 2), (5, 1)])
|
| 162 |
+
A = nx.laplacian_matrix(G)
|
| 163 |
+
sigma = 0.438447187191
|
| 164 |
+
ac = nx.algebraic_connectivity(G, tol=1e-12, method=method)
|
| 165 |
+
assert ac == pytest.approx(sigma, abs=1e-7)
|
| 166 |
+
x = nx.fiedler_vector(G, tol=1e-12, method=method)
|
| 167 |
+
check_eigenvector(A, sigma, x)
|
| 168 |
+
|
| 169 |
+
@pytest.mark.parametrize("method", methods)
|
| 170 |
+
def test_cycle(self, method):
|
| 171 |
+
pytest.importorskip("scipy")
|
| 172 |
+
G = nx.cycle_graph(8)
|
| 173 |
+
A = nx.laplacian_matrix(G)
|
| 174 |
+
sigma = 2 - sqrt(2)
|
| 175 |
+
ac = nx.algebraic_connectivity(G, tol=1e-12, method=method)
|
| 176 |
+
assert ac == pytest.approx(sigma, abs=1e-7)
|
| 177 |
+
x = nx.fiedler_vector(G, tol=1e-12, method=method)
|
| 178 |
+
check_eigenvector(A, sigma, x)
|
| 179 |
+
|
| 180 |
+
@pytest.mark.parametrize("method", methods)
|
| 181 |
+
def test_seed_argument(self, method):
|
| 182 |
+
pytest.importorskip("scipy")
|
| 183 |
+
G = nx.cycle_graph(8)
|
| 184 |
+
A = nx.laplacian_matrix(G)
|
| 185 |
+
sigma = 2 - sqrt(2)
|
| 186 |
+
ac = nx.algebraic_connectivity(G, tol=1e-12, method=method, seed=1)
|
| 187 |
+
assert ac == pytest.approx(sigma, abs=1e-7)
|
| 188 |
+
x = nx.fiedler_vector(G, tol=1e-12, method=method, seed=1)
|
| 189 |
+
check_eigenvector(A, sigma, x)
|
| 190 |
+
|
| 191 |
+
@pytest.mark.parametrize(
|
| 192 |
+
("normalized", "sigma", "laplacian_fn"),
|
| 193 |
+
(
|
| 194 |
+
(False, 0.2434017461399311, nx.laplacian_matrix),
|
| 195 |
+
(True, 0.08113391537997749, nx.normalized_laplacian_matrix),
|
| 196 |
+
),
|
| 197 |
+
)
|
| 198 |
+
@pytest.mark.parametrize("method", methods)
|
| 199 |
+
def test_buckminsterfullerene(self, normalized, sigma, laplacian_fn, method):
|
| 200 |
+
pytest.importorskip("scipy")
|
| 201 |
+
G = nx.Graph(
|
| 202 |
+
[
|
| 203 |
+
(1, 10),
|
| 204 |
+
(1, 41),
|
| 205 |
+
(1, 59),
|
| 206 |
+
(2, 12),
|
| 207 |
+
(2, 42),
|
| 208 |
+
(2, 60),
|
| 209 |
+
(3, 6),
|
| 210 |
+
(3, 43),
|
| 211 |
+
(3, 57),
|
| 212 |
+
(4, 8),
|
| 213 |
+
(4, 44),
|
| 214 |
+
(4, 58),
|
| 215 |
+
(5, 13),
|
| 216 |
+
(5, 56),
|
| 217 |
+
(5, 57),
|
| 218 |
+
(6, 10),
|
| 219 |
+
(6, 31),
|
| 220 |
+
(7, 14),
|
| 221 |
+
(7, 56),
|
| 222 |
+
(7, 58),
|
| 223 |
+
(8, 12),
|
| 224 |
+
(8, 32),
|
| 225 |
+
(9, 23),
|
| 226 |
+
(9, 53),
|
| 227 |
+
(9, 59),
|
| 228 |
+
(10, 15),
|
| 229 |
+
(11, 24),
|
| 230 |
+
(11, 53),
|
| 231 |
+
