Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +2 -0
- mgm/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/perm_groups.cpython-310.pyc +3 -0
- mgm/lib/python3.10/site-packages/sympy/combinatorics/fp_groups.py +1354 -0
- mgm/lib/python3.10/site-packages/sympy/combinatorics/galois.py +611 -0
- mgm/lib/python3.10/site-packages/sympy/combinatorics/homomorphisms.py +549 -0
- mgm/lib/python3.10/site-packages/sympy/combinatorics/permutations.py +3115 -0
- mgm/lib/python3.10/site-packages/sympy/combinatorics/prufer.py +435 -0
- mgm/lib/python3.10/site-packages/sympy/combinatorics/rewritingsystem.py +453 -0
- mgm/lib/python3.10/site-packages/sympy/combinatorics/rewritingsystem_fsm.py +60 -0
- mgm/lib/python3.10/site-packages/sympy/combinatorics/schur_number.py +160 -0
- mgm/lib/python3.10/site-packages/sympy/combinatorics/testutil.py +357 -0
- mgm/lib/python3.10/site-packages/sympy/concrete/__pycache__/__init__.cpython-310.pyc +0 -0
- mgm/lib/python3.10/site-packages/sympy/concrete/__pycache__/delta.cpython-310.pyc +0 -0
- mgm/lib/python3.10/site-packages/sympy/concrete/__pycache__/expr_with_limits.cpython-310.pyc +0 -0
- mgm/lib/python3.10/site-packages/sympy/concrete/__pycache__/guess.cpython-310.pyc +0 -0
- mgm/lib/python3.10/site-packages/sympy/concrete/__pycache__/products.cpython-310.pyc +0 -0
- mgm/lib/python3.10/site-packages/sympy/concrete/__pycache__/summations.cpython-310.pyc +0 -0
- mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/__init__.cpython-310.pyc +0 -0
- mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/appellseqs.cpython-310.pyc +0 -0
- mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/compatibility.cpython-310.pyc +0 -0
- mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/constructor.cpython-310.pyc +0 -0
- mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/densearith.cpython-310.pyc +0 -0
- mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/densetools.cpython-310.pyc +0 -0
- mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/distributedmodules.cpython-310.pyc +0 -0
- mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/domainmatrix.cpython-310.pyc +0 -0
- mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/factortools.cpython-310.pyc +0 -0
- mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/fglmtools.cpython-310.pyc +0 -0
- mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/fields.cpython-310.pyc +0 -0
- mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/groebnertools.cpython-310.pyc +0 -0
- mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/polyconfig.cpython-310.pyc +0 -0
- mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/polyerrors.cpython-310.pyc +0 -0
- mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/polymatrix.cpython-310.pyc +0 -0
- mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/polyoptions.cpython-310.pyc +0 -0
- mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/polyroots.cpython-310.pyc +0 -0
- mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/rationaltools.cpython-310.pyc +0 -0
- mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/ring_series.cpython-310.pyc +0 -0
- mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/rings.cpython-310.pyc +0 -0
- mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/rootisolation.cpython-310.pyc +0 -0
- mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/rootoftools.cpython-310.pyc +0 -0
- mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/solvers.cpython-310.pyc +0 -0
- mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/sqfreetools.cpython-310.pyc +0 -0
- mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/subresultants_qq_zz.cpython-310.pyc +0 -0
- mgm/lib/python3.10/site-packages/sympy/polys/dispersion.py +212 -0
- mgm/lib/python3.10/site-packages/sympy/polys/domains/__init__.py +57 -0
- mgm/lib/python3.10/site-packages/sympy/polys/domains/algebraicfield.py +607 -0
- mgm/lib/python3.10/site-packages/sympy/polys/domains/characteristiczero.py +15 -0
- mgm/lib/python3.10/site-packages/sympy/polys/domains/compositedomain.py +52 -0
- mgm/lib/python3.10/site-packages/sympy/polys/domains/domain.py +1372 -0
- mgm/lib/python3.10/site-packages/sympy/polys/domains/domainelement.py +38 -0
- mgm/lib/python3.10/site-packages/sympy/polys/domains/expressiondomain.py +278 -0
.gitattributes
CHANGED
|
@@ -1084,3 +1084,5 @@ mantis_evalkit/lib/python3.10/site-packages/pyarrow/libarrow.so.1900 filter=lfs
|
|
| 1084 |
wemm/lib/python3.10/site-packages/nvfuser/_C.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
| 1085 |
mgm/lib/python3.10/site-packages/torchvision/_C.so filter=lfs diff=lfs merge=lfs -text
|
| 1086 |
mgm/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/__pycache__/beam.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 1084 |
wemm/lib/python3.10/site-packages/nvfuser/_C.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
| 1085 |
mgm/lib/python3.10/site-packages/torchvision/_C.so filter=lfs diff=lfs merge=lfs -text
|
| 1086 |
mgm/lib/python3.10/site-packages/sympy/physics/continuum_mechanics/__pycache__/beam.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
|
| 1087 |
+
vila/lib/python3.10/site-packages/opencv_python.libs/libavcodec-402e4b05.so.59.37.100 filter=lfs diff=lfs merge=lfs -text
|
| 1088 |
+
mgm/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/perm_groups.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
|
mgm/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/perm_groups.cpython-310.pyc
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8ea26cdb3987cd5d1b38c2a89abdc7f1b723e712780c0ce3cab3df41e3a9be9d
|
| 3 |
+
size 152902
|
mgm/lib/python3.10/site-packages/sympy/combinatorics/fp_groups.py
ADDED
|
@@ -0,0 +1,1354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Finitely Presented Groups and its algorithms. """
|
| 2 |
+
|
| 3 |
+
from sympy.core.singleton import S
|
| 4 |
+
from sympy.core.symbol import symbols
|
| 5 |
+
from sympy.combinatorics.free_groups import (FreeGroup, FreeGroupElement,
|
| 6 |
+
free_group)
|
| 7 |
+
from sympy.combinatorics.rewritingsystem import RewritingSystem
|
| 8 |
+
from sympy.combinatorics.coset_table import (CosetTable,
|
| 9 |
+
coset_enumeration_r,
|
| 10 |
+
coset_enumeration_c)
|
| 11 |
+
from sympy.combinatorics import PermutationGroup
|
| 12 |
+
from sympy.matrices.normalforms import invariant_factors
|
| 13 |
+
from sympy.matrices import Matrix
|
| 14 |
+
from sympy.polys.polytools import gcd
|
| 15 |
+
from sympy.printing.defaults import DefaultPrinting
|
| 16 |
+
from sympy.utilities import public
|
| 17 |
+
from sympy.utilities.magic import pollute
|
| 18 |
+
|
| 19 |
+
from itertools import product
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
@public
|
| 23 |
+
def fp_group(fr_grp, relators=()):
|
| 24 |
+
_fp_group = FpGroup(fr_grp, relators)
|
| 25 |
+
return (_fp_group,) + tuple(_fp_group._generators)
|
| 26 |
+
|
| 27 |
+
@public
|
| 28 |
+
def xfp_group(fr_grp, relators=()):
|
| 29 |
+
_fp_group = FpGroup(fr_grp, relators)
|
| 30 |
+
return (_fp_group, _fp_group._generators)
|
| 31 |
+
|
| 32 |
+
# Does not work. Both symbols and pollute are undefined. Never tested.
|
| 33 |
+
@public
|
| 34 |
+
def vfp_group(fr_grpm, relators):
|
| 35 |
+
_fp_group = FpGroup(symbols, relators)
|
| 36 |
+
pollute([sym.name for sym in _fp_group.symbols], _fp_group.generators)
|
| 37 |
+
return _fp_group
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def _parse_relators(rels):
|
| 41 |
+
"""Parse the passed relators."""
|
| 42 |
+
return rels
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
###############################################################################
|
| 46 |
+
# FINITELY PRESENTED GROUPS #
|
| 47 |
+
###############################################################################
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
class FpGroup(DefaultPrinting):
|
| 51 |
+
"""
|
| 52 |
+
The FpGroup would take a FreeGroup and a list/tuple of relators, the
|
| 53 |
+
relators would be specified in such a way that each of them be equal to the
|
| 54 |
+
identity of the provided free group.
|
| 55 |
+
|
| 56 |
+
"""
|
| 57 |
+
is_group = True
|
| 58 |
+
is_FpGroup = True
|
| 59 |
+
is_PermutationGroup = False
|
| 60 |
+
|
| 61 |
+
def __init__(self, fr_grp, relators):
|
| 62 |
+
relators = _parse_relators(relators)
|
| 63 |
+
self.free_group = fr_grp
|
| 64 |
+
self.relators = relators
|
| 65 |
+
self.generators = self._generators()
|
| 66 |
+
self.dtype = type("FpGroupElement", (FpGroupElement,), {"group": self})
|
| 67 |
+
|
| 68 |
+
# CosetTable instance on identity subgroup
|
| 69 |
+
self._coset_table = None
|
| 70 |
+
# returns whether coset table on identity subgroup
|
| 71 |
+
# has been standardized
|
| 72 |
+
self._is_standardized = False
|
| 73 |
+
|
| 74 |
+
self._order = None
|
| 75 |
+
self._center = None
|
| 76 |
+
|
| 77 |
+
self._rewriting_system = RewritingSystem(self)
|
| 78 |
+
self._perm_isomorphism = None
|
| 79 |
+
return
|
| 80 |
+
|
| 81 |
+
def _generators(self):
|
| 82 |
+
return self.free_group.generators
|
| 83 |
+
|
| 84 |
+
def make_confluent(self):
|
| 85 |
+
'''
|
| 86 |
+
Try to make the group's rewriting system confluent
|
| 87 |
+
|
| 88 |
+
'''
|
| 89 |
+
self._rewriting_system.make_confluent()
|
| 90 |
+
return
|
| 91 |
+
|
| 92 |
+
def reduce(self, word):
|
| 93 |
+
'''
|
| 94 |
+
Return the reduced form of `word` in `self` according to the group's
|
| 95 |
+
rewriting system. If it's confluent, the reduced form is the unique normal
|
| 96 |
+
form of the word in the group.
|
| 97 |
+
|
| 98 |
+
'''
|
| 99 |
+
return self._rewriting_system.reduce(word)
|
| 100 |
+
|
| 101 |
+
def equals(self, word1, word2):
|
| 102 |
+
'''
|
| 103 |
+
Compare `word1` and `word2` for equality in the group
|
| 104 |
+
using the group's rewriting system. If the system is
|
| 105 |
+
confluent, the returned answer is necessarily correct.
|
| 106 |
+
(If it is not, `False` could be returned in some cases
|
| 107 |
+
where in fact `word1 == word2`)
|
| 108 |
+
|
| 109 |
+
'''
|
| 110 |
+
if self.reduce(word1*word2**-1) == self.identity:
|
| 111 |
+
return True
|
| 112 |
+
elif self._rewriting_system.is_confluent:
|
| 113 |
+
return False
|
| 114 |
+
return None
|
| 115 |
+
|
| 116 |
+
@property
|
| 117 |
+
def identity(self):
|
| 118 |
+
return self.free_group.identity
|
| 119 |
+
|
| 120 |
+
def __contains__(self, g):
|
| 121 |
+
return g in self.free_group
|
| 122 |
+
|
| 123 |
+
def subgroup(self, gens, C=None, homomorphism=False):
|
| 124 |
+
'''
|
| 125 |
+
Return the subgroup generated by `gens` using the
|
| 126 |
+
Reidemeister-Schreier algorithm
|
| 127 |
+
homomorphism -- When set to True, return a dictionary containing the images
|
| 128 |
+
of the presentation generators in the original group.
|
| 129 |
+
|
| 130 |
+
Examples
|
| 131 |
+
========
|
| 132 |
+
|
| 133 |
+
>>> from sympy.combinatorics.fp_groups import FpGroup
|
| 134 |
+
>>> from sympy.combinatorics import free_group
|
| 135 |
+
>>> F, x, y = free_group("x, y")
|
| 136 |
+
>>> f = FpGroup(F, [x**3, y**5, (x*y)**2])
|
| 137 |
+
>>> H = [x*y, x**-1*y**-1*x*y*x]
|
| 138 |
+
>>> K, T = f.subgroup(H, homomorphism=True)
|
| 139 |
+
>>> T(K.generators)
|
| 140 |
+
[x*y, x**-1*y**2*x**-1]
|
| 141 |
+
|
| 142 |
+
'''
|
| 143 |
+
|
| 144 |
+
if not all(isinstance(g, FreeGroupElement) for g in gens):
|
| 145 |
+
raise ValueError("Generators must be `FreeGroupElement`s")
|
| 146 |
+
if not all(g.group == self.free_group for g in gens):
|
| 147 |
+
raise ValueError("Given generators are not members of the group")
|
| 148 |
+
if homomorphism:
|
| 149 |
+
g, rels, _gens = reidemeister_presentation(self, gens, C=C, homomorphism=True)
|
| 150 |
+
else:
|
| 151 |
+
g, rels = reidemeister_presentation(self, gens, C=C)
|
| 152 |
+
if g:
|
| 153 |
+
g = FpGroup(g[0].group, rels)
|
| 154 |
+
else:
|
| 155 |
+
g = FpGroup(free_group('')[0], [])
|
| 156 |
+
if homomorphism:
|
| 157 |
+
from sympy.combinatorics.homomorphisms import homomorphism
|
| 158 |
+
return g, homomorphism(g, self, g.generators, _gens, check=False)
|
| 159 |
+
return g
|
| 160 |
+
|
| 161 |
+
def coset_enumeration(self, H, strategy="relator_based", max_cosets=None,
|
| 162 |
+
draft=None, incomplete=False):
|
| 163 |
+
"""
|
| 164 |
+
Return an instance of ``coset table``, when Todd-Coxeter algorithm is
|
| 165 |
+
run over the ``self`` with ``H`` as subgroup, using ``strategy``
|
| 166 |
+
argument as strategy. The returned coset table is compressed but not
|
| 167 |
+
standardized.
|
| 168 |
+
|
| 169 |
+
An instance of `CosetTable` for `fp_grp` can be passed as the keyword
|
| 170 |
+
argument `draft` in which case the coset enumeration will start with
|
| 171 |
+
that instance and attempt to complete it.
|
| 172 |
+
|
| 173 |
+
When `incomplete` is `True` and the function is unable to complete for
|
| 174 |
+
some reason, the partially complete table will be returned.
|
| 175 |
+
|
| 176 |
+
"""
|
| 177 |
+
if not max_cosets:
|
| 178 |
+
max_cosets = CosetTable.coset_table_max_limit
|
| 179 |
+
if strategy == 'relator_based':
|
| 180 |
+
C = coset_enumeration_r(self, H, max_cosets=max_cosets,
|
| 181 |
+
draft=draft, incomplete=incomplete)
|
| 182 |
+
else:
|
| 183 |
+
C = coset_enumeration_c(self, H, max_cosets=max_cosets,
|
| 184 |
+
draft=draft, incomplete=incomplete)
|
| 185 |
+
if C.is_complete():
|
| 186 |
+
C.compress()
|
| 187 |
+
return C
|
| 188 |
+
|
| 189 |
+
def standardize_coset_table(self):
|
| 190 |
+
"""
|
| 191 |
+
Standardized the coset table ``self`` and makes the internal variable
|
| 192 |
+
``_is_standardized`` equal to ``True``.
|
| 193 |
+
|
| 194 |
+
"""
|
| 195 |
+
self._coset_table.standardize()
|
| 196 |
+
self._is_standardized = True
|
| 197 |
+
|
| 198 |
+
def coset_table(self, H, strategy="relator_based", max_cosets=None,
|
| 199 |
+
draft=None, incomplete=False):
|
| 200 |
+
"""
|
| 201 |
+
Return the mathematical coset table of ``self`` in ``H``.
|
| 202 |
+
|
| 203 |
+
"""
|
| 204 |
+
if not H:
|
| 205 |
+
if self._coset_table is not None:
|
| 206 |
+
if not self._is_standardized:
|
| 207 |
+
self.standardize_coset_table()
|
| 208 |
+
else:
|
| 209 |
+
C = self.coset_enumeration([], strategy, max_cosets=max_cosets,
|
| 210 |
+
draft=draft, incomplete=incomplete)
|
| 211 |
+
self._coset_table = C
|
| 212 |
+
self.standardize_coset_table()
|
| 213 |
+
return self._coset_table.table
|
| 214 |
+
else:
|
| 215 |
+
C = self.coset_enumeration(H, strategy, max_cosets=max_cosets,
|
| 216 |
+
draft=draft, incomplete=incomplete)
|
| 217 |
+
C.standardize()
|
| 218 |
+
return C.table
|
| 219 |
+
|
| 220 |
+
def order(self, strategy="relator_based"):
|
| 221 |
+
"""
|
| 222 |
+
Returns the order of the finitely presented group ``self``. It uses
|
| 223 |
+
the coset enumeration with identity group as subgroup, i.e ``H=[]``.
|
| 224 |
+
|
| 225 |
+
Examples
|
| 226 |
+
========
|
| 227 |
+
|
| 228 |
+
>>> from sympy.combinatorics import free_group
|
| 229 |
+
>>> from sympy.combinatorics.fp_groups import FpGroup
|
| 230 |
+
>>> F, x, y = free_group("x, y")
|
| 231 |
+
>>> f = FpGroup(F, [x, y**2])
|
| 232 |
+
>>> f.order(strategy="coset_table_based")
|
| 233 |
+
2
|
| 234 |
+
|
| 235 |
+
"""
|
| 236 |
+
if self._order is not None:
|
| 237 |
+
return self._order
|
| 238 |
+
if self._coset_table is not None:
|
| 239 |
+
self._order = len(self._coset_table.table)
|
| 240 |
+
elif len(self.relators) == 0:
|
| 241 |
+
self._order = self.free_group.order()
|
| 242 |
+
elif len(self.generators) == 1:
|
| 243 |
+
self._order = abs(gcd([r.array_form[0][1] for r in self.relators]))
|
| 244 |
+
elif self._is_infinite():
|
| 245 |
+
self._order = S.Infinity
|
| 246 |
+
else:
|
| 247 |
+
gens, C = self._finite_index_subgroup()
|
| 248 |
+
if C:
|
| 249 |
+
ind = len(C.table)
|
| 250 |
+
self._order = ind*self.subgroup(gens, C=C).order()
|
| 251 |
+
else:
|
| 252 |
+
self._order = self.index([])
|
| 253 |
+
return self._order
|
| 254 |
+
|
| 255 |
+
def _is_infinite(self):
|
| 256 |
+
'''
|
| 257 |
+
Test if the group is infinite. Return `True` if the test succeeds
|
| 258 |
+
and `None` otherwise
|
| 259 |
+
|
| 260 |
+
'''
|
| 261 |
+
used_gens = set()
|
| 262 |
+
for r in self.relators:
|
| 263 |
+
used_gens.update(r.contains_generators())
|
| 264 |
+
if not set(self.generators) <= used_gens:
|
| 265 |
+
return True
|
| 266 |
+
# Abelianisation test: check is the abelianisation is infinite
|
| 267 |
+
abelian_rels = []
|
| 268 |
+
for rel in self.relators:
|
| 269 |
+
abelian_rels.append([rel.exponent_sum(g) for g in self.generators])
|
| 270 |
+
m = Matrix(Matrix(abelian_rels))
|
| 271 |
+
if 0 in invariant_factors(m):
|
| 272 |
+
return True
|
| 273 |
+
else:
|
| 274 |
+
return None
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
def _finite_index_subgroup(self, s=None):
|
| 278 |
+
'''
|
| 279 |
+
Find the elements of `self` that generate a finite index subgroup
|
| 280 |
+
and, if found, return the list of elements and the coset table of `self` by
|
| 281 |
+
the subgroup, otherwise return `(None, None)`
|
| 282 |
+
|
| 283 |
+
'''
|
| 284 |
+
gen = self.most_frequent_generator()
|
| 285 |
+
rels = list(self.generators)
|
| 286 |
+
rels.extend(self.relators)
|
| 287 |
+
if not s:
|
| 288 |
+
if len(self.generators) == 2:
|
| 289 |
+
s = [gen] + [g for g in self.generators if g != gen]
|
| 290 |
+
else:
|
| 291 |
+
rand = self.free_group.identity
|
| 292 |
+
i = 0
|
| 293 |
+
while ((rand in rels or rand**-1 in rels or rand.is_identity)
|
| 294 |
+
and i<10):
|
| 295 |
+
rand = self.random()
|
| 296 |
+
i += 1
|
| 297 |
+
s = [gen, rand] + [g for g in self.generators if g != gen]
|
| 298 |
+
mid = (len(s)+1)//2
|
| 299 |
+
half1 = s[:mid]
|
| 300 |
+
half2 = s[mid:]
|
| 301 |
+
draft1 = None
|
| 302 |
+
draft2 = None
|
| 303 |
+
m = 200
|
| 304 |
+
C = None
|
| 305 |
+
while not C and (m/2 < CosetTable.coset_table_max_limit):
|
| 306 |
+
m = min(m, CosetTable.coset_table_max_limit)
|
| 307 |
+
draft1 = self.coset_enumeration(half1, max_cosets=m,
|
| 308 |
+
draft=draft1, incomplete=True)
|
| 309 |
+
if draft1.is_complete():
|
| 310 |
+
C = draft1
|
| 311 |
+
half = half1
|
| 312 |
+
else:
|
| 313 |
+
draft2 = self.coset_enumeration(half2, max_cosets=m,
|
| 314 |
+
draft=draft2, incomplete=True)
|
| 315 |
+
if draft2.is_complete():
|
| 316 |
+
C = draft2
|
| 317 |
+
half = half2
|
| 318 |
+
if not C:
|
| 319 |
+
m *= 2
|
| 320 |
+
if not C:
|
| 321 |
+
return None, None
|
| 322 |
+
C.compress()
|
| 323 |
+
return half, C
|
| 324 |
+
|
| 325 |
+
def most_frequent_generator(self):
|
| 326 |
+
gens = self.generators
|
| 327 |
+
rels = self.relators
|
| 328 |
+
freqs = [sum(r.generator_count(g) for r in rels) for g in gens]
|
| 329 |
+
return gens[freqs.index(max(freqs))]
|
| 330 |
+
|
| 331 |
+
def random(self):
|
| 332 |
+
import random
|
| 333 |
+
r = self.free_group.identity
|
| 334 |
+
for i in range(random.randint(2,3)):
|
| 335 |
+
r = r*random.choice(self.generators)**random.choice([1,-1])
|
| 336 |
+
return r
|
| 337 |
+
|
| 338 |
+
def index(self, H, strategy="relator_based"):
|
| 339 |
+
"""
|
| 340 |
+
Return the index of subgroup ``H`` in group ``self``.
|
| 341 |
+
|
| 342 |
+
Examples
|
| 343 |
+
========
|
| 344 |
+
|
| 345 |
+
>>> from sympy.combinatorics import free_group
|
| 346 |
+
>>> from sympy.combinatorics.fp_groups import FpGroup
|
| 347 |
+
>>> F, x, y = free_group("x, y")
|
| 348 |
+
>>> f = FpGroup(F, [x**5, y**4, y*x*y**3*x**3])
|
| 349 |
+
>>> f.index([x])
|
| 350 |
+
4
|
| 351 |
+
|
| 352 |
+
"""
|
| 353 |
+
# TODO: use |G:H| = |G|/|H| (currently H can't be made into a group)
|
| 354 |
+
# when we know |G| and |H|
|
| 355 |
+
|
| 356 |
+
if H == []:
|
| 357 |
+
return self.order()
|
| 358 |
+
else:
|
| 359 |
+
C = self.coset_enumeration(H, strategy)
|
| 360 |
+
return len(C.table)
|
| 361 |
+
|
| 362 |
+
def __str__(self):
|
| 363 |
+
if self.free_group.rank > 30:
|
| 364 |
+
str_form = "<fp group with %s generators>" % self.free_group.rank
|
| 365 |
+
else:
|
| 366 |
+
str_form = "<fp group on the generators %s>" % str(self.generators)
|
| 367 |
+
return str_form
|
| 368 |
+
|
| 369 |
+
__repr__ = __str__
|
| 370 |
+
|
| 371 |
+
#==============================================================================
|
| 372 |
+
# PERMUTATION GROUP METHODS
|
| 373 |
+
#==============================================================================
|
| 374 |
+
|
| 375 |
+
def _to_perm_group(self):
|
| 376 |
+
'''
|
| 377 |
+
Return an isomorphic permutation group and the isomorphism.
|
| 378 |
+
The implementation is dependent on coset enumeration so
|
| 379 |
+
will only terminate for finite groups.
|
| 380 |
+
|
| 381 |
+
'''
|
| 382 |
+
from sympy.combinatorics import Permutation
|
| 383 |
+
from sympy.combinatorics.homomorphisms import homomorphism
|
| 384 |
+
if self.order() is S.Infinity:
|
| 385 |
+
raise NotImplementedError("Permutation presentation of infinite "
|
| 386 |
+
"groups is not implemented")
|
| 387 |
+
if self._perm_isomorphism:
|
| 388 |
+
T = self._perm_isomorphism
|
| 389 |
+
P = T.image()
|
| 390 |
+
else:
|
| 391 |
+
C = self.coset_table([])
|
| 392 |
+
gens = self.generators
|
| 393 |
+
images = [[C[i][2*gens.index(g)] for i in range(len(C))] for g in gens]
|
| 394 |
+
images = [Permutation(i) for i in images]
|
| 395 |
+
P = PermutationGroup(images)
|
| 396 |
+
T = homomorphism(self, P, gens, images, check=False)
|
| 397 |
+
self._perm_isomorphism = T
|
| 398 |
+
return P, T
|
| 399 |
+
|
| 400 |
+
def _perm_group_list(self, method_name, *args):
|
| 401 |
+
'''
|
| 402 |
+
Given the name of a `PermutationGroup` method (returning a subgroup
|
| 403 |
+
or a list of subgroups) and (optionally) additional arguments it takes,
|
| 404 |
+
return a list or a list of lists containing the generators of this (or
|
| 405 |
+
these) subgroups in terms of the generators of `self`.
|
| 406 |
+
|
| 407 |
+
'''
|
| 408 |
+
P, T = self._to_perm_group()
|
| 409 |
+
perm_result = getattr(P, method_name)(*args)
|
| 410 |
+
single = False
|
| 411 |
+
if isinstance(perm_result, PermutationGroup):
|
| 412 |
+
perm_result, single = [perm_result], True
|
| 413 |
+
result = []
|
| 414 |
+
for group in perm_result:
|
| 415 |
+
gens = group.generators
|
| 416 |
+
result.append(T.invert(gens))
|
| 417 |
+
return result[0] if single else result
|
| 418 |
+
|
| 419 |
+
def derived_series(self):
|
| 420 |
+
'''
|
| 421 |
+
Return the list of lists containing the generators
|
| 422 |
+
of the subgroups in the derived series of `self`.
|
| 423 |
+
|
| 424 |
+
'''
|
| 425 |
+
return self._perm_group_list('derived_series')
|
| 426 |
+
|
| 427 |
+
def lower_central_series(self):
|
| 428 |
+
'''
|
| 429 |
+
Return the list of lists containing the generators
|
| 430 |
+
of the subgroups in the lower central series of `self`.
|
| 431 |
+
|
| 432 |
+
'''
|
| 433 |
+
return self._perm_group_list('lower_central_series')
|
| 434 |
+
|
| 435 |
+
def center(self):
|
| 436 |
+
'''
|
| 437 |
+
Return the list of generators of the center of `self`.
|
| 438 |
+
|
| 439 |
+
'''
|
| 440 |
+
return self._perm_group_list('center')
|
| 441 |
+
|
| 442 |
+
|
| 443 |
+
def derived_subgroup(self):
|
| 444 |
+
'''
|
| 445 |
+
Return the list of generators of the derived subgroup of `self`.
|
| 446 |
+
|
| 447 |
+
'''
|
| 448 |
+
return self._perm_group_list('derived_subgroup')
|
| 449 |
+
|
| 450 |
+
|
| 451 |
+
def centralizer(self, other):
|
| 452 |
+
'''
|
| 453 |
+
Return the list of generators of the centralizer of `other`
|
| 454 |
+
(a list of elements of `self`) in `self`.
|
| 455 |
+
|
| 456 |
+
'''
|
| 457 |
+
T = self._to_perm_group()[1]
|
| 458 |
+
other = T(other)
|
| 459 |
+
return self._perm_group_list('centralizer', other)
|
| 460 |
+
|
| 461 |
+
def normal_closure(self, other):
|
| 462 |
+
'''
|
| 463 |
+
Return the list of generators of the normal closure of `other`
|
| 464 |
+
(a list of elements of `self`) in `self`.
|
| 465 |
+
|
| 466 |
+
'''
|
| 467 |
+
T = self._to_perm_group()[1]
|
| 468 |
+
other = T(other)
|
| 469 |
+
return self._perm_group_list('normal_closure', other)
|
| 470 |
+
|
| 471 |
+
def _perm_property(self, attr):
|
| 472 |
+
'''
|
| 473 |
+
Given an attribute of a `PermutationGroup`, return
|
| 474 |
+
its value for a permutation group isomorphic to `self`.
|
| 475 |
+
|
| 476 |
+
'''
|
| 477 |
+
P = self._to_perm_group()[0]
|
| 478 |
+
return getattr(P, attr)
|
| 479 |
+
|
| 480 |
+
@property
|
| 481 |
+
def is_abelian(self):
|
| 482 |
+
'''
|
| 483 |
+
Check if `self` is abelian.
|
| 484 |
+
|
| 485 |
+
'''
|
| 486 |
+
return self._perm_property("is_abelian")
|
| 487 |
+
|
| 488 |
+
@property
|
| 489 |
+
def is_nilpotent(self):
|
| 490 |
+
'''
|
| 491 |
+
Check if `self` is nilpotent.
|
| 492 |
+
|
| 493 |
+
'''
|
| 494 |
+
return self._perm_property("is_nilpotent")
|
| 495 |
+
|
| 496 |
+
@property
|
| 497 |
+
def is_solvable(self):
|
| 498 |
+
'''
|
| 499 |
+
Check if `self` is solvable.
|
| 500 |
+
|
| 501 |
+
'''
|
| 502 |
+
return self._perm_property("is_solvable")
|
| 503 |
+
|
| 504 |
+
@property
|
| 505 |
+
def elements(self):
|
| 506 |
+
'''
|
| 507 |
+
List the elements of `self`.
|
| 508 |
+
|
| 509 |
+
'''
|
| 510 |
+
P, T = self._to_perm_group()
|
| 511 |
+
return T.invert(P.elements)
|
| 512 |
+
|
| 513 |
+
@property
|
| 514 |
+
def is_cyclic(self):
|
| 515 |
+
"""
|
| 516 |
+
Return ``True`` if group is Cyclic.
|
| 517 |
+
|
| 518 |
+
"""
|
| 519 |
+
if len(self.generators) <= 1:
|
| 520 |
+
return True
|
| 521 |
+
try:
|
| 522 |
+
P, T = self._to_perm_group()
|
| 523 |
+
except NotImplementedError:
|
| 524 |
+
raise NotImplementedError("Check for infinite Cyclic group "
|
| 525 |
+
"is not implemented")
|
| 526 |
+
return P.is_cyclic
|
| 527 |
+
|
| 528 |
+
def abelian_invariants(self):
|
| 529 |
+
"""
|
| 530 |
+
Return Abelian Invariants of a group.
|
| 531 |
+
"""
|
| 532 |
+
try:
|
| 533 |
+
P, T = self._to_perm_group()
|
| 534 |
+
except NotImplementedError:
|
| 535 |
+
raise NotImplementedError("abelian invariants is not implemented"
|
| 536 |
+
"for infinite group")
|
| 537 |
+
return P.abelian_invariants()
|
| 538 |
+
|
| 539 |
+
def composition_series(self):
|
| 540 |
+
"""
|
| 541 |
+
Return subnormal series of maximum length for a group.
|
| 542 |
+
"""
|
| 543 |
+
try:
|
| 544 |
+
P, T = self._to_perm_group()
|
| 545 |
+
except NotImplementedError:
|
| 546 |
+
raise NotImplementedError("composition series is not implemented"
|
| 547 |
+
"for infinite group")
|
| 548 |
+
return P.composition_series()
|
| 549 |
+
|
| 550 |
+
|
| 551 |
+
class FpSubgroup(DefaultPrinting):
|
| 552 |
+
'''
|
| 553 |
+
The class implementing a subgroup of an FpGroup or a FreeGroup
|
| 554 |
+
(only finite index subgroups are supported at this point). This
|
| 555 |
+
is to be used if one wishes to check if an element of the original
|
| 556 |
+
group belongs to the subgroup
|
| 557 |
+
|
| 558 |
+
'''
|
| 559 |
+
def __init__(self, G, gens, normal=False):
|
| 560 |
+
super().__init__()
|
| 561 |
+
self.parent = G
|
| 562 |
+
self.generators = list({g for g in gens if g != G.identity})
|
| 563 |
+
self._min_words = None #for use in __contains__
|
| 564 |
+
self.C = None
|
| 565 |
+
self.normal = normal
|
| 566 |
+
|
| 567 |
+
def __contains__(self, g):
|
| 568 |
+
|
| 569 |
+
if isinstance(self.parent, FreeGroup):
|
| 570 |
+
if self._min_words is None:
|
| 571 |
+
# make _min_words - a list of subwords such that
|
| 572 |
+
# g is in the subgroup if and only if it can be
|
| 573 |
+
# partitioned into these subwords. Infinite families of
|
| 574 |
+
# subwords are presented by tuples, e.g. (r, w)
|
| 575 |
+
# stands for the family of subwords r*w**n*r**-1
|
| 576 |
+
|
| 577 |
+
def _process(w):
|
| 578 |
+
# this is to be used before adding new words
|
| 579 |
+
# into _min_words; if the word w is not cyclically
|
| 580 |
+
# reduced, it will generate an infinite family of
|
| 581 |
+
# subwords so should be written as a tuple;
|
| 582 |
+
# if it is, w**-1 should be added to the list
|
| 583 |
+
# as well
|
| 584 |
+
p, r = w.cyclic_reduction(removed=True)
|
| 585 |
+
if not r.is_identity:
|
| 586 |
+
return [(r, p)]
|
| 587 |
+
else:
|
| 588 |
+
return [w, w**-1]
|
| 589 |
+
|
| 590 |
+
# make the initial list
|
| 591 |
+
gens = []
|
| 592 |
+
for w in self.generators:
|
| 593 |
+
if self.normal:
|
| 594 |
+
w = w.cyclic_reduction()
|
| 595 |
+
gens.extend(_process(w))
|
| 596 |
+
|
| 597 |
+
for w1 in gens:
|
| 598 |
+
for w2 in gens:
|
| 599 |
+
# if w1 and w2 are equal or are inverses, continue
|
| 600 |
+
if w1 == w2 or (not isinstance(w1, tuple)
|
| 601 |
+
and w1**-1 == w2):
|
| 602 |
+
continue
|
| 603 |
+
|
| 604 |
+
# if the start of one word is the inverse of the
|
| 605 |
+
# end of the other, their multiple should be added
|
| 606 |
+
# to _min_words because of cancellation
|
| 607 |
+
if isinstance(w1, tuple):
|
| 608 |
+
# start, end
|
| 609 |
+
s1, s2 = w1[0][0], w1[0][0]**-1
|
| 610 |
+
else:
|
| 611 |
+
s1, s2 = w1[0], w1[len(w1)-1]
|
| 612 |
+
|
| 613 |
+
if isinstance(w2, tuple):
|
| 614 |
+
# start, end
|
| 615 |
+
r1, r2 = w2[0][0], w2[0][0]**-1
|
| 616 |
+
else:
|
| 617 |
+
r1, r2 = w2[0], w2[len(w1)-1]
|
| 618 |
+
|
| 619 |
+
# p1 and p2 are w1 and w2 or, in case when
|
| 620 |
+
# w1 or w2 is an infinite family, a representative
|
| 621 |
+
p1, p2 = w1, w2
|
| 622 |
+
if isinstance(w1, tuple):
|
| 623 |
+
p1 = w1[0]*w1[1]*w1[0]**-1
|
| 624 |
+
if isinstance(w2, tuple):
|
| 625 |
+
p2 = w2[0]*w2[1]*w2[0]**-1
|
| 626 |
+
|
| 627 |
+
# add the product of the words to the list is necessary
|
| 628 |
+
if r1**-1 == s2 and not (p1*p2).is_identity:
|
| 629 |
+
new = _process(p1*p2)
|
| 630 |
+
if new not in gens:
|
| 631 |
+
gens.extend(new)
|
| 632 |
+
|
| 633 |
+
if r2**-1 == s1 and not (p2*p1).is_identity:
|
| 634 |
+
new = _process(p2*p1)
|
| 635 |
+
if new not in gens:
|
| 636 |
+
gens.extend(new)
|
| 637 |
+
|
| 638 |
+
self._min_words = gens
|
| 639 |
+
|
| 640 |
+
min_words = self._min_words
|
| 641 |
+
|
| 642 |
+
def _is_subword(w):
|
| 643 |
+
# check if w is a word in _min_words or one of
|
| 644 |
+
# the infinite families in it
|
| 645 |
+
w, r = w.cyclic_reduction(removed=True)
|
| 646 |
+
if r.is_identity or self.normal:
|
| 647 |
+
return w in min_words
|
| 648 |
+
else:
|
| 649 |
+
t = [s[1] for s in min_words if isinstance(s, tuple)
|
| 650 |
+
and s[0] == r]
|
| 651 |
+
return [s for s in t if w.power_of(s)] != []
|
| 652 |
+
|
| 653 |
+
# store the solution of words for which the result of
|
| 654 |
+
# _word_break (below) is known
|
| 655 |
+
known = {}
|
| 656 |
+
|
| 657 |
+
def _word_break(w):
|
| 658 |
+
# check if w can be written as a product of words
|
| 659 |
+
# in min_words
|
| 660 |
+
if len(w) == 0:
|
| 661 |
+
return True
|
| 662 |
+
i = 0
|
| 663 |
+
while i < len(w):
|
| 664 |
+
i += 1
|
| 665 |
+
prefix = w.subword(0, i)
|
| 666 |
+
if not _is_subword(prefix):
|
| 667 |
+
continue
|
| 668 |
+
rest = w.subword(i, len(w))
|
| 669 |
+
if rest not in known:
|
| 670 |
+
known[rest] = _word_break(rest)
|
| 671 |
+
if known[rest]:
|
| 672 |
+
return True
|
| 673 |
+
return False
|
| 674 |
+
|
| 675 |
+
if self.normal:
|
| 676 |
+
g = g.cyclic_reduction()
|
| 677 |
+
return _word_break(g)
|
| 678 |
+
else:
|
| 679 |
+
if self.C is None:
|
| 680 |
+
C = self.parent.coset_enumeration(self.generators)
|
| 681 |
+
self.C = C
|
| 682 |
+
i = 0
|
| 683 |
+
C = self.C
|
| 684 |
+
for j in range(len(g)):
|
| 685 |
+
i = C.table[i][C.A_dict[g[j]]]
|
| 686 |
+
return i == 0
|
| 687 |
+
|
| 688 |
+
def order(self):
|
| 689 |
+
if not self.generators:
|
| 690 |
+
return S.One
|
| 691 |
+
if isinstance(self.parent, FreeGroup):
|
| 692 |
+
return S.Infinity
|
| 693 |
+
if self.C is None:
|
| 694 |
+
C = self.parent.coset_enumeration(self.generators)
|
| 695 |
+
self.C = C
|
| 696 |
+
# This is valid because `len(self.C.table)` (the index of the subgroup)
|
| 697 |
+
# will always be finite - otherwise coset enumeration doesn't terminate
|
| 698 |
+
return self.parent.order()/len(self.C.table)
|
| 699 |
+
|
| 700 |
+
def to_FpGroup(self):
|
| 701 |
+
if isinstance(self.parent, FreeGroup):
|
| 702 |
+
gen_syms = [('x_%d'%i) for i in range(len(self.generators))]
|
| 703 |
+
return free_group(', '.join(gen_syms))[0]
|
| 704 |
+
return self.parent.subgroup(C=self.C)
|
| 705 |
+
|
| 706 |
+
def __str__(self):
|
| 707 |
+
if len(self.generators) > 30:
|
| 708 |
+
str_form = "<fp subgroup with %s generators>" % len(self.generators)
|
| 709 |
+
else:
|
| 710 |
+
str_form = "<fp subgroup on the generators %s>" % str(self.generators)
|
| 711 |
+
return str_form
|
| 712 |
+
|
| 713 |
+
__repr__ = __str__
|
| 714 |
+
|
| 715 |
+
|
| 716 |
+
###############################################################################
|
| 717 |
+
# LOW INDEX SUBGROUPS #
|
| 718 |
+
###############################################################################
|
| 719 |
+
|
| 720 |
+
def low_index_subgroups(G, N, Y=()):
|
| 721 |
+
"""
|
| 722 |
+
Implements the Low Index Subgroups algorithm, i.e find all subgroups of
|
| 723 |
+
``G`` upto a given index ``N``. This implements the method described in
|
| 724 |
+
[Sim94]. This procedure involves a backtrack search over incomplete Coset
|
| 725 |
+
Tables, rather than over forced coincidences.
|
| 726 |
+
|
| 727 |
+
Parameters
|
| 728 |
+
==========
|
| 729 |
+
|
| 730 |
+
G: An FpGroup < X|R >
|
| 731 |
+
N: positive integer, representing the maximum index value for subgroups
|
| 732 |
+
Y: (an optional argument) specifying a list of subgroup generators, such
|
| 733 |
+
that each of the resulting subgroup contains the subgroup generated by Y.
|
| 734 |
+
|
| 735 |
+
Examples
|
| 736 |
+
========
|
| 737 |
+
|
| 738 |
+
>>> from sympy.combinatorics import free_group
|
| 739 |
+
>>> from sympy.combinatorics.fp_groups import FpGroup, low_index_subgroups
|
| 740 |
+
>>> F, x, y = free_group("x, y")
|
| 741 |
+
>>> f = FpGroup(F, [x**2, y**3, (x*y)**4])
|
| 742 |
+
>>> L = low_index_subgroups(f, 4)
|
| 743 |
+
>>> for coset_table in L:
|
| 744 |
+
... print(coset_table.table)
|
| 745 |
+
[[0, 0, 0, 0]]
|
| 746 |
+
[[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 3, 3]]
|
| 747 |
+
[[0, 0, 1, 2], [2, 2, 2, 0], [1, 1, 0, 1]]
|
| 748 |
+
[[1, 1, 0, 0], [0, 0, 1, 1]]
|
| 749 |
+
|
| 750 |
+
References
|
| 751 |
+
==========
|
| 752 |
+
|
| 753 |
+
.. [1] Holt, D., Eick, B., O'Brien, E.
|
| 754 |
+
"Handbook of Computational Group Theory"
|
| 755 |
+
Section 5.4
|
| 756 |
+
|
| 757 |
+
.. [2] Marston Conder and Peter Dobcsanyi
|
| 758 |
+
"Applications and Adaptions of the Low Index Subgroups Procedure"
|
| 759 |
+
|
| 760 |
+
"""
|
| 761 |
+
C = CosetTable(G, [])
|
| 762 |
+
R = G.relators
|
| 763 |
+
# length chosen for the length of the short relators
|
| 764 |
+
len_short_rel = 5
|
| 765 |
+
# elements of R2 only checked at the last step for complete
|
| 766 |
+
# coset tables
|
| 767 |
+
R2 = {rel for rel in R if len(rel) > len_short_rel}
|
| 768 |
+
# elements of R1 are used in inner parts of the process to prune
|
| 769 |
+
# branches of the search tree,
|
| 770 |
+
R1 = {rel.identity_cyclic_reduction() for rel in set(R) - R2}
|
| 771 |
+
R1_c_list = C.conjugates(R1)
|
| 772 |
+
S = []
|
| 773 |
+
descendant_subgroups(S, C, R1_c_list, C.A[0], R2, N, Y)
|
| 774 |
+
return S
|
| 775 |
+
|
| 776 |
+
|
| 777 |
+
def descendant_subgroups(S, C, R1_c_list, x, R2, N, Y):
|
| 778 |
+
A_dict = C.A_dict
|
| 779 |
+
A_dict_inv = C.A_dict_inv
|
| 780 |
+
if C.is_complete():
|
| 781 |
+
# if C is complete then it only needs to test
|
| 782 |
+
# whether the relators in R2 are satisfied
|
| 783 |
+
for w, alpha in product(R2, C.omega):
|
| 784 |
+
if not C.scan_check(alpha, w):
|
| 785 |
+
return
|
| 786 |
+
# relators in R2 are satisfied, append the table to list
|
| 787 |
+
S.append(C)
|
| 788 |
+
else:
|
| 789 |
+
# find the first undefined entry in Coset Table
|
| 790 |
+
for alpha, x in product(range(len(C.table)), C.A):
|
| 791 |
+
if C.table[alpha][A_dict[x]] is None:
|
| 792 |
+
# this is "x" in pseudo-code (using "y" makes it clear)
|
| 793 |
+
undefined_coset, undefined_gen = alpha, x
|
| 794 |
+
break
|
| 795 |
+
# for filling up the undefine entry we try all possible values
|
| 796 |
+
# of beta in Omega or beta = n where beta^(undefined_gen^-1) is undefined
|
| 797 |
+
reach = C.omega + [C.n]
|
| 798 |
+
for beta in reach:
|
| 799 |
+
if beta < N:
|
| 800 |
+
if beta == C.n or C.table[beta][A_dict_inv[undefined_gen]] is None:
|
| 801 |
+
try_descendant(S, C, R1_c_list, R2, N, undefined_coset, \
|
| 802 |
+
undefined_gen, beta, Y)
|
| 803 |
+
|
| 804 |
+
|
| 805 |
+
def try_descendant(S, C, R1_c_list, R2, N, alpha, x, beta, Y):
|
| 806 |
+
r"""
|
| 807 |
+
Solves the problem of trying out each individual possibility
|
| 808 |
+
for `\alpha^x.
|
| 809 |
+
|
| 810 |
+
"""
|
| 811 |
+
D = C.copy()
|
| 812 |
+
if beta == D.n and beta < N:
|
| 813 |
+
D.table.append([None]*len(D.A))
|
| 814 |
+
D.p.append(beta)
|
| 815 |
+
D.table[alpha][D.A_dict[x]] = beta
|
| 816 |
+
D.table[beta][D.A_dict_inv[x]] = alpha
|
| 817 |
+
D.deduction_stack.append((alpha, x))
|
| 818 |
+
if not D.process_deductions_check(R1_c_list[D.A_dict[x]], \
|
| 819 |
+
R1_c_list[D.A_dict_inv[x]]):
|
| 820 |
+
return
|
| 821 |
+
for w in Y:
|
| 822 |
+
if not D.scan_check(0, w):
|
| 823 |
+
return
|
| 824 |
+
if first_in_class(D, Y):
|
| 825 |
+
descendant_subgroups(S, D, R1_c_list, x, R2, N, Y)
|
| 826 |
+
|
| 827 |
+
|
| 828 |
+
def first_in_class(C, Y=()):
|
| 829 |
+
"""
|
| 830 |
+
Checks whether the subgroup ``H=G1`` corresponding to the Coset Table
|
| 831 |
+
could possibly be the canonical representative of its conjugacy class.
|
| 832 |
+
|
| 833 |
+
Parameters
|
| 834 |
+
==========
|
| 835 |
+
|
| 836 |
+
C: CosetTable
|
| 837 |
+
|
| 838 |
+
Returns
|
| 839 |
+
=======
|
| 840 |
+
|
| 841 |
+
bool: True/False
|
| 842 |
+
|
| 843 |
+
If this returns False, then no descendant of C can have that property, and
|
| 844 |
+
so we can abandon C. If it returns True, then we need to process further
|
| 845 |
+
the node of the search tree corresponding to C, and so we call
|
| 846 |
+
``descendant_subgroups`` recursively on C.
|
| 847 |
+
|
| 848 |
+
Examples
|
| 849 |
+
========
|
| 850 |
+
|
| 851 |
+
>>> from sympy.combinatorics import free_group
|
| 852 |
+
>>> from sympy.combinatorics.fp_groups import FpGroup, CosetTable, first_in_class
|
| 853 |
+
>>> F, x, y = free_group("x, y")
|
| 854 |
+
>>> f = FpGroup(F, [x**2, y**3, (x*y)**4])
|
| 855 |
+
>>> C = CosetTable(f, [])
|
| 856 |
+
>>> C.table = [[0, 0, None, None]]
|
| 857 |
+
>>> first_in_class(C)
|
| 858 |
+
True
|
| 859 |
+
>>> C.table = [[1, 1, 1, None], [0, 0, None, 1]]; C.p = [0, 1]
|
| 860 |
+
>>> first_in_class(C)
|
| 861 |
+
True
|
| 862 |
+
>>> C.table = [[1, 1, 2, 1], [0, 0, 0, None], [None, None, None, 0]]
|
| 863 |
+
>>> C.p = [0, 1, 2]
|
| 864 |
+
>>> first_in_class(C)
|
| 865 |
+
False
|
| 866 |
+
>>> C.table = [[1, 1, 1, 2], [0, 0, 2, 0], [2, None, 0, 1]]
|
| 867 |
+
>>> first_in_class(C)
|
| 868 |
+
False
|
| 869 |
+
|
| 870 |
+
# TODO:: Sims points out in [Sim94] that performance can be improved by
|
| 871 |
+
# remembering some of the information computed by ``first_in_class``. If
|
| 872 |
+
# the ``continue alpha`` statement is executed at line 14, then the same thing
|
| 873 |
+
# will happen for that value of alpha in any descendant of the table C, and so
|
| 874 |
+
# the values the values of alpha for which this occurs could profitably be
|
| 875 |
+
# stored and passed through to the descendants of C. Of course this would
|
| 876 |
+
# make the code more complicated.
|
| 877 |
+
|
| 878 |
+
# The code below is taken directly from the function on page 208 of [Sim94]
|
| 879 |
+
# nu[alpha]
|
| 880 |
+
|
| 881 |
+
"""
|
| 882 |
+
n = C.n
|
| 883 |
+
# lamda is the largest numbered point in Omega_c_alpha which is currently defined
|
| 884 |
+
lamda = -1
|
| 885 |
+
# for alpha in Omega_c, nu[alpha] is the point in Omega_c_alpha corresponding to alpha
|
| 886 |
+
nu = [None]*n
|
| 887 |
+
# for alpha in Omega_c_alpha, mu[alpha] is the point in Omega_c corresponding to alpha
|
| 888 |
+
mu = [None]*n
|
| 889 |
+
# mutually nu and mu are the mutually-inverse equivalence maps between
|
| 890 |
+
# Omega_c_alpha and Omega_c
|
| 891 |
+
next_alpha = False
|
| 892 |
+
# For each 0!=alpha in [0 .. nc-1], we start by constructing the equivalent
|
| 893 |
+
# standardized coset table C_alpha corresponding to H_alpha
|
| 894 |
+
for alpha in range(1, n):
|
| 895 |
+
# reset nu to "None" after previous value of alpha
|
| 896 |
+
for beta in range(lamda+1):
|
| 897 |
+
nu[mu[beta]] = None
|
| 898 |
+
# we only want to reject our current table in favour of a preceding
|
| 899 |
+
# table in the ordering in which 1 is replaced by alpha, if the subgroup
|
| 900 |
+
# G_alpha corresponding to this preceding table definitely contains the
|
| 901 |
+
# given subgroup
|
| 902 |
+
for w in Y:
|
| 903 |
+
# TODO: this should support input of a list of general words
|
| 904 |
+
# not just the words which are in "A" (i.e gen and gen^-1)
|
| 905 |
+
if C.table[alpha][C.A_dict[w]] != alpha:
|
| 906 |
+
# continue with alpha
|
| 907 |
+
next_alpha = True
|
| 908 |
+
break
|
| 909 |
+
if next_alpha:
|
| 910 |
+
next_alpha = False
|
| 911 |
+
continue
|
| 912 |
+
# try alpha as the new point 0 in Omega_C_alpha
|
| 913 |
+
mu[0] = alpha
|
| 914 |
+
nu[alpha] = 0
|
| 915 |
+
# compare corresponding entries in C and C_alpha
|
| 916 |
+
lamda = 0
|
| 917 |
+
for beta in range(n):
|
| 918 |
+
for x in C.A:
|
| 919 |
+
gamma = C.table[beta][C.A_dict[x]]
|
| 920 |
+
delta = C.table[mu[beta]][C.A_dict[x]]
|
| 921 |
+
# if either of the entries is undefined,
|
| 922 |
+
# we move with next alpha
|
| 923 |
+
if gamma is None or delta is None:
|
| 924 |
+
# continue with alpha
|
| 925 |
+
next_alpha = True
|
| 926 |
+
break
|
| 927 |
+
if nu[delta] is None:
|
| 928 |
+
# delta becomes the next point in Omega_C_alpha
|
| 929 |
+
lamda += 1
|
| 930 |
+
nu[delta] = lamda
|
| 931 |
+
mu[lamda] = delta
|
| 932 |
+
if nu[delta] < gamma:
|
| 933 |
+
return False
|
| 934 |
+
if nu[delta] > gamma:
|
| 935 |
+
# continue with alpha
|
| 936 |
+
next_alpha = True
|
| 937 |
+
break
|
| 938 |
+
if next_alpha:
|
| 939 |
+
next_alpha = False
|
| 940 |
+
break
|
| 941 |
+
return True
|
| 942 |
+
|
| 943 |
+
#========================================================================
|
| 944 |
+
# Simplifying Presentation
|
| 945 |
+
#========================================================================
|
| 946 |
+
|
| 947 |
+
def simplify_presentation(*args, change_gens=False):
|
| 948 |
+
'''
|
| 949 |
+
For an instance of `FpGroup`, return a simplified isomorphic copy of
|
| 950 |
+
the group (e.g. remove redundant generators or relators). Alternatively,
|
| 951 |
+
a list of generators and relators can be passed in which case the
|
| 952 |
+
simplified lists will be returned.
|
| 953 |
+
|
| 954 |
+
By default, the generators of the group are unchanged. If you would
|
| 955 |
+
like to remove redundant generators, set the keyword argument
|
| 956 |
+
`change_gens = True`.
|
| 957 |
+
|
| 958 |
+
'''
|
| 959 |
+
if len(args) == 1:
|
| 960 |
+
if not isinstance(args[0], FpGroup):
|
| 961 |
+
raise TypeError("The argument must be an instance of FpGroup")
|
| 962 |
+
G = args[0]
|
| 963 |
+
gens, rels = simplify_presentation(G.generators, G.relators,
|
| 964 |
+
change_gens=change_gens)
|
| 965 |
+
if gens:
|
| 966 |
+
return FpGroup(gens[0].group, rels)
|
| 967 |
+
return FpGroup(FreeGroup([]), [])
|
| 968 |
+
elif len(args) == 2:
|
| 969 |
+
gens, rels = args[0][:], args[1][:]
|
| 970 |
+
if not gens:
|
| 971 |
+
return gens, rels
|
| 972 |
+
identity = gens[0].group.identity
|
| 973 |
+
else:
|
| 974 |
+
if len(args) == 0:
|
| 975 |
+
m = "Not enough arguments"
|
| 976 |
+
else:
|
| 977 |
+
m = "Too many arguments"
|
| 978 |
+
raise RuntimeError(m)
|
| 979 |
+
|
| 980 |
+
prev_gens = []
|
| 981 |
+
prev_rels = []
|
| 982 |
+
while not set(prev_rels) == set(rels):
|
| 983 |
+
prev_rels = rels
|
| 984 |
+
while change_gens and not set(prev_gens) == set(gens):
|
| 985 |
+
prev_gens = gens
|
| 986 |
+
gens, rels = elimination_technique_1(gens, rels, identity)
|
| 987 |
+
rels = _simplify_relators(rels)
|
| 988 |
+
|
| 989 |
+
if change_gens:
|
| 990 |
+
syms = [g.array_form[0][0] for g in gens]
|
| 991 |
+
F = free_group(syms)[0]
|
| 992 |
+
identity = F.identity
|
| 993 |
+
gens = F.generators
|
| 994 |
+
subs = dict(zip(syms, gens))
|
| 995 |
+
for j, r in enumerate(rels):
|
| 996 |
+
a = r.array_form
|
| 997 |
+
rel = identity
|
| 998 |
+
for sym, p in a:
|
| 999 |
+
rel = rel*subs[sym]**p
|
| 1000 |
+
rels[j] = rel
|
| 1001 |
+
return gens, rels
|
| 1002 |
+
|
| 1003 |
+
def _simplify_relators(rels):
|
| 1004 |
+
"""
|
| 1005 |
+
Simplifies a set of relators. All relators are checked to see if they are
|
| 1006 |
+
of the form `gen^n`. If any such relators are found then all other relators
|
| 1007 |
+
are processed for strings in the `gen` known order.
