ZTWHHH commited on
Commit
9e778eb
·
verified ·
1 Parent(s): 64255ae

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/__init__.py +5 -0
  2. minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/__pycache__/__init__.cpython-310.pyc +0 -0
  3. minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/__pycache__/connectivity.cpython-310.pyc +0 -0
  4. minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/__pycache__/correlation.cpython-310.pyc +0 -0
  5. minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/__pycache__/mixing.cpython-310.pyc +0 -0
  6. minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/__pycache__/neighbor_degree.cpython-310.pyc +0 -0
  7. minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/__pycache__/pairs.cpython-310.pyc +0 -0
  8. minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/connectivity.py +122 -0
  9. minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/correlation.py +302 -0
  10. minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/mixing.py +255 -0
  11. minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/neighbor_degree.py +160 -0
  12. minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/pairs.py +127 -0
  13. minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/__init__.py +0 -0
  14. minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  15. minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/__pycache__/base_test.cpython-310.pyc +0 -0
  16. minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/__pycache__/test_connectivity.cpython-310.pyc +0 -0
  17. minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/__pycache__/test_correlation.cpython-310.pyc +0 -0
  18. minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/__pycache__/test_mixing.cpython-310.pyc +0 -0
  19. minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/__pycache__/test_neighbor_degree.cpython-310.pyc +0 -0
  20. minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/__pycache__/test_pairs.cpython-310.pyc +0 -0
  21. minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/base_test.py +81 -0
  22. minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/test_connectivity.py +143 -0
  23. minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/test_correlation.py +123 -0
  24. minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/test_mixing.py +176 -0
  25. minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/test_neighbor_degree.py +108 -0
  26. minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/test_pairs.py +87 -0
  27. minigpt2/lib/python3.10/site-packages/networkx/algorithms/coloring/__init__.py +4 -0
  28. minigpt2/lib/python3.10/site-packages/networkx/algorithms/coloring/__pycache__/__init__.cpython-310.pyc +0 -0
  29. minigpt2/lib/python3.10/site-packages/networkx/algorithms/coloring/__pycache__/equitable_coloring.cpython-310.pyc +0 -0
  30. minigpt2/lib/python3.10/site-packages/networkx/algorithms/coloring/__pycache__/greedy_coloring.cpython-310.pyc +0 -0
  31. minigpt2/lib/python3.10/site-packages/networkx/algorithms/coloring/equitable_coloring.py +505 -0
  32. minigpt2/lib/python3.10/site-packages/networkx/algorithms/coloring/greedy_coloring.py +565 -0
  33. minigpt2/lib/python3.10/site-packages/networkx/algorithms/coloring/tests/__init__.py +0 -0
  34. minigpt2/lib/python3.10/site-packages/networkx/algorithms/coloring/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  35. minigpt2/lib/python3.10/site-packages/networkx/algorithms/coloring/tests/__pycache__/test_coloring.cpython-310.pyc +0 -0
  36. minigpt2/lib/python3.10/site-packages/networkx/algorithms/coloring/tests/test_coloring.py +863 -0
  37. minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/__init__.py +6 -0
  38. minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/attracting.py +115 -0
  39. minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/semiconnected.py +71 -0
  40. minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/weakly_connected.py +197 -0
  41. minigpt2/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/__init__.cpython-310.pyc +0 -0
  42. minigpt2/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/connectivity.cpython-310.pyc +0 -0
  43. minigpt2/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/cuts.cpython-310.pyc +0 -0
  44. minigpt2/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/disjoint_paths.cpython-310.pyc +0 -0
  45. minigpt2/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/edge_augmentation.cpython-310.pyc +0 -0
  46. minigpt2/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/edge_kcomponents.cpython-310.pyc +0 -0
  47. minigpt2/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/kcomponents.cpython-310.pyc +0 -0
  48. minigpt2/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/kcutsets.cpython-310.pyc +0 -0
  49. minigpt2/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/stoerwagner.cpython-310.pyc +0 -0
  50. minigpt2/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/utils.cpython-310.pyc +0 -0
minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ from networkx.algorithms.assortativity.connectivity import *
2
+ from networkx.algorithms.assortativity.correlation import *
3
+ from networkx.algorithms.assortativity.mixing import *
4
+ from networkx.algorithms.assortativity.neighbor_degree import *
5
+ from networkx.algorithms.assortativity.pairs import *
minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (471 Bytes). View file
 
minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/__pycache__/connectivity.cpython-310.pyc ADDED
Binary file (4.02 kB). View file
 
minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/__pycache__/correlation.cpython-310.pyc ADDED
Binary file (9.26 kB). View file
 
minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/__pycache__/mixing.cpython-310.pyc ADDED
Binary file (7.59 kB). View file
 
minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/__pycache__/neighbor_degree.cpython-310.pyc ADDED
Binary file (4.7 kB). View file
 
minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/__pycache__/pairs.cpython-310.pyc ADDED
Binary file (3.88 kB). View file
 
minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/connectivity.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import defaultdict
2
+
3
+ import networkx as nx
4
+
5
+ __all__ = ["average_degree_connectivity"]
6
+
7
+
8
+ @nx._dispatchable(edge_attrs="weight")
9
+ def average_degree_connectivity(
10
+ G, source="in+out", target="in+out", nodes=None, weight=None
11
+ ):
12
+ r"""Compute the average degree connectivity of graph.
13
+
14
+ The average degree connectivity is the average nearest neighbor degree of
15
+ nodes with degree k. For weighted graphs, an analogous measure can
16
+ be computed using the weighted average neighbors degree defined in
17
+ [1]_, for a node `i`, as
18
+
19
+ .. math::
20
+
21
+ k_{nn,i}^{w} = \frac{1}{s_i} \sum_{j \in N(i)} w_{ij} k_j
22
+
23
+ where `s_i` is the weighted degree of node `i`,
24
+ `w_{ij}` is the weight of the edge that links `i` and `j`,
25
+ and `N(i)` are the neighbors of node `i`.
26
+
27
+ Parameters
28
+ ----------
29
+ G : NetworkX graph
30
+
31
+ source : "in"|"out"|"in+out" (default:"in+out")
32
+ Directed graphs only. Use "in"- or "out"-degree for source node.
33
+
34
+ target : "in"|"out"|"in+out" (default:"in+out"
35
+ Directed graphs only. Use "in"- or "out"-degree for target node.
36
+
37
+ nodes : list or iterable (optional)
38
+ Compute neighbor connectivity for these nodes. The default is all
39
+ nodes.
40
+
41
+ weight : string or None, optional (default=None)
42
+ The edge attribute that holds the numerical value used as a weight.
43
+ If None, then each edge has weight 1.
44
+
45
+ Returns
46
+ -------
47
+ d : dict
48
+ A dictionary keyed by degree k with the value of average connectivity.
49
+
50
+ Raises
51
+ ------
52
+ NetworkXError
53
+ If either `source` or `target` are not one of 'in',
54
+ 'out', or 'in+out'.
55
+ If either `source` or `target` is passed for an undirected graph.
56
+
57
+ Examples
58
+ --------
59
+ >>> G = nx.path_graph(4)
60
+ >>> G.edges[1, 2]["weight"] = 3
61
+ >>> nx.average_degree_connectivity(G)
62
+ {1: 2.0, 2: 1.5}
63
+ >>> nx.average_degree_connectivity(G, weight="weight")
64
+ {1: 2.0, 2: 1.75}
65
+
66
+ See Also
67
+ --------
68
+ average_neighbor_degree
69
+
70
+ References
71
+ ----------
72
+ .. [1] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani,
73
+ "The architecture of complex weighted networks".
74
+ PNAS 101 (11): 3747–3752 (2004).
75
+ """
76
+ # First, determine the type of neighbors and the type of degree to use.
77
+ if G.is_directed():
78
+ if source not in ("in", "out", "in+out"):
79
+ raise nx.NetworkXError('source must be one of "in", "out", or "in+out"')
80
+ if target not in ("in", "out", "in+out"):
81
+ raise nx.NetworkXError('target must be one of "in", "out", or "in+out"')
82
+ direction = {"out": G.out_degree, "in": G.in_degree, "in+out": G.degree}
83
+ neighbor_funcs = {
84
+ "out": G.successors,
85
+ "in": G.predecessors,
86
+ "in+out": G.neighbors,
87
+ }
88
+ source_degree = direction[source]
89
+ target_degree = direction[target]
90
+ neighbors = neighbor_funcs[source]
91
+ # `reverse` indicates whether to look at the in-edge when
92
+ # computing the weight of an edge.
93
+ reverse = source == "in"
94
+ else:
95
+ if source != "in+out" or target != "in+out":
96
+ raise nx.NetworkXError(
97
+ f"source and target arguments are only supported for directed graphs"
98
+ )
99
+ source_degree = G.degree
100
+ target_degree = G.degree
101
+ neighbors = G.neighbors
102
+ reverse = False
103
+ dsum = defaultdict(int)
104
+ dnorm = defaultdict(int)
105
+ # Check if `source_nodes` is actually a single node in the graph.
106
+ source_nodes = source_degree(nodes)
107
+ if nodes in G:
108
+ source_nodes = [(nodes, source_degree(nodes))]
109
+ for n, k in source_nodes:
110
+ nbrdeg = target_degree(neighbors(n))
111
+ if weight is None:
112
+ s = sum(d for n, d in nbrdeg)
113
+ else: # weight nbr degree by weight of (n,nbr) edge
114
+ if reverse:
115
+ s = sum(G[nbr][n].get(weight, 1) * d for nbr, d in nbrdeg)
116
+ else:
117
+ s = sum(G[n][nbr].get(weight, 1) * d for nbr, d in nbrdeg)
118
+ dnorm[k] += source_degree(n, weight=weight)
119
+ dsum[k] += s
120
+
121
+ # normalize
122
+ return {k: avg if dnorm[k] == 0 else avg / dnorm[k] for k, avg in dsum.items()}
minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/correlation.py ADDED
@@ -0,0 +1,302 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Node assortativity coefficients and correlation measures."""
2
+
3
+ import networkx as nx
4
+ from networkx.algorithms.assortativity.mixing import (
5
+ attribute_mixing_matrix,
6
+ degree_mixing_matrix,
7
+ )
8
+ from networkx.algorithms.assortativity.pairs import node_degree_xy
9
+
10
+ __all__ = [
11
+ "degree_pearson_correlation_coefficient",
12
+ "degree_assortativity_coefficient",
13
+ "attribute_assortativity_coefficient",
14
+ "numeric_assortativity_coefficient",
15
+ ]
16
+
17
+
18
+ @nx._dispatchable(edge_attrs="weight")
19
+ def degree_assortativity_coefficient(G, x="out", y="in", weight=None, nodes=None):
20
+ """Compute degree assortativity of graph.
21
+
22
+ Assortativity measures the similarity of connections
23
+ in the graph with respect to the node degree.
24
+
25
+ Parameters
26
+ ----------
27
+ G : NetworkX graph
28
+
29
+ x: string ('in','out')
30
+ The degree type for source node (directed graphs only).
31
+
32
+ y: string ('in','out')
33
+ The degree type for target node (directed graphs only).
34
+
35
+ weight: string or None, optional (default=None)
36
+ The edge attribute that holds the numerical value used
37
+ as a weight. If None, then each edge has weight 1.
38
+ The degree is the sum of the edge weights adjacent to the node.
39
+
40
+ nodes: list or iterable (optional)
41
+ Compute degree assortativity only for nodes in container.
42
+ The default is all nodes.
43
+
44
+ Returns
45
+ -------
46
+ r : float
47
+ Assortativity of graph by degree.
48
+
49
+ Examples
50
+ --------
51
+ >>> G = nx.path_graph(4)
52
+ >>> r = nx.degree_assortativity_coefficient(G)
53
+ >>> print(f"{r:3.1f}")
54
+ -0.5
55
+
56
+ See Also
57
+ --------
58
+ attribute_assortativity_coefficient
59
+ numeric_assortativity_coefficient
60
+ degree_mixing_dict
61
+ degree_mixing_matrix
62
+
63
+ Notes
64
+ -----
65
+ This computes Eq. (21) in Ref. [1]_ , where e is the joint
66
+ probability distribution (mixing matrix) of the degrees. If G is
67
+ directed than the matrix e is the joint probability of the
68
+ user-specified degree type for the source and target.
69
+
70
+ References
71
+ ----------
72
+ .. [1] M. E. J. Newman, Mixing patterns in networks,
73
+ Physical Review E, 67 026126, 2003
74
+ .. [2] Foster, J.G., Foster, D.V., Grassberger, P. & Paczuski, M.
75
+ Edge direction and the structure of networks, PNAS 107, 10815-20 (2010).
76
+ """
77
+ if nodes is None:
78
+ nodes = G.nodes
79
+
80
+ degrees = None
81
+
82
+ if G.is_directed():
83
+ indeg = (
84
+ {d for _, d in G.in_degree(nodes, weight=weight)}
85
+ if "in" in (x, y)
86
+ else set()
87
+ )
88
+ outdeg = (
89
+ {d for _, d in G.out_degree(nodes, weight=weight)}
90
+ if "out" in (x, y)
91
+ else set()
92
+ )
93
+ degrees = set.union(indeg, outdeg)
94
+ else:
95
+ degrees = {d for _, d in G.degree(nodes, weight=weight)}
96
+
97
+ mapping = {d: i for i, d in enumerate(degrees)}
98
+ M = degree_mixing_matrix(G, x=x, y=y, nodes=nodes, weight=weight, mapping=mapping)
99
+
100
+ return _numeric_ac(M, mapping=mapping)
101
+
102
+
103
+ @nx._dispatchable(edge_attrs="weight")
104
+ def degree_pearson_correlation_coefficient(G, x="out", y="in", weight=None, nodes=None):
105
+ """Compute degree assortativity of graph.
106
+
107
+ Assortativity measures the similarity of connections
108
+ in the graph with respect to the node degree.
109
+
110
+ This is the same as degree_assortativity_coefficient but uses the
111
+ potentially faster scipy.stats.pearsonr function.
112
+
113
+ Parameters
114
+ ----------
115
+ G : NetworkX graph
116
+
117
+ x: string ('in','out')
118
+ The degree type for source node (directed graphs only).
119
+
120
+ y: string ('in','out')
121
+ The degree type for target node (directed graphs only).
122
+
123
+ weight: string or None, optional (default=None)
124
+ The edge attribute that holds the numerical value used
125
+ as a weight. If None, then each edge has weight 1.
126
+ The degree is the sum of the edge weights adjacent to the node.
127
+
128
+ nodes: list or iterable (optional)
129
+ Compute pearson correlation of degrees only for specified nodes.
130
+ The default is all nodes.
131
+
132
+ Returns
133
+ -------
134
+ r : float
135
+ Assortativity of graph by degree.
136
+
137
+ Examples
138
+ --------
139
+ >>> G = nx.path_graph(4)
140
+ >>> r = nx.degree_pearson_correlation_coefficient(G)
141
+ >>> print(f"{r:3.1f}")
142
+ -0.5
143
+
144
+ Notes
145
+ -----
146
+ This calls scipy.stats.pearsonr.
147
+
148
+ References
149
+ ----------
150
+ .. [1] M. E. J. Newman, Mixing patterns in networks
151
+ Physical Review E, 67 026126, 2003
152
+ .. [2] Foster, J.G., Foster, D.V., Grassberger, P. & Paczuski, M.
153
+ Edge direction and the structure of networks, PNAS 107, 10815-20 (2010).
154
+ """
155
+ import scipy as sp
156
+
157
+ xy = node_degree_xy(G, x=x, y=y, nodes=nodes, weight=weight)
158
+ x, y = zip(*xy)
159
+ return float(sp.stats.pearsonr(x, y)[0])
160
+
161
+
162
+ @nx._dispatchable(node_attrs="attribute")
163
+ def attribute_assortativity_coefficient(G, attribute, nodes=None):
164
+ """Compute assortativity for node attributes.
165
+
166
+ Assortativity measures the similarity of connections
167
+ in the graph with respect to the given attribute.
168
+
169
+ Parameters
170
+ ----------
171
+ G : NetworkX graph
172
+
173
+ attribute : string
174
+ Node attribute key
175
+
176
+ nodes: list or iterable (optional)
177
+ Compute attribute assortativity for nodes in container.
178
+ The default is all nodes.
179
+
180
+ Returns
181
+ -------
182
+ r: float
183
+ Assortativity of graph for given attribute
184
+
185
+ Examples
186
+ --------
187
+ >>> G = nx.Graph()
188
+ >>> G.add_nodes_from([0, 1], color="red")
189
+ >>> G.add_nodes_from([2, 3], color="blue")
190
+ >>> G.add_edges_from([(0, 1), (2, 3)])
191
+ >>> print(nx.attribute_assortativity_coefficient(G, "color"))
192
+ 1.0
193
+
194
+ Notes
195
+ -----
196
+ This computes Eq. (2) in Ref. [1]_ , (trace(M)-sum(M^2))/(1-sum(M^2)),
197
+ where M is the joint probability distribution (mixing matrix)
198
+ of the specified attribute.
199
+
200
+ References
201
+ ----------
202
+ .. [1] M. E. J. Newman, Mixing patterns in networks,
203
+ Physical Review E, 67 026126, 2003
204
+ """
205
+ M = attribute_mixing_matrix(G, attribute, nodes)
206
+ return attribute_ac(M)
207
+
208
+
209
+ @nx._dispatchable(node_attrs="attribute")
210
+ def numeric_assortativity_coefficient(G, attribute, nodes=None):
211
+ """Compute assortativity for numerical node attributes.
212
+
213
+ Assortativity measures the similarity of connections
214
+ in the graph with respect to the given numeric attribute.
215
+
216
+ Parameters
217
+ ----------
218
+ G : NetworkX graph
219
+
220
+ attribute : string
221
+ Node attribute key.
222
+
223
+ nodes: list or iterable (optional)
224
+ Compute numeric assortativity only for attributes of nodes in
225
+ container. The default is all nodes.
226
+
227
+ Returns
228
+ -------
229
+ r: float
230
+ Assortativity of graph for given attribute
231
+
232
+ Examples
233
+ --------
234
+ >>> G = nx.Graph()
235
+ >>> G.add_nodes_from([0, 1], size=2)
236
+ >>> G.add_nodes_from([2, 3], size=3)
237
+ >>> G.add_edges_from([(0, 1), (2, 3)])
238
+ >>> print(nx.numeric_assortativity_coefficient(G, "size"))
239
+ 1.0
240
+
241
+ Notes
242
+ -----
243
+ This computes Eq. (21) in Ref. [1]_ , which is the Pearson correlation
244
+ coefficient of the specified (scalar valued) attribute across edges.
245
+
246
+ References
247
+ ----------
248
+ .. [1] M. E. J. Newman, Mixing patterns in networks
249
+ Physical Review E, 67 026126, 2003
250
+ """
251
+ if nodes is None:
252
+ nodes = G.nodes
253
+ vals = {G.nodes[n][attribute] for n in nodes}
254
+ mapping = {d: i for i, d in enumerate(vals)}
255
+ M = attribute_mixing_matrix(G, attribute, nodes, mapping)
256
+ return _numeric_ac(M, mapping)
257
+
258
+
259
+ def attribute_ac(M):
260
+ """Compute assortativity for attribute matrix M.
261
+
262
+ Parameters
263
+ ----------
264
+ M : numpy.ndarray
265
+ 2D ndarray representing the attribute mixing matrix.
266
+
267
+ Notes
268
+ -----
269
+ This computes Eq. (2) in Ref. [1]_ , (trace(e)-sum(e^2))/(1-sum(e^2)),
270
+ where e is the joint probability distribution (mixing matrix)
271
+ of the specified attribute.
272
+
273
+ References
274
+ ----------
275
+ .. [1] M. E. J. Newman, Mixing patterns in networks,
276
+ Physical Review E, 67 026126, 2003
277
+ """
278
+ if M.sum() != 1.0:
279
+ M = M / M.sum()
280
+ s = (M @ M).sum()
281
+ t = M.trace()
282
+ r = (t - s) / (1 - s)
283
+ return float(r)
284
+
285
+
286
+ def _numeric_ac(M, mapping):
287
+ # M is a 2D numpy array
288
+ # numeric assortativity coefficient, pearsonr
289
+ import numpy as np
290
+
291
+ if M.sum() != 1.0:
292
+ M = M / M.sum()
293
+ x = np.array(list(mapping.keys()))
294
+ y = x # x and y have the same support
295
+ idx = list(mapping.values())
296
+ a = M.sum(axis=0)
297
+ b = M.sum(axis=1)
298
+ vara = (a[idx] * x**2).sum() - ((a[idx] * x).sum()) ** 2
299
+ varb = (b[idx] * y**2).sum() - ((b[idx] * y).sum()) ** 2
300
+ xy = np.outer(x, y)
301
+ ab = np.outer(a[idx], b[idx])
302
+ return float((xy * (M - ab)).sum() / np.sqrt(vara * varb))
minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/mixing.py ADDED
@@ -0,0 +1,255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Mixing matrices for node attributes and degree.
3
+ """
4
+
5
+ import networkx as nx
6
+ from networkx.algorithms.assortativity.pairs import node_attribute_xy, node_degree_xy
7
+ from networkx.utils import dict_to_numpy_array
8
+
9
+ __all__ = [
10
+ "attribute_mixing_matrix",
11
+ "attribute_mixing_dict",
12
+ "degree_mixing_matrix",
13
+ "degree_mixing_dict",
14
+ "mixing_dict",
15
+ ]
16
+
17
+
18
+ @nx._dispatchable(node_attrs="attribute")
19
+ def attribute_mixing_dict(G, attribute, nodes=None, normalized=False):
20
+ """Returns dictionary representation of mixing matrix for attribute.
21
+
22
+ Parameters
23
+ ----------
24
+ G : graph
25
+ NetworkX graph object.
26
+
27
+ attribute : string
28
+ Node attribute key.
29
+
30
+ nodes: list or iterable (optional)
31
+ Unse nodes in container to build the dict. The default is all nodes.
32
+
33
+ normalized : bool (default=False)
34
+ Return counts if False or probabilities if True.
35
+
36
+ Examples
37
+ --------
38
+ >>> G = nx.Graph()
39
+ >>> G.add_nodes_from([0, 1], color="red")
40
+ >>> G.add_nodes_from([2, 3], color="blue")
41
+ >>> G.add_edge(1, 3)
42
+ >>> d = nx.attribute_mixing_dict(G, "color")
43
+ >>> print(d["red"]["blue"])
44
+ 1
45
+ >>> print(d["blue"]["red"]) # d symmetric for undirected graphs
46
+ 1
47
+
48
+ Returns
49
+ -------
50
+ d : dictionary
51
+ Counts or joint probability of occurrence of attribute pairs.
52
+ """
53
+ xy_iter = node_attribute_xy(G, attribute, nodes)
54
+ return mixing_dict(xy_iter, normalized=normalized)
55
+
56
+
57
+ @nx._dispatchable(node_attrs="attribute")
58
+ def attribute_mixing_matrix(G, attribute, nodes=None, mapping=None, normalized=True):
59
+ """Returns mixing matrix for attribute.
60
+
61
+ Parameters
62
+ ----------
63
+ G : graph
64
+ NetworkX graph object.
65
+
66
+ attribute : string
67
+ Node attribute key.