(11, 60),
|
| 232 |
+
(12, 16),
|
| 233 |
+
(13, 14),
|
| 234 |
+
(13, 25),
|
| 235 |
+
(14, 26),
|
| 236 |
+
(15, 27),
|
| 237 |
+
(15, 49),
|
| 238 |
+
(16, 28),
|
| 239 |
+
(16, 50),
|
| 240 |
+
(17, 18),
|
| 241 |
+
(17, 19),
|
| 242 |
+
(17, 54),
|
| 243 |
+
(18, 20),
|
| 244 |
+
(18, 55),
|
| 245 |
+
(19, 23),
|
| 246 |
+
(19, 41),
|
| 247 |
+
(20, 24),
|
| 248 |
+
(20, 42),
|
| 249 |
+
(21, 31),
|
| 250 |
+
(21, 33),
|
| 251 |
+
(21, 57),
|
| 252 |
+
(22, 32),
|
| 253 |
+
(22, 34),
|
| 254 |
+
(22, 58),
|
| 255 |
+
(23, 24),
|
| 256 |
+
(25, 35),
|
| 257 |
+
(25, 43),
|
| 258 |
+
(26, 36),
|
| 259 |
+
(26, 44),
|
| 260 |
+
(27, 51),
|
| 261 |
+
(27, 59),
|
| 262 |
+
(28, 52),
|
| 263 |
+
(28, 60),
|
| 264 |
+
(29, 33),
|
| 265 |
+
(29, 34),
|
| 266 |
+
(29, 56),
|
| 267 |
+
(30, 51),
|
| 268 |
+
(30, 52),
|
| 269 |
+
(30, 53),
|
| 270 |
+
(31, 47),
|
| 271 |
+
(32, 48),
|
| 272 |
+
(33, 45),
|
| 273 |
+
(34, 46),
|
| 274 |
+
(35, 36),
|
| 275 |
+
(35, 37),
|
| 276 |
+
(36, 38),
|
| 277 |
+
(37, 39),
|
| 278 |
+
(37, 49),
|
| 279 |
+
(38, 40),
|
| 280 |
+
(38, 50),
|
| 281 |
+
(39, 40),
|
| 282 |
+
(39, 51),
|
| 283 |
+
(40, 52),
|
| 284 |
+
(41, 47),
|
| 285 |
+
(42, 48),
|
| 286 |
+
(43, 49),
|
| 287 |
+
(44, 50),
|
| 288 |
+
(45, 46),
|
| 289 |
+
(45, 54),
|
| 290 |
+
(46, 55),
|
| 291 |
+
(47, 54),
|
| 292 |
+
(48, 55),
|
| 293 |
+
]
|
| 294 |
+
)
|
| 295 |
+
A = laplacian_fn(G)
|
| 296 |
+
try:
|
| 297 |
+
assert nx.algebraic_connectivity(
|
| 298 |
+
G, normalized=normalized, tol=1e-12, method=method
|
| 299 |
+
) == pytest.approx(sigma, abs=1e-7)
|
| 300 |
+
x = nx.fiedler_vector(G, normalized=normalized, tol=1e-12, method=method)
|
| 301 |
+
check_eigenvector(A, sigma, x)
|
| 302 |
+
except nx.NetworkXError as err:
|
| 303 |
+
if err.args not in (
|
| 304 |
+
("Cholesky solver unavailable.",),
|
| 305 |
+
("LU solver unavailable.",),
|
| 306 |
+
):
|
| 307 |
+
raise
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
class TestSpectralOrdering:
|
| 311 |
+
_graphs = (nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph)
|
| 312 |
+
|
| 313 |
+
@pytest.mark.parametrize("graph", _graphs)
|
| 314 |
+
def test_nullgraph(self, graph):
|
| 315 |
+
G = graph()
|
| 316 |
+
pytest.raises(nx.NetworkXError, nx.spectral_ordering, G)
|
| 317 |
+
|
| 318 |
+
@pytest.mark.parametrize("graph", _graphs)
|
| 319 |
+
def test_singleton(self, graph):
|
| 320 |
+
G = graph()
|
| 321 |
+
G.add_node("x")