|
| 1008 |
+
|
| 1009 |
+
Examples
|
| 1010 |
+
========
|
| 1011 |
+
|
| 1012 |
+
>>> from sympy.combinatorics import free_group
|
| 1013 |
+
>>> from sympy.combinatorics.fp_groups import _simplify_relators
|
| 1014 |
+
>>> F, x, y = free_group("x, y")
|
| 1015 |
+
>>> w1 = [x**2*y**4, x**3]
|
| 1016 |
+
>>> _simplify_relators(w1)
|
| 1017 |
+
[x**3, x**-1*y**4]
|
| 1018 |
+
|
| 1019 |
+
>>> w2 = [x**2*y**-4*x**5, x**3, x**2*y**8, y**5]
|
| 1020 |
+
>>> _simplify_relators(w2)
|
| 1021 |
+
[x**-1*y**-2, x**-1*y*x**-1, x**3, y**5]
|
| 1022 |
+
|
| 1023 |
+
>>> w3 = [x**6*y**4, x**4]
|
| 1024 |
+
>>> _simplify_relators(w3)
|
| 1025 |
+
[x**4, x**2*y**4]
|
| 1026 |
+
|
| 1027 |
+
>>> w4 = [x**2, x**5, y**3]
|
| 1028 |
+
>>> _simplify_relators(w4)
|
| 1029 |
+
[x, y**3]
|
| 1030 |
+
|
| 1031 |
+
"""
|
| 1032 |
+
rels = rels[:]
|
| 1033 |
+
|
| 1034 |
+
if not rels:
|
| 1035 |
+
return []
|
| 1036 |
+
|
| 1037 |
+
identity = rels[0].group.identity
|
| 1038 |
+
|
| 1039 |
+
# build dictionary with "gen: n" where gen^n is one of the relators
|
| 1040 |
+
exps = {}
|
| 1041 |
+
for i in range(len(rels)):
|
| 1042 |
+
rel = rels[i]
|
| 1043 |
+
if rel.number_syllables() == 1:
|
| 1044 |
+
g = rel[0]
|
| 1045 |
+
exp = abs(rel.array_form[0][1])
|
| 1046 |
+
if rel.array_form[0][1] < 0:
|
| 1047 |
+
rels[i] = rels[i]**-1
|
| 1048 |
+
g = g**-1
|
| 1049 |
+
if g in exps:
|
| 1050 |
+
exp = gcd(exp, exps[g].array_form[0][1])
|
| 1051 |
+
exps[g] = g**exp
|
| 1052 |
+
|
| 1053 |
+
one_syllables_words = list(exps.values())
|
| 1054 |
+
# decrease some of the exponents in relators, making use of the single
|
| 1055 |
+
# syllable relators
|
| 1056 |
+
for i, rel in enumerate(rels):
|
| 1057 |
+
if rel in one_syllables_words:
|
| 1058 |
+
continue
|
| 1059 |
+
rel = rel.eliminate_words(one_syllables_words, _all = True)
|
| 1060 |
+
# if rels[i] contains g**n where abs(n) is greater than half of the power p
|
| 1061 |
+
# of g in exps, g**n can be replaced by g**(n-p) (or g**(p-n) if n<0)
|
| 1062 |
+
for g in rel.contains_generators():
|
| 1063 |
+
if g in exps:
|
| 1064 |
+
exp = exps[g].array_form[0][1]
|
| 1065 |
+
max_exp = (exp + 1)//2
|
| 1066 |
+
rel = rel.eliminate_word(g**(max_exp), g**(max_exp-exp), _all = True)
|
| 1067 |
+
rel = rel.eliminate_word(g**(-max_exp), g**(-(max_exp-exp)), _all = True)
|
| 1068 |
+
rels[i] = rel
|
| 1069 |
+
|
| 1070 |
+
rels = [r.identity_cyclic_reduction() for r in rels]
|
| 1071 |
+
|
| 1072 |
+
rels += one_syllables_words # include one_syllable_words in the list of relators
|
| 1073 |
+
rels = list(set(rels)) # get unique values in rels
|
| 1074 |
+
rels.sort()
|
| 1075 |
+
|
| 1076 |
+
# remove <identity> entries in rels
|
| 1077 |
+
try:
|
| 1078 |
+
rels.remove(identity)
|
| 1079 |
+
except ValueError:
|
| 1080 |
+
pass
|
| 1081 |
+
return rels
|
| 1082 |
+
|
| 1083 |
+
# Pg 350, section 2.5.1 from [2]
|
| 1084 |
+
def elimination_technique_1(gens, rels, identity):
|
| 1085 |
+
rels = rels[:]
|
| 1086 |
+
# the shorter relators are examined first so that generators selected for
|
| 1087 |
+
# elimination will have shorter strings as equivalent
|
| 1088 |
+
rels.sort()
|
| 1089 |
+
gens = gens[:]
|
| 1090 |
+
redundant_gens = {}
|
| 1091 |
+
redundant_rels = []
|
| 1092 |
+
used_gens = set()
|
| 1093 |
+
# examine each relator in relator list for any generator occurring exactly
|
| 1094 |
+
# once
|
| 1095 |
+
for rel in rels:
|
| 1096 |
+
# don't look for a redundant generator in a relator which
|
| 1097 |
+
# depends on previously found ones
|
| 1098 |
+
contained_gens = rel.contains_generators()
|
| 1099 |
+
if any(g in contained_gens for g in redundant_gens):
|
| 1100 |
+
continue
|
| 1101 |
+
contained_gens = list(contained_gens)
|
| 1102 |
+
contained_gens.sort(reverse = True)
|
| 1103 |
+
for gen in contained_gens:
|
| 1104 |
+
if rel.generator_count(gen) == 1 and gen not in used_gens:
|
| 1105 |
+
k = rel.exponent_sum(gen)
|
| 1106 |
+
gen_index = rel.index(gen**k)
|
| 1107 |
+
bk = rel.subword(gen_index + 1, len(rel))
|
| 1108 |
+
fw = rel.subword(0, gen_index)
|
| 1109 |
+
chi = bk*fw
|
| 1110 |
+
redundant_gens[gen] = chi**(-1*k)
|
| 1111 |
+
used_gens.update(chi.contains_generators())
|
| 1112 |
+
redundant_rels.append(rel)
|
| 1113 |
+
break
|
| 1114 |
+
rels = [r for r in rels if r not in redundant_rels]
|
| 1115 |
+
# eliminate the redundant generators from remaining relators
|
| 1116 |
+
rels = [r.eliminate_words(redundant_gens, _all = True).identity_cyclic_reduction() for r in rels]
|
| 1117 |
+
rels = list(set(rels))
|
| 1118 |
+
try:
|
| 1119 |
+
rels.remove(identity)
|
| 1120 |
+
except ValueError:
|
| 1121 |
+
pass
|
| 1122 |
+
gens = [g for g in gens if g not in redundant_gens]
|
| 1123 |
+
return gens, rels
|
| 1124 |
+
|
| 1125 |
+
###############################################################################
|
| 1126 |
+
# SUBGROUP PRESENTATIONS #
|
| 1127 |
+
###############################################################################
|
| 1128 |
+
|
| 1129 |
+
# Pg 175 [1]
|
| 1130 |
+
def define_schreier_generators(C, homomorphism=False):
|
| 1131 |
+
'''
|
| 1132 |
+
Parameters
|
| 1133 |
+
==========
|
| 1134 |
+
|
| 1135 |
+
C -- Coset table.
|
| 1136 |
+
homomorphism -- When set to True, return a dictionary containing the images
|
| 1137 |
+
of the presentation generators in the original group.
|
| 1138 |
+
'''
|
| 1139 |
+
y = []
|
| 1140 |
+
gamma = 1
|
| 1141 |
+
f = C.fp_group
|
| 1142 |
+
X = f.generators
|
| 1143 |
+
if homomorphism:
|
| 1144 |
+
# `_gens` stores the elements of the parent group to
|
| 1145 |
+
# to which the schreier generators correspond to.
|
| 1146 |
+
_gens = {}
|
| 1147 |
+
# compute the schreier Traversal
|
| 1148 |
+
tau = {}
|
| 1149 |
+
tau[0] = f.identity
|
| 1150 |
+
C.P = [[None]*len(C.A) for i in range(C.n)]
|
| 1151 |
+
for alpha, x in product(C.omega, C.A):
|
| 1152 |
+
beta = C.table[alpha][C.A_dict[x]]
|
| 1153 |
+
if beta == gamma:
|
| 1154 |
+
C.P[alpha][C.A_dict[x]] = "<identity>"
|
| 1155 |
+
C.P[beta][C.A_dict_inv[x]] = "<identity>"
|
| 1156 |
+
gamma += 1
|
| 1157 |
+
if homomorphism:
|
| 1158 |
+
tau[beta] = tau[alpha]*x
|
| 1159 |
+
elif x in X and C.P[alpha][C.A_dict[x]] is None:
|
| 1160 |
+
y_alpha_x = '%s_%s' % (x, alpha)
|
| 1161 |
+
y.append(y_alpha_x)
|
| 1162 |
+
C.P[alpha][C.A_dict[x]] = y_alpha_x
|
| 1163 |
+
if homomorphism:
|
| 1164 |
+
_gens[y_alpha_x] = tau[alpha]*x*tau[beta]**-1
|
| 1165 |
+
grp_gens = list(free_group(', '.join(y)))
|
| 1166 |
+
C._schreier_free_group = grp_gens.pop(0)
|
| 1167 |
+
C._schreier_generators = grp_gens
|
| 1168 |
+
if homomorphism:
|
| 1169 |
+
C._schreier_gen_elem = _gens
|
| 1170 |
+
# replace all elements of P by, free group elements
|
| 1171 |
+
for i, j in product(range(len(C.P)), range(len(C.A))):
|
| 1172 |
+
# if equals "<identity>", replace by identity element
|
| 1173 |
+
if C.P[i][j] == "<identity>":
|
| 1174 |
+
C.P[i][j] = C._schreier_free_group.identity
|
| 1175 |
+
elif isinstance(C.P[i][j], str):
|
| 1176 |
+
r = C._schreier_generators[y.index(C.P[i][j])]
|
| 1177 |
+
C.P[i][j] = r
|
| 1178 |
+
beta = C.table[i][j]
|
| 1179 |
+
C.P[beta][j + 1] = r**-1
|
| 1180 |
+
|
| 1181 |
+
def reidemeister_relators(C):
|
| 1182 |
+
R = C.fp_group.relators
|
| 1183 |
+
rels = [rewrite(C, coset, word) for word in R for coset in range(C.n)]
|
| 1184 |
+
order_1_gens = {i for i in rels if len(i) == 1}
|
| 1185 |
+
|
| 1186 |
+
# remove all the order 1 generators from relators
|
| 1187 |
+
rels = list(filter(lambda rel: rel not in order_1_gens, rels))
|
| 1188 |
+
|
| 1189 |
+
# replace order 1 generators by identity element in reidemeister relators
|
| 1190 |
+
for i in range(len(rels)):
|
| 1191 |
+
w = rels[i]
|
| 1192 |
+
w = w.eliminate_words(order_1_gens, _all=True)
|
| 1193 |
+
rels[i] = w
|
| 1194 |
+
|
| 1195 |
+
C._schreier_generators = [i for i in C._schreier_generators
|
| 1196 |
+
if not (i in order_1_gens or i**-1 in order_1_gens)]
|
| 1197 |
+
|
| 1198 |
+
# Tietze transformation 1 i.e TT_1
|
| 1199 |
+
# remove cyclic conjugate elements from relators
|
| 1200 |
+
i = 0
|
| 1201 |
+
while i < len(rels):
|
| 1202 |
+
w = rels[i]
|
| 1203 |
+
j = i + 1
|
| 1204 |
+
while j < len(rels):
|
| 1205 |
+
if w.is_cyclic_conjugate(rels[j]):
|
| 1206 |
+
del rels[j]
|
| 1207 |
+
else:
|
| 1208 |
+
j += 1
|
| 1209 |
+
i += 1
|
| 1210 |
+
|
| 1211 |
+
C._reidemeister_relators = rels
|
| 1212 |
+
|
| 1213 |
+
|
| 1214 |
+
def rewrite(C, alpha, w):
|
| 1215 |
+
"""
|
| 1216 |
+
Parameters
|
| 1217 |
+
==========
|
| 1218 |
+
|
| 1219 |
+
C: CosetTable
|
| 1220 |
+
alpha: A live coset
|
| 1221 |
+
w: A word in `A*`
|
| 1222 |
+
|
| 1223 |
+
Returns
|
| 1224 |
+
=======
|
| 1225 |
+
|
| 1226 |
+
rho(tau(alpha), w)
|
| 1227 |
+
|
| 1228 |
+
Examples
|
| 1229 |
+
========
|
| 1230 |
+
|
| 1231 |
+
>>> from sympy.combinatorics.fp_groups import FpGroup, CosetTable, define_schreier_generators, rewrite
|
| 1232 |
+
>>> from sympy.combinatorics import free_group
|
| 1233 |
+
>>> F, x, y = free_group("x, y")
|
| 1234 |
+
>>> f = FpGroup(F, [x**2, y**3, (x*y)**6])
|
| 1235 |
+
>>> C = CosetTable(f, [])
|
| 1236 |
+
>>> C.table = [[1, 1, 2, 3], [0, 0, 4, 5], [4, 4, 3, 0], [5, 5, 0, 2], [2, 2, 5, 1], [3, 3, 1, 4]]
|
| 1237 |
+
>>> C.p = [0, 1, 2, 3, 4, 5]
|
| 1238 |
+
>>> define_schreier_generators(C)
|
| 1239 |
+
>>> rewrite(C, 0, (x*y)**6)
|
| 1240 |
+
x_4*y_2*x_3*x_1*x_2*y_4*x_5
|
| 1241 |
+
|
| 1242 |
+
"""
|
| 1243 |
+
v = C._schreier_free_group.identity
|
| 1244 |
+
for i in range(len(w)):
|
| 1245 |
+
x_i = w[i]
|
| 1246 |
+
v = v*C.P[alpha][C.A_dict[x_i]]
|
| 1247 |
+
alpha = C.table[alpha][C.A_dict[x_i]]
|
| 1248 |
+
return v
|
| 1249 |
+
|
| 1250 |
+
# Pg 350, section 2.5.2 from [2]
|
| 1251 |
+
def elimination_technique_2(C):
|
| 1252 |
+
"""
|
| 1253 |
+
This technique eliminates one generator at a time. Heuristically this
|
| 1254 |
+
seems superior in that we may select for elimination the generator with
|
| 1255 |
+
shortest equivalent string at each stage.
|
| 1256 |
+
|
| 1257 |
+
>>> from sympy.combinatorics import free_group
|
| 1258 |
+
>>> from sympy.combinatorics.fp_groups import FpGroup, coset_enumeration_r, \
|
| 1259 |
+
reidemeister_relators, define_schreier_generators, elimination_technique_2
|
| 1260 |
+
>>> F, x, y = free_group("x, y")
|
| 1261 |
+
>>> f = FpGroup(F, [x**3, y**5, (x*y)**2]); H = [x*y, x**-1*y**-1*x*y*x]
|
| 1262 |
+
>>> C = coset_enumeration_r(f, H)
|
| 1263 |
+
>>> C.compress(); C.standardize()
|
| 1264 |
+
>>> define_schreier_generators(C)
|
| 1265 |
+
>>> reidemeister_relators(C)
|
| 1266 |
+
>>> elimination_technique_2(C)
|
| 1267 |
+
([y_1, y_2], [y_2**-3, y_2*y_1*y_2*y_1*y_2*y_1, y_1**2])
|
| 1268 |
+
|
| 1269 |
+
"""
|
| 1270 |
+
rels = C._reidemeister_relators
|
| 1271 |
+
rels.sort(reverse=True)
|
| 1272 |
+
gens = C._schreier_generators
|
| 1273 |
+
for i in range(len(gens) - 1, -1, -1):
|
| 1274 |
+
rel = rels[i]
|
| 1275 |
+
for j in range(len(gens) - 1, -1, -1):
|
| 1276 |
+
gen = gens[j]
|
| 1277 |
+
if rel.generator_count(gen) == 1:
|
| 1278 |
+
k = rel.exponent_sum(gen)
|
| 1279 |
+
gen_index = rel.index(gen**k)
|
| 1280 |
+
bk = rel.subword(gen_index + 1, len(rel))
|
| 1281 |
+
fw = rel.subword(0, gen_index)
|
| 1282 |
+
rep_by = (bk*fw)**(-1*k)
|
| 1283 |
+
del rels[i]; del gens[j]
|
| 1284 |
+
for l in range(len(rels)):
|
| 1285 |
+
rels[l] = rels[l].eliminate_word(gen, rep_by)
|
| 1286 |
+
break
|
| 1287 |
+
C._reidemeister_relators = rels
|
| 1288 |
+
C._schreier_generators = gens
|
| 1289 |
+
return C._schreier_generators, C._reidemeister_relators
|
| 1290 |
+
|
| 1291 |
+
def reidemeister_presentation(fp_grp, H, C=None, homomorphism=False):
|
| 1292 |
+
"""
|
| 1293 |
+
Parameters
|
| 1294 |
+
==========
|
| 1295 |
+
|
| 1296 |
+
fp_group: A finitely presented group, an instance of FpGroup
|
| 1297 |
+
H: A subgroup whose presentation is to be found, given as a list
|
| 1298 |
+
of words in generators of `fp_grp`
|
| 1299 |
+
homomorphism: When set to True, return a homomorphism from the subgroup
|
| 1300 |
+
to the parent group
|
| 1301 |
+
|
| 1302 |
+
Examples
|
| 1303 |
+
========
|
| 1304 |
+
|
| 1305 |
+
>>> from sympy.combinatorics import free_group
|
| 1306 |
+
>>> from sympy.combinatorics.fp_groups import FpGroup, reidemeister_presentation
|
| 1307 |
+
>>> F, x, y = free_group("x, y")
|
| 1308 |
+
|
| 1309 |
+
Example 5.6 Pg. 177 from [1]
|
| 1310 |
+
>>> f = FpGroup(F, [x**3, y**5, (x*y)**2])
|
| 1311 |
+
>>> H = [x*y, x**-1*y**-1*x*y*x]
|
| 1312 |
+
>>> reidemeister_presentation(f, H)
|
| 1313 |
+
((y_1, y_2), (y_1**2, y_2**3, y_2*y_1*y_2*y_1*y_2*y_1))
|
| 1314 |
+
|
| 1315 |
+
Example 5.8 Pg. 183 from [1]
|
| 1316 |
+
>>> f = FpGroup(F, [x**3, y**3, (x*y)**3])
|
| 1317 |
+
>>> H = [x*y, x*y**-1]
|
| 1318 |
+
>>> reidemeister_presentation(f, H)
|
| 1319 |
+
((x_0, y_0), (x_0**3, y_0**3, x_0*y_0*x_0*y_0*x_0*y_0))
|
| 1320 |
+
|
| 1321 |
+
Exercises Q2. Pg 187 from [1]
|
| 1322 |
+
>>> f = FpGroup(F, [x**2*y**2, y**-1*x*y*x**-3])
|
| 1323 |
+
>>> H = [x]
|
| 1324 |
+
>>> reidemeister_presentation(f, H)
|
| 1325 |
+
((x_0,), (x_0**4,))
|
| 1326 |
+
|
| 1327 |
+
Example 5.9 Pg. 183 from [1]
|
| 1328 |
+
>>> f = FpGroup(F, [x**3*y**-3, (x*y)**3, (x*y**-1)**2])
|
| 1329 |
+
>>> H = [x]
|
| 1330 |
+
>>> reidemeister_presentation(f, H)
|
| 1331 |
+
((x_0,), (x_0**6,))
|
| 1332 |
+
|
| 1333 |
+
"""
|
| 1334 |
+
if not C:
|
| 1335 |
+
C = coset_enumeration_r(fp_grp, H)
|
| 1336 |
+
C.compress(); C.standardize()
|
| 1337 |
+
define_schreier_generators(C, homomorphism=homomorphism)
|
| 1338 |
+
reidemeister_relators(C)
|
| 1339 |
+
gens, rels = C._schreier_generators, C._reidemeister_relators
|
| 1340 |
+
gens, rels = simplify_presentation(gens, rels, change_gens=True)
|
| 1341 |
+
|
| 1342 |
+
C.schreier_generators = tuple(gens)
|
| 1343 |
+
C.reidemeister_relators = tuple(rels)
|
| 1344 |
+
|
| 1345 |
+
if homomorphism:
|
| 1346 |
+
_gens = []
|
| 1347 |
+
for gen in gens:
|
| 1348 |
+
_gens.append(C._schreier_gen_elem[str(gen)])
|
| 1349 |
+
return C.schreier_generators, C.reidemeister_relators, _gens
|
| 1350 |
+
|
| 1351 |
+
return C.schreier_generators, C.reidemeister_relators
|
| 1352 |
+
|
| 1353 |
+
|
| 1354 |
+
FpGroupElement = FreeGroupElement
|
mgm/lib/python3.10/site-packages/sympy/combinatorics/galois.py
ADDED
|
@@ -0,0 +1,611 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
r"""
|
| 2 |
+
Construct transitive subgroups of symmetric groups, useful in Galois theory.
|
| 3 |
+
|
| 4 |
+
Besides constructing instances of the :py:class:`~.PermutationGroup` class to
|
| 5 |
+
represent the transitive subgroups of $S_n$ for small $n$, this module provides
|
| 6 |
+
*names* for these groups.
|
| 7 |
+
|
| 8 |
+
In some applications, it may be preferable to know the name of a group,
|
| 9 |
+
rather than receive an instance of the :py:class:`~.PermutationGroup`
|
| 10 |
+
class, and then have to do extra work to determine which group it is, by
|
| 11 |
+
checking various properties.
|
| 12 |
+
|
| 13 |
+
Names are instances of ``Enum`` classes defined in this module. With a name in
|
| 14 |
+
hand, the name's ``get_perm_group`` method can then be used to retrieve a
|
| 15 |
+
:py:class:`~.PermutationGroup`.
|
| 16 |
+
|
| 17 |
+
The names used for groups in this module are taken from [1].
|
| 18 |
+
|
| 19 |
+
References
|
| 20 |
+
==========
|
| 21 |
+
|
| 22 |
+
.. [1] Cohen, H. *A Course in Computational Algebraic Number Theory*.
|
| 23 |
+
|
| 24 |
+
"""
|
| 25 |
+
|
| 26 |
+
from collections import defaultdict
|
| 27 |
+
from enum import Enum
|
| 28 |
+
import itertools
|
| 29 |
+
|
| 30 |
+
from sympy.combinatorics.named_groups import (
|
| 31 |
+
SymmetricGroup, AlternatingGroup, CyclicGroup, DihedralGroup,
|
| 32 |
+
set_symmetric_group_properties, set_alternating_group_properties,
|
| 33 |
+
)
|
| 34 |
+
from sympy.combinatorics.perm_groups import PermutationGroup
|
| 35 |
+
from sympy.combinatorics.permutations import Permutation
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class S1TransitiveSubgroups(Enum):
|
| 39 |
+
"""
|
| 40 |
+
Names for the transitive subgroups of S1.
|
| 41 |
+
"""
|
| 42 |
+
S1 = "S1"
|
| 43 |
+
|
| 44 |
+
def get_perm_group(self):
|
| 45 |
+
return SymmetricGroup(1)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
class S2TransitiveSubgroups(Enum):
|
| 49 |
+
"""
|
| 50 |
+
Names for the transitive subgroups of S2.
|
| 51 |
+
"""
|
| 52 |
+
S2 = "S2"
|
| 53 |
+
|
| 54 |
+
def get_perm_group(self):
|
| 55 |
+
return SymmetricGroup(2)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
class S3TransitiveSubgroups(Enum):
|
| 59 |
+
"""
|
| 60 |
+
Names for the transitive subgroups of S3.
|
| 61 |
+
"""
|
| 62 |
+
A3 = "A3"
|
| 63 |
+
S3 = "S3"
|
| 64 |
+
|
| 65 |
+
def get_perm_group(self):
|
| 66 |
+
if self == S3TransitiveSubgroups.A3:
|
| 67 |
+
return AlternatingGroup(3)
|
| 68 |
+
elif self == S3TransitiveSubgroups.S3:
|
| 69 |
+
return SymmetricGroup(3)
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
class S4TransitiveSubgroups(Enum):
|
| 73 |
+
"""
|
| 74 |
+
Names for the transitive subgroups of S4.
|
| 75 |
+
"""
|
| 76 |
+
C4 = "C4"
|
| 77 |
+
V = "V"
|
| 78 |
+
D4 = "D4"
|
| 79 |
+
A4 = "A4"
|
| 80 |
+
S4 = "S4"
|
| 81 |
+
|
| 82 |
+
def get_perm_group(self):
|
| 83 |
+
if self == S4TransitiveSubgroups.C4:
|
| 84 |
+
return CyclicGroup(4)
|
| 85 |
+
elif self == S4TransitiveSubgroups.V:
|
| 86 |
+
return four_group()
|
| 87 |
+
elif self == S4TransitiveSubgroups.D4:
|
| 88 |
+
return DihedralGroup(4)
|
| 89 |
+
elif self == S4TransitiveSubgroups.A4:
|
| 90 |
+
return AlternatingGroup(4)
|
| 91 |
+
elif self == S4TransitiveSubgroups.S4:
|
| 92 |
+
return SymmetricGroup(4)
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
class S5TransitiveSubgroups(Enum):
|
| 96 |
+
"""
|
| 97 |
+
Names for the transitive subgroups of S5.
|
| 98 |
+
"""
|
| 99 |
+
C5 = "C5"
|
| 100 |
+
D5 = "D5"
|
| 101 |
+
M20 = "M20"
|
| 102 |
+
A5 = "A5"
|
| 103 |
+
S5 = "S5"
|
| 104 |
+
|
| 105 |
+
def get_perm_group(self):
|
| 106 |
+
if self == S5TransitiveSubgroups.C5:
|
| 107 |
+
return CyclicGroup(5)
|
| 108 |
+
elif self == S5TransitiveSubgroups.D5:
|
| 109 |
+
return DihedralGroup(5)
|
| 110 |
+
elif self == S5TransitiveSubgroups.M20:
|
| 111 |
+
return M20()
|
| 112 |
+
elif self == S5TransitiveSubgroups.A5:
|
| 113 |
+
return AlternatingGroup(5)
|
| 114 |
+
elif self == S5TransitiveSubgroups.S5:
|
| 115 |
+
return SymmetricGroup(5)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
class S6TransitiveSubgroups(Enum):
|
| 119 |
+
"""
|
| 120 |
+
Names for the transitive subgroups of S6.
|
| 121 |
+
"""
|
| 122 |
+
C6 = "C6"
|
| 123 |
+
S3 = "S3"
|
| 124 |
+
D6 = "D6"
|
| 125 |
+
A4 = "A4"
|
| 126 |
+
G18 = "G18"
|
| 127 |
+
A4xC2 = "A4 x C2"
|
| 128 |
+
S4m = "S4-"
|
| 129 |
+
S4p = "S4+"
|
| 130 |
+
G36m = "G36-"
|
| 131 |
+
G36p = "G36+"
|
| 132 |
+
S4xC2 = "S4 x C2"
|
| 133 |
+
PSL2F5 = "PSL2(F5)"
|
| 134 |
+
G72 = "G72"
|
| 135 |
+
PGL2F5 = "PGL2(F5)"
|
| 136 |
+
A6 = "A6"
|
| 137 |
+
S6 = "S6"
|
| 138 |
+
|
| 139 |
+
def get_perm_group(self):
|
| 140 |
+
if self == S6TransitiveSubgroups.C6:
|
| 141 |
+
return CyclicGroup(6)
|
| 142 |
+
elif self == S6TransitiveSubgroups.S3:
|
| 143 |
+
return S3_in_S6()
|
| 144 |
+
elif self == S6TransitiveSubgroups.D6:
|
| 145 |
+
return DihedralGroup(6)
|
| 146 |
+
elif self == S6TransitiveSubgroups.A4:
|
| 147 |
+
return A4_in_S6()
|
| 148 |
+
elif self == S6TransitiveSubgroups.G18:
|
| 149 |
+
return G18()
|
| 150 |
+
elif self == S6TransitiveSubgroups.A4xC2:
|
| 151 |
+
return A4xC2()
|
| 152 |
+
elif self == S6TransitiveSubgroups.S4m:
|
| 153 |
+
return S4m()
|
| 154 |
+
elif self == S6TransitiveSubgroups.S4p:
|
| 155 |
+
return S4p()
|
| 156 |
+
elif self == S6TransitiveSubgroups.G36m:
|
| 157 |
+
return G36m()
|
| 158 |
+
elif self == S6TransitiveSubgroups.G36p:
|
| 159 |
+
return G36p()
|
| 160 |
+
elif self == S6TransitiveSubgroups.S4xC2:
|
| 161 |
+
return S4xC2()
|
| 162 |
+
elif self == S6TransitiveSubgroups.PSL2F5:
|
| 163 |
+
return PSL2F5()
|
| 164 |
+
elif self == S6TransitiveSubgroups.G72:
|
| 165 |
+
return G72()
|
| 166 |
+
elif self == S6TransitiveSubgroups.PGL2F5:
|
| 167 |
+
return PGL2F5()
|
| 168 |
+
elif self == S6TransitiveSubgroups.A6:
|
| 169 |
+
return AlternatingGroup(6)
|
| 170 |
+
elif self == S6TransitiveSubgroups.S6:
|
| 171 |
+
return SymmetricGroup(6)
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
def four_group():
|
| 175 |
+
"""
|
| 176 |
+
Return a representation of the Klein four-group as a transitive subgroup
|
| 177 |
+
of S4.
|
| 178 |
+
"""
|
| 179 |
+
return PermutationGroup(
|
| 180 |
+
Permutation(0, 1)(2, 3),
|
| 181 |
+
Permutation(0, 2)(1, 3)
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
def M20():
|
| 186 |
+
"""
|
| 187 |
+
Return a representation of the metacyclic group M20, a transitive subgroup
|
| 188 |
+
of S5 that is one of the possible Galois groups for polys of degree 5.
|
| 189 |
+
|
| 190 |
+
Notes
|
| 191 |
+
=====
|
| 192 |
+
|
| 193 |
+
See [1], Page 323.
|
| 194 |
+
|
| 195 |
+
"""
|
| 196 |
+
G = PermutationGroup(Permutation(0, 1, 2, 3, 4), Permutation(1, 2, 4, 3))
|
| 197 |
+
G._degree = 5
|
| 198 |
+
G._order = 20
|
| 199 |
+
G._is_transitive = True
|
| 200 |
+
G._is_sym = False
|
| 201 |
+
G._is_alt = False
|
| 202 |
+
G._is_cyclic = False
|
| 203 |
+
G._is_dihedral = False
|
| 204 |
+
return G
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
def S3_in_S6():
|
| 208 |
+
"""
|
| 209 |
+
Return a representation of S3 as a transitive subgroup of S6.
|
| 210 |
+
|
| 211 |
+
Notes
|
| 212 |
+
=====
|
| 213 |
+
|
| 214 |
+
The representation is found by viewing the group as the symmetries of a
|
| 215 |
+
triangular prism.
|
| 216 |
+
|
| 217 |
+
"""
|
| 218 |
+
G = PermutationGroup(Permutation(0, 1, 2)(3, 4, 5), Permutation(0, 3)(2, 4)(1, 5))
|
| 219 |
+
set_symmetric_group_properties(G, 3, 6)
|
| 220 |
+
return G
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
def A4_in_S6():
|
| 224 |
+
"""
|
| 225 |
+
Return a representation of A4 as a transitive subgroup of S6.
|
| 226 |
+
|
| 227 |
+
Notes
|
| 228 |
+
=====
|
| 229 |
+
|
| 230 |
+
This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.
|
| 231 |
+
|
| 232 |
+
"""
|
| 233 |
+
G = PermutationGroup(Permutation(0, 4, 5)(1, 3, 2), Permutation(0, 1, 2)(3, 5, 4))
|
| 234 |
+
set_alternating_group_properties(G, 4, 6)
|
| 235 |
+
return G
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
def S4m():
|
| 239 |
+
"""
|
| 240 |
+
Return a representation of the S4- transitive subgroup of S6.
|
| 241 |
+
|
| 242 |
+
Notes
|
| 243 |
+
=====
|
| 244 |
+
|
| 245 |
+
This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.
|
| 246 |
+
|
| 247 |
+
"""
|
| 248 |
+
G = PermutationGroup(Permutation(1, 4, 5, 3), Permutation(0, 4)(1, 5)(2, 3))
|
| 249 |
+
set_symmetric_group_properties(G, 4, 6)
|
| 250 |
+
return G
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
def S4p():
|
| 254 |
+
"""
|
| 255 |
+
Return a representation of the S4+ transitive subgroup of S6.
|
| 256 |
+
|
| 257 |
+
Notes
|
| 258 |
+
=====
|
| 259 |
+
|
| 260 |
+
This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.
|
| 261 |
+
|
| 262 |
+
"""
|
| 263 |
+
G = PermutationGroup(Permutation(0, 2, 4, 1)(3, 5), Permutation(0, 3)(4, 5))
|
| 264 |
+
set_symmetric_group_properties(G, 4, 6)
|
| 265 |
+
return G
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
def A4xC2():
|
| 269 |
+
"""
|
| 270 |
+
Return a representation of the (A4 x C2) transitive subgroup of S6.
|
| 271 |
+
|
| 272 |
+
Notes
|
| 273 |
+
=====
|
| 274 |
+
|
| 275 |
+
This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.
|
| 276 |
+
|
| 277 |
+
"""
|
| 278 |
+
return PermutationGroup(
|
| 279 |
+
Permutation(0, 4, 5)(1, 3, 2), Permutation(0, 1, 2)(3, 5, 4),
|
| 280 |
+
Permutation(5)(2, 4))
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
def S4xC2():
|
| 284 |
+
"""
|
| 285 |
+
Return a representation of the (S4 x C2) transitive subgroup of S6.
|
| 286 |
+
|
| 287 |
+
Notes
|
| 288 |
+
=====
|
| 289 |
+
|
| 290 |
+
This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.
|
| 291 |
+
|
| 292 |
+
"""
|
| 293 |
+
return PermutationGroup(
|
| 294 |
+
Permutation(1, 4, 5, 3), Permutation(0, 4)(1, 5)(2, 3),
|
| 295 |
+
Permutation(1, 4)(3, 5))
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
def G18():
|
| 299 |
+
"""
|
| 300 |
+
Return a representation of the group G18, a transitive subgroup of S6
|
| 301 |
+
isomorphic to the semidirect product of C3^2 with C2.
|
| 302 |
+
|
| 303 |
+
Notes
|
| 304 |
+
=====
|
| 305 |
+
|
| 306 |
+
This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.
|
| 307 |
+
|
| 308 |
+
"""
|
| 309 |
+
return PermutationGroup(
|
| 310 |
+
Permutation(5)(0, 1, 2), Permutation(3, 4, 5),
|
| 311 |
+
Permutation(0, 4)(1, 5)(2, 3))
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
def G36m():
|
| 315 |
+
"""
|
| 316 |
+
Return a representation of the group G36-, a transitive subgroup of S6
|
| 317 |
+
isomorphic to the semidirect product of C3^2 with C2^2.
|
| 318 |
+
|
| 319 |
+
Notes
|
| 320 |
+
=====
|
| 321 |
+
|
| 322 |
+
This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.
|
| 323 |
+
|
| 324 |
+
"""
|
| 325 |
+
return PermutationGroup(
|
| 326 |
+
Permutation(5)(0, 1, 2), Permutation(3, 4, 5),
|
| 327 |
+
Permutation(1, 2)(3, 5), Permutation(0, 4)(1, 5)(2, 3))
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
def G36p():
|
| 331 |
+
"""
|
| 332 |
+
Return a representation of the group G36+, a transitive subgroup of S6
|
| 333 |
+
isomorphic to the semidirect product of C3^2 with C4.
|
| 334 |
+
|
| 335 |
+
Notes
|
| 336 |
+
=====
|
| 337 |
+
|
| 338 |
+
This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.
|
| 339 |
+
|
| 340 |
+
"""
|
| 341 |
+
return PermutationGroup(
|
| 342 |
+
Permutation(5)(0, 1, 2), Permutation(3, 4, 5),
|
| 343 |
+
Permutation(0, 5, 2, 3)(1, 4))
|
| 344 |
+
|
| 345 |
+
|
| 346 |
+
def G72():
|
| 347 |
+
"""
|
| 348 |
+
Return a representation of the group G72, a transitive subgroup of S6
|
| 349 |
+
isomorphic to the semidirect product of C3^2 with D4.
|
| 350 |
+
|
| 351 |
+
Notes
|
| 352 |
+
=====
|
| 353 |
+
|
| 354 |
+
See [1], Page 325.
|
| 355 |
+
|
| 356 |
+
"""
|
| 357 |
+
return PermutationGroup(
|
| 358 |
+
Permutation(5)(0, 1, 2),
|
| 359 |
+
Permutation(0, 4, 1, 3)(2, 5), Permutation(0, 3)(1, 4)(2, 5))
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
def PSL2F5():
|
| 363 |
+
r"""
|
| 364 |
+
Return a representation of the group $PSL_2(\mathbb{F}_5)$, as a transitive
|
| 365 |
+
subgroup of S6, isomorphic to $A_5$.
|
| 366 |
+
|
| 367 |
+
Notes
|
| 368 |
+
=====
|
| 369 |
+
|
| 370 |
+
This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.
|
| 371 |
+
|
| 372 |
+
"""
|
| 373 |
+
G = PermutationGroup(
|
| 374 |
+
Permutation(0, 4, 5)(1, 3, 2), Permutation(0, 4, 3, 1, 5))
|
| 375 |
+
set_alternating_group_properties(G, 5, 6)
|
| 376 |
+
return G
|
| 377 |
+
|
| 378 |
+
|
| 379 |
+
def PGL2F5():
|
| 380 |
+
r"""
|
| 381 |
+
Return a representation of the group $PGL_2(\mathbb{F}_5)$, as a transitive
|
| 382 |
+
subgroup of S6, isomorphic to $S_5$.
|
| 383 |
+
|
| 384 |
+
Notes
|
| 385 |
+
=====
|
| 386 |
+
|
| 387 |
+
See [1], Page 325.
|
| 388 |
+
|
| 389 |
+
"""
|
| 390 |
+
G = PermutationGroup(
|
| 391 |
+
Permutation(0, 1, 2, 3, 4), Permutation(0, 5)(1, 2)(3, 4))
|
| 392 |
+
set_symmetric_group_properties(G, 5, 6)
|
| 393 |
+
return G
|
| 394 |
+
|
| 395 |
+
|
| 396 |
+
def find_transitive_subgroups_of_S6(*targets, print_report=False):
|
| 397 |
+
r"""
|
| 398 |
+
Search for certain transitive subgroups of $S_6$.
|
| 399 |
+
|
| 400 |
+
The symmetric group $S_6$ has 16 different transitive subgroups, up to
|
| 401 |
+
conjugacy. Some are more easily constructed than others. For example, the
|
| 402 |
+
dihedral group $D_6$ is immediately found, but it is not at all obvious how
|
| 403 |
+
to realize $S_4$ or $S_5$ *transitively* within $S_6$.
|
| 404 |
+
|
| 405 |
+
In some cases there are well-known constructions that can be used. For
|
| 406 |
+
example, $S_5$ is isomorphic to $PGL_2(\mathbb{F}_5)$, which acts in a
|
| 407 |
+
natural way on the projective line $P^1(\mathbb{F}_5)$, a set of order 6.
|
| 408 |
+
|
| 409 |
+
In absence of such special constructions however, we can simply search for
|
| 410 |
+
generators. For example, transitive instances of $A_4$ and $S_4$ can be
|
| 411 |
+
found within $S_6$ in this way.
|
| 412 |
+
|
| 413 |
+
Once we are engaged in such searches, it may then be easier (if less
|
| 414 |
+
elegant) to find even those groups like $S_5$ that do have special
|
| 415 |
+
constructions, by mere search.
|
| 416 |
+
|
| 417 |
+
This function locates generators for transitive instances in $S_6$ of the
|
| 418 |
+
following subgroups:
|
| 419 |
+
|
| 420 |
+
* $A_4$
|
| 421 |
+
* $S_4^-$ ($S_4$ not contained within $A_6$)
|
| 422 |
+
* $S_4^+$ ($S_4$ contained within $A_6$)
|
| 423 |
+
* $A_4 \times C_2$
|
| 424 |
+
* $S_4 \times C_2$
|
| 425 |
+
* $G_{18} = C_3^2 \rtimes C_2$
|
| 426 |
+
* $G_{36}^- = C_3^2 \rtimes C_2^2$
|
| 427 |
+
* $G_{36}^+ = C_3^2 \rtimes C_4$
|
| 428 |
+
* $G_{72} = C_3^2 \rtimes D_4$
|
| 429 |
+
* $A_5$
|
| 430 |
+
* $S_5$
|
| 431 |
+
|
| 432 |
+
Note: Each of these groups also has a dedicated function in this module
|
| 433 |
+
that returns the group immediately, using generators that were found by
|
| 434 |
+
this search procedure.
|
| 435 |
+
|
| 436 |
+
The search procedure serves as a record of how these generators were
|
| 437 |
+
found. Also, due to randomness in the generation of the elements of
|
| 438 |
+
permutation groups, it can be called again, in order to (probably) get
|
| 439 |
+
different generators for the same groups.
|
| 440 |
+
|
| 441 |
+
Parameters
|
| 442 |
+
==========
|
| 443 |
+
|
| 444 |
+
targets : list of :py:class:`~.S6TransitiveSubgroups` values
|
| 445 |
+
The groups you want to find.
|
| 446 |
+
|
| 447 |
+
print_report : bool (default False)
|
| 448 |
+
If True, print to stdout the generators found for each group.
|
| 449 |
+
|
| 450 |
+
Returns
|
| 451 |
+
=======
|
| 452 |
+
|
| 453 |
+
dict
|
| 454 |
+
mapping each name in *targets* to the :py:class:`~.PermutationGroup`
|
| 455 |
+
that was found
|
| 456 |
+
|
| 457 |
+
References
|
| 458 |
+
==========
|
| 459 |
+
|
| 460 |
+
.. [2] https://en.wikipedia.org/wiki/Projective_linear_group#Exceptional_isomorphisms
|
| 461 |
+
.. [3] https://en.wikipedia.org/wiki/Automorphisms_of_the_symmetric_and_alternating_groups#PGL%282,5%29
|
| 462 |
+
|
| 463 |
+
"""
|
| 464 |
+
def elts_by_order(G):
|
| 465 |
+
"""Sort the elements of a group by their order. """
|
| 466 |
+
elts = defaultdict(list)
|
| 467 |
+
for g in G.elements:
|
| 468 |
+
elts[g.order()].append(g)
|
| 469 |
+
return elts
|
| 470 |
+
|
| 471 |
+
def order_profile(G, name=None):
|
| 472 |
+
"""Determine how many elements a group has, of each order. """
|
| 473 |
+
elts = elts_by_order(G)
|
| 474 |
+
profile = {o:len(e) for o, e in elts.items()}
|
| 475 |
+
if name:
|
| 476 |
+
print(f'{name}: ' + ' '.join(f'{len(profile[r])}@{r}' for r in sorted(profile.keys())))
|
| 477 |
+
return profile
|
| 478 |
+
|
| 479 |
+
S6 = SymmetricGroup(6)
|
| 480 |
+
A6 = AlternatingGroup(6)
|
| 481 |
+
S6_by_order = elts_by_order(S6)
|
| 482 |
+
|
| 483 |
+
def search(existing_gens, needed_gen_orders, order, alt=None, profile=None, anti_profile=None):
|
| 484 |
+
"""
|
| 485 |
+
Find a transitive subgroup of S6.
|
| 486 |
+
|
| 487 |
+
Parameters
|
| 488 |
+
==========
|
| 489 |
+
|
| 490 |
+
existing_gens : list of Permutation
|
| 491 |
+
Optionally empty list of generators that must be in the group.
|
| 492 |
+
|
| 493 |
+
needed_gen_orders : list of positive int
|
| 494 |
+
Nonempty list of the orders of the additional generators that are
|
| 495 |
+
to be found.
|
| 496 |
+
|
| 497 |
+
order: int
|
| 498 |
+
The order of the group being sought.
|
| 499 |
+
|
| 500 |
+
alt: bool, None
|
| 501 |
+
If True, require the group to be contained in A6.
|
| 502 |
+
If False, require the group not to be contained in A6.
|
| 503 |
+
|
| 504 |
+
profile : dict
|
| 505 |
+
If given, the group's order profile must equal this.
|
| 506 |
+
|
| 507 |
+
anti_profile : dict
|
| 508 |
+
If given, the group's order profile must *not* equal this.
|
| 509 |
+
|
| 510 |
+
"""
|
| 511 |
+
for gens in itertools.product(*[S6_by_order[n] for n in needed_gen_orders]):
|
| 512 |
+
if len(set(gens)) < len(gens):
|
| 513 |
+
continue
|
| 514 |
+
G = PermutationGroup(existing_gens + list(gens))
|
| 515 |
+
if G.order() == order and G.is_transitive():
|
| 516 |
+
if alt is not None and G.is_subgroup(A6) != alt:
|
| 517 |
+
continue
|
| 518 |
+
if profile and order_profile(G) != profile:
|
| 519 |
+
continue
|
| 520 |
+
if anti_profile and order_profile(G) == anti_profile:
|
| 521 |
+
continue
|
| 522 |
+
return G
|
| 523 |
+
|
| 524 |
+
def match_known_group(G, alt=None):
|
| 525 |
+
needed = [g.order() for g in G.generators]
|
| 526 |
+
return search([], needed, G.order(), alt=alt, profile=order_profile(G))
|
| 527 |
+
|
| 528 |
+
found = {}
|
| 529 |
+
|
| 530 |
+
def finish_up(name, G):
|
| 531 |
+
found[name] = G
|
| 532 |
+
if print_report:
|
| 533 |
+
print("=" * 40)
|
| 534 |
+
print(f"{name}:")
|
| 535 |
+
print(G.generators)
|
| 536 |
+
|
| 537 |
+
if S6TransitiveSubgroups.A4 in targets or S6TransitiveSubgroups.A4xC2 in targets:
|
| 538 |
+
A4_in_S6 = match_known_group(AlternatingGroup(4))
|
| 539 |
+
finish_up(S6TransitiveSubgroups.A4, A4_in_S6)
|
| 540 |
+
|
| 541 |
+
if S6TransitiveSubgroups.S4m in targets or S6TransitiveSubgroups.S4xC2 in targets:
|
| 542 |
+
S4m_in_S6 = match_known_group(SymmetricGroup(4), alt=False)
|
| 543 |
+
finish_up(S6TransitiveSubgroups.S4m, S4m_in_S6)
|
| 544 |
+
|
| 545 |
+
if S6TransitiveSubgroups.S4p in targets:
|
| 546 |
+
S4p_in_S6 = match_known_group(SymmetricGroup(4), alt=True)
|
| 547 |
+
finish_up(S6TransitiveSubgroups.S4p, S4p_in_S6)
|
| 548 |
+
|
| 549 |
+
if S6TransitiveSubgroups.A4xC2 in targets:
|
| 550 |
+
A4xC2_in_S6 = search(A4_in_S6.generators, [2], 24, anti_profile=order_profile(SymmetricGroup(4)))
|
| 551 |
+
finish_up(S6TransitiveSubgroups.A4xC2, A4xC2_in_S6)
|
| 552 |
+
|
| 553 |
+
if S6TransitiveSubgroups.S4xC2 in targets:
|
| 554 |
+
S4xC2_in_S6 = search(S4m_in_S6.generators, [2], 48)
|
| 555 |
+
finish_up(S6TransitiveSubgroups.S4xC2, S4xC2_in_S6)
|
| 556 |
+
|
| 557 |
+
# For the normal factor N = C3^2 in any of the G_n subgroups, we take one
|
| 558 |
+
# obvious instance of C3^2 in S6:
|
| 559 |
+
N_gens = [Permutation(5)(0, 1, 2), Permutation(5)(3, 4, 5)]
|
| 560 |
+
|
| 561 |
+
if S6TransitiveSubgroups.G18 in targets:
|
| 562 |
+
G18_in_S6 = search(N_gens, [2], 18)
|
| 563 |
+
finish_up(S6TransitiveSubgroups.G18, G18_in_S6)
|
| 564 |
+
|
| 565 |
+
if S6TransitiveSubgroups.G36m in targets:
|
| 566 |
+
G36m_in_S6 = search(N_gens, [2, 2], 36, alt=False)
|
| 567 |
+
finish_up(S6TransitiveSubgroups.G36m, G36m_in_S6)
|
| 568 |
+
|
| 569 |
+
if S6TransitiveSubgroups.G36p in targets:
|
| 570 |
+
G36p_in_S6 = search(N_gens, [4], 36, alt=True)
|
| 571 |
+
finish_up(S6TransitiveSubgroups.G36p, G36p_in_S6)
|
| 572 |
+
|
| 573 |
+
if S6TransitiveSubgroups.G72 in targets:
|
| 574 |
+
G72_in_S6 = search(N_gens, [4, 2], 72)
|
| 575 |
+
finish_up(S6TransitiveSubgroups.G72, G72_in_S6)
|
| 576 |
+
|
| 577 |
+
# The PSL2(F5) and PGL2(F5) subgroups are isomorphic to A5 and S5, resp.
|
| 578 |
+
|
| 579 |
+
if S6TransitiveSubgroups.PSL2F5 in targets:
|
| 580 |
+
PSL2F5_in_S6 = match_known_group(AlternatingGroup(5))
|
| 581 |
+
finish_up(S6TransitiveSubgroups.PSL2F5, PSL2F5_in_S6)
|
| 582 |
+
|
| 583 |
+
if S6TransitiveSubgroups.PGL2F5 in targets:
|
| 584 |
+
PGL2F5_in_S6 = match_known_group(SymmetricGroup(5))
|
| 585 |
+
finish_up(S6TransitiveSubgroups.PGL2F5, PGL2F5_in_S6)
|
| 586 |
+
|
| 587 |
+
# There is little need to "search" for any of the groups C6, S3, D6, A6,
|
| 588 |
+
# or S6, since they all have obvious realizations within S6. However, we
|
| 589 |
+
# support them here just in case a random representation is desired.
|
| 590 |
+
|
| 591 |
+
if S6TransitiveSubgroups.C6 in targets:
|
| 592 |
+
C6 = match_known_group(CyclicGroup(6))
|
| 593 |
+
finish_up(S6TransitiveSubgroups.C6, C6)
|
| 594 |
+
|
| 595 |
+
if S6TransitiveSubgroups.S3 in targets:
|
| 596 |
+
S3 = match_known_group(SymmetricGroup(3))
|
| 597 |
+
finish_up(S6TransitiveSubgroups.S3, S3)
|
| 598 |
+
|
| 599 |
+
if S6TransitiveSubgroups.D6 in targets:
|
| 600 |
+
D6 = match_known_group(DihedralGroup(6))
|
| 601 |
+
finish_up(S6TransitiveSubgroups.D6, D6)
|
| 602 |
+
|
| 603 |
+
if S6TransitiveSubgroups.A6 in targets:
|
| 604 |
+
A6 = match_known_group(A6)
|
| 605 |
+
finish_up(S6TransitiveSubgroups.A6, A6)
|
| 606 |
+
|
| 607 |
+
if S6TransitiveSubgroups.S6 in targets:
|
| 608 |
+
S6 = match_known_group(S6)
|
| 609 |
+
finish_up(S6TransitiveSubgroups.S6, S6)
|
| 610 |
+
|
| 611 |
+
return found
|
mgm/lib/python3.10/site-packages/sympy/combinatorics/homomorphisms.py
ADDED
|
@@ -0,0 +1,549 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import itertools
|
| 2 |
+
from sympy.combinatorics.fp_groups import FpGroup, FpSubgroup, simplify_presentation
|
| 3 |
+
from sympy.combinatorics.free_groups import FreeGroup
|
| 4 |
+
from sympy.combinatorics.perm_groups import PermutationGroup
|
| 5 |
+
from sympy.core.intfunc import igcd
|
| 6 |
+
from sympy.functions.combinatorial.numbers import totient
|
| 7 |
+
from sympy.core.singleton import S
|
| 8 |
+
|
| 9 |
+
class GroupHomomorphism:
|
| 10 |
+
'''
|
| 11 |
+
A class representing group homomorphisms. Instantiate using `homomorphism()`.
|
| 12 |
+
|
| 13 |
+
References
|
| 14 |
+
==========
|
| 15 |
+
|
| 16 |
+
.. [1] Holt, D., Eick, B. and O'Brien, E. (2005). Handbook of computational group theory.
|
| 17 |
+
|
| 18 |
+
'''
|
| 19 |
+
|
| 20 |
+
def __init__(self, domain, codomain, images):
|
| 21 |
+
self.domain = domain
|
| 22 |
+
self.codomain = codomain
|
| 23 |
+
self.images = images
|
| 24 |
+
self._inverses = None
|
| 25 |
+
self._kernel = None
|
| 26 |
+
self._image = None
|
| 27 |
+
|
| 28 |
+
def _invs(self):
|
| 29 |
+
'''
|
| 30 |
+
Return a dictionary with `{gen: inverse}` where `gen` is a rewriting
|
| 31 |
+
generator of `codomain` (e.g. strong generator for permutation groups)
|
| 32 |
+
and `inverse` is an element of its preimage
|
| 33 |
+
|
| 34 |
+
'''
|
| 35 |
+
image = self.image()
|
| 36 |
+
inverses = {}
|
| 37 |
+
for k in list(self.images.keys()):
|
| 38 |
+
v = self.images[k]
|
| 39 |
+
if not (v in inverses
|
| 40 |
+
or v.is_identity):
|
| 41 |
+
inverses[v] = k
|
| 42 |
+
if isinstance(self.codomain, PermutationGroup):
|
| 43 |
+
gens = image.strong_gens
|
| 44 |
+
else:
|
| 45 |
+
gens = image.generators
|
| 46 |
+
for g in gens:
|
| 47 |
+
if g in inverses or g.is_identity:
|
| 48 |
+
continue
|
| 49 |
+
w = self.domain.identity
|
| 50 |
+
if isinstance(self.codomain, PermutationGroup):
|
| 51 |
+
parts = image._strong_gens_slp[g][::-1]
|
| 52 |
+
else:
|
| 53 |
+
parts = g
|
| 54 |
+
for s in parts:
|
| 55 |
+
if s in inverses:
|
| 56 |
+
w = w*inverses[s]
|
| 57 |
+
else:
|
| 58 |
+
w = w*inverses[s**-1]**-1
|
| 59 |
+
inverses[g] = w
|
| 60 |
+
|
| 61 |
+
return inverses
|
| 62 |
+
|
| 63 |
+
def invert(self, g):
|
| 64 |
+
'''
|
| 65 |
+
Return an element of the preimage of ``g`` or of each element
|
| 66 |
+
of ``g`` if ``g`` is a list.
|
| 67 |
+
|
| 68 |
+
Explanation
|
| 69 |
+
===========
|
| 70 |
+
|
| 71 |
+
If the codomain is an FpGroup, the inverse for equal
|
| 72 |
+
elements might not always be the same unless the FpGroup's
|
| 73 |
+
rewriting system is confluent. However, making a system
|
| 74 |
+
confluent can be time-consuming. If it's important, try
|
| 75 |
+
`self.codomain.make_confluent()` first.
|
| 76 |
+
|
| 77 |
+
'''
|
| 78 |
+
from sympy.combinatorics import Permutation
|
| 79 |
+
from sympy.combinatorics.free_groups import FreeGroupElement
|
| 80 |
+
if isinstance(g, (Permutation, FreeGroupElement)):
|
| 81 |
+
if isinstance(self.codomain, FpGroup):
|
| 82 |
+
g = self.codomain.reduce(g)
|
| 83 |
+
if self._inverses is None:
|
| 84 |
+
self._inverses = self._invs()
|
| 85 |
+
image = self.image()
|
| 86 |
+
w = self.domain.identity
|
| 87 |
+
if isinstance(self.codomain, PermutationGroup):
|
| 88 |
+
gens = image.generator_product(g)[::-1]
|
| 89 |
+
else:
|
| 90 |
+
gens = g
|
| 91 |
+
# the following can't be "for s in gens:"
|
| 92 |
+
# because that would be equivalent to
|
| 93 |
+
# "for s in gens.array_form:" when g is
|
| 94 |
+
# a FreeGroupElement. On the other hand,
|
| 95 |
+
# when you call gens by index, the generator
|
| 96 |
+
# (or inverse) at position i is returned.
|
| 97 |
+
for i in range(len(gens)):
|
| 98 |
+
s = gens[i]
|
| 99 |
+
if s.is_identity:
|
| 100 |
+
continue
|
| 101 |
+
if s in self._inverses:
|
| 102 |
+
w = w*self._inverses[s]
|
| 103 |
+
else:
|
| 104 |
+
w = w*self._inverses[s**-1]**-1
|
| 105 |
+
return w
|
| 106 |
+
elif isinstance(g, list):
|
| 107 |
+
return [self.invert(e) for e in g]
|
| 108 |
+
|
| 109 |
+
def kernel(self):
|
| 110 |
+
'''
|
| 111 |
+
Compute the kernel of `self`.