68
+
69
+ nodes: list or iterable (optional)
70
+ Use only nodes in container to build the matrix. The default is
71
+ all nodes.
72
+
73
+ mapping : dictionary, optional
74
+ Mapping from node attribute to integer index in matrix.
75
+ If not specified, an arbitrary ordering will be used.
76
+
77
+ normalized : bool (default=True)
78
+ Return counts if False or probabilities if True.
79
+
80
+ Returns
81
+ -------
82
+ m: numpy array
83
+ Counts or joint probability of occurrence of attribute pairs.
84
+
85
+ Notes
86
+ -----
87
+ If each node has a unique attribute value, the unnormalized mixing matrix
88
+ will be equal to the adjacency matrix. To get a denser mixing matrix,
89
+ the rounding can be performed to form groups of nodes with equal values.
90
+ For example, the exact height of persons in cm (180.79155222, 163.9080892,
91
+ 163.30095355, 167.99016217, 168.21590163, ...) can be rounded to (180, 163,
92
+ 163, 168, 168, ...).
93
+
94
+ Definitions of attribute mixing matrix vary on whether the matrix
95
+ should include rows for attribute values that don't arise. Here we
96
+ do not include such empty-rows. But you can force them to appear
97
+ by inputting a `mapping` that includes those values.
98
+
99
+ Examples
100
+ --------
101
+ >>> G = nx.path_graph(3)
102
+ >>> gender = {0: "male", 1: "female", 2: "female"}
103
+ >>> nx.set_node_attributes(G, gender, "gender")
104
+ >>> mapping = {"male": 0, "female": 1}
105
+ >>> mix_mat = nx.attribute_mixing_matrix(G, "gender", mapping=mapping)
106
+ >>> mix_mat
107
+ array([[0. , 0.25],
108
+ [0.25, 0.5 ]])
109
+ """
110
+ d = attribute_mixing_dict(G, attribute, nodes)
111
+ a = dict_to_numpy_array(d, mapping=mapping)
112
+ if normalized:
113
+ a = a / a.sum()
114
+ return a
115
+
116
+
117
+ @nx._dispatchable(edge_attrs="weight")
118
+ def degree_mixing_dict(G, x="out", y="in", weight=None, nodes=None, normalized=False):
119
+ """Returns dictionary representation of mixing matrix for degree.
120
+
121
+ Parameters
122
+ ----------
123
+ G : graph
124
+ NetworkX graph object.
125
+
126
+ x: string ('in','out')
127
+ The degree type for source node (directed graphs only).
128
+
129
+ y: string ('in','out')
130
+ The degree type for target node (directed graphs only).
131
+
132
+ weight: string or None, optional (default=None)
133
+ The edge attribute that holds the numerical value used
134
+ as a weight. If None, then each edge has weight 1.
135
+ The degree is the sum of the edge weights adjacent to the node.
136
+
137
+ normalized : bool (default=False)
138
+ Return counts if False or probabilities if True.
139
+
140
+ Returns
141
+ -------
142
+ d: dictionary
143
+ Counts or joint probability of occurrence of degree pairs.
144
+ """
145
+ xy_iter = node_degree_xy(G, x=x, y=y, nodes=nodes, weight=weight)
146
+ return mixing_dict(xy_iter, normalized=normalized)
147
+
148
+
149
+ @nx._dispatchable(edge_attrs="weight")
150
+ def degree_mixing_matrix(
151
+ G, x="out", y="in", weight=None, nodes=None, normalized=True, mapping=None
152
+ ):
153
+ """Returns mixing matrix for attribute.
154
+
155
+ Parameters
156
+ ----------
157
+ G : graph
158
+ NetworkX graph object.
159
+
160
+ x: string ('in','out')
161
+ The degree type for source node (directed graphs only).
162
+
163
+ y: string ('in','out')
164
+ The degree type for target node (directed graphs only).
165
+
166
+ nodes: list or iterable (optional)
167
+ Build the matrix using only nodes in container.
168
+ The default is all nodes.
169
+
170
+ weight: string or None, optional (default=None)
171
+ The edge attribute that holds the numerical value used
172
+ as a weight. If None, then each edge has weight 1.
173
+ The degree is the sum of the edge weights adjacent to the node.
174
+
175
+ normalized : bool (default=True)
176
+ Return counts if False or probabilities if True.
177
+
178
+ mapping : dictionary, optional
179
+ Mapping from node degree to integer index in matrix.
180
+ If not specified, an arbitrary ordering will be used.
181
+
182
+ Returns
183
+ -------
184
+ m: numpy array
185
+ Counts, or joint probability, of occurrence of node degree.
186
+
187
+ Notes
188
+ -----
189
+ Definitions of degree mixing matrix vary on whether the matrix
190
+ should include rows for degree values that don't arise. Here we
191
+ do not include such empty-rows. But you can force them to appear
192
+ by inputting a `mapping` that includes those values. See examples.
193
+
194
+ Examples
195
+ --------
196
+ >>> G = nx.star_graph(3)
197
+ >>> mix_mat = nx.degree_mixing_matrix(G)
198
+ >>> mix_mat
199
+ array([[0. , 0.5],
200
+ [0.5, 0. ]])
201
+
202
+ If you want every possible degree to appear as a row, even if no nodes
203
+ have that degree, use `mapping` as follows,
204
+
205
+ >>> max_degree = max(deg for n, deg in G.degree)
206
+ >>> mapping = {x: x for x in range(max_degree + 1)} # identity mapping
207
+ >>> mix_mat = nx.degree_mixing_matrix(G, mapping=mapping)
208
+ >>> mix_mat
209
+ array([[0. , 0. , 0. , 0. ],
210
+ [0. , 0. , 0. , 0.5],
211
+ [0. , 0. , 0. , 0. ],
212
+ [0. , 0.5, 0. , 0. ]])
213
+ """
214
+ d = degree_mixing_dict(G, x=x, y=y, nodes=nodes, weight=weight)
215
+ a = dict_to_numpy_array(d, mapping=mapping)
216
+ if normalized:
217
+ a = a / a.sum()
218
+ return a
219
+
220
+
221
+ def mixing_dict(xy, normalized=False):
222
+ """Returns a dictionary representation of mixing matrix.
223
+
224
+ Parameters
225
+ ----------
226
+ xy : list or container of two-tuples
227
+ Pairs of (x,y) items.
228
+
229
+ attribute : string
230
+ Node attribute key
231
+
232
+ normalized : bool (default=False)
233
+ Return counts if False or probabilities if True.
234
+
235
+ Returns
236
+ -------
237
+ d: dictionary
238
+ Counts or Joint probability of occurrence of values in xy.
239
+ """
240
+ d = {}
241
+ psum = 0.0
242
+ for x, y in xy:
243
+ if x not in d:
244
+ d[x] = {}
245
+ if y not in d:
246
+ d[y] = {}
247
+ v = d[x].get(y, 0)
248
+ d[x][y] = v + 1
249
+ psum += 1
250
+
251
+ if normalized:
252
+ for _, jdict in d.items():
253
+ for j in jdict:
254
+ jdict[j] /= psum
255
+ return d
minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/neighbor_degree.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import networkx as nx
2
+
3
+ __all__ = ["average_neighbor_degree"]
4
+
5
+
6
+ @nx._dispatchable(edge_attrs="weight")
7
+ def average_neighbor_degree(G, source="out", target="out", nodes=None, weight=None):
8
+ r"""Returns the average degree of the neighborhood of each node.
9
+
10
+ In an undirected graph, the neighborhood `N(i)` of node `i` contains the
11
+ nodes that are connected to `i` by an edge.
12
+
13
+ For directed graphs, `N(i)` is defined according to the parameter `source`:
14
+
15
+ - if source is 'in', then `N(i)` consists of predecessors of node `i`.
16
+ - if source is 'out', then `N(i)` consists of successors of node `i`.
17
+ - if source is 'in+out', then `N(i)` is both predecessors and successors.
18
+
19
+ The average neighborhood degree of a node `i` is
20
+
21
+ .. math::
22
+
23
+ k_{nn,i} = \frac{1}{|N(i)|} \sum_{j \in N(i)} k_j
24
+
25
+ where `N(i)` are the neighbors of node `i` and `k_j` is
26
+ the degree of node `j` which belongs to `N(i)`. For weighted
27
+ graphs, an analogous measure can be defined [1]_,
28
+
29
+ .. math::
30
+
31
+ k_{nn,i}^{w} = \frac{1}{s_i} \sum_{j \in N(i)} w_{ij} k_j
32
+
33
+ where `s_i` is the weighted degree of node `i`, `w_{ij}`
34
+ is the weight of the edge that links `i` and `j` and
35
+ `N(i)` are the neighbors of node `i`.
36
+
37
+
38
+ Parameters
39
+ ----------
40
+ G : NetworkX graph
41
+
42
+ source : string ("in"|"out"|"in+out"), optional (default="out")
43
+ Directed graphs only.
44
+ Use "in"- or "out"-neighbors of source node.
45
+
46
+ target : string ("in"|"out"|"in+out"), optional (default="out")
47
+ Directed graphs only.
48
+ Use "in"- or "out"-degree for target node.
49
+
50
+ nodes : list or iterable, optional (default=G.nodes)
51
+ Compute neighbor degree only for specified nodes.
52
+
53
+ weight : string or None, optional (default=None)
54
+ The edge attribute that holds the numerical value used as a weight.
55
+ If None, then each edge has weight 1.
56
+
57
+ Returns
58
+ -------
59
+ d: dict
60
+ A dictionary keyed by node to the average degree of its neighbors.
61
+
62
+ Raises
63
+ ------
64
+ NetworkXError
65
+ If either `source` or `target` are not one of 'in', 'out', or 'in+out'.
66
+ If either `source` or `target` is passed for an undirected graph.
67
+
68
+ Examples
69
+ --------
70
+ >>> G = nx.path_graph(4)
71
+ >>> G.edges[0, 1]["weight"] = 5
72
+ >>> G.edges[2, 3]["weight"] = 3
73
+
74
+ >>> nx.average_neighbor_degree(G)
75
+ {0: 2.0, 1: 1.5, 2: 1.5, 3: 2.0}
76
+ >>> nx.average_neighbor_degree(G, weight="weight")
77
+ {0: 2.0, 1: 1.1666666666666667, 2: 1.25, 3: 2.0}
78
+
79
+ >>> G = nx.DiGraph()
80
+ >>> nx.add_path(G, [0, 1, 2, 3])
81
+ >>> nx.average_neighbor_degree(G, source="in", target="in")
82
+ {0: 0.0, 1: 0.0, 2: 1.0, 3: 1.0}
83
+
84
+ >>> nx.average_neighbor_degree(G, source="out", target="out")
85
+ {0: 1.0, 1: 1.0, 2: 0.0, 3: 0.0}
86
+
87
+ See Also
88
+ --------
89
+ average_degree_connectivity
90
+
91
+ References
92
+ ----------
93
+ .. [1] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani,
94
+ "The architecture of complex weighted networks".
95
+ PNAS 101 (11): 3747–3752 (2004).
96
+ """
97
+ if G.is_directed():
98
+ if source == "in":
99
+ source_degree = G.in_degree
100
+ elif source == "out":
101
+ source_degree = G.out_degree
102
+ elif source == "in+out":
103
+ source_degree = G.degree
104
+ else:
105
+ raise nx.NetworkXError(
106
+ f"source argument {source} must be 'in', 'out' or 'in+out'"
107
+ )
108
+
109
+ if target == "in":
110
+ target_degree = G.in_degree
111
+ elif target == "out":
112
+ target_degree = G.out_degree
113
+ elif target == "in+out":
114
+ target_degree = G.degree
115
+ else:
116
+ raise nx.NetworkXError(
117
+ f"target argument {target} must be 'in', 'out' or 'in+out'"
118
+ )
119
+ else:
120
+ if source != "out" or target != "out":
121
+ raise nx.NetworkXError(
122
+ f"source and target arguments are only supported for directed graphs"
123
+ )
124
+ source_degree = target_degree = G.degree
125
+
126
+ # precompute target degrees -- should *not* be weighted degree
127
+ t_deg = dict(target_degree())
128
+
129
+ # Set up both predecessor and successor neighbor dicts leaving empty if not needed
130
+ G_P = G_S = {n: {} for n in G}
131
+ if G.is_directed():
132
+ # "in" or "in+out" cases: G_P contains predecessors
133
+ if "in" in source:
134
+ G_P = G.pred
135
+ # "out" or "in+out" cases: G_S contains successors
136
+ if "out" in source:
137
+ G_S = G.succ
138
+ else:
139
+ # undirected leave G_P empty but G_S is the adjacency
140
+ G_S = G.adj
141
+
142
+ # Main loop: Compute average degree of neighbors
143
+ avg = {}
144
+ for n, deg in source_degree(nodes, weight=weight):
145
+ # handle degree zero average
146
+ if deg == 0:
147
+ avg[n] = 0.0
148
+ continue
149
+
150
+ # we sum over both G_P and G_S, but one of the two is usually empty.
151
+ if weight is None:
152
+ avg[n] = (
153
+ sum(t_deg[nbr] for nbr in G_S[n]) + sum(t_deg[nbr] for nbr in G_P[n])
154
+ ) / deg
155
+ else:
156
+ avg[n] = (
157
+ sum(dd.get(weight, 1) * t_deg[nbr] for nbr, dd in G_S[n].items())
158
+ + sum(dd.get(weight, 1) * t_deg[nbr] for nbr, dd in G_P[n].items())
159
+ ) / deg
160
+ return avg
minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/pairs.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Generators of x-y pairs of node data."""
2
+
3
+ import networkx as nx
4
+
5
+ __all__ = ["node_attribute_xy", "node_degree_xy"]
6
+
7
+
8
+ @nx._dispatchable(node_attrs="attribute")
9
+ def node_attribute_xy(G, attribute, nodes=None):
10
+ """Yields 2-tuples of node attribute values for all edges in `G`.
11
+
12
+ This generator yields, for each edge in `G` incident to a node in `nodes`,
13
+ a 2-tuple of form ``(attribute value, attribute value)`` for the parameter
14
+ specified node-attribute.
15
+
16
+ Parameters
17
+ ----------
18
+ G: NetworkX graph
19
+
20
+ attribute: key
21
+ The node attribute key.
22
+
23
+ nodes: list or iterable (optional)
24
+ Use only edges that are incident to specified nodes.
25
+ The default is all nodes.
26
+
27
+ Yields
28
+ ------
29
+ (x, y): 2-tuple
30
+ Generates 2-tuple of (attribute, attribute) values.
31
+
32
+ Examples
33
+ --------
34
+ >>> G = nx.DiGraph()
35
+ >>> G.add_node(1, color="red")
36
+ >>> G.add_node(2, color="blue")
37
+ >>> G.add_node(3, color="green")
38
+ >>> G.add_edge(1, 2)
39
+ >>> list(nx.node_attribute_xy(G, "color"))
40
+ [('red', 'blue')]
41
+
42
+ Notes
43
+ -----
44
+ For undirected graphs, each edge is produced twice, once for each edge
45
+ representation (u, v) and (v, u), with the exception of self-loop edges
46
+ which only appear once.
47
+ """
48
+ if nodes is None:
49
+ nodes = set(G)
50
+ else:
51
+ nodes = set(nodes)
52
+ Gnodes = G.nodes
53
+ for u, nbrsdict in G.adjacency():
54
+ if u not in nodes:
55
+ continue
56
+ uattr = Gnodes[u].get(attribute, None)
57
+ if G.is_multigraph():
58
+ for v, keys in nbrsdict.items():
59
+ vattr = Gnodes[v].get(attribute, None)
60
+ for _ in keys:
61
+ yield (uattr, vattr)
62
+ else:
63
+ for v in nbrsdict:
64
+ vattr = Gnodes[v].get(attribute, None)
65
+ yield (uattr, vattr)
66
+
67
+
68
+ @nx._dispatchable(edge_attrs="weight")
69
+ def node_degree_xy(G, x="out", y="in", weight=None, nodes=None):
70
+ """Yields 2-tuples of ``(degree, degree)`` values for edges in `G`.
71
+
72
+ This generator yields, for each edge in `G` incident to a node in `nodes`,
73
+ a 2-tuple of form ``(degree, degree)``. The node degrees are weighted
74
+ when a `weight` attribute is specified.
75
+
76
+ Parameters
77
+ ----------
78
+ G: NetworkX graph
79
+
80
+ x: string ('in','out')
81
+ The degree type for source node (directed graphs only).
82
+
83
+ y: string ('in','out')
84
+ The degree type for target node (directed graphs only).
85
+
86
+ weight: string or None, optional (default=None)
87
+ The edge attribute that holds the numerical value used
88
+ as a weight. If None, then each edge has weight 1.
89
+ The degree is the sum of the edge weights adjacent to the node.
90
+
91
+ nodes: list or iterable (optional)
92
+ Use only edges that are adjacency to specified nodes.
93
+ The default is all nodes.
94
+
95
+ Yields
96
+ ------
97
+ (x, y): 2-tuple
98
+ Generates 2-tuple of (degree, degree) values.
99
+
100
+ Examples
101
+ --------
102
+ >>> G = nx.DiGraph()
103
+ >>> G.add_edge(1, 2)
104
+ >>> list(nx.node_degree_xy(G, x="out", y="in"))
105
+ [(1, 1)]
106
+ >>> list(nx.node_degree_xy(G, x="in", y="out"))
107
+ [(0, 0)]
108
+
109
+ Notes
110
+ -----
111
+ For undirected graphs, each edge is produced twice, once for each edge
112
+ representation (u, v) and (v, u), with the exception of self-loop edges
113
+ which only appear once.
114
+ """
115
+ nodes = set(G) if nodes is None else set(nodes)
116
+ if G.is_directed():
117
+ direction = {"out": G.out_degree, "in": G.in_degree}
118
+ xdeg = direction[x]
119
+ ydeg = direction[y]
120
+ else:
121
+ xdeg = ydeg = G.degree
122
+
123
+ for u, degu in xdeg(nodes, weight=weight):
124
+ # use G.edges to treat multigraphs correctly
125
+ neighbors = (nbr for _, nbr in G.edges(u) if nbr in nodes)
126
+ for _, degv in ydeg(neighbors, weight=weight):
127
+ yield degu, degv
minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/__init__.py ADDED
File without changes
minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (193 Bytes). View file
 
minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/__pycache__/base_test.cpython-310.pyc ADDED
Binary file (2.47 kB). View file
 
minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/__pycache__/test_connectivity.cpython-310.pyc ADDED
Binary file (4.4 kB). View file
 
minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/__pycache__/test_correlation.cpython-310.pyc ADDED
Binary file (7.08 kB). View file
 
minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/__pycache__/test_mixing.cpython-310.pyc ADDED
Binary file (7.58 kB). View file
 
minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/__pycache__/test_neighbor_degree.cpython-310.pyc ADDED
Binary file (3.49 kB). View file
 
minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/__pycache__/test_pairs.cpython-310.pyc ADDED
Binary file (3.68 kB). View file
 
minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/base_test.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import networkx as nx
2
+
3
+
4
+ class BaseTestAttributeMixing:
5
+ @classmethod
6
+ def setup_class(cls):
7
+ G = nx.Graph()
8
+ G.add_nodes_from([0, 1], fish="one")
9
+ G.add_nodes_from([2, 3], fish="two")
10
+ G.add_nodes_from([4], fish="red")
11
+ G.add_nodes_from([5], fish="blue")
12
+ G.add_edges_from([(0, 1), (2, 3), (0, 4), (2, 5)])
13
+ cls.G = G
14
+
15
+ D = nx.DiGraph()
16
+ D.add_nodes_from([0, 1], fish="one")
17
+ D.add_nodes_from([2, 3], fish="two")
18
+ D.add_nodes_from([4], fish="red")
19
+ D.add_nodes_from([5], fish="blue")
20
+ D.add_edges_from([(0, 1), (2, 3), (0, 4), (2, 5)])
21
+ cls.D = D
22
+
23
+ M = nx.MultiGraph()
24
+ M.add_nodes_from([0, 1], fish="one")
25
+ M.add_nodes_from([2, 3], fish="two")
26
+ M.add_nodes_from([4], fish="red")
27
+ M.add_nodes_from([5], fish="blue")
28
+ M.add_edges_from([(0, 1), (0, 1), (2, 3)])
29
+ cls.M = M
30
+
31
+ S = nx.Graph()
32
+ S.add_nodes_from([0, 1], fish="one")
33
+ S.add_nodes_from([2, 3], fish="two")
34
+ S.add_nodes_from([4], fish="red")
35
+ S.add_nodes_from([5], fish="blue")
36
+ S.add_edge(0, 0)
37
+ S.add_edge(2, 2)
38
+ cls.S = S
39
+
40
+ N = nx.Graph()
41
+ N.add_nodes_from([0, 1], margin=-2)
42
+ N.add_nodes_from([2, 3], margin=-2)
43
+ N.add_nodes_from([4], margin=-3)
44
+ N.add_nodes_from([5], margin=-4)
45
+ N.add_edges_from([(0, 1), (2, 3), (0, 4), (2, 5)])
46
+ cls.N = N
47
+
48
+ F = nx.Graph()
49
+ F.add_edges_from([(0, 3), (1, 3), (2, 3)], weight=0.5)
50
+ F.add_edge(0, 2, weight=1)
51
+ nx.set_node_attributes(F, dict(F.degree(weight="weight")), "margin")
52
+ cls.F = F
53
+
54
+ K = nx.Graph()
55
+ K.add_nodes_from([1, 2], margin=-1)
56
+ K.add_nodes_from([3], margin=1)
57
+ K.add_nodes_from([4], margin=2)
58
+ K.add_edges_from([(3, 4), (1, 2), (1, 3)])
59
+ cls.K = K
60
+
61
+
62
+ class BaseTestDegreeMixing:
63
+ @classmethod
64
+ def setup_class(cls):
65
+ cls.P4 = nx.path_graph(4)
66
+ cls.D = nx.DiGraph()
67
+ cls.D.add_edges_from([(0, 2), (0, 3), (1, 3), (2, 3)])
68
+ cls.D2 = nx.DiGraph()
69
+ cls.D2.add_edges_from([(0, 3), (1, 0), (1, 2), (2, 4), (4, 1), (4, 3), (4, 2)])
70
+ cls.M = nx.MultiGraph()
71
+ nx.add_path(cls.M, range(4))
72
+ cls.M.add_edge(0, 1)
73
+ cls.S = nx.Graph()
74
+ cls.S.add_edges_from([(0, 0), (1, 1)])
75
+ cls.W = nx.Graph()
76
+ cls.W.add_edges_from([(0, 3), (1, 3), (2, 3)], weight=0.5)
77
+ cls.W.add_edge(0, 2, weight=1)
78
+ S1 = nx.star_graph(4)
79
+ S2 = nx.star_graph(4)
80
+ cls.DS = nx.disjoint_union(S1, S2)
81
+ cls.DS.add_edge(4, 5)
minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/test_connectivity.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from itertools import permutations
2
+
3
+ import pytest
4
+
5
+ import networkx as nx
6
+
7
+
8
+ class TestNeighborConnectivity:
9
+ def test_degree_p4(self):
10
+ G = nx.path_graph(4)
11
+ answer = {1: 2.0, 2: 1.5}
12
+ nd = nx.average_degree_connectivity(G)
13
+ assert nd == answer
14
+
15
+ D = G.to_directed()
16
+ answer = {2: 2.0, 4: 1.5}
17
+ nd = nx.average_degree_connectivity(D)
18
+ assert nd == answer
19
+
20
+ answer = {1: 2.0, 2: 1.5}
21
+ D = G.to_directed()
22
+ nd = nx.average_degree_connectivity(D, source="in", target="in")
23
+ assert nd == answer
24
+
25
+ D = G.to_directed()
26
+ nd = nx.average_degree_connectivity(D, source="in", target="in")
27
+ assert nd == answer
28
+
29
+ def test_degree_p4_weighted(self):
30
+ G = nx.path_graph(4)
31
+ G[1][2]["weight"] = 4
32
+ answer = {1: 2.0, 2: 1.8}
33
+ nd = nx.average_degree_connectivity(G, weight="weight")
34
+ assert nd == answer
35
+ answer = {1: 2.0, 2: 1.5}
36
+ nd = nx.average_degree_connectivity(G)
37
+ assert nd == answer
38
+
39
+ D = G.to_directed()
40
+ answer = {2: 2.0, 4: 1.8}
41
+ nd = nx.average_degree_connectivity(D, weight="weight")
42
+ assert nd == answer
43
+
44
+ answer = {1: 2.0, 2: 1.8}
45
+ D = G.to_directed()
46
+ nd = nx.average_degree_connectivity(
47
+ D, weight="weight", source="in", target="in"
48
+ )
49
+ assert nd == answer
50
+
51
+ D = G.to_directed()
52
+ nd = nx.average_degree_connectivity(
53
+ D, source="in", target="out", weight="weight"
54
+ )
55
+ assert nd == answer
56
+
57
+ def test_weight_keyword(self):
58
+ G = nx.path_graph(4)
59
+ G[1][2]["other"] = 4
60
+ answer = {1: 2.0, 2: 1.8}
61
+ nd = nx.average_degree_connectivity(G, weight="other")
62
+ assert nd == answer
63
+ answer = {1: 2.0, 2: 1.5}
64
+ nd = nx.average_degree_connectivity(G, weight=None)
65
+ assert nd == answer
66
+
67
+ D = G.to_directed()
68
+ answer = {2: 2.0, 4: 1.8}
69
+ nd = nx.average_degree_connectivity(D, weight="other")
70
+ assert nd == answer
71
+
72
+ answer = {1: 2.0, 2: 1.8}
73
+ D = G.to_directed()
74
+ nd = nx.average_degree_connectivity(D, weight="other", source="in", target="in")
75
+ assert nd == answer
76
+
77
+ D = G.to_directed()
78
+ nd = nx.average_degree_connectivity(D, weight="other", source="in", target="in")
79
+ assert nd == answer
80
+
81
+ def test_degree_barrat(self):
82
+ G = nx.star_graph(5)
83
+ G.add_edges_from([(5, 6), (5, 7), (5, 8), (5, 9)])
84
+ G[0][5]["weight"] = 5
85
+ nd = nx.average_degree_connectivity(G)[5]
86
+ assert nd == 1.8
87
+ nd = nx.average_degree_connectivity(G, weight="weight")[5]
88
+ assert nd == pytest.approx(3.222222, abs=1e-5)
89
+
90
+ def test_zero_deg(self):
91
+ G = nx.DiGraph()
92
+ G.add_edge(1, 2)
93
+ G.add_edge(1, 3)
94
+ G.add_edge(1, 4)
95
+ c = nx.average_degree_connectivity(G)
96
+ assert c == {1: 0, 3: 1}
97
+ c = nx.average_degree_connectivity(G, source="in", target="in")
98
+ assert c == {0: 0, 1: 0}
99
+ c = nx.average_degree_connectivity(G, source="in", target="out")
100
+ assert c == {0: 0, 1: 3}
101
+ c = nx.average_degree_connectivity(G, source="in", target="in+out")
102
+ assert c == {0: 0, 1: 3}
103
+ c = nx.average_degree_connectivity(G, source="out", target="out")
104
+ assert c == {0: 0, 3: 0}
105
+ c = nx.average_degree_connectivity(G, source="out", target="in")
106
+ assert c == {0: 0, 3: 1}
107
+ c = nx.average_degree_connectivity(G, source="out", target="in+out")
108
+ assert c == {0: 0, 3: 1}
109
+
110
+ def test_in_out_weight(self):
111
+ G = nx.DiGraph()
112
+ G.add_edge(1, 2, weight=1)
113
+ G.add_edge(1, 3, weight=1)
114
+ G.add_edge(3, 1, weight=1)
115
+ for s, t in permutations(["in", "out", "in+out"], 2):
116
+ c = nx.average_degree_connectivity(G, source=s, target=t)
117
+ cw = nx.average_degree_connectivity(G, source=s, target=t, weight="weight")
118
+ assert c == cw
119
+
120
+ def test_invalid_source(self):
121
+ with pytest.raises(nx.NetworkXError):
122
+ G = nx.DiGraph()
123
+ nx.average_degree_connectivity(G, source="bogus")
124
+
125
+ def test_invalid_target(self):
126
+ with pytest.raises(nx.NetworkXError):
127
+ G = nx.DiGraph()
128
+ nx.average_degree_connectivity(G, target="bogus")
129
+
130
+ def test_invalid_undirected_graph(self):
131
+ G = nx.Graph()
132
+ with pytest.raises(nx.NetworkXError):
133
+ nx.average_degree_connectivity(G, target="bogus")
134
+ with pytest.raises(nx.NetworkXError):
135
+ nx.average_degree_connectivity(G, source="bogus")
136
+
137
+ def test_single_node(self):
138
+ # TODO Is this really the intended behavior for providing a
139
+ # single node as the argument `nodes`? Shouldn't the function
140
+ # just return the connectivity value itself?
141
+ G = nx.trivial_graph()
142
+ conn = nx.average_degree_connectivity(G, nodes=0)
143
+ assert conn == {0: 0}
minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/test_correlation.py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ np = pytest.importorskip("numpy")
4
+ pytest.importorskip("scipy")
5
+
6
+
7
+ import networkx as nx
8
+ from networkx.algorithms.assortativity.correlation import attribute_ac
9
+
10
+ from .base_test import BaseTestAttributeMixing, BaseTestDegreeMixing
11
+
12
+
13
+ class TestDegreeMixingCorrelation(BaseTestDegreeMixing):
14
+ def test_degree_assortativity_undirected(self):
15
+ r = nx.degree_assortativity_coefficient(self.P4)
16
+ np.testing.assert_almost_equal(r, -1.0 / 2, decimal=4)
17
+
18
+ def test_degree_assortativity_node_kwargs(self):
19
+ G = nx.Graph()
20
+ edges = [(0, 1), (0, 3), (1, 2), (1, 3), (1, 4), (5, 9), (9, 0)]
21
+ G.add_edges_from(edges)
22
+ r = nx.degree_assortativity_coefficient(G, nodes=[1, 2, 4])
23
+ np.testing.assert_almost_equal(r, -1.0, decimal=4)
24
+
25
+ def test_degree_assortativity_directed(self):
26
+ r = nx.degree_assortativity_coefficient(self.D)
27
+ np.testing.assert_almost_equal(r, -0.57735, decimal=4)
28
+
29
+ def test_degree_assortativity_directed2(self):
30
+ """Test degree assortativity for a directed graph where the set of
31
+ in/out degree does not equal the total degree."""
32
+ r = nx.degree_assortativity_coefficient(self.D2)
33
+ np.testing.assert_almost_equal(r, 0.14852, decimal=4)
34
+
35
+ def test_degree_assortativity_multigraph(self):
36
+ r = nx.degree_assortativity_coefficient(self.M)
37
+ np.testing.assert_almost_equal(r, -1.0 / 7.0, decimal=4)
38
+
39
+ def test_degree_pearson_assortativity_undirected(self):
40
+ r = nx.degree_pearson_correlation_coefficient(self.P4)
41
+ np.testing.assert_almost_equal(r, -1.0 / 2, decimal=4)
42
+
43
+ def test_degree_pearson_assortativity_directed(self):
44
+ r = nx.degree_pearson_correlation_coefficient(self.D)
45
+ np.testing.assert_almost_equal(r, -0.57735, decimal=4)
46
+
47
+ def test_degree_pearson_assortativity_directed2(self):
48
+ """Test degree assortativity with Pearson for a directed graph where
49
+ the set of in/out degree does not equal the total degree."""
50
+ r = nx.degree_pearson_correlation_coefficient(self.D2)
51
+ np.testing.assert_almost_equal(r, 0.14852, decimal=4)
52
+
53
+ def test_degree_pearson_assortativity_multigraph(self):
54
+ r = nx.degree_pearson_correlation_coefficient(self.M)
55
+ np.testing.assert_almost_equal(r, -1.0 / 7.0, decimal=4)
56
+
57
+ def test_degree_assortativity_weighted(self):
58
+ r = nx.degree_assortativity_coefficient(self.W, weight="weight")
59
+ np.testing.assert_almost_equal(r, -0.1429, decimal=4)
60
+
61
+ def test_degree_assortativity_double_star(self):
62
+ r = nx.degree_assortativity_coefficient(self.DS)
63
+ np.testing.assert_almost_equal(r, -0.9339, decimal=4)
64
+
65
+
66
+ class TestAttributeMixingCorrelation(BaseTestAttributeMixing):
67
+ def test_attribute_assortativity_undirected(self):
68
+ r = nx.attribute_assortativity_coefficient(self.G, "fish")
69
+ assert r == 6.0 / 22.0
70
+
71
+ def test_attribute_assortativity_directed(self):
72
+ r = nx.attribute_assortativity_coefficient(self.D, "fish")
73
+ assert r == 1.0 / 3.0
74
+
75
+ def test_attribute_assortativity_multigraph(self):
76
+ r = nx.attribute_assortativity_coefficient(self.M, "fish")
77
+ assert r == 1.0
78
+
79
+ def test_attribute_assortativity_coefficient(self):
80
+ # from "Mixing patterns in networks"
81
+ # fmt: off
82
+ a = np.array([[0.258, 0.016, 0.035, 0.013],
83
+ [0.012, 0.157, 0.058, 0.019],
84
+ [0.013, 0.023, 0.306, 0.035],
85
+ [0.005, 0.007, 0.024, 0.016]])
86
+ # fmt: on
87
+ r = attribute_ac(a)
88
+ np.testing.assert_almost_equal(r, 0.623, decimal=3)
89
+
90
+ def test_attribute_assortativity_coefficient2(self):
91
+ # fmt: off
92
+ a = np.array([[0.18, 0.02, 0.01, 0.03],
93
+ [0.02, 0.20, 0.03, 0.02],
94
+ [0.01, 0.03, 0.16, 0.01],
95
+ [0.03, 0.02, 0.01, 0.22]])
96
+ # fmt: on
97
+ r = attribute_ac(a)
98
+ np.testing.assert_almost_equal(r, 0.68, decimal=2)
99
+
100
+ def test_attribute_assortativity(self):
101
+ a = np.array([[50, 50, 0], [50, 50, 0], [0, 0, 2]])
102
+ r = attribute_ac(a)
103
+ np.testing.assert_almost_equal(r, 0.029, decimal=3)
104
+
105
+ def test_attribute_assortativity_negative(self):
106
+ r = nx.numeric_assortativity_coefficient(self.N, "margin")
107
+ np.testing.assert_almost_equal(r, -0.2903, decimal=4)
108
+
109
+ def test_assortativity_node_kwargs(self):
110
+ G = nx.Graph()
111
+ G.add_nodes_from([0, 1], size=2)
112
+ G.add_nodes_from([2, 3], size=3)
113
+ G.add_edges_from([(0, 1), (2, 3)])
114
+ r = nx.numeric_assortativity_coefficient(G, "size", nodes=[0, 3])
115
+ np.testing.assert_almost_equal(r, 1.0, decimal=4)
116
+
117
+ def test_attribute_assortativity_float(self):
118
+ r = nx.numeric_assortativity_coefficient(self.F, "margin")
119
+ np.testing.assert_almost_equal(r, -0.1429, decimal=4)
120
+
121
+ def test_attribute_assortativity_mixed(self):
122
+ r = nx.numeric_assortativity_coefficient(self.K, "margin")
123
+ np.testing.assert_almost_equal(r, 0.4340, decimal=4)
minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/test_mixing.py ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ np = pytest.importorskip("numpy")
4
+
5
+
6
+ import networkx as nx
7
+
8
+ from .base_test import BaseTestAttributeMixing, BaseTestDegreeMixing
9
+
10
+
11
+ class TestDegreeMixingDict(BaseTestDegreeMixing):
12
+ def test_degree_mixing_dict_undirected(self):
13
+ d = nx.degree_mixing_dict(self.P4)
14
+ d_result = {1: {2: 2}, 2: {1: 2, 2: 2}}
15
+ assert d == d_result
16
+
17
+ def test_degree_mixing_dict_undirected_normalized(self):
18
+ d = nx.degree_mixing_dict(self.P4, normalized=True)
19
+ d_result = {1: {2: 1.0 / 3}, 2: {1: 1.0 / 3, 2: 1.0 / 3}}
20
+ assert d == d_result
21
+
22
+ def test_degree_mixing_dict_directed(self):
23
+ d = nx.degree_mixing_dict(self.D)
24
+ print(d)
25
+ d_result = {1: {3: 2}, 2: {1: 1, 3: 1}, 3: {}}
26
+ assert d == d_result
27
+
28
+ def test_degree_mixing_dict_multigraph(self):
29
+ d = nx.degree_mixing_dict(self.M)
30
+ d_result = {1: {2: 1}, 2: {1: 1, 3: 3}, 3: {2: 3}}
31
+ assert d == d_result
32
+
33
+ def test_degree_mixing_dict_weighted(self):
34
+ d = nx.degree_mixing_dict(self.W, weight="weight")
35
+ d_result = {0.5: {1.5: 1}, 1.5: {1.5: 6, 0.5: 1}}
36
+ assert d == d_result
37
+
38
+
39
+ class TestDegreeMixingMatrix(BaseTestDegreeMixing):
40
+ def test_degree_mixing_matrix_undirected(self):
41
+ # fmt: off
42
+ a_result = np.array([[0, 2],
43
+ [2, 2]]
44
+ )
45
+ # fmt: on
46
+ a = nx.degree_mixing_matrix(self.P4, normalized=False)
47
+ np.testing.assert_equal(a, a_result)
48
+ a = nx.degree_mixing_matrix(self.P4)
49
+ np.testing.assert_equal(a, a_result / a_result.sum())
50
+
51
+ def test_degree_mixing_matrix_directed(self):
52
+ # fmt: off
53
+ a_result = np.array([[0, 0, 2],
54
+ [1, 0, 1],
55
+ [0, 0, 0]]
56
+ )
57
+ # fmt: on
58
+ a = nx.degree_mixing_matrix(self.D, normalized=False)
59
+ np.testing.assert_equal(a, a_result)
60
+ a = nx.degree_mixing_matrix(self.D)
61
+ np.testing.assert_equal(a, a_result / a_result.sum())
62
+
63
+ def test_degree_mixing_matrix_multigraph(self):
64
+ # fmt: off
65
+ a_result = np.array([[0, 1, 0],
66
+ [1, 0, 3],
67
+ [0, 3, 0]]
68
+ )
69
+ # fmt: on
70
+ a = nx.degree_mixing_matrix(self.M, normalized=False)
71
+ np.testing.assert_equal(a, a_result)
72
+ a = nx.degree_mixing_matrix(self.M)
73
+ np.testing.assert_equal(a, a_result / a_result.sum())
74
+
75
+ def test_degree_mixing_matrix_selfloop(self):
76
+ # fmt: off
77
+ a_result = np.array([[2]])
78
+ # fmt: on
79
+ a = nx.degree_mixing_matrix(self.S, normalized=False)
80
+ np.testing.assert_equal(a, a_result)
81
+ a = nx.degree_mixing_matrix(self.S)
82
+ np.testing.assert_equal(a, a_result / a_result.sum())
83
+
84
+ def test_degree_mixing_matrix_weighted(self):
85
+ a_result = np.array([[0.0, 1.0], [1.0, 6.0]])
86
+ a = nx.degree_mixing_matrix(self.W, weight="weight", normalized=False)
87
+ np.testing.assert_equal(a, a_result)
88
+ a = nx.degree_mixing_matrix(self.W, weight="weight")
89
+ np.testing.assert_equal(a, a_result / float(a_result.sum()))
90
+
91
+ def test_degree_mixing_matrix_mapping(self):
92
+ a_result = np.array([[6.0, 1.0], [1.0, 0.0]])
93
+ mapping = {0.5: 1, 1.5: 0}
94
+ a = nx.degree_mixing_matrix(
95
+ self.W, weight="weight", normalized=False, mapping=mapping
96
+ )
97
+ np.testing.assert_equal(a, a_result)
98
+
99
+
100
+ class TestAttributeMixingDict(BaseTestAttributeMixing):
101
+ def test_attribute_mixing_dict_undirected(self):
102
+ d = nx.attribute_mixing_dict(self.G, "fish")
103
+ d_result = {
104
+ "one": {"one": 2, "red": 1},
105
+ "two": {"two": 2, "blue": 1},
106
+ "red": {"one": 1},
107
+ "blue": {"two": 1},
108
+ }
109
+ assert d == d_result
110
+
111
+ def test_attribute_mixing_dict_directed(self):
112
+ d = nx.attribute_mixing_dict(self.D, "fish")
113
+ d_result = {
114
+ "one": {"one": 1, "red": 1},
115
+ "two": {"two": 1, "blue": 1},
116
+ "red": {},
117
+ "blue": {},
118
+ }
119
+ assert d == d_result
120
+
121
+ def test_attribute_mixing_dict_multigraph(self):
122
+ d = nx.attribute_mixing_dict(self.M, "fish")
123
+ d_result = {"one": {"one": 4}, "two": {"two": 2}}
124
+ assert d == d_result
125
+
126
+
127
+ class TestAttributeMixingMatrix(BaseTestAttributeMixing):
128
+ def test_attribute_mixing_matrix_undirected(self):
129
+ mapping = {"one": 0, "two": 1, "red": 2, "blue": 3}
130
+ a_result = np.array([[2, 0, 1, 0], [0, 2, 0, 1], [1, 0, 0, 0], [0, 1, 0, 0]])
131
+ a = nx.attribute_mixing_matrix(
132
+ self.G, "fish", mapping=mapping, normalized=False
133
+ )
134
+ np.testing.assert_equal(a, a_result)
135
+ a = nx.attribute_mixing_matrix(self.G, "fish", mapping=mapping)
136
+ np.testing.assert_equal(a, a_result / a_result.sum())
137
+
138
+ def test_attribute_mixing_matrix_directed(self):
139
+ mapping = {"one": 0, "two": 1, "red": 2, "blue": 3}
140
+ a_result = np.array([[1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0]])
141
+ a = nx.attribute_mixing_matrix(
142
+ self.D, "fish", mapping=mapping, normalized=False
143
+ )
144
+ np.testing.assert_equal(a, a_result)
145
+ a = nx.attribute_mixing_matrix(self.D, "fish", mapping=mapping)
146
+ np.testing.assert_equal(a, a_result / a_result.sum())
147
+
148
+ def test_attribute_mixing_matrix_multigraph(self):
149
+ mapping = {"one": 0, "two": 1, "red": 2, "blue": 3}
150
+ a_result = np.array([[4, 0, 0, 0], [0, 2, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]])
151
+ a = nx.attribute_mixing_matrix(
152
+ self.M, "fish", mapping=mapping, normalized=False
153
+ )
154
+ np.testing.assert_equal(a, a_result)
155
+ a = nx.attribute_mixing_matrix(self.M, "fish", mapping=mapping)
156
+ np.testing.assert_equal(a, a_result / a_result.sum())
157
+
158
+ def test_attribute_mixing_matrix_negative(self):
159
+ mapping = {-2: 0, -3: 1, -4: 2}
160
+ a_result = np.array([[4.0, 1.0, 1.0], [1.0, 0.0, 0.0], [1.0, 0.0, 0.0]])
161
+ a = nx.attribute_mixing_matrix(
162
+ self.N, "margin", mapping=mapping, normalized=False
163
+ )
164
+ np.testing.assert_equal(a, a_result)
165
+ a = nx.attribute_mixing_matrix(self.N, "margin", mapping=mapping)
166
+ np.testing.assert_equal(a, a_result / float(a_result.sum()))
167
+
168
+ def test_attribute_mixing_matrix_float(self):
169
+ mapping = {0.5: 1, 1.5: 0}
170
+ a_result = np.array([[6.0, 1.0], [1.0, 0.0]])
171
+ a = nx.attribute_mixing_matrix(
172
+ self.F, "margin", mapping=mapping, normalized=False
173
+ )
174
+ np.testing.assert_equal(a, a_result)
175
+ a = nx.attribute_mixing_matrix(self.F, "margin", mapping=mapping)
176
+ np.testing.assert_equal(a, a_result / a_result.sum())
minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/test_neighbor_degree.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import networkx as nx
4
+
5
+
6
+ class TestAverageNeighbor:
7
+ def test_degree_p4(self):
8
+ G = nx.path_graph(4)
9
+ answer = {0: 2, 1: 1.5, 2: 1.5, 3: 2}
10
+ nd = nx.average_neighbor_degree(G)
11
+ assert nd == answer
12
+
13
+ D = G.to_directed()
14
+ nd = nx.average_neighbor_degree(D)
15
+ assert nd == answer
16
+
17
+ D = nx.DiGraph(G.edges(data=True))
18
+ nd = nx.average_neighbor_degree(D)
19
+ assert nd == {0: 1, 1: 1, 2: 0, 3: 0}
20
+ nd = nx.average_neighbor_degree(D, "in", "out")
21
+ assert nd == {0: 0, 1: 1, 2: 1, 3: 1}
22
+ nd = nx.average_neighbor_degree(D, "out", "in")
23
+ assert nd == {0: 1, 1: 1, 2: 1, 3: 0}
24
+ nd = nx.average_neighbor_degree(D, "in", "in")
25
+ assert nd == {0: 0, 1: 0, 2: 1, 3: 1}
26
+
27
+ def test_degree_p4_weighted(self):
28
+ G = nx.path_graph(4)
29
+ G[1][2]["weight"] = 4
30
+ answer = {0: 2, 1: 1.8, 2: 1.8, 3: 2}
31
+ nd = nx.average_neighbor_degree(G, weight="weight")
32
+ assert nd == answer
33
+
34
+ D = G.to_directed()
35
+ nd = nx.average_neighbor_degree(D, weight="weight")
36
+ assert nd == answer
37
+
38
+ D = nx.DiGraph(G.edges(data=True))
39
+ print(D.edges(data=True))
40
+ nd = nx.average_neighbor_degree(D, weight="weight")
41
+ assert nd == {0: 1, 1: 1, 2: 0, 3: 0}
42
+ nd = nx.average_neighbor_degree(D, "out", "out", weight="weight")
43
+ assert nd == {0: 1, 1: 1, 2: 0, 3: 0}
44
+ nd = nx.average_neighbor_degree(D, "in", "in", weight="weight")
45
+ assert nd == {0: 0, 1: 0, 2: 1, 3: 1}
46
+ nd = nx.average_neighbor_degree(D, "in", "out", weight="weight")
47
+ assert nd == {0: 0, 1: 1, 2: 1, 3: 1}
48
+ nd = nx.average_neighbor_degree(D, "out", "in", weight="weight")
49
+ assert nd == {0: 1, 1: 1, 2: 1, 3: 0}
50
+ nd = nx.average_neighbor_degree(D, source="in+out", weight="weight")
51
+ assert nd == {0: 1.0, 1: 1.0, 2: 0.8, 3: 1.0}
52
+ nd = nx.average_neighbor_degree(D, target="in+out", weight="weight")
53
+ assert nd == {0: 2.0, 1: 2.0, 2: 1.0, 3: 0.0}
54
+
55
+ D = G.to_directed()
56
+ nd = nx.average_neighbor_degree(D, weight="weight")
57
+ assert nd == answer
58
+ nd = nx.average_neighbor_degree(D, source="out", target="out", weight="weight")
59
+ assert nd == answer
60
+
61
+ D = G.to_directed()
62
+ nd = nx.average_neighbor_degree(D, source="in", target="in", weight="weight")
63
+ assert nd == answer
64
+
65
+ def test_degree_k4(self):
66
+ G = nx.complete_graph(4)
67
+ answer = {0: 3, 1: 3, 2: 3, 3: 3}
68
+ nd = nx.average_neighbor_degree(G)
69
+ assert nd == answer
70
+
71
+ D = G.to_directed()
72
+ nd = nx.average_neighbor_degree(D)
73
+ assert nd == answer
74
+
75
+ D = G.to_directed()
76
+ nd = nx.average_neighbor_degree(D)
77
+ assert nd == answer
78
+
79
+ D = G.to_directed()
80
+ nd = nx.average_neighbor_degree(D, source="in", target="in")
81
+ assert nd == answer
82
+
83
+ def test_degree_k4_nodes(self):
84
+ G = nx.complete_graph(4)
85
+ answer = {1: 3.0, 2: 3.0}
86
+ nd = nx.average_neighbor_degree(G, nodes=[1, 2])
87
+ assert nd == answer
88
+
89
+ def test_degree_barrat(self):
90
+ G = nx.star_graph(5)
91
+ G.add_edges_from([(5, 6), (5, 7), (5, 8), (5, 9)])
92
+ G[0][5]["weight"] = 5
93
+ nd = nx.average_neighbor_degree(G)[5]
94
+ assert nd == 1.8
95
+ nd = nx.average_neighbor_degree(G, weight="weight")[5]
96
+ assert nd == pytest.approx(3.222222, abs=1e-5)
97
+
98
+ def test_error_invalid_source_target(self):
99
+ G = nx.path_graph(4)
100
+ with pytest.raises(nx.NetworkXError):
101
+ nx.average_neighbor_degree(G, "error")
102
+ with pytest.raises(nx.NetworkXError):
103
+ nx.average_neighbor_degree(G, "in", "error")
104
+ G = G.to_directed()
105
+ with pytest.raises(nx.NetworkXError):
106
+ nx.average_neighbor_degree(G, "error")
107
+ with pytest.raises(nx.NetworkXError):
108
+ nx.average_neighbor_degree(G, "in", "error")
minigpt2/lib/python3.10/site-packages/networkx/algorithms/assortativity/tests/test_pairs.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import networkx as nx
2
+
3
+ from .base_test import BaseTestAttributeMixing, BaseTestDegreeMixing
4
+
5
+
6
+ class TestAttributeMixingXY(BaseTestAttributeMixing):
7
+ def test_node_attribute_xy_undirected(self):
8
+ attrxy = sorted(nx.node_attribute_xy(self.G, "fish"))
9
+ attrxy_result = sorted(
10
+ [
11
+ ("one", "one"),
12
+ ("one", "one"),
13
+ ("two", "two"),
14
+ ("two", "two"),
15
+ ("one", "red"),
16
+ ("red", "one"),
17
+ ("blue", "two"),
18
+ ("two", "blue"),
19
+ ]
20
+ )
21
+ assert attrxy == attrxy_result
22
+
23
+ def test_node_attribute_xy_undirected_nodes(self):
24
+ attrxy = sorted(nx.node_attribute_xy(self.G, "fish", nodes=["one", "yellow"]))
25
+ attrxy_result = sorted([])
26
+ assert attrxy == attrxy_result
27
+
28
+ def test_node_attribute_xy_directed(self):
29
+ attrxy = sorted(nx.node_attribute_xy(self.D, "fish"))
30
+ attrxy_result = sorted(
31
+ [("one", "one"), ("two", "two"), ("one", "red"), ("two", "blue")]
32
+ )
33
+ assert attrxy == attrxy_result
34
+
35
+ def test_node_attribute_xy_multigraph(self):
36
+ attrxy = sorted(nx.node_attribute_xy(self.M, "fish"))
37
+ attrxy_result = [
38
+ ("one", "one"),
39
+ ("one", "one"),
40
+ ("one", "one"),
41
+ ("one", "one"),
42
+ ("two", "two"),
43
+ ("two", "two"),
44
+ ]
45
+ assert attrxy == attrxy_result
46
+
47
+ def test_node_attribute_xy_selfloop(self):
48
+ attrxy = sorted(nx.node_attribute_xy(self.S, "fish"))
49
+ attrxy_result = [("one", "one"), ("two", "two")]
50
+ assert attrxy == attrxy_result
51
+
52
+
53
+ class TestDegreeMixingXY(BaseTestDegreeMixing):
54
+ def test_node_degree_xy_undirected(self):
55
+ xy = sorted(nx.node_degree_xy(self.P4))
56
+ xy_result = sorted([(1, 2), (2, 1), (2, 2), (2, 2), (1, 2), (2, 1)])
57
+ assert xy == xy_result
58
+
59
+ def test_node_degree_xy_undirected_nodes(self):
60
+ xy = sorted(nx.node_degree_xy(self.P4, nodes=[0, 1, -1]))
61
+ xy_result = sorted([(1, 2), (2, 1)])
62
+ assert xy == xy_result
63
+
64
+ def test_node_degree_xy_directed(self):
65
+ xy = sorted(nx.node_degree_xy(self.D))
66
+ xy_result = sorted([(2, 1), (2, 3), (1, 3), (1, 3)])
67
+ assert xy == xy_result
68
+
69
+ def test_node_degree_xy_multigraph(self):
70
+ xy = sorted(nx.node_degree_xy(self.M))
71
+ xy_result = sorted(
72
+ [(2, 3), (2, 3), (3, 2), (3, 2), (2, 3), (3, 2), (1, 2), (2, 1)]
73
+ )
74
+ assert xy == xy_result
75
+
76
+ def test_node_degree_xy_selfloop(self):
77
+ xy = sorted(nx.node_degree_xy(self.S))
78
+ xy_result = sorted([(2, 2), (2, 2)])
79
+ assert xy == xy_result
80
+
81
+ def test_node_degree_xy_weighted(self):
82
+ G = nx.Graph()
83
+ G.add_edge(1, 2, weight=7)
84
+ G.add_edge(2, 3, weight=10)
85
+ xy = sorted(nx.node_degree_xy(G, weight="weight"))
86
+ xy_result = sorted([(7, 17), (17, 10), (17, 7), (10, 17)])
87
+ assert xy == xy_result
minigpt2/lib/python3.10/site-packages/networkx/algorithms/coloring/__init__.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ from networkx.algorithms.coloring.greedy_coloring import *
2
+ from networkx.algorithms.coloring.equitable_coloring import equitable_color
3
+
4
+ __all__ = ["greedy_color", "equitable_color"]
minigpt2/lib/python3.10/site-packages/networkx/algorithms/coloring/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (368 Bytes). View file
 