|
| 322 |
+
assert nx.spectral_ordering(G) == ["x"]
|
| 323 |
+
G.add_edge("x", "x", weight=33)
|
| 324 |
+
G.add_edge("x", "x", weight=33)
|
| 325 |
+
assert nx.spectral_ordering(G) == ["x"]
|
| 326 |
+
|
| 327 |
+
def test_unrecognized_method(self):
|
| 328 |
+
G = nx.path_graph(4)
|
| 329 |
+
pytest.raises(nx.NetworkXError, nx.spectral_ordering, G, method="unknown")
|
| 330 |
+
|
| 331 |
+
@pytest.mark.parametrize("method", methods)
|
| 332 |
+
def test_three_nodes(self, method):
|
| 333 |
+
pytest.importorskip("scipy")
|
| 334 |
+
G = nx.Graph()
|
| 335 |
+
G.add_weighted_edges_from([(1, 2, 1), (1, 3, 2), (2, 3, 1)], weight="spam")
|
| 336 |
+
order = nx.spectral_ordering(G, weight="spam", method=method)
|
| 337 |
+
assert set(order) == set(G)
|
| 338 |
+
assert {1, 3} in (set(order[:-1]), set(order[1:]))
|
| 339 |
+
|
| 340 |
+
@pytest.mark.parametrize("method", methods)
|
| 341 |
+
def test_three_nodes_multigraph(self, method):
|
| 342 |
+
pytest.importorskip("scipy")
|
| 343 |
+
G = nx.MultiDiGraph()
|
| 344 |
+
G.add_weighted_edges_from([(1, 2, 1), (1, 3, 2), (2, 3, 1), (2, 3, 2)])
|
| 345 |
+
order = nx.spectral_ordering(G, method=method)
|
| 346 |
+
assert set(order) == set(G)
|
| 347 |
+
assert {2, 3} in (set(order[:-1]), set(order[1:]))
|
| 348 |
+
|
| 349 |
+
@pytest.mark.parametrize("method", methods)
|
| 350 |
+
def test_path(self, method):
|
| 351 |
+
pytest.importorskip("scipy")
|
| 352 |
+
path = list(range(10))
|
| 353 |
+
np.random.shuffle(path)
|
| 354 |
+
G = nx.Graph()
|
| 355 |
+
nx.add_path(G, path)
|
| 356 |
+
order = nx.spectral_ordering(G, method=method)
|
| 357 |
+
assert order in [path, list(reversed(path))]
|
| 358 |
+
|
| 359 |
+
@pytest.mark.parametrize("method", methods)
|
| 360 |
+
def test_seed_argument(self, method):
|
| 361 |
+
pytest.importorskip("scipy")
|
| 362 |
+
path = list(range(10))
|
| 363 |
+
np.random.shuffle(path)
|
| 364 |
+
G = nx.Graph()
|
| 365 |
+
nx.add_path(G, path)
|
| 366 |
+
order = nx.spectral_ordering(G, method=method, seed=1)
|
| 367 |
+
assert order in [path, list(reversed(path))]
|
| 368 |
+
|
| 369 |
+
@pytest.mark.parametrize("method", methods)
|
| 370 |
+
def test_disconnected(self, method):
|
| 371 |
+
pytest.importorskip("scipy")
|
| 372 |
+
G = nx.Graph()
|
| 373 |
+
nx.add_path(G, range(0, 10, 2))
|
| 374 |
+
nx.add_path(G, range(1, 10, 2))
|
| 375 |
+
order = nx.spectral_ordering(G, method=method)
|
| 376 |
+
assert set(order) == set(G)