|
| 112 |
+
|
| 113 |
+
'''
|
| 114 |
+
if self._kernel is None:
|
| 115 |
+
self._kernel = self._compute_kernel()
|
| 116 |
+
return self._kernel
|
| 117 |
+
|
| 118 |
+
def _compute_kernel(self):
|
| 119 |
+
G = self.domain
|
| 120 |
+
G_order = G.order()
|
| 121 |
+
if G_order is S.Infinity:
|
| 122 |
+
raise NotImplementedError(
|
| 123 |
+
"Kernel computation is not implemented for infinite groups")
|
| 124 |
+
gens = []
|
| 125 |
+
if isinstance(G, PermutationGroup):
|
| 126 |
+
K = PermutationGroup(G.identity)
|
| 127 |
+
else:
|
| 128 |
+
K = FpSubgroup(G, gens, normal=True)
|
| 129 |
+
i = self.image().order()
|
| 130 |
+
while K.order()*i != G_order:
|
| 131 |
+
r = G.random()
|
| 132 |
+
k = r*self.invert(self(r))**-1
|
| 133 |
+
if k not in K:
|
| 134 |
+
gens.append(k)
|
| 135 |
+
if isinstance(G, PermutationGroup):
|
| 136 |
+
K = PermutationGroup(gens)
|
| 137 |
+
else:
|
| 138 |
+
K = FpSubgroup(G, gens, normal=True)
|
| 139 |
+
return K
|
| 140 |
+
|
| 141 |
+
def image(self):
|
| 142 |
+
'''
|
| 143 |
+
Compute the image of `self`.
|
| 144 |
+
|
| 145 |
+
'''
|
| 146 |
+
if self._image is None:
|
| 147 |
+
values = list(set(self.images.values()))
|
| 148 |
+
if isinstance(self.codomain, PermutationGroup):
|
| 149 |
+
self._image = self.codomain.subgroup(values)
|
| 150 |
+
else:
|
| 151 |
+
self._image = FpSubgroup(self.codomain, values)
|
| 152 |
+
return self._image
|
| 153 |
+
|
| 154 |
+
def _apply(self, elem):
|
| 155 |
+
'''
|
| 156 |
+
Apply `self` to `elem`.
|
| 157 |
+
|
| 158 |
+
'''
|
| 159 |
+
if elem not in self.domain:
|
| 160 |
+
if isinstance(elem, (list, tuple)):
|
| 161 |
+
return [self._apply(e) for e in elem]
|
| 162 |
+
raise ValueError("The supplied element does not belong to the domain")
|
| 163 |
+
if elem.is_identity:
|
| 164 |
+
return self.codomain.identity
|
| 165 |
+
else:
|
| 166 |
+
images = self.images
|
| 167 |
+
value = self.codomain.identity
|
| 168 |
+
if isinstance(self.domain, PermutationGroup):
|
| 169 |
+
gens = self.domain.generator_product(elem, original=True)
|
| 170 |
+
for g in gens:
|
| 171 |
+
if g in self.images:
|
| 172 |
+
value = images[g]*value
|
| 173 |
+
else:
|
| 174 |
+
value = images[g**-1]**-1*value
|
| 175 |
+
else:
|
| 176 |
+
i = 0
|
| 177 |
+
for _, p in elem.array_form:
|
| 178 |
+
if p < 0:
|
| 179 |
+
g = elem[i]**-1
|
| 180 |
+
else:
|
| 181 |
+
g = elem[i]
|
| 182 |
+
value = value*images[g]**p
|
| 183 |
+
i += abs(p)
|
| 184 |
+
return value
|
| 185 |
+
|
| 186 |
+
def __call__(self, elem):
|
| 187 |
+
return self._apply(elem)
|
| 188 |
+
|
| 189 |
+
def is_injective(self):
|
| 190 |
+
'''
|
| 191 |
+
Check if the homomorphism is injective
|
| 192 |
+
|
| 193 |
+
'''
|
| 194 |
+
return self.kernel().order() == 1
|
| 195 |
+
|
| 196 |
+
def is_surjective(self):
|
| 197 |
+
'''
|
| 198 |
+
Check if the homomorphism is surjective
|
| 199 |
+
|
| 200 |
+
'''
|
| 201 |
+
im = self.image().order()
|
| 202 |
+
oth = self.codomain.order()
|
| 203 |
+
if im is S.Infinity and oth is S.Infinity:
|
| 204 |
+
return None
|
| 205 |
+
else:
|
| 206 |
+
return im == oth
|
| 207 |
+
|
| 208 |
+
def is_isomorphism(self):
|
| 209 |
+
'''
|
| 210 |
+
Check if `self` is an isomorphism.
|
| 211 |
+
|
| 212 |
+
'''
|
| 213 |
+
return self.is_injective() and self.is_surjective()
|
| 214 |
+
|
| 215 |
+
def is_trivial(self):
|
| 216 |
+
'''
|
| 217 |
+
Check is `self` is a trivial homomorphism, i.e. all elements
|
| 218 |
+
are mapped to the identity.
|
| 219 |
+
|
| 220 |
+
'''
|
| 221 |
+
return self.image().order() == 1
|
| 222 |
+
|
| 223 |
+
def compose(self, other):
|
| 224 |
+
'''
|
| 225 |
+
Return the composition of `self` and `other`, i.e.
|
| 226 |
+
the homomorphism phi such that for all g in the domain
|
| 227 |
+
of `other`, phi(g) = self(other(g))
|
| 228 |
+
|
| 229 |
+
'''
|
| 230 |
+
if not other.image().is_subgroup(self.domain):
|
| 231 |
+
raise ValueError("The image of `other` must be a subgroup of "
|
| 232 |
+
"the domain of `self`")
|
| 233 |
+
images = {g: self(other(g)) for g in other.images}
|
| 234 |
+
return GroupHomomorphism(other.domain, self.codomain, images)
|
| 235 |
+
|
| 236 |
+
def restrict_to(self, H):
|
| 237 |
+
'''
|
| 238 |
+
Return the restriction of the homomorphism to the subgroup `H`
|
| 239 |
+
of the domain.
|
| 240 |
+
|
| 241 |
+
'''
|
| 242 |
+
if not isinstance(H, PermutationGroup) or not H.is_subgroup(self.domain):
|
| 243 |
+
raise ValueError("Given H is not a subgroup of the domain")
|
| 244 |
+
domain = H
|
| 245 |
+
images = {g: self(g) for g in H.generators}
|
| 246 |
+
return GroupHomomorphism(domain, self.codomain, images)
|
| 247 |
+
|
| 248 |
+
def invert_subgroup(self, H):
|
| 249 |
+
'''
|
| 250 |
+
Return the subgroup of the domain that is the inverse image
|
| 251 |
+
of the subgroup ``H`` of the homomorphism image
|
| 252 |
+
|
| 253 |
+
'''
|
| 254 |
+
if not H.is_subgroup(self.image()):
|
| 255 |
+
raise ValueError("Given H is not a subgroup of the image")
|
| 256 |
+
gens = []
|
| 257 |
+
P = PermutationGroup(self.image().identity)
|
| 258 |
+
for h in H.generators:
|
| 259 |
+
h_i = self.invert(h)
|
| 260 |
+
if h_i not in P:
|
| 261 |
+
gens.append(h_i)
|
| 262 |
+
P = PermutationGroup(gens)
|
| 263 |
+
for k in self.kernel().generators:
|
| 264 |
+
if k*h_i not in P:
|
| 265 |
+
gens.append(k*h_i)
|
| 266 |
+
P = PermutationGroup(gens)
|
| 267 |
+
return P
|
| 268 |
+
|
| 269 |
+
def homomorphism(domain, codomain, gens, images=(), check=True):
|
| 270 |
+
'''
|
| 271 |
+
Create (if possible) a group homomorphism from the group ``domain``
|
| 272 |
+
to the group ``codomain`` defined by the images of the domain's
|
| 273 |
+
generators ``gens``. ``gens`` and ``images`` can be either lists or tuples
|
| 274 |
+
of equal sizes. If ``gens`` is a proper subset of the group's generators,
|
| 275 |
+
the unspecified generators will be mapped to the identity. If the
|
| 276 |
+
images are not specified, a trivial homomorphism will be created.
|
| 277 |
+
|
| 278 |
+
If the given images of the generators do not define a homomorphism,
|
| 279 |
+
an exception is raised.
|
| 280 |
+
|
| 281 |
+
If ``check`` is ``False``, do not check whether the given images actually
|
| 282 |
+
define a homomorphism.
|
| 283 |
+
|
| 284 |
+
'''
|
| 285 |
+
if not isinstance(domain, (PermutationGroup, FpGroup, FreeGroup)):
|
| 286 |
+
raise TypeError("The domain must be a group")
|
| 287 |
+
if not isinstance(codomain, (PermutationGroup, FpGroup, FreeGroup)):
|
| 288 |
+
raise TypeError("The codomain must be a group")
|
| 289 |
+
|
| 290 |
+
generators = domain.generators
|
| 291 |
+
if not all(g in generators for g in gens):
|
| 292 |
+
raise ValueError("The supplied generators must be a subset of the domain's generators")
|
| 293 |
+
if not all(g in codomain for g in images):
|
| 294 |
+
raise ValueError("The images must be elements of the codomain")
|
| 295 |
+
|
| 296 |
+
if images and len(images) != len(gens):
|
| 297 |
+
raise ValueError("The number of images must be equal to the number of generators")
|
| 298 |
+
|
| 299 |
+
gens = list(gens)
|
| 300 |
+
images = list(images)
|
| 301 |
+
|
| 302 |
+
images.extend([codomain.identity]*(len(generators)-len(images)))
|
| 303 |
+
gens.extend([g for g in generators if g not in gens])
|
| 304 |
+
images = dict(zip(gens,images))
|
| 305 |
+
|
| 306 |
+
if check and not _check_homomorphism(domain, codomain, images):
|
| 307 |
+
raise ValueError("The given images do not define a homomorphism")
|
| 308 |
+
return GroupHomomorphism(domain, codomain, images)
|
| 309 |
+
|
| 310 |
+
def _check_homomorphism(domain, codomain, images):
|
| 311 |
+
"""
|
| 312 |
+
Check that a given mapping of generators to images defines a homomorphism.
|
| 313 |
+
|
| 314 |
+
Parameters
|
| 315 |
+
==========
|
| 316 |
+
domain : PermutationGroup, FpGroup, FreeGroup
|
| 317 |
+
codomain : PermutationGroup, FpGroup, FreeGroup
|
| 318 |
+
images : dict
|
| 319 |
+
The set of keys must be equal to domain.generators.
|
| 320 |
+
The values must be elements of the codomain.
|
| 321 |
+
|
| 322 |
+
"""
|
| 323 |
+
pres = domain if hasattr(domain, 'relators') else domain.presentation()
|
| 324 |
+
rels = pres.relators
|
| 325 |
+
gens = pres.generators
|
| 326 |
+
symbols = [g.ext_rep[0] for g in gens]
|
| 327 |
+
symbols_to_domain_generators = dict(zip(symbols, domain.generators))
|
| 328 |
+
identity = codomain.identity
|
| 329 |
+
|
| 330 |
+
def _image(r):
|
| 331 |
+
w = identity
|
| 332 |
+
for symbol, power in r.array_form:
|
| 333 |
+
g = symbols_to_domain_generators[symbol]
|
| 334 |
+
w *= images[g]**power
|
| 335 |
+
return w
|
| 336 |
+
|
| 337 |
+
for r in rels:
|
| 338 |
+
if isinstance(codomain, FpGroup):
|
| 339 |
+
s = codomain.equals(_image(r), identity)
|
| 340 |
+
if s is None:
|
| 341 |
+
# only try to make the rewriting system
|
| 342 |
+
# confluent when it can't determine the
|
| 343 |
+
# truth of equality otherwise
|
| 344 |
+
success = codomain.make_confluent()
|
| 345 |
+
s = codomain.equals(_image(r), identity)
|
| 346 |
+
if s is None and not success:
|
| 347 |
+
raise RuntimeError("Can't determine if the images "
|
| 348 |
+
"define a homomorphism. Try increasing "
|
| 349 |
+
"the maximum number of rewriting rules "
|
| 350 |
+
"(group._rewriting_system.set_max(new_value); "
|
| 351 |
+
"the current value is stored in group._rewriting"
|
| 352 |
+
"_system.maxeqns)")
|
| 353 |
+
else:
|
| 354 |
+
s = _image(r).is_identity
|
| 355 |
+
if not s:
|
| 356 |
+
return False
|
| 357 |
+
return True
|
| 358 |
+
|
| 359 |
+
def orbit_homomorphism(group, omega):
|
| 360 |
+
'''
|
| 361 |
+
Return the homomorphism induced by the action of the permutation
|
| 362 |
+
group ``group`` on the set ``omega`` that is closed under the action.
|
| 363 |
+
|
| 364 |
+
'''
|
| 365 |
+
from sympy.combinatorics import Permutation
|
| 366 |
+
from sympy.combinatorics.named_groups import SymmetricGroup
|
| 367 |
+
codomain = SymmetricGroup(len(omega))
|
| 368 |
+
identity = codomain.identity
|
| 369 |
+
omega = list(omega)
|
| 370 |
+
images = {g: identity*Permutation([omega.index(o^g) for o in omega]) for g in group.generators}
|
| 371 |
+
group._schreier_sims(base=omega)
|
| 372 |
+
H = GroupHomomorphism(group, codomain, images)
|
| 373 |
+
if len(group.basic_stabilizers) > len(omega):
|
| 374 |
+
H._kernel = group.basic_stabilizers[len(omega)]
|
| 375 |
+
else:
|
| 376 |
+
H._kernel = PermutationGroup([group.identity])
|
| 377 |
+
return H
|
| 378 |
+
|
| 379 |
+
def block_homomorphism(group, blocks):
|
| 380 |
+
'''
|
| 381 |
+
Return the homomorphism induced by the action of the permutation
|
| 382 |
+
group ``group`` on the block system ``blocks``. The latter should be
|
| 383 |
+
of the same form as returned by the ``minimal_block`` method for
|
| 384 |
+
permutation groups, namely a list of length ``group.degree`` where
|
| 385 |
+
the i-th entry is a representative of the block i belongs to.
|
| 386 |
+
|
| 387 |
+
'''
|
| 388 |
+
from sympy.combinatorics import Permutation
|
| 389 |
+
from sympy.combinatorics.named_groups import SymmetricGroup
|
| 390 |
+
|
| 391 |
+
n = len(blocks)
|
| 392 |
+
|
| 393 |
+
# number the blocks; m is the total number,
|
| 394 |
+
# b is such that b[i] is the number of the block i belongs to,
|
| 395 |
+
# p is the list of length m such that p[i] is the representative
|
| 396 |
+
# of the i-th block
|
| 397 |
+
m = 0
|
| 398 |
+
p = []
|
| 399 |
+
b = [None]*n
|
| 400 |
+
for i in range(n):
|
| 401 |
+
if blocks[i] == i:
|
| 402 |
+
p.append(i)
|
| 403 |
+
b[i] = m
|
| 404 |
+
m += 1
|
| 405 |
+
for i in range(n):
|
| 406 |
+
b[i] = b[blocks[i]]
|
| 407 |
+
|
| 408 |
+
codomain = SymmetricGroup(m)
|
| 409 |
+
# the list corresponding to the identity permutation in codomain
|
| 410 |
+
identity = range(m)
|
| 411 |
+
images = {g: Permutation([b[p[i]^g] for i in identity]) for g in group.generators}
|
| 412 |
+
H = GroupHomomorphism(group, codomain, images)
|
| 413 |
+
return H
|
| 414 |
+
|
| 415 |
+
def group_isomorphism(G, H, isomorphism=True):
|
| 416 |
+
'''
|
| 417 |
+
Compute an isomorphism between 2 given groups.
|
| 418 |
+
|
| 419 |
+
Parameters
|
| 420 |
+
==========
|
| 421 |
+
|
| 422 |
+
G : A finite ``FpGroup`` or a ``PermutationGroup``.
|
| 423 |
+
First group.
|
| 424 |
+
|
| 425 |
+
H : A finite ``FpGroup`` or a ``PermutationGroup``
|
| 426 |
+
Second group.
|
| 427 |
+
|
| 428 |
+
isomorphism : bool
|
| 429 |
+
This is used to avoid the computation of homomorphism
|
| 430 |
+
when the user only wants to check if there exists
|
| 431 |
+
an isomorphism between the groups.
|
| 432 |
+
|
| 433 |
+
Returns
|
| 434 |
+
=======
|
| 435 |
+
|
| 436 |
+
If isomorphism = False -- Returns a boolean.
|
| 437 |
+
If isomorphism = True -- Returns a boolean and an isomorphism between `G` and `H`.
|
| 438 |
+
|
| 439 |
+
Examples
|
| 440 |
+
========
|
| 441 |
+
|
| 442 |
+
>>> from sympy.combinatorics import free_group, Permutation
|
| 443 |
+
>>> from sympy.combinatorics.perm_groups import PermutationGroup
|
| 444 |
+
>>> from sympy.combinatorics.fp_groups import FpGroup
|
| 445 |
+
>>> from sympy.combinatorics.homomorphisms import group_isomorphism
|
| 446 |
+
>>> from sympy.combinatorics.named_groups import DihedralGroup, AlternatingGroup
|
| 447 |
+
|
| 448 |
+
>>> D = DihedralGroup(8)
|
| 449 |
+
>>> p = Permutation(0, 1, 2, 3, 4, 5, 6, 7)
|
| 450 |
+
>>> P = PermutationGroup(p)
|
| 451 |
+
>>> group_isomorphism(D, P)
|
| 452 |
+
(False, None)
|
| 453 |
+
|
| 454 |
+
>>> F, a, b = free_group("a, b")
|
| 455 |
+
>>> G = FpGroup(F, [a**3, b**3, (a*b)**2])
|
| 456 |
+
>>> H = AlternatingGroup(4)
|
| 457 |
+
>>> (check, T) = group_isomorphism(G, H)
|
| 458 |
+
>>> check
|
| 459 |
+
True
|
| 460 |
+
>>> T(b*a*b**-1*a**-1*b**-1)
|
| 461 |
+
(0 2 3)
|
| 462 |
+
|
| 463 |
+
Notes
|
| 464 |
+
=====
|
| 465 |
+
|
| 466 |
+
Uses the approach suggested by Robert Tarjan to compute the isomorphism between two groups.
|
| 467 |
+
First, the generators of ``G`` are mapped to the elements of ``H`` and
|
| 468 |
+
we check if the mapping induces an isomorphism.
|
| 469 |
+
|
| 470 |
+
'''
|
| 471 |
+
if not isinstance(G, (PermutationGroup, FpGroup)):
|
| 472 |
+
raise TypeError("The group must be a PermutationGroup or an FpGroup")
|
| 473 |
+
if not isinstance(H, (PermutationGroup, FpGroup)):
|
| 474 |
+
raise TypeError("The group must be a PermutationGroup or an FpGroup")
|
| 475 |
+
|
| 476 |
+
if isinstance(G, FpGroup) and isinstance(H, FpGroup):
|
| 477 |
+
G = simplify_presentation(G)
|
| 478 |
+
H = simplify_presentation(H)
|
| 479 |
+
# Two infinite FpGroups with the same generators are isomorphic
|
| 480 |
+
# when the relators are same but are ordered differently.
|
| 481 |
+
if G.generators == H.generators and (G.relators).sort() == (H.relators).sort():
|
| 482 |
+
if not isomorphism:
|
| 483 |
+
return True
|
| 484 |
+
return (True, homomorphism(G, H, G.generators, H.generators))
|
| 485 |
+
|
| 486 |
+
# `_H` is the permutation group isomorphic to `H`.
|
| 487 |
+
_H = H
|
| 488 |
+
g_order = G.order()
|
| 489 |
+
h_order = H.order()
|
| 490 |
+
|
| 491 |
+
if g_order is S.Infinity:
|
| 492 |
+
raise NotImplementedError("Isomorphism methods are not implemented for infinite groups.")
|
| 493 |
+
|
| 494 |
+
if isinstance(H, FpGroup):
|
| 495 |
+
if h_order is S.Infinity:
|
| 496 |
+
raise NotImplementedError("Isomorphism methods are not implemented for infinite groups.")
|
| 497 |
+
_H, h_isomorphism = H._to_perm_group()
|
| 498 |
+
|
| 499 |
+
if (g_order != h_order) or (G.is_abelian != H.is_abelian):
|
| 500 |
+
if not isomorphism:
|
| 501 |
+
return False
|
| 502 |
+
return (False, None)
|
| 503 |
+
|
| 504 |
+
if not isomorphism:
|
| 505 |
+
# Two groups of the same cyclic numbered order
|
| 506 |
+
# are isomorphic to each other.
|
| 507 |
+
n = g_order
|
| 508 |
+
if (igcd(n, totient(n))) == 1:
|
| 509 |
+
return True
|
| 510 |
+
|
| 511 |
+
# Match the generators of `G` with subsets of `_H`
|
| 512 |
+
gens = list(G.generators)
|
| 513 |
+
for subset in itertools.permutations(_H, len(gens)):
|
| 514 |
+
images = list(subset)
|
| 515 |
+
images.extend([_H.identity]*(len(G.generators)-len(images)))
|
| 516 |
+
_images = dict(zip(gens,images))
|
| 517 |
+
if _check_homomorphism(G, _H, _images):
|
| 518 |
+
if isinstance(H, FpGroup):
|
| 519 |
+
images = h_isomorphism.invert(images)
|
| 520 |
+
T = homomorphism(G, H, G.generators, images, check=False)
|
| 521 |
+
if T.is_isomorphism():
|
| 522 |
+
# It is a valid isomorphism
|
| 523 |
+
if not isomorphism:
|
| 524 |
+
return True
|
| 525 |
+
return (True, T)
|
| 526 |
+
|
| 527 |
+
if not isomorphism:
|
| 528 |
+
return False
|
| 529 |
+
return (False, None)
|
| 530 |
+
|
| 531 |
+
def is_isomorphic(G, H):
|
| 532 |
+
'''
|
| 533 |
+
Check if the groups are isomorphic to each other
|
| 534 |
+
|
| 535 |
+
Parameters
|
| 536 |
+
==========
|
| 537 |
+
|
| 538 |
+
G : A finite ``FpGroup`` or a ``PermutationGroup``
|
| 539 |
+
First group.
|
| 540 |
+
|
| 541 |
+
H : A finite ``FpGroup`` or a ``PermutationGroup``
|
| 542 |
+
Second group.
|
| 543 |
+
|
| 544 |
+
Returns
|
| 545 |
+
=======
|
| 546 |
+
|
| 547 |
+
boolean
|
| 548 |
+
'''
|
| 549 |
+
return group_isomorphism(G, H, isomorphism=False)
|
mgm/lib/python3.10/site-packages/sympy/combinatorics/permutations.py
ADDED
|
@@ -0,0 +1,3115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
from collections import defaultdict
|
| 3 |
+
from collections.abc import Iterable
|
| 4 |
+
from functools import reduce
|
| 5 |
+
|
| 6 |
+
from sympy.core.parameters import global_parameters
|
| 7 |
+
from sympy.core.basic import Atom
|
| 8 |
+
from sympy.core.expr import Expr
|
| 9 |
+
from sympy.core.numbers import int_valued
|
| 10 |
+
from sympy.core.numbers import Integer
|
| 11 |
+
from sympy.core.sympify import _sympify
|
| 12 |
+
from sympy.matrices import zeros
|
| 13 |
+
from sympy.polys.polytools import lcm
|
| 14 |
+
from sympy.printing.repr import srepr
|
| 15 |
+
from sympy.utilities.iterables import (flatten, has_variety, minlex,
|
| 16 |
+
has_dups, runs, is_sequence)
|
| 17 |
+
from sympy.utilities.misc import as_int
|
| 18 |
+
from mpmath.libmp.libintmath import ifac
|
| 19 |
+
from sympy.multipledispatch import dispatch
|
| 20 |
+
|
| 21 |
+
def _af_rmul(a, b):
|
| 22 |
+
"""
|
| 23 |
+
Return the product b*a; input and output are array forms. The ith value
|
| 24 |
+
is a[b[i]].
|
| 25 |
+
|
| 26 |
+
Examples
|
| 27 |
+
========
|
| 28 |
+
|
| 29 |
+
>>> from sympy.combinatorics.permutations import _af_rmul, Permutation
|
| 30 |
+
|
| 31 |
+
>>> a, b = [1, 0, 2], [0, 2, 1]
|
| 32 |
+
>>> _af_rmul(a, b)
|
| 33 |
+
[1, 2, 0]
|
| 34 |
+
>>> [a[b[i]] for i in range(3)]
|
| 35 |
+
[1, 2, 0]
|
| 36 |
+
|
| 37 |
+
This handles the operands in reverse order compared to the ``*`` operator:
|
| 38 |
+
|
| 39 |
+
>>> a = Permutation(a)
|
| 40 |
+
>>> b = Permutation(b)
|
| 41 |
+
>>> list(a*b)
|
| 42 |
+
[2, 0, 1]
|
| 43 |
+
>>> [b(a(i)) for i in range(3)]
|
| 44 |
+
[2, 0, 1]
|
| 45 |
+
|
| 46 |
+
See Also
|
| 47 |
+
========
|
| 48 |
+
|
| 49 |
+
rmul, _af_rmuln
|
| 50 |
+
"""
|
| 51 |
+
return [a[i] for i in b]
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def _af_rmuln(*abc):
|
| 55 |
+
"""
|
| 56 |
+
Given [a, b, c, ...] return the product of ...*c*b*a using array forms.
|
| 57 |
+
The ith value is a[b[c[i]]].
|
| 58 |
+
|
| 59 |
+
Examples
|
| 60 |
+
========
|
| 61 |
+
|
| 62 |
+
>>> from sympy.combinatorics.permutations import _af_rmul, Permutation
|
| 63 |
+
|
| 64 |
+
>>> a, b = [1, 0, 2], [0, 2, 1]
|
| 65 |
+
>>> _af_rmul(a, b)
|
| 66 |
+
[1, 2, 0]
|
| 67 |
+
>>> [a[b[i]] for i in range(3)]
|
| 68 |
+
[1, 2, 0]
|
| 69 |
+
|
| 70 |
+
This handles the operands in reverse order compared to the ``*`` operator:
|
| 71 |
+
|
| 72 |
+
>>> a = Permutation(a); b = Permutation(b)
|
| 73 |
+
>>> list(a*b)
|
| 74 |
+
[2, 0, 1]
|
| 75 |
+
>>> [b(a(i)) for i in range(3)]
|
| 76 |
+
[2, 0, 1]
|
| 77 |
+
|
| 78 |
+
See Also
|
| 79 |
+
========
|
| 80 |
+
|
| 81 |
+
rmul, _af_rmul
|
| 82 |
+
"""
|
| 83 |
+
a = abc
|
| 84 |
+
m = len(a)
|
| 85 |
+
if m == 3:
|
| 86 |
+
p0, p1, p2 = a
|
| 87 |
+
return [p0[p1[i]] for i in p2]
|
| 88 |
+
if m == 4:
|
| 89 |
+
p0, p1, p2, p3 = a
|
| 90 |
+
return [p0[p1[p2[i]]] for i in p3]
|
| 91 |
+
if m == 5:
|
| 92 |
+
p0, p1, p2, p3, p4 = a
|
| 93 |
+
return [p0[p1[p2[p3[i]]]] for i in p4]
|
| 94 |
+
if m == 6:
|
| 95 |
+
p0, p1, p2, p3, p4, p5 = a
|
| 96 |
+
return [p0[p1[p2[p3[p4[i]]]]] for i in p5]
|
| 97 |
+
if m == 7:
|
| 98 |
+
p0, p1, p2, p3, p4, p5, p6 = a
|
| 99 |
+
return [p0[p1[p2[p3[p4[p5[i]]]]]] for i in p6]
|
| 100 |
+
if m == 8:
|
| 101 |
+
p0, p1, p2, p3, p4, p5, p6, p7 = a
|
| 102 |
+
return [p0[p1[p2[p3[p4[p5[p6[i]]]]]]] for i in p7]
|
| 103 |
+
if m == 1:
|
| 104 |
+
return a[0][:]
|
| 105 |
+
if m == 2:
|
| 106 |
+
a, b = a
|
| 107 |
+
return [a[i] for i in b]
|
| 108 |
+
if m == 0:
|
| 109 |
+
raise ValueError("String must not be empty")
|
| 110 |
+
p0 = _af_rmuln(*a[:m//2])
|
| 111 |
+
p1 = _af_rmuln(*a[m//2:])
|
| 112 |
+
return [p0[i] for i in p1]
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def _af_parity(pi):
|
| 116 |
+
"""
|
| 117 |
+
Computes the parity of a permutation in array form.
|
| 118 |
+
|
| 119 |
+
Explanation
|
| 120 |
+
===========
|
| 121 |
+
|
| 122 |
+
The parity of a permutation reflects the parity of the
|
| 123 |
+
number of inversions in the permutation, i.e., the
|
| 124 |
+
number of pairs of x and y such that x > y but p[x] < p[y].
|
| 125 |
+
|
| 126 |
+
Examples
|
| 127 |
+
========
|
| 128 |
+
|
| 129 |
+
>>> from sympy.combinatorics.permutations import _af_parity
|
| 130 |
+
>>> _af_parity([0, 1, 2, 3])
|
| 131 |
+
0
|
| 132 |
+
>>> _af_parity([3, 2, 0, 1])
|
| 133 |
+
1
|
| 134 |
+
|
| 135 |
+
See Also
|
| 136 |
+
========
|
| 137 |
+
|
| 138 |
+
Permutation
|
| 139 |
+
"""
|
| 140 |
+
n = len(pi)
|
| 141 |
+
a = [0] * n
|
| 142 |
+
c = 0
|
| 143 |
+
for j in range(n):
|
| 144 |
+
if a[j] == 0:
|
| 145 |
+
c += 1
|
| 146 |
+
a[j] = 1
|
| 147 |
+
i = j
|
| 148 |
+
while pi[i] != j:
|
| 149 |
+
i = pi[i]
|
| 150 |
+
a[i] = 1
|
| 151 |
+
return (n - c) % 2
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
def _af_invert(a):
|
| 155 |
+
"""
|
| 156 |
+
Finds the inverse, ~A, of a permutation, A, given in array form.
|
| 157 |
+
|
| 158 |
+
Examples
|
| 159 |
+
========
|
| 160 |
+
|
| 161 |
+
>>> from sympy.combinatorics.permutations import _af_invert, _af_rmul
|
| 162 |
+
>>> A = [1, 2, 0, 3]
|
| 163 |
+
>>> _af_invert(A)
|
| 164 |
+
[2, 0, 1, 3]
|
| 165 |
+
>>> _af_rmul(_, A)
|
| 166 |
+
[0, 1, 2, 3]
|
| 167 |
+
|
| 168 |
+
See Also
|
| 169 |
+
========
|
| 170 |
+
|
| 171 |
+
Permutation, __invert__
|
| 172 |
+
"""
|
| 173 |
+
inv_form = [0] * len(a)
|
| 174 |
+
for i, ai in enumerate(a):
|
| 175 |
+
inv_form[ai] = i
|
| 176 |
+
return inv_form
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
def _af_pow(a, n):
|
| 180 |
+
"""
|
| 181 |
+
Routine for finding powers of a permutation.
|
| 182 |
+
|
| 183 |
+
Examples
|
| 184 |
+
========
|
| 185 |
+
|
| 186 |
+
>>> from sympy.combinatorics import Permutation
|
| 187 |
+
>>> from sympy.combinatorics.permutations import _af_pow
|
| 188 |
+
>>> p = Permutation([2, 0, 3, 1])
|
| 189 |
+
>>> p.order()
|
| 190 |
+
4
|
| 191 |
+
>>> _af_pow(p._array_form, 4)
|
| 192 |
+
[0, 1, 2, 3]
|
| 193 |
+
"""
|
| 194 |
+
if n == 0:
|
| 195 |
+
return list(range(len(a)))
|
| 196 |
+
if n < 0:
|
| 197 |
+
return _af_pow(_af_invert(a), -n)
|
| 198 |
+
if n == 1:
|
| 199 |
+
return a[:]
|
| 200 |
+
elif n == 2:
|
| 201 |
+
b = [a[i] for i in a]
|
| 202 |
+
elif n == 3:
|
| 203 |
+
b = [a[a[i]] for i in a]
|
| 204 |
+
elif n == 4:
|
| 205 |
+
b = [a[a[a[i]]] for i in a]
|
| 206 |
+
else:
|
| 207 |
+
# use binary multiplication
|
| 208 |
+
b = list(range(len(a)))
|
| 209 |
+
while 1:
|
| 210 |
+
if n & 1:
|
| 211 |
+
b = [b[i] for i in a]
|
| 212 |
+
n -= 1
|
| 213 |
+
if not n:
|
| 214 |
+
break
|
| 215 |
+
if n % 4 == 0:
|
| 216 |
+
a = [a[a[a[i]]] for i in a]
|
| 217 |
+
n = n // 4
|
| 218 |
+
elif n % 2 == 0:
|
| 219 |
+
a = [a[i] for i in a]
|
| 220 |
+
n = n // 2
|
| 221 |
+
return b
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
def _af_commutes_with(a, b):
|
| 225 |
+
"""
|
| 226 |
+
Checks if the two permutations with array forms
|
| 227 |
+
given by ``a`` and ``b`` commute.
|
| 228 |
+
|
| 229 |
+
Examples
|
| 230 |
+
========
|
| 231 |
+
|
| 232 |
+
>>> from sympy.combinatorics.permutations import _af_commutes_with
|
| 233 |
+
>>> _af_commutes_with([1, 2, 0], [0, 2, 1])
|
| 234 |
+
False
|
| 235 |
+
|
| 236 |
+
See Also
|
| 237 |
+
========
|
| 238 |
+
|
| 239 |
+
Permutation, commutes_with
|
| 240 |
+
"""
|
| 241 |
+
return not any(a[b[i]] != b[a[i]] for i in range(len(a) - 1))
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
class Cycle(dict):
|
| 245 |
+
"""
|
| 246 |
+
Wrapper around dict which provides the functionality of a disjoint cycle.
|
| 247 |
+
|
| 248 |
+
Explanation
|
| 249 |
+
===========
|
| 250 |
+
|
| 251 |
+
A cycle shows the rule to use to move subsets of elements to obtain
|
| 252 |
+
a permutation. The Cycle class is more flexible than Permutation in
|
| 253 |
+
that 1) all elements need not be present in order to investigate how
|
| 254 |
+
multiple cycles act in sequence and 2) it can contain singletons:
|
| 255 |
+
|
| 256 |
+
>>> from sympy.combinatorics.permutations import Perm, Cycle
|
| 257 |
+
|
| 258 |
+
A Cycle will automatically parse a cycle given as a tuple on the rhs:
|
| 259 |
+
|
| 260 |
+
>>> Cycle(1, 2)(2, 3)
|
| 261 |
+
(1 3 2)
|
| 262 |
+
|
| 263 |
+
The identity cycle, Cycle(), can be used to start a product:
|
| 264 |
+
|
| 265 |
+
>>> Cycle()(1, 2)(2, 3)
|
| 266 |
+
(1 3 2)
|
| 267 |
+
|
| 268 |
+
The array form of a Cycle can be obtained by calling the list
|
| 269 |
+
method (or passing it to the list function) and all elements from
|
| 270 |
+
0 will be shown:
|
| 271 |
+
|
| 272 |
+
>>> a = Cycle(1, 2)
|
| 273 |
+
>>> a.list()
|
| 274 |
+
[0, 2, 1]
|
| 275 |
+
>>> list(a)
|
| 276 |
+
[0, 2, 1]
|
| 277 |
+
|
| 278 |
+
If a larger (or smaller) range is desired use the list method and
|
| 279 |
+
provide the desired size -- but the Cycle cannot be truncated to
|
| 280 |
+
a size smaller than the largest element that is out of place:
|
| 281 |
+
|
| 282 |
+
>>> b = Cycle(2, 4)(1, 2)(3, 1, 4)(1, 3)
|
| 283 |
+
>>> b.list()
|
| 284 |
+
[0, 2, 1, 3, 4]
|
| 285 |
+
>>> b.list(b.size + 1)
|
| 286 |
+
[0, 2, 1, 3, 4, 5]
|
| 287 |
+
>>> b.list(-1)
|
| 288 |
+
[0, 2, 1]
|
| 289 |
+
|
| 290 |
+
Singletons are not shown when printing with one exception: the largest
|
| 291 |
+
element is always shown -- as a singleton if necessary:
|
| 292 |
+
|
| 293 |
+
>>> Cycle(1, 4, 10)(4, 5)
|
| 294 |
+
(1 5 4 10)
|
| 295 |
+
>>> Cycle(1, 2)(4)(5)(10)
|
| 296 |
+
(1 2)(10)
|
| 297 |
+
|
| 298 |
+
The array form can be used to instantiate a Permutation so other
|
| 299 |
+
properties of the permutation can be investigated:
|
| 300 |
+
|
| 301 |
+
>>> Perm(Cycle(1, 2)(3, 4).list()).transpositions()
|
| 302 |
+
[(1, 2), (3, 4)]
|
| 303 |
+
|
| 304 |
+
Notes
|
| 305 |
+
=====
|
| 306 |
+
|
| 307 |
+
The underlying structure of the Cycle is a dictionary and although
|
| 308 |
+
the __iter__ method has been redefined to give the array form of the
|
| 309 |
+
cycle, the underlying dictionary items are still available with the
|
| 310 |
+
such methods as items():
|
| 311 |
+
|
| 312 |
+
>>> list(Cycle(1, 2).items())
|
| 313 |
+
[(1, 2), (2, 1)]
|
| 314 |
+
|
| 315 |
+
See Also
|
| 316 |
+
========
|
| 317 |
+
|
| 318 |
+
Permutation
|
| 319 |
+
"""
|
| 320 |
+
def __missing__(self, arg):
|
| 321 |
+
"""Enter arg into dictionary and return arg."""
|
| 322 |
+
return as_int(arg)
|
| 323 |
+
|
| 324 |
+
def __iter__(self):
|
| 325 |
+
yield from self.list()
|
| 326 |
+
|
| 327 |
+
def __call__(self, *other):
|
| 328 |
+
"""Return product of cycles processed from R to L.
|
| 329 |
+
|
| 330 |
+
Examples
|
| 331 |
+
========
|
| 332 |
+
|
| 333 |
+
>>> from sympy.combinatorics import Cycle
|
| 334 |
+
>>> Cycle(1, 2)(2, 3)
|
| 335 |
+
(1 3 2)
|
| 336 |
+
|
| 337 |
+
An instance of a Cycle will automatically parse list-like
|
| 338 |
+
objects and Permutations that are on the right. It is more
|
| 339 |
+
flexible than the Permutation in that all elements need not
|
| 340 |
+
be present:
|
| 341 |
+
|
| 342 |
+
>>> a = Cycle(1, 2)
|
| 343 |
+
>>> a(2, 3)
|
| 344 |
+
(1 3 2)
|
| 345 |
+
>>> a(2, 3)(4, 5)
|
| 346 |
+
(1 3 2)(4 5)
|
| 347 |
+
|
| 348 |
+
"""
|
| 349 |
+
rv = Cycle(*other)
|
| 350 |
+
for k, v in zip(list(self.keys()), [rv[self[k]] for k in self.keys()]):
|
| 351 |
+
rv[k] = v
|
| 352 |
+
return rv
|
| 353 |
+
|
| 354 |
+
def list(self, size=None):
|
| 355 |
+
"""Return the cycles as an explicit list starting from 0 up
|
| 356 |
+
to the greater of the largest value in the cycles and size.
|
| 357 |
+
|
| 358 |
+
Truncation of trailing unmoved items will occur when size
|
| 359 |
+
is less than the maximum element in the cycle; if this is
|
| 360 |
+
desired, setting ``size=-1`` will guarantee such trimming.
|
| 361 |
+
|
| 362 |
+
Examples
|
| 363 |
+
========
|
| 364 |
+
|
| 365 |
+
>>> from sympy.combinatorics import Cycle
|
| 366 |
+
>>> p = Cycle(2, 3)(4, 5)
|
| 367 |
+
>>> p.list()
|
| 368 |
+
[0, 1, 3, 2, 5, 4]
|
| 369 |
+
>>> p.list(10)
|
| 370 |
+
[0, 1, 3, 2, 5, 4, 6, 7, 8, 9]
|
| 371 |
+
|
| 372 |
+
Passing a length too small will trim trailing, unchanged elements
|
| 373 |
+
in the permutation:
|
| 374 |
+
|
| 375 |
+
>>> Cycle(2, 4)(1, 2, 4).list(-1)
|
| 376 |
+
[0, 2, 1]
|
| 377 |
+
"""
|
| 378 |
+
if not self and size is None:
|
| 379 |
+
raise ValueError('must give size for empty Cycle')
|
| 380 |
+
if size is not None:
|
| 381 |
+
big = max([i for i in self.keys() if self[i] != i] + [0])
|
| 382 |
+
size = max(size, big + 1)
|
| 383 |
+
else:
|
| 384 |
+
size = self.size
|
| 385 |
+
return [self[i] for i in range(size)]
|
| 386 |
+
|
| 387 |
+
def __repr__(self):
|
| 388 |
+
"""We want it to print as a Cycle, not as a dict.
|
| 389 |
+
|
| 390 |
+
Examples
|
| 391 |
+
========
|
| 392 |
+
|
| 393 |
+
>>> from sympy.combinatorics import Cycle
|
| 394 |
+
>>> Cycle(1, 2)
|
| 395 |
+
(1 2)
|
| 396 |
+
>>> print(_)
|
| 397 |
+
(1 2)
|
| 398 |
+
>>> list(Cycle(1, 2).items())
|
| 399 |
+
[(1, 2), (2, 1)]
|
| 400 |
+
"""
|
| 401 |
+
if not self:
|
| 402 |
+
return 'Cycle()'
|
| 403 |
+
cycles = Permutation(self).cyclic_form
|
| 404 |
+
s = ''.join(str(tuple(c)) for c in cycles)
|
| 405 |
+
big = self.size - 1
|
| 406 |
+
if not any(i == big for c in cycles for i in c):
|
| 407 |
+
s += '(%s)' % big
|
| 408 |
+
return 'Cycle%s' % s
|
| 409 |
+
|
| 410 |
+
def __str__(self):
|
| 411 |
+
"""We want it to be printed in a Cycle notation with no
|
| 412 |
+
comma in-between.
|
| 413 |
+
|
| 414 |
+
Examples
|
| 415 |
+
========
|
| 416 |
+
|
| 417 |
+
>>> from sympy.combinatorics import Cycle
|
| 418 |
+
>>> Cycle(1, 2)
|
| 419 |
+
(1 2)
|
| 420 |
+
>>> Cycle(1, 2, 4)(5, 6)
|
| 421 |
+
(1 2 4)(5 6)
|
| 422 |
+
"""
|
| 423 |
+
if not self:
|
| 424 |
+
return '()'
|
| 425 |
+
cycles = Permutation(self).cyclic_form
|
| 426 |
+
s = ''.join(str(tuple(c)) for c in cycles)
|
| 427 |
+
big = self.size - 1
|
| 428 |
+
if not any(i == big for c in cycles for i in c):
|
| 429 |
+
s += '(%s)' % big
|
| 430 |
+
s = s.replace(',', '')
|
| 431 |
+
return s
|
| 432 |
+
|
| 433 |
+
def __init__(self, *args):
|
| 434 |
+
"""Load up a Cycle instance with the values for the cycle.
|
| 435 |
+
|
| 436 |
+
Examples
|
| 437 |
+
========
|
| 438 |
+
|
| 439 |
+
>>> from sympy.combinatorics import Cycle
|
| 440 |
+
>>> Cycle(1, 2, 6)
|
| 441 |
+
(1 2 6)
|
| 442 |
+
"""
|
| 443 |
+
|
| 444 |
+
if not args:
|
| 445 |
+
return
|
| 446 |
+
if len(args) == 1:
|
| 447 |
+
if isinstance(args[0], Permutation):
|
| 448 |
+
for c in args[0].cyclic_form:
|
| 449 |
+
self.update(self(*c))
|
| 450 |
+
return
|
| 451 |
+
elif isinstance(args[0], Cycle):
|
| 452 |
+
for k, v in args[0].items():
|
| 453 |
+
self[k] = v
|
| 454 |
+
return
|
| 455 |
+
args = [as_int(a) for a in args]
|
| 456 |
+
if any(i < 0 for i in args):
|
| 457 |
+
raise ValueError('negative integers are not allowed in a cycle.')
|
| 458 |
+
if has_dups(args):
|
| 459 |
+
raise ValueError('All elements must be unique in a cycle.')
|
| 460 |
+
for i in range(-len(args), 0):
|
| 461 |
+
self[args[i]] = args[i + 1]
|
| 462 |
+
|
| 463 |
+
@property
|
| 464 |
+
def size(self):
|
| 465 |
+
if not self:
|
| 466 |
+
return 0
|
| 467 |
+
return max(self.keys()) + 1
|
| 468 |
+
|
| 469 |
+
def copy(self):
|
| 470 |
+
return Cycle(self)
|
| 471 |
+
|
| 472 |
+
|
| 473 |
+
class Permutation(Atom):
|
| 474 |
+
r"""
|
| 475 |
+
A permutation, alternatively known as an 'arrangement number' or 'ordering'
|
| 476 |
+
is an arrangement of the elements of an ordered list into a one-to-one
|
| 477 |
+
mapping with itself. The permutation of a given arrangement is given by
|
| 478 |
+
indicating the positions of the elements after re-arrangement [2]_. For
|
| 479 |
+
example, if one started with elements ``[x, y, a, b]`` (in that order) and
|
| 480 |
+
they were reordered as ``[x, y, b, a]`` then the permutation would be
|
| 481 |
+
``[0, 1, 3, 2]``. Notice that (in SymPy) the first element is always referred
|
| 482 |
+
to as 0 and the permutation uses the indices of the elements in the
|
| 483 |
+
original ordering, not the elements ``(a, b, ...)`` themselves.
|
| 484 |
+
|
| 485 |
+
>>> from sympy.combinatorics import Permutation
|
| 486 |
+
>>> from sympy import init_printing
|
| 487 |
+
>>> init_printing(perm_cyclic=False, pretty_print=False)
|
| 488 |
+
|
| 489 |
+
Permutations Notation
|
| 490 |
+
=====================
|
| 491 |
+
|
| 492 |
+
Permutations are commonly represented in disjoint cycle or array forms.
|
| 493 |
+
|
| 494 |
+
Array Notation and 2-line Form
|
| 495 |
+
------------------------------------
|
| 496 |
+
|
| 497 |
+
In the 2-line form, the elements and their final positions are shown
|
| 498 |
+
as a matrix with 2 rows:
|
| 499 |
+
|
| 500 |
+
[0 1 2 ... n-1]
|
| 501 |
+
[p(0) p(1) p(2) ... p(n-1)]
|
| 502 |
+
|
| 503 |
+
Since the first line is always ``range(n)``, where n is the size of p,
|
| 504 |
+
it is sufficient to represent the permutation by the second line,
|
| 505 |
+
referred to as the "array form" of the permutation. This is entered
|
| 506 |
+
in brackets as the argument to the Permutation class:
|
| 507 |
+
|
| 508 |
+
>>> p = Permutation([0, 2, 1]); p
|
| 509 |
+
Permutation([0, 2, 1])
|
| 510 |
+
|
| 511 |
+
Given i in range(p.size), the permutation maps i to i^p
|
| 512 |
+
|
| 513 |
+
>>> [i^p for i in range(p.size)]
|
| 514 |
+
[0, 2, 1]
|
| 515 |
+
|
| 516 |
+
The composite of two permutations p*q means first apply p, then q, so
|
| 517 |
+
i^(p*q) = (i^p)^q which is i^p^q according to Python precedence rules:
|
| 518 |
+
|
| 519 |
+
>>> q = Permutation([2, 1, 0])
|
| 520 |
+
>>> [i^p^q for i in range(3)]
|
| 521 |
+
[2, 0, 1]
|
| 522 |
+
>>> [i^(p*q) for i in range(3)]
|
| 523 |
+
[2, 0, 1]
|
| 524 |
+
|
| 525 |
+
One can use also the notation p(i) = i^p, but then the composition
|
| 526 |
+
rule is (p*q)(i) = q(p(i)), not p(q(i)):
|
| 527 |
+
|
| 528 |
+
>>> [(p*q)(i) for i in range(p.size)]
|
| 529 |
+
[2, 0, 1]
|
| 530 |
+
>>> [q(p(i)) for i in range(p.size)]
|
| 531 |
+
[2, 0, 1]
|
| 532 |
+
>>> [p(q(i)) for i in range(p.size)]
|
| 533 |
+
[1, 2, 0]
|
| 534 |
+
|
| 535 |
+
Disjoint Cycle Notation
|
| 536 |
+
-----------------------
|
| 537 |
+
|
| 538 |
+
In disjoint cycle notation, only the elements that have shifted are
|
| 539 |
+
indicated.
|
| 540 |
+
|
| 541 |
+
For example, [1, 3, 2, 0] can be represented as (0, 1, 3)(2).
|
| 542 |
+
This can be understood from the 2 line format of the given permutation.
|
| 543 |
+
In the 2-line form,
|
| 544 |
+
[0 1 2 3]
|
| 545 |
+
[1 3 2 0]
|
| 546 |
+
|
| 547 |
+
The element in the 0th position is 1, so 0 -> 1. The element in the 1st
|
| 548 |
+
position is three, so 1 -> 3. And the element in the third position is again
|
| 549 |
+
0, so 3 -> 0. Thus, 0 -> 1 -> 3 -> 0, and 2 -> 2. Thus, this can be represented
|
| 550 |
+
as 2 cycles: (0, 1, 3)(2).
|
| 551 |
+
In common notation, singular cycles are not explicitly written as they can be
|
| 552 |
+
inferred implicitly.
|
| 553 |
+
|
| 554 |
+
Only the relative ordering of elements in a cycle matter:
|
| 555 |
+
|
| 556 |
+
>>> Permutation(1,2,3) == Permutation(2,3,1) == Permutation(3,1,2)
|
| 557 |
+
True
|
| 558 |
+
|
| 559 |
+
The disjoint cycle notation is convenient when representing
|
| 560 |
+
permutations that have several cycles in them:
|
| 561 |
+
|
| 562 |
+
>>> Permutation(1, 2)(3, 5) == Permutation([[1, 2], [3, 5]])
|
| 563 |
+
True
|
| 564 |
+
|
| 565 |
+
It also provides some economy in entry when computing products of
|
| 566 |
+
permutations that are written in disjoint cycle notation:
|
| 567 |
+
|
| 568 |
+
>>> Permutation(1, 2)(1, 3)(2, 3)
|
| 569 |
+
Permutation([0, 3, 2, 1])
|
| 570 |
+
>>> _ == Permutation([[1, 2]])*Permutation([[1, 3]])*Permutation([[2, 3]])
|
| 571 |
+
True
|
| 572 |
+
|
| 573 |
+
Caution: when the cycles have common elements between them then the order
|
| 574 |
+
in which the permutations are applied matters. This module applies
|
| 575 |
+
the permutations from *left to right*.
|
| 576 |
+
|
| 577 |
+
>>> Permutation(1, 2)(2, 3) == Permutation([(1, 2), (2, 3)])
|
| 578 |
+
True
|
| 579 |
+
>>> Permutation(1, 2)(2, 3).list()
|
| 580 |
+
[0, 3, 1, 2]
|
| 581 |
+
|
| 582 |
+
In the above case, (1,2) is computed before (2,3).
|
| 583 |
+
As 0 -> 0, 0 -> 0, element in position 0 is 0.
|
| 584 |
+
As 1 -> 2, 2 -> 3, element in position 1 is 3.
|
| 585 |
+
As 2 -> 1, 1 -> 1, element in position 2 is 1.
|
| 586 |
+
As 3 -> 3, 3 -> 2, element in position 3 is 2.
|
| 587 |
+
|
| 588 |
+
If the first and second elements had been
|
| 589 |
+
swapped first, followed by the swapping of the second
|
| 590 |
+
and third, the result would have been [0, 2, 3, 1].
|
| 591 |
+
If, you want to apply the cycles in the conventional
|
| 592 |
+
right to left order, call the function with arguments in reverse order
|
| 593 |
+
as demonstrated below:
|
| 594 |
+
|
| 595 |
+
>>> Permutation([(1, 2), (2, 3)][::-1]).list()
|
| 596 |
+
[0, 2, 3, 1]
|
| 597 |
+
|
| 598 |
+
Entering a singleton in a permutation is a way to indicate the size of the
|
| 599 |
+
permutation. The ``size`` keyword can also be used.
|
| 600 |
+
|
| 601 |
+
Array-form entry:
|
| 602 |
+
|
| 603 |
+
>>> Permutation([[1, 2], [9]])
|
| 604 |
+
Permutation([0, 2, 1], size=10)
|
| 605 |
+
>>> Permutation([[1, 2]], size=10)
|
| 606 |
+
Permutation([0, 2, 1], size=10)
|
| 607 |
+
|
| 608 |
+
Cyclic-form entry:
|
| 609 |
+
|
| 610 |
+
>>> Permutation(1, 2, size=10)
|
| 611 |
+
Permutation([0, 2, 1], size=10)
|
| 612 |
+
>>> Permutation(9)(1, 2)
|
| 613 |
+
Permutation([0, 2, 1], size=10)
|
| 614 |
+
|
| 615 |
+
Caution: no singleton containing an element larger than the largest
|
| 616 |
+
in any previous cycle can be entered. This is an important difference
|
| 617 |
+
in how Permutation and Cycle handle the ``__call__`` syntax. A singleton
|
| 618 |
+
argument at the start of a Permutation performs instantiation of the
|
| 619 |
+
Permutation and is permitted:
|
| 620 |
+
|
| 621 |
+
>>> Permutation(5)
|
| 622 |
+
Permutation([], size=6)
|
| 623 |
+
|
| 624 |
+
A singleton entered after instantiation is a call to the permutation
|
| 625 |
+
-- a function call -- and if the argument is out of range it will
|
| 626 |
+
trigger an error. For this reason, it is better to start the cycle
|
| 627 |
+
with the singleton:
|
| 628 |
+
|
| 629 |
+
The following fails because there is no element 3:
|
| 630 |
+
|
| 631 |
+
>>> Permutation(1, 2)(3)
|
| 632 |
+
Traceback (most recent call last):
|
| 633 |
+
...
|
| 634 |
+
IndexError: list index out of range
|
| 635 |
+
|
| 636 |
+
This is ok: only the call to an out of range singleton is prohibited;
|
| 637 |
+
otherwise the permutation autosizes:
|
| 638 |
+
|
| 639 |
+
>>> Permutation(3)(1, 2)
|
| 640 |
+
Permutation([0, 2, 1, 3])
|
| 641 |
+
>>> Permutation(1, 2)(3, 4) == Permutation(3, 4)(1, 2)
|
| 642 |
+
True
|
| 643 |
+
|
| 644 |
+
|
| 645 |
+
Equality testing
|
| 646 |
+
----------------
|
| 647 |
+
|
| 648 |
+
The array forms must be the same in order for permutations to be equal:
|
| 649 |
+
|
| 650 |
+
>>> Permutation([1, 0, 2, 3]) == Permutation([1, 0])
|
| 651 |
+
False
|
| 652 |
+
|
| 653 |
+
|
| 654 |
+
Identity Permutation
|
| 655 |
+
--------------------
|
| 656 |
+
|
| 657 |
+
The identity permutation is a permutation in which no element is out of
|
| 658 |
+
place. It can be entered in a variety of ways. All the following create
|
| 659 |
+
an identity permutation of size 4:
|
| 660 |
+
|
| 661 |
+
>>> I = Permutation([0, 1, 2, 3])
|
| 662 |
+
>>> all(p == I for p in [
|
| 663 |
+
... Permutation(3),
|
| 664 |
+
... Permutation(range(4)),
|
| 665 |
+
... Permutation([], size=4),
|
| 666 |
+
... Permutation(size=4)])
|
| 667 |
+
True
|
| 668 |
+
|
| 669 |
+
Watch out for entering the range *inside* a set of brackets (which is
|
| 670 |
+
cycle notation):
|
| 671 |
+
|
| 672 |
+
>>> I == Permutation([range(4)])
|
| 673 |
+
False
|
| 674 |
+
|
| 675 |
+
|
| 676 |
+
Permutation Printing
|
| 677 |
+
====================
|
| 678 |
+
|
| 679 |
+
There are a few things to note about how Permutations are printed.