minigpt2/lib/python3.10/site-packages/networkx/algorithms/coloring/__pycache__/equitable_coloring.cpython-310.pyc ADDED
Binary file (10.4 kB). View file
 
minigpt2/lib/python3.10/site-packages/networkx/algorithms/coloring/__pycache__/greedy_coloring.cpython-310.pyc ADDED
Binary file (16.6 kB). View file
 
minigpt2/lib/python3.10/site-packages/networkx/algorithms/coloring/equitable_coloring.py ADDED
@@ -0,0 +1,505 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Equitable coloring of graphs with bounded degree.
3
+ """
4
+
5
+ from collections import defaultdict
6
+
7
+ import networkx as nx
8
+
9
+ __all__ = ["equitable_color"]
10
+
11
+
12
+ @nx._dispatchable
13
+ def is_coloring(G, coloring):
14
+ """Determine if the coloring is a valid coloring for the graph G."""
15
+ # Verify that the coloring is valid.
16
+ return all(coloring[s] != coloring[d] for s, d in G.edges)
17
+
18
+
19
+ @nx._dispatchable
20
+ def is_equitable(G, coloring, num_colors=None):
21
+ """Determines if the coloring is valid and equitable for the graph G."""
22
+
23
+ if not is_coloring(G, coloring):
24
+ return False
25
+
26
+ # Verify whether it is equitable.
27
+ color_set_size = defaultdict(int)
28
+ for color in coloring.values():
29
+ color_set_size[color] += 1
30
+
31
+ if num_colors is not None:
32
+ for color in range(num_colors):
33
+ if color not in color_set_size:
34
+ # These colors do not have any vertices attached to them.
35
+ color_set_size[color] = 0
36
+
37
+ # If there are more than 2 distinct values, the coloring cannot be equitable
38
+ all_set_sizes = set(color_set_size.values())
39
+ if len(all_set_sizes) == 0 and num_colors is None: # Was an empty graph
40
+ return True
41
+ elif len(all_set_sizes) == 1:
42
+ return True
43
+ elif len(all_set_sizes) == 2:
44
+ a, b = list(all_set_sizes)
45
+ return abs(a - b) <= 1
46
+ else: # len(all_set_sizes) > 2:
47
+ return False
48
+
49
+
50
+ def make_C_from_F(F):
51
+ C = defaultdict(list)
52
+ for node, color in F.items():
53
+ C[color].append(node)
54
+
55
+ return C
56
+
57
+
58
+ def make_N_from_L_C(L, C):
59
+ nodes = L.keys()
60
+ colors = C.keys()
61
+ return {
62
+ (node, color): sum(1 for v in L[node] if v in C[color])
63
+ for node in nodes
64
+ for color in colors
65
+ }
66
+
67
+
68
+ def make_H_from_C_N(C, N):
69
+ return {
70
+ (c1, c2): sum(1 for node in C[c1] if N[(node, c2)] == 0) for c1 in C for c2 in C
71
+ }
72
+
73
+
74
+ def change_color(u, X, Y, N, H, F, C, L):
75
+ """Change the color of 'u' from X to Y and update N, H, F, C."""
76
+ assert F[u] == X and X != Y
77
+
78
+ # Change the class of 'u' from X to Y
79
+ F[u] = Y
80
+
81
+ for k in C:
82
+ # 'u' witnesses an edge from k -> Y instead of from k -> X now.
83
+ if N[u, k] == 0:
84
+ H[(X, k)] -= 1
85
+ H[(Y, k)] += 1
86
+
87
+ for v in L[u]:
88
+ # 'v' has lost a neighbor in X and gained one in Y
89
+ N[(v, X)] -= 1
90
+ N[(v, Y)] += 1
91
+
92
+ if N[(v, X)] == 0:
93
+ # 'v' witnesses F[v] -> X
94
+ H[(F[v], X)] += 1
95
+
96
+ if N[(v, Y)] == 1:
97
+ # 'v' no longer witnesses F[v] -> Y
98
+ H[(F[v], Y)] -= 1
99
+
100
+ C[X].remove(u)
101
+ C[Y].append(u)
102
+
103
+
104
+ def move_witnesses(src_color, dst_color, N, H, F, C, T_cal, L):
105
+ """Move witness along a path from src_color to dst_color."""
106
+ X = src_color
107
+ while X != dst_color:
108
+ Y = T_cal[X]
109
+ # Move _any_ witness from X to Y = T_cal[X]
110
+ w = next(x for x in C[X] if N[(x, Y)] == 0)
111
+ change_color(w, X, Y, N=N, H=H, F=F, C=C, L=L)
112
+ X = Y
113
+
114
+
115
+ @nx._dispatchable(mutates_input=True)
116
+ def pad_graph(G, num_colors):
117
+ """Add a disconnected complete clique K_p such that the number of nodes in
118
+ the graph becomes a multiple of `num_colors`.
119
+
120
+ Assumes that the graph's nodes are labelled using integers.
121
+
122
+ Returns the number of nodes with each color.
123
+ """
124
+
125
+ n_ = len(G)
126
+ r = num_colors - 1
127
+
128
+ # Ensure that the number of nodes in G is a multiple of (r + 1)
129
+ s = n_ // (r + 1)
130
+ if n_ != s * (r + 1):
131
+ p = (r + 1) - n_ % (r + 1)
132
+ s += 1
133
+
134
+ # Complete graph K_p between (imaginary) nodes [n_, ... , n_ + p]
135
+ K = nx.relabel_nodes(nx.complete_graph(p), {idx: idx + n_ for idx in range(p)})
136
+ G.add_edges_from(K.edges)
137
+
138
+ return s
139
+
140
+
141
+ def procedure_P(V_minus, V_plus, N, H, F, C, L, excluded_colors=None):
142
+ """Procedure P as described in the paper."""
143
+
144
+ if excluded_colors is None:
145
+ excluded_colors = set()
146
+
147
+ A_cal = set()
148
+ T_cal = {}
149
+ R_cal = []
150
+
151
+ # BFS to determine A_cal, i.e. colors reachable from V-
152
+ reachable = [V_minus]
153
+ marked = set(reachable)
154
+ idx = 0
155
+
156
+ while idx < len(reachable):
157
+ pop = reachable[idx]
158
+ idx += 1
159
+
160
+ A_cal.add(pop)
161
+ R_cal.append(pop)
162
+
163
+ # TODO: Checking whether a color has been visited can be made faster by
164
+ # using a look-up table instead of testing for membership in a set by a
165
+ # logarithmic factor.
166
+ next_layer = []
167
+ for k in C:
168
+ if (
169
+ H[(k, pop)] > 0
170
+ and k not in A_cal
171
+ and k not in excluded_colors
172
+ and k not in marked
173
+ ):
174
+ next_layer.append(k)
175
+
176
+ for dst in next_layer:
177
+ # Record that `dst` can reach `pop`
178
+ T_cal[dst] = pop
179
+
180
+ marked.update(next_layer)
181
+ reachable.extend(next_layer)
182
+
183
+ # Variables for the algorithm
184
+ b = len(C) - len(A_cal)
185
+
186
+ if V_plus in A_cal:
187
+ # Easy case: V+ is in A_cal
188
+ # Move one node from V+ to V- using T_cal to find the parents.
189
+ move_witnesses(V_plus, V_minus, N=N, H=H, F=F, C=C, T_cal=T_cal, L=L)
190
+ else:
191
+ # If there is a solo edge, we can resolve the situation by
192
+ # moving witnesses from B to A, making G[A] equitable and then
193
+ # recursively balancing G[B - w] with a different V_minus and
194
+ # but the same V_plus.
195
+
196
+ A_0 = set()
197
+ A_cal_0 = set()
198
+ num_terminal_sets_found = 0
199
+ made_equitable = False
200
+
201
+ for W_1 in R_cal[::-1]:
202
+ for v in C[W_1]:
203
+ X = None
204
+
205
+ for U in C:
206
+ if N[(v, U)] == 0 and U in A_cal and U != W_1:
207
+ X = U
208
+
209
+ # v does not witness an edge in H[A_cal]
210
+ if X is None:
211
+ continue
212
+
213
+ for U in C:
214
+ # Note: Departing from the paper here.
215
+ if N[(v, U)] >= 1 and U not in A_cal:
216
+ X_prime = U
217
+ w = v
218
+
219
+ try:
220
+ # Finding the solo neighbor of w in X_prime
221
+ y = next(
222
+ node
223
+ for node in L[w]
224
+ if F[node] == X_prime and N[(node, W_1)] == 1
225
+ )
226
+ except StopIteration:
227
+ pass
228
+ else:
229
+ W = W_1
230
+
231
+ # Move w from W to X, now X has one extra node.
232
+ change_color(w, W, X, N=N, H=H, F=F, C=C, L=L)
233
+
234
+ # Move witness from X to V_minus, making the coloring
235
+ # equitable.
236
+ move_witnesses(
237
+ src_color=X,
238
+ dst_color=V_minus,
239
+ N=N,
240
+ H=H,
241
+ F=F,
242
+ C=C,
243
+ T_cal=T_cal,
244
+ L=L,
245
+ )
246
+
247
+ # Move y from X_prime to W, making W the correct size.
248
+ change_color(y, X_prime, W, N=N, H=H, F=F, C=C, L=L)
249
+
250
+ # Then call the procedure on G[B - y]
251
+ procedure_P(
252
+ V_minus=X_prime,
253
+ V_plus=V_plus,
254
+ N=N,
255
+ H=H,
256
+ C=C,
257
+ F=F,
258
+ L=L,
259
+ excluded_colors=excluded_colors.union(A_cal),
260
+ )
261
+ made_equitable = True
262
+ break
263
+
264
+ if made_equitable:
265
+ break
266
+ else:
267
+ # No node in W_1 was found such that
268
+ # it had a solo-neighbor.
269
+ A_cal_0.add(W_1)
270
+ A_0.update(C[W_1])
271
+ num_terminal_sets_found += 1
272
+
273
+ if num_terminal_sets_found == b:
274
+ # Otherwise, construct the maximal independent set and find
275
+ # a pair of z_1, z_2 as in Case II.
276
+
277
+ # BFS to determine B_cal': the set of colors reachable from V+
278
+ B_cal_prime = set()
279
+ T_cal_prime = {}
280
+
281
+ reachable = [V_plus]
282
+ marked = set(reachable)
283
+ idx = 0
284
+ while idx < len(reachable):
285
+ pop = reachable[idx]
286
+ idx += 1
287
+
288
+ B_cal_prime.add(pop)
289
+
290
+ # No need to check for excluded_colors here because
291
+ # they only exclude colors from A_cal
292
+ next_layer = [
293
+ k
294
+ for k in C
295
+ if H[(pop, k)] > 0 and k not in B_cal_prime and k not in marked
296
+ ]
297
+
298
+ for dst in next_layer:
299
+ T_cal_prime[pop] = dst
300
+
301
+ marked.update(next_layer)
302
+ reachable.extend(next_layer)
303
+
304
+ # Construct the independent set of G[B']
305
+ I_set = set()
306
+ I_covered = set()
307
+ W_covering = {}
308
+
309
+ B_prime = [node for k in B_cal_prime for node in C[k]]
310
+
311
+ # Add the nodes in V_plus to I first.
312
+ for z in C[V_plus] + B_prime:
313
+ if z in I_covered or F[z] not in B_cal_prime:
314
+ continue
315
+
316
+ I_set.add(z)
317
+ I_covered.add(z)
318
+ I_covered.update(list(L[z]))
319
+
320
+ for w in L[z]:
321
+ if F[w] in A_cal_0 and N[(z, F[w])] == 1:
322
+ if w not in W_covering:
323
+ W_covering[w] = z
324
+ else:
325
+ # Found z1, z2 which have the same solo
326
+ # neighbor in some W
327
+ z_1 = W_covering[w]
328
+ # z_2 = z
329
+
330
+ Z = F[z_1]
331
+ W = F[w]
332
+
333
+ # shift nodes along W, V-
334
+ move_witnesses(
335
+ W, V_minus, N=N, H=H, F=F, C=C, T_cal=T_cal, L=L
336
+ )
337
+
338
+ # shift nodes along V+ to Z
339
+ move_witnesses(
340
+ V_plus,
341
+ Z,
342
+ N=N,
343
+ H=H,
344
+ F=F,
345
+ C=C,
346
+ T_cal=T_cal_prime,
347
+ L=L,
348
+ )
349
+
350
+ # change color of z_1 to W
351
+ change_color(z_1, Z, W, N=N, H=H, F=F, C=C, L=L)
352
+
353
+ # change color of w to some color in B_cal
354
+ W_plus = next(
355
+ k for k in C if N[(w, k)] == 0 and k not in A_cal
356
+ )
357
+ change_color(w, W, W_plus, N=N, H=H, F=F, C=C, L=L)
358
+
359
+ # recurse with G[B \cup W*]
360
+ excluded_colors.update(
361
+ [k for k in C if k != W and k not in B_cal_prime]
362
+ )
363
+ procedure_P(
364
+ V_minus=W,
365
+ V_plus=W_plus,
366
+ N=N,
367
+ H=H,
368
+ C=C,
369
+ F=F,
370
+ L=L,
371
+ excluded_colors=excluded_colors,
372
+ )
373
+
374
+ made_equitable = True
375
+ break
376
+
377
+ if made_equitable:
378
+ break
379
+ else:
380
+ assert False, (
381
+ "Must find a w which is the solo neighbor "
382
+ "of two vertices in B_cal_prime."
383
+ )
384
+
385
+ if made_equitable:
386
+ break
387
+
388
+
389
+ @nx._dispatchable
390
+ def equitable_color(G, num_colors):
391
+ """Provides an equitable coloring for nodes of `G`.
392
+
393
+ Attempts to color a graph using `num_colors` colors, where no neighbors of
394
+ a node can have same color as the node itself and the number of nodes with
395
+ each color differ by at most 1. `num_colors` must be greater than the
396
+ maximum degree of `G`. The algorithm is described in [1]_ and has
397
+ complexity O(num_colors * n**2).
398
+
399
+ Parameters
400
+ ----------
401
+ G : networkX graph
402
+ The nodes of this graph will be colored.
403
+
404
+ num_colors : number of colors to use
405
+ This number must be at least one more than the maximum degree of nodes
406
+ in the graph.
407
+
408
+ Returns
409
+ -------
410
+ A dictionary with keys representing nodes and values representing
411
+ corresponding coloring.
412
+
413
+ Examples
414
+ --------
415
+ >>> G = nx.cycle_graph(4)
416
+ >>> nx.coloring.equitable_color(G, num_colors=3) # doctest: +SKIP
417
+ {0: 2, 1: 1, 2: 2, 3: 0}
418
+
419
+ Raises
420
+ ------
421
+ NetworkXAlgorithmError
422
+ If `num_colors` is not at least the maximum degree of the graph `G`
423
+
424
+ References
425
+ ----------
426
+ .. [1] Kierstead, H. A., Kostochka, A. V., Mydlarz, M., & Szemerédi, E.
427
+ (2010). A fast algorithm for equitable coloring. Combinatorica, 30(2),
428
+ 217-224.
429
+ """
430
+
431
+ # Map nodes to integers for simplicity later.
432
+ nodes_to_int = {}
433
+ int_to_nodes = {}
434
+
435
+ for idx, node in enumerate(G.nodes):
436
+ nodes_to_int[node] = idx
437
+ int_to_nodes[idx] = node
438
+
439
+ G = nx.relabel_nodes(G, nodes_to_int, copy=True)
440
+
441
+ # Basic graph statistics and sanity check.
442
+ if len(G.nodes) > 0:
443
+ r_ = max(G.degree(node) for node in G.nodes)
444
+ else:
445
+ r_ = 0
446
+
447
+ if r_ >= num_colors:
448
+ raise nx.NetworkXAlgorithmError(
449
+ f"Graph has maximum degree {r_}, needs "
450
+ f"{r_ + 1} (> {num_colors}) colors for guaranteed coloring."
451
+ )
452
+
453
+ # Ensure that the number of nodes in G is a multiple of (r + 1)
454
+ pad_graph(G, num_colors)
455
+
456
+ # Starting the algorithm.
457
+ # L = {node: list(G.neighbors(node)) for node in G.nodes}
458
+ L_ = {node: [] for node in G.nodes}
459
+
460
+ # Arbitrary equitable allocation of colors to nodes.
461
+ F = {node: idx % num_colors for idx, node in enumerate(G.nodes)}
462
+
463
+ C = make_C_from_F(F)
464
+
465
+ # The neighborhood is empty initially.
466
+ N = make_N_from_L_C(L_, C)
467
+
468
+ # Currently all nodes witness all edges.
469
+ H = make_H_from_C_N(C, N)
470
+
471
+ # Start of algorithm.
472
+ edges_seen = set()
473
+
474
+ for u in sorted(G.nodes):
475
+ for v in sorted(G.neighbors(u)):
476
+ # Do not double count edges if (v, u) has already been seen.
477
+ if (v, u) in edges_seen:
478
+ continue
479
+
480
+ edges_seen.add((u, v))
481
+
482
+ L_[u].append(v)
483
+ L_[v].append(u)
484
+
485
+ N[(u, F[v])] += 1
486
+ N[(v, F[u])] += 1
487
+
488
+ if F[u] != F[v]:
489
+ # Were 'u' and 'v' witnesses for F[u] -> F[v] or F[v] -> F[u]?
490
+ if N[(u, F[v])] == 1:
491
+ H[F[u], F[v]] -= 1 # u cannot witness an edge between F[u], F[v]
492
+
493
+ if N[(v, F[u])] == 1:
494
+ H[F[v], F[u]] -= 1 # v cannot witness an edge between F[v], F[u]
495
+
496
+ if N[(u, F[u])] != 0:
497
+ # Find the first color where 'u' does not have any neighbors.
498
+ Y = next(k for k in C if N[(u, k)] == 0)
499
+ X = F[u]
500
+ change_color(u, X, Y, N=N, H=H, F=F, C=C, L=L_)
501
+
502
+ # Procedure P
503
+ procedure_P(V_minus=X, V_plus=Y, N=N, H=H, F=F, C=C, L=L_)
504
+
505
+ return {int_to_nodes[x]: F[x] for x in int_to_nodes}
minigpt2/lib/python3.10/site-packages/networkx/algorithms/coloring/greedy_coloring.py ADDED
@@ -0,0 +1,565 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Greedy graph coloring using various strategies.
3
+ """
4
+
5
+ import itertools
6
+ from collections import defaultdict, deque
7
+
8
+ import networkx as nx
9
+ from networkx.utils import arbitrary_element, py_random_state
10
+
11
+ __all__ = [
12
+ "greedy_color",
13
+ "strategy_connected_sequential",
14
+ "strategy_connected_sequential_bfs",
15
+ "strategy_connected_sequential_dfs",
16
+ "strategy_independent_set",
17
+ "strategy_largest_first",
18
+ "strategy_random_sequential",
19
+ "strategy_saturation_largest_first",
20
+ "strategy_smallest_last",
21
+ ]
22
+
23
+
24
+ def strategy_largest_first(G, colors):
25
+ """Returns a list of the nodes of ``G`` in decreasing order by
26
+ degree.
27
+
28
+ ``G`` is a NetworkX graph. ``colors`` is ignored.
29
+
30
+ """
31
+ return sorted(G, key=G.degree, reverse=True)
32
+
33
+
34
+ @py_random_state(2)
35
+ def strategy_random_sequential(G, colors, seed=None):
36
+ """Returns a random permutation of the nodes of ``G`` as a list.
37
+
38
+ ``G`` is a NetworkX graph. ``colors`` is ignored.
39
+
40
+ seed : integer, random_state, or None (default)
41
+ Indicator of random number generation state.
42
+ See :ref:`Randomness<randomness>`.
43
+ """
44
+ nodes = list(G)
45
+ seed.shuffle(nodes)
46
+ return nodes
47
+
48
+
49
+ def strategy_smallest_last(G, colors):
50
+ """Returns a deque of the nodes of ``G``, "smallest" last.
51
+
52
+ Specifically, the degrees of each node are tracked in a bucket queue.
53
+ From this, the node of minimum degree is repeatedly popped from the
54
+ graph, updating its neighbors' degrees.
55
+
56
+ ``G`` is a NetworkX graph. ``colors`` is ignored.
57
+
58
+ This implementation of the strategy runs in $O(n + m)$ time
59
+ (ignoring polylogarithmic factors), where $n$ is the number of nodes
60
+ and $m$ is the number of edges.
61
+
62
+ This strategy is related to :func:`strategy_independent_set`: if we
63
+ interpret each node removed as an independent set of size one, then
64
+ this strategy chooses an independent set of size one instead of a
65
+ maximal independent set.
66
+
67
+ """
68
+ H = G.copy()
69
+ result = deque()
70
+
71
+ # Build initial degree list (i.e. the bucket queue data structure)
72
+ degrees = defaultdict(set) # set(), for fast random-access removals
73
+ lbound = float("inf")
74
+ for node, d in H.degree():
75
+ degrees[d].add(node)
76
+ lbound = min(lbound, d) # Lower bound on min-degree.
77
+
78
+ def find_min_degree():
79
+ # Save time by starting the iterator at `lbound`, not 0.
80
+ # The value that we find will be our new `lbound`, which we set later.
81
+ return next(d for d in itertools.count(lbound) if d in degrees)
82
+
83
+ for _ in G:
84
+ # Pop a min-degree node and add it to the list.
85
+ min_degree = find_min_degree()
86
+ u = degrees[min_degree].pop()
87
+ if not degrees[min_degree]: # Clean up the degree list.
88
+ del degrees[min_degree]
89