|
| 377 |
+
seqs = [
|
| 378 |
+
list(range(0, 10, 2)),
|
| 379 |
+
list(range(8, -1, -2)),
|
| 380 |
+
list(range(1, 10, 2)),
|
| 381 |
+
list(range(9, -1, -2)),
|
| 382 |
+
]
|
| 383 |
+
assert order[:5] in seqs
|
| 384 |
+
assert order[5:] in seqs
|
| 385 |
+
|
| 386 |
+
@pytest.mark.parametrize(
|
| 387 |
+
("normalized", "expected_order"),
|
| 388 |
+
(
|
| 389 |
+
(False, [[1, 2, 0, 3, 4, 5, 6, 9, 7, 8], [8, 7, 9, 6, 5, 4, 3, 0, 2, 1]]),
|
| 390 |
+
(True, [[1, 2, 3, 0, 4, 5, 9, 6, 7, 8], [8, 7, 6, 9, 5, 4, 0, 3, 2, 1]]),
|
| 391 |
+
),
|
| 392 |
+
)
|
| 393 |
+
@pytest.mark.parametrize("method", methods)
|
| 394 |
+
def test_cycle(self, normalized, expected_order, method):
|
| 395 |
+
pytest.importorskip("scipy")
|
| 396 |
+
path = list(range(10))
|
| 397 |
+
G = nx.Graph()
|
| 398 |
+
nx.add_path(G, path, weight=5)
|
| 399 |
+
G.add_edge(path[-1], path[0], weight=1)
|
| 400 |
+
A = nx.laplacian_matrix(G).todense()
|
| 401 |
+
order = nx.spectral_ordering(G, normalized=normalized, method=method)
|
| 402 |
+
assert order in expected_order
|
minigpt2/lib/python3.10/site-packages/networkx/linalg/tests/test_attrmatrix.py
ADDED
|
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pytest
|
| 2 |
+
|
| 3 |
+
np = pytest.importorskip("numpy")
|
| 4 |
+
|
| 5 |
+
import networkx as nx
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def test_attr_matrix():
|
| 9 |
+
G = nx.Graph()
|
| 10 |
+
G.add_edge(0, 1, thickness=1, weight=3)
|
| 11 |
+
G.add_edge(0, 1, thickness=1, weight=3)
|
| 12 |
+
G.add_edge(0, 2, thickness=2)
|
| 13 |
+
G.add_edge(1, 2, thickness=3)
|
| 14 |
+
|
| 15 |
+
def node_attr(u):
|
| 16 |
+
return G.nodes[u].get("size", 0.5) * 3
|
| 17 |
+
|
| 18 |
+
def edge_attr(u, v):
|
| 19 |
+
return G[u][v].get("thickness", 0.5)
|
| 20 |
+
|
| 21 |
+
M = nx.attr_matrix(G, edge_attr=edge_attr, node_attr=node_attr)
|
| 22 |
+
np.testing.assert_equal(M[0], np.array([[6.0]]))
|
| 23 |
+
assert M[1] == [1.5]
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def test_attr_matrix_directed():
|
| 27 |
+
G = nx.DiGraph()
|
| 28 |
+
G.add_edge(0, 1, thickness=1, weight=3)
|
| 29 |
+
G.add_edge(0, 1, thickness=1, weight=3)
|
| 30 |
+
G.add_edge(0, 2, thickness=2)
|
| 31 |
+
G.add_edge(1, 2, thickness=3)
|
| 32 |
+
M = nx.attr_matrix(G, rc_order=[0, 1, 2])
|
| 33 |
+
# fmt: off
|
| 34 |
+
data = np.array(
|
| 35 |
+
[[0., 1., 1.],
|
| 36 |
+
[0., 0., 1.],
|
| 37 |
+
[0., 0., 0.]]