|
| 680 |
+
|
| 681 |
+
.. deprecated:: 1.6
|
| 682 |
+
|
| 683 |
+
Configuring Permutation printing by setting
|
| 684 |
+
``Permutation.print_cyclic`` is deprecated. Users should use the
|
| 685 |
+
``perm_cyclic`` flag to the printers, as described below.
|
| 686 |
+
|
| 687 |
+
1) If you prefer one form (array or cycle) over another, you can set
|
| 688 |
+
``init_printing`` with the ``perm_cyclic`` flag.
|
| 689 |
+
|
| 690 |
+
>>> from sympy import init_printing
|
| 691 |
+
>>> p = Permutation(1, 2)(4, 5)(3, 4)
|
| 692 |
+
>>> p
|
| 693 |
+
Permutation([0, 2, 1, 4, 5, 3])
|
| 694 |
+
|
| 695 |
+
>>> init_printing(perm_cyclic=True, pretty_print=False)
|
| 696 |
+
>>> p
|
| 697 |
+
(1 2)(3 4 5)
|
| 698 |
+
|
| 699 |
+
2) Regardless of the setting, a list of elements in the array for cyclic
|
| 700 |
+
form can be obtained and either of those can be copied and supplied as
|
| 701 |
+
the argument to Permutation:
|
| 702 |
+
|
| 703 |
+
>>> p.array_form
|
| 704 |
+
[0, 2, 1, 4, 5, 3]
|
| 705 |
+
>>> p.cyclic_form
|
| 706 |
+
[[1, 2], [3, 4, 5]]
|
| 707 |
+
>>> Permutation(_) == p
|
| 708 |
+
True
|
| 709 |
+
|
| 710 |
+
3) Printing is economical in that as little as possible is printed while
|
| 711 |
+
retaining all information about the size of the permutation:
|
| 712 |
+
|
| 713 |
+
>>> init_printing(perm_cyclic=False, pretty_print=False)
|
| 714 |
+
>>> Permutation([1, 0, 2, 3])
|
| 715 |
+
Permutation([1, 0, 2, 3])
|
| 716 |
+
>>> Permutation([1, 0, 2, 3], size=20)
|
| 717 |
+
Permutation([1, 0], size=20)
|
| 718 |
+
>>> Permutation([1, 0, 2, 4, 3, 5, 6], size=20)
|
| 719 |
+
Permutation([1, 0, 2, 4, 3], size=20)
|
| 720 |
+
|
| 721 |
+
>>> p = Permutation([1, 0, 2, 3])
|
| 722 |
+
>>> init_printing(perm_cyclic=True, pretty_print=False)
|
| 723 |
+
>>> p
|
| 724 |
+
(3)(0 1)
|
| 725 |
+
>>> init_printing(perm_cyclic=False, pretty_print=False)
|
| 726 |
+
|
| 727 |
+
The 2 was not printed but it is still there as can be seen with the
|
| 728 |
+
array_form and size methods:
|
| 729 |
+
|
| 730 |
+
>>> p.array_form
|
| 731 |
+
[1, 0, 2, 3]
|
| 732 |
+
>>> p.size
|
| 733 |
+
4
|
| 734 |
+
|
| 735 |
+
Short introduction to other methods
|
| 736 |
+
===================================
|
| 737 |
+
|
| 738 |
+
The permutation can act as a bijective function, telling what element is
|
| 739 |
+
located at a given position
|
| 740 |
+
|
| 741 |
+
>>> q = Permutation([5, 2, 3, 4, 1, 0])
|
| 742 |
+
>>> q.array_form[1] # the hard way
|
| 743 |
+
2
|
| 744 |
+
>>> q(1) # the easy way
|
| 745 |
+
2
|
| 746 |
+
>>> {i: q(i) for i in range(q.size)} # showing the bijection
|
| 747 |
+
{0: 5, 1: 2, 2: 3, 3: 4, 4: 1, 5: 0}
|
| 748 |
+
|
| 749 |
+
The full cyclic form (including singletons) can be obtained:
|
| 750 |
+
|
| 751 |
+
>>> p.full_cyclic_form
|
| 752 |
+
[[0, 1], [2], [3]]
|
| 753 |
+
|
| 754 |
+
Any permutation can be factored into transpositions of pairs of elements:
|
| 755 |
+
|
| 756 |
+
>>> Permutation([[1, 2], [3, 4, 5]]).transpositions()
|
| 757 |
+
[(1, 2), (3, 5), (3, 4)]
|
| 758 |
+
>>> Permutation.rmul(*[Permutation([ti], size=6) for ti in _]).cyclic_form
|
| 759 |
+
[[1, 2], [3, 4, 5]]
|
| 760 |
+
|
| 761 |
+
The number of permutations on a set of n elements is given by n! and is
|
| 762 |
+
called the cardinality.
|
| 763 |
+
|
| 764 |
+
>>> p.size
|
| 765 |
+
4
|
| 766 |
+
>>> p.cardinality
|
| 767 |
+
24
|
| 768 |
+
|
| 769 |
+
A given permutation has a rank among all the possible permutations of the
|
| 770 |
+
same elements, but what that rank is depends on how the permutations are
|
| 771 |
+
enumerated. (There are a number of different methods of doing so.) The
|
| 772 |
+
lexicographic rank is given by the rank method and this rank is used to
|
| 773 |
+
increment a permutation with addition/subtraction:
|
| 774 |
+
|
| 775 |
+
>>> p.rank()
|
| 776 |
+
6
|
| 777 |
+
>>> p + 1
|
| 778 |
+
Permutation([1, 0, 3, 2])
|
| 779 |
+
>>> p.next_lex()
|
| 780 |
+
Permutation([1, 0, 3, 2])
|
| 781 |
+
>>> _.rank()
|
| 782 |
+
7
|
| 783 |
+
>>> p.unrank_lex(p.size, rank=7)
|
| 784 |
+
Permutation([1, 0, 3, 2])
|
| 785 |
+
|
| 786 |
+
The product of two permutations p and q is defined as their composition as
|
| 787 |
+
functions, (p*q)(i) = q(p(i)) [6]_.
|
| 788 |
+
|
| 789 |
+
>>> p = Permutation([1, 0, 2, 3])
|
| 790 |
+
>>> q = Permutation([2, 3, 1, 0])
|
| 791 |
+
>>> list(q*p)
|
| 792 |
+
[2, 3, 0, 1]
|
| 793 |
+
>>> list(p*q)
|
| 794 |
+
[3, 2, 1, 0]
|
| 795 |
+
>>> [q(p(i)) for i in range(p.size)]
|
| 796 |
+
[3, 2, 1, 0]
|
| 797 |
+
|
| 798 |
+
The permutation can be 'applied' to any list-like object, not only
|
| 799 |
+
Permutations:
|
| 800 |
+
|
| 801 |
+
>>> p(['zero', 'one', 'four', 'two'])
|
| 802 |
+
['one', 'zero', 'four', 'two']
|
| 803 |
+
>>> p('zo42')
|
| 804 |
+
['o', 'z', '4', '2']
|
| 805 |
+
|
| 806 |
+
If you have a list of arbitrary elements, the corresponding permutation
|
| 807 |
+
can be found with the from_sequence method:
|
| 808 |
+
|
| 809 |
+
>>> Permutation.from_sequence('SymPy')
|
| 810 |
+
Permutation([1, 3, 2, 0, 4])
|
| 811 |
+
|
| 812 |
+
Checking if a Permutation is contained in a Group
|
| 813 |
+
=================================================
|
| 814 |
+
|
| 815 |
+
Generally if you have a group of permutations G on n symbols, and
|
| 816 |
+
you're checking if a permutation on less than n symbols is part
|
| 817 |
+
of that group, the check will fail.
|
| 818 |
+
|
| 819 |
+
Here is an example for n=5 and we check if the cycle
|
| 820 |
+
(1,2,3) is in G:
|
| 821 |
+
|
| 822 |
+
>>> from sympy import init_printing
|
| 823 |
+
>>> init_printing(perm_cyclic=True, pretty_print=False)
|
| 824 |
+
>>> from sympy.combinatorics import Cycle, Permutation
|
| 825 |
+
>>> from sympy.combinatorics.perm_groups import PermutationGroup
|
| 826 |
+
>>> G = PermutationGroup(Cycle(2, 3)(4, 5), Cycle(1, 2, 3, 4, 5))
|
| 827 |
+
>>> p1 = Permutation(Cycle(2, 5, 3))
|
| 828 |
+
>>> p2 = Permutation(Cycle(1, 2, 3))
|
| 829 |
+
>>> a1 = Permutation(Cycle(1, 2, 3).list(6))
|
| 830 |
+
>>> a2 = Permutation(Cycle(1, 2, 3)(5))
|
| 831 |
+
>>> a3 = Permutation(Cycle(1, 2, 3),size=6)
|
| 832 |
+
>>> for p in [p1,p2,a1,a2,a3]: p, G.contains(p)
|
| 833 |
+
((2 5 3), True)
|
| 834 |
+
((1 2 3), False)
|
| 835 |
+
((5)(1 2 3), True)
|
| 836 |
+
((5)(1 2 3), True)
|
| 837 |
+
((5)(1 2 3), True)
|
| 838 |
+
|
| 839 |
+
The check for p2 above will fail.
|
| 840 |
+
|
| 841 |
+
Checking if p1 is in G works because SymPy knows
|
| 842 |
+
G is a group on 5 symbols, and p1 is also on 5 symbols
|
| 843 |
+
(its largest element is 5).
|
| 844 |
+
|
| 845 |
+
For ``a1``, the ``.list(6)`` call will extend the permutation to 5
|
| 846 |
+
symbols, so the test will work as well. In the case of ``a2`` the
|
| 847 |
+
permutation is being extended to 5 symbols by using a singleton,
|
| 848 |
+
and in the case of ``a3`` it's extended through the constructor
|
| 849 |
+
argument ``size=6``.
|
| 850 |
+
|
| 851 |
+
There is another way to do this, which is to tell the ``contains``
|
| 852 |
+
method that the number of symbols the group is on does not need to
|
| 853 |
+
match perfectly the number of symbols for the permutation:
|
| 854 |
+
|
| 855 |
+
>>> G.contains(p2,strict=False)
|
| 856 |
+
True
|
| 857 |
+
|
| 858 |
+
This can be via the ``strict`` argument to the ``contains`` method,
|
| 859 |
+
and SymPy will try to extend the permutation on its own and then
|
| 860 |
+
perform the containment check.
|
| 861 |
+
|
| 862 |
+
See Also
|
| 863 |
+
========
|
| 864 |
+
|
| 865 |
+
Cycle
|
| 866 |
+
|
| 867 |
+
References
|
| 868 |
+
==========
|
| 869 |
+
|
| 870 |
+
.. [1] Skiena, S. 'Permutations.' 1.1 in Implementing Discrete Mathematics
|
| 871 |
+
Combinatorics and Graph Theory with Mathematica. Reading, MA:
|
| 872 |
+
Addison-Wesley, pp. 3-16, 1990.
|
| 873 |
+
|
| 874 |
+
.. [2] Knuth, D. E. The Art of Computer Programming, Vol. 4: Combinatorial
|
| 875 |
+
Algorithms, 1st ed. Reading, MA: Addison-Wesley, 2011.
|
| 876 |
+
|
| 877 |
+
.. [3] Wendy Myrvold and Frank Ruskey. 2001. Ranking and unranking
|
| 878 |
+
permutations in linear time. Inf. Process. Lett. 79, 6 (September 2001),
|
| 879 |
+
281-284. DOI=10.1016/S0020-0190(01)00141-7
|
| 880 |
+
|
| 881 |
+
.. [4] D. L. Kreher, D. R. Stinson 'Combinatorial Algorithms'
|
| 882 |
+
CRC Press, 1999
|
| 883 |
+
|
| 884 |
+
.. [5] Graham, R. L.; Knuth, D. E.; and Patashnik, O.
|
| 885 |
+
Concrete Mathematics: A Foundation for Computer Science, 2nd ed.
|
| 886 |
+
Reading, MA: Addison-Wesley, 1994.
|
| 887 |
+
|
| 888 |
+
.. [6] https://en.wikipedia.org/w/index.php?oldid=499948155#Product_and_inverse
|
| 889 |
+
|
| 890 |
+
.. [7] https://en.wikipedia.org/wiki/Lehmer_code
|
| 891 |
+
|
| 892 |
+
"""
|
| 893 |
+
|
| 894 |
+
is_Permutation = True
|
| 895 |
+
|
| 896 |
+
_array_form = None
|
| 897 |
+
_cyclic_form = None
|
| 898 |
+
_cycle_structure = None
|
| 899 |
+
_size = None
|
| 900 |
+
_rank = None
|
| 901 |
+
|
| 902 |
+
def __new__(cls, *args, size=None, **kwargs):
|
| 903 |
+
"""
|
| 904 |
+
Constructor for the Permutation object from a list or a
|
| 905 |
+
list of lists in which all elements of the permutation may
|
| 906 |
+
appear only once.
|
| 907 |
+
|
| 908 |
+
Examples
|
| 909 |
+
========
|
| 910 |
+
|
| 911 |
+
>>> from sympy.combinatorics import Permutation
|
| 912 |
+
>>> from sympy import init_printing
|
| 913 |
+
>>> init_printing(perm_cyclic=False, pretty_print=False)
|
| 914 |
+
|
| 915 |
+
Permutations entered in array-form are left unaltered:
|
| 916 |
+
|
| 917 |
+
>>> Permutation([0, 2, 1])
|
| 918 |
+
Permutation([0, 2, 1])
|
| 919 |
+
|
| 920 |
+
Permutations entered in cyclic form are converted to array form;
|
| 921 |
+
singletons need not be entered, but can be entered to indicate the
|
| 922 |
+
largest element:
|
| 923 |
+
|
| 924 |
+
>>> Permutation([[4, 5, 6], [0, 1]])
|
| 925 |
+
Permutation([1, 0, 2, 3, 5, 6, 4])
|
| 926 |
+
>>> Permutation([[4, 5, 6], [0, 1], [19]])
|
| 927 |
+
Permutation([1, 0, 2, 3, 5, 6, 4], size=20)
|
| 928 |
+
|
| 929 |
+
All manipulation of permutations assumes that the smallest element
|
| 930 |
+
is 0 (in keeping with 0-based indexing in Python) so if the 0 is
|
| 931 |
+
missing when entering a permutation in array form, an error will be
|
| 932 |
+
raised:
|
| 933 |
+
|
| 934 |
+
>>> Permutation([2, 1])
|
| 935 |
+
Traceback (most recent call last):
|
| 936 |
+
...
|
| 937 |
+
ValueError: Integers 0 through 2 must be present.
|
| 938 |
+
|
| 939 |
+
If a permutation is entered in cyclic form, it can be entered without
|
| 940 |
+
singletons and the ``size`` specified so those values can be filled
|
| 941 |
+
in, otherwise the array form will only extend to the maximum value
|
| 942 |
+
in the cycles:
|
| 943 |
+
|
| 944 |
+
>>> Permutation([[1, 4], [3, 5, 2]], size=10)
|
| 945 |
+
Permutation([0, 4, 3, 5, 1, 2], size=10)
|
| 946 |
+
>>> _.array_form
|
| 947 |
+
[0, 4, 3, 5, 1, 2, 6, 7, 8, 9]
|
| 948 |
+
"""
|
| 949 |
+
if size is not None:
|
| 950 |
+
size = int(size)
|
| 951 |
+
|
| 952 |
+
#a) ()
|
| 953 |
+
#b) (1) = identity
|
| 954 |
+
#c) (1, 2) = cycle
|
| 955 |
+
#d) ([1, 2, 3]) = array form
|
| 956 |
+
#e) ([[1, 2]]) = cyclic form
|
| 957 |
+
#f) (Cycle) = conversion to permutation
|
| 958 |
+
#g) (Permutation) = adjust size or return copy
|
| 959 |
+
ok = True
|
| 960 |
+
if not args: # a
|
| 961 |
+
return cls._af_new(list(range(size or 0)))
|
| 962 |
+
elif len(args) > 1: # c
|
| 963 |
+
return cls._af_new(Cycle(*args).list(size))
|
| 964 |
+
if len(args) == 1:
|
| 965 |
+
a = args[0]
|
| 966 |
+
if isinstance(a, cls): # g
|
| 967 |
+
if size is None or size == a.size:
|
| 968 |
+
return a
|
| 969 |
+
return cls(a.array_form, size=size)
|
| 970 |
+
if isinstance(a, Cycle): # f
|
| 971 |
+
return cls._af_new(a.list(size))
|
| 972 |
+
if not is_sequence(a): # b
|
| 973 |
+
if size is not None and a + 1 > size:
|
| 974 |
+
raise ValueError('size is too small when max is %s' % a)
|
| 975 |
+
return cls._af_new(list(range(a + 1)))
|
| 976 |
+
if has_variety(is_sequence(ai) for ai in a):
|
| 977 |
+
ok = False
|
| 978 |
+
else:
|
| 979 |
+
ok = False
|
| 980 |
+
if not ok:
|
| 981 |
+
raise ValueError("Permutation argument must be a list of ints, "
|
| 982 |
+
"a list of lists, Permutation or Cycle.")
|
| 983 |
+
|
| 984 |
+
# safe to assume args are valid; this also makes a copy
|
| 985 |
+
# of the args
|
| 986 |
+
args = list(args[0])
|
| 987 |
+
|
| 988 |
+
is_cycle = args and is_sequence(args[0])
|
| 989 |
+
if is_cycle: # e
|
| 990 |
+
args = [[int(i) for i in c] for c in args]
|
| 991 |
+
else: # d
|
| 992 |
+
args = [int(i) for i in args]
|
| 993 |
+
|
| 994 |
+
# if there are n elements present, 0, 1, ..., n-1 should be present
|
| 995 |
+
# unless a cycle notation has been provided. A 0 will be added
|
| 996 |
+
# for convenience in case one wants to enter permutations where
|
| 997 |
+
# counting starts from 1.
|
| 998 |
+
|
| 999 |
+
temp = flatten(args)
|
| 1000 |
+
if has_dups(temp) and not is_cycle:
|
| 1001 |
+
raise ValueError('there were repeated elements.')
|
| 1002 |
+
temp = set(temp)
|
| 1003 |
+
|
| 1004 |
+
if not is_cycle:
|
| 1005 |
+
if temp != set(range(len(temp))):
|
| 1006 |
+
raise ValueError('Integers 0 through %s must be present.' %
|
| 1007 |
+
max(temp))
|
| 1008 |
+
if size is not None and temp and max(temp) + 1 > size:
|
| 1009 |
+
raise ValueError('max element should not exceed %s' % (size - 1))
|
| 1010 |
+
|
| 1011 |
+
if is_cycle:
|
| 1012 |
+
# it's not necessarily canonical so we won't store
|
| 1013 |
+
# it -- use the array form instead
|
| 1014 |
+
c = Cycle()
|
| 1015 |
+
for ci in args:
|
| 1016 |
+
c = c(*ci)
|
| 1017 |
+
aform = c.list()
|
| 1018 |
+
else:
|
| 1019 |
+
aform = list(args)
|
| 1020 |
+
if size and size > len(aform):
|
| 1021 |
+
# don't allow for truncation of permutation which
|
| 1022 |
+
# might split a cycle and lead to an invalid aform
|
| 1023 |
+
# but do allow the permutation size to be increased
|
| 1024 |
+
aform.extend(list(range(len(aform), size)))
|
| 1025 |
+
|
| 1026 |
+
return cls._af_new(aform)
|
| 1027 |
+
|
| 1028 |
+
@classmethod
|
| 1029 |
+
def _af_new(cls, perm):
|
| 1030 |
+
"""A method to produce a Permutation object from a list;
|
| 1031 |
+
the list is bound to the _array_form attribute, so it must
|
| 1032 |
+
not be modified; this method is meant for internal use only;
|
| 1033 |
+
the list ``a`` is supposed to be generated as a temporary value
|
| 1034 |
+
in a method, so p = Perm._af_new(a) is the only object
|
| 1035 |
+
to hold a reference to ``a``::
|
| 1036 |
+
|
| 1037 |
+
Examples
|
| 1038 |
+
========
|
| 1039 |
+
|
| 1040 |
+
>>> from sympy.combinatorics.permutations import Perm
|
| 1041 |
+
>>> from sympy import init_printing
|
| 1042 |
+
>>> init_printing(perm_cyclic=False, pretty_print=False)
|
| 1043 |
+
>>> a = [2, 1, 3, 0]
|
| 1044 |
+
>>> p = Perm._af_new(a)
|
| 1045 |
+
>>> p
|
| 1046 |
+
Permutation([2, 1, 3, 0])
|
| 1047 |
+
|
| 1048 |
+
"""
|
| 1049 |
+
p = super().__new__(cls)
|
| 1050 |
+
p._array_form = perm
|
| 1051 |
+
p._size = len(perm)
|
| 1052 |
+
return p
|
| 1053 |
+
|
| 1054 |
+
def copy(self):
|
| 1055 |
+
return self.__class__(self.array_form)
|
| 1056 |
+
|
| 1057 |
+
def __getnewargs__(self):
|
| 1058 |
+
return (self.array_form,)
|
| 1059 |
+
|
| 1060 |
+
def _hashable_content(self):
|
| 1061 |
+
# the array_form (a list) is the Permutation arg, so we need to
|
| 1062 |
+
# return a tuple, instead
|
| 1063 |
+
return tuple(self.array_form)
|
| 1064 |
+
|
| 1065 |
+
@property
|
| 1066 |
+
def array_form(self):
|
| 1067 |
+
"""
|
| 1068 |
+
Return a copy of the attribute _array_form
|
| 1069 |
+
Examples
|
| 1070 |
+
========
|
| 1071 |
+
|
| 1072 |
+
>>> from sympy.combinatorics import Permutation
|
| 1073 |
+
>>> p = Permutation([[2, 0], [3, 1]])
|
| 1074 |
+
>>> p.array_form
|
| 1075 |
+
[2, 3, 0, 1]
|
| 1076 |
+
>>> Permutation([[2, 0, 3, 1]]).array_form
|
| 1077 |
+
[3, 2, 0, 1]
|
| 1078 |
+
>>> Permutation([2, 0, 3, 1]).array_form
|
| 1079 |
+
[2, 0, 3, 1]
|
| 1080 |
+
>>> Permutation([[1, 2], [4, 5]]).array_form
|
| 1081 |
+
[0, 2, 1, 3, 5, 4]
|
| 1082 |
+
"""
|
| 1083 |
+
return self._array_form[:]
|
| 1084 |
+
|
| 1085 |
+
def list(self, size=None):
|
| 1086 |
+
"""Return the permutation as an explicit list, possibly
|
| 1087 |
+
trimming unmoved elements if size is less than the maximum
|
| 1088 |
+
element in the permutation; if this is desired, setting
|
| 1089 |
+
``size=-1`` will guarantee such trimming.
|
| 1090 |
+
|
| 1091 |
+
Examples
|
| 1092 |
+
========
|
| 1093 |
+
|
| 1094 |
+
>>> from sympy.combinatorics import Permutation
|
| 1095 |
+
>>> p = Permutation(2, 3)(4, 5)
|
| 1096 |
+
>>> p.list()
|
| 1097 |
+
[0, 1, 3, 2, 5, 4]
|
| 1098 |
+
>>> p.list(10)
|
| 1099 |
+
[0, 1, 3, 2, 5, 4, 6, 7, 8, 9]
|
| 1100 |
+
|
| 1101 |
+
Passing a length too small will trim trailing, unchanged elements
|
| 1102 |
+
in the permutation:
|
| 1103 |
+
|
| 1104 |
+
>>> Permutation(2, 4)(1, 2, 4).list(-1)
|
| 1105 |
+
[0, 2, 1]
|
| 1106 |
+
>>> Permutation(3).list(-1)
|
| 1107 |
+
[]
|
| 1108 |
+
"""
|
| 1109 |
+
if not self and size is None:
|
| 1110 |
+
raise ValueError('must give size for empty Cycle')
|
| 1111 |
+
rv = self.array_form
|
| 1112 |
+
if size is not None:
|
| 1113 |
+
if size > self.size:
|
| 1114 |
+
rv.extend(list(range(self.size, size)))
|
| 1115 |
+
else:
|
| 1116 |
+
# find first value from rhs where rv[i] != i
|
| 1117 |
+
i = self.size - 1
|
| 1118 |
+
while rv:
|
| 1119 |
+
if rv[-1] != i:
|
| 1120 |
+
break
|
| 1121 |
+
rv.pop()
|
| 1122 |
+
i -= 1
|
| 1123 |
+
return rv
|
| 1124 |
+
|
| 1125 |
+
@property
|
| 1126 |
+
def cyclic_form(self):
|
| 1127 |
+
"""
|
| 1128 |
+
This is used to convert to the cyclic notation
|
| 1129 |
+
from the canonical notation. Singletons are omitted.
|
| 1130 |
+
|
| 1131 |
+
Examples
|
| 1132 |
+
========
|
| 1133 |
+
|
| 1134 |
+
>>> from sympy.combinatorics import Permutation
|
| 1135 |
+
>>> p = Permutation([0, 3, 1, 2])
|
| 1136 |
+
>>> p.cyclic_form
|
| 1137 |
+
[[1, 3, 2]]
|
| 1138 |
+
>>> Permutation([1, 0, 2, 4, 3, 5]).cyclic_form
|
| 1139 |
+
[[0, 1], [3, 4]]
|
| 1140 |
+
|
| 1141 |
+
See Also
|
| 1142 |
+
========
|
| 1143 |
+
|
| 1144 |
+
array_form, full_cyclic_form
|
| 1145 |
+
"""
|
| 1146 |
+
if self._cyclic_form is not None:
|
| 1147 |
+
return list(self._cyclic_form)
|
| 1148 |
+
array_form = self.array_form
|
| 1149 |
+
unchecked = [True] * len(array_form)
|
| 1150 |
+
cyclic_form = []
|
| 1151 |
+
for i in range(len(array_form)):
|
| 1152 |
+
if unchecked[i]:
|
| 1153 |
+
cycle = []
|
| 1154 |
+
cycle.append(i)
|
| 1155 |
+
unchecked[i] = False
|
| 1156 |
+
j = i
|
| 1157 |
+
while unchecked[array_form[j]]:
|
| 1158 |
+
j = array_form[j]
|
| 1159 |
+
cycle.append(j)
|
| 1160 |
+
unchecked[j] = False
|
| 1161 |
+
if len(cycle) > 1:
|
| 1162 |
+
cyclic_form.append(cycle)
|
| 1163 |
+
assert cycle == list(minlex(cycle))
|
| 1164 |
+
cyclic_form.sort()
|
| 1165 |
+
self._cyclic_form = cyclic_form[:]
|
| 1166 |
+
return cyclic_form
|
| 1167 |
+
|
| 1168 |
+
@property
|
| 1169 |
+
def full_cyclic_form(self):
|
| 1170 |
+
"""Return permutation in cyclic form including singletons.
|
| 1171 |
+
|
| 1172 |
+
Examples
|
| 1173 |
+
========
|
| 1174 |
+
|
| 1175 |
+
>>> from sympy.combinatorics import Permutation
|
| 1176 |
+
>>> Permutation([0, 2, 1]).full_cyclic_form
|
| 1177 |
+
[[0], [1, 2]]
|
| 1178 |
+
"""
|
| 1179 |
+
need = set(range(self.size)) - set(flatten(self.cyclic_form))
|
| 1180 |
+
rv = self.cyclic_form + [[i] for i in need]
|
| 1181 |
+
rv.sort()
|
| 1182 |
+
return rv
|
| 1183 |
+
|
| 1184 |
+
@property
|
| 1185 |
+
def size(self):
|
| 1186 |
+
"""
|
| 1187 |
+
Returns the number of elements in the permutation.
|
| 1188 |
+
|
| 1189 |
+
Examples
|
| 1190 |
+
========
|
| 1191 |
+
|
| 1192 |
+
>>> from sympy.combinatorics import Permutation
|
| 1193 |
+
>>> Permutation([[3, 2], [0, 1]]).size
|
| 1194 |
+
4
|
| 1195 |
+
|
| 1196 |
+
See Also
|
| 1197 |
+
========
|
| 1198 |
+
|
| 1199 |
+
cardinality, length, order, rank
|
| 1200 |
+
"""
|
| 1201 |
+
return self._size
|
| 1202 |
+
|
| 1203 |
+
def support(self):
|
| 1204 |
+
"""Return the elements in permutation, P, for which P[i] != i.
|
| 1205 |
+
|
| 1206 |
+
Examples
|
| 1207 |
+
========
|
| 1208 |
+
|
| 1209 |
+
>>> from sympy.combinatorics import Permutation
|
| 1210 |
+
>>> p = Permutation([[3, 2], [0, 1], [4]])
|
| 1211 |
+
>>> p.array_form
|
| 1212 |
+
[1, 0, 3, 2, 4]
|
| 1213 |
+
>>> p.support()
|
| 1214 |
+
[0, 1, 2, 3]
|
| 1215 |
+
"""
|
| 1216 |
+
a = self.array_form
|
| 1217 |
+
return [i for i, e in enumerate(a) if a[i] != i]
|
| 1218 |
+
|
| 1219 |
+
def __add__(self, other):
|
| 1220 |
+
"""Return permutation that is other higher in rank than self.
|
| 1221 |
+
|
| 1222 |
+
The rank is the lexicographical rank, with the identity permutation
|
| 1223 |
+
having rank of 0.
|
| 1224 |
+
|
| 1225 |
+
Examples
|
| 1226 |
+
========
|
| 1227 |
+
|
| 1228 |
+
>>> from sympy.combinatorics import Permutation
|
| 1229 |
+
>>> I = Permutation([0, 1, 2, 3])
|
| 1230 |
+
>>> a = Permutation([2, 1, 3, 0])
|
| 1231 |
+
>>> I + a.rank() == a
|
| 1232 |
+
True
|
| 1233 |
+
|
| 1234 |
+
See Also
|
| 1235 |
+
========
|
| 1236 |
+
|
| 1237 |
+
__sub__, inversion_vector
|
| 1238 |
+
|
| 1239 |
+
"""
|
| 1240 |
+
rank = (self.rank() + other) % self.cardinality
|
| 1241 |
+
rv = self.unrank_lex(self.size, rank)
|
| 1242 |
+
rv._rank = rank
|
| 1243 |
+
return rv
|
| 1244 |
+
|
| 1245 |
+
def __sub__(self, other):
|
| 1246 |
+
"""Return the permutation that is other lower in rank than self.
|
| 1247 |
+
|
| 1248 |
+
See Also
|
| 1249 |
+
========
|
| 1250 |
+
|
| 1251 |
+
__add__
|
| 1252 |
+
"""
|
| 1253 |
+
return self.__add__(-other)
|
| 1254 |
+
|
| 1255 |
+
@staticmethod
|
| 1256 |
+
def rmul(*args):
|
| 1257 |
+
"""
|
| 1258 |
+
Return product of Permutations [a, b, c, ...] as the Permutation whose
|
| 1259 |
+
ith value is a(b(c(i))).
|
| 1260 |
+
|
| 1261 |
+
a, b, c, ... can be Permutation objects or tuples.
|
| 1262 |
+
|
| 1263 |
+
Examples
|
| 1264 |
+
========
|
| 1265 |
+
|
| 1266 |
+
>>> from sympy.combinatorics import Permutation
|
| 1267 |
+
|
| 1268 |
+
>>> a, b = [1, 0, 2], [0, 2, 1]
|
| 1269 |
+
>>> a = Permutation(a); b = Permutation(b)
|
| 1270 |
+
>>> list(Permutation.rmul(a, b))
|
| 1271 |
+
[1, 2, 0]
|
| 1272 |
+
>>> [a(b(i)) for i in range(3)]
|
| 1273 |
+
[1, 2, 0]
|
| 1274 |
+
|
| 1275 |
+
This handles the operands in reverse order compared to the ``*`` operator:
|
| 1276 |
+
|
| 1277 |
+
>>> a = Permutation(a); b = Permutation(b)
|
| 1278 |
+
>>> list(a*b)
|
| 1279 |
+
[2, 0, 1]
|
| 1280 |
+
>>> [b(a(i)) for i in range(3)]
|
| 1281 |
+
[2, 0, 1]
|
| 1282 |
+
|
| 1283 |
+
Notes
|
| 1284 |
+
=====
|
| 1285 |
+
|
| 1286 |
+
All items in the sequence will be parsed by Permutation as
|
| 1287 |
+
necessary as long as the first item is a Permutation:
|
| 1288 |
+
|
| 1289 |
+
>>> Permutation.rmul(a, [0, 2, 1]) == Permutation.rmul(a, b)
|
| 1290 |
+
True
|
| 1291 |
+
|
| 1292 |
+
The reverse order of arguments will raise a TypeError.
|
| 1293 |
+
|
| 1294 |
+
"""
|
| 1295 |
+
rv = args[0]
|
| 1296 |
+
for i in range(1, len(args)):
|
| 1297 |
+
rv = args[i]*rv
|
| 1298 |
+
return rv
|
| 1299 |
+
|
| 1300 |
+
@classmethod
|
| 1301 |
+
def rmul_with_af(cls, *args):
|
| 1302 |
+
"""
|
| 1303 |
+
same as rmul, but the elements of args are Permutation objects
|
| 1304 |
+
which have _array_form
|
| 1305 |
+
"""
|
| 1306 |
+
a = [x._array_form for x in args]
|
| 1307 |
+
rv = cls._af_new(_af_rmuln(*a))
|
| 1308 |
+
return rv
|
| 1309 |
+
|
| 1310 |
+
def mul_inv(self, other):
|
| 1311 |
+
"""
|
| 1312 |
+
other*~self, self and other have _array_form
|
| 1313 |
+
"""
|
| 1314 |
+
a = _af_invert(self._array_form)
|
| 1315 |
+
b = other._array_form
|
| 1316 |
+
return self._af_new(_af_rmul(a, b))
|
| 1317 |
+
|
| 1318 |
+
def __rmul__(self, other):
|
| 1319 |
+
"""This is needed to coerce other to Permutation in rmul."""
|
| 1320 |
+
cls = type(self)
|
| 1321 |
+
return cls(other)*self
|
| 1322 |
+
|
| 1323 |
+
def __mul__(self, other):
|
| 1324 |
+
"""
|
| 1325 |
+
Return the product a*b as a Permutation; the ith value is b(a(i)).
|
| 1326 |
+
|
| 1327 |
+
Examples
|
| 1328 |
+
========
|
| 1329 |
+
|
| 1330 |
+
>>> from sympy.combinatorics.permutations import _af_rmul, Permutation
|
| 1331 |
+
|
| 1332 |
+
>>> a, b = [1, 0, 2], [0, 2, 1]
|
| 1333 |
+
>>> a = Permutation(a); b = Permutation(b)
|
| 1334 |
+
>>> list(a*b)
|
| 1335 |
+
[2, 0, 1]
|
| 1336 |
+
>>> [b(a(i)) for i in range(3)]
|
| 1337 |
+
[2, 0, 1]
|
| 1338 |
+
|
| 1339 |
+
This handles operands in reverse order compared to _af_rmul and rmul:
|
| 1340 |
+
|
| 1341 |
+
>>> al = list(a); bl = list(b)
|
| 1342 |
+
>>> _af_rmul(al, bl)
|
| 1343 |
+
[1, 2, 0]
|
| 1344 |
+
>>> [al[bl[i]] for i in range(3)]
|
| 1345 |
+
[1, 2, 0]
|
| 1346 |
+
|
| 1347 |
+
It is acceptable for the arrays to have different lengths; the shorter
|
| 1348 |
+
one will be padded to match the longer one:
|
| 1349 |
+
|
| 1350 |
+
>>> from sympy import init_printing
|
| 1351 |
+
>>> init_printing(perm_cyclic=False, pretty_print=False)
|
| 1352 |
+
>>> b*Permutation([1, 0])
|
| 1353 |
+
Permutation([1, 2, 0])
|
| 1354 |
+
>>> Permutation([1, 0])*b
|
| 1355 |
+
Permutation([2, 0, 1])
|
| 1356 |
+
|
| 1357 |
+
It is also acceptable to allow coercion to handle conversion of a
|
| 1358 |
+
single list to the left of a Permutation:
|
| 1359 |
+
|
| 1360 |
+
>>> [0, 1]*a # no change: 2-element identity
|
| 1361 |
+
Permutation([1, 0, 2])
|
| 1362 |
+
>>> [[0, 1]]*a # exchange first two elements
|
| 1363 |
+
Permutation([0, 1, 2])
|
| 1364 |
+
|
| 1365 |
+
You cannot use more than 1 cycle notation in a product of cycles
|
| 1366 |
+
since coercion can only handle one argument to the left. To handle
|
| 1367 |
+
multiple cycles it is convenient to use Cycle instead of Permutation:
|
| 1368 |
+
|
| 1369 |
+
>>> [[1, 2]]*[[2, 3]]*Permutation([]) # doctest: +SKIP
|
| 1370 |
+
>>> from sympy.combinatorics.permutations import Cycle
|
| 1371 |
+
>>> Cycle(1, 2)(2, 3)
|
| 1372 |
+
(1 3 2)
|
| 1373 |
+
|
| 1374 |
+
"""
|
| 1375 |
+
from sympy.combinatorics.perm_groups import PermutationGroup, Coset
|
| 1376 |
+
if isinstance(other, PermutationGroup):
|
| 1377 |
+
return Coset(self, other, dir='-')
|
| 1378 |
+
a = self.array_form
|
| 1379 |
+
# __rmul__ makes sure the other is a Permutation
|
| 1380 |
+
b = other.array_form
|
| 1381 |
+
if not b:
|
| 1382 |
+
perm = a
|
| 1383 |
+
else:
|
| 1384 |
+
b.extend(list(range(len(b), len(a))))
|
| 1385 |
+
perm = [b[i] for i in a] + b[len(a):]
|
| 1386 |
+
return self._af_new(perm)
|
| 1387 |
+
|
| 1388 |
+
def commutes_with(self, other):
|
| 1389 |
+
"""
|
| 1390 |
+
Checks if the elements are commuting.
|
| 1391 |
+
|
| 1392 |
+
Examples
|
| 1393 |
+
========
|
| 1394 |
+
|
| 1395 |
+
>>> from sympy.combinatorics import Permutation
|
| 1396 |
+
>>> a = Permutation([1, 4, 3, 0, 2, 5])
|
| 1397 |
+
>>> b = Permutation([0, 1, 2, 3, 4, 5])
|
| 1398 |
+
>>> a.commutes_with(b)
|
| 1399 |
+
True
|
| 1400 |
+
>>> b = Permutation([2, 3, 5, 4, 1, 0])
|
| 1401 |
+
>>> a.commutes_with(b)
|
| 1402 |
+
False
|
| 1403 |
+
"""
|
| 1404 |
+
a = self.array_form
|
| 1405 |
+
b = other.array_form
|
| 1406 |
+
return _af_commutes_with(a, b)
|
| 1407 |
+
|
| 1408 |
+
def __pow__(self, n):
|
| 1409 |
+
"""
|
| 1410 |
+
Routine for finding powers of a permutation.
|
| 1411 |
+
|
| 1412 |
+
Examples
|
| 1413 |
+
========
|
| 1414 |
+
|
| 1415 |
+
>>> from sympy.combinatorics import Permutation
|
| 1416 |
+
>>> from sympy import init_printing
|
| 1417 |
+
>>> init_printing(perm_cyclic=False, pretty_print=False)
|
| 1418 |
+
>>> p = Permutation([2, 0, 3, 1])
|
| 1419 |
+
>>> p.order()
|
| 1420 |
+
4
|
| 1421 |
+
>>> p**4
|
| 1422 |
+
Permutation([0, 1, 2, 3])
|
| 1423 |
+
"""
|
| 1424 |
+
if isinstance(n, Permutation):
|
| 1425 |
+
raise NotImplementedError(
|
| 1426 |
+
'p**p is not defined; do you mean p^p (conjugate)?')
|
| 1427 |
+
n = int(n)
|
| 1428 |
+
return self._af_new(_af_pow(self.array_form, n))
|
| 1429 |
+
|
| 1430 |
+
def __rxor__(self, i):
|
| 1431 |
+
"""Return self(i) when ``i`` is an int.
|
| 1432 |
+
|
| 1433 |
+
Examples
|
| 1434 |
+
========
|
| 1435 |
+
|
| 1436 |
+
>>> from sympy.combinatorics import Permutation
|
| 1437 |
+
>>> p = Permutation(1, 2, 9)
|
| 1438 |
+
>>> 2^p == p(2) == 9
|
| 1439 |
+
True
|
| 1440 |
+
"""
|
| 1441 |
+
if int_valued(i):
|
| 1442 |
+
return self(i)
|
| 1443 |
+
else:
|
| 1444 |
+
raise NotImplementedError(
|
| 1445 |
+
"i^p = p(i) when i is an integer, not %s." % i)
|
| 1446 |
+
|
| 1447 |
+
def __xor__(self, h):
|
| 1448 |
+
"""Return the conjugate permutation ``~h*self*h` `.
|
| 1449 |
+
|
| 1450 |
+
Explanation
|
| 1451 |
+
===========
|
| 1452 |
+
|
| 1453 |
+
If ``a`` and ``b`` are conjugates, ``a = h*b*~h`` and
|
| 1454 |
+
``b = ~h*a*h`` and both have the same cycle structure.
|
| 1455 |
+
|
| 1456 |
+
Examples
|
| 1457 |
+
========
|
| 1458 |
+
|
| 1459 |
+
>>> from sympy.combinatorics import Permutation
|
| 1460 |
+
>>> p = Permutation(1, 2, 9)
|
| 1461 |
+
>>> q = Permutation(6, 9, 8)
|
| 1462 |
+
>>> p*q != q*p
|
| 1463 |
+
True
|
| 1464 |
+
|
| 1465 |
+
Calculate and check properties of the conjugate:
|
| 1466 |
+
|
| 1467 |
+
>>> c = p^q
|
| 1468 |
+
>>> c == ~q*p*q and p == q*c*~q
|
| 1469 |
+
True
|
| 1470 |
+
|
| 1471 |
+
The expression q^p^r is equivalent to q^(p*r):
|
| 1472 |
+
|
| 1473 |
+
>>> r = Permutation(9)(4, 6, 8)
|
| 1474 |
+
>>> q^p^r == q^(p*r)
|
| 1475 |
+
True
|
| 1476 |
+
|
| 1477 |
+
If the term to the left of the conjugate operator, i, is an integer
|
| 1478 |
+
then this is interpreted as selecting the ith element from the
|
| 1479 |
+
permutation to the right:
|
| 1480 |
+
|
| 1481 |
+
>>> all(i^p == p(i) for i in range(p.size))
|
| 1482 |
+
True
|
| 1483 |
+
|
| 1484 |
+
Note that the * operator as higher precedence than the ^ operator:
|
| 1485 |
+
|
| 1486 |
+
>>> q^r*p^r == q^(r*p)^r == Permutation(9)(1, 6, 4)
|
| 1487 |
+
True
|
| 1488 |
+
|
| 1489 |
+
Notes
|
| 1490 |
+
=====
|
| 1491 |
+
|
| 1492 |
+
In Python the precedence rule is p^q^r = (p^q)^r which differs
|
| 1493 |
+
in general from p^(q^r)
|
| 1494 |
+
|
| 1495 |
+
>>> q^p^r
|
| 1496 |
+
(9)(1 4 8)
|
| 1497 |
+
>>> q^(p^r)
|
| 1498 |
+
(9)(1 8 6)
|
| 1499 |
+
|
| 1500 |
+
For a given r and p, both of the following are conjugates of p:
|
| 1501 |
+
~r*p*r and r*p*~r. But these are not necessarily the same:
|
| 1502 |
+
|
| 1503 |
+
>>> ~r*p*r == r*p*~r
|
| 1504 |
+
True
|
| 1505 |
+
|
| 1506 |
+
>>> p = Permutation(1, 2, 9)(5, 6)
|
| 1507 |
+
>>> ~r*p*r == r*p*~r
|
| 1508 |
+
False
|
| 1509 |
+
|
| 1510 |
+
The conjugate ~r*p*r was chosen so that ``p^q^r`` would be equivalent
|
| 1511 |
+
to ``p^(q*r)`` rather than ``p^(r*q)``. To obtain r*p*~r, pass ~r to
|
| 1512 |
+
this method:
|
| 1513 |
+
|
| 1514 |
+
>>> p^~r == r*p*~r
|
| 1515 |
+
True
|
| 1516 |
+
"""
|
| 1517 |
+
|
| 1518 |
+
if self.size != h.size:
|
| 1519 |
+
raise ValueError("The permutations must be of equal size.")
|
| 1520 |
+
a = [None]*self.size
|
| 1521 |
+
h = h._array_form
|
| 1522 |
+
p = self._array_form
|
| 1523 |
+
for i in range(self.size):
|
| 1524 |
+
a[h[i]] = h[p[i]]
|
| 1525 |
+
return self._af_new(a)
|
| 1526 |
+
|
| 1527 |
+
def transpositions(self):
|
| 1528 |
+
"""
|
| 1529 |
+
Return the permutation decomposed into a list of transpositions.
|
| 1530 |
+
|
| 1531 |
+
Explanation
|
| 1532 |
+
===========
|
| 1533 |
+
|
| 1534 |
+
It is always possible to express a permutation as the product of
|
| 1535 |
+
transpositions, see [1]
|
| 1536 |
+
|
| 1537 |
+
Examples
|
| 1538 |
+
========
|
| 1539 |
+
|
| 1540 |
+
>>> from sympy.combinatorics import Permutation
|
| 1541 |
+
>>> p = Permutation([[1, 2, 3], [0, 4, 5, 6, 7]])
|
| 1542 |
+
>>> t = p.transpositions()
|
| 1543 |
+
>>> t
|
| 1544 |
+
[(0, 7), (0, 6), (0, 5), (0, 4), (1, 3), (1, 2)]
|
| 1545 |
+
>>> print(''.join(str(c) for c in t))
|
| 1546 |
+
(0, 7)(0, 6)(0, 5)(0, 4)(1, 3)(1, 2)
|
| 1547 |
+
>>> Permutation.rmul(*[Permutation([ti], size=p.size) for ti in t]) == p
|
| 1548 |
+
True
|
| 1549 |
+
|
| 1550 |
+
References
|
| 1551 |
+
==========
|
| 1552 |
+
|
| 1553 |
+
.. [1] https://en.wikipedia.org/wiki/Transposition_%28mathematics%29#Properties
|
| 1554 |
+
|
| 1555 |
+
"""
|
| 1556 |
+
a = self.cyclic_form
|
| 1557 |
+
res = []
|
| 1558 |
+
for x in a:
|
| 1559 |
+
nx = len(x)
|
| 1560 |
+
if nx == 2:
|
| 1561 |
+
res.append(tuple(x))
|
| 1562 |
+
elif nx > 2:
|
| 1563 |
+
first = x[0]
|
| 1564 |
+
for y in x[nx - 1:0:-1]:
|
| 1565 |
+
res.append((first, y))
|
| 1566 |
+
return res
|
| 1567 |
+
|
| 1568 |
+
@classmethod
|
| 1569 |
+
def from_sequence(self, i, key=None):
|
| 1570 |
+
"""Return the permutation needed to obtain ``i`` from the sorted
|
| 1571 |
+
elements of ``i``. If custom sorting is desired, a key can be given.
|
| 1572 |
+
|
| 1573 |
+
Examples
|
| 1574 |
+
========
|
| 1575 |
+
|
| 1576 |
+
>>> from sympy.combinatorics import Permutation
|
| 1577 |
+
|
| 1578 |
+
>>> Permutation.from_sequence('SymPy')
|
| 1579 |
+
(4)(0 1 3)
|
| 1580 |
+
>>> _(sorted("SymPy"))
|
| 1581 |
+
['S', 'y', 'm', 'P', 'y']
|
| 1582 |
+
>>> Permutation.from_sequence('SymPy', key=lambda x: x.lower())
|
| 1583 |
+
(4)(0 2)(1 3)
|
| 1584 |
+
"""
|
| 1585 |
+
ic = list(zip(i, list(range(len(i)))))
|
| 1586 |
+
if key:
|
| 1587 |
+
ic.sort(key=lambda x: key(x[0]))
|
| 1588 |
+
else:
|
| 1589 |
+
ic.sort()
|
| 1590 |
+
return ~Permutation([i[1] for i in ic])
|
| 1591 |
+
|
| 1592 |
+
def __invert__(self):
|
| 1593 |
+
"""
|
| 1594 |
+
Return the inverse of the permutation.
|
| 1595 |
+
|
| 1596 |
+
A permutation multiplied by its inverse is the identity permutation.
|
| 1597 |
+
|
| 1598 |
+
Examples
|
| 1599 |
+
========
|
| 1600 |
+
|
| 1601 |
+
>>> from sympy.combinatorics import Permutation
|
| 1602 |
+
>>> from sympy import init_printing
|
| 1603 |
+
>>> init_printing(perm_cyclic=False, pretty_print=False)
|
| 1604 |
+
>>> p = Permutation([[2, 0], [3, 1]])
|
| 1605 |
+
>>> ~p
|
| 1606 |
+
Permutation([2, 3, 0, 1])
|
| 1607 |
+
>>> _ == p**-1
|
| 1608 |
+
True
|
| 1609 |
+
>>> p*~p == ~p*p == Permutation([0, 1, 2, 3])
|
| 1610 |
+
True
|
| 1611 |
+
"""
|
| 1612 |
+
return self._af_new(_af_invert(self._array_form))
|
| 1613 |
+
|
| 1614 |
+
def __iter__(self):
|
| 1615 |
+
"""Yield elements from array form.
|
| 1616 |
+
|
| 1617 |
+
Examples
|
| 1618 |
+
========
|
| 1619 |
+
|
| 1620 |
+
>>> from sympy.combinatorics import Permutation
|
| 1621 |
+
>>> list(Permutation(range(3)))
|
| 1622 |
+
[0, 1, 2]
|
| 1623 |
+
"""
|
| 1624 |
+
yield from self.array_form
|
| 1625 |
+
|
| 1626 |
+
def __repr__(self):
|
| 1627 |
+
return srepr(self)
|
| 1628 |
+
|
| 1629 |
+
def __call__(self, *i):
|
| 1630 |
+
"""
|
| 1631 |
+
Allows applying a permutation instance as a bijective function.
|
| 1632 |
+
|
| 1633 |
+
Examples
|
| 1634 |
+
========
|
| 1635 |
+
|
| 1636 |
+
>>> from sympy.combinatorics import Permutation
|
| 1637 |
+
>>> p = Permutation([[2, 0], [3, 1]])
|
| 1638 |
+
>>> p.array_form
|
| 1639 |
+
[2, 3, 0, 1]
|
| 1640 |
+
>>> [p(i) for i in range(4)]
|
| 1641 |
+
[2, 3, 0, 1]
|
| 1642 |
+
|
| 1643 |
+
If an array is given then the permutation selects the items
|
| 1644 |
+
from the array (i.e. the permutation is applied to the array):
|
| 1645 |
+
|
| 1646 |
+
>>> from sympy.abc import x
|
| 1647 |
+
>>> p([x, 1, 0, x**2])
|
| 1648 |
+
[0, x**2, x, 1]
|
| 1649 |
+
"""
|
| 1650 |
+
# list indices can be Integer or int; leave this
|
| 1651 |
+
# as it is (don't test or convert it) because this
|
| 1652 |
+
# gets called a lot and should be fast
|
| 1653 |
+
if len(i) == 1:
|
| 1654 |
+
i = i[0]
|
| 1655 |
+
if not isinstance(i, Iterable):
|
| 1656 |
+
i = as_int(i)
|
| 1657 |
+
if i < 0 or i > self.size:
|
| 1658 |
+
raise TypeError(
|
| 1659 |
+
"{} should be an integer between 0 and {}"
|
| 1660 |
+
.format(i, self.size-1))
|
| 1661 |
+
return self._array_form[i]
|
| 1662 |
+
# P([a, b, c])
|
| 1663 |
+
if len(i) != self.size:
|
| 1664 |
+
raise TypeError(
|
| 1665 |
+
"{} should have the length {}.".format(i, self.size))
|
| 1666 |
+
return [i[j] for j in self._array_form]
|
| 1667 |
+
# P(1, 2, 3)
|
| 1668 |
+
return self*Permutation(Cycle(*i), size=self.size)
|
| 1669 |
+
|
| 1670 |
+
def atoms(self):
|
| 1671 |
+
"""
|
| 1672 |
+
Returns all the elements of a permutation
|
| 1673 |
+
|
| 1674 |
+
Examples
|
| 1675 |
+
========
|
| 1676 |
+
|
| 1677 |
+
>>> from sympy.combinatorics import Permutation
|
| 1678 |
+
>>> Permutation([0, 1, 2, 3, 4, 5]).atoms()
|
| 1679 |
+
{0, 1, 2, 3, 4, 5}
|
| 1680 |
+
>>> Permutation([[0, 1], [2, 3], [4, 5]]).atoms()
|
| 1681 |
+
{0, 1, 2, 3, 4, 5}
|
| 1682 |
+
"""
|
| 1683 |
+
return set(self.array_form)
|
| 1684 |
+
|
| 1685 |
+
def apply(self, i):
|
| 1686 |
+
r"""Apply the permutation to an expression.
|
| 1687 |
+
|
| 1688 |
+
Parameters
|
| 1689 |
+
==========
|
| 1690 |
+
|
| 1691 |
+
i : Expr
|
| 1692 |
+
It should be an integer between $0$ and $n-1$ where $n$
|
| 1693 |
+
is the size of the permutation.
|
| 1694 |
+
|
| 1695 |
+
If it is a symbol or a symbolic expression that can
|
| 1696 |
+
have integer values, an ``AppliedPermutation`` object
|
| 1697 |
+
will be returned which can represent an unevaluated
|
| 1698 |
+
function.
|
| 1699 |
+
|
| 1700 |
+
Notes
|
| 1701 |
+
=====
|
| 1702 |
+
|
| 1703 |
+
Any permutation can be defined as a bijective function
|
| 1704 |
+
$\sigma : \{ 0, 1, \dots, n-1 \} \rightarrow \{ 0, 1, \dots, n-1 \}$
|
| 1705 |
+
where $n$ denotes the size of the permutation.
|
| 1706 |
+
|
| 1707 |
+
The definition may even be extended for any set with distinctive
|
| 1708 |
+
elements, such that the permutation can even be applied for
|
| 1709 |
+
real numbers or such, however, it is not implemented for now for
|
| 1710 |
+
computational reasons and the integrity with the group theory
|
| 1711 |
+
module.
|
| 1712 |
+
|
| 1713 |
+
This function is similar to the ``__call__`` magic, however,
|
| 1714 |
+
``__call__`` magic already has some other applications like
|
| 1715 |
+
permuting an array or attaching new cycles, which would
|
| 1716 |
+
not always be mathematically consistent.
|
| 1717 |
+
|
| 1718 |
+
This also guarantees that the return type is a SymPy integer,
|
| 1719 |
+
which guarantees the safety to use assumptions.
|
| 1720 |
+
"""
|
| 1721 |
+
i = _sympify(i)
|
| 1722 |
+
if i.is_integer is False:
|
| 1723 |
+
raise NotImplementedError("{} should be an integer.".format(i))
|
| 1724 |
+
|
| 1725 |
+
n = self.size
|
| 1726 |
+
if (i < 0) == True or (i >= n) == True:
|
| 1727 |
+
raise NotImplementedError(
|
| 1728 |
+
"{} should be an integer between 0 and {}".format(i, n-1))
|
| 1729 |
+
|
| 1730 |
+
if i.is_Integer:
|
| 1731 |
+
return Integer(self._array_form[i])
|
| 1732 |
+
return AppliedPermutation(self, i)
|
| 1733 |
+
|
| 1734 |
+
def next_lex(self):
|
| 1735 |
+
"""
|
| 1736 |
+
Returns the next permutation in lexicographical order.
|
| 1737 |
+
If self is the last permutation in lexicographical order
|
| 1738 |
+
it returns None.
|
| 1739 |
+
See [4] section 2.4.