+ result.appendleft(u)
90
+
91
+ # Update degrees of removed node's neighbors.
92
+ for v in H[u]:
93
+ degree = H.degree(v)
94
+ degrees[degree].remove(v)
95
+ if not degrees[degree]: # Clean up the degree list.
96
+ del degrees[degree]
97
+ degrees[degree - 1].add(v)
98
+
99
+ # Finally, remove the node.
100
+ H.remove_node(u)
101
+ lbound = min_degree - 1 # Subtract 1 in case of tied neighbors.
102
+
103
+ return result
104
+
105
+
106
+ def _maximal_independent_set(G):
107
+ """Returns a maximal independent set of nodes in ``G`` by repeatedly
108
+ choosing an independent node of minimum degree (with respect to the
109
+ subgraph of unchosen nodes).
110
+
111
+ """
112
+ result = set()
113
+ remaining = set(G)
114
+ while remaining:
115
+ G = G.subgraph(remaining)
116
+ v = min(remaining, key=G.degree)
117
+ result.add(v)
118
+ remaining -= set(G[v]) | {v}
119
+ return result
120
+
121
+
122
+ def strategy_independent_set(G, colors):
123
+ """Uses a greedy independent set removal strategy to determine the
124
+ colors.
125
+
126
+ This function updates ``colors`` **in-place** and return ``None``,
127
+ unlike the other strategy functions in this module.
128
+
129
+ This algorithm repeatedly finds and removes a maximal independent
130
+ set, assigning each node in the set an unused color.
131
+
132
+ ``G`` is a NetworkX graph.
133
+
134
+ This strategy is related to :func:`strategy_smallest_last`: in that
135
+ strategy, an independent set of size one is chosen at each step
136
+ instead of a maximal independent set.
137
+
138
+ """
139
+ remaining_nodes = set(G)
140
+ while len(remaining_nodes) > 0:
141
+ nodes = _maximal_independent_set(G.subgraph(remaining_nodes))
142
+ remaining_nodes -= nodes
143
+ yield from nodes
144
+
145
+
146
+ def strategy_connected_sequential_bfs(G, colors):
147
+ """Returns an iterable over nodes in ``G`` in the order given by a
148
+ breadth-first traversal.
149
+
150
+ The generated sequence has the property that for each node except
151
+ the first, at least one neighbor appeared earlier in the sequence.
152
+
153
+ ``G`` is a NetworkX graph. ``colors`` is ignored.
154
+
155
+ """
156
+ return strategy_connected_sequential(G, colors, "bfs")
157
+
158
+
159
+ def strategy_connected_sequential_dfs(G, colors):
160
+ """Returns an iterable over nodes in ``G`` in the order given by a
161
+ depth-first traversal.
162
+
163
+ The generated sequence has the property that for each node except
164
+ the first, at least one neighbor appeared earlier in the sequence.
165
+
166
+ ``G`` is a NetworkX graph. ``colors`` is ignored.
167
+
168
+ """
169
+ return strategy_connected_sequential(G, colors, "dfs")
170
+
171
+
172
+ def strategy_connected_sequential(G, colors, traversal="bfs"):
173
+ """Returns an iterable over nodes in ``G`` in the order given by a
174
+ breadth-first or depth-first traversal.
175
+
176
+ ``traversal`` must be one of the strings ``'dfs'`` or ``'bfs'``,
177
+ representing depth-first traversal or breadth-first traversal,
178
+ respectively.
179
+
180
+ The generated sequence has the property that for each node except
181
+ the first, at least one neighbor appeared earlier in the sequence.
182
+
183
+ ``G`` is a NetworkX graph. ``colors`` is ignored.
184
+
185
+ """
186
+ if traversal == "bfs":
187
+ traverse = nx.bfs_edges
188
+ elif traversal == "dfs":
189
+ traverse = nx.dfs_edges
190
+ else:
191
+ raise nx.NetworkXError(
192
+ "Please specify one of the strings 'bfs' or"
193
+ " 'dfs' for connected sequential ordering"
194
+ )
195
+ for component in nx.connected_components(G):
196
+ source = arbitrary_element(component)
197
+ # Yield the source node, then all the nodes in the specified
198
+ # traversal order.
199
+ yield source
200
+ for _, end in traverse(G.subgraph(component), source):
201
+ yield end
202
+
203
+
204
+ def strategy_saturation_largest_first(G, colors):
205
+ """Iterates over all the nodes of ``G`` in "saturation order" (also
206
+ known as "DSATUR").
207
+
208
+ ``G`` is a NetworkX graph. ``colors`` is a dictionary mapping nodes of
209
+ ``G`` to colors, for those nodes that have already been colored.
210
+
211
+ """
212
+ distinct_colors = {v: set() for v in G}
213
+
214
+ # Add the node color assignments given in colors to the
215
+ # distinct colors set for each neighbor of that node
216
+ for node, color in colors.items():
217
+ for neighbor in G[node]:
218
+ distinct_colors[neighbor].add(color)
219
+
220
+ # Check that the color assignments in colors are valid
221
+ # i.e. no neighboring nodes have the same color
222
+ if len(colors) >= 2:
223
+ for node, color in colors.items():
224
+ if color in distinct_colors[node]:
225
+ raise nx.NetworkXError("Neighboring nodes must have different colors")
226
+
227
+ # If 0 nodes have been colored, simply choose the node of highest degree.
228
+ if not colors:
229
+ node = max(G, key=G.degree)
230
+ yield node
231
+ # Add the color 0 to the distinct colors set for each
232
+ # neighbor of that node.
233
+ for v in G[node]:
234
+ distinct_colors[v].add(0)
235
+
236
+ while len(G) != len(colors):
237
+ # Update the distinct color sets for the neighbors.
238
+ for node, color in colors.items():
239
+ for neighbor in G[node]:
240
+ distinct_colors[neighbor].add(color)
241
+
242
+ # Compute the maximum saturation and the set of nodes that
243
+ # achieve that saturation.
244
+ saturation = {v: len(c) for v, c in distinct_colors.items() if v not in colors}
245
+ # Yield the node with the highest saturation, and break ties by
246
+ # degree.
247
+ node = max(saturation, key=lambda v: (saturation[v], G.degree(v)))
248
+ yield node
249
+
250
+
251
+ #: Dictionary mapping name of a strategy as a string to the strategy function.
252
+ STRATEGIES = {
253
+ "largest_first": strategy_largest_first,
254
+ "random_sequential": strategy_random_sequential,
255
+ "smallest_last": strategy_smallest_last,
256
+ "independent_set": strategy_independent_set,
257
+ "connected_sequential_bfs": strategy_connected_sequential_bfs,
258
+ "connected_sequential_dfs": strategy_connected_sequential_dfs,
259
+ "connected_sequential": strategy_connected_sequential,
260
+ "saturation_largest_first": strategy_saturation_largest_first,
261
+ "DSATUR": strategy_saturation_largest_first,
262
+ }
263
+
264
+
265
+ @nx._dispatchable
266
+ def greedy_color(G, strategy="largest_first", interchange=False):
267
+ """Color a graph using various strategies of greedy graph coloring.
268
+
269
+ Attempts to color a graph using as few colors as possible, where no
270
+ neighbors of a node can have same color as the node itself. The
271
+ given strategy determines the order in which nodes are colored.
272
+
273
+ The strategies are described in [1]_, and smallest-last is based on
274
+ [2]_.
275
+
276
+ Parameters
277
+ ----------
278
+ G : NetworkX graph
279
+
280
+ strategy : string or function(G, colors)
281
+ A function (or a string representing a function) that provides
282
+ the coloring strategy, by returning nodes in the ordering they
283
+ should be colored. ``G`` is the graph, and ``colors`` is a
284
+ dictionary of the currently assigned colors, keyed by nodes. The
285
+ function must return an iterable over all the nodes in ``G``.
286
+
287
+ If the strategy function is an iterator generator (that is, a
288
+ function with ``yield`` statements), keep in mind that the
289
+ ``colors`` dictionary will be updated after each ``yield``, since
290
+ this function chooses colors greedily.
291
+
292
+ If ``strategy`` is a string, it must be one of the following,
293
+ each of which represents one of the built-in strategy functions.
294
+
295
+ * ``'largest_first'``
296
+ * ``'random_sequential'``
297
+ * ``'smallest_last'``
298
+ * ``'independent_set'``
299
+ * ``'connected_sequential_bfs'``
300
+ * ``'connected_sequential_dfs'``
301
+ * ``'connected_sequential'`` (alias for the previous strategy)
302
+ * ``'saturation_largest_first'``
303
+ * ``'DSATUR'`` (alias for the previous strategy)
304
+
305
+ interchange: bool
306
+ Will use the color interchange algorithm described by [3]_ if set
307
+ to ``True``.
308
+
309
+ Note that ``saturation_largest_first`` and ``independent_set``
310
+ do not work with interchange. Furthermore, if you use
311
+ interchange with your own strategy function, you cannot rely
312
+ on the values in the ``colors`` argument.
313
+
314
+ Returns
315
+ -------
316
+ A dictionary with keys representing nodes and values representing
317
+ corresponding coloring.
318
+
319
+ Examples
320
+ --------
321
+ >>> G = nx.cycle_graph(4)
322
+ >>> d = nx.coloring.greedy_color(G, strategy="largest_first")
323
+ >>> d in [{0: 0, 1: 1, 2: 0, 3: 1}, {0: 1, 1: 0, 2: 1, 3: 0}]
324
+ True
325
+
326
+ Raises
327
+ ------
328
+ NetworkXPointlessConcept
329
+ If ``strategy`` is ``saturation_largest_first`` or
330
+ ``independent_set`` and ``interchange`` is ``True``.
331
+
332
+ References
333
+ ----------
334
+ .. [1] Adrian Kosowski, and Krzysztof Manuszewski,
335
+ Classical Coloring of Graphs, Graph Colorings, 2-19, 2004.
336
+ ISBN 0-8218-3458-4.
337
+ .. [2] David W. Matula, and Leland L. Beck, "Smallest-last
338
+ ordering and clustering and graph coloring algorithms." *J. ACM* 30,
339
+ 3 (July 1983), 417–427. <https://doi.org/10.1145/2402.322385>
340
+ .. [3] Maciej M. Sysło, Narsingh Deo, Janusz S. Kowalik,
341
+ Discrete Optimization Algorithms with Pascal Programs, 415-424, 1983.
342
+ ISBN 0-486-45353-7.
343
+
344
+ """
345
+ if len(G) == 0:
346
+ return {}
347
+ # Determine the strategy provided by the caller.
348
+ strategy = STRATEGIES.get(strategy, strategy)
349
+ if not callable(strategy):
350
+ raise nx.NetworkXError(
351
+ f"strategy must be callable or a valid string. {strategy} not valid."
352
+ )
353
+ # Perform some validation on the arguments before executing any
354
+ # strategy functions.
355
+ if interchange:
356
+ if strategy is strategy_independent_set:
357
+ msg = "interchange cannot be used with independent_set"
358
+ raise nx.NetworkXPointlessConcept(msg)
359
+ if strategy is strategy_saturation_largest_first:
360
+ msg = "interchange cannot be used with" " saturation_largest_first"
361
+ raise nx.NetworkXPointlessConcept(msg)
362
+ colors = {}
363
+ nodes = strategy(G, colors)
364
+ if interchange:
365
+ return _greedy_coloring_with_interchange(G, nodes)
366
+ for u in nodes:
367
+ # Set to keep track of colors of neighbors
368
+ nbr_colors = {colors[v] for v in G[u] if v in colors}
369
+ # Find the first unused color.
370
+ for color in itertools.count():
371
+ if color not in nbr_colors:
372
+ break
373
+ # Assign the new color to the current node.
374
+ colors[u] = color
375
+ return colors
376
+
377
+
378
+ # Tools for coloring with interchanges
379
+ class _Node:
380
+ __slots__ = ["node_id", "color", "adj_list", "adj_color"]
381
+
382
+ def __init__(self, node_id, n):
383
+ self.node_id = node_id
384
+ self.color = -1
385
+ self.adj_list = None
386
+ self.adj_color = [None for _ in range(n)]
387
+
388
+ def __repr__(self):
389
+ return (
390
+ f"Node_id: {self.node_id}, Color: {self.color}, "
391
+ f"Adj_list: ({self.adj_list}), adj_color: ({self.adj_color})"
392
+ )
393
+
394
+ def assign_color(self, adj_entry, color):
395
+ adj_entry.col_prev = None
396
+ adj_entry.col_next = self.adj_color[color]
397
+ self.adj_color[color] = adj_entry
398
+ if adj_entry.col_next is not None:
399
+ adj_entry.col_next.col_prev = adj_entry
400
+
401
+ def clear_color(self, adj_entry, color):
402
+ if adj_entry.col_prev is None:
403
+ self.adj_color[color] = adj_entry.col_next
404
+ else:
405
+ adj_entry.col_prev.col_next = adj_entry.col_next
406
+ if adj_entry.col_next is not None:
407
+ adj_entry.col_next.col_prev = adj_entry.col_prev
408
+
409
+ def iter_neighbors(self):
410
+ adj_node = self.adj_list
411
+ while adj_node is not None:
412
+ yield adj_node
413
+ adj_node = adj_node.next
414
+
415
+ def iter_neighbors_color(self, color):
416
+ adj_color_node = self.adj_color[color]
417
+ while adj_color_node is not None:
418
+ yield adj_color_node.node_id
419
+ adj_color_node = adj_color_node.col_next
420
+
421
+
422
+ class _AdjEntry:
423
+ __slots__ = ["node_id", "next", "mate", "col_next", "col_prev"]
424
+
425
+ def __init__(self, node_id):
426
+ self.node_id = node_id
427
+ self.next = None
428
+ self.mate = None
429
+ self.col_next = None
430
+ self.col_prev = None
431
+
432
+ def __repr__(self):
433
+ col_next = None if self.col_next is None else self.col_next.node_id
434
+ col_prev = None if self.col_prev is None else self.col_prev.node_id
435
+ return (
436
+ f"Node_id: {self.node_id}, Next: ({self.next}), "
437
+ f"Mate: ({self.mate.node_id}), "
438
+ f"col_next: ({col_next}), col_prev: ({col_prev})"
439
+ )
440
+
441
+
442
+ def _greedy_coloring_with_interchange(G, nodes):
443
+ """Return a coloring for `original_graph` using interchange approach
444
+
445
+ This procedure is an adaption of the algorithm described by [1]_,
446
+ and is an implementation of coloring with interchange. Please be
447
+ advised, that the datastructures used are rather complex because
448
+ they are optimized to minimize the time spent identifying
449
+ subcomponents of the graph, which are possible candidates for color
450
+ interchange.
451
+
452
+ Parameters
453
+ ----------
454
+ G : NetworkX graph
455
+ The graph to be colored
456
+
457
+ nodes : list
458
+ nodes ordered using the strategy of choice
459
+
460
+ Returns
461
+ -------
462
+ dict :
463
+ A dictionary keyed by node to a color value
464
+
465
+ References
466
+ ----------
467
+ .. [1] Maciej M. Syslo, Narsingh Deo, Janusz S. Kowalik,
468
+ Discrete Optimization Algorithms with Pascal Programs, 415-424, 1983.
469
+ ISBN 0-486-45353-7.
470
+ """
471
+ n = len(G)
472
+
473
+ graph = {node: _Node(node, n) for node in G}
474
+
475
+ for node1, node2 in G.edges():
476
+ adj_entry1 = _AdjEntry(node2)
477
+ adj_entry2 = _AdjEntry(node1)
478
+ adj_entry1.mate = adj_entry2
479
+ adj_entry2.mate = adj_entry1
480
+ node1_head = graph[node1].adj_list
481
+ adj_entry1.next = node1_head
482
+ graph[node1].adj_list = adj_entry1
483
+ node2_head = graph[node2].adj_list
484
+ adj_entry2.next = node2_head
485
+ graph[node2].adj_list = adj_entry2
486
+
487
+ k = 0
488
+ for node in nodes:
489
+ # Find the smallest possible, unused color
490
+ neighbors = graph[node].iter_neighbors()
491
+ col_used = {graph[adj_node.node_id].color for adj_node in neighbors}
492
+ col_used.discard(-1)
493
+ k1 = next(itertools.dropwhile(lambda x: x in col_used, itertools.count()))
494
+
495
+ # k1 is now the lowest available color
496
+ if k1 > k:
497
+ connected = True
498
+ visited = set()
499
+ col1 = -1
500
+ col2 = -1
501
+ while connected and col1 < k:
502
+ col1 += 1
503
+ neighbor_cols = graph[node].iter_neighbors_color(col1)
504
+ col1_adj = list(neighbor_cols)
505
+
506
+ col2 = col1
507
+ while connected and col2 < k:
508
+ col2 += 1
509
+ visited = set(col1_adj)
510
+ frontier = list(col1_adj)
511
+ i = 0
512
+ while i < len(frontier):
513
+ search_node = frontier[i]
514
+ i += 1
515
+ col_opp = col2 if graph[search_node].color == col1 else col1
516
+ neighbor_cols = graph[search_node].iter_neighbors_color(col_opp)
517
+
518
+ for neighbor in neighbor_cols:
519
+ if neighbor not in visited:
520
+ visited.add(neighbor)
521
+ frontier.append(neighbor)
522
+
523
+ # Search if node is not adj to any col2 vertex
524
+ connected = (
525
+ len(
526
+ visited.intersection(graph[node].iter_neighbors_color(col2))
527
+ )
528
+ > 0
529
+ )
530
+
531
+ # If connected is false then we can swap !!!
532
+ if not connected:
533
+ # Update all the nodes in the component
534
+ for search_node in visited:
535
+ graph[search_node].color = (
536
+ col2 if graph[search_node].color == col1 else col1
537
+ )
538
+ col2_adj = graph[search_node].adj_color[col2]
539
+ graph[search_node].adj_color[col2] = graph[search_node].adj_color[
540
+ col1
541
+ ]
542
+ graph[search_node].adj_color[col1] = col2_adj
543
+
544
+ # Update all the neighboring nodes
545
+ for search_node in visited:
546
+ col = graph[search_node].color
547
+ col_opp = col1 if col == col2 else col2
548
+ for adj_node in graph[search_node].iter_neighbors():
549
+ if graph[adj_node.node_id].color != col_opp:
550
+ # Direct reference to entry
551
+ adj_mate = adj_node.mate
552
+ graph[adj_node.node_id].clear_color(adj_mate, col_opp)
553
+ graph[adj_node.node_id].assign_color(adj_mate, col)
554
+ k1 = col1
555
+
556
+ # We can color this node color k1
557
+ graph[node].color = k1
558
+ k = max(k1, k)
559
+
560
+ # Update the neighbors of this node
561
+ for adj_node in graph[node].iter_neighbors():
562
+ adj_mate = adj_node.mate
563
+ graph[adj_node.node_id].assign_color(adj_mate, k1)
564
+
565
+ return {node.node_id: node.color for node in graph.values()}
minigpt2/lib/python3.10/site-packages/networkx/algorithms/coloring/tests/__init__.py ADDED
File without changes
minigpt2/lib/python3.10/site-packages/networkx/algorithms/coloring/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (188 Bytes). View file
 