|
| 38 |
+
)
|
| 39 |
+
# fmt: on
|
| 40 |
+
np.testing.assert_equal(M, np.array(data))
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def test_attr_matrix_multigraph():
|
| 44 |
+
G = nx.MultiGraph()
|
| 45 |
+
G.add_edge(0, 1, thickness=1, weight=3)
|
| 46 |
+
G.add_edge(0, 1, thickness=1, weight=3)
|
| 47 |
+
G.add_edge(0, 1, thickness=1, weight=3)
|
| 48 |
+
G.add_edge(0, 2, thickness=2)
|
| 49 |
+
G.add_edge(1, 2, thickness=3)
|
| 50 |
+
M = nx.attr_matrix(G, rc_order=[0, 1, 2])
|
| 51 |
+
# fmt: off
|
| 52 |
+
data = np.array(
|
| 53 |
+
[[0., 3., 1.],
|
| 54 |
+
[3., 0., 1.],
|
| 55 |
+
[1., 1., 0.]]
|
| 56 |
+
)
|
| 57 |
+
# fmt: on
|
| 58 |
+
np.testing.assert_equal(M, np.array(data))
|
| 59 |
+
M = nx.attr_matrix(G, edge_attr="weight", rc_order=[0, 1, 2])
|
| 60 |
+
# fmt: off
|
| 61 |
+
data = np.array(
|
| 62 |
+
[[0., 9., 1.],
|
| 63 |
+
[9., 0., 1.],
|
| 64 |
+
[1., 1., 0.]]
|
| 65 |
+
)
|
| 66 |
+
# fmt: on
|
| 67 |
+
np.testing.assert_equal(M, np.array(data))
|
| 68 |
+
M = nx.attr_matrix(G, edge_attr="thickness", rc_order=[0, 1, 2])
|
| 69 |
+
# fmt: off
|
| 70 |
+
data = np.array(
|
| 71 |
+
[[0., 3., 2.],
|
| 72 |
+
[3., 0., 3.],
|
| 73 |
+
[2., 3., 0.]]
|
| 74 |
+
)
|
| 75 |
+
# fmt: on
|
| 76 |
+
np.testing.assert_equal(M, np.array(data))
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def test_attr_sparse_matrix():
|
| 80 |
+
pytest.importorskip("scipy")
|
| 81 |
+
G = nx.Graph()
|
| 82 |
+
G.add_edge(0, 1, thickness=1, weight=3)
|
| 83 |
+
G.add_edge(0, 2, thickness=2)
|
| 84 |
+
G.add_edge(1, 2, thickness=3)
|
| 85 |
+
M = nx.attr_sparse_matrix(G)
|
| 86 |
+
mtx = M[0]
|
| 87 |
+
data = np.ones((3, 3), float)
|
| 88 |
+
np.fill_diagonal(data, 0)
|
| 89 |
+
np.testing.assert_equal(mtx.todense(), np.array(data))
|
| 90 |
+
assert M[1] == [0, 1, 2]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def test_attr_sparse_matrix_directed():
|
| 94 |
+
pytest.importorskip("scipy")
|
| 95 |
+
G = nx.DiGraph()
|
| 96 |
+
G.add_edge(0, 1, thickness=1, weight=3)
|
| 97 |
+
G.add_edge(0, 1, thickness=1, weight=3)
|
| 98 |
+
G.add_edge(0, 2, thickness=2)
|
| 99 |
+
G.add_edge(1, 2, thickness=3)
|
| 100 |
+
M = nx.attr_sparse_matrix(G, rc_order=[0, 1, 2])
|
| 101 |
+
# fmt: off
|
| 102 |
+
data = np.array(
|
| 103 |
+
[[0., 1., 1.],
|
| 104 |
+
[0., 0., 1.],
|
| 105 |
+
[0., 0., 0.]]
|
| 106 |
+
)
|
| 107 |
+
# fmt: on
|
| 108 |
+
np.testing.assert_equal(M.todense(), np.array(data))
|