|
| 1740 |
+
|
| 1741 |
+
|
| 1742 |
+
Examples
|
| 1743 |
+
========
|
| 1744 |
+
|
| 1745 |
+
>>> from sympy.combinatorics import Permutation
|
| 1746 |
+
>>> p = Permutation([2, 3, 1, 0])
|
| 1747 |
+
>>> p = Permutation([2, 3, 1, 0]); p.rank()
|
| 1748 |
+
17
|
| 1749 |
+
>>> p = p.next_lex(); p.rank()
|
| 1750 |
+
18
|
| 1751 |
+
|
| 1752 |
+
See Also
|
| 1753 |
+
========
|
| 1754 |
+
|
| 1755 |
+
rank, unrank_lex
|
| 1756 |
+
"""
|
| 1757 |
+
perm = self.array_form[:]
|
| 1758 |
+
n = len(perm)
|
| 1759 |
+
i = n - 2
|
| 1760 |
+
while perm[i + 1] < perm[i]:
|
| 1761 |
+
i -= 1
|
| 1762 |
+
if i == -1:
|
| 1763 |
+
return None
|
| 1764 |
+
else:
|
| 1765 |
+
j = n - 1
|
| 1766 |
+
while perm[j] < perm[i]:
|
| 1767 |
+
j -= 1
|
| 1768 |
+
perm[j], perm[i] = perm[i], perm[j]
|
| 1769 |
+
i += 1
|
| 1770 |
+
j = n - 1
|
| 1771 |
+
while i < j:
|
| 1772 |
+
perm[j], perm[i] = perm[i], perm[j]
|
| 1773 |
+
i += 1
|
| 1774 |
+
j -= 1
|
| 1775 |
+
return self._af_new(perm)
|
| 1776 |
+
|
| 1777 |
+
@classmethod
|
| 1778 |
+
def unrank_nonlex(self, n, r):
|
| 1779 |
+
"""
|
| 1780 |
+
This is a linear time unranking algorithm that does not
|
| 1781 |
+
respect lexicographic order [3].
|
| 1782 |
+
|
| 1783 |
+
Examples
|
| 1784 |
+
========
|
| 1785 |
+
|
| 1786 |
+
>>> from sympy.combinatorics import Permutation
|
| 1787 |
+
>>> from sympy import init_printing
|
| 1788 |
+
>>> init_printing(perm_cyclic=False, pretty_print=False)
|
| 1789 |
+
>>> Permutation.unrank_nonlex(4, 5)
|
| 1790 |
+
Permutation([2, 0, 3, 1])
|
| 1791 |
+
>>> Permutation.unrank_nonlex(4, -1)
|
| 1792 |
+
Permutation([0, 1, 2, 3])
|
| 1793 |
+
|
| 1794 |
+
See Also
|
| 1795 |
+
========
|
| 1796 |
+
|
| 1797 |
+
next_nonlex, rank_nonlex
|
| 1798 |
+
"""
|
| 1799 |
+
def _unrank1(n, r, a):
|
| 1800 |
+
if n > 0:
|
| 1801 |
+
a[n - 1], a[r % n] = a[r % n], a[n - 1]
|
| 1802 |
+
_unrank1(n - 1, r//n, a)
|
| 1803 |
+
|
| 1804 |
+
id_perm = list(range(n))
|
| 1805 |
+
n = int(n)
|
| 1806 |
+
r = r % ifac(n)
|
| 1807 |
+
_unrank1(n, r, id_perm)
|
| 1808 |
+
return self._af_new(id_perm)
|
| 1809 |
+
|
| 1810 |
+
def rank_nonlex(self, inv_perm=None):
|
| 1811 |
+
"""
|
| 1812 |
+
This is a linear time ranking algorithm that does not
|
| 1813 |
+
enforce lexicographic order [3].
|
| 1814 |
+
|
| 1815 |
+
|
| 1816 |
+
Examples
|
| 1817 |
+
========
|
| 1818 |
+
|
| 1819 |
+
>>> from sympy.combinatorics import Permutation
|
| 1820 |
+
>>> p = Permutation([0, 1, 2, 3])
|
| 1821 |
+
>>> p.rank_nonlex()
|
| 1822 |
+
23
|
| 1823 |
+
|
| 1824 |
+
See Also
|
| 1825 |
+
========
|
| 1826 |
+
|
| 1827 |
+
next_nonlex, unrank_nonlex
|
| 1828 |
+
"""
|
| 1829 |
+
def _rank1(n, perm, inv_perm):
|
| 1830 |
+
if n == 1:
|
| 1831 |
+
return 0
|
| 1832 |
+
s = perm[n - 1]
|
| 1833 |
+
t = inv_perm[n - 1]
|
| 1834 |
+
perm[n - 1], perm[t] = perm[t], s
|
| 1835 |
+
inv_perm[n - 1], inv_perm[s] = inv_perm[s], t
|
| 1836 |
+
return s + n*_rank1(n - 1, perm, inv_perm)
|
| 1837 |
+
|
| 1838 |
+
if inv_perm is None:
|
| 1839 |
+
inv_perm = (~self).array_form
|
| 1840 |
+
if not inv_perm:
|
| 1841 |
+
return 0
|
| 1842 |
+
perm = self.array_form[:]
|
| 1843 |
+
r = _rank1(len(perm), perm, inv_perm)
|
| 1844 |
+
return r
|
| 1845 |
+
|
| 1846 |
+
def next_nonlex(self):
|
| 1847 |
+
"""
|
| 1848 |
+
Returns the next permutation in nonlex order [3].
|
| 1849 |
+
If self is the last permutation in this order it returns None.
|
| 1850 |
+
|
| 1851 |
+
Examples
|
| 1852 |
+
========
|
| 1853 |
+
|
| 1854 |
+
>>> from sympy.combinatorics import Permutation
|
| 1855 |
+
>>> from sympy import init_printing
|
| 1856 |
+
>>> init_printing(perm_cyclic=False, pretty_print=False)
|
| 1857 |
+
>>> p = Permutation([2, 0, 3, 1]); p.rank_nonlex()
|
| 1858 |
+
5
|
| 1859 |
+
>>> p = p.next_nonlex(); p
|
| 1860 |
+
Permutation([3, 0, 1, 2])
|
| 1861 |
+
>>> p.rank_nonlex()
|
| 1862 |
+
6
|
| 1863 |
+
|
| 1864 |
+
See Also
|
| 1865 |
+
========
|
| 1866 |
+
|
| 1867 |
+
rank_nonlex, unrank_nonlex
|
| 1868 |
+
"""
|
| 1869 |
+
r = self.rank_nonlex()
|
| 1870 |
+
if r == ifac(self.size) - 1:
|
| 1871 |
+
return None
|
| 1872 |
+
return self.unrank_nonlex(self.size, r + 1)
|
| 1873 |
+
|
| 1874 |
+
def rank(self):
|
| 1875 |
+
"""
|
| 1876 |
+
Returns the lexicographic rank of the permutation.
|
| 1877 |
+
|
| 1878 |
+
Examples
|
| 1879 |
+
========
|
| 1880 |
+
|
| 1881 |
+
>>> from sympy.combinatorics import Permutation
|
| 1882 |
+
>>> p = Permutation([0, 1, 2, 3])
|
| 1883 |
+
>>> p.rank()
|
| 1884 |
+
0
|
| 1885 |
+
>>> p = Permutation([3, 2, 1, 0])
|
| 1886 |
+
>>> p.rank()
|
| 1887 |
+
23
|
| 1888 |
+
|
| 1889 |
+
See Also
|
| 1890 |
+
========
|
| 1891 |
+
|
| 1892 |
+
next_lex, unrank_lex, cardinality, length, order, size
|
| 1893 |
+
"""
|
| 1894 |
+
if self._rank is not None:
|
| 1895 |
+
return self._rank
|
| 1896 |
+
rank = 0
|
| 1897 |
+
rho = self.array_form[:]
|
| 1898 |
+
n = self.size - 1
|
| 1899 |
+
size = n + 1
|
| 1900 |
+
psize = int(ifac(n))
|
| 1901 |
+
for j in range(size - 1):
|
| 1902 |
+
rank += rho[j]*psize
|
| 1903 |
+
for i in range(j + 1, size):
|
| 1904 |
+
if rho[i] > rho[j]:
|
| 1905 |
+
rho[i] -= 1
|
| 1906 |
+
psize //= n
|
| 1907 |
+
n -= 1
|
| 1908 |
+
self._rank = rank
|
| 1909 |
+
return rank
|
| 1910 |
+
|
| 1911 |
+
@property
|
| 1912 |
+
def cardinality(self):
|
| 1913 |
+
"""
|
| 1914 |
+
Returns the number of all possible permutations.
|
| 1915 |
+
|
| 1916 |
+
Examples
|
| 1917 |
+
========
|
| 1918 |
+
|
| 1919 |
+
>>> from sympy.combinatorics import Permutation
|
| 1920 |
+
>>> p = Permutation([0, 1, 2, 3])
|
| 1921 |
+
>>> p.cardinality
|
| 1922 |
+
24
|
| 1923 |
+
|
| 1924 |
+
See Also
|
| 1925 |
+
========
|
| 1926 |
+
|
| 1927 |
+
length, order, rank, size
|
| 1928 |
+
"""
|
| 1929 |
+
return int(ifac(self.size))
|
| 1930 |
+
|
| 1931 |
+
def parity(self):
|
| 1932 |
+
"""
|
| 1933 |
+
Computes the parity of a permutation.
|
| 1934 |
+
|
| 1935 |
+
Explanation
|
| 1936 |
+
===========
|
| 1937 |
+
|
| 1938 |
+
The parity of a permutation reflects the parity of the
|
| 1939 |
+
number of inversions in the permutation, i.e., the
|
| 1940 |
+
number of pairs of x and y such that ``x > y`` but ``p[x] < p[y]``.
|
| 1941 |
+
|
| 1942 |
+
Examples
|
| 1943 |
+
========
|
| 1944 |
+
|
| 1945 |
+
>>> from sympy.combinatorics import Permutation
|
| 1946 |
+
>>> p = Permutation([0, 1, 2, 3])
|
| 1947 |
+
>>> p.parity()
|
| 1948 |
+
0
|
| 1949 |
+
>>> p = Permutation([3, 2, 0, 1])
|
| 1950 |
+
>>> p.parity()
|
| 1951 |
+
1
|
| 1952 |
+
|
| 1953 |
+
See Also
|
| 1954 |
+
========
|
| 1955 |
+
|
| 1956 |
+
_af_parity
|
| 1957 |
+
"""
|
| 1958 |
+
if self._cyclic_form is not None:
|
| 1959 |
+
return (self.size - self.cycles) % 2
|
| 1960 |
+
|
| 1961 |
+
return _af_parity(self.array_form)
|
| 1962 |
+
|
| 1963 |
+
@property
|
| 1964 |
+
def is_even(self):
|
| 1965 |
+
"""
|
| 1966 |
+
Checks if a permutation is even.
|
| 1967 |
+
|
| 1968 |
+
Examples
|
| 1969 |
+
========
|
| 1970 |
+
|
| 1971 |
+
>>> from sympy.combinatorics import Permutation
|
| 1972 |
+
>>> p = Permutation([0, 1, 2, 3])
|
| 1973 |
+
>>> p.is_even
|
| 1974 |
+
True
|
| 1975 |
+
>>> p = Permutation([3, 2, 1, 0])
|
| 1976 |
+
>>> p.is_even
|
| 1977 |
+
True
|
| 1978 |
+
|
| 1979 |
+
See Also
|
| 1980 |
+
========
|
| 1981 |
+
|
| 1982 |
+
is_odd
|
| 1983 |
+
"""
|
| 1984 |
+
return not self.is_odd
|
| 1985 |
+
|
| 1986 |
+
@property
|
| 1987 |
+
def is_odd(self):
|
| 1988 |
+
"""
|
| 1989 |
+
Checks if a permutation is odd.
|
| 1990 |
+
|
| 1991 |
+
Examples
|
| 1992 |
+
========
|
| 1993 |
+
|
| 1994 |
+
>>> from sympy.combinatorics import Permutation
|
| 1995 |
+
>>> p = Permutation([0, 1, 2, 3])
|
| 1996 |
+
>>> p.is_odd
|
| 1997 |
+
False
|
| 1998 |
+
>>> p = Permutation([3, 2, 0, 1])
|
| 1999 |
+
>>> p.is_odd
|
| 2000 |
+
True
|
| 2001 |
+
|
| 2002 |
+
See Also
|
| 2003 |
+
========
|
| 2004 |
+
|
| 2005 |
+
is_even
|
| 2006 |
+
"""
|
| 2007 |
+
return bool(self.parity() % 2)
|
| 2008 |
+
|
| 2009 |
+
@property
|
| 2010 |
+
def is_Singleton(self):
|
| 2011 |
+
"""
|
| 2012 |
+
Checks to see if the permutation contains only one number and is
|
| 2013 |
+
thus the only possible permutation of this set of numbers
|
| 2014 |
+
|
| 2015 |
+
Examples
|
| 2016 |
+
========
|
| 2017 |
+
|
| 2018 |
+
>>> from sympy.combinatorics import Permutation
|
| 2019 |
+
>>> Permutation([0]).is_Singleton
|
| 2020 |
+
True
|
| 2021 |
+
>>> Permutation([0, 1]).is_Singleton
|
| 2022 |
+
False
|
| 2023 |
+
|
| 2024 |
+
See Also
|
| 2025 |
+
========
|
| 2026 |
+
|
| 2027 |
+
is_Empty
|
| 2028 |
+
"""
|
| 2029 |
+
return self.size == 1
|
| 2030 |
+
|
| 2031 |
+
@property
|
| 2032 |
+
def is_Empty(self):
|
| 2033 |
+
"""
|
| 2034 |
+
Checks to see if the permutation is a set with zero elements
|
| 2035 |
+
|
| 2036 |
+
Examples
|
| 2037 |
+
========
|
| 2038 |
+
|
| 2039 |
+
>>> from sympy.combinatorics import Permutation
|
| 2040 |
+
>>> Permutation([]).is_Empty
|
| 2041 |
+
True
|
| 2042 |
+
>>> Permutation([0]).is_Empty
|
| 2043 |
+
False
|
| 2044 |
+
|
| 2045 |
+
See Also
|
| 2046 |
+
========
|
| 2047 |
+
|
| 2048 |
+
is_Singleton
|
| 2049 |
+
"""
|
| 2050 |
+
return self.size == 0
|
| 2051 |
+
|
| 2052 |
+
@property
|
| 2053 |
+
def is_identity(self):
|
| 2054 |
+
return self.is_Identity
|
| 2055 |
+
|
| 2056 |
+
@property
|
| 2057 |
+
def is_Identity(self):
|
| 2058 |
+
"""
|
| 2059 |
+
Returns True if the Permutation is an identity permutation.
|
| 2060 |
+
|
| 2061 |
+
Examples
|
| 2062 |
+
========
|
| 2063 |
+
|
| 2064 |
+
>>> from sympy.combinatorics import Permutation
|
| 2065 |
+
>>> p = Permutation([])
|
| 2066 |
+
>>> p.is_Identity
|
| 2067 |
+
True
|
| 2068 |
+
>>> p = Permutation([[0], [1], [2]])
|
| 2069 |
+
>>> p.is_Identity
|
| 2070 |
+
True
|
| 2071 |
+
>>> p = Permutation([0, 1, 2])
|
| 2072 |
+
>>> p.is_Identity
|
| 2073 |
+
True
|
| 2074 |
+
>>> p = Permutation([0, 2, 1])
|
| 2075 |
+
>>> p.is_Identity
|
| 2076 |
+
False
|
| 2077 |
+
|
| 2078 |
+
See Also
|
| 2079 |
+
========
|
| 2080 |
+
|
| 2081 |
+
order
|
| 2082 |
+
"""
|
| 2083 |
+
af = self.array_form
|
| 2084 |
+
return not af or all(i == af[i] for i in range(self.size))
|
| 2085 |
+
|
| 2086 |
+
def ascents(self):
|
| 2087 |
+
"""
|
| 2088 |
+
Returns the positions of ascents in a permutation, ie, the location
|
| 2089 |
+
where p[i] < p[i+1]
|
| 2090 |
+
|
| 2091 |
+
Examples
|
| 2092 |
+
========
|
| 2093 |
+
|
| 2094 |
+
>>> from sympy.combinatorics import Permutation
|
| 2095 |
+
>>> p = Permutation([4, 0, 1, 3, 2])
|
| 2096 |
+
>>> p.ascents()
|
| 2097 |
+
[1, 2]
|
| 2098 |
+
|
| 2099 |
+
See Also
|
| 2100 |
+
========
|
| 2101 |
+
|
| 2102 |
+
descents, inversions, min, max
|
| 2103 |
+
"""
|
| 2104 |
+
a = self.array_form
|
| 2105 |
+
pos = [i for i in range(len(a) - 1) if a[i] < a[i + 1]]
|
| 2106 |
+
return pos
|
| 2107 |
+
|
| 2108 |
+
def descents(self):
|
| 2109 |
+
"""
|
| 2110 |
+
Returns the positions of descents in a permutation, ie, the location
|
| 2111 |
+
where p[i] > p[i+1]
|
| 2112 |
+
|
| 2113 |
+
Examples
|
| 2114 |
+
========
|
| 2115 |
+
|
| 2116 |
+
>>> from sympy.combinatorics import Permutation
|
| 2117 |
+
>>> p = Permutation([4, 0, 1, 3, 2])
|
| 2118 |
+
>>> p.descents()
|
| 2119 |
+
[0, 3]
|
| 2120 |
+
|
| 2121 |
+
See Also
|
| 2122 |
+
========
|
| 2123 |
+
|
| 2124 |
+
ascents, inversions, min, max
|
| 2125 |
+
"""
|
| 2126 |
+
a = self.array_form
|
| 2127 |
+
pos = [i for i in range(len(a) - 1) if a[i] > a[i + 1]]
|
| 2128 |
+
return pos
|
| 2129 |
+
|
| 2130 |
+
def max(self) -> int:
|
| 2131 |
+
"""
|
| 2132 |
+
The maximum element moved by the permutation.
|
| 2133 |
+
|
| 2134 |
+
Examples
|
| 2135 |
+
========
|
| 2136 |
+
|
| 2137 |
+
>>> from sympy.combinatorics import Permutation
|
| 2138 |
+
>>> p = Permutation([1, 0, 2, 3, 4])
|
| 2139 |
+
>>> p.max()
|
| 2140 |
+
1
|
| 2141 |
+
|
| 2142 |
+
See Also
|
| 2143 |
+
========
|
| 2144 |
+
|
| 2145 |
+
min, descents, ascents, inversions
|
| 2146 |
+
"""
|
| 2147 |
+
a = self.array_form
|
| 2148 |
+
if not a:
|
| 2149 |
+
return 0
|
| 2150 |
+
return max(_a for i, _a in enumerate(a) if _a != i)
|
| 2151 |
+
|
| 2152 |
+
def min(self) -> int:
|
| 2153 |
+
"""
|
| 2154 |
+
The minimum element moved by the permutation.
|
| 2155 |
+
|
| 2156 |
+
Examples
|
| 2157 |
+
========
|
| 2158 |
+
|
| 2159 |
+
>>> from sympy.combinatorics import Permutation
|
| 2160 |
+
>>> p = Permutation([0, 1, 4, 3, 2])
|
| 2161 |
+
>>> p.min()
|
| 2162 |
+
2
|
| 2163 |
+
|
| 2164 |
+
See Also
|
| 2165 |
+
========
|
| 2166 |
+
|
| 2167 |
+
max, descents, ascents, inversions
|
| 2168 |
+
"""
|
| 2169 |
+
a = self.array_form
|
| 2170 |
+
if not a:
|
| 2171 |
+
return 0
|
| 2172 |
+
return min(_a for i, _a in enumerate(a) if _a != i)
|
| 2173 |
+
|
| 2174 |
+
def inversions(self):
|
| 2175 |
+
"""
|
| 2176 |
+
Computes the number of inversions of a permutation.
|
| 2177 |
+
|
| 2178 |
+
Explanation
|
| 2179 |
+
===========
|
| 2180 |
+
|
| 2181 |
+
An inversion is where i > j but p[i] < p[j].
|
| 2182 |
+
|
| 2183 |
+
For small length of p, it iterates over all i and j
|
| 2184 |
+
values and calculates the number of inversions.
|
| 2185 |
+
For large length of p, it uses a variation of merge
|
| 2186 |
+
sort to calculate the number of inversions.
|
| 2187 |
+
|
| 2188 |
+
Examples
|
| 2189 |
+
========
|
| 2190 |
+
|
| 2191 |
+
>>> from sympy.combinatorics import Permutation
|
| 2192 |
+
>>> p = Permutation([0, 1, 2, 3, 4, 5])
|
| 2193 |
+
>>> p.inversions()
|
| 2194 |
+
0
|
| 2195 |
+
>>> Permutation([3, 2, 1, 0]).inversions()
|
| 2196 |
+
6
|
| 2197 |
+
|
| 2198 |
+
See Also
|
| 2199 |
+
========
|
| 2200 |
+
|
| 2201 |
+
descents, ascents, min, max
|
| 2202 |
+
|
| 2203 |
+
References
|
| 2204 |
+
==========
|
| 2205 |
+
|
| 2206 |
+
.. [1] https://www.cp.eng.chula.ac.th/~prabhas//teaching/algo/algo2008/count-inv.htm
|
| 2207 |
+
|
| 2208 |
+
"""
|
| 2209 |
+
inversions = 0
|
| 2210 |
+
a = self.array_form
|
| 2211 |
+
n = len(a)
|
| 2212 |
+
if n < 130:
|
| 2213 |
+
for i in range(n - 1):
|
| 2214 |
+
b = a[i]
|
| 2215 |
+
for c in a[i + 1:]:
|
| 2216 |
+
if b > c:
|
| 2217 |
+
inversions += 1
|
| 2218 |
+
else:
|
| 2219 |
+
k = 1
|
| 2220 |
+
right = 0
|
| 2221 |
+
arr = a[:]
|
| 2222 |
+
temp = a[:]
|
| 2223 |
+
while k < n:
|
| 2224 |
+
i = 0
|
| 2225 |
+
while i + k < n:
|
| 2226 |
+
right = i + k * 2 - 1
|
| 2227 |
+
if right >= n:
|
| 2228 |
+
right = n - 1
|
| 2229 |
+
inversions += _merge(arr, temp, i, i + k, right)
|
| 2230 |
+
i = i + k * 2
|
| 2231 |
+
k = k * 2
|
| 2232 |
+
return inversions
|
| 2233 |
+
|
| 2234 |
+
def commutator(self, x):
|
| 2235 |
+
"""Return the commutator of ``self`` and ``x``: ``~x*~self*x*self``
|
| 2236 |
+
|
| 2237 |
+
If f and g are part of a group, G, then the commutator of f and g
|
| 2238 |
+
is the group identity iff f and g commute, i.e. fg == gf.
|
| 2239 |
+
|
| 2240 |
+
Examples
|
| 2241 |
+
========
|
| 2242 |
+
|
| 2243 |
+
>>> from sympy.combinatorics import Permutation
|
| 2244 |
+
>>> from sympy import init_printing
|
| 2245 |
+
>>> init_printing(perm_cyclic=False, pretty_print=False)
|
| 2246 |
+
>>> p = Permutation([0, 2, 3, 1])
|
| 2247 |
+
>>> x = Permutation([2, 0, 3, 1])
|
| 2248 |
+
>>> c = p.commutator(x); c
|
| 2249 |
+
Permutation([2, 1, 3, 0])
|
| 2250 |
+
>>> c == ~x*~p*x*p
|
| 2251 |
+
True
|
| 2252 |
+
|
| 2253 |
+
>>> I = Permutation(3)
|
| 2254 |
+
>>> p = [I + i for i in range(6)]
|
| 2255 |
+
>>> for i in range(len(p)):
|
| 2256 |
+
... for j in range(len(p)):
|
| 2257 |
+
... c = p[i].commutator(p[j])
|
| 2258 |
+
... if p[i]*p[j] == p[j]*p[i]:
|
| 2259 |
+
... assert c == I
|
| 2260 |
+
... else:
|
| 2261 |
+
... assert c != I
|
| 2262 |
+
...
|
| 2263 |
+
|
| 2264 |
+
References
|
| 2265 |
+
==========
|
| 2266 |
+
|
| 2267 |
+
.. [1] https://en.wikipedia.org/wiki/Commutator
|
| 2268 |
+
"""
|
| 2269 |
+
|
| 2270 |
+
a = self.array_form
|
| 2271 |
+
b = x.array_form
|
| 2272 |
+
n = len(a)
|
| 2273 |
+
if len(b) != n:
|
| 2274 |
+
raise ValueError("The permutations must be of equal size.")
|
| 2275 |
+
inva = [None]*n
|
| 2276 |
+
for i in range(n):
|
| 2277 |
+
inva[a[i]] = i
|
| 2278 |
+
invb = [None]*n
|
| 2279 |
+
for i in range(n):
|
| 2280 |
+
invb[b[i]] = i
|
| 2281 |
+
return self._af_new([a[b[inva[i]]] for i in invb])
|
| 2282 |
+
|
| 2283 |
+
def signature(self):
|
| 2284 |
+
"""
|
| 2285 |
+
Gives the signature of the permutation needed to place the
|
| 2286 |
+
elements of the permutation in canonical order.
|
| 2287 |
+
|
| 2288 |
+
The signature is calculated as (-1)^<number of inversions>
|
| 2289 |
+
|
| 2290 |
+
Examples
|
| 2291 |
+
========
|
| 2292 |
+
|
| 2293 |
+
>>> from sympy.combinatorics import Permutation
|
| 2294 |
+
>>> p = Permutation([0, 1, 2])
|
| 2295 |
+
>>> p.inversions()
|
| 2296 |
+
0
|
| 2297 |
+
>>> p.signature()
|
| 2298 |
+
1
|
| 2299 |
+
>>> q = Permutation([0,2,1])
|
| 2300 |
+
>>> q.inversions()
|
| 2301 |
+
1
|
| 2302 |
+
>>> q.signature()
|
| 2303 |
+
-1
|
| 2304 |
+
|
| 2305 |
+
See Also
|
| 2306 |
+
========
|
| 2307 |
+
|
| 2308 |
+
inversions
|
| 2309 |
+
"""
|
| 2310 |
+
if self.is_even:
|
| 2311 |
+
return 1
|
| 2312 |
+
return -1
|
| 2313 |
+
|
| 2314 |
+
def order(self):
|
| 2315 |
+
"""
|
| 2316 |
+
Computes the order of a permutation.
|
| 2317 |
+
|
| 2318 |
+
When the permutation is raised to the power of its
|
| 2319 |
+
order it equals the identity permutation.
|
| 2320 |
+
|
| 2321 |
+
Examples
|
| 2322 |
+
========
|
| 2323 |
+
|
| 2324 |
+
>>> from sympy.combinatorics import Permutation
|
| 2325 |
+
>>> from sympy import init_printing
|
| 2326 |
+
>>> init_printing(perm_cyclic=False, pretty_print=False)
|
| 2327 |
+
>>> p = Permutation([3, 1, 5, 2, 4, 0])
|
| 2328 |
+
>>> p.order()
|
| 2329 |
+
4
|
| 2330 |
+
>>> (p**(p.order()))
|
| 2331 |
+
Permutation([], size=6)
|
| 2332 |
+
|
| 2333 |
+
See Also
|
| 2334 |
+
========
|
| 2335 |
+
|
| 2336 |
+
identity, cardinality, length, rank, size
|
| 2337 |
+
"""
|
| 2338 |
+
|
| 2339 |
+
return reduce(lcm, [len(cycle) for cycle in self.cyclic_form], 1)
|
| 2340 |
+
|
| 2341 |
+
def length(self):
|
| 2342 |
+
"""
|
| 2343 |
+
Returns the number of integers moved by a permutation.
|
| 2344 |
+
|
| 2345 |
+
Examples
|
| 2346 |
+
========
|
| 2347 |
+
|
| 2348 |
+
>>> from sympy.combinatorics import Permutation
|
| 2349 |
+
>>> Permutation([0, 3, 2, 1]).length()
|
| 2350 |
+
2
|
| 2351 |
+
>>> Permutation([[0, 1], [2, 3]]).length()
|
| 2352 |
+
4
|
| 2353 |
+
|
| 2354 |
+
See Also
|
| 2355 |
+
========
|
| 2356 |
+
|
| 2357 |
+
min, max, support, cardinality, order, rank, size
|
| 2358 |
+
"""
|
| 2359 |
+
|
| 2360 |
+
return len(self.support())
|
| 2361 |
+
|
| 2362 |
+
@property
|
| 2363 |
+
def cycle_structure(self):
|
| 2364 |
+
"""Return the cycle structure of the permutation as a dictionary
|
| 2365 |
+
indicating the multiplicity of each cycle length.
|
| 2366 |
+
|
| 2367 |
+
Examples
|
| 2368 |
+
========
|
| 2369 |
+
|
| 2370 |
+
>>> from sympy.combinatorics import Permutation
|
| 2371 |
+
>>> Permutation(3).cycle_structure
|
| 2372 |
+
{1: 4}
|
| 2373 |
+
>>> Permutation(0, 4, 3)(1, 2)(5, 6).cycle_structure
|
| 2374 |
+
{2: 2, 3: 1}
|
| 2375 |
+
"""
|
| 2376 |
+
if self._cycle_structure:
|
| 2377 |
+
rv = self._cycle_structure
|
| 2378 |
+
else:
|
| 2379 |
+
rv = defaultdict(int)
|
| 2380 |
+
singletons = self.size
|
| 2381 |
+
for c in self.cyclic_form:
|
| 2382 |
+
rv[len(c)] += 1
|
| 2383 |
+
singletons -= len(c)
|
| 2384 |
+
if singletons:
|
| 2385 |
+
rv[1] = singletons
|
| 2386 |
+
self._cycle_structure = rv
|
| 2387 |
+
return dict(rv) # make a copy
|
| 2388 |
+
|
| 2389 |
+
@property
|
| 2390 |
+
def cycles(self):
|
| 2391 |
+
"""
|
| 2392 |
+
Returns the number of cycles contained in the permutation
|
| 2393 |
+
(including singletons).
|
| 2394 |
+
|
| 2395 |
+
Examples
|
| 2396 |
+
========
|
| 2397 |
+
|
| 2398 |
+
>>> from sympy.combinatorics import Permutation
|
| 2399 |
+
>>> Permutation([0, 1, 2]).cycles
|
| 2400 |
+
3
|
| 2401 |
+
>>> Permutation([0, 1, 2]).full_cyclic_form
|
| 2402 |
+
[[0], [1], [2]]
|
| 2403 |
+
>>> Permutation(0, 1)(2, 3).cycles
|
| 2404 |
+
2
|
| 2405 |
+
|
| 2406 |
+
See Also
|
| 2407 |
+
========
|
| 2408 |
+
sympy.functions.combinatorial.numbers.stirling
|
| 2409 |
+
"""
|
| 2410 |
+
return len(self.full_cyclic_form)
|
| 2411 |
+
|
| 2412 |
+
def index(self):
|
| 2413 |
+
"""
|
| 2414 |
+
Returns the index of a permutation.
|
| 2415 |
+
|
| 2416 |
+
The index of a permutation is the sum of all subscripts j such
|
| 2417 |
+
that p[j] is greater than p[j+1].
|
| 2418 |
+
|
| 2419 |
+
Examples
|
| 2420 |
+
========
|
| 2421 |
+
|
| 2422 |
+
>>> from sympy.combinatorics import Permutation
|
| 2423 |
+
>>> p = Permutation([3, 0, 2, 1, 4])
|
| 2424 |
+
>>> p.index()
|
| 2425 |
+
2
|
| 2426 |
+
"""
|
| 2427 |
+
a = self.array_form
|
| 2428 |
+
|
| 2429 |
+
return sum(j for j in range(len(a) - 1) if a[j] > a[j + 1])
|
| 2430 |
+
|
| 2431 |
+
def runs(self):
|
| 2432 |
+
"""
|
| 2433 |
+
Returns the runs of a permutation.
|
| 2434 |
+
|
| 2435 |
+
An ascending sequence in a permutation is called a run [5].
|
| 2436 |
+
|
| 2437 |
+
|
| 2438 |
+
Examples
|
| 2439 |
+
========
|
| 2440 |
+
|
| 2441 |
+
>>> from sympy.combinatorics import Permutation
|
| 2442 |
+
>>> p = Permutation([2, 5, 7, 3, 6, 0, 1, 4, 8])
|
| 2443 |
+
>>> p.runs()
|
| 2444 |
+
[[2, 5, 7], [3, 6], [0, 1, 4, 8]]
|
| 2445 |
+
>>> q = Permutation([1,3,2,0])
|
| 2446 |
+
>>> q.runs()
|
| 2447 |
+
[[1, 3], [2], [0]]
|
| 2448 |
+
"""
|
| 2449 |
+
return runs(self.array_form)
|
| 2450 |
+
|
| 2451 |
+
def inversion_vector(self):
|
| 2452 |
+
"""Return the inversion vector of the permutation.
|
| 2453 |
+
|
| 2454 |
+
The inversion vector consists of elements whose value
|
| 2455 |
+
indicates the number of elements in the permutation
|
| 2456 |
+
that are lesser than it and lie on its right hand side.
|
| 2457 |
+
|
| 2458 |
+
The inversion vector is the same as the Lehmer encoding of a
|
| 2459 |
+
permutation.
|
| 2460 |
+
|
| 2461 |
+
Examples
|
| 2462 |
+
========
|
| 2463 |
+
|
| 2464 |
+
>>> from sympy.combinatorics import Permutation
|
| 2465 |
+
>>> p = Permutation([4, 8, 0, 7, 1, 5, 3, 6, 2])
|
| 2466 |
+
>>> p.inversion_vector()
|
| 2467 |
+
[4, 7, 0, 5, 0, 2, 1, 1]
|
| 2468 |
+
>>> p = Permutation([3, 2, 1, 0])
|
| 2469 |
+
>>> p.inversion_vector()
|
| 2470 |
+
[3, 2, 1]
|
| 2471 |
+
|
| 2472 |
+
The inversion vector increases lexicographically with the rank
|
| 2473 |
+
of the permutation, the -ith element cycling through 0..i.
|
| 2474 |
+
|
| 2475 |
+
>>> p = Permutation(2)
|
| 2476 |
+
>>> while p:
|
| 2477 |
+
... print('%s %s %s' % (p, p.inversion_vector(), p.rank()))
|
| 2478 |
+
... p = p.next_lex()
|
| 2479 |
+
(2) [0, 0] 0
|
| 2480 |
+
(1 2) [0, 1] 1
|
| 2481 |
+
(2)(0 1) [1, 0] 2
|
| 2482 |
+
(0 1 2) [1, 1] 3
|
| 2483 |
+
(0 2 1) [2, 0] 4
|
| 2484 |
+
(0 2) [2, 1] 5
|
| 2485 |
+
|
| 2486 |
+
See Also
|
| 2487 |
+
========
|
| 2488 |
+
|
| 2489 |
+
from_inversion_vector
|
| 2490 |
+
"""
|
| 2491 |
+
self_array_form = self.array_form
|
| 2492 |
+
n = len(self_array_form)
|
| 2493 |
+
inversion_vector = [0] * (n - 1)
|
| 2494 |
+
|
| 2495 |
+
for i in range(n - 1):
|
| 2496 |
+
val = 0
|
| 2497 |
+
for j in range(i + 1, n):
|
| 2498 |
+
if self_array_form[j] < self_array_form[i]:
|
| 2499 |
+
val += 1
|
| 2500 |
+
inversion_vector[i] = val
|
| 2501 |
+
return inversion_vector
|
| 2502 |
+
|
| 2503 |
+
def rank_trotterjohnson(self):
|
| 2504 |
+
"""
|
| 2505 |
+
Returns the Trotter Johnson rank, which we get from the minimal
|
| 2506 |
+
change algorithm. See [4] section 2.4.
|
| 2507 |
+
|
| 2508 |
+
Examples
|
| 2509 |
+
========
|
| 2510 |
+
|
| 2511 |
+
>>> from sympy.combinatorics import Permutation
|
| 2512 |
+
>>> p = Permutation([0, 1, 2, 3])
|
| 2513 |
+
>>> p.rank_trotterjohnson()
|
| 2514 |
+
0
|
| 2515 |
+
>>> p = Permutation([0, 2, 1, 3])
|
| 2516 |
+
>>> p.rank_trotterjohnson()
|
| 2517 |
+
7
|
| 2518 |
+
|
| 2519 |
+
See Also
|
| 2520 |
+
========
|
| 2521 |
+
|
| 2522 |
+
unrank_trotterjohnson, next_trotterjohnson
|
| 2523 |
+
"""
|
| 2524 |
+
if self.array_form == [] or self.is_Identity:
|
| 2525 |
+
return 0
|
| 2526 |
+
if self.array_form == [1, 0]:
|
| 2527 |
+
return 1
|
| 2528 |
+
perm = self.array_form
|
| 2529 |
+
n = self.size
|
| 2530 |
+
rank = 0
|
| 2531 |
+
for j in range(1, n):
|
| 2532 |
+
k = 1
|
| 2533 |
+
i = 0
|
| 2534 |
+
while perm[i] != j:
|
| 2535 |
+
if perm[i] < j:
|
| 2536 |
+
k += 1
|
| 2537 |
+
i += 1
|
| 2538 |
+
j1 = j + 1
|
| 2539 |
+
if rank % 2 == 0:
|
| 2540 |
+
rank = j1*rank + j1 - k
|
| 2541 |
+
else:
|
| 2542 |
+
rank = j1*rank + k - 1
|
| 2543 |
+
return rank
|
| 2544 |
+
|
| 2545 |
+
@classmethod
|
| 2546 |
+
def unrank_trotterjohnson(cls, size, rank):
|
| 2547 |
+
"""
|
| 2548 |
+
Trotter Johnson permutation unranking. See [4] section 2.4.
|
| 2549 |
+
|
| 2550 |
+
Examples
|
| 2551 |
+
========
|
| 2552 |
+
|
| 2553 |
+
>>> from sympy.combinatorics import Permutation
|
| 2554 |
+
>>> from sympy import init_printing
|
| 2555 |
+
>>> init_printing(perm_cyclic=False, pretty_print=False)
|
| 2556 |
+
>>> Permutation.unrank_trotterjohnson(5, 10)
|
| 2557 |
+
Permutation([0, 3, 1, 2, 4])
|
| 2558 |
+
|
| 2559 |
+
See Also
|
| 2560 |
+
========
|
| 2561 |
+
|
| 2562 |
+
rank_trotterjohnson, next_trotterjohnson
|
| 2563 |
+
"""
|
| 2564 |
+
perm = [0]*size
|
| 2565 |
+
r2 = 0
|
| 2566 |
+
n = ifac(size)
|
| 2567 |
+
pj = 1
|
| 2568 |
+
for j in range(2, size + 1):
|
| 2569 |
+
pj *= j
|
| 2570 |
+
r1 = (rank * pj) // n
|
| 2571 |
+
k = r1 - j*r2
|
| 2572 |
+
if r2 % 2 == 0:
|
| 2573 |
+
for i in range(j - 1, j - k - 1, -1):
|
| 2574 |
+
perm[i] = perm[i - 1]
|
| 2575 |
+
perm[j - k - 1] = j - 1
|
| 2576 |
+
else:
|
| 2577 |
+
for i in range(j - 1, k, -1):
|
| 2578 |
+
perm[i] = perm[i - 1]
|
| 2579 |
+
perm[k] = j - 1
|
| 2580 |
+
r2 = r1
|
| 2581 |
+
return cls._af_new(perm)
|
| 2582 |
+
|
| 2583 |
+
def next_trotterjohnson(self):
|
| 2584 |
+
"""
|
| 2585 |
+
Returns the next permutation in Trotter-Johnson order.
|
| 2586 |
+
If self is the last permutation it returns None.
|
| 2587 |
+
See [4] section 2.4. If it is desired to generate all such
|
| 2588 |
+
permutations, they can be generated in order more quickly
|
| 2589 |
+
with the ``generate_bell`` function.
|
| 2590 |
+
|
| 2591 |
+
Examples
|
| 2592 |
+
========
|
| 2593 |
+
|
| 2594 |
+
>>> from sympy.combinatorics import Permutation
|
| 2595 |
+
>>> from sympy import init_printing
|
| 2596 |
+
>>> init_printing(perm_cyclic=False, pretty_print=False)
|
| 2597 |
+
>>> p = Permutation([3, 0, 2, 1])
|
| 2598 |
+
>>> p.rank_trotterjohnson()
|
| 2599 |
+
4
|
| 2600 |
+
>>> p = p.next_trotterjohnson(); p
|
| 2601 |
+
Permutation([0, 3, 2, 1])
|
| 2602 |
+
>>> p.rank_trotterjohnson()
|
| 2603 |
+
5
|
| 2604 |
+
|
| 2605 |
+
See Also
|
| 2606 |
+
========
|
| 2607 |
+
|
| 2608 |
+
rank_trotterjohnson, unrank_trotterjohnson, sympy.utilities.iterables.generate_bell
|
| 2609 |
+
"""
|
| 2610 |
+
pi = self.array_form[:]
|
| 2611 |
+
n = len(pi)
|
| 2612 |
+
st = 0
|
| 2613 |
+
rho = pi[:]
|
| 2614 |
+
done = False
|
| 2615 |
+
m = n-1
|
| 2616 |
+
while m > 0 and not done:
|
| 2617 |
+
d = rho.index(m)
|
| 2618 |
+
for i in range(d, m):
|
| 2619 |
+
rho[i] = rho[i + 1]
|
| 2620 |
+
par = _af_parity(rho[:m])
|
| 2621 |
+
if par == 1:
|
| 2622 |
+
if d == m:
|
| 2623 |
+
m -= 1
|
| 2624 |
+
else:
|
| 2625 |
+
pi[st + d], pi[st + d + 1] = pi[st + d + 1], pi[st + d]
|
| 2626 |
+
done = True
|
| 2627 |
+
else:
|
| 2628 |
+
if d == 0:
|
| 2629 |
+
m -= 1
|
| 2630 |
+
st += 1
|
| 2631 |
+
else:
|
| 2632 |
+
pi[st + d], pi[st + d - 1] = pi[st + d - 1], pi[st + d]
|
| 2633 |
+
done = True
|
| 2634 |
+
if m == 0:
|
| 2635 |
+
return None
|
| 2636 |
+
return self._af_new(pi)
|
| 2637 |
+
|
| 2638 |
+
def get_precedence_matrix(self):
|
| 2639 |
+
"""
|
| 2640 |
+
Gets the precedence matrix. This is used for computing the
|
| 2641 |
+
distance between two permutations.
|
| 2642 |
+
|
| 2643 |
+
Examples
|
| 2644 |
+
========
|
| 2645 |
+
|
| 2646 |
+
>>> from sympy.combinatorics import Permutation
|
| 2647 |
+
>>> from sympy import init_printing
|
| 2648 |
+
>>> init_printing(perm_cyclic=False, pretty_print=False)
|
| 2649 |
+
>>> p = Permutation.josephus(3, 6, 1)
|
| 2650 |
+
>>> p
|
| 2651 |
+
Permutation([2, 5, 3, 1, 4, 0])
|
| 2652 |
+
>>> p.get_precedence_matrix()
|
| 2653 |
+
Matrix([
|
| 2654 |
+
[0, 0, 0, 0, 0, 0],
|
| 2655 |
+
[1, 0, 0, 0, 1, 0],
|
| 2656 |
+
[1, 1, 0, 1, 1, 1],
|
| 2657 |
+
[1, 1, 0, 0, 1, 0],
|
| 2658 |
+
[1, 0, 0, 0, 0, 0],
|
| 2659 |
+
[1, 1, 0, 1, 1, 0]])
|
| 2660 |
+
|
| 2661 |
+
See Also
|
| 2662 |
+
========
|
| 2663 |
+
|
| 2664 |
+
get_precedence_distance, get_adjacency_matrix, get_adjacency_distance
|
| 2665 |
+
"""
|
| 2666 |
+
m = zeros(self.size)
|
| 2667 |
+
perm = self.array_form
|
| 2668 |
+
for i in range(m.rows):
|
| 2669 |
+
for j in range(i + 1, m.cols):
|
| 2670 |
+
m[perm[i], perm[j]] = 1
|
| 2671 |
+
return m
|
| 2672 |
+
|
| 2673 |
+
def get_precedence_distance(self, other):
|
| 2674 |
+
"""
|
| 2675 |
+
Computes the precedence distance between two permutations.
|
| 2676 |
+
|
| 2677 |
+
Explanation
|
| 2678 |
+
===========
|
| 2679 |
+
|
| 2680 |
+
Suppose p and p' represent n jobs. The precedence metric
|
| 2681 |
+
counts the number of times a job j is preceded by job i
|
| 2682 |
+
in both p and p'. This metric is commutative.
|
| 2683 |
+
|
| 2684 |
+
Examples
|
| 2685 |
+
========
|
| 2686 |
+
|
| 2687 |
+
>>> from sympy.combinatorics import Permutation
|
| 2688 |
+
>>> p = Permutation([2, 0, 4, 3, 1])
|
| 2689 |
+
>>> q = Permutation([3, 1, 2, 4, 0])
|
| 2690 |
+
>>> p.get_precedence_distance(q)
|
| 2691 |
+
7
|
| 2692 |
+
>>> q.get_precedence_distance(p)
|
| 2693 |
+
7
|
| 2694 |
+
|
| 2695 |
+
See Also
|
| 2696 |
+
========
|
| 2697 |
+
|
| 2698 |
+
get_precedence_matrix, get_adjacency_matrix, get_adjacency_distance
|
| 2699 |
+
"""
|
| 2700 |
+
if self.size != other.size:
|
| 2701 |
+
raise ValueError("The permutations must be of equal size.")
|
| 2702 |
+
self_prec_mat = self.get_precedence_matrix()
|
| 2703 |
+
other_prec_mat = other.get_precedence_matrix()
|
| 2704 |
+
n_prec = 0
|
| 2705 |
+
for i in range(self.size):
|
| 2706 |
+
for j in range(self.size):
|
| 2707 |
+
if i == j:
|
| 2708 |
+
continue
|
| 2709 |
+
if self_prec_mat[i, j] * other_prec_mat[i, j] == 1:
|
| 2710 |
+
n_prec += 1
|
| 2711 |
+
d = self.size * (self.size - 1)//2 - n_prec
|
| 2712 |
+
return d
|
| 2713 |
+
|
| 2714 |
+
def get_adjacency_matrix(self):
|
| 2715 |
+
"""
|
| 2716 |
+
Computes the adjacency matrix of a permutation.
|
| 2717 |
+
|
| 2718 |
+
Explanation
|
| 2719 |
+
===========
|
| 2720 |
+
|
| 2721 |
+
If job i is adjacent to job j in a permutation p
|
| 2722 |
+
then we set m[i, j] = 1 where m is the adjacency
|
| 2723 |
+
matrix of p.
|
| 2724 |
+
|
| 2725 |
+
Examples
|
| 2726 |
+
========
|
| 2727 |
+
|
| 2728 |
+
>>> from sympy.combinatorics import Permutation
|
| 2729 |
+
>>> p = Permutation.josephus(3, 6, 1)
|
| 2730 |
+
>>> p.get_adjacency_matrix()
|
| 2731 |
+
Matrix([
|
| 2732 |
+
[0, 0, 0, 0, 0, 0],
|
| 2733 |
+
[0, 0, 0, 0, 1, 0],
|
| 2734 |
+
[0, 0, 0, 0, 0, 1],
|
| 2735 |
+
[0, 1, 0, 0, 0, 0],
|
| 2736 |
+
[1, 0, 0, 0, 0, 0],
|
| 2737 |
+
[0, 0, 0, 1, 0, 0]])
|
| 2738 |
+
>>> q = Permutation([0, 1, 2, 3])
|
| 2739 |
+
>>> q.get_adjacency_matrix()
|
| 2740 |
+
Matrix([
|
| 2741 |
+
[0, 1, 0, 0],
|
| 2742 |
+
[0, 0, 1, 0],
|
| 2743 |
+
[0, 0, 0, 1],
|
| 2744 |
+
[0, 0, 0, 0]])
|
| 2745 |
+
|
| 2746 |
+
See Also
|
| 2747 |
+
========
|
| 2748 |
+
|
| 2749 |
+
get_precedence_matrix, get_precedence_distance, get_adjacency_distance
|
| 2750 |
+
"""
|
| 2751 |
+
m = zeros(self.size)
|
| 2752 |
+
perm = self.array_form
|
| 2753 |
+
for i in range(self.size - 1):
|
| 2754 |
+
m[perm[i], perm[i + 1]] = 1
|
| 2755 |
+
return m
|
| 2756 |
+
|
| 2757 |
+
def get_adjacency_distance(self, other):
|
| 2758 |
+
"""
|
| 2759 |
+
Computes the adjacency distance between two permutations.
|
| 2760 |
+
|
| 2761 |
+
Explanation
|
| 2762 |
+
===========
|
| 2763 |
+
|
| 2764 |
+
This metric counts the number of times a pair i,j of jobs is
|
| 2765 |
+
adjacent in both p and p'. If n_adj is this quantity then
|
| 2766 |
+
the adjacency distance is n - n_adj - 1 [1]
|
| 2767 |
+
|
| 2768 |
+
[1] Reeves, Colin R. Landscapes, Operators and Heuristic search, Annals
|
| 2769 |
+
of Operational Research, 86, pp 473-490. (1999)
|
| 2770 |
+
|
| 2771 |
+
|
| 2772 |
+
Examples
|
| 2773 |
+
========
|
| 2774 |
+
|
| 2775 |
+
>>> from sympy.combinatorics import Permutation
|
| 2776 |
+
>>> p = Permutation([0, 3, 1, 2, 4])
|
| 2777 |
+
>>> q = Permutation.josephus(4, 5, 2)
|
| 2778 |
+
>>> p.get_adjacency_distance(q)
|
| 2779 |
+
3
|
| 2780 |
+
>>> r = Permutation([0, 2, 1, 4, 3])
|
| 2781 |
+
>>> p.get_adjacency_distance(r)
|
| 2782 |
+
4
|
| 2783 |
+
|
| 2784 |
+
See Also
|
| 2785 |
+
========
|
| 2786 |
+
|
| 2787 |
+
get_precedence_matrix, get_precedence_distance, get_adjacency_matrix
|
| 2788 |
+
"""
|
| 2789 |
+
if self.size != other.size:
|
| 2790 |
+
raise ValueError("The permutations must be of the same size.")
|
| 2791 |
+
self_adj_mat = self.get_adjacency_matrix()
|
| 2792 |
+
other_adj_mat = other.get_adjacency_matrix()
|
| 2793 |
+
n_adj = 0
|
| 2794 |
+
for i in range(self.size):
|
| 2795 |
+
for j in range(self.size):
|
| 2796 |
+
if i == j:
|
| 2797 |
+
continue
|
| 2798 |
+
if self_adj_mat[i, j] * other_adj_mat[i, j] == 1:
|
| 2799 |
+
n_adj += 1
|
| 2800 |
+
d = self.size - n_adj - 1
|
| 2801 |
+
return d
|
| 2802 |
+
|
| 2803 |
+
def get_positional_distance(self, other):
|
| 2804 |
+
"""
|
| 2805 |
+
Computes the positional distance between two permutations.
|
| 2806 |
+
|
| 2807 |
+
Examples
|
| 2808 |
+
========
|
| 2809 |
+
|
| 2810 |
+
>>> from sympy.combinatorics import Permutation
|
| 2811 |
+
>>> p = Permutation([0, 3, 1, 2, 4])
|
| 2812 |
+
>>> q = Permutation.josephus(4, 5, 2)
|
| 2813 |
+
>>> r = Permutation([3, 1, 4, 0, 2])
|
| 2814 |
+
>>> p.get_positional_distance(q)
|
| 2815 |
+
12
|
| 2816 |
+
>>> p.get_positional_distance(r)
|
| 2817 |
+
12
|
| 2818 |
+
|
| 2819 |
+
See Also
|
| 2820 |
+
========
|
| 2821 |
+
|
| 2822 |
+
get_precedence_distance, get_adjacency_distance
|
| 2823 |
+
"""
|
| 2824 |
+
a = self.array_form
|
| 2825 |
+
b = other.array_form
|
| 2826 |
+
if len(a) != len(b):
|
| 2827 |
+
raise ValueError("The permutations must be of the same size.")
|
| 2828 |
+
return sum(abs(a[i] - b[i]) for i in range(len(a)))
|
| 2829 |
+
|
| 2830 |
+
@classmethod
|
| 2831 |
+
def josephus(cls, m, n, s=1):
|
| 2832 |
+
"""Return as a permutation the shuffling of range(n) using the Josephus
|
| 2833 |
+
scheme in which every m-th item is selected until all have been chosen.
|
| 2834 |
+
The returned permutation has elements listed by the order in which they
|
| 2835 |
+
were selected.
|
| 2836 |
+
|
| 2837 |
+
The parameter ``s`` stops the selection process when there are ``s``
|
| 2838 |
+
items remaining and these are selected by continuing the selection,
|
| 2839 |
+
counting by 1 rather than by ``m``.
|
| 2840 |
+
|
| 2841 |
+
Consider selecting every 3rd item from 6 until only 2 remain::
|
| 2842 |
+
|
| 2843 |
+
choices chosen
|
| 2844 |
+
======== ======
|
| 2845 |
+
012345
|
| 2846 |
+
01 345 2
|
| 2847 |
+
01 34 25
|
| 2848 |
+
01 4 253
|
| 2849 |
+
0 4 2531
|
| 2850 |
+
0 25314
|
| 2851 |
+
253140
|
| 2852 |
+
|
| 2853 |
+
Examples
|
| 2854 |
+
========
|
| 2855 |
+
|
| 2856 |
+
>>> from sympy.combinatorics import Permutation
|
| 2857 |
+
>>> Permutation.josephus(3, 6, 2).array_form
|
| 2858 |
+
[2, 5, 3, 1, 4, 0]
|
| 2859 |
+
|
| 2860 |
+
References
|
| 2861 |
+
==========
|
| 2862 |
+
|
| 2863 |
+
.. [1] https://en.wikipedia.org/wiki/Flavius_Josephus
|
| 2864 |
+
.. [2] https://en.wikipedia.org/wiki/Josephus_problem
|
| 2865 |
+
.. [3] https://web.archive.org/web/20171008094331/http://www.wou.edu/~burtonl/josephus.html
|
| 2866 |
+
|
| 2867 |
+
"""
|
| 2868 |
+
from collections import deque
|
| 2869 |
+
m -= 1
|
| 2870 |
+
Q = deque(list(range(n)))
|
| 2871 |
+
perm = []
|
| 2872 |
+
while len(Q) > max(s, 1):
|
| 2873 |
+
for dp in range(m):
|
| 2874 |
+
Q.append(Q.popleft())
|
| 2875 |
+
perm.append(Q.popleft())
|
| 2876 |
+
perm.extend(list(Q))
|
| 2877 |
+
return cls(perm)
|
| 2878 |
+
|
| 2879 |
+
@classmethod
|
| 2880 |
+
def from_inversion_vector(cls, inversion):
|
| 2881 |
+
"""
|
| 2882 |
+
Calculates the permutation from the inversion vector.
|
| 2883 |
+
|
| 2884 |
+
Examples
|
| 2885 |
+
========
|
| 2886 |
+
|
| 2887 |
+
>>> from sympy.combinatorics import Permutation
|
| 2888 |
+
>>> from sympy import init_printing
|
| 2889 |
+
>>> init_printing(perm_cyclic=False, pretty_print=False)
|
| 2890 |
+
>>> Permutation.from_inversion_vector([3, 2, 1, 0, 0])
|
| 2891 |
+
Permutation([3, 2, 1, 0, 4, 5])
|
| 2892 |
+
|
| 2893 |
+
"""
|
| 2894 |
+
size = len(inversion)
|
| 2895 |
+
N = list(range(size + 1))
|
| 2896 |
+
perm = []
|
| 2897 |
+
try:
|
| 2898 |
+
for k in range(size):
|
| 2899 |
+
val = N[inversion[k]]
|
| 2900 |
+
perm.append(val)
|
| 2901 |
+
N.remove(val)
|
| 2902 |
+
except IndexError:
|
| 2903 |
+
raise ValueError("The inversion vector is not valid.")
|
| 2904 |
+
perm.extend(N)
|
| 2905 |
+
return cls._af_new(perm)
|
| 2906 |
+
|
| 2907 |
+
@classmethod
|
| 2908 |
+
def random(cls, n):
|
| 2909 |
+
"""
|
| 2910 |
+
Generates a random permutation of length ``n``.
|
| 2911 |
+
|
| 2912 |
+
Uses the underlying Python pseudo-random number generator.
|
| 2913 |
+
|
| 2914 |
+
Examples
|
| 2915 |
+
========
|
| 2916 |
+
|
| 2917 |
+
>>> from sympy.combinatorics import Permutation
|
| 2918 |
+
>>> Permutation.random(2) in (Permutation([1, 0]), Permutation([0, 1]))
|
| 2919 |
+
True
|
| 2920 |
+
|
| 2921 |
+
"""
|
| 2922 |
+
perm_array = list(range(n))
|
| 2923 |
+
random.shuffle(perm_array)
|
| 2924 |
+
return cls._af_new(perm_array)
|
| 2925 |
+
|
| 2926 |
+
@classmethod
|
| 2927 |
+
def unrank_lex(cls, size, rank):
|
| 2928 |
+
"""
|
| 2929 |
+
Lexicographic permutation unranking.