minigpt2/lib/python3.10/site-packages/networkx/algorithms/coloring/tests/__pycache__/test_coloring.cpython-310.pyc ADDED
Binary file (17.9 kB). View file
 
minigpt2/lib/python3.10/site-packages/networkx/algorithms/coloring/tests/test_coloring.py ADDED
@@ -0,0 +1,863 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Greedy coloring test suite."""
2
+
3
+ import itertools
4
+
5
+ import pytest
6
+
7
+ import networkx as nx
8
+
9
+ is_coloring = nx.algorithms.coloring.equitable_coloring.is_coloring
10
+ is_equitable = nx.algorithms.coloring.equitable_coloring.is_equitable
11
+
12
+
13
+ ALL_STRATEGIES = [
14
+ "largest_first",
15
+ "random_sequential",
16
+ "smallest_last",
17
+ "independent_set",
18
+ "connected_sequential_bfs",
19
+ "connected_sequential_dfs",
20
+ "connected_sequential",
21
+ "saturation_largest_first",
22
+ "DSATUR",
23
+ ]
24
+
25
+ # List of strategies where interchange=True results in an error
26
+ INTERCHANGE_INVALID = ["independent_set", "saturation_largest_first", "DSATUR"]
27
+
28
+
29
+ class TestColoring:
30
+ def test_basic_cases(self):
31
+ def check_basic_case(graph_func, n_nodes, strategy, interchange):
32
+ graph = graph_func()
33
+ coloring = nx.coloring.greedy_color(
34
+ graph, strategy=strategy, interchange=interchange
35
+ )
36
+ assert verify_length(coloring, n_nodes)
37
+ assert verify_coloring(graph, coloring)
38
+
39
+ for graph_func, n_nodes in BASIC_TEST_CASES.items():
40
+ for interchange in [True, False]:
41
+ for strategy in ALL_STRATEGIES:
42
+ check_basic_case(graph_func, n_nodes, strategy, False)
43
+ if strategy not in INTERCHANGE_INVALID:
44
+ check_basic_case(graph_func, n_nodes, strategy, True)
45
+
46
+ def test_special_cases(self):
47
+ def check_special_case(strategy, graph_func, interchange, colors):
48
+ graph = graph_func()
49
+ coloring = nx.coloring.greedy_color(
50
+ graph, strategy=strategy, interchange=interchange
51
+ )
52
+ if not hasattr(colors, "__len__"):
53
+ colors = [colors]
54
+ assert any(verify_length(coloring, n_colors) for n_colors in colors)
55
+ assert verify_coloring(graph, coloring)
56
+
57
+ for strategy, arglist in SPECIAL_TEST_CASES.items():
58
+ for args in arglist:
59
+ check_special_case(strategy, args[0], args[1], args[2])
60
+
61
+ def test_interchange_invalid(self):
62
+ graph = one_node_graph()
63
+ for strategy in INTERCHANGE_INVALID:
64
+ pytest.raises(
65
+ nx.NetworkXPointlessConcept,
66
+ nx.coloring.greedy_color,
67
+ graph,
68
+ strategy=strategy,
69
+ interchange=True,
70
+ )
71
+
72
+ def test_bad_inputs(self):
73
+ graph = one_node_graph()
74
+ pytest.raises(
75
+ nx.NetworkXError,
76
+ nx.coloring.greedy_color,
77
+ graph,
78
+ strategy="invalid strategy",
79
+ )
80
+
81
+ def test_strategy_as_function(self):
82
+ graph = lf_shc()
83
+ colors_1 = nx.coloring.greedy_color(graph, "largest_first")
84
+ colors_2 = nx.coloring.greedy_color(graph, nx.coloring.strategy_largest_first)
85
+ assert colors_1 == colors_2
86
+
87
+ def test_seed_argument(self):
88
+ graph = lf_shc()
89
+ rs = nx.coloring.strategy_random_sequential
90
+ c1 = nx.coloring.greedy_color(graph, lambda g, c: rs(g, c, seed=1))
91
+ for u, v in graph.edges:
92
+ assert c1[u] != c1[v]
93
+
94
+ def test_is_coloring(self):
95
+ G = nx.Graph()
96
+ G.add_edges_from([(0, 1), (1, 2)])
97
+ coloring = {0: 0, 1: 1, 2: 0}
98
+ assert is_coloring(G, coloring)
99
+
100
+ coloring[0] = 1
101
+ assert not is_coloring(G, coloring)
102
+ assert not is_equitable(G, coloring)
103
+
104
+ def test_is_equitable(self):
105
+ G = nx.Graph()
106
+ G.add_edges_from([(0, 1), (1, 2)])
107
+ coloring = {0: 0, 1: 1, 2: 0}
108
+ assert is_equitable(G, coloring)
109
+
110
+ G.add_edges_from([(2, 3), (2, 4), (2, 5)])
111
+ coloring[3] = 1
112
+ coloring[4] = 1
113
+ coloring[5] = 1
114
+ assert is_coloring(G, coloring)
115
+ assert not is_equitable(G, coloring)
116
+
117
+ def test_num_colors(self):
118
+ G = nx.Graph()
119
+ G.add_edges_from([(0, 1), (0, 2), (0, 3)])
120
+ pytest.raises(nx.NetworkXAlgorithmError, nx.coloring.equitable_color, G, 2)
121
+
122
+ def test_equitable_color(self):
123
+ G = nx.fast_gnp_random_graph(n=10, p=0.2, seed=42)
124
+ coloring = nx.coloring.equitable_color(G, max_degree(G) + 1)
125
+ assert is_equitable(G, coloring)
126
+
127
+ def test_equitable_color_empty(self):
128
+ G = nx.empty_graph()
129
+ coloring = nx.coloring.equitable_color(G, max_degree(G) + 1)
130
+ assert is_equitable(G, coloring)
131
+
132
+ def test_equitable_color_large(self):
133
+ G = nx.fast_gnp_random_graph(100, 0.1, seed=42)
134
+ coloring = nx.coloring.equitable_color(G, max_degree(G) + 1)
135
+ assert is_equitable(G, coloring, num_colors=max_degree(G) + 1)
136
+
137
+ def test_case_V_plus_not_in_A_cal(self):
138
+ # Hand crafted case to avoid the easy case.
139
+ L = {
140
+ 0: [2, 5],
141
+ 1: [3, 4],
142
+ 2: [0, 8],
143
+ 3: [1, 7],
144
+ 4: [1, 6],
145
+ 5: [0, 6],
146
+ 6: [4, 5],
147
+ 7: [3],
148
+ 8: [2],
149
+ }
150
+
151
+ F = {
152
+ # Color 0
153
+ 0: 0,
154
+ 1: 0,
155
+ # Color 1
156
+ 2: 1,
157
+ 3: 1,
158
+ 4: 1,
159
+ 5: 1,
160
+ # Color 2
161
+ 6: 2,
162
+ 7: 2,
163
+ 8: 2,
164
+ }
165
+
166
+ C = nx.algorithms.coloring.equitable_coloring.make_C_from_F(F)
167
+ N = nx.algorithms.coloring.equitable_coloring.make_N_from_L_C(L, C)
168
+ H = nx.algorithms.coloring.equitable_coloring.make_H_from_C_N(C, N)
169
+
170
+ nx.algorithms.coloring.equitable_coloring.procedure_P(
171
+ V_minus=0, V_plus=1, N=N, H=H, F=F, C=C, L=L
172
+ )
173
+ check_state(L=L, N=N, H=H, F=F, C=C)
174
+
175
+ def test_cast_no_solo(self):
176
+ L = {
177
+ 0: [8, 9],
178
+ 1: [10, 11],
179
+ 2: [8],
180
+ 3: [9],
181
+ 4: [10, 11],
182
+ 5: [8],
183
+ 6: [9],
184
+ 7: [10, 11],
185
+ 8: [0, 2, 5],
186
+ 9: [0, 3, 6],
187
+ 10: [1, 4, 7],
188
+ 11: [1, 4, 7],
189
+ }
190
+
191
+ F = {0: 0, 1: 0, 2: 2, 3: 2, 4: 2, 5: 3, 6: 3, 7: 3, 8: 1, 9: 1, 10: 1, 11: 1}
192
+
193
+ C = nx.algorithms.coloring.equitable_coloring.make_C_from_F(F)
194
+ N = nx.algorithms.coloring.equitable_coloring.make_N_from_L_C(L, C)
195
+ H = nx.algorithms.coloring.equitable_coloring.make_H_from_C_N(C, N)
196
+
197
+ nx.algorithms.coloring.equitable_coloring.procedure_P(
198
+ V_minus=0, V_plus=1, N=N, H=H, F=F, C=C, L=L
199
+ )
200
+ check_state(L=L, N=N, H=H, F=F, C=C)
201
+
202
+ def test_hard_prob(self):
203
+ # Tests for two levels of recursion.
204
+ num_colors, s = 5, 5
205
+
206
+ G = nx.Graph()
207
+ G.add_edges_from(
208
+ [
209
+ (0, 10),
210
+ (0, 11),
211
+ (0, 12),
212
+ (0, 23),
213
+ (10, 4),
214
+ (10, 9),
215
+ (10, 20),
216
+ (11, 4),
217
+ (11, 8),
218
+ (11, 16),
219
+ (12, 9),
220
+ (12, 22),
221
+ (12, 23),
222
+ (23, 7),
223
+ (1, 17),
224
+ (1, 18),
225
+ (1, 19),
226
+ (1, 24),
227
+ (17, 5),
228
+ (17, 13),
229
+ (17, 22),
230
+ (18, 5),
231
+ (19, 5),
232
+ (19, 6),
233
+ (19, 8),
234
+ (24, 7),
235
+ (24, 16),
236
+ (2, 4),
237
+ (2, 13),
238
+ (2, 14),
239
+ (2, 15),
240
+ (4, 6),
241
+ (13, 5),
242
+ (13, 21),
243
+ (14, 6),
244
+ (14, 15),
245
+ (15, 6),
246
+ (15, 21),
247
+ (3, 16),
248
+ (3, 20),
249
+ (3, 21),
250
+ (3, 22),
251
+ (16, 8),
252
+ (20, 8),
253
+ (21, 9),
254
+ (22, 7),
255
+ ]
256
+ )
257
+ F = {node: node // s for node in range(num_colors * s)}
258
+ F[s - 1] = num_colors - 1
259
+
260
+ params = make_params_from_graph(G=G, F=F)
261
+
262
+ nx.algorithms.coloring.equitable_coloring.procedure_P(
263
+ V_minus=0, V_plus=num_colors - 1, **params
264
+ )
265
+ check_state(**params)
266
+
267
+ def test_hardest_prob(self):
268
+ # Tests for two levels of recursion.
269
+ num_colors, s = 10, 4
270
+
271
+ G = nx.Graph()
272
+ G.add_edges_from(
273
+ [
274
+ (0, 19),
275
+ (0, 24),
276
+ (0, 29),
277
+ (0, 30),
278
+ (0, 35),
279
+ (19, 3),
280
+ (19, 7),
281
+ (19, 9),
282
+ (19, 15),
283
+ (19, 21),
284
+ (19, 24),
285
+ (19, 30),
286
+ (19, 38),
287
+ (24, 5),
288
+ (24, 11),
289
+ (24, 13),
290
+ (24, 20),
291
+ (24, 30),
292
+ (24, 37),
293
+ (24, 38),
294
+ (29, 6),
295
+ (29, 10),
296
+ (29, 13),
297
+ (29, 15),
298
+ (29, 16),
299
+ (29, 17),
300
+ (29, 20),
301
+ (29, 26),
302
+ (30, 6),
303
+ (30, 10),
304
+ (30, 15),
305
+ (30, 22),
306
+ (30, 23),
307
+ (30, 39),
308
+ (35, 6),
309
+ (35, 9),
310
+ (35, 14),
311
+ (35, 18),
312
+ (35, 22),
313
+ (35, 23),
314
+ (35, 25),
315
+ (35, 27),
316
+ (1, 20),
317
+ (1, 26),
318
+ (1, 31),
319
+ (1, 34),
320
+ (1, 38),
321
+ (20, 4),
322
+ (20, 8),
323
+ (20, 14),
324
+ (20, 18),
325
+ (20, 28),
326
+ (20, 33),
327
+ (26, 7),
328
+ (26, 10),
329
+ (26, 14),
330
+ (26, 18),
331
+ (26, 21),
332
+ (26, 32),
333
+ (26, 39),
334
+ (31, 5),
335
+ (31, 8),
336
+ (31, 13),
337
+ (31, 16),
338
+ (31, 17),
339
+ (31, 21),
340
+ (31, 25),
341
+ (31, 27),
342
+ (34, 7),
343
+ (34, 8),
344
+ (34, 13),
345
+ (34, 18),
346
+ (34, 22),
347
+ (34, 23),
348
+ (34, 25),
349
+ (34, 27),
350
+ (38, 4),
351
+ (38, 9),
352
+ (38, 12),
353
+ (38, 14),
354
+ (38, 21),
355
+ (38, 27),
356
+ (2, 3),
357
+ (2, 18),
358
+ (2, 21),
359
+ (2, 28),
360
+ (2, 32),
361
+ (2, 33),
362
+ (2, 36),
363
+ (2, 37),
364
+ (2, 39),
365
+ (3, 5),
366
+ (3, 9),
367
+ (3, 13),
368
+ (3, 22),
369
+ (3, 23),
370
+ (3, 25),
371
+ (3, 27),
372
+ (18, 6),
373
+ (18, 11),
374
+ (18, 15),
375
+ (18, 39),
376
+ (21, 4),
377
+ (21, 10),
378
+ (21, 14),
379
+ (21, 36),
380
+ (28, 6),
381
+ (28, 10),
382
+ (28, 14),
383
+ (28, 16),
384
+ (28, 17),
385
+ (28, 25),
386
+ (28, 27),
387
+ (32, 5),
388
+ (32, 10),
389
+ (32, 12),
390
+ (32, 16),
391
+ (32, 17),
392
+ (32, 22),
393
+ (32, 23),
394
+ (33, 7),
395
+ (33, 10),
396
+ (33, 12),
397
+ (33, 16),
398
+ (33, 17),
399
+ (33, 25),
400
+ (33, 27),
401
+ (36, 5),
402
+ (36, 8),
403
+ (36, 15),
404
+ (36, 16),
405
+ (36, 17),
406
+ (36, 25),
407
+ (36, 27),
408
+ (37, 5),
409
+ (37, 11),
410
+ (37, 15),
411
+ (37, 16),
412
+ (37, 17),
413
+ (37, 22),
414
+ (37, 23),
415
+ (39, 7),
416
+ (39, 8),
417
+ (39, 15),
418
+ (39, 22),
419
+ (39, 23),
420
+ ]
421
+ )
422
+ F = {node: node // s for node in range(num_colors * s)}
423
+ F[s - 1] = num_colors - 1 # V- = 0, V+ = num_colors - 1
424
+
425
+ params = make_params_from_graph(G=G, F=F)
426
+
427
+ nx.algorithms.coloring.equitable_coloring.procedure_P(
428
+ V_minus=0, V_plus=num_colors - 1, **params
429
+ )
430
+ check_state(**params)
431
+
432
+ def test_strategy_saturation_largest_first(self):
433
+ def color_remaining_nodes(
434
+ G,
435
+ colored_nodes,
436
+ full_color_assignment=None,
437
+ nodes_to_add_between_calls=1,
438
+ ):
439
+ color_assignments = []
440
+ aux_colored_nodes = colored_nodes.copy()
441
+
442
+ node_iterator = nx.algorithms.coloring.greedy_coloring.strategy_saturation_largest_first(
443
+ G, aux_colored_nodes
444
+ )
445
+
446
+ for u in node_iterator:
447
+ # Set to keep track of colors of neighbors
448
+ nbr_colors = {
449
+ aux_colored_nodes[v] for v in G[u] if v in aux_colored_nodes
450
+ }
451
+ # Find the first unused color.
452
+ for color in itertools.count():
453
+ if color not in nbr_colors:
454
+ break
455
+ aux_colored_nodes[u] = color
456
+ color_assignments.append((u, color))
457
+
458
+ # Color nodes between iterations
459
+ for i in range(nodes_to_add_between_calls - 1):
460
+ if not len(color_assignments) + len(colored_nodes) >= len(
461
+ full_color_assignment
462
+ ):
463
+ full_color_assignment_node, color = full_color_assignment[
464
+ len(color_assignments) + len(colored_nodes)
465
+ ]
466
+
467
+ # Assign the new color to the current node.
468
+ aux_colored_nodes[full_color_assignment_node] = color
469
+ color_assignments.append((full_color_assignment_node, color))
470
+
471
+ return color_assignments, aux_colored_nodes
472
+
473
+ for G, _, _ in SPECIAL_TEST_CASES["saturation_largest_first"]:
474
+ G = G()
475
+
476
+ # Check that function still works when nodes are colored between iterations
477
+ for nodes_to_add_between_calls in range(1, 5):
478
+ # Get a full color assignment, (including the order in which nodes were colored)
479
+ colored_nodes = {}
480
+ full_color_assignment, full_colored_nodes = color_remaining_nodes(
481
+ G, colored_nodes
482
+ )
483
+
484
+ # For each node in the color assignment, add it to colored_nodes and re-run the function
485
+ for ind, (node, color) in enumerate(full_color_assignment):
486
+ colored_nodes[node] = color
487
+
488
+ (
489
+ partial_color_assignment,
490
+ partial_colored_nodes,
491
+ ) = color_remaining_nodes(
492
+ G,
493
+ colored_nodes,
494
+ full_color_assignment=full_color_assignment,
495
+ nodes_to_add_between_calls=nodes_to_add_between_calls,
496
+ )
497
+
498
+ # Check that the color assignment and order of remaining nodes are the same
499
+ assert full_color_assignment[ind + 1 :] == partial_color_assignment
500
+ assert full_colored_nodes == partial_colored_nodes
501
+
502
+
503
+ # ############################ Utility functions ############################
504
+ def verify_coloring(graph, coloring):
505
+ for node in graph.nodes():
506
+ if node not in coloring:
507
+ return False
508
+
509
+ color = coloring[node]
510
+ for neighbor in graph.neighbors(node):
511
+ if coloring[neighbor] == color:
512
+ return False
513
+
514
+ return True
515
+
516
+
517
+ def verify_length(coloring, expected):
518
+ coloring = dict_to_sets(coloring)
519
+ return len(coloring) == expected
520
+
521
+
522
+ def dict_to_sets(colors):
523
+ if len(colors) == 0:
524
+ return []
525
+
526
+ k = max(colors.values()) + 1
527
+ sets = [set() for _ in range(k)]
528
+
529
+ for node, color in colors.items():
530
+ sets[color].add(node)
531
+
532
+ return sets
533
+
534
+
535
+ # ############################ Graph Generation ############################
536
+
537
+
538
+ def empty_graph():
539
+ return nx.Graph()
540
+
541
+
542
+ def one_node_graph():
543
+ graph = nx.Graph()
544
+ graph.add_nodes_from([1])
545
+ return graph
546
+
547
+
548
+ def two_node_graph():
549
+ graph = nx.Graph()
550
+ graph.add_nodes_from([1, 2])
551
+ graph.add_edges_from([(1, 2)])
552
+ return graph
553
+
554
+
555
+ def three_node_clique():
556
+ graph = nx.Graph()
557
+ graph.add_nodes_from([1, 2, 3])
558
+ graph.add_edges_from([(1, 2), (1, 3), (2, 3)])
559
+ return graph
560
+
561
+
562
+ def disconnected():
563
+ graph = nx.Graph()
564
+ graph.add_edges_from([(1, 2), (2, 3), (4, 5), (5, 6)])
565
+ return graph
566
+
567
+
568
+ def rs_shc():
569
+ graph = nx.Graph()
570
+ graph.add_nodes_from([1, 2, 3, 4])
571
+ graph.add_edges_from([(1, 2), (2, 3), (3, 4)])
572
+ return graph
573
+
574
+
575
+ def slf_shc():
576
+ graph = nx.Graph()
577
+ graph.add_nodes_from([1, 2, 3, 4, 5, 6, 7])
578
+ graph.add_edges_from(
579
+ [(1, 2), (1, 5), (1, 6), (2, 3), (2, 7), (3, 4), (3, 7), (4, 5), (4, 6), (5, 6)]
580
+ )
581
+ return graph
582
+
583
+
584
+ def slf_hc():
585
+ graph = nx.Graph()
586
+ graph.add_nodes_from([1, 2, 3, 4, 5, 6, 7, 8])
587
+ graph.add_edges_from(
588
+ [
589
+ (1, 2),
590
+ (1, 3),
591
+ (1, 4),
592
+ (1, 5),
593
+ (2, 3),
594
+ (2, 4),
595
+ (2, 6),
596
+ (5, 7),
597
+ (5, 8),
598
+ (6, 7),
599
+ (6, 8),
600
+ (7, 8),
601
+ ]
602
+ )
603
+ return graph
604
+
605
+
606
+ def lf_shc():
607
+ graph = nx.Graph()
608
+ graph.add_nodes_from([1, 2, 3, 4, 5, 6])
609
+ graph.add_edges_from([(6, 1), (1, 4), (4, 3), (3, 2), (2, 5)])
610
+ return graph
611
+
612
+
613
+ def lf_hc():
614
+ graph = nx.Graph()
615
+ graph.add_nodes_from([1, 2, 3, 4, 5, 6, 7])
616
+ graph.add_edges_from(
617
+ [
618
+ (1, 7),
619
+ (1, 6),
620
+ (1, 3),
621
+ (1, 4),
622
+ (7, 2),
623
+ (2, 6),
624
+ (2, 3),
625
+ (2, 5),
626
+ (5, 3),
627
+ (5, 4),
628
+ (4, 3),
629
+ ]
630
+ )
631
+ return graph
632
+
633
+
634
+ def sl_shc():
635
+ graph = nx.Graph()
636
+ graph.add_nodes_from([1, 2, 3, 4, 5, 6])
637
+ graph.add_edges_from(
638
+ [(1, 2), (1, 3), (2, 3), (1, 4), (2, 5), (3, 6), (4, 5), (4, 6), (5, 6)]
639
+ )
640
+ return graph
641
+
642
+
643
+ def sl_hc():
644
+ graph = nx.Graph()
645
+ graph.add_nodes_from([1, 2, 3, 4, 5, 6, 7, 8])
646
+ graph.add_edges_from(
647
+ [
648
+ (1, 2),
649
+ (1, 3),
650
+ (1, 5),
651
+ (1, 7),
652
+ (2, 3),
653
+ (2, 4),
654
+ (2, 8),
655
+ (8, 4),
656
+ (8, 6),
657
+ (8, 7),
658
+ (7, 5),
659
+ (7, 6),
660
+ (3, 4),
661
+ (4, 6),
662
+ (6, 5),
663
+ (5, 3),
664
+ ]
665
+ )
666
+ return graph
667
+
668
+
669
+ def gis_shc():
670
+ graph = nx.Graph()
671
+ graph.add_nodes_from([1, 2, 3, 4])
672
+ graph.add_edges_from([(1, 2), (2, 3), (3, 4)])
673
+ return graph
674
+
675
+
676
+ def gis_hc():
677
+ graph = nx.Graph()
678
+ graph.add_nodes_from([1, 2, 3, 4, 5, 6])
679
+ graph.add_edges_from([(1, 5), (2, 5), (3, 6), (4, 6), (5, 6)])
680
+ return graph
681
+
682
+
683
+ def cs_shc():
684
+ graph = nx.Graph()
685
+ graph.add_nodes_from([1, 2, 3, 4, 5])
686
+ graph.add_edges_from([(1, 2), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (4, 5)])
687
+ return graph
688
+
689
+
690
+ def rsi_shc():
691
+ graph = nx.Graph()
692
+ graph.add_nodes_from([1, 2, 3, 4, 5, 6])
693
+ graph.add_edges_from(
694
+ [(1, 2), (1, 5), (1, 6), (2, 3), (3, 4), (4, 5), (4, 6), (5, 6)]
695
+ )
696
+ return graph
697
+
698
+
699
+ def lfi_shc():
700
+ graph = nx.Graph()
701
+ graph.add_nodes_from([1, 2, 3, 4, 5, 6, 7])
702
+ graph.add_edges_from(
703
+ [(1, 2), (1, 5), (1, 6), (2, 3), (2, 7), (3, 4), (3, 7), (4, 5), (4, 6), (5, 6)]
704
+ )
705
+ return graph
706
+
707
+
708
+ def lfi_hc():
709
+ graph = nx.Graph()
710
+ graph.add_nodes_from([1, 2, 3, 4, 5, 6, 7, 8, 9])
711
+ graph.add_edges_from(
712
+ [
713
+ (1, 2),
714
+ (1, 5),
715
+ (1, 6),
716
+ (1, 7),
717
+ (2, 3),
718
+ (2, 8),
719
+ (2, 9),
720
+ (3, 4),
721
+ (3, 8),
722
+ (3, 9),
723
+ (4, 5),
724
+ (4, 6),
725
+ (4, 7),
726
+ (5, 6),
727
+ ]
728
+ )
729
+ return graph
730
+
731
+
732
+ def sli_shc():
733
+ graph = nx.Graph()
734
+ graph.add_nodes_from([1, 2, 3, 4, 5, 6, 7])
735
+ graph.add_edges_from(
736
+ [
737
+ (1, 2),
738
+ (1, 3),
739
+ (1, 5),
740
+ (1, 7),
741
+ (2, 3),
742
+ (2, 6),
743
+ (3, 4),
744
+ (4, 5),
745
+ (4, 6),
746
+ (5, 7),
747
+ (6, 7),
748
+ ]
749
+ )
750
+ return graph
751
+
752
+
753
+ def sli_hc():
754
+ graph = nx.Graph()
755
+ graph.add_nodes_from([1, 2, 3, 4, 5, 6, 7, 8, 9])
756
+ graph.add_edges_from(
757
+ [
758
+ (1, 2),
759
+ (1, 3),
760
+ (1, 4),
761
+ (1, 5),
762
+ (2, 3),
763
+ (2, 7),
764
+ (2, 8),
765
+ (2, 9),
766
+ (3, 6),
767
+ (3, 7),
768
+ (3, 9),
769
+ (4, 5),
770
+ (4, 6),
771
+ (4, 8),
772
+ (4, 9),
773
+ (5, 6),
774
+ (5, 7),
775
+ (5, 8),
776
+ (6, 7),
777
+ (6, 9),
778
+ (7, 8),
779
+ (8, 9),
780
+ ]
781
+ )
782
+ return graph
783
+
784
+
785
+ # --------------------------------------------------------------------------
786
+ # Basic tests for all strategies
787
+ # For each basic graph function, specify the number of expected colors.
788
+ BASIC_TEST_CASES = {
789
+ empty_graph: 0,
790
+ one_node_graph: 1,
791
+ two_node_graph: 2,
792
+ disconnected: 2,
793
+ three_node_clique: 3,
794
+ }
795
+
796
+
797
+ # --------------------------------------------------------------------------
798
+ # Special test cases. Each strategy has a list of tuples of the form
799
+ # (graph function, interchange, valid # of colors)
800
+ SPECIAL_TEST_CASES = {
801
+ "random_sequential": [
802
+ (rs_shc, False, (2, 3)),
803
+ (rs_shc, True, 2),
804
+ (rsi_shc, True, (3, 4)),
805
+ ],
806
+ "saturation_largest_first": [(slf_shc, False, (3, 4)), (slf_hc, False, 4)],
807
+ "largest_first": [
808
+ (lf_shc, False, (2, 3)),
809
+ (lf_hc, False, 4),
810
+ (lf_shc, True, 2),
811
+ (lf_hc, True, 3),
812
+ (lfi_shc, True, (3, 4)),
813
+ (lfi_hc, True, 4),
814
+ ],
815
+ "smallest_last": [
816
+ (sl_shc, False, (3, 4)),
817
+ (sl_hc, False, 5),
818
+ (sl_shc, True, 3),
819
+ (sl_hc, True, 4),
820
+ (sli_shc, True, (3, 4)),
821
+ (sli_hc, True, 5),
822
+ ],
823
+ "independent_set": [(gis_shc, False, (2, 3)), (gis_hc, False, 3)],
824
+ "connected_sequential": [(cs_shc, False, (3, 4)), (cs_shc, True, 3)],
825
+ "connected_sequential_dfs": [(cs_shc, False, (3, 4))],
826
+ }
827
+
828
+
829
+ # --------------------------------------------------------------------------
830
+ # Helper functions to test
831
+ # (graph function, interchange, valid # of colors)
832
+
833
+
834
+ def check_state(L, N, H, F, C):
835
+ s = len(C[0])
836
+ num_colors = len(C.keys())
837
+
838
+ assert all(u in L[v] for u in L for v in L[u])
839
+ assert all(F[u] != F[v] for u in L for v in L[u])
840
+ assert all(len(L[u]) < num_colors for u in L)
841
+ assert all(len(C[x]) == s for x in C)
842
+ assert all(H[(c1, c2)] >= 0 for c1 in C for c2 in C)
843
+ assert all(N[(u, F[u])] == 0 for u in F)
844
+
845
+
846
+ def max_degree(G):
847
+ """Get the maximum degree of any node in G."""
848
+ return max(G.degree(node) for node in G.nodes) if len(G.nodes) > 0 else 0
849
+
850
+
851
+ def make_params_from_graph(G, F):
852
+ """Returns {N, L, H, C} from the given graph."""
853
+ num_nodes = len(G)
854
+ L = {u: [] for u in range(num_nodes)}
855
+ for u, v in G.edges:
856
+ L[u].append(v)
857
+ L[v].append(u)
858
+
859
+ C = nx.algorithms.coloring.equitable_coloring.make_C_from_F(F)
860
+ N = nx.algorithms.coloring.equitable_coloring.make_N_from_L_C(L, C)
861
+ H = nx.algorithms.coloring.equitable_coloring.make_H_from_C_N(C, N)
862
+
863
+ return {"N": N, "F": F, "C": C, "H": H, "L": L}
minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/__init__.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ from .connected import *
2
+ from .strongly_connected import *
3
+ from .weakly_connected import *
4
+ from .attracting import *
5
+ from .biconnected import *
6
+ from .semiconnected import *
minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/attracting.py ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Attracting components."""
2
+
3
+ import networkx as nx
4
+ from networkx.utils.decorators import not_implemented_for
5
+
6
+ __all__ = [
7
+ "number_attracting_components",
8
+ "attracting_components",
9
+ "is_attracting_component",
10
+ ]
11
+
12
+
13
+ @not_implemented_for("undirected")
14
+ @nx._dispatchable
15
+ def attracting_components(G):
16
+ """Generates the attracting components in `G`.
17
+
18
+ An attracting component in a directed graph `G` is a strongly connected
19
+ component with the property that a random walker on the graph will never
20
+ leave the component, once it enters the component.
21
+
22
+ The nodes in attracting components can also be thought of as recurrent
23
+ nodes. If a random walker enters the attractor containing the node, then
24
+ the node will be visited infinitely often.
25
+
26
+ To obtain induced subgraphs on each component use:
27
+ ``(G.subgraph(c).copy() for c in attracting_components(G))``
28
+
29
+ Parameters
30
+ ----------
31
+ G : DiGraph, MultiDiGraph
32
+ The graph to be analyzed.
33
+
34
+ Returns
35
+ -------
36
+ attractors : generator of sets
37
+ A generator of sets of nodes, one for each attracting component of G.
38
+
39
+ Raises
40
+ ------
41
+ NetworkXNotImplemented
42
+ If the input graph is undirected.
43
+
44
+ See Also
45
+ --------
46
+ number_attracting_components
47
+ is_attracting_component
48
+
49
+ """
50
+ scc = list(nx.strongly_connected_components(G))
51
+ cG = nx.condensation(G, scc)
52
+ for n in cG:
53
+ if cG.out_degree(n) == 0:
54
+ yield scc[n]
55
+
56
+
57
+ @not_implemented_for("undirected")
58
+ @nx._dispatchable
59
+ def number_attracting_components(G):
60
+ """Returns the number of attracting components in `G`.
61
+
62
+ Parameters
63
+ ----------
64
+ G : DiGraph, MultiDiGraph
65
+ The graph to be analyzed.
66
+
67
+ Returns
68
+ -------
69
+ n : int
70
+ The number of attracting components in G.
71
+
72
+ Raises
73
+ ------
74
+ NetworkXNotImplemented
75
+ If the input graph is undirected.
76
+
77
+ See Also
78
+ --------
79
+ attracting_components
80
+ is_attracting_component
81
+
82
+ """
83
+ return sum(1 for ac in attracting_components(G))
84
+
85
+
86
+ @not_implemented_for("undirected")
87
+ @nx._dispatchable
88
+ def is_attracting_component(G):
89
+ """Returns True if `G` consists of a single attracting component.
90
+
91
+ Parameters
92
+ ----------
93
+ G : DiGraph, MultiDiGraph
94
+ The graph to be analyzed.
95
+
96
+ Returns
97
+ -------
98
+ attracting : bool
99
+ True if `G` has a single attracting component. Otherwise, False.
100
+
101
+ Raises
102
+ ------
103
+ NetworkXNotImplemented
104
+ If the input graph is undirected.
105
+
106
+ See Also
107
+ --------
108
+ attracting_components
109
+ number_attracting_components
110
+
111
+ """
112
+ ac = list(attracting_components(G))
113
+ if len(ac) == 1:
114
+ return len(ac[0]) == len(G)
115
+ return False
minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/semiconnected.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Semiconnectedness."""
2
+
3
+ import networkx as nx
4
+ from networkx.utils import not_implemented_for, pairwise
5
+
6
+ __all__ = ["is_semiconnected"]
7
+
8
+
9
+ @not_implemented_for("undirected")
10
+ @nx._dispatchable
11
+ def is_semiconnected(G):
12
+ r"""Returns True if the graph is semiconnected, False otherwise.
13
+
14
+ A graph is semiconnected if and only if for any pair of nodes, either one
15
+ is reachable from the other, or they are mutually reachable.
16
+
17
+ This function uses a theorem that states that a DAG is semiconnected
18
+ if for any topological sort, for node $v_n$ in that sort, there is an
19
+ edge $(v_i, v_{i+1})$. That allows us to check if a non-DAG `G` is
20
+ semiconnected by condensing the graph: i.e. constructing a new graph `H`
21
+ with nodes being the strongly connected components of `G`, and edges
22
+ (scc_1, scc_2) if there is a edge $(v_1, v_2)$ in `G` for some
23
+ $v_1 \in scc_1$ and $v_2 \in scc_2$. That results in a DAG, so we compute
24
+ the topological sort of `H` and check if for every $n$ there is an edge
25
+ $(scc_n, scc_{n+1})$.
26
+
27
+ Parameters
28
+ ----------
29
+ G : NetworkX graph
30
+ A directed graph.
31
+
32
+ Returns
33
+ -------
34
+ semiconnected : bool
35
+ True if the graph is semiconnected, False otherwise.
36
+
37
+ Raises
38
+ ------
39
+ NetworkXNotImplemented
40
+ If the input graph is undirected.
41
+
42
+ NetworkXPointlessConcept
43
+ If the graph is empty.
44
+
45
+ Examples
46
+ --------
47
+ >>> G = nx.path_graph(4, create_using=nx.DiGraph())
48
+ >>> print(nx.is_semiconnected(G))
49
+ True
50
+ >>> G = nx.DiGraph([(1, 2), (3, 2)])
51
+ >>> print(nx.is_semiconnected(G))
52
+ False
53
+
54
+ See Also
55
+ --------
56
+ is_strongly_connected
57
+ is_weakly_connected
58
+ is_connected
59
+ is_biconnected
60
+ """
61
+ if len(G) == 0:
62
+ raise nx.NetworkXPointlessConcept(
63
+ "Connectivity is undefined for the null graph."
64
+ )
65
+
66
+ if not nx.is_weakly_connected(G):
67
+ return False
68
+
69
+ H = nx.condensation(G)
70
+
71
+ return all(H.has_edge(u, v) for u, v in pairwise(nx.topological_sort(H)))
minigpt2/lib/python3.10/site-packages/networkx/algorithms/components/weakly_connected.py ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Weakly connected components."""
2
+
3
+ import networkx as nx
4
+ from networkx.utils.decorators import not_implemented_for
5
+
6
+ __all__ = [
7
+ "number_weakly_connected_components",
8
+ "weakly_connected_components",
9
+ "is_weakly_connected",
10
+ ]
11
+
12
+
13
+ @not_implemented_for("undirected")
14
+ @nx._dispatchable
15
+ def weakly_connected_components(G):
16
+ """Generate weakly connected components of G.
17
+
18
+ Parameters
19
+ ----------
20
+ G : NetworkX graph
21
+ A directed graph
22
+
23
+ Returns
24
+ -------
25
+ comp : generator of sets
26
+ A generator of sets of nodes, one for each weakly connected
27
+ component of G.
28
+
29
+ Raises
30
+ ------
31
+ NetworkXNotImplemented
32
+ If G is undirected.
33
+
34
+ Examples
35
+ --------
36
+ Generate a sorted list of weakly connected components, largest first.
37
+
38
+ >>> G = nx.path_graph(4, create_using=nx.DiGraph())
39
+ >>> nx.add_path(G, [10, 11, 12])
40
+ >>> [
41
+ ... len(c)
42
+ ... for c in sorted(nx.weakly_connected_components(G), key=len, reverse=True)
43
+ ... ]
44
+ [4, 3]
45
+
46
+ If you only want the largest component, it's more efficient to
47
+ use max instead of sort:
48
+
49
+ >>> largest_cc = max(nx.weakly_connected_components(G), key=len)
50
+
51
+ See Also
52
+ --------
53
+ connected_components
54
+ strongly_connected_components
55
+
56
+ Notes
57
+ -----
58
+ For directed graphs only.
59
+
60
+ """
61
+ seen = set()
62
+ n = len(G) # must be outside the loop to avoid performance hit with graph views
63
+ for v in G:
64
+ if v not in seen:
65
+ c = set(_plain_bfs(G, n, v))
66
+ seen.update(c)
67
+ yield c
68
+
69
+
70
+ @not_implemented_for("undirected")
71
+ @nx._dispatchable
72
+ def number_weakly_connected_components(G):
73
+ """Returns the number of weakly connected components in G.
74
+
75
+ Parameters
76
+ ----------
77
+ G : NetworkX graph
78
+ A directed graph.
79
+
80
+ Returns
81
+ -------
82
+ n : integer
83
+ Number of weakly connected components
84
+
85
+ Raises
86
+ ------
87
+ NetworkXNotImplemented
88
+ If G is undirected.
89
+
90
+ Examples
91
+ --------
92
+ >>> G = nx.DiGraph([(0, 1), (2, 1), (3, 4)])
93
+ >>> nx.number_weakly_connected_components(G)
94
+ 2
95
+
96
+ See Also
97
+ --------
98
+ weakly_connected_components
99
+ number_connected_components
100
+ number_strongly_connected_components
101
+
102
+ Notes
103
+ -----
104
+ For directed graphs only.
105
+
106
+ """
107
+ return sum(1 for wcc in weakly_connected_components(G))
108
+
109
+
110
+ @not_implemented_for("undirected")
111
+ @nx._dispatchable
112
+ def is_weakly_connected(G):
113
+ """Test directed graph for weak connectivity.
114
+
115
+ A directed graph is weakly connected if and only if the graph
116
+ is connected when the direction of the edge between nodes is ignored.
117
+
118
+ Note that if a graph is strongly connected (i.e. the graph is connected
119
+ even when we account for directionality), it is by definition weakly
120
+ connected as well.
121
+
122
+ Parameters
123
+ ----------
124
+ G : NetworkX Graph
125
+ A directed graph.
126
+
127
+ Returns
128
+ -------
129
+ connected : bool
130
+ True if the graph is weakly connected, False otherwise.
131
+
132
+ Raises
133
+ ------
134
+ NetworkXNotImplemented
135
+ If G is undirected.
136
+
137
+ Examples
138
+ --------
139
+ >>> G = nx.DiGraph([(0, 1), (2, 1)])
140
+ >>> G.add_node(3)
141
+ >>> nx.is_weakly_connected(G) # node 3 is not connected to the graph
142
+ False
143
+ >>> G.add_edge(2, 3)
144
+ >>> nx.is_weakly_connected(G)
145
+ True
146
+
147
+ See Also
148
+ --------
149
+ is_strongly_connected
150
+ is_semiconnected
151
+ is_connected
152
+ is_biconnected
153
+ weakly_connected_components
154
+
155
+ Notes
156
+ -----
157
+ For directed graphs only.
158
+
159
+ """
160
+ if len(G) == 0:
161
+ raise nx.NetworkXPointlessConcept(
162
+ """Connectivity is undefined for the null graph."""
163
+ )
164
+
165
+ return len(next(weakly_connected_components(G))) == len(G)
166
+
167
+
168
+ def _plain_bfs(G, n, source):
169
+ """A fast BFS node generator
170
+
171
+ The direction of the edge between nodes is ignored.
172
+
173
+ For directed graphs only.
174
+
175
+ """
176
+ Gsucc = G._succ
177
+ Gpred = G._pred
178
+ seen = {source}
179
+ nextlevel = [source]
180
+
181
+ yield source
182
+ while nextlevel:
183
+ thislevel = nextlevel
184
+ nextlevel = []
185
+ for v in thislevel:
186
+ for w in Gsucc[v]:
187
+ if w not in seen:
188
+ seen.add(w)
189
+ nextlevel.append(w)
190
+ yield w
191
+ for w in Gpred[v]:
192
+ if w not in seen:
193
+ seen.add(w)
194
+ nextlevel.append(w)
195
+ yield w
196
+ if len(seen) == n:
197
+ return
minigpt2/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (445 Bytes). View file
 
minigpt2/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/connectivity.cpython-310.pyc ADDED
Binary file (26.7 kB). View file
 
minigpt2/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/cuts.cpython-310.pyc ADDED
Binary file (20.3 kB). View file
 
minigpt2/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/disjoint_paths.cpython-310.pyc ADDED
Binary file (13.1 kB). View file
 
minigpt2/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/edge_augmentation.cpython-310.pyc ADDED
Binary file (37.8 kB). View file
 
minigpt2/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/edge_kcomponents.cpython-310.pyc ADDED
Binary file (18.1 kB). View file
 
minigpt2/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/kcomponents.cpython-310.pyc ADDED
Binary file (7.91 kB). View file
 
minigpt2/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/kcutsets.cpython-310.pyc ADDED
Binary file (6.31 kB). View file
 
minigpt2/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/stoerwagner.cpython-310.pyc ADDED
Binary file (4.5 kB). View file
 
minigpt2/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/utils.cpython-310.pyc ADDED
Binary file (3.18 kB). View file