|
| 2930 |
+
|
| 2931 |
+
Examples
|
| 2932 |
+
========
|
| 2933 |
+
|
| 2934 |
+
>>> from sympy.combinatorics import Permutation
|
| 2935 |
+
>>> from sympy import init_printing
|
| 2936 |
+
>>> init_printing(perm_cyclic=False, pretty_print=False)
|
| 2937 |
+
>>> a = Permutation.unrank_lex(5, 10)
|
| 2938 |
+
>>> a.rank()
|
| 2939 |
+
10
|
| 2940 |
+
>>> a
|
| 2941 |
+
Permutation([0, 2, 4, 1, 3])
|
| 2942 |
+
|
| 2943 |
+
See Also
|
| 2944 |
+
========
|
| 2945 |
+
|
| 2946 |
+
rank, next_lex
|
| 2947 |
+
"""
|
| 2948 |
+
perm_array = [0] * size
|
| 2949 |
+
psize = 1
|
| 2950 |
+
for i in range(size):
|
| 2951 |
+
new_psize = psize*(i + 1)
|
| 2952 |
+
d = (rank % new_psize) // psize
|
| 2953 |
+
rank -= d*psize
|
| 2954 |
+
perm_array[size - i - 1] = d
|
| 2955 |
+
for j in range(size - i, size):
|
| 2956 |
+
if perm_array[j] > d - 1:
|
| 2957 |
+
perm_array[j] += 1
|
| 2958 |
+
psize = new_psize
|
| 2959 |
+
return cls._af_new(perm_array)
|
| 2960 |
+
|
| 2961 |
+
def resize(self, n):
|
| 2962 |
+
"""Resize the permutation to the new size ``n``.
|
| 2963 |
+
|
| 2964 |
+
Parameters
|
| 2965 |
+
==========
|
| 2966 |
+
|
| 2967 |
+
n : int
|
| 2968 |
+
The new size of the permutation.
|
| 2969 |
+
|
| 2970 |
+
Raises
|
| 2971 |
+
======
|
| 2972 |
+
|
| 2973 |
+
ValueError
|
| 2974 |
+
If the permutation cannot be resized to the given size.
|
| 2975 |
+
This may only happen when resized to a smaller size than
|
| 2976 |
+
the original.
|
| 2977 |
+
|
| 2978 |
+
Examples
|
| 2979 |
+
========
|
| 2980 |
+
|
| 2981 |
+
>>> from sympy.combinatorics import Permutation
|
| 2982 |
+
|
| 2983 |
+
Increasing the size of a permutation:
|
| 2984 |
+
|
| 2985 |
+
>>> p = Permutation(0, 1, 2)
|
| 2986 |
+
>>> p = p.resize(5)
|
| 2987 |
+
>>> p
|
| 2988 |
+
(4)(0 1 2)
|
| 2989 |
+
|
| 2990 |
+
Decreasing the size of the permutation:
|
| 2991 |
+
|
| 2992 |
+
>>> p = p.resize(4)
|
| 2993 |
+
>>> p
|
| 2994 |
+
(3)(0 1 2)
|
| 2995 |
+
|
| 2996 |
+
If resizing to the specific size breaks the cycles:
|
| 2997 |
+
|
| 2998 |
+
>>> p.resize(2)
|
| 2999 |
+
Traceback (most recent call last):
|
| 3000 |
+
...
|
| 3001 |
+
ValueError: The permutation cannot be resized to 2 because the
|
| 3002 |
+
cycle (0, 1, 2) may break.
|
| 3003 |
+
"""
|
| 3004 |
+
aform = self.array_form
|
| 3005 |
+
l = len(aform)
|
| 3006 |
+
if n > l:
|
| 3007 |
+
aform += list(range(l, n))
|
| 3008 |
+
return Permutation._af_new(aform)
|
| 3009 |
+
|
| 3010 |
+
elif n < l:
|
| 3011 |
+
cyclic_form = self.full_cyclic_form
|
| 3012 |
+
new_cyclic_form = []
|
| 3013 |
+
for cycle in cyclic_form:
|
| 3014 |
+
cycle_min = min(cycle)
|
| 3015 |
+
cycle_max = max(cycle)
|
| 3016 |
+
if cycle_min <= n-1:
|
| 3017 |
+
if cycle_max > n-1:
|
| 3018 |
+
raise ValueError(
|
| 3019 |
+
"The permutation cannot be resized to {} "
|
| 3020 |
+
"because the cycle {} may break."
|
| 3021 |
+
.format(n, tuple(cycle)))
|
| 3022 |
+
|
| 3023 |
+
new_cyclic_form.append(cycle)
|
| 3024 |
+
return Permutation(new_cyclic_form)
|
| 3025 |
+
|
| 3026 |
+
return self
|
| 3027 |
+
|
| 3028 |
+
# XXX Deprecated flag
|
| 3029 |
+
print_cyclic = None
|
| 3030 |
+
|
| 3031 |
+
|
| 3032 |
+
def _merge(arr, temp, left, mid, right):
|
| 3033 |
+
"""
|
| 3034 |
+
Merges two sorted arrays and calculates the inversion count.
|
| 3035 |
+
|
| 3036 |
+
Helper function for calculating inversions. This method is
|
| 3037 |
+
for internal use only.
|
| 3038 |
+
"""
|
| 3039 |
+
i = k = left
|
| 3040 |
+
j = mid
|
| 3041 |
+
inv_count = 0
|
| 3042 |
+
while i < mid and j <= right:
|
| 3043 |
+
if arr[i] < arr[j]:
|
| 3044 |
+
temp[k] = arr[i]
|
| 3045 |
+
k += 1
|
| 3046 |
+
i += 1
|
| 3047 |
+
else:
|
| 3048 |
+
temp[k] = arr[j]
|
| 3049 |
+
k += 1
|
| 3050 |
+
j += 1
|
| 3051 |
+
inv_count += (mid -i)
|
| 3052 |
+
while i < mid:
|
| 3053 |
+
temp[k] = arr[i]
|
| 3054 |
+
k += 1
|
| 3055 |
+
i += 1
|
| 3056 |
+
if j <= right:
|
| 3057 |
+
k += right - j + 1
|
| 3058 |
+
j += right - j + 1
|
| 3059 |
+
arr[left:k + 1] = temp[left:k + 1]
|
| 3060 |
+
else:
|
| 3061 |
+
arr[left:right + 1] = temp[left:right + 1]
|
| 3062 |
+
return inv_count
|
| 3063 |
+
|
| 3064 |
+
Perm = Permutation
|
| 3065 |
+
_af_new = Perm._af_new
|
| 3066 |
+
|
| 3067 |
+
|
| 3068 |
+
class AppliedPermutation(Expr):
|
| 3069 |
+
"""A permutation applied to a symbolic variable.
|
| 3070 |
+
|
| 3071 |
+
Parameters
|
| 3072 |
+
==========
|
| 3073 |
+
|
| 3074 |
+
perm : Permutation
|
| 3075 |
+
x : Expr
|
| 3076 |
+
|
| 3077 |
+
Examples
|
| 3078 |
+
========
|
| 3079 |
+
|
| 3080 |
+
>>> from sympy import Symbol
|
| 3081 |
+
>>> from sympy.combinatorics import Permutation
|
| 3082 |
+
|
| 3083 |
+
Creating a symbolic permutation function application:
|
| 3084 |
+
|
| 3085 |
+
>>> x = Symbol('x')
|
| 3086 |
+
>>> p = Permutation(0, 1, 2)
|
| 3087 |
+
>>> p.apply(x)
|
| 3088 |
+
AppliedPermutation((0 1 2), x)
|
| 3089 |
+
>>> _.subs(x, 1)
|
| 3090 |
+
2
|
| 3091 |
+
"""
|
| 3092 |
+
def __new__(cls, perm, x, evaluate=None):
|
| 3093 |
+
if evaluate is None:
|
| 3094 |
+
evaluate = global_parameters.evaluate
|
| 3095 |
+
|
| 3096 |
+
perm = _sympify(perm)
|
| 3097 |
+
x = _sympify(x)
|
| 3098 |
+
|
| 3099 |
+
if not isinstance(perm, Permutation):
|
| 3100 |
+
raise ValueError("{} must be a Permutation instance."
|
| 3101 |
+
.format(perm))
|
| 3102 |
+
|
| 3103 |
+
if evaluate:
|
| 3104 |
+
if x.is_Integer:
|
| 3105 |
+
return perm.apply(x)
|
| 3106 |
+
|
| 3107 |
+
obj = super().__new__(cls, perm, x)
|
| 3108 |
+
return obj
|
| 3109 |
+
|
| 3110 |
+
|
| 3111 |
+
@dispatch(Permutation, Permutation)
|
| 3112 |
+
def _eval_is_eq(lhs, rhs):
|
| 3113 |
+
if lhs._size != rhs._size:
|
| 3114 |
+
return None
|
| 3115 |
+
return lhs._array_form == rhs._array_form
|
mgm/lib/python3.10/site-packages/sympy/combinatorics/prufer.py
ADDED
|
@@ -0,0 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from sympy.core import Basic
|
| 2 |
+
from sympy.core.containers import Tuple
|
| 3 |
+
from sympy.tensor.array import Array
|
| 4 |
+
from sympy.core.sympify import _sympify
|
| 5 |
+
from sympy.utilities.iterables import flatten, iterable
|
| 6 |
+
from sympy.utilities.misc import as_int
|
| 7 |
+
|
| 8 |
+
from collections import defaultdict
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class Prufer(Basic):
|
| 12 |
+
"""
|
| 13 |
+
The Prufer correspondence is an algorithm that describes the
|
| 14 |
+
bijection between labeled trees and the Prufer code. A Prufer
|
| 15 |
+
code of a labeled tree is unique up to isomorphism and has
|
| 16 |
+
a length of n - 2.
|
| 17 |
+
|
| 18 |
+
Prufer sequences were first used by Heinz Prufer to give a
|
| 19 |
+
proof of Cayley's formula.
|
| 20 |
+
|
| 21 |
+
References
|
| 22 |
+
==========
|
| 23 |
+
|
| 24 |
+
.. [1] https://mathworld.wolfram.com/LabeledTree.html
|
| 25 |
+
|
| 26 |
+
"""
|
| 27 |
+
_prufer_repr = None
|
| 28 |
+
_tree_repr = None
|
| 29 |
+
_nodes = None
|
| 30 |
+
_rank = None
|
| 31 |
+
|
| 32 |
+
@property
|
| 33 |
+
def prufer_repr(self):
|
| 34 |
+
"""Returns Prufer sequence for the Prufer object.
|
| 35 |
+
|
| 36 |
+
This sequence is found by removing the highest numbered vertex,
|
| 37 |
+
recording the node it was attached to, and continuing until only
|
| 38 |
+
two vertices remain. The Prufer sequence is the list of recorded nodes.
|
| 39 |
+
|
| 40 |
+
Examples
|
| 41 |
+
========
|
| 42 |
+
|
| 43 |
+
>>> from sympy.combinatorics.prufer import Prufer
|
| 44 |
+
>>> Prufer([[0, 3], [1, 3], [2, 3], [3, 4], [4, 5]]).prufer_repr
|
| 45 |
+
[3, 3, 3, 4]
|
| 46 |
+
>>> Prufer([1, 0, 0]).prufer_repr
|
| 47 |
+
[1, 0, 0]
|
| 48 |
+
|
| 49 |
+
See Also
|
| 50 |
+
========
|
| 51 |
+
|
| 52 |
+
to_prufer
|
| 53 |
+
|
| 54 |
+
"""
|
| 55 |
+
if self._prufer_repr is None:
|
| 56 |
+
self._prufer_repr = self.to_prufer(self._tree_repr[:], self.nodes)
|
| 57 |
+
return self._prufer_repr
|
| 58 |
+
|
| 59 |
+
@property
|
| 60 |
+
def tree_repr(self):
|
| 61 |
+
"""Returns the tree representation of the Prufer object.
|
| 62 |
+
|
| 63 |
+
Examples
|
| 64 |
+
========
|
| 65 |
+
|
| 66 |
+
>>> from sympy.combinatorics.prufer import Prufer
|
| 67 |
+
>>> Prufer([[0, 3], [1, 3], [2, 3], [3, 4], [4, 5]]).tree_repr
|
| 68 |
+
[[0, 3], [1, 3], [2, 3], [3, 4], [4, 5]]
|
| 69 |
+
>>> Prufer([1, 0, 0]).tree_repr
|
| 70 |
+
[[1, 2], [0, 1], [0, 3], [0, 4]]
|
| 71 |
+
|
| 72 |
+
See Also
|
| 73 |
+
========
|
| 74 |
+
|
| 75 |
+
to_tree
|
| 76 |
+
|
| 77 |
+
"""
|
| 78 |
+
if self._tree_repr is None:
|
| 79 |
+
self._tree_repr = self.to_tree(self._prufer_repr[:])
|
| 80 |
+
return self._tree_repr
|
| 81 |
+
|
| 82 |
+
@property
|
| 83 |
+
def nodes(self):
|
| 84 |
+
"""Returns the number of nodes in the tree.
|
| 85 |
+
|
| 86 |
+
Examples
|
| 87 |
+
========
|
| 88 |
+
|
| 89 |
+
>>> from sympy.combinatorics.prufer import Prufer
|
| 90 |
+
>>> Prufer([[0, 3], [1, 3], [2, 3], [3, 4], [4, 5]]).nodes
|
| 91 |
+
6
|
| 92 |
+
>>> Prufer([1, 0, 0]).nodes
|
| 93 |
+
5
|
| 94 |
+
|
| 95 |
+
"""
|
| 96 |
+
return self._nodes
|
| 97 |
+
|
| 98 |
+
@property
|
| 99 |
+
def rank(self):
|
| 100 |
+
"""Returns the rank of the Prufer sequence.
|
| 101 |
+
|
| 102 |
+
Examples
|
| 103 |
+
========
|
| 104 |
+
|
| 105 |
+
>>> from sympy.combinatorics.prufer import Prufer
|
| 106 |
+
>>> p = Prufer([[0, 3], [1, 3], [2, 3], [3, 4], [4, 5]])
|
| 107 |
+
>>> p.rank
|
| 108 |
+
778
|
| 109 |
+
>>> p.next(1).rank
|
| 110 |
+
779
|
| 111 |
+
>>> p.prev().rank
|
| 112 |
+
777
|
| 113 |
+
|
| 114 |
+
See Also
|
| 115 |
+
========
|
| 116 |
+
|
| 117 |
+
prufer_rank, next, prev, size
|
| 118 |
+
|
| 119 |
+
"""
|
| 120 |
+
if self._rank is None:
|
| 121 |
+
self._rank = self.prufer_rank()
|
| 122 |
+
return self._rank
|
| 123 |
+
|
| 124 |
+
@property
|
| 125 |
+
def size(self):
|
| 126 |
+
"""Return the number of possible trees of this Prufer object.
|
| 127 |
+
|
| 128 |
+
Examples
|
| 129 |
+
========
|
| 130 |
+
|
| 131 |
+
>>> from sympy.combinatorics.prufer import Prufer
|
| 132 |
+
>>> Prufer([0]*4).size == Prufer([6]*4).size == 1296
|
| 133 |
+
True
|
| 134 |
+
|
| 135 |
+
See Also
|
| 136 |
+
========
|
| 137 |
+
|
| 138 |
+
prufer_rank, rank, next, prev
|
| 139 |
+
|
| 140 |
+
"""
|
| 141 |
+
return self.prev(self.rank).prev().rank + 1
|
| 142 |
+
|
| 143 |
+
@staticmethod
|
| 144 |
+
def to_prufer(tree, n):
|
| 145 |
+
"""Return the Prufer sequence for a tree given as a list of edges where
|
| 146 |
+
``n`` is the number of nodes in the tree.
|
| 147 |
+
|
| 148 |
+
Examples
|
| 149 |
+
========
|
| 150 |
+
|
| 151 |
+
>>> from sympy.combinatorics.prufer import Prufer
|
| 152 |
+
>>> a = Prufer([[0, 1], [0, 2], [0, 3]])
|
| 153 |
+
>>> a.prufer_repr
|
| 154 |
+
[0, 0]
|
| 155 |
+
>>> Prufer.to_prufer([[0, 1], [0, 2], [0, 3]], 4)
|
| 156 |
+
[0, 0]
|
| 157 |
+
|
| 158 |
+
See Also
|
| 159 |
+
========
|
| 160 |
+
prufer_repr: returns Prufer sequence of a Prufer object.
|
| 161 |
+
|
| 162 |
+
"""
|
| 163 |
+
d = defaultdict(int)
|
| 164 |
+
L = []
|
| 165 |
+
for edge in tree:
|
| 166 |
+
# Increment the value of the corresponding
|
| 167 |
+
# node in the degree list as we encounter an
|
| 168 |
+
# edge involving it.
|
| 169 |
+
d[edge[0]] += 1
|
| 170 |
+
d[edge[1]] += 1
|
| 171 |
+
for i in range(n - 2):
|
| 172 |
+
# find the smallest leaf
|
| 173 |
+
for x in range(n):
|
| 174 |
+
if d[x] == 1:
|
| 175 |
+
break
|
| 176 |
+
# find the node it was connected to
|
| 177 |
+
y = None
|
| 178 |
+
for edge in tree:
|
| 179 |
+
if x == edge[0]:
|
| 180 |
+
y = edge[1]
|
| 181 |
+
elif x == edge[1]:
|
| 182 |
+
y = edge[0]
|
| 183 |
+
if y is not None:
|
| 184 |
+
break
|
| 185 |
+
# record and update
|
| 186 |
+
L.append(y)
|
| 187 |
+
for j in (x, y):
|
| 188 |
+
d[j] -= 1
|
| 189 |
+
if not d[j]:
|
| 190 |
+
d.pop(j)
|
| 191 |
+
tree.remove(edge)
|
| 192 |
+
return L
|
| 193 |
+
|
| 194 |
+
@staticmethod
|
| 195 |
+
def to_tree(prufer):
|
| 196 |
+
"""Return the tree (as a list of edges) of the given Prufer sequence.
|
| 197 |
+
|
| 198 |
+
Examples
|
| 199 |
+
========
|
| 200 |
+
|
| 201 |
+
>>> from sympy.combinatorics.prufer import Prufer
|
| 202 |
+
>>> a = Prufer([0, 2], 4)
|
| 203 |
+
>>> a.tree_repr
|
| 204 |
+
[[0, 1], [0, 2], [2, 3]]
|
| 205 |
+
>>> Prufer.to_tree([0, 2])
|
| 206 |
+
[[0, 1], [0, 2], [2, 3]]
|
| 207 |
+
|
| 208 |
+
References
|
| 209 |
+
==========
|
| 210 |
+
|
| 211 |
+
.. [1] https://hamberg.no/erlend/posts/2010-11-06-prufer-sequence-compact-tree-representation.html
|
| 212 |
+
|
| 213 |
+
See Also
|
| 214 |
+
========
|
| 215 |
+
tree_repr: returns tree representation of a Prufer object.
|
| 216 |
+
|
| 217 |
+
"""
|
| 218 |
+
tree = []
|
| 219 |
+
last = []
|
| 220 |
+
n = len(prufer) + 2
|
| 221 |
+
d = defaultdict(lambda: 1)
|
| 222 |
+
for p in prufer:
|
| 223 |
+
d[p] += 1
|
| 224 |
+
for i in prufer:
|
| 225 |
+
for j in range(n):
|
| 226 |
+
# find the smallest leaf (degree = 1)
|
| 227 |
+
if d[j] == 1:
|
| 228 |
+
break
|
| 229 |
+
# (i, j) is the new edge that we append to the tree
|
| 230 |
+
# and remove from the degree dictionary
|
| 231 |
+
d[i] -= 1
|
| 232 |
+
d[j] -= 1
|
| 233 |
+
tree.append(sorted([i, j]))
|
| 234 |
+
last = [i for i in range(n) if d[i] == 1] or [0, 1]
|
| 235 |
+
tree.append(last)
|
| 236 |
+
|
| 237 |
+
return tree
|
| 238 |
+
|
| 239 |
+
@staticmethod
|
| 240 |
+
def edges(*runs):
|
| 241 |
+
"""Return a list of edges and the number of nodes from the given runs
|
| 242 |
+
that connect nodes in an integer-labelled tree.
|
| 243 |
+
|
| 244 |
+
All node numbers will be shifted so that the minimum node is 0. It is
|
| 245 |
+
not a problem if edges are repeated in the runs; only unique edges are
|
| 246 |
+
returned. There is no assumption made about what the range of the node
|
| 247 |
+
labels should be, but all nodes from the smallest through the largest
|
| 248 |
+
must be present.
|
| 249 |
+
|
| 250 |
+
Examples
|
| 251 |
+
========
|
| 252 |
+
|
| 253 |
+
>>> from sympy.combinatorics.prufer import Prufer
|
| 254 |
+
>>> Prufer.edges([1, 2, 3], [2, 4, 5]) # a T
|
| 255 |
+
([[0, 1], [1, 2], [1, 3], [3, 4]], 5)
|
| 256 |
+
|
| 257 |
+
Duplicate edges are removed:
|
| 258 |
+
|
| 259 |
+
>>> Prufer.edges([0, 1, 2, 3], [1, 4, 5], [1, 4, 6]) # a K
|
| 260 |
+
([[0, 1], [1, 2], [1, 4], [2, 3], [4, 5], [4, 6]], 7)
|
| 261 |
+
|
| 262 |
+
"""
|
| 263 |
+
e = set()
|
| 264 |
+
nmin = runs[0][0]
|
| 265 |
+
for r in runs:
|
| 266 |
+
for i in range(len(r) - 1):
|
| 267 |
+
a, b = r[i: i + 2]
|
| 268 |
+
if b < a:
|
| 269 |
+
a, b = b, a
|
| 270 |
+
e.add((a, b))
|
| 271 |
+
rv = []
|
| 272 |
+
got = set()
|
| 273 |
+
nmin = nmax = None
|
| 274 |
+
for ei in e:
|
| 275 |
+
got.update(ei)
|
| 276 |
+
nmin = min(ei[0], nmin) if nmin is not None else ei[0]
|
| 277 |
+
nmax = max(ei[1], nmax) if nmax is not None else ei[1]
|
| 278 |
+
rv.append(list(ei))
|
| 279 |
+
missing = set(range(nmin, nmax + 1)) - got
|
| 280 |
+
if missing:
|
| 281 |
+
missing = [i + nmin for i in missing]
|
| 282 |
+
if len(missing) == 1:
|
| 283 |
+
msg = 'Node %s is missing.' % missing.pop()
|
| 284 |
+
else:
|
| 285 |
+
msg = 'Nodes %s are missing.' % sorted(missing)
|
| 286 |
+
raise ValueError(msg)
|
| 287 |
+
if nmin != 0:
|
| 288 |
+
for i, ei in enumerate(rv):
|
| 289 |
+
rv[i] = [n - nmin for n in ei]
|
| 290 |
+
nmax -= nmin
|
| 291 |
+
return sorted(rv), nmax + 1
|
| 292 |
+
|
| 293 |
+
def prufer_rank(self):
|
| 294 |
+
"""Computes the rank of a Prufer sequence.
|
| 295 |
+
|
| 296 |
+
Examples
|
| 297 |
+
========
|
| 298 |
+
|
| 299 |
+
>>> from sympy.combinatorics.prufer import Prufer
|
| 300 |
+
>>> a = Prufer([[0, 1], [0, 2], [0, 3]])
|
| 301 |
+
>>> a.prufer_rank()
|
| 302 |
+
0
|
| 303 |
+
|
| 304 |
+
See Also
|
| 305 |
+
========
|
| 306 |
+
|
| 307 |
+
rank, next, prev, size
|
| 308 |
+
|
| 309 |
+
"""
|
| 310 |
+
r = 0
|
| 311 |
+
p = 1
|
| 312 |
+
for i in range(self.nodes - 3, -1, -1):
|
| 313 |
+
r += p*self.prufer_repr[i]
|
| 314 |
+
p *= self.nodes
|
| 315 |
+
return r
|
| 316 |
+
|
| 317 |
+
@classmethod
|
| 318 |
+
def unrank(self, rank, n):
|
| 319 |
+
"""Finds the unranked Prufer sequence.
|
| 320 |
+
|
| 321 |
+
Examples
|
| 322 |
+
========
|
| 323 |
+
|
| 324 |
+
>>> from sympy.combinatorics.prufer import Prufer
|
| 325 |
+
>>> Prufer.unrank(0, 4)
|
| 326 |
+
Prufer([0, 0])
|
| 327 |
+
|
| 328 |
+
"""
|
| 329 |
+
n, rank = as_int(n), as_int(rank)
|
| 330 |
+
L = defaultdict(int)
|
| 331 |
+
for i in range(n - 3, -1, -1):
|
| 332 |
+
L[i] = rank % n
|
| 333 |
+
rank = (rank - L[i])//n
|
| 334 |
+
return Prufer([L[i] for i in range(len(L))])
|
| 335 |
+
|
| 336 |
+
def __new__(cls, *args, **kw_args):
|
| 337 |
+
"""The constructor for the Prufer object.
|
| 338 |
+
|
| 339 |
+
Examples
|
| 340 |
+
========
|
| 341 |
+
|
| 342 |
+
>>> from sympy.combinatorics.prufer import Prufer
|
| 343 |
+
|
| 344 |
+
A Prufer object can be constructed from a list of edges:
|
| 345 |
+
|
| 346 |
+
>>> a = Prufer([[0, 1], [0, 2], [0, 3]])
|
| 347 |
+
>>> a.prufer_repr
|
| 348 |
+
[0, 0]
|
| 349 |
+
|
| 350 |
+
If the number of nodes is given, no checking of the nodes will
|
| 351 |
+
be performed; it will be assumed that nodes 0 through n - 1 are
|
| 352 |
+
present:
|
| 353 |
+
|
| 354 |
+
>>> Prufer([[0, 1], [0, 2], [0, 3]], 4)
|
| 355 |
+
Prufer([[0, 1], [0, 2], [0, 3]], 4)
|
| 356 |
+
|
| 357 |
+
A Prufer object can be constructed from a Prufer sequence:
|
| 358 |
+
|
| 359 |
+
>>> b = Prufer([1, 3])
|
| 360 |
+
>>> b.tree_repr
|
| 361 |
+
[[0, 1], [1, 3], [2, 3]]
|
| 362 |
+
|
| 363 |
+
"""
|
| 364 |
+
arg0 = Array(args[0]) if args[0] else Tuple()
|
| 365 |
+
args = (arg0,) + tuple(_sympify(arg) for arg in args[1:])
|
| 366 |
+
ret_obj = Basic.__new__(cls, *args, **kw_args)
|
| 367 |
+
args = [list(args[0])]
|
| 368 |
+
if args[0] and iterable(args[0][0]):
|
| 369 |
+
if not args[0][0]:
|
| 370 |
+
raise ValueError(
|
| 371 |
+
'Prufer expects at least one edge in the tree.')
|
| 372 |
+
if len(args) > 1:
|
| 373 |
+
nnodes = args[1]
|
| 374 |
+
else:
|
| 375 |
+
nodes = set(flatten(args[0]))
|
| 376 |
+
nnodes = max(nodes) + 1
|
| 377 |
+
if nnodes != len(nodes):
|
| 378 |
+
missing = set(range(nnodes)) - nodes
|
| 379 |
+
if len(missing) == 1:
|
| 380 |
+
msg = 'Node %s is missing.' % missing.pop()
|
| 381 |
+
else:
|
| 382 |
+
msg = 'Nodes %s are missing.' % sorted(missing)
|
| 383 |
+
raise ValueError(msg)
|
| 384 |
+
ret_obj._tree_repr = [list(i) for i in args[0]]
|
| 385 |
+
ret_obj._nodes = nnodes
|
| 386 |
+
else:
|
| 387 |
+
ret_obj._prufer_repr = args[0]
|
| 388 |
+
ret_obj._nodes = len(ret_obj._prufer_repr) + 2
|
| 389 |
+
return ret_obj
|
| 390 |
+
|
| 391 |
+
def next(self, delta=1):
|
| 392 |
+
"""Generates the Prufer sequence that is delta beyond the current one.
|
| 393 |
+
|
| 394 |
+
Examples
|
| 395 |
+
========
|
| 396 |
+
|
| 397 |
+
>>> from sympy.combinatorics.prufer import Prufer
|
| 398 |
+
>>> a = Prufer([[0, 1], [0, 2], [0, 3]])
|
| 399 |
+
>>> b = a.next(1) # == a.next()
|
| 400 |
+
>>> b.tree_repr
|
| 401 |
+
[[0, 2], [0, 1], [1, 3]]
|
| 402 |
+
>>> b.rank
|
| 403 |
+
1
|
| 404 |
+
|
| 405 |
+
See Also
|
| 406 |
+
========
|
| 407 |
+
|
| 408 |
+
prufer_rank, rank, prev, size
|
| 409 |
+
|
| 410 |
+
"""
|
| 411 |
+
return Prufer.unrank(self.rank + delta, self.nodes)
|
| 412 |
+
|
| 413 |
+
def prev(self, delta=1):
|
| 414 |
+
"""Generates the Prufer sequence that is -delta before the current one.
|
| 415 |
+
|
| 416 |
+
Examples
|
| 417 |
+
========
|
| 418 |
+
|
| 419 |
+
>>> from sympy.combinatorics.prufer import Prufer
|
| 420 |
+
>>> a = Prufer([[0, 1], [1, 2], [2, 3], [1, 4]])
|
| 421 |
+
>>> a.rank
|
| 422 |
+
36
|
| 423 |
+
>>> b = a.prev()
|
| 424 |
+
>>> b
|
| 425 |
+
Prufer([1, 2, 0])
|
| 426 |
+
>>> b.rank
|
| 427 |
+
35
|
| 428 |
+
|
| 429 |
+
See Also
|
| 430 |
+
========
|
| 431 |
+
|
| 432 |
+
prufer_rank, rank, next, size
|
| 433 |
+
|
| 434 |
+
"""
|
| 435 |
+
return Prufer.unrank(self.rank -delta, self.nodes)
|
mgm/lib/python3.10/site-packages/sympy/combinatorics/rewritingsystem.py
ADDED
|
@@ -0,0 +1,453 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections import deque
|
| 2 |
+
from sympy.combinatorics.rewritingsystem_fsm import StateMachine
|
| 3 |
+
|
| 4 |
+
class RewritingSystem:
|
| 5 |
+
'''
|
| 6 |
+
A class implementing rewriting systems for `FpGroup`s.
|
| 7 |
+
|
| 8 |
+
References
|
| 9 |
+
==========
|
| 10 |
+
.. [1] Epstein, D., Holt, D. and Rees, S. (1991).
|
| 11 |
+
The use of Knuth-Bendix methods to solve the word problem in automatic groups.
|
| 12 |
+
Journal of Symbolic Computation, 12(4-5), pp.397-414.
|
| 13 |
+
|
| 14 |
+
.. [2] GAP's Manual on its KBMAG package
|
| 15 |
+
https://www.gap-system.org/Manuals/pkg/kbmag-1.5.3/doc/manual.pdf
|
| 16 |
+
|
| 17 |
+
'''
|
| 18 |
+
def __init__(self, group):
|
| 19 |
+
self.group = group
|
| 20 |
+
self.alphabet = group.generators
|
| 21 |
+
self._is_confluent = None
|
| 22 |
+
|
| 23 |
+
# these values are taken from [2]
|
| 24 |
+
self.maxeqns = 32767 # max rules
|
| 25 |
+
self.tidyint = 100 # rules before tidying
|
| 26 |
+
|
| 27 |
+
# _max_exceeded is True if maxeqns is exceeded
|
| 28 |
+
# at any point
|
| 29 |
+
self._max_exceeded = False
|
| 30 |
+
|
| 31 |
+
# Reduction automaton
|
| 32 |
+
self.reduction_automaton = None
|
| 33 |
+
self._new_rules = {}
|
| 34 |
+
|
| 35 |
+
# dictionary of reductions
|
| 36 |
+
self.rules = {}
|
| 37 |
+
self.rules_cache = deque([], 50)
|
| 38 |
+
self._init_rules()
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
# All the transition symbols in the automaton
|
| 42 |
+
generators = list(self.alphabet)
|
| 43 |
+
generators += [gen**-1 for gen in generators]
|
| 44 |
+
# Create a finite state machine as an instance of the StateMachine object
|
| 45 |
+
self.reduction_automaton = StateMachine('Reduction automaton for '+ repr(self.group), generators)
|
| 46 |
+
self.construct_automaton()
|
| 47 |
+
|
| 48 |
+
def set_max(self, n):
|
| 49 |
+
'''
|
| 50 |
+
Set the maximum number of rules that can be defined
|
| 51 |
+
|
| 52 |
+
'''
|
| 53 |
+
if n > self.maxeqns:
|
| 54 |
+
self._max_exceeded = False
|
| 55 |
+
self.maxeqns = n
|
| 56 |
+
return
|
| 57 |
+
|
| 58 |
+
@property
|
| 59 |
+
def is_confluent(self):
|
| 60 |
+
'''
|
| 61 |
+
Return `True` if the system is confluent
|
| 62 |
+
|
| 63 |
+
'''
|
| 64 |
+
if self._is_confluent is None:
|
| 65 |
+
self._is_confluent = self._check_confluence()
|
| 66 |
+
return self._is_confluent
|
| 67 |
+
|
| 68 |
+
def _init_rules(self):
|
| 69 |
+
identity = self.group.free_group.identity
|
| 70 |
+
for r in self.group.relators:
|
| 71 |
+
self.add_rule(r, identity)
|
| 72 |
+
self._remove_redundancies()
|
| 73 |
+
return
|
| 74 |
+
|
| 75 |
+
def _add_rule(self, r1, r2):
|
| 76 |
+
'''
|
| 77 |
+
Add the rule r1 -> r2 with no checking or further
|
| 78 |
+
deductions
|
| 79 |
+
|
| 80 |
+
'''
|
| 81 |
+
if len(self.rules) + 1 > self.maxeqns:
|
| 82 |
+
self._is_confluent = self._check_confluence()
|
| 83 |
+
self._max_exceeded = True
|
| 84 |
+
raise RuntimeError("Too many rules were defined.")
|
| 85 |
+
self.rules[r1] = r2
|
| 86 |
+
# Add the newly added rule to the `new_rules` dictionary.
|
| 87 |
+
if self.reduction_automaton:
|
| 88 |
+
self._new_rules[r1] = r2
|
| 89 |
+
|
| 90 |
+
def add_rule(self, w1, w2, check=False):
|
| 91 |
+
new_keys = set()
|
| 92 |
+
|
| 93 |
+
if w1 == w2:
|
| 94 |
+
return new_keys
|
| 95 |
+
|
| 96 |
+
if w1 < w2:
|
| 97 |
+
w1, w2 = w2, w1
|
| 98 |
+
|
| 99 |
+
if (w1, w2) in self.rules_cache:
|
| 100 |
+
return new_keys
|
| 101 |
+
self.rules_cache.append((w1, w2))
|
| 102 |
+
|
| 103 |
+
s1, s2 = w1, w2
|
| 104 |
+
|
| 105 |
+
# The following is the equivalent of checking
|
| 106 |
+
# s1 for overlaps with the implicit reductions
|
| 107 |
+
# {g*g**-1 -> <identity>} and {g**-1*g -> <identity>}
|
| 108 |
+
# for any generator g without installing the
|
| 109 |
+
# redundant rules that would result from processing
|
| 110 |
+
# the overlaps. See [1], Section 3 for details.
|
| 111 |
+
|
| 112 |
+
if len(s1) - len(s2) < 3:
|
| 113 |
+
if s1 not in self.rules:
|
| 114 |
+
new_keys.add(s1)
|
| 115 |
+
if not check:
|
| 116 |
+
self._add_rule(s1, s2)
|
| 117 |
+
if s2**-1 > s1**-1 and s2**-1 not in self.rules:
|
| 118 |
+
new_keys.add(s2**-1)
|
| 119 |
+
if not check:
|
| 120 |
+
self._add_rule(s2**-1, s1**-1)
|
| 121 |
+
|
| 122 |
+
# overlaps on the right
|
| 123 |
+
while len(s1) - len(s2) > -1:
|
| 124 |
+
g = s1[len(s1)-1]
|
| 125 |
+
s1 = s1.subword(0, len(s1)-1)
|
| 126 |
+
s2 = s2*g**-1
|
| 127 |
+
if len(s1) - len(s2) < 0:
|
| 128 |
+
if s2 not in self.rules:
|
| 129 |
+
if not check:
|
| 130 |
+
self._add_rule(s2, s1)
|
| 131 |
+
new_keys.add(s2)
|
| 132 |
+
elif len(s1) - len(s2) < 3:
|
| 133 |
+
new = self.add_rule(s1, s2, check)
|
| 134 |
+
new_keys.update(new)
|
| 135 |
+
|
| 136 |
+
# overlaps on the left
|
| 137 |
+
while len(w1) - len(w2) > -1:
|
| 138 |
+
g = w1[0]
|
| 139 |
+
w1 = w1.subword(1, len(w1))
|
| 140 |
+
w2 = g**-1*w2
|
| 141 |
+
if len(w1) - len(w2) < 0:
|
| 142 |
+
if w2 not in self.rules:
|
| 143 |
+
if not check:
|
| 144 |
+
self._add_rule(w2, w1)
|
| 145 |
+
new_keys.add(w2)
|
| 146 |
+
elif len(w1) - len(w2) < 3:
|
| 147 |
+
new = self.add_rule(w1, w2, check)
|
| 148 |
+
new_keys.update(new)
|
| 149 |
+
|
| 150 |
+
return new_keys
|
| 151 |
+
|
| 152 |
+
def _remove_redundancies(self, changes=False):
|
| 153 |
+
'''
|
| 154 |
+
Reduce left- and right-hand sides of reduction rules
|
| 155 |
+
and remove redundant equations (i.e. those for which
|
| 156 |
+
lhs == rhs). If `changes` is `True`, return a set
|
| 157 |
+
containing the removed keys and a set containing the
|
| 158 |
+
added keys
|
| 159 |
+
|
| 160 |
+
'''
|
| 161 |
+
removed = set()
|
| 162 |
+
added = set()
|
| 163 |
+
rules = self.rules.copy()
|
| 164 |
+
for r in rules:
|
| 165 |
+
v = self.reduce(r, exclude=r)
|
| 166 |
+
w = self.reduce(rules[r])
|
| 167 |
+
if v != r:
|
| 168 |
+
del self.rules[r]
|
| 169 |
+
removed.add(r)
|
| 170 |
+
if v > w:
|
| 171 |
+
added.add(v)
|
| 172 |
+
self.rules[v] = w
|
| 173 |
+
elif v < w:
|
| 174 |
+
added.add(w)
|
| 175 |
+
self.rules[w] = v
|
| 176 |
+
else:
|
| 177 |
+
self.rules[v] = w
|
| 178 |
+
if changes:
|
| 179 |
+
return removed, added
|
| 180 |
+
return
|
| 181 |
+
|
| 182 |
+
def make_confluent(self, check=False):
|
| 183 |
+
'''
|
| 184 |
+
Try to make the system confluent using the Knuth-Bendix
|
| 185 |
+
completion algorithm
|
| 186 |
+
|
| 187 |
+
'''
|
| 188 |
+
if self._max_exceeded:
|
| 189 |
+
return self._is_confluent
|
| 190 |
+
lhs = list(self.rules.keys())
|
| 191 |
+
|
| 192 |
+
def _overlaps(r1, r2):
|
| 193 |
+
len1 = len(r1)
|
| 194 |
+
len2 = len(r2)
|
| 195 |
+
result = []
|
| 196 |
+
for j in range(1, len1 + len2):
|
| 197 |
+
if (r1.subword(len1 - j, len1 + len2 - j, strict=False)
|
| 198 |
+
== r2.subword(j - len1, j, strict=False)):
|
| 199 |
+
a = r1.subword(0, len1-j, strict=False)
|
| 200 |
+
a = a*r2.subword(0, j-len1, strict=False)
|
| 201 |
+
b = r2.subword(j-len1, j, strict=False)
|
| 202 |
+
c = r2.subword(j, len2, strict=False)
|
| 203 |
+
c = c*r1.subword(len1 + len2 - j, len1, strict=False)
|
| 204 |
+
result.append(a*b*c)
|
| 205 |
+
return result
|
| 206 |
+
|
| 207 |
+
def _process_overlap(w, r1, r2, check):
|
| 208 |
+
s = w.eliminate_word(r1, self.rules[r1])
|
| 209 |
+
s = self.reduce(s)
|
| 210 |
+
t = w.eliminate_word(r2, self.rules[r2])
|
| 211 |
+
t = self.reduce(t)
|
| 212 |
+
if s != t:
|
| 213 |
+
if check:
|
| 214 |
+
# system not confluent
|
| 215 |
+
return [0]
|
| 216 |
+
try:
|
| 217 |
+
new_keys = self.add_rule(t, s, check)
|
| 218 |
+
return new_keys
|
| 219 |
+
except RuntimeError:
|
| 220 |
+
return False
|
| 221 |
+
return
|
| 222 |
+
|
| 223 |
+
added = 0
|
| 224 |
+
i = 0
|
| 225 |
+
while i < len(lhs):
|
| 226 |
+
r1 = lhs[i]
|
| 227 |
+
i += 1
|
| 228 |
+
# j could be i+1 to not
|
| 229 |
+
# check each pair twice but lhs
|
| 230 |
+
# is extended in the loop and the new
|
| 231 |
+
# elements have to be checked with the
|
| 232 |
+
# preceding ones. there is probably a better way
|
| 233 |
+
# to handle this
|
| 234 |
+
j = 0
|
| 235 |
+
while j < len(lhs):
|
| 236 |
+
r2 = lhs[j]
|
| 237 |
+
j += 1
|
| 238 |
+
if r1 == r2:
|
| 239 |
+
continue
|
| 240 |
+
overlaps = _overlaps(r1, r2)
|
| 241 |
+
overlaps.extend(_overlaps(r1**-1, r2))
|
| 242 |
+
if not overlaps:
|
| 243 |
+
continue
|
| 244 |
+
for w in overlaps:
|
| 245 |
+
new_keys = _process_overlap(w, r1, r2, check)
|
| 246 |
+
if new_keys:
|
| 247 |
+
if check:
|
| 248 |
+
return False
|
| 249 |
+
lhs.extend(new_keys)
|
| 250 |
+
added += len(new_keys)
|
| 251 |
+
elif new_keys == False:
|
| 252 |
+
# too many rules were added so the process
|
| 253 |
+
# couldn't complete
|
| 254 |
+
return self._is_confluent
|
| 255 |
+
|
| 256 |
+
if added > self.tidyint and not check:
|
| 257 |
+
# tidy up
|
| 258 |
+
r, a = self._remove_redundancies(changes=True)
|
| 259 |
+
added = 0
|
| 260 |
+
if r:
|
| 261 |
+
# reset i since some elements were removed
|
| 262 |
+
i = min(lhs.index(s) for s in r)
|
| 263 |
+
lhs = [l for l in lhs if l not in r]
|
| 264 |
+
lhs.extend(a)
|
| 265 |
+
if r1 in r:
|
| 266 |
+
# r1 was removed as redundant
|
| 267 |
+
break
|
| 268 |
+
|
| 269 |
+
self._is_confluent = True
|
| 270 |
+
if not check:
|
| 271 |
+
self._remove_redundancies()
|
| 272 |
+
return True
|
| 273 |
+
|
| 274 |
+
def _check_confluence(self):
|
| 275 |
+
return self.make_confluent(check=True)
|
| 276 |
+
|
| 277 |
+
def reduce(self, word, exclude=None):
|
| 278 |
+
'''
|
| 279 |
+
Apply reduction rules to `word` excluding the reduction rule
|
| 280 |
+
for the lhs equal to `exclude`
|
| 281 |
+
|
| 282 |
+
'''
|
| 283 |
+
rules = {r: self.rules[r] for r in self.rules if r != exclude}
|
| 284 |
+
# the following is essentially `eliminate_words()` code from the
|
| 285 |
+
# `FreeGroupElement` class, the only difference being the first
|
| 286 |
+
# "if" statement
|
| 287 |
+
again = True
|
| 288 |
+
new = word
|
| 289 |
+
while again:
|
| 290 |
+
again = False
|
| 291 |
+
for r in rules:
|
| 292 |
+
prev = new
|
| 293 |
+
if rules[r]**-1 > r**-1:
|
| 294 |
+
new = new.eliminate_word(r, rules[r], _all=True, inverse=False)
|
| 295 |
+
else:
|
| 296 |
+
new = new.eliminate_word(r, rules[r], _all=True)
|
| 297 |
+
if new != prev:
|
| 298 |
+
again = True
|
| 299 |
+
return new
|
| 300 |
+
|
| 301 |
+
def _compute_inverse_rules(self, rules):
|
| 302 |
+
'''
|
| 303 |
+
Compute the inverse rules for a given set of rules.
|
| 304 |
+
The inverse rules are used in the automaton for word reduction.
|
| 305 |
+
|
| 306 |
+
Arguments:
|
| 307 |
+
rules (dictionary): Rules for which the inverse rules are to computed.
|
| 308 |
+
|
| 309 |
+
Returns:
|
| 310 |
+
Dictionary of inverse_rules.
|
| 311 |
+
|
| 312 |
+
'''
|
| 313 |
+
inverse_rules = {}
|
| 314 |
+
for r in rules:
|
| 315 |
+
rule_key_inverse = r**-1
|
| 316 |
+
rule_value_inverse = (rules[r])**-1
|
| 317 |
+
if (rule_value_inverse < rule_key_inverse):
|
| 318 |
+
inverse_rules[rule_key_inverse] = rule_value_inverse
|
| 319 |
+
else:
|
| 320 |
+
inverse_rules[rule_value_inverse] = rule_key_inverse
|
| 321 |
+
return inverse_rules
|
| 322 |
+
|
| 323 |
+
def construct_automaton(self):
|
| 324 |
+
'''
|
| 325 |
+
Construct the automaton based on the set of reduction rules of the system.
|
| 326 |
+
|
| 327 |
+
Automata Design:
|
| 328 |
+
The accept states of the automaton are the proper prefixes of the left hand side of the rules.
|
| 329 |
+
The complete left hand side of the rules are the dead states of the automaton.
|
| 330 |
+
|
| 331 |
+
'''
|
| 332 |
+
self._add_to_automaton(self.rules)
|
| 333 |
+
|
| 334 |
+
def _add_to_automaton(self, rules):
|
| 335 |
+
'''
|
| 336 |
+
Add new states and transitions to the automaton.
|
| 337 |
+
|
| 338 |
+
Summary:
|
| 339 |
+
States corresponding to the new rules added to the system are computed and added to the automaton.
|
| 340 |
+
Transitions in the previously added states are also modified if necessary.
|
| 341 |
+
|
| 342 |
+
Arguments:
|
| 343 |
+
rules (dictionary) -- Dictionary of the newly added rules.
|
| 344 |
+
|
| 345 |
+
'''
|
| 346 |
+
# Automaton variables
|
| 347 |
+
automaton_alphabet = []
|
| 348 |
+
proper_prefixes = {}
|
| 349 |
+
|
| 350 |
+
# compute the inverses of all the new rules added
|
| 351 |
+
all_rules = rules
|
| 352 |
+
inverse_rules = self._compute_inverse_rules(all_rules)
|
| 353 |
+
all_rules.update(inverse_rules)
|
| 354 |
+
|
| 355 |
+
# Keep track of the accept_states.
|
| 356 |
+
accept_states = []
|
| 357 |
+
|
| 358 |
+
for rule in all_rules:
|
| 359 |
+
# The symbols present in the new rules are the symbols to be verified at each state.
|
| 360 |
+
# computes the automaton_alphabet, as the transitions solely depend upon the new states.
|
| 361 |
+
automaton_alphabet += rule.letter_form_elm
|
| 362 |
+
# Compute the proper prefixes for every rule.
|
| 363 |
+
proper_prefixes[rule] = []
|
| 364 |
+
letter_word_array = list(rule.letter_form_elm)
|
| 365 |
+
len_letter_word_array = len(letter_word_array)
|
| 366 |
+
for i in range (1, len_letter_word_array):
|
| 367 |
+
letter_word_array[i] = letter_word_array[i-1]*letter_word_array[i]
|
| 368 |
+
# Add accept states.
|
| 369 |
+
elem = letter_word_array[i-1]
|
| 370 |
+
if elem not in self.reduction_automaton.states:
|
| 371 |
+
self.reduction_automaton.add_state(elem, state_type='a')
|
| 372 |
+
accept_states.append(elem)
|
| 373 |
+
proper_prefixes[rule] = letter_word_array
|
| 374 |
+
# Check for overlaps between dead and accept states.
|
| 375 |
+
if rule in accept_states:
|
| 376 |
+
self.reduction_automaton.states[rule].state_type = 'd'
|
| 377 |
+
self.reduction_automaton.states[rule].rh_rule = all_rules[rule]
|
| 378 |
+
accept_states.remove(rule)
|
| 379 |
+
# Add dead states
|
| 380 |
+
if rule not in self.reduction_automaton.states:
|
| 381 |
+
self.reduction_automaton.add_state(rule, state_type='d', rh_rule=all_rules[rule])
|
| 382 |
+
|
| 383 |
+
automaton_alphabet = set(automaton_alphabet)
|
| 384 |
+
|
| 385 |
+
# Add new transitions for every state.
|
| 386 |
+
for state in self.reduction_automaton.states:
|
| 387 |
+
current_state_name = state
|
| 388 |
+
current_state_type = self.reduction_automaton.states[state].state_type
|
| 389 |
+
# Transitions will be modified only when suffixes of the current_state
|
| 390 |
+
# belongs to the proper_prefixes of the new rules.
|
| 391 |
+
# The rest are ignored if they cannot lead to a dead state after a finite number of transisitons.
|
| 392 |
+
if current_state_type == 's':
|
| 393 |
+
for letter in automaton_alphabet:
|
| 394 |
+
if letter in self.reduction_automaton.states:
|
| 395 |
+
self.reduction_automaton.states[state].add_transition(letter, letter)
|
| 396 |
+
else:
|
| 397 |
+
self.reduction_automaton.states[state].add_transition(letter, current_state_name)
|
| 398 |
+
elif current_state_type == 'a':
|
| 399 |
+
# Check if the transition to any new state in possible.
|
| 400 |
+
for letter in automaton_alphabet:
|
| 401 |
+
_next = current_state_name*letter
|
| 402 |
+
while len(_next) and _next not in self.reduction_automaton.states:
|
| 403 |
+
_next = _next.subword(1, len(_next))
|
| 404 |
+
if not len(_next):
|
| 405 |
+
_next = 'start'
|
| 406 |
+
self.reduction_automaton.states[state].add_transition(letter, _next)
|
| 407 |
+
|
| 408 |
+
# Add transitions for new states. All symbols used in the automaton are considered here.
|
| 409 |
+
# Ignore this if `reduction_automaton.automaton_alphabet` = `automaton_alphabet`.
|
| 410 |
+
if len(self.reduction_automaton.automaton_alphabet) != len(automaton_alphabet):
|
| 411 |
+
for state in accept_states:
|
| 412 |
+
current_state_name = state
|
| 413 |
+
for letter in self.reduction_automaton.automaton_alphabet:
|
| 414 |
+
_next = current_state_name*letter
|
| 415 |
+
while len(_next) and _next not in self.reduction_automaton.states:
|
| 416 |
+
_next = _next.subword(1, len(_next))
|
| 417 |
+
if not len(_next):
|
| 418 |
+
_next = 'start'
|
| 419 |
+
self.reduction_automaton.states[state].add_transition(letter, _next)
|
| 420 |
+
|
| 421 |
+
def reduce_using_automaton(self, word):
|
| 422 |
+
'''
|
| 423 |
+
Reduce a word using an automaton.
|
| 424 |
+
|
| 425 |
+
Summary:
|
| 426 |
+
All the symbols of the word are stored in an array and are given as the input to the automaton.
|
| 427 |
+
If the automaton reaches a dead state that subword is replaced and the automaton is run from the beginning.
|
| 428 |
+
The complete word has to be replaced when the word is read and the automaton reaches a dead state.
|
| 429 |
+
So, this process is repeated until the word is read completely and the automaton reaches the accept state.
|
| 430 |
+
|
| 431 |
+
Arguments:
|
| 432 |
+
word (instance of FreeGroupElement) -- Word that needs to be reduced.
|
| 433 |
+
|
| 434 |
+
'''
|
| 435 |
+
# Modify the automaton if new rules are found.
|
| 436 |
+
if self._new_rules:
|
| 437 |
+
self._add_to_automaton(self._new_rules)
|
| 438 |
+
self._new_rules = {}
|
| 439 |
+
|
| 440 |
+
flag = 1
|
| 441 |
+
while flag:
|
| 442 |
+
flag = 0
|
| 443 |
+
current_state = self.reduction_automaton.states['start']
|
| 444 |
+
for i, s in enumerate(word.letter_form_elm):
|
| 445 |
+
next_state_name = current_state.transitions[s]
|
| 446 |
+
next_state = self.reduction_automaton.states[next_state_name]
|
| 447 |
+
if next_state.state_type == 'd':
|
| 448 |
+
subst = next_state.rh_rule
|
| 449 |
+
word = word.substituted_word(i - len(next_state_name) + 1, i+1, subst)
|
| 450 |
+
flag = 1
|
| 451 |
+
break
|
| 452 |
+
current_state = next_state
|
| 453 |
+
return word
|
mgm/lib/python3.10/site-packages/sympy/combinatorics/rewritingsystem_fsm.py
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
class State:
|
| 2 |
+
'''
|
| 3 |
+
A representation of a state managed by a ``StateMachine``.
|
| 4 |
+
|
| 5 |
+
Attributes:
|
| 6 |
+
name (instance of FreeGroupElement or string) -- State name which is also assigned to the Machine.
|
| 7 |
+
transisitons (OrderedDict) -- Represents all the transitions of the state object.
|
| 8 |
+
state_type (string) -- Denotes the type (accept/start/dead) of the state.
|
| 9 |
+
rh_rule (instance of FreeGroupElement) -- right hand rule for dead state.
|
| 10 |
+
state_machine (instance of StateMachine object) -- The finite state machine that the state belongs to.
|
| 11 |
+
'''
|
| 12 |
+
|
| 13 |
+
def __init__(self, name, state_machine, state_type=None, rh_rule=None):
|
| 14 |
+
self.name = name
|
| 15 |
+
self.transitions = {}
|
| 16 |
+
self.state_machine = state_machine
|
| 17 |
+
self.state_type = state_type[0]
|
| 18 |
+
self.rh_rule = rh_rule
|
| 19 |
+
|
| 20 |
+
def add_transition(self, letter, state):
|
| 21 |
+
'''
|
| 22 |
+
Add a transition from the current state to a new state.
|
| 23 |
+
|
| 24 |
+
Keyword Arguments:
|
| 25 |
+
letter -- The alphabet element the current state reads to make the state transition.
|
| 26 |
+
state -- This will be an instance of the State object which represents a new state after in the transition after the alphabet is read.
|
| 27 |
+
|
| 28 |
+
'''
|
| 29 |
+
self.transitions[letter] = state
|
| 30 |
+
|
| 31 |
+
class StateMachine:
|
| 32 |
+
'''
|
| 33 |
+
Representation of a finite state machine the manages the states and the transitions of the automaton.
|
| 34 |
+
|
| 35 |
+
Attributes:
|
| 36 |
+
states (dictionary) -- Collection of all registered `State` objects.
|
| 37 |
+
name (str) -- Name of the state machine.
|
| 38 |
+
'''
|
| 39 |
+
|
| 40 |
+
def __init__(self, name, automaton_alphabet):
|
| 41 |
+
self.name = name
|
| 42 |
+
self.automaton_alphabet = automaton_alphabet
|
| 43 |
+
self.states = {} # Contains all the states in the machine.
|
| 44 |
+
self.add_state('start', state_type='s')
|
| 45 |
+
|
| 46 |
+
def add_state(self, state_name, state_type=None, rh_rule=None):
|
| 47 |
+
'''
|
| 48 |
+
Instantiate a state object and stores it in the 'states' dictionary.
|
| 49 |
+
|
| 50 |
+
Arguments:
|
| 51 |
+
state_name (instance of FreeGroupElement or string) -- name of the new states.
|
| 52 |
+
state_type (string) -- Denotes the type (accept/start/dead) of the state added.
|
| 53 |
+
rh_rule (instance of FreeGroupElement) -- right hand rule for dead state.
|
| 54 |
+
|
| 55 |
+
'''
|
| 56 |
+
new_state = State(state_name, self, state_type, rh_rule)
|
| 57 |
+
self.states[state_name] = new_state
|
| 58 |
+
|
| 59 |
+
def __repr__(self):
|
| 60 |
+
return "%s" % (self.name)
|
mgm/lib/python3.10/site-packages/sympy/combinatorics/schur_number.py
ADDED
|
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
The Schur number S(k) is the largest integer n for which the interval [1,n]
|
| 3 |
+
can be partitioned into k sum-free sets.(https://mathworld.wolfram.com/SchurNumber.html)
|
| 4 |
+
"""
|
| 5 |
+
import math
|
| 6 |
+
from sympy.core import S
|
| 7 |
+
from sympy.core.basic import Basic
|
| 8 |
+
from sympy.core.function import Function
|
| 9 |
+
from sympy.core.numbers import Integer
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class SchurNumber(Function):
|
| 13 |
+
r"""
|
| 14 |
+
This function creates a SchurNumber object
|
| 15 |
+
which is evaluated for `k \le 5` otherwise only
|
| 16 |
+
the lower bound information can be retrieved.
|
| 17 |
+
|
| 18 |
+
Examples
|
| 19 |
+
========
|
| 20 |
+
|
| 21 |
+
>>> from sympy.combinatorics.schur_number import SchurNumber
|
| 22 |
+
|
| 23 |
+
Since S(3) = 13, hence the output is a number
|
| 24 |
+
>>> SchurNumber(3)
|
| 25 |
+
13
|
| 26 |
+
|
| 27 |
+
We do not know the Schur number for values greater than 5, hence
|
| 28 |
+
only the object is returned
|
| 29 |
+
>>> SchurNumber(6)
|
| 30 |
+
SchurNumber(6)
|
| 31 |
+
|
| 32 |
+
Now, the lower bound information can be retrieved using lower_bound()
|
| 33 |
+
method
|
| 34 |
+
>>> SchurNumber(6).lower_bound()
|
| 35 |
+
536
|
| 36 |
+
|
| 37 |
+
"""
|
| 38 |
+
|
| 39 |
+
@classmethod
|
| 40 |
+
def eval(cls, k):
|
| 41 |
+
if k.is_Number:
|
| 42 |
+
if k is S.Infinity:
|
| 43 |
+
return S.Infinity
|
| 44 |
+
if k.is_zero:
|
| 45 |
+
return S.Zero
|
| 46 |
+
if not k.is_integer or k.is_negative:
|
| 47 |
+
raise ValueError("k should be a positive integer")
|
| 48 |
+
first_known_schur_numbers = {1: 1, 2: 4, 3: 13, 4: 44, 5: 160}
|
| 49 |
+
if k <= 5:
|
| 50 |
+
return Integer(first_known_schur_numbers[k])
|
| 51 |
+
|
| 52 |
+
def lower_bound(self):
|
| 53 |
+
f_ = self.args[0]
|
| 54 |
+
# Improved lower bounds known for S(6) and S(7)
|
| 55 |
+
if f_ == 6:
|
| 56 |
+
return Integer(536)
|
| 57 |
+
if f_ == 7:
|
| 58 |
+
return Integer(1680)
|
| 59 |
+
# For other cases, use general expression
|
| 60 |
+
if f_.is_Integer:
|
| 61 |
+
return 3*self.func(f_ - 1).lower_bound() - 1
|
| 62 |
+
return (3**f_ - 1)/2
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def _schur_subsets_number(n):
|
| 66 |
+
|
| 67 |
+
if n is S.Infinity:
|
| 68 |
+
raise ValueError("Input must be finite")
|
| 69 |
+
if n <= 0:
|
| 70 |
+
raise ValueError("n must be a non-zero positive integer.")
|
| 71 |
+
elif n <= 3:
|
| 72 |
+
min_k = 1
|
| 73 |
+
else:
|
| 74 |
+
min_k = math.ceil(math.log(2*n + 1, 3))
|
| 75 |
+
|
| 76 |
+
return Integer(min_k)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def schur_partition(n):
|
| 80 |
+
"""
|
| 81 |
+
|
| 82 |
+
This function returns the partition in the minimum number of sum-free subsets
|
| 83 |
+
according to the lower bound given by the Schur Number.
|
| 84 |
+
|
| 85 |
+
Parameters
|
| 86 |
+
==========
|
| 87 |
+
|
| 88 |
+
n: a number
|
| 89 |
+
n is the upper limit of the range [1, n] for which we need to find and
|
| 90 |
+
return the minimum number of free subsets according to the lower bound
|
| 91 |
+
of schur number
|
| 92 |
+
|
| 93 |
+
Returns
|
| 94 |
+
=======
|
| 95 |
+
|
| 96 |
+
List of lists
|
| 97 |
+
List of the minimum number of sum-free subsets
|
| 98 |
+
|
| 99 |
+
Notes
|
| 100 |
+
=====
|
| 101 |
+
|
| 102 |
+
It is possible for some n to make the partition into less
|
| 103 |
+
subsets since the only known Schur numbers are:
|
| 104 |
+
S(1) = 1, S(2) = 4, S(3) = 13, S(4) = 44.
|
| 105 |
+
e.g for n = 44 the lower bound from the function above is 5 subsets but it has been proven
|
| 106 |
+
that can be done with 4 subsets.
|
| 107 |
+
|
| 108 |
+
Examples
|
| 109 |
+
========
|
| 110 |
+
|
| 111 |
+
For n = 1, 2, 3 the answer is the set itself
|
| 112 |
+
|
| 113 |
+
>>> from sympy.combinatorics.schur_number import schur_partition
|
| 114 |
+
>>> schur_partition(2)
|
| 115 |
+
[[1, 2]]
|
| 116 |
+
|
| 117 |
+
For n > 3, the answer is the minimum number of sum-free subsets:
|
| 118 |
+
|
| 119 |
+
>>> schur_partition(5)
|
| 120 |
+
[[3, 2], [5], [1, 4]]
|
| 121 |
+
|
| 122 |
+
>>> schur_partition(8)
|
| 123 |
+
[[3, 2], [6, 5, 8], [1, 4, 7]]
|
| 124 |
+
"""
|
| 125 |
+
|
| 126 |
+
if isinstance(n, Basic) and not n.is_Number:
|
| 127 |
+
raise ValueError("Input value must be a number")
|
| 128 |
+
|
| 129 |
+
number_of_subsets = _schur_subsets_number(n)
|
| 130 |
+
if n == 1:
|
| 131 |
+
sum_free_subsets = [[1]]
|
| 132 |
+
elif n == 2:
|
| 133 |
+
sum_free_subsets = [[1, 2]]
|
| 134 |
+
elif n == 3:
|
| 135 |
+
sum_free_subsets = [[1, 2, 3]]
|
| 136 |
+
else:
|
| 137 |
+
sum_free_subsets = [[1, 4], [2, 3]]
|
| 138 |
+
|
| 139 |
+
while len(sum_free_subsets) < number_of_subsets:
|
| 140 |
+
sum_free_subsets = _generate_next_list(sum_free_subsets, n)
|
| 141 |
+
missed_elements = [3*k + 1 for k in range(len(sum_free_subsets), (n-1)//3 + 1)]
|
| 142 |
+
sum_free_subsets[-1] += missed_elements
|
| 143 |
+
|
| 144 |
+
return sum_free_subsets
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def _generate_next_list(current_list, n):
|
| 148 |
+
new_list = []
|
| 149 |
+
|
| 150 |
+
for item in current_list:
|
| 151 |
+
temp_1 = [number*3 for number in item if number*3 <= n]
|
| 152 |
+
temp_2 = [number*3 - 1 for number in item if number*3 - 1 <= n]
|
| 153 |
+
new_item = temp_1 + temp_2
|
| 154 |
+
new_list.append(new_item)
|
| 155 |
+
|
| 156 |
+
last_list = [3*k + 1 for k in range(len(current_list)+1) if 3*k + 1 <= n]
|
| 157 |
+
new_list.append(last_list)
|
| 158 |
+
current_list = new_list
|
| 159 |
+
|
| 160 |
+
return current_list
|
mgm/lib/python3.10/site-packages/sympy/combinatorics/testutil.py
ADDED
|
@@ -0,0 +1,357 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from sympy.combinatorics import Permutation
|
| 2 |
+
from sympy.combinatorics.util import _distribute_gens_by_base
|
| 3 |
+
|
| 4 |
+
rmul = Permutation.rmul
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def _cmp_perm_lists(first, second):
|
| 8 |
+
"""
|
| 9 |
+
Compare two lists of permutations as sets.
|
| 10 |
+
|
| 11 |
+
Explanation
|
| 12 |
+
===========
|
| 13 |
+
|
| 14 |
+
This is used for testing purposes. Since the array form of a
|
| 15 |
+
permutation is currently a list, Permutation is not hashable
|
| 16 |
+
and cannot be put into a set.
|
| 17 |
+
|
| 18 |
+
Examples
|
| 19 |
+
========
|
| 20 |
+
|
| 21 |
+
>>> from sympy.combinatorics.permutations import Permutation
|
| 22 |
+
>>> from sympy.combinatorics.testutil import _cmp_perm_lists
|
| 23 |
+
>>> a = Permutation([0, 2, 3, 4, 1])
|
| 24 |
+
>>> b = Permutation([1, 2, 0, 4, 3])
|
| 25 |
+
>>> c = Permutation([3, 4, 0, 1, 2])
|
| 26 |
+
>>> ls1 = [a, b, c]
|
| 27 |
+
>>> ls2 = [b, c, a]
|
| 28 |
+
>>> _cmp_perm_lists(ls1, ls2)
|
| 29 |
+
True
|
| 30 |
+
|
| 31 |
+
"""
|
| 32 |
+
return {tuple(a) for a in first} == \
|
| 33 |
+
{tuple(a) for a in second}
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def _naive_list_centralizer(self, other, af=False):
|
| 37 |
+
from sympy.combinatorics.perm_groups import PermutationGroup
|
| 38 |
+
"""
|
| 39 |
+
Return a list of elements for the centralizer of a subgroup/set/element.
|
| 40 |
+
|
| 41 |
+
Explanation
|
| 42 |
+
===========
|
| 43 |
+
|
| 44 |
+
This is a brute force implementation that goes over all elements of the
|
| 45 |
+
group and checks for membership in the centralizer. It is used to
|
| 46 |
+
test ``.centralizer()`` from ``sympy.combinatorics.perm_groups``.
|
| 47 |
+
|
| 48 |
+
Examples
|
| 49 |
+
========
|
| 50 |
+
|
| 51 |
+
>>> from sympy.combinatorics.testutil import _naive_list_centralizer
|
| 52 |
+
>>> from sympy.combinatorics.named_groups import DihedralGroup
|
| 53 |
+
>>> D = DihedralGroup(4)
|
| 54 |
+
>>> _naive_list_centralizer(D, D)
|
| 55 |
+
[Permutation([0, 1, 2, 3]), Permutation([2, 3, 0, 1])]
|
| 56 |
+
|
| 57 |
+
See Also
|
| 58 |
+
========
|
| 59 |
+
|
| 60 |
+
sympy.combinatorics.perm_groups.centralizer
|
| 61 |
+
|
| 62 |
+
"""
|
| 63 |
+
from sympy.combinatorics.permutations import _af_commutes_with
|
| 64 |
+
if hasattr(other, 'generators'):
|
| 65 |
+
elements = list(self.generate_dimino(af=True))
|
| 66 |
+
gens = [x._array_form for x in other.generators]
|
| 67 |
+
commutes_with_gens = lambda x: all(_af_commutes_with(x, gen) for gen in gens)
|
| 68 |
+
centralizer_list = []
|
| 69 |
+
if not af:
|
| 70 |
+
for element in elements:
|
| 71 |
+
if commutes_with_gens(element):
|
| 72 |
+
centralizer_list.append(Permutation._af_new(element))
|
| 73 |
+
else:
|
| 74 |
+
for element in elements:
|
| 75 |
+
if commutes_with_gens(element):
|
| 76 |
+
centralizer_list.append(element)
|
| 77 |
+
return centralizer_list
|
| 78 |
+
elif hasattr(other, 'getitem'):
|
| 79 |
+
return _naive_list_centralizer(self, PermutationGroup(other), af)
|
| 80 |
+
elif hasattr(other, 'array_form'):
|
| 81 |
+
return _naive_list_centralizer(self, PermutationGroup([other]), af)
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def _verify_bsgs(group, base, gens):
|
| 85 |
+
"""
|
| 86 |
+
Verify the correctness of a base and strong generating set.
|
| 87 |
+
|
| 88 |
+
Explanation
|
| 89 |
+
===========
|
| 90 |
+
|
| 91 |
+
This is a naive implementation using the definition of a base and a strong
|
| 92 |
+
generating set relative to it. There are other procedures for
|
| 93 |
+
verifying a base and strong generating set, but this one will
|
| 94 |
+
serve for more robust testing.
|
| 95 |
+
|
| 96 |
+
Examples
|
| 97 |
+
========
|
| 98 |
+
|
| 99 |
+
>>> from sympy.combinatorics.named_groups import AlternatingGroup
|
| 100 |
+
>>> from sympy.combinatorics.testutil import _verify_bsgs
|
| 101 |
+
>>> A = AlternatingGroup(4)
|
| 102 |
+
>>> A.schreier_sims()
|
| 103 |
+
>>> _verify_bsgs(A, A.base, A.strong_gens)
|
| 104 |
+
True
|
| 105 |
+
|
| 106 |
+
See Also
|
| 107 |
+
========
|
| 108 |
+
|
| 109 |
+
sympy.combinatorics.perm_groups.PermutationGroup.schreier_sims
|
| 110 |
+
|
| 111 |
+
"""
|
| 112 |
+
from sympy.combinatorics.perm_groups import PermutationGroup
|
| 113 |
+
strong_gens_distr = _distribute_gens_by_base(base, gens)
|
| 114 |
+
current_stabilizer = group
|
| 115 |
+
for i in range(len(base)):
|
| 116 |
+
candidate = PermutationGroup(strong_gens_distr[i])
|
| 117 |
+
if current_stabilizer.order() != candidate.order():
|
| 118 |
+
return False
|
| 119 |
+
current_stabilizer = current_stabilizer.stabilizer(base[i])
|
| 120 |
+
if current_stabilizer.order() != 1:
|
| 121 |
+
return False
|
| 122 |
+
return True
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def _verify_centralizer(group, arg, centr=None):
|
| 126 |
+
"""
|
| 127 |
+
Verify the centralizer of a group/set/element inside another group.
|
| 128 |
+
|
| 129 |
+
This is used for testing ``.centralizer()`` from
|
| 130 |
+
``sympy.combinatorics.perm_groups``
|
| 131 |
+
|
| 132 |
+
Examples
|
| 133 |
+
========
|
| 134 |
+
|
| 135 |
+
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
|
| 136 |
+
... AlternatingGroup)
|
| 137 |
+
>>> from sympy.combinatorics.perm_groups import PermutationGroup
|
| 138 |
+
>>> from sympy.combinatorics.permutations import Permutation
|
| 139 |
+
>>> from sympy.combinatorics.testutil import _verify_centralizer
|
| 140 |
+
>>> S = SymmetricGroup(5)
|
| 141 |
+
>>> A = AlternatingGroup(5)
|
| 142 |
+
>>> centr = PermutationGroup([Permutation([0, 1, 2, 3, 4])])
|
| 143 |
+
>>> _verify_centralizer(S, A, centr)
|
| 144 |
+
True
|
| 145 |
+
|
| 146 |
+
See Also
|
| 147 |
+
========
|
| 148 |
+
|
| 149 |
+
_naive_list_centralizer,
|
| 150 |
+
sympy.combinatorics.perm_groups.PermutationGroup.centralizer,
|
| 151 |
+
_cmp_perm_lists
|
| 152 |
+
|
| 153 |
+
"""
|
| 154 |
+
if centr is None:
|
| 155 |
+
centr = group.centralizer(arg)
|
| 156 |
+
centr_list = list(centr.generate_dimino(af=True))
|
| 157 |
+
centr_list_naive = _naive_list_centralizer(group, arg, af=True)
|
| 158 |
+
return _cmp_perm_lists(centr_list, centr_list_naive)
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def _verify_normal_closure(group, arg, closure=None):
|
| 162 |
+
from sympy.combinatorics.perm_groups import PermutationGroup
|
| 163 |
+
"""
|
| 164 |
+
Verify the normal closure of a subgroup/subset/element in a group.
|
| 165 |
+
|
| 166 |
+
This is used to test
|
| 167 |
+
sympy.combinatorics.perm_groups.PermutationGroup.normal_closure
|
| 168 |
+
|
| 169 |
+
Examples
|
| 170 |
+
========
|
| 171 |
+
|
| 172 |
+
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
|
| 173 |
+
... AlternatingGroup)
|
| 174 |
+
>>> from sympy.combinatorics.testutil import _verify_normal_closure
|
| 175 |
+
>>> S = SymmetricGroup(3)
|
| 176 |
+
>>> A = AlternatingGroup(3)
|
| 177 |
+
>>> _verify_normal_closure(S, A, closure=A)
|
| 178 |
+
True
|
| 179 |
+
|
| 180 |
+
See Also
|
| 181 |
+
========
|
| 182 |
+
|
| 183 |
+
sympy.combinatorics.perm_groups.PermutationGroup.normal_closure
|
| 184 |
+
|
| 185 |
+
"""
|
| 186 |
+
if closure is None:
|
| 187 |
+
closure = group.normal_closure(arg)
|
| 188 |
+
conjugates = set()
|
| 189 |
+
if hasattr(arg, 'generators'):
|
| 190 |
+
subgr_gens = arg.generators
|
| 191 |
+
elif hasattr(arg, '__getitem__'):
|
| 192 |
+
subgr_gens = arg
|
| 193 |
+
elif hasattr(arg, 'array_form'):
|
| 194 |
+
subgr_gens = [arg]
|
| 195 |
+
for el in group.generate_dimino():
|
| 196 |
+
conjugates.update(gen ^ el for gen in subgr_gens)
|
| 197 |
+
naive_closure = PermutationGroup(list(conjugates))
|
| 198 |
+
return closure.is_subgroup(naive_closure)
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
def canonicalize_naive(g, dummies, sym, *v):
|
| 202 |
+
"""
|
| 203 |
+
Canonicalize tensor formed by tensors of the different types.
|
| 204 |
+
|
| 205 |
+
Explanation
|
| 206 |
+
===========
|
| 207 |
+
|
| 208 |
+
sym_i symmetry under exchange of two component tensors of type `i`
|
| 209 |
+
None no symmetry
|
| 210 |
+
0 commuting
|
| 211 |
+
1 anticommuting
|
| 212 |
+
|
| 213 |
+
Parameters
|
| 214 |
+
==========
|
| 215 |
+
|
| 216 |
+
g : Permutation representing the tensor.
|
| 217 |
+
dummies : List of dummy indices.
|
| 218 |
+
msym : Symmetry of the metric.
|
| 219 |
+
v : A list of (base_i, gens_i, n_i, sym_i) for tensors of type `i`.
|
| 220 |
+
base_i, gens_i BSGS for tensors of this type
|
| 221 |
+
n_i number of tensors of type `i`
|
| 222 |
+
|
| 223 |
+
Returns
|
| 224 |
+
=======
|
| 225 |
+
|
| 226 |
+
Returns 0 if the tensor is zero, else returns the array form of
|
| 227 |
+
the permutation representing the canonical form of the tensor.
|
| 228 |
+
|
| 229 |
+
Examples
|
| 230 |
+
========
|
| 231 |
+
|
| 232 |
+
>>> from sympy.combinatorics.testutil import canonicalize_naive
|
| 233 |
+
>>> from sympy.combinatorics.tensor_can import get_symmetric_group_sgs
|
| 234 |
+
>>> from sympy.combinatorics import Permutation
|
| 235 |
+
>>> g = Permutation([1, 3, 2, 0, 4, 5])
|
| 236 |
+
>>> base2, gens2 = get_symmetric_group_sgs(2)
|
| 237 |
+
>>> canonicalize_naive(g, [2, 3], 0, (base2, gens2, 2, 0))
|
| 238 |
+
[0, 2, 1, 3, 4, 5]
|
| 239 |
+
"""
|
| 240 |
+
from sympy.combinatorics.perm_groups import PermutationGroup
|
| 241 |
+
from sympy.combinatorics.tensor_can import gens_products, dummy_sgs
|
| 242 |
+
from sympy.combinatorics.permutations import _af_rmul
|
| 243 |
+
v1 = []
|
| 244 |
+
for i in range(len(v)):
|
| 245 |
+
base_i, gens_i, n_i, sym_i = v[i]
|
| 246 |
+
v1.append((base_i, gens_i, [[]]*n_i, sym_i))
|
| 247 |
+
size, sbase, sgens = gens_products(*v1)
|
| 248 |
+
dgens = dummy_sgs(dummies, sym, size-2)
|
| 249 |
+
if isinstance(sym, int):
|
| 250 |
+
num_types = 1
|
| 251 |
+
dummies = [dummies]
|
| 252 |
+
sym = [sym]
|
| 253 |
+
else:
|
| 254 |
+
num_types = len(sym)
|
| 255 |
+
dgens = []
|
| 256 |
+
for i in range(num_types):
|
| 257 |
+
dgens.extend(dummy_sgs(dummies[i], sym[i], size - 2))
|
| 258 |
+
S = PermutationGroup(sgens)
|
| 259 |
+
D = PermutationGroup([Permutation(x) for x in dgens])
|
| 260 |
+
dlist = list(D.generate(af=True))
|
| 261 |
+
g = g.array_form
|
| 262 |
+
st = set()
|
| 263 |
+
for s in S.generate(af=True):
|
| 264 |
+
h = _af_rmul(g, s)
|
| 265 |
+
for d in dlist:
|
| 266 |
+
q = tuple(_af_rmul(d, h))
|
| 267 |
+
st.add(q)
|
| 268 |
+
a = list(st)
|
| 269 |
+
a.sort()
|
| 270 |
+
prev = (0,)*size
|
| 271 |
+
for h in a:
|
| 272 |
+
if h[:-2] == prev[:-2]:
|
| 273 |
+
if h[-1] != prev[-1]:
|
| 274 |
+
return 0
|
| 275 |
+
prev = h
|
| 276 |
+
return list(a[0])
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
def graph_certificate(gr):
|
| 280 |
+
"""
|
| 281 |
+
Return a certificate for the graph
|
| 282 |
+
|
| 283 |
+
Parameters
|
| 284 |
+
==========
|
| 285 |
+
|
| 286 |
+
gr : adjacency list
|
| 287 |
+
|
| 288 |
+
Explanation
|
| 289 |
+
===========
|
| 290 |
+
|
| 291 |
+
The graph is assumed to be unoriented and without
|
| 292 |
+
external lines.
|
| 293 |
+
|
| 294 |
+
Associate to each vertex of the graph a symmetric tensor with
|
| 295 |
+
number of indices equal to the degree of the vertex; indices
|
| 296 |
+
are contracted when they correspond to the same line of the graph.
|
| 297 |
+
The canonical form of the tensor gives a certificate for the graph.
|
| 298 |
+
|
| 299 |
+
This is not an efficient algorithm to get the certificate of a graph.
|
| 300 |
+
|
| 301 |
+
Examples
|
| 302 |
+
========
|
| 303 |
+
|
| 304 |
+
>>> from sympy.combinatorics.testutil import graph_certificate
|
| 305 |
+
>>> gr1 = {0:[1, 2, 3, 5], 1:[0, 2, 4], 2:[0, 1, 3, 4], 3:[0, 2, 4], 4:[1, 2, 3, 5], 5:[0, 4]}
|
| 306 |
+
>>> gr2 = {0:[1, 5], 1:[0, 2, 3, 4], 2:[1, 3, 5], 3:[1, 2, 4, 5], 4:[1, 3, 5], 5:[0, 2, 3, 4]}
|
| 307 |
+
>>> c1 = graph_certificate(gr1)
|
| 308 |
+
>>> c2 = graph_certificate(gr2)
|
| 309 |
+
>>> c1
|
| 310 |
+
[0, 2, 4, 6, 1, 8, 10, 12, 3, 14, 16, 18, 5, 9, 15, 7, 11, 17, 13, 19, 20, 21]
|
| 311 |
+
>>> c1 == c2
|
| 312 |
+
True
|
| 313 |
+
"""
|
| 314 |
+
from sympy.combinatorics.permutations import _af_invert
|
| 315 |
+
from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, canonicalize
|
| 316 |
+
items = list(gr.items())
|
| 317 |
+
items.sort(key=lambda x: len(x[1]), reverse=True)
|
| 318 |
+
pvert = [x[0] for x in items]
|
| 319 |
+
pvert = _af_invert(pvert)
|
| 320 |
+
|
| 321 |
+
# the indices of the tensor are twice the number of lines of the graph
|
| 322 |
+
num_indices = 0
|
| 323 |
+
for v, neigh in items:
|
| 324 |
+
num_indices += len(neigh)
|
| 325 |
+
# associate to each vertex its indices; for each line
|
| 326 |
+
# between two vertices assign the
|
| 327 |
+
# even index to the vertex which comes first in items,
|
| 328 |
+
# the odd index to the other vertex
|
| 329 |
+
vertices = [[] for i in items]
|
| 330 |
+
i = 0
|
| 331 |
+
for v, neigh in items:
|
| 332 |
+
for v2 in neigh:
|
| 333 |
+
if pvert[v] < pvert[v2]:
|
| 334 |
+
vertices[pvert[v]].append(i)
|
| 335 |
+
vertices[pvert[v2]].append(i+1)
|
| 336 |
+
i += 2
|
| 337 |
+
g = []
|
| 338 |
+
for v in vertices:
|
| 339 |
+
g.extend(v)
|
| 340 |
+
assert len(g) == num_indices
|
| 341 |
+
g += [num_indices, num_indices + 1]
|
| 342 |
+
size = num_indices + 2
|
| 343 |
+
assert sorted(g) == list(range(size))
|
| 344 |
+
g = Permutation(g)
|
| 345 |
+
vlen = [0]*(len(vertices[0])+1)
|
| 346 |
+
for neigh in vertices:
|
| 347 |
+
vlen[len(neigh)] += 1
|
| 348 |
+
v = []
|
| 349 |
+
for i in range(len(vlen)):
|
| 350 |
+
n = vlen[i]
|
| 351 |
+
if n:
|
| 352 |
+
base, gens = get_symmetric_group_sgs(i)
|
| 353 |
+
v.append((base, gens, n, 0))
|
| 354 |
+
v.reverse()
|
| 355 |
+
dummies = list(range(num_indices))
|
| 356 |
+
can = canonicalize(g, dummies, 0, *v)
|
| 357 |
+
return can
|
mgm/lib/python3.10/site-packages/sympy/concrete/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (320 Bytes). View file
|
|
|
mgm/lib/python3.10/site-packages/sympy/concrete/__pycache__/delta.cpython-310.pyc
ADDED
|
Binary file (9.21 kB). View file
|
|
|
mgm/lib/python3.10/site-packages/sympy/concrete/__pycache__/expr_with_limits.cpython-310.pyc
ADDED
|
Binary file (18.8 kB). View file
|
|
|
mgm/lib/python3.10/site-packages/sympy/concrete/__pycache__/guess.cpython-310.pyc
ADDED
|
Binary file (17.7 kB). View file
|
|
|
mgm/lib/python3.10/site-packages/sympy/concrete/__pycache__/products.cpython-310.pyc
ADDED
|
Binary file (18 kB). View file
|
|
|
mgm/lib/python3.10/site-packages/sympy/concrete/__pycache__/summations.cpython-310.pyc
ADDED
|
Binary file (42 kB). View file
|
|
|
mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (5.29 kB). View file
|
|
|
mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/appellseqs.cpython-310.pyc
ADDED
|
Binary file (8.69 kB). View file
|
|
|
mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/compatibility.cpython-310.pyc
ADDED
|
Binary file (62.3 kB). View file
|
|
|
mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/constructor.cpython-310.pyc
ADDED
|
Binary file (9.3 kB). View file
|
|
|
mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/densearith.cpython-310.pyc
ADDED
|
Binary file (34.3 kB). View file
|
|
|
mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/densetools.cpython-310.pyc
ADDED
|
Binary file (28.4 kB). View file
|
|
|
mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/distributedmodules.cpython-310.pyc
ADDED
|
Binary file (23 kB). View file
|
|
|
mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/domainmatrix.cpython-310.pyc
ADDED
|
Binary file (488 Bytes). View file
|
|
|
mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/factortools.cpython-310.pyc
ADDED
|
Binary file (37.9 kB). View file
|
|
|
mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/fglmtools.cpython-310.pyc
ADDED
|
Binary file (6.96 kB). View file
|
|
|
mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/fields.cpython-310.pyc
ADDED
|
Binary file (18.8 kB). View file
|
|
|
mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/groebnertools.cpython-310.pyc
ADDED
|
Binary file (22.7 kB). View file
|
|
|
mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/polyconfig.cpython-310.pyc
ADDED
|
Binary file (1.64 kB). View file
|
|
|
mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/polyerrors.cpython-310.pyc
ADDED
|
Binary file (7.16 kB). View file
|
|
|
mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/polymatrix.cpython-310.pyc
ADDED
|
Binary file (11.7 kB). View file
|
|
|
mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/polyoptions.cpython-310.pyc
ADDED
|
Binary file (21.6 kB). View file
|
|
|
mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/polyroots.cpython-310.pyc
ADDED
|
Binary file (31 kB). View file
|
|
|
mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/rationaltools.cpython-310.pyc
ADDED
|
Binary file (3.11 kB). View file
|
|
|
mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/ring_series.cpython-310.pyc
ADDED
|
Binary file (47.9 kB). View file
|
|
|
mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/rings.cpython-310.pyc
ADDED
|
Binary file (79.6 kB). View file
|
|
|
mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/rootisolation.cpython-310.pyc
ADDED
|
Binary file (51.1 kB). View file
|
|
|
mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/rootoftools.cpython-310.pyc
ADDED
|
Binary file (34.3 kB). View file
|
|
|
mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/solvers.cpython-310.pyc
ADDED
|
Binary file (13.9 kB). View file
|
|
|
mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/sqfreetools.cpython-310.pyc
ADDED
|
Binary file (19 kB). View file
|
|
|
mgm/lib/python3.10/site-packages/sympy/polys/__pycache__/subresultants_qq_zz.cpython-310.pyc
ADDED
|
Binary file (68.2 kB). View file
|
|
|
mgm/lib/python3.10/site-packages/sympy/polys/dispersion.py
ADDED
|
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from sympy.core import S
|
| 2 |
+
from sympy.polys import Poly
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def dispersionset(p, q=None, *gens, **args):
|
| 6 |
+
r"""Compute the *dispersion set* of two polynomials.
|
| 7 |
+
|
| 8 |
+
For two polynomials `f(x)` and `g(x)` with `\deg f > 0`
|
| 9 |
+
and `\deg g > 0` the dispersion set `\operatorname{J}(f, g)` is defined as:
|
| 10 |
+
|
| 11 |
+
.. math::
|
| 12 |
+
\operatorname{J}(f, g)
|
| 13 |
+
& := \{a \in \mathbb{N}_0 | \gcd(f(x), g(x+a)) \neq 1\} \\
|
| 14 |
+
& = \{a \in \mathbb{N}_0 | \deg \gcd(f(x), g(x+a)) \geq 1\}
|
| 15 |
+
|
| 16 |
+
For a single polynomial one defines `\operatorname{J}(f) := \operatorname{J}(f, f)`.
|
| 17 |
+
|
| 18 |
+
Examples
|
| 19 |
+
========
|
| 20 |
+
|
| 21 |
+
>>> from sympy import poly
|
| 22 |
+
>>> from sympy.polys.dispersion import dispersion, dispersionset
|
| 23 |
+
>>> from sympy.abc import x
|
| 24 |
+
|
| 25 |
+
Dispersion set and dispersion of a simple polynomial:
|
| 26 |
+
|
| 27 |
+
>>> fp = poly((x - 3)*(x + 3), x)
|
| 28 |
+
>>> sorted(dispersionset(fp))
|
| 29 |
+
[0, 6]
|
| 30 |
+
>>> dispersion(fp)
|
| 31 |
+
6
|
| 32 |
+
|
| 33 |
+
Note that the definition of the dispersion is not symmetric:
|
| 34 |
+
|
| 35 |
+
>>> fp = poly(x**4 - 3*x**2 + 1, x)
|
| 36 |
+
>>> gp = fp.shift(-3)
|
| 37 |
+
>>> sorted(dispersionset(fp, gp))
|
| 38 |
+
[2, 3, 4]
|
| 39 |
+
>>> dispersion(fp, gp)
|
| 40 |
+
4
|
| 41 |
+
>>> sorted(dispersionset(gp, fp))
|
| 42 |
+
[]
|
| 43 |
+
>>> dispersion(gp, fp)
|
| 44 |
+
-oo
|
| 45 |
+
|
| 46 |
+
Computing the dispersion also works over field extensions:
|
| 47 |
+
|
| 48 |
+
>>> from sympy import sqrt
|
| 49 |
+
>>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>')
|
| 50 |
+
>>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>')
|
| 51 |
+
>>> sorted(dispersionset(fp, gp))
|
| 52 |
+
[2]
|
| 53 |
+
>>> sorted(dispersionset(gp, fp))
|
| 54 |
+
[1, 4]
|
| 55 |
+
|
| 56 |
+
We can even perform the computations for polynomials
|
| 57 |
+
having symbolic coefficients:
|
| 58 |
+
|
| 59 |
+
>>> from sympy.abc import a
|
| 60 |
+
>>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x)
|
| 61 |
+
>>> sorted(dispersionset(fp))
|
| 62 |
+
[0, 1]
|
| 63 |
+
|
| 64 |
+
See Also
|
| 65 |
+
========
|
| 66 |
+
|
| 67 |
+
dispersion
|
| 68 |
+
|
| 69 |
+
References
|
| 70 |
+
==========
|
| 71 |
+
|
| 72 |
+
.. [1] [ManWright94]_
|
| 73 |
+
.. [2] [Koepf98]_
|
| 74 |
+
.. [3] [Abramov71]_
|
| 75 |
+
.. [4] [Man93]_
|
| 76 |
+
"""
|
| 77 |
+
# Check for valid input
|
| 78 |
+
same = False if q is not None else True
|
| 79 |
+
if same:
|
| 80 |
+
q = p
|
| 81 |
+
|
| 82 |
+
p = Poly(p, *gens, **args)
|
| 83 |
+
q = Poly(q, *gens, **args)
|
| 84 |
+
|
| 85 |
+
if not p.is_univariate or not q.is_univariate:
|
| 86 |
+
raise ValueError("Polynomials need to be univariate")
|
| 87 |
+
|
| 88 |
+
# The generator
|
| 89 |
+
if not p.gen == q.gen:
|
| 90 |
+
raise ValueError("Polynomials must have the same generator")
|
| 91 |
+
gen = p.gen
|
| 92 |
+
|
| 93 |
+
# We define the dispersion of constant polynomials to be zero
|
| 94 |
+
if p.degree() < 1 or q.degree() < 1:
|
| 95 |
+
return {0}
|
| 96 |
+
|
| 97 |
+
# Factor p and q over the rationals
|
| 98 |
+
fp = p.factor_list()
|
| 99 |
+
fq = q.factor_list() if not same else fp
|
| 100 |
+
|
| 101 |
+
# Iterate over all pairs of factors
|
| 102 |
+
J = set()
|
| 103 |
+
for s, unused in fp[1]:
|
| 104 |
+
for t, unused in fq[1]:
|
| 105 |
+
m = s.degree()
|
| 106 |
+
n = t.degree()
|
| 107 |
+
if n != m:
|
| 108 |
+
continue
|
| 109 |
+
an = s.LC()
|
| 110 |
+
bn = t.LC()
|
| 111 |
+
if not (an - bn).is_zero:
|
| 112 |
+
continue
|
| 113 |
+
# Note that the roles of `s` and `t` below are switched
|
| 114 |
+
# w.r.t. the original paper. This is for consistency
|
| 115 |
+
# with the description in the book of W. Koepf.
|
| 116 |
+
anm1 = s.coeff_monomial(gen**(m-1))
|
| 117 |
+
bnm1 = t.coeff_monomial(gen**(n-1))
|
| 118 |
+
alpha = (anm1 - bnm1) / S(n*bn)
|
| 119 |
+
if not alpha.is_integer:
|
| 120 |
+
continue
|
| 121 |
+
if alpha < 0 or alpha in J:
|
| 122 |
+
continue
|
| 123 |
+
if n > 1 and not (s - t.shift(alpha)).is_zero:
|
| 124 |
+
continue
|
| 125 |
+
J.add(alpha)
|
| 126 |
+
|
| 127 |
+
return J
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def dispersion(p, q=None, *gens, **args):
|
| 131 |
+
r"""Compute the *dispersion* of polynomials.
|
| 132 |
+
|
| 133 |
+
For two polynomials `f(x)` and `g(x)` with `\deg f > 0`
|
| 134 |
+
and `\deg g > 0` the dispersion `\operatorname{dis}(f, g)` is defined as:
|
| 135 |
+
|
| 136 |
+
.. math::
|
| 137 |
+
\operatorname{dis}(f, g)
|
| 138 |
+
& := \max\{ J(f,g) \cup \{0\} \} \\
|
| 139 |
+
& = \max\{ \{a \in \mathbb{N} | \gcd(f(x), g(x+a)) \neq 1\} \cup \{0\} \}
|
| 140 |
+
|
| 141 |
+
and for a single polynomial `\operatorname{dis}(f) := \operatorname{dis}(f, f)`.
|
| 142 |
+
Note that we make the definition `\max\{\} := -\infty`.
|
| 143 |
+
|
| 144 |
+
Examples
|
| 145 |
+
========
|
| 146 |
+
|
| 147 |
+
>>> from sympy import poly
|
| 148 |
+
>>> from sympy.polys.dispersion import dispersion, dispersionset
|
| 149 |
+
>>> from sympy.abc import x
|
| 150 |
+
|
| 151 |
+
Dispersion set and dispersion of a simple polynomial:
|
| 152 |
+
|
| 153 |
+
>>> fp = poly((x - 3)*(x + 3), x)
|
| 154 |
+
>>> sorted(dispersionset(fp))
|
| 155 |
+
[0, 6]
|
| 156 |
+
>>> dispersion(fp)
|
| 157 |
+
6
|
| 158 |
+
|
| 159 |
+
Note that the definition of the dispersion is not symmetric:
|
| 160 |
+
|
| 161 |
+
>>> fp = poly(x**4 - 3*x**2 + 1, x)
|
| 162 |
+
>>> gp = fp.shift(-3)
|
| 163 |
+
>>> sorted(dispersionset(fp, gp))
|
| 164 |
+
[2, 3, 4]
|
| 165 |
+
>>> dispersion(fp, gp)
|
| 166 |
+
4
|
| 167 |
+
>>> sorted(dispersionset(gp, fp))
|
| 168 |
+
[]
|
| 169 |
+
>>> dispersion(gp, fp)
|
| 170 |
+
-oo
|
| 171 |
+
|
| 172 |
+
The maximum of an empty set is defined to be `-\infty`
|
| 173 |
+
as seen in this example.
|
| 174 |
+
|
| 175 |
+
Computing the dispersion also works over field extensions:
|
| 176 |
+
|
| 177 |
+
>>> from sympy import sqrt
|
| 178 |
+
>>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>')
|
| 179 |
+
>>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>')
|
| 180 |
+
>>> sorted(dispersionset(fp, gp))
|
| 181 |
+
[2]
|
| 182 |
+
>>> sorted(dispersionset(gp, fp))
|
| 183 |
+
[1, 4]
|
| 184 |
+
|
| 185 |
+
We can even perform the computations for polynomials
|
| 186 |
+
having symbolic coefficients:
|
| 187 |
+
|
| 188 |
+
>>> from sympy.abc import a
|
| 189 |
+
>>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x)
|
| 190 |
+
>>> sorted(dispersionset(fp))
|
| 191 |
+
[0, 1]
|
| 192 |
+
|
| 193 |
+
See Also
|
| 194 |
+
========
|
| 195 |
+
|
| 196 |
+
dispersionset
|
| 197 |
+
|
| 198 |
+
References
|
| 199 |
+
==========
|
| 200 |
+
|
| 201 |
+
.. [1] [ManWright94]_
|
| 202 |
+
.. [2] [Koepf98]_
|
| 203 |
+
.. [3] [Abramov71]_
|
| 204 |
+
.. [4] [Man93]_
|
| 205 |
+
"""
|
| 206 |
+
J = dispersionset(p, q, *gens, **args)
|
| 207 |
+
if not J:
|
| 208 |
+
# Definition for maximum of empty set
|
| 209 |
+
j = S.NegativeInfinity
|
| 210 |
+
else:
|
| 211 |
+
j = max(J)
|
| 212 |
+
return j
|
mgm/lib/python3.10/site-packages/sympy/polys/domains/__init__.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Implementation of mathematical domains. """
|
| 2 |
+
|
| 3 |
+
__all__ = [
|
| 4 |
+
'Domain', 'FiniteField', 'IntegerRing', 'RationalField', 'RealField',
|
| 5 |
+
'ComplexField', 'AlgebraicField', 'PolynomialRing', 'FractionField',
|
| 6 |
+
'ExpressionDomain', 'PythonRational',
|
| 7 |
+
|
| 8 |
+
'GF', 'FF', 'ZZ', 'QQ', 'ZZ_I', 'QQ_I', 'RR', 'CC', 'EX', 'EXRAW',
|
| 9 |
+
]
|
| 10 |
+
|
| 11 |
+
from .domain import Domain
|
| 12 |
+
from .finitefield import FiniteField, FF, GF
|
| 13 |
+
from .integerring import IntegerRing, ZZ
|
| 14 |
+
from .rationalfield import RationalField, QQ
|
| 15 |
+
from .algebraicfield import AlgebraicField
|
| 16 |
+
from .gaussiandomains import ZZ_I, QQ_I
|
| 17 |
+
from .realfield import RealField, RR
|
| 18 |
+
from .complexfield import ComplexField, CC
|
| 19 |
+
from .polynomialring import PolynomialRing
|
| 20 |
+
from .fractionfield import FractionField
|
| 21 |
+
from .expressiondomain import ExpressionDomain, EX
|
| 22 |
+
from .expressionrawdomain import EXRAW
|
| 23 |
+
from .pythonrational import PythonRational
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
# This is imported purely for backwards compatibility because some parts of
|
| 27 |
+
# the codebase used to import this from here and it's possible that downstream
|
| 28 |
+
# does as well:
|
| 29 |
+
from sympy.external.gmpy import GROUND_TYPES # noqa: F401
|
| 30 |
+
|
| 31 |
+
#
|
| 32 |
+
# The rest of these are obsolete and provided only for backwards
|
| 33 |
+
# compatibility:
|
| 34 |
+
#
|
| 35 |
+
|
| 36 |
+
from .pythonfinitefield import PythonFiniteField
|
| 37 |
+
from .gmpyfinitefield import GMPYFiniteField
|
| 38 |
+
from .pythonintegerring import PythonIntegerRing
|
| 39 |
+
from .gmpyintegerring import GMPYIntegerRing
|
| 40 |
+
from .pythonrationalfield import PythonRationalField
|
| 41 |
+
from .gmpyrationalfield import GMPYRationalField
|
| 42 |
+
|
| 43 |
+
FF_python = PythonFiniteField
|
| 44 |
+
FF_gmpy = GMPYFiniteField
|
| 45 |
+
|
| 46 |
+
ZZ_python = PythonIntegerRing
|
| 47 |
+
ZZ_gmpy = GMPYIntegerRing
|
| 48 |
+
|
| 49 |
+
QQ_python = PythonRationalField
|
| 50 |
+
QQ_gmpy = GMPYRationalField
|
| 51 |
+
|
| 52 |
+
__all__.extend((
|
| 53 |
+
'PythonFiniteField', 'GMPYFiniteField', 'PythonIntegerRing',
|
| 54 |
+
'GMPYIntegerRing', 'PythonRational', 'GMPYRationalField',
|
| 55 |
+
|
| 56 |
+
'FF_python', 'FF_gmpy', 'ZZ_python', 'ZZ_gmpy', 'QQ_python', 'QQ_gmpy',
|
| 57 |
+
))
|
mgm/lib/python3.10/site-packages/sympy/polys/domains/algebraicfield.py
ADDED
|
@@ -0,0 +1,607 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Implementation of :class:`AlgebraicField` class. """
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
from sympy.core.add import Add
|
| 5 |
+
from sympy.core.mul import Mul
|
| 6 |
+
from sympy.core.singleton import S
|
| 7 |
+
from sympy.polys.domains.characteristiczero import CharacteristicZero
|
| 8 |
+
from sympy.polys.domains.field import Field
|
| 9 |
+
from sympy.polys.domains.simpledomain import SimpleDomain
|
| 10 |
+
from sympy.polys.polyclasses import ANP
|
| 11 |
+
from sympy.polys.polyerrors import CoercionFailed, DomainError, NotAlgebraic, IsomorphismFailed
|
| 12 |
+
from sympy.utilities import public
|
| 13 |
+
|
| 14 |
+
@public
|
| 15 |
+
class AlgebraicField(Field, CharacteristicZero, SimpleDomain):
|
| 16 |
+
r"""Algebraic number field :ref:`QQ(a)`
|
| 17 |
+
|
| 18 |
+
A :ref:`QQ(a)` domain represents an `algebraic number field`_
|
| 19 |
+
`\mathbb{Q}(a)` as a :py:class:`~.Domain` in the domain system (see
|
| 20 |
+
:ref:`polys-domainsintro`).
|
| 21 |
+
|
| 22 |
+
A :py:class:`~.Poly` created from an expression involving `algebraic
|
| 23 |
+
numbers`_ will treat the algebraic numbers as generators if the generators
|
| 24 |
+
argument is not specified.
|
| 25 |
+
|
| 26 |
+
>>> from sympy import Poly, Symbol, sqrt
|
| 27 |
+
>>> x = Symbol('x')
|
| 28 |
+
>>> Poly(x**2 + sqrt(2))
|
| 29 |
+
Poly(x**2 + (sqrt(2)), x, sqrt(2), domain='ZZ')
|
| 30 |
+
|
| 31 |
+
That is a multivariate polynomial with ``sqrt(2)`` treated as one of the
|
| 32 |
+
generators (variables). If the generators are explicitly specified then
|
| 33 |
+
``sqrt(2)`` will be considered to be a coefficient but by default the
|
| 34 |
+
:ref:`EX` domain is used. To make a :py:class:`~.Poly` with a :ref:`QQ(a)`
|
| 35 |
+
domain the argument ``extension=True`` can be given.
|
| 36 |
+
|
| 37 |
+
>>> Poly(x**2 + sqrt(2), x)
|
| 38 |
+
Poly(x**2 + sqrt(2), x, domain='EX')
|
| 39 |
+
>>> Poly(x**2 + sqrt(2), x, extension=True)
|
| 40 |
+
Poly(x**2 + sqrt(2), x, domain='QQ<sqrt(2)>')
|
| 41 |
+
|
| 42 |
+
A generator of the algebraic field extension can also be specified
|
| 43 |
+
explicitly which is particularly useful if the coefficients are all
|
| 44 |
+
rational but an extension field is needed (e.g. to factor the
|
| 45 |
+
polynomial).
|
| 46 |
+
|
| 47 |
+
>>> Poly(x**2 + 1)
|
| 48 |
+
Poly(x**2 + 1, x, domain='ZZ')
|
| 49 |
+
>>> Poly(x**2 + 1, extension=sqrt(2))
|
| 50 |
+
Poly(x**2 + 1, x, domain='QQ<sqrt(2)>')
|
| 51 |
+
|
| 52 |
+
It is possible to factorise a polynomial over a :ref:`QQ(a)` domain using
|
| 53 |
+
the ``extension`` argument to :py:func:`~.factor` or by specifying the domain
|
| 54 |
+
explicitly.
|
| 55 |
+
|
| 56 |
+
>>> from sympy import factor, QQ
|
| 57 |
+
>>> factor(x**2 - 2)
|
| 58 |
+
x**2 - 2
|
| 59 |
+
>>> factor(x**2 - 2, extension=sqrt(2))
|
| 60 |
+
(x - sqrt(2))*(x + sqrt(2))
|
| 61 |
+
>>> factor(x**2 - 2, domain='QQ<sqrt(2)>')
|
| 62 |
+
(x - sqrt(2))*(x + sqrt(2))
|
| 63 |
+
>>> factor(x**2 - 2, domain=QQ.algebraic_field(sqrt(2)))
|
| 64 |
+
(x - sqrt(2))*(x + sqrt(2))
|
| 65 |
+
|
| 66 |
+
The ``extension=True`` argument can be used but will only create an
|
| 67 |
+
extension that contains the coefficients which is usually not enough to
|
| 68 |
+
factorise the polynomial.
|
| 69 |
+
|
| 70 |
+
>>> p = x**3 + sqrt(2)*x**2 - 2*x - 2*sqrt(2)
|
| 71 |
+
>>> factor(p) # treats sqrt(2) as a symbol
|
| 72 |
+
(x + sqrt(2))*(x**2 - 2)
|
| 73 |
+
>>> factor(p, extension=True)
|
| 74 |
+
(x - sqrt(2))*(x + sqrt(2))**2
|
| 75 |
+
>>> factor(x**2 - 2, extension=True) # all rational coefficients
|
| 76 |
+
x**2 - 2
|
| 77 |
+
|
| 78 |
+
It is also possible to use :ref:`QQ(a)` with the :py:func:`~.cancel`
|
| 79 |
+
and :py:func:`~.gcd` functions.
|
| 80 |
+
|
| 81 |
+
>>> from sympy import cancel, gcd
|
| 82 |
+
>>> cancel((x**2 - 2)/(x - sqrt(2)))
|
| 83 |
+
(x**2 - 2)/(x - sqrt(2))
|
| 84 |
+
>>> cancel((x**2 - 2)/(x - sqrt(2)), extension=sqrt(2))
|
| 85 |
+
x + sqrt(2)
|
| 86 |
+
>>> gcd(x**2 - 2, x - sqrt(2))
|
| 87 |
+
1
|
| 88 |
+
>>> gcd(x**2 - 2, x - sqrt(2), extension=sqrt(2))
|
| 89 |
+
x - sqrt(2)
|
| 90 |
+
|
| 91 |
+
When using the domain directly :ref:`QQ(a)` can be used as a constructor
|
| 92 |
+
to create instances which then support the operations ``+,-,*,**,/``. The
|
| 93 |
+
:py:meth:`~.Domain.algebraic_field` method is used to construct a
|
| 94 |
+
particular :ref:`QQ(a)` domain. The :py:meth:`~.Domain.from_sympy` method
|
| 95 |
+
can be used to create domain elements from normal SymPy expressions.
|
| 96 |
+
|
| 97 |
+
>>> K = QQ.algebraic_field(sqrt(2))
|
| 98 |
+
>>> K
|
| 99 |
+
QQ<sqrt(2)>
|
| 100 |
+
>>> xk = K.from_sympy(3 + 4*sqrt(2))
|
| 101 |
+
>>> xk # doctest: +SKIP
|
| 102 |
+
ANP([4, 3], [1, 0, -2], QQ)
|
| 103 |
+
|
| 104 |
+
Elements of :ref:`QQ(a)` are instances of :py:class:`~.ANP` which have
|
| 105 |
+
limited printing support. The raw display shows the internal
|
| 106 |
+
representation of the element as the list ``[4, 3]`` representing the
|
| 107 |
+
coefficients of ``1`` and ``sqrt(2)`` for this element in the form
|
| 108 |
+
``a * sqrt(2) + b * 1`` where ``a`` and ``b`` are elements of :ref:`QQ`.
|
| 109 |
+
The minimal polynomial for the generator ``(x**2 - 2)`` is also shown in
|
| 110 |
+
the :ref:`dup-representation` as the list ``[1, 0, -2]``. We can use
|
| 111 |
+
:py:meth:`~.Domain.to_sympy` to get a better printed form for the
|
| 112 |
+
elements and to see the results of operations.
|
| 113 |
+
|
| 114 |
+
>>> xk = K.from_sympy(3 + 4*sqrt(2))
|
| 115 |
+
>>> yk = K.from_sympy(2 + 3*sqrt(2))
|
| 116 |
+
>>> xk * yk # doctest: +SKIP
|
| 117 |
+
ANP([17, 30], [1, 0, -2], QQ)
|
| 118 |
+
>>> K.to_sympy(xk * yk)
|
| 119 |
+
17*sqrt(2) + 30
|
| 120 |
+
>>> K.to_sympy(xk + yk)
|
| 121 |
+
5 + 7*sqrt(2)
|
| 122 |
+
>>> K.to_sympy(xk ** 2)
|
| 123 |
+
24*sqrt(2) + 41
|
| 124 |
+
>>> K.to_sympy(xk / yk)
|
| 125 |
+
sqrt(2)/14 + 9/7
|
| 126 |
+
|
| 127 |
+
Any expression representing an algebraic number can be used to generate
|
| 128 |
+
a :ref:`QQ(a)` domain provided its `minimal polynomial`_ can be computed.
|
| 129 |
+
The function :py:func:`~.minpoly` function is used for this.
|
| 130 |
+
|
| 131 |
+
>>> from sympy import exp, I, pi, minpoly
|
| 132 |
+
>>> g = exp(2*I*pi/3)
|
| 133 |
+
>>> g
|
| 134 |
+
exp(2*I*pi/3)
|
| 135 |
+
>>> g.is_algebraic
|
| 136 |
+
True
|
| 137 |
+
>>> minpoly(g, x)
|
| 138 |
+
x**2 + x + 1
|
| 139 |
+
>>> factor(x**3 - 1, extension=g)
|
| 140 |
+
(x - 1)*(x - exp(2*I*pi/3))*(x + 1 + exp(2*I*pi/3))
|
| 141 |
+
|
| 142 |
+
It is also possible to make an algebraic field from multiple extension
|
| 143 |
+
elements.
|
| 144 |
+
|
| 145 |
+
>>> K = QQ.algebraic_field(sqrt(2), sqrt(3))
|
| 146 |
+
>>> K
|
| 147 |
+
QQ<sqrt(2) + sqrt(3)>
|
| 148 |
+
>>> p = x**4 - 5*x**2 + 6
|
| 149 |
+
>>> factor(p)
|
| 150 |
+
(x**2 - 3)*(x**2 - 2)
|
| 151 |
+
>>> factor(p, domain=K)
|
| 152 |
+
(x - sqrt(2))*(x + sqrt(2))*(x - sqrt(3))*(x + sqrt(3))
|
| 153 |
+
>>> factor(p, extension=[sqrt(2), sqrt(3)])
|
| 154 |
+
(x - sqrt(2))*(x + sqrt(2))*(x - sqrt(3))*(x + sqrt(3))
|
| 155 |
+
|
| 156 |
+
Multiple extension elements are always combined together to make a single
|
| 157 |
+
`primitive element`_. In the case of ``[sqrt(2), sqrt(3)]`` the primitive
|
| 158 |
+
element chosen is ``sqrt(2) + sqrt(3)`` which is why the domain displays
|
| 159 |
+
as ``QQ<sqrt(2) + sqrt(3)>``. The minimal polynomial for the primitive
|
| 160 |
+
element is computed using the :py:func:`~.primitive_element` function.
|
| 161 |
+
|
| 162 |
+
>>> from sympy import primitive_element
|
| 163 |
+
>>> primitive_element([sqrt(2), sqrt(3)], x)
|
| 164 |
+
(x**4 - 10*x**2 + 1, [1, 1])
|
| 165 |
+
>>> minpoly(sqrt(2) + sqrt(3), x)
|
| 166 |
+
x**4 - 10*x**2 + 1
|
| 167 |
+
|
| 168 |
+
The extension elements that generate the domain can be accessed from the
|
| 169 |
+
domain using the :py:attr:`~.ext` and :py:attr:`~.orig_ext` attributes as
|
| 170 |
+
instances of :py:class:`~.AlgebraicNumber`. The minimal polynomial for
|
| 171 |
+
the primitive element as a :py:class:`~.DMP` instance is available as
|
| 172 |
+
:py:attr:`~.mod`.
|
| 173 |
+
|
| 174 |
+
>>> K = QQ.algebraic_field(sqrt(2), sqrt(3))
|
| 175 |
+
>>> K
|
| 176 |
+
QQ<sqrt(2) + sqrt(3)>
|
| 177 |
+
>>> K.ext
|
| 178 |
+
sqrt(2) + sqrt(3)
|
| 179 |
+
>>> K.orig_ext
|
| 180 |
+
(sqrt(2), sqrt(3))
|
| 181 |
+
>>> K.mod # doctest: +SKIP
|
| 182 |
+
DMP_Python([1, 0, -10, 0, 1], QQ)
|
| 183 |
+
|
| 184 |
+
The `discriminant`_ of the field can be obtained from the
|
| 185 |
+
:py:meth:`~.discriminant` method, and an `integral basis`_ from the
|
| 186 |
+
:py:meth:`~.integral_basis` method. The latter returns a list of
|
| 187 |
+
:py:class:`~.ANP` instances by default, but can be made to return instances
|
| 188 |
+
of :py:class:`~.Expr` or :py:class:`~.AlgebraicNumber` by passing a ``fmt``
|
| 189 |
+
argument. The maximal order, or ring of integers, of the field can also be
|
| 190 |
+
obtained from the :py:meth:`~.maximal_order` method, as a
|
| 191 |
+
:py:class:`~sympy.polys.numberfields.modules.Submodule`.
|
| 192 |
+
|
| 193 |
+
>>> zeta5 = exp(2*I*pi/5)
|
| 194 |
+
>>> K = QQ.algebraic_field(zeta5)
|
| 195 |
+
>>> K
|
| 196 |
+
QQ<exp(2*I*pi/5)>
|
| 197 |
+
>>> K.discriminant()
|
| 198 |
+
125
|
| 199 |
+
>>> K = QQ.algebraic_field(sqrt(5))
|
| 200 |
+
>>> K
|
| 201 |
+
QQ<sqrt(5)>
|
| 202 |
+
>>> K.integral_basis(fmt='sympy')
|
| 203 |
+
[1, 1/2 + sqrt(5)/2]
|
| 204 |
+
>>> K.maximal_order()
|
| 205 |
+
Submodule[[2, 0], [1, 1]]/2
|
| 206 |
+
|
| 207 |
+
The factorization of a rational prime into prime ideals of the field is
|
| 208 |
+
computed by the :py:meth:`~.primes_above` method, which returns a list
|
| 209 |
+
of :py:class:`~sympy.polys.numberfields.primes.PrimeIdeal` instances.
|
| 210 |
+
|
| 211 |
+
>>> zeta7 = exp(2*I*pi/7)
|
| 212 |
+
>>> K = QQ.algebraic_field(zeta7)
|
| 213 |
+
>>> K
|
| 214 |
+
QQ<exp(2*I*pi/7)>
|
| 215 |
+
>>> K.primes_above(11)
|
| 216 |
+
[(11, _x**3 + 5*_x**2 + 4*_x - 1), (11, _x**3 - 4*_x**2 - 5*_x - 1)]
|
| 217 |
+
|
| 218 |
+
The Galois group of the Galois closure of the field can be computed (when
|
| 219 |
+
the minimal polynomial of the field is of sufficiently small degree).
|
| 220 |
+
|
| 221 |
+
>>> K.galois_group(by_name=True)[0]
|
| 222 |
+
S6TransitiveSubgroups.C6
|
| 223 |
+
|
| 224 |
+
Notes
|
| 225 |
+
=====
|
| 226 |
+
|
| 227 |
+
It is not currently possible to generate an algebraic extension over any
|
| 228 |
+
domain other than :ref:`QQ`. Ideally it would be possible to generate
|
| 229 |
+
extensions like ``QQ(x)(sqrt(x**2 - 2))``. This is equivalent to the
|
| 230 |
+
quotient ring ``QQ(x)[y]/(y**2 - x**2 + 2)`` and there are two
|
| 231 |
+
implementations of this kind of quotient ring/extension in the
|
| 232 |
+
:py:class:`~.QuotientRing` and :py:class:`~.MonogenicFiniteExtension`
|
| 233 |
+
classes. Each of those implementations needs some work to make them fully
|
| 234 |
+
usable though.
|
| 235 |
+
|
| 236 |
+
.. _algebraic number field: https://en.wikipedia.org/wiki/Algebraic_number_field
|
| 237 |
+
.. _algebraic numbers: https://en.wikipedia.org/wiki/Algebraic_number
|
| 238 |
+
.. _discriminant: https://en.wikipedia.org/wiki/Discriminant_of_an_algebraic_number_field
|
| 239 |
+
.. _integral basis: https://en.wikipedia.org/wiki/Algebraic_number_field#Integral_basis
|
| 240 |
+
.. _minimal polynomial: https://en.wikipedia.org/wiki/Minimal_polynomial_(field_theory)
|
| 241 |
+
.. _primitive element: https://en.wikipedia.org/wiki/Primitive_element_theorem
|
| 242 |
+
"""
|
| 243 |
+
|
| 244 |
+
dtype = ANP
|
| 245 |
+
|
| 246 |
+
is_AlgebraicField = is_Algebraic = True
|
| 247 |
+
is_Numerical = True
|
| 248 |
+
|
| 249 |
+
has_assoc_Ring = False
|
| 250 |
+
has_assoc_Field = True
|
| 251 |
+
|
| 252 |
+
def __init__(self, dom, *ext, alias=None):
|
| 253 |
+
r"""
|
| 254 |
+
Parameters
|
| 255 |
+
==========
|
| 256 |
+
|
| 257 |
+
dom : :py:class:`~.Domain`
|
| 258 |
+
The base field over which this is an extension field.
|
| 259 |
+
Currently only :ref:`QQ` is accepted.
|
| 260 |
+
|
| 261 |
+
*ext : One or more :py:class:`~.Expr`
|
| 262 |
+
Generators of the extension. These should be expressions that are
|
| 263 |
+
algebraic over `\mathbb{Q}`.
|
| 264 |
+
|
| 265 |
+
alias : str, :py:class:`~.Symbol`, None, optional (default=None)
|
| 266 |
+
If provided, this will be used as the alias symbol for the
|
| 267 |
+
primitive element of the :py:class:`~.AlgebraicField`.
|
| 268 |
+
If ``None``, while ``ext`` consists of exactly one
|
| 269 |
+
:py:class:`~.AlgebraicNumber`, its alias (if any) will be used.
|
| 270 |
+
"""
|
| 271 |
+
if not dom.is_QQ:
|
| 272 |
+
raise DomainError("ground domain must be a rational field")
|
| 273 |
+
|
| 274 |
+
from sympy.polys.numberfields import to_number_field
|
| 275 |
+
if len(ext) == 1 and isinstance(ext[0], tuple):
|
| 276 |
+
orig_ext = ext[0][1:]
|
| 277 |
+
else:
|
| 278 |
+
orig_ext = ext
|
| 279 |
+
|
| 280 |
+
if alias is None and len(ext) == 1:
|
| 281 |
+
alias = getattr(ext[0], 'alias', None)
|
| 282 |
+
|
| 283 |
+
self.orig_ext = orig_ext
|
| 284 |
+
"""
|
| 285 |
+
Original elements given to generate the extension.
|
| 286 |
+
|
| 287 |
+
>>> from sympy import QQ, sqrt
|
| 288 |
+
>>> K = QQ.algebraic_field(sqrt(2), sqrt(3))
|
| 289 |
+
>>> K.orig_ext
|
| 290 |
+
(sqrt(2), sqrt(3))
|
| 291 |
+
"""
|
| 292 |
+
|
| 293 |
+
self.ext = to_number_field(ext, alias=alias)
|
| 294 |
+
"""
|
| 295 |
+
Primitive element used for the extension.
|
| 296 |
+
|
| 297 |
+
>>> from sympy import QQ, sqrt
|
| 298 |
+
>>> K = QQ.algebraic_field(sqrt(2), sqrt(3))
|
| 299 |
+
>>> K.ext
|
| 300 |
+
sqrt(2) + sqrt(3)
|
| 301 |
+
"""
|
| 302 |
+
|
| 303 |
+
self.mod = self.ext.minpoly.rep
|
| 304 |
+
"""
|
| 305 |
+
Minimal polynomial for the primitive element of the extension.
|
| 306 |
+
|
| 307 |
+
>>> from sympy import QQ, sqrt
|
| 308 |
+
>>> K = QQ.algebraic_field(sqrt(2))
|
| 309 |
+
>>> K.mod
|
| 310 |
+
DMP([1, 0, -2], QQ)
|
| 311 |
+
"""
|
| 312 |
+
|
| 313 |
+
self.domain = self.dom = dom
|
| 314 |
+
|
| 315 |
+
self.ngens = 1
|
| 316 |
+
self.symbols = self.gens = (self.ext,)
|
| 317 |
+
self.unit = self([dom(1), dom(0)])
|
| 318 |
+
|
| 319 |
+
self.zero = self.dtype.zero(self.mod.to_list(), dom)
|
| 320 |
+
self.one = self.dtype.one(self.mod.to_list(), dom)
|
| 321 |
+
|
| 322 |
+
self._maximal_order = None
|
| 323 |
+
self._discriminant = None
|
| 324 |
+
self._nilradicals_mod_p = {}
|
| 325 |
+
|
| 326 |
+
def new(self, element):
|
| 327 |
+
return self.dtype(element, self.mod.to_list(), self.dom)
|
| 328 |
+
|
| 329 |
+
def __str__(self):
|
| 330 |
+
return str(self.dom) + '<' + str(self.ext) + '>'
|
| 331 |
+
|
| 332 |
+
def __hash__(self):
|
| 333 |
+
return hash((self.__class__.__name__, self.dtype, self.dom, self.ext))
|
| 334 |
+
|
| 335 |
+
def __eq__(self, other):
|
| 336 |
+
"""Returns ``True`` if two domains are equivalent. """
|
| 337 |
+
if isinstance(other, AlgebraicField):
|
| 338 |
+
return self.dtype == other.dtype and self.ext == other.ext
|
| 339 |
+
else:
|
| 340 |
+
return NotImplemented
|
| 341 |
+
|
| 342 |
+
def algebraic_field(self, *extension, alias=None):
|
| 343 |
+
r"""Returns an algebraic field, i.e. `\mathbb{Q}(\alpha, \ldots)`. """
|
| 344 |
+
return AlgebraicField(self.dom, *((self.ext,) + extension), alias=alias)
|
| 345 |
+
|
| 346 |
+
def to_alg_num(self, a):
|
| 347 |
+
"""Convert ``a`` of ``dtype`` to an :py:class:`~.AlgebraicNumber`. """
|
| 348 |
+
return self.ext.field_element(a)
|
| 349 |
+
|
| 350 |
+
def to_sympy(self, a):
|
| 351 |
+
"""Convert ``a`` of ``dtype`` to a SymPy object. """
|
| 352 |
+
# Precompute a converter to be reused:
|
| 353 |
+
if not hasattr(self, '_converter'):
|
| 354 |
+
self._converter = _make_converter(self)
|
| 355 |
+
|
| 356 |
+
return self._converter(a)
|
| 357 |
+
|
| 358 |
+
def from_sympy(self, a):
|
| 359 |
+
"""Convert SymPy's expression to ``dtype``. """
|
| 360 |
+
try:
|
| 361 |
+
return self([self.dom.from_sympy(a)])
|
| 362 |
+
except CoercionFailed:
|
| 363 |
+
pass
|
| 364 |
+
|
| 365 |
+
from sympy.polys.numberfields import to_number_field
|
| 366 |
+
|
| 367 |
+
try:
|
| 368 |
+
return self(to_number_field(a, self.ext).native_coeffs())
|
| 369 |
+
except (NotAlgebraic, IsomorphismFailed):
|
| 370 |
+
raise CoercionFailed(
|
| 371 |
+
"%s is not a valid algebraic number in %s" % (a, self))
|
| 372 |
+
|
| 373 |
+
def from_ZZ(K1, a, K0):
|
| 374 |
+
"""Convert a Python ``int`` object to ``dtype``. """
|
| 375 |
+
return K1(K1.dom.convert(a, K0))
|
| 376 |
+
|
| 377 |
+
def from_ZZ_python(K1, a, K0):
|
| 378 |
+
"""Convert a Python ``int`` object to ``dtype``. """
|
| 379 |
+
return K1(K1.dom.convert(a, K0))
|
| 380 |
+
|
| 381 |
+
def from_QQ(K1, a, K0):
|
| 382 |
+
"""Convert a Python ``Fraction`` object to ``dtype``. """
|
| 383 |
+
return K1(K1.dom.convert(a, K0))
|
| 384 |
+
|
| 385 |
+
def from_QQ_python(K1, a, K0):
|
| 386 |
+
"""Convert a Python ``Fraction`` object to ``dtype``. """
|
| 387 |
+
return K1(K1.dom.convert(a, K0))
|
| 388 |
+
|
| 389 |
+
def from_ZZ_gmpy(K1, a, K0):
|
| 390 |
+
"""Convert a GMPY ``mpz`` object to ``dtype``. """
|
| 391 |
+
return K1(K1.dom.convert(a, K0))
|
| 392 |
+
|
| 393 |
+
def from_QQ_gmpy(K1, a, K0):
|
| 394 |
+
"""Convert a GMPY ``mpq`` object to ``dtype``. """
|
| 395 |
+
return K1(K1.dom.convert(a, K0))
|
| 396 |
+
|
| 397 |
+
def from_RealField(K1, a, K0):
|
| 398 |
+
"""Convert a mpmath ``mpf`` object to ``dtype``. """
|
| 399 |
+
return K1(K1.dom.convert(a, K0))
|
| 400 |
+
|
| 401 |
+
def get_ring(self):
|
| 402 |
+
"""Returns a ring associated with ``self``. """
|
| 403 |
+
raise DomainError('there is no ring associated with %s' % self)
|
| 404 |
+
|
| 405 |
+
def is_positive(self, a):
|
| 406 |
+
"""Returns True if ``a`` is positive. """
|
| 407 |
+
return self.dom.is_positive(a.LC())
|
| 408 |
+
|
| 409 |
+
def is_negative(self, a):
|
| 410 |
+
"""Returns True if ``a`` is negative. """
|
| 411 |
+
return self.dom.is_negative(a.LC())
|
| 412 |
+
|
| 413 |
+
def is_nonpositive(self, a):
|
| 414 |
+
"""Returns True if ``a`` is non-positive. """
|
| 415 |
+
return self.dom.is_nonpositive(a.LC())
|
| 416 |
+
|
| 417 |
+
def is_nonnegative(self, a):
|
| 418 |
+
"""Returns True if ``a`` is non-negative. """
|
| 419 |
+
return self.dom.is_nonnegative(a.LC())
|
| 420 |
+
|
| 421 |
+
def numer(self, a):
|
| 422 |
+
"""Returns numerator of ``a``. """
|
| 423 |
+
return a
|
| 424 |
+
|
| 425 |
+
def denom(self, a):
|
| 426 |
+
"""Returns denominator of ``a``. """
|
| 427 |
+
return self.one
|
| 428 |
+
|
| 429 |
+
def from_AlgebraicField(K1, a, K0):
|
| 430 |
+
"""Convert AlgebraicField element 'a' to another AlgebraicField """
|
| 431 |
+
return K1.from_sympy(K0.to_sympy(a))
|
| 432 |
+
|
| 433 |
+
def from_GaussianIntegerRing(K1, a, K0):
|
| 434 |
+
"""Convert a GaussianInteger element 'a' to ``dtype``. """
|
| 435 |
+
return K1.from_sympy(K0.to_sympy(a))
|
| 436 |
+
|
| 437 |
+
def from_GaussianRationalField(K1, a, K0):
|
| 438 |
+
"""Convert a GaussianRational element 'a' to ``dtype``. """
|
| 439 |
+
return K1.from_sympy(K0.to_sympy(a))
|
| 440 |
+
|
| 441 |
+
def _do_round_two(self):
|
| 442 |
+
from sympy.polys.numberfields.basis import round_two
|
| 443 |
+
ZK, dK = round_two(self, radicals=self._nilradicals_mod_p)
|
| 444 |
+
self._maximal_order = ZK
|
| 445 |
+
self._discriminant = dK
|
| 446 |
+
|
| 447 |
+
def maximal_order(self):
|
| 448 |
+
"""
|
| 449 |
+
Compute the maximal order, or ring of integers, of the field.
|
| 450 |
+
|
| 451 |
+
Returns
|
| 452 |
+
=======
|
| 453 |
+
|
| 454 |
+
:py:class:`~sympy.polys.numberfields.modules.Submodule`.
|
| 455 |
+
|
| 456 |
+
See Also
|
| 457 |
+
========
|
| 458 |
+
|
| 459 |
+
integral_basis
|
| 460 |
+
|
| 461 |
+
"""
|
| 462 |
+
if self._maximal_order is None:
|
| 463 |
+
self._do_round_two()
|
| 464 |
+
return self._maximal_order
|
| 465 |
+
|
| 466 |
+
def integral_basis(self, fmt=None):
|
| 467 |
+
r"""
|
| 468 |
+
Get an integral basis for the field.
|
| 469 |
+
|
| 470 |
+
Parameters
|
| 471 |
+
==========
|
| 472 |
+
|
| 473 |
+
fmt : str, None, optional (default=None)
|
| 474 |
+
If ``None``, return a list of :py:class:`~.ANP` instances.
|
| 475 |
+
If ``"sympy"``, convert each element of the list to an
|
| 476 |
+
:py:class:`~.Expr`, using ``self.to_sympy()``.
|
| 477 |
+
If ``"alg"``, convert each element of the list to an
|
| 478 |
+
:py:class:`~.AlgebraicNumber`, using ``self.to_alg_num()``.
|
| 479 |
+
|
| 480 |
+
Examples
|
| 481 |
+
========
|
| 482 |
+
|
| 483 |
+
>>> from sympy import QQ, AlgebraicNumber, sqrt
|
| 484 |
+
>>> alpha = AlgebraicNumber(sqrt(5), alias='alpha')
|
| 485 |
+
>>> k = QQ.algebraic_field(alpha)
|
| 486 |
+
>>> B0 = k.integral_basis()
|
| 487 |
+
>>> B1 = k.integral_basis(fmt='sympy')
|
| 488 |
+
>>> B2 = k.integral_basis(fmt='alg')
|
| 489 |
+
>>> print(B0[1]) # doctest: +SKIP
|
| 490 |
+
ANP([mpq(1,2), mpq(1,2)], [mpq(1,1), mpq(0,1), mpq(-5,1)], QQ)
|
| 491 |
+
>>> print(B1[1])
|
| 492 |
+
1/2 + alpha/2
|
| 493 |
+
>>> print(B2[1])
|
| 494 |
+
alpha/2 + 1/2
|
| 495 |
+
|
| 496 |
+
In the last two cases we get legible expressions, which print somewhat
|
| 497 |
+
differently because of the different types involved:
|
| 498 |
+
|
| 499 |
+
>>> print(type(B1[1]))
|
| 500 |
+
<class 'sympy.core.add.Add'>
|
| 501 |
+
>>> print(type(B2[1]))
|
| 502 |
+
<class 'sympy.core.numbers.AlgebraicNumber'>
|
| 503 |
+
|
| 504 |
+
See Also
|
| 505 |
+
========
|
| 506 |
+
|
| 507 |
+
to_sympy
|
| 508 |
+
to_alg_num
|
| 509 |
+
maximal_order
|
| 510 |
+
"""
|
| 511 |
+
ZK = self.maximal_order()
|
| 512 |
+
M = ZK.QQ_matrix
|
| 513 |
+
n = M.shape[1]
|
| 514 |
+
B = [self.new(list(reversed(M[:, j].flat()))) for j in range(n)]
|
| 515 |
+
if fmt == 'sympy':
|
| 516 |
+
return [self.to_sympy(b) for b in B]
|
| 517 |
+
elif fmt == 'alg':
|
| 518 |
+
return [self.to_alg_num(b) for b in B]
|
| 519 |
+
return B
|
| 520 |
+
|
| 521 |
+
def discriminant(self):
|
| 522 |
+
"""Get the discriminant of the field."""
|
| 523 |
+
if self._discriminant is None:
|
| 524 |
+
self._do_round_two()
|
| 525 |
+
return self._discriminant
|
| 526 |
+
|
| 527 |
+
def primes_above(self, p):
|
| 528 |
+
"""Compute the prime ideals lying above a given rational prime *p*."""
|
| 529 |
+
from sympy.polys.numberfields.primes import prime_decomp
|
| 530 |
+
ZK = self.maximal_order()
|
| 531 |
+
dK = self.discriminant()
|
| 532 |
+
rad = self._nilradicals_mod_p.get(p)
|
| 533 |
+
return prime_decomp(p, ZK=ZK, dK=dK, radical=rad)
|
| 534 |
+
|
| 535 |
+
def galois_group(self, by_name=False, max_tries=30, randomize=False):
|
| 536 |
+
"""
|
| 537 |
+
Compute the Galois group of the Galois closure of this field.
|
| 538 |
+
|
| 539 |
+
Examples
|
| 540 |
+
========
|
| 541 |
+
|
| 542 |
+
If the field is Galois, the order of the group will equal the degree
|
| 543 |
+
of the field:
|
| 544 |
+
|
| 545 |
+
>>> from sympy import QQ
|
| 546 |
+
>>> from sympy.abc import x
|
| 547 |
+
>>> k = QQ.alg_field_from_poly(x**4 + 1)
|
| 548 |
+
>>> G, _ = k.galois_group()
|
| 549 |
+
>>> G.order()
|
| 550 |
+
4
|
| 551 |
+
|
| 552 |
+
If the field is not Galois, then its Galois closure is a proper
|
| 553 |
+
extension, and the order of the Galois group will be greater than the
|
| 554 |
+
degree of the field:
|
| 555 |
+
|
| 556 |
+
>>> k = QQ.alg_field_from_poly(x**4 - 2)
|
| 557 |
+
>>> G, _ = k.galois_group()
|
| 558 |
+
>>> G.order()
|
| 559 |
+
8
|
| 560 |
+
|
| 561 |
+
See Also
|
| 562 |
+
========
|
| 563 |
+
|
| 564 |
+
sympy.polys.numberfields.galoisgroups.galois_group
|
| 565 |
+
|
| 566 |
+
"""
|
| 567 |
+
return self.ext.minpoly_of_element().galois_group(
|
| 568 |
+
by_name=by_name, max_tries=max_tries, randomize=randomize)
|
| 569 |
+
|
| 570 |
+
|
| 571 |
+
def _make_converter(K):
|
| 572 |
+
"""Construct the converter to convert back to Expr"""
|
| 573 |
+
# Precompute the effect of converting to SymPy and expanding expressions
|
| 574 |
+
# like (sqrt(2) + sqrt(3))**2. Asking Expr to do the expansion on every
|
| 575 |
+
# conversion from K to Expr is slow. Here we compute the expansions for
|
| 576 |
+
# each power of the generator and collect together the resulting algebraic
|
| 577 |
+
# terms and the rational coefficients into a matrix.
|
| 578 |
+
|
| 579 |
+
gen = K.ext.as_expr()
|
| 580 |
+
todom = K.dom.from_sympy
|
| 581 |
+
|
| 582 |
+
# We'll let Expr compute the expansions. We won't make any presumptions
|
| 583 |
+
# about what this results in except that it is QQ-linear in some terms
|
| 584 |
+
# that we will call algebraics. The final result will be expressed in
|
| 585 |
+
# terms of those.
|
| 586 |
+
powers = [S.One, gen]
|
| 587 |
+
for n in range(2, K.mod.degree()):
|
| 588 |
+
powers.append((gen * powers[-1]).expand())
|
| 589 |
+
|
| 590 |
+
# Collect the rational coefficients and algebraic Expr that can
|
| 591 |
+
# map the ANP coefficients into an expanded SymPy expression
|
| 592 |
+
terms = [dict(t.as_coeff_Mul()[::-1] for t in Add.make_args(p)) for p in powers]
|
| 593 |
+
algebraics = set().union(*terms)
|
| 594 |
+
matrix = [[todom(t.get(a, S.Zero)) for t in terms] for a in algebraics]
|
| 595 |
+
|
| 596 |
+
# Create a function to do the conversion efficiently:
|
| 597 |
+
|
| 598 |
+
def converter(a):
|
| 599 |
+
"""Convert a to Expr using converter"""
|
| 600 |
+
ai = a.to_list()[::-1]
|
| 601 |
+
tosympy = K.dom.to_sympy
|
| 602 |
+
coeffs_dom = [sum(mij*aj for mij, aj in zip(mi, ai)) for mi in matrix]
|
| 603 |
+
coeffs_sympy = [tosympy(c) for c in coeffs_dom]
|
| 604 |
+
res = Add(*(Mul(c, a) for c, a in zip(coeffs_sympy, algebraics)))
|
| 605 |
+
return res
|
| 606 |
+
|
| 607 |
+
return converter
|
mgm/lib/python3.10/site-packages/sympy/polys/domains/characteristiczero.py
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Implementation of :class:`CharacteristicZero` class. """
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
from sympy.polys.domains.domain import Domain
|
| 5 |
+
from sympy.utilities import public
|
| 6 |
+
|
| 7 |
+
@public
|
| 8 |
+
class CharacteristicZero(Domain):
|
| 9 |
+
"""Domain that has infinite number of elements. """
|
| 10 |
+
|
| 11 |
+
has_CharacteristicZero = True
|
| 12 |
+
|
| 13 |
+
def characteristic(self):
|
| 14 |
+
"""Return the characteristic of this domain. """
|
| 15 |
+
return 0
|
mgm/lib/python3.10/site-packages/sympy/polys/domains/compositedomain.py
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Implementation of :class:`CompositeDomain` class. """
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
from sympy.polys.domains.domain import Domain
|
| 5 |
+
from sympy.polys.polyerrors import GeneratorsError
|
| 6 |
+
|
| 7 |
+
from sympy.utilities import public
|
| 8 |
+
|
| 9 |
+
@public
|
| 10 |
+
class CompositeDomain(Domain):
|
| 11 |
+
"""Base class for composite domains, e.g. ZZ[x], ZZ(X). """
|
| 12 |
+
|
| 13 |
+
is_Composite = True
|
| 14 |
+
|
| 15 |
+
gens, ngens, symbols, domain = [None]*4
|
| 16 |
+
|
| 17 |
+
def inject(self, *symbols):
|
| 18 |
+
"""Inject generators into this domain. """
|
| 19 |
+
if not (set(self.symbols) & set(symbols)):
|
| 20 |
+
return self.__class__(self.domain, self.symbols + symbols, self.order)
|
| 21 |
+
else:
|
| 22 |
+
raise GeneratorsError("common generators in %s and %s" % (self.symbols, symbols))
|
| 23 |
+
|
| 24 |
+
def drop(self, *symbols):
|
| 25 |
+
"""Drop generators from this domain. """
|
| 26 |
+
symset = set(symbols)
|
| 27 |
+
newsyms = tuple(s for s in self.symbols if s not in symset)
|
| 28 |
+
domain = self.domain.drop(*symbols)
|
| 29 |
+
if not newsyms:
|
| 30 |
+
return domain
|
| 31 |
+
else:
|
| 32 |
+
return self.__class__(domain, newsyms, self.order)
|
| 33 |
+
|
| 34 |
+
def set_domain(self, domain):
|
| 35 |
+
"""Set the ground domain of this domain. """
|
| 36 |
+
return self.__class__(domain, self.symbols, self.order)
|
| 37 |
+
|
| 38 |
+
@property
|
| 39 |
+
def is_Exact(self):
|
| 40 |
+
"""Returns ``True`` if this domain is exact. """
|
| 41 |
+
return self.domain.is_Exact
|
| 42 |
+
|
| 43 |
+
def get_exact(self):
|
| 44 |
+
"""Returns an exact version of this domain. """
|
| 45 |
+
return self.set_domain(self.domain.get_exact())
|
| 46 |
+
|
| 47 |
+
@property
|
| 48 |
+
def has_CharacteristicZero(self):
|
| 49 |
+
return self.domain.has_CharacteristicZero
|
| 50 |
+
|
| 51 |
+
def characteristic(self):
|
| 52 |
+
return self.domain.characteristic()
|
mgm/lib/python3.10/site-packages/sympy/polys/domains/domain.py
ADDED
|
@@ -0,0 +1,1372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Implementation of :class:`Domain` class. """
|
| 2 |
+
|
| 3 |
+
from __future__ import annotations
|
| 4 |
+
from typing import Any
|
| 5 |
+
|
| 6 |
+
from sympy.core.numbers import AlgebraicNumber
|
| 7 |
+
from sympy.core import Basic, sympify
|
| 8 |
+
from sympy.core.sorting import ordered
|
| 9 |
+
from sympy.external.gmpy import GROUND_TYPES
|
| 10 |
+
from sympy.polys.domains.domainelement import DomainElement
|
| 11 |
+
from sympy.polys.orderings import lex
|
| 12 |
+
from sympy.polys.polyerrors import UnificationFailed, CoercionFailed, DomainError
|
| 13 |
+
from sympy.polys.polyutils import _unify_gens, _not_a_coeff
|
| 14 |
+
from sympy.utilities import public
|
| 15 |
+
from sympy.utilities.iterables import is_sequence
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
@public
|
| 19 |
+
class Domain:
|
| 20 |
+
"""Superclass for all domains in the polys domains system.
|
| 21 |
+
|
| 22 |
+
See :ref:`polys-domainsintro` for an introductory explanation of the
|
| 23 |
+
domains system.
|
| 24 |
+
|
| 25 |
+
The :py:class:`~.Domain` class is an abstract base class for all of the
|
| 26 |
+
concrete domain types. There are many different :py:class:`~.Domain`
|
| 27 |
+
subclasses each of which has an associated ``dtype`` which is a class
|
| 28 |
+
representing the elements of the domain. The coefficients of a
|
| 29 |
+
:py:class:`~.Poly` are elements of a domain which must be a subclass of
|
| 30 |
+
:py:class:`~.Domain`.
|
| 31 |
+
|
| 32 |
+
Examples
|
| 33 |
+
========
|
| 34 |
+
|
| 35 |
+
The most common example domains are the integers :ref:`ZZ` and the
|
| 36 |
+
rationals :ref:`QQ`.
|
| 37 |
+
|
| 38 |
+
>>> from sympy import Poly, symbols, Domain
|
| 39 |
+
>>> x, y = symbols('x, y')
|
| 40 |
+
>>> p = Poly(x**2 + y)
|
| 41 |
+
>>> p
|
| 42 |
+
Poly(x**2 + y, x, y, domain='ZZ')
|
| 43 |
+
>>> p.domain
|
| 44 |
+
ZZ
|
| 45 |
+
>>> isinstance(p.domain, Domain)
|
| 46 |
+
True
|
| 47 |
+
>>> Poly(x**2 + y/2)
|
| 48 |
+
Poly(x**2 + 1/2*y, x, y, domain='QQ')
|
| 49 |
+
|
| 50 |
+
The domains can be used directly in which case the domain object e.g.
|
| 51 |
+
(:ref:`ZZ` or :ref:`QQ`) can be used as a constructor for elements of
|
| 52 |
+
``dtype``.
|
| 53 |
+
|
| 54 |
+
>>> from sympy import ZZ, QQ
|
| 55 |
+
>>> ZZ(2)
|
| 56 |
+
2
|
| 57 |
+
>>> ZZ.dtype # doctest: +SKIP
|
| 58 |
+
<class 'int'>
|
| 59 |
+
>>> type(ZZ(2)) # doctest: +SKIP
|
| 60 |
+
<class 'int'>
|
| 61 |
+
>>> QQ(1, 2)
|
| 62 |
+
1/2
|
| 63 |
+
>>> type(QQ(1, 2)) # doctest: +SKIP
|
| 64 |
+
<class 'sympy.polys.domains.pythonrational.PythonRational'>
|
| 65 |
+
|
| 66 |
+
The corresponding domain elements can be used with the arithmetic
|
| 67 |
+
operations ``+,-,*,**`` and depending on the domain some combination of
|
| 68 |
+
``/,//,%`` might be usable. For example in :ref:`ZZ` both ``//`` (floor
|
| 69 |
+
division) and ``%`` (modulo division) can be used but ``/`` (true
|
| 70 |
+
division) cannot. Since :ref:`QQ` is a :py:class:`~.Field` its elements
|
| 71 |
+
can be used with ``/`` but ``//`` and ``%`` should not be used. Some
|
| 72 |
+
domains have a :py:meth:`~.Domain.gcd` method.
|
| 73 |
+
|
| 74 |
+
>>> ZZ(2) + ZZ(3)
|
| 75 |
+
5
|
| 76 |
+
>>> ZZ(5) // ZZ(2)
|
| 77 |
+
2
|
| 78 |
+
>>> ZZ(5) % ZZ(2)
|
| 79 |
+
1
|
| 80 |
+
>>> QQ(1, 2) / QQ(2, 3)
|
| 81 |
+
3/4
|
| 82 |
+
>>> ZZ.gcd(ZZ(4), ZZ(2))
|
| 83 |
+
2
|
| 84 |
+
>>> QQ.gcd(QQ(2,7), QQ(5,3))
|
| 85 |
+
1/21
|
| 86 |
+
>>> ZZ.is_Field
|
| 87 |
+
False
|
| 88 |
+
>>> QQ.is_Field
|
| 89 |
+
True
|
| 90 |
+
|
| 91 |
+
There are also many other domains including:
|
| 92 |
+
|
| 93 |
+
1. :ref:`GF(p)` for finite fields of prime order.
|
| 94 |
+
2. :ref:`RR` for real (floating point) numbers.
|
| 95 |
+
3. :ref:`CC` for complex (floating point) numbers.
|
| 96 |
+
4. :ref:`QQ(a)` for algebraic number fields.
|
| 97 |
+
5. :ref:`K[x]` for polynomial rings.
|
| 98 |
+
6. :ref:`K(x)` for rational function fields.
|
| 99 |
+
7. :ref:`EX` for arbitrary expressions.
|
| 100 |
+
|
| 101 |
+
Each domain is represented by a domain object and also an implementation
|
| 102 |
+
class (``dtype``) for the elements of the domain. For example the
|
| 103 |
+
:ref:`K[x]` domains are represented by a domain object which is an
|
| 104 |
+
instance of :py:class:`~.PolynomialRing` and the elements are always
|
| 105 |
+
instances of :py:class:`~.PolyElement`. The implementation class
|
| 106 |
+
represents particular types of mathematical expressions in a way that is
|
| 107 |
+
more efficient than a normal SymPy expression which is of type
|
| 108 |
+
:py:class:`~.Expr`. The domain methods :py:meth:`~.Domain.from_sympy` and
|
| 109 |
+
:py:meth:`~.Domain.to_sympy` are used to convert from :py:class:`~.Expr`
|
| 110 |
+
to a domain element and vice versa.
|
| 111 |
+
|
| 112 |
+
>>> from sympy import Symbol, ZZ, Expr
|
| 113 |
+
>>> x = Symbol('x')
|
| 114 |
+
>>> K = ZZ[x] # polynomial ring domain
|
| 115 |
+
>>> K
|
| 116 |
+
ZZ[x]
|
| 117 |
+
>>> type(K) # class of the domain
|
| 118 |
+
<class 'sympy.polys.domains.polynomialring.PolynomialRing'>
|
| 119 |
+
>>> K.dtype # class of the elements
|
| 120 |
+
<class 'sympy.polys.rings.PolyElement'>
|
| 121 |
+
>>> p_expr = x**2 + 1 # Expr
|
| 122 |
+
>>> p_expr
|
| 123 |
+
x**2 + 1
|
| 124 |
+
>>> type(p_expr)
|
| 125 |
+
<class 'sympy.core.add.Add'>
|
| 126 |
+
>>> isinstance(p_expr, Expr)
|
| 127 |
+
True
|
| 128 |
+
>>> p_domain = K.from_sympy(p_expr)
|
| 129 |
+
>>> p_domain # domain element
|
| 130 |
+
x**2 + 1
|
| 131 |
+
>>> type(p_domain)
|
| 132 |
+
<class 'sympy.polys.rings.PolyElement'>
|
| 133 |
+
>>> K.to_sympy(p_domain) == p_expr
|
| 134 |
+
True
|
| 135 |
+
|
| 136 |
+
The :py:meth:`~.Domain.convert_from` method is used to convert domain
|
| 137 |
+
elements from one domain to another.
|
| 138 |
+
|
| 139 |
+
>>> from sympy import ZZ, QQ
|
| 140 |
+
>>> ez = ZZ(2)
|
| 141 |
+
>>> eq = QQ.convert_from(ez, ZZ)
|
| 142 |
+
>>> type(ez) # doctest: +SKIP
|
| 143 |
+
<class 'int'>
|
| 144 |
+
>>> type(eq) # doctest: +SKIP
|
| 145 |
+
<class 'sympy.polys.domains.pythonrational.PythonRational'>
|
| 146 |
+
|
| 147 |
+
Elements from different domains should not be mixed in arithmetic or other
|
| 148 |
+
operations: they should be converted to a common domain first. The domain
|
| 149 |
+
method :py:meth:`~.Domain.unify` is used to find a domain that can
|
| 150 |
+
represent all the elements of two given domains.
|
| 151 |
+
|
| 152 |
+
>>> from sympy import ZZ, QQ, symbols
|
| 153 |
+
>>> x, y = symbols('x, y')
|
| 154 |
+
>>> ZZ.unify(QQ)
|
| 155 |
+
QQ
|
| 156 |
+
>>> ZZ[x].unify(QQ)
|
| 157 |
+
QQ[x]
|
| 158 |
+
>>> ZZ[x].unify(QQ[y])
|
| 159 |
+
QQ[x,y]
|
| 160 |
+
|
| 161 |
+
If a domain is a :py:class:`~.Ring` then is might have an associated
|
| 162 |
+
:py:class:`~.Field` and vice versa. The :py:meth:`~.Domain.get_field` and
|
| 163 |
+
:py:meth:`~.Domain.get_ring` methods will find or create the associated
|
| 164 |
+
domain.
|
| 165 |
+
|
| 166 |
+
>>> from sympy import ZZ, QQ, Symbol
|
| 167 |
+
>>> x = Symbol('x')
|
| 168 |
+
>>> ZZ.has_assoc_Field
|
| 169 |
+
True
|
| 170 |
+
>>> ZZ.get_field()
|
| 171 |
+
QQ
|
| 172 |
+
>>> QQ.has_assoc_Ring
|
| 173 |
+
True
|
| 174 |
+
>>> QQ.get_ring()
|
| 175 |
+
ZZ
|
| 176 |
+
>>> K = QQ[x]
|
| 177 |
+
>>> K
|
| 178 |
+
QQ[x]
|
| 179 |
+
>>> K.get_field()
|
| 180 |
+
QQ(x)
|
| 181 |
+
|
| 182 |
+
See also
|
| 183 |
+
========
|
| 184 |
+
|
| 185 |
+
DomainElement: abstract base class for domain elements
|
| 186 |
+
construct_domain: construct a minimal domain for some expressions
|
| 187 |
+
|
| 188 |
+
"""
|
| 189 |
+
|
| 190 |
+
dtype: type | None = None
|
| 191 |
+
"""The type (class) of the elements of this :py:class:`~.Domain`:
|
| 192 |
+
|
| 193 |
+
>>> from sympy import ZZ, QQ, Symbol
|
| 194 |
+
>>> ZZ.dtype
|
| 195 |
+
<class 'int'>
|
| 196 |
+
>>> z = ZZ(2)
|
| 197 |
+
>>> z
|
| 198 |
+
2
|
| 199 |
+
>>> type(z)
|
| 200 |
+
<class 'int'>
|
| 201 |
+
>>> type(z) == ZZ.dtype
|
| 202 |
+
True
|
| 203 |
+
|
| 204 |
+
Every domain has an associated **dtype** ("datatype") which is the
|
| 205 |
+
class of the associated domain elements.
|
| 206 |
+
|
| 207 |
+
See also
|
| 208 |
+
========
|
| 209 |
+
|
| 210 |
+
of_type
|
| 211 |
+
"""
|
| 212 |
+
|
| 213 |
+
zero: Any = None
|
| 214 |
+
"""The zero element of the :py:class:`~.Domain`:
|
| 215 |
+
|
| 216 |
+
>>> from sympy import QQ
|
| 217 |
+
>>> QQ.zero
|
| 218 |
+
0
|
| 219 |
+
>>> QQ.of_type(QQ.zero)
|
| 220 |
+
True
|
| 221 |
+
|
| 222 |
+
See also
|
| 223 |
+
========
|
| 224 |
+
|
| 225 |
+
of_type
|
| 226 |
+
one
|
| 227 |
+
"""
|
| 228 |
+
|
| 229 |
+
one: Any = None
|
| 230 |
+
"""The one element of the :py:class:`~.Domain`:
|
| 231 |
+
|
| 232 |
+
>>> from sympy import QQ
|
| 233 |
+
>>> QQ.one
|
| 234 |
+
1
|
| 235 |
+
>>> QQ.of_type(QQ.one)
|
| 236 |
+
True
|
| 237 |
+
|
| 238 |
+
See also
|
| 239 |
+
========
|
| 240 |
+
|
| 241 |
+
of_type
|
| 242 |
+
zero
|
| 243 |
+
"""
|
| 244 |
+
|
| 245 |
+
is_Ring = False
|
| 246 |
+
"""Boolean flag indicating if the domain is a :py:class:`~.Ring`.
|
| 247 |
+
|
| 248 |
+
>>> from sympy import ZZ
|
| 249 |
+
>>> ZZ.is_Ring
|
| 250 |
+
True
|
| 251 |
+
|
| 252 |
+
Basically every :py:class:`~.Domain` represents a ring so this flag is
|
| 253 |
+
not that useful.
|
| 254 |
+
|
| 255 |
+
See also
|
| 256 |
+
========
|
| 257 |
+
|
| 258 |
+
is_PID
|
| 259 |
+
is_Field
|
| 260 |
+
get_ring
|
| 261 |
+
has_assoc_Ring
|
| 262 |
+
"""
|
| 263 |
+
|
| 264 |
+
is_Field = False
|
| 265 |
+
"""Boolean flag indicating if the domain is a :py:class:`~.Field`.
|
| 266 |
+
|
| 267 |
+
>>> from sympy import ZZ, QQ
|
| 268 |
+
>>> ZZ.is_Field
|
| 269 |
+
False
|
| 270 |
+
>>> QQ.is_Field
|
| 271 |
+
True
|
| 272 |
+
|
| 273 |
+
See also
|
| 274 |
+
========
|
| 275 |
+
|
| 276 |
+
is_PID
|
| 277 |
+
is_Ring
|
| 278 |
+
get_field
|
| 279 |
+
has_assoc_Field
|
| 280 |
+
"""
|
| 281 |
+
|
| 282 |
+
has_assoc_Ring = False
|
| 283 |
+
"""Boolean flag indicating if the domain has an associated
|
| 284 |
+
:py:class:`~.Ring`.
|
| 285 |
+
|
| 286 |
+
>>> from sympy import QQ
|
| 287 |
+
>>> QQ.has_assoc_Ring
|
| 288 |
+
True
|
| 289 |
+
>>> QQ.get_ring()
|
| 290 |
+
ZZ
|
| 291 |
+
|
| 292 |
+
See also
|
| 293 |
+
========
|
| 294 |
+
|
| 295 |
+
is_Field
|
| 296 |
+
get_ring
|
| 297 |
+
"""
|
| 298 |
+
|
| 299 |
+
has_assoc_Field = False
|
| 300 |
+
"""Boolean flag indicating if the domain has an associated
|
| 301 |
+
:py:class:`~.Field`.
|
| 302 |
+
|
| 303 |
+
>>> from sympy import ZZ
|
| 304 |
+
>>> ZZ.has_assoc_Field
|
| 305 |
+
True
|
| 306 |
+
>>> ZZ.get_field()
|
| 307 |
+
QQ
|
| 308 |
+
|
| 309 |
+
See also
|
| 310 |
+
========
|
| 311 |
+
|
| 312 |
+
is_Field
|
| 313 |
+
get_field
|
| 314 |
+
"""
|
| 315 |
+
|
| 316 |
+
is_FiniteField = is_FF = False
|
| 317 |
+
is_IntegerRing = is_ZZ = False
|
| 318 |
+
is_RationalField = is_QQ = False
|
| 319 |
+
is_GaussianRing = is_ZZ_I = False
|
| 320 |
+
is_GaussianField = is_QQ_I = False
|
| 321 |
+
is_RealField = is_RR = False
|
| 322 |
+
is_ComplexField = is_CC = False
|
| 323 |
+
is_AlgebraicField = is_Algebraic = False
|
| 324 |
+
is_PolynomialRing = is_Poly = False
|
| 325 |
+
is_FractionField = is_Frac = False
|
| 326 |
+
is_SymbolicDomain = is_EX = False
|
| 327 |
+
is_SymbolicRawDomain = is_EXRAW = False
|
| 328 |
+
is_FiniteExtension = False
|
| 329 |
+
|
| 330 |
+
is_Exact = True
|
| 331 |
+
is_Numerical = False
|
| 332 |
+
|
| 333 |
+
is_Simple = False
|
| 334 |
+
is_Composite = False
|
| 335 |
+
|
| 336 |
+
is_PID = False
|
| 337 |
+
"""Boolean flag indicating if the domain is a `principal ideal domain`_.
|
| 338 |
+
|
| 339 |
+
>>> from sympy import ZZ
|
| 340 |
+
>>> ZZ.has_assoc_Field
|
| 341 |
+
True
|
| 342 |
+
>>> ZZ.get_field()
|
| 343 |
+
QQ
|
| 344 |
+
|
| 345 |
+
.. _principal ideal domain: https://en.wikipedia.org/wiki/Principal_ideal_domain
|
| 346 |
+
|
| 347 |
+
See also
|
| 348 |
+
========
|
| 349 |
+
|
| 350 |
+
is_Field
|
| 351 |
+
get_field
|
| 352 |
+
"""
|
| 353 |
+
|
| 354 |
+
has_CharacteristicZero = False
|
| 355 |
+
|
| 356 |
+
rep: str | None = None
|
| 357 |
+
alias: str | None = None
|
| 358 |
+
|
| 359 |
+
def __init__(self):
|
| 360 |
+
raise NotImplementedError
|
| 361 |
+
|
| 362 |
+
def __str__(self):
|
| 363 |
+
return self.rep
|
| 364 |
+
|
| 365 |
+
def __repr__(self):
|
| 366 |
+
return str(self)
|
| 367 |
+
|
| 368 |
+
def __hash__(self):
|
| 369 |
+
return hash((self.__class__.__name__, self.dtype))
|
| 370 |
+
|
| 371 |
+
def new(self, *args):
|
| 372 |
+
return self.dtype(*args)
|
| 373 |
+
|
| 374 |
+
@property
|
| 375 |
+
def tp(self):
|
| 376 |
+
"""Alias for :py:attr:`~.Domain.dtype`"""
|
| 377 |
+
return self.dtype
|
| 378 |
+
|
| 379 |
+
def __call__(self, *args):
|
| 380 |
+
"""Construct an element of ``self`` domain from ``args``. """
|
| 381 |
+
return self.new(*args)
|
| 382 |
+
|
| 383 |
+
def normal(self, *args):
|
| 384 |
+
return self.dtype(*args)
|
| 385 |
+
|
| 386 |
+
def convert_from(self, element, base):
|
| 387 |
+
"""Convert ``element`` to ``self.dtype`` given the base domain. """
|
| 388 |
+
if base.alias is not None:
|
| 389 |
+
method = "from_" + base.alias
|
| 390 |
+
else:
|
| 391 |
+
method = "from_" + base.__class__.__name__
|
| 392 |
+
|
| 393 |
+
_convert = getattr(self, method)
|
| 394 |
+
|
| 395 |
+
if _convert is not None:
|
| 396 |
+
result = _convert(element, base)
|
| 397 |
+
|
| 398 |
+
if result is not None:
|
| 399 |
+
return result
|
| 400 |
+
|
| 401 |
+
raise CoercionFailed("Cannot convert %s of type %s from %s to %s" % (element, type(element), base, self))
|
| 402 |
+
|
| 403 |
+
def convert(self, element, base=None):
|
| 404 |
+
"""Convert ``element`` to ``self.dtype``. """
|
| 405 |
+
|
| 406 |
+
if base is not None:
|
| 407 |
+
if _not_a_coeff(element):
|
| 408 |
+
raise CoercionFailed('%s is not in any domain' % element)
|
| 409 |
+
return self.convert_from(element, base)
|
| 410 |
+
|
| 411 |
+
if self.of_type(element):
|
| 412 |
+
return element
|
| 413 |
+
|
| 414 |
+
if _not_a_coeff(element):
|
| 415 |
+
raise CoercionFailed('%s is not in any domain' % element)
|
| 416 |
+
|
| 417 |
+
from sympy.polys.domains import ZZ, QQ, RealField, ComplexField
|
| 418 |
+
|
| 419 |
+
if ZZ.of_type(element):
|
| 420 |
+
return self.convert_from(element, ZZ)
|
| 421 |
+
|
| 422 |
+
if isinstance(element, int):
|
| 423 |
+
return self.convert_from(ZZ(element), ZZ)
|
| 424 |
+
|
| 425 |
+
if GROUND_TYPES != 'python':
|
| 426 |
+
if isinstance(element, ZZ.tp):
|
| 427 |
+
return self.convert_from(element, ZZ)
|
| 428 |
+
if isinstance(element, QQ.tp):
|
| 429 |
+
return self.convert_from(element, QQ)
|
| 430 |
+
|
| 431 |
+
if isinstance(element, float):
|
| 432 |
+
parent = RealField(tol=False)
|
| 433 |
+
return self.convert_from(parent(element), parent)
|
| 434 |
+
|
| 435 |
+
if isinstance(element, complex):
|
| 436 |
+
parent = ComplexField(tol=False)
|
| 437 |
+
return self.convert_from(parent(element), parent)
|
| 438 |
+
|
| 439 |
+
if isinstance(element, DomainElement):
|
| 440 |
+
return self.convert_from(element, element.parent())
|
| 441 |
+
|
| 442 |
+
# TODO: implement this in from_ methods
|
| 443 |
+
if self.is_Numerical and getattr(element, 'is_ground', False):
|
| 444 |
+
return self.convert(element.LC())
|
| 445 |
+
|
| 446 |
+
if isinstance(element, Basic):
|
| 447 |
+
try:
|
| 448 |
+
return self.from_sympy(element)
|
| 449 |
+
except (TypeError, ValueError):
|
| 450 |
+
pass
|
| 451 |
+
else: # TODO: remove this branch
|
| 452 |
+
if not is_sequence(element):
|
| 453 |
+
try:
|
| 454 |
+
element = sympify(element, strict=True)
|
| 455 |
+
if isinstance(element, Basic):
|
| 456 |
+
return self.from_sympy(element)
|
| 457 |
+
except (TypeError, ValueError):
|
| 458 |
+
pass
|
| 459 |
+
|
| 460 |
+
raise CoercionFailed("Cannot convert %s of type %s to %s" % (element, type(element), self))
|
| 461 |
+
|
| 462 |
+
def of_type(self, element):
|
| 463 |
+
"""Check if ``a`` is of type ``dtype``. """
|
| 464 |
+
return isinstance(element, self.tp) # XXX: this isn't correct, e.g. PolyElement
|
| 465 |
+
|
| 466 |
+
def __contains__(self, a):
|
| 467 |
+
"""Check if ``a`` belongs to this domain. """
|
| 468 |
+
try:
|
| 469 |
+
if _not_a_coeff(a):
|
| 470 |
+
raise CoercionFailed
|
| 471 |
+
self.convert(a) # this might raise, too
|
| 472 |
+
except CoercionFailed:
|
| 473 |
+
return False
|
| 474 |
+
|
| 475 |
+
return True
|
| 476 |
+
|
| 477 |
+
def to_sympy(self, a):
|
| 478 |
+
"""Convert domain element *a* to a SymPy expression (Expr).
|
| 479 |
+
|
| 480 |
+
Explanation
|
| 481 |
+
===========
|
| 482 |
+
|
| 483 |
+
Convert a :py:class:`~.Domain` element *a* to :py:class:`~.Expr`. Most
|
| 484 |
+
public SymPy functions work with objects of type :py:class:`~.Expr`.
|
| 485 |
+
The elements of a :py:class:`~.Domain` have a different internal
|
| 486 |
+
representation. It is not possible to mix domain elements with
|
| 487 |
+
:py:class:`~.Expr` so each domain has :py:meth:`~.Domain.to_sympy` and
|
| 488 |
+
:py:meth:`~.Domain.from_sympy` methods to convert its domain elements
|
| 489 |
+
to and from :py:class:`~.Expr`.
|
| 490 |
+
|
| 491 |
+
Parameters
|
| 492 |
+
==========
|
| 493 |
+
|
| 494 |
+
a: domain element
|
| 495 |
+
An element of this :py:class:`~.Domain`.
|
| 496 |
+
|
| 497 |
+
Returns
|
| 498 |
+
=======
|
| 499 |
+
|
| 500 |
+
expr: Expr
|
| 501 |
+
A normal SymPy expression of type :py:class:`~.Expr`.
|
| 502 |
+
|
| 503 |
+
Examples
|
| 504 |
+
========
|
| 505 |
+
|
| 506 |
+
Construct an element of the :ref:`QQ` domain and then convert it to
|
| 507 |
+
:py:class:`~.Expr`.
|
| 508 |
+
|
| 509 |
+
>>> from sympy import QQ, Expr
|
| 510 |
+
>>> q_domain = QQ(2)
|
| 511 |
+
>>> q_domain
|
| 512 |
+
2
|
| 513 |
+
>>> q_expr = QQ.to_sympy(q_domain)
|
| 514 |
+
>>> q_expr
|
| 515 |
+
2
|
| 516 |
+
|
| 517 |
+
Although the printed forms look similar these objects are not of the
|
| 518 |
+
same type.
|
| 519 |
+
|
| 520 |
+
>>> isinstance(q_domain, Expr)
|
| 521 |
+
False
|
| 522 |
+
>>> isinstance(q_expr, Expr)
|
| 523 |
+
True
|
| 524 |
+
|
| 525 |
+
Construct an element of :ref:`K[x]` and convert to
|
| 526 |
+
:py:class:`~.Expr`.
|
| 527 |
+
|
| 528 |
+
>>> from sympy import Symbol
|
| 529 |
+
>>> x = Symbol('x')
|
| 530 |
+
>>> K = QQ[x]
|
| 531 |
+
>>> x_domain = K.gens[0] # generator x as a domain element
|
| 532 |
+
>>> p_domain = x_domain**2/3 + 1
|
| 533 |
+
>>> p_domain
|
| 534 |
+
1/3*x**2 + 1
|
| 535 |
+
>>> p_expr = K.to_sympy(p_domain)
|
| 536 |
+
>>> p_expr
|
| 537 |
+
x**2/3 + 1
|
| 538 |
+
|
| 539 |
+
The :py:meth:`~.Domain.from_sympy` method is used for the opposite
|
| 540 |
+
conversion from a normal SymPy expression to a domain element.
|
| 541 |
+
|
| 542 |
+
>>> p_domain == p_expr
|
| 543 |
+
False
|
| 544 |
+
>>> K.from_sympy(p_expr) == p_domain
|
| 545 |
+
True
|
| 546 |
+
>>> K.to_sympy(p_domain) == p_expr
|
| 547 |
+
True
|
| 548 |
+
>>> K.from_sympy(K.to_sympy(p_domain)) == p_domain
|
| 549 |
+
True
|
| 550 |
+
>>> K.to_sympy(K.from_sympy(p_expr)) == p_expr
|
| 551 |
+
True
|
| 552 |
+
|
| 553 |
+
The :py:meth:`~.Domain.from_sympy` method makes it easier to construct
|
| 554 |
+
domain elements interactively.
|
| 555 |
+
|
| 556 |
+
>>> from sympy import Symbol
|
| 557 |
+
>>> x = Symbol('x')
|
| 558 |
+
>>> K = QQ[x]
|
| 559 |
+
>>> K.from_sympy(x**2/3 + 1)
|
| 560 |
+
1/3*x**2 + 1
|
| 561 |
+
|
| 562 |
+
See also
|
| 563 |
+
========
|
| 564 |
+
|
| 565 |
+
from_sympy
|
| 566 |
+
convert_from
|
| 567 |
+
"""
|
| 568 |
+
raise NotImplementedError
|
| 569 |
+
|
| 570 |
+
def from_sympy(self, a):
|
| 571 |
+
"""Convert a SymPy expression to an element of this domain.
|
| 572 |
+
|
| 573 |
+
Explanation
|
| 574 |
+
===========
|
| 575 |
+
|
| 576 |
+
See :py:meth:`~.Domain.to_sympy` for explanation and examples.
|
| 577 |
+
|
| 578 |
+
Parameters
|
| 579 |
+
==========
|
| 580 |
+
|
| 581 |
+
expr: Expr
|
| 582 |
+
A normal SymPy expression of type :py:class:`~.Expr`.
|
| 583 |
+
|
| 584 |
+
Returns
|
| 585 |
+
=======
|
| 586 |
+
|
| 587 |
+
a: domain element
|
| 588 |
+
An element of this :py:class:`~.Domain`.
|
| 589 |
+
|
| 590 |
+
See also
|
| 591 |
+
========
|
| 592 |
+
|
| 593 |
+
to_sympy
|
| 594 |
+
convert_from
|
| 595 |
+
"""
|
| 596 |
+
raise NotImplementedError
|
| 597 |
+
|
| 598 |
+
def sum(self, args):
|
| 599 |
+
return sum(args, start=self.zero)
|
| 600 |
+
|
| 601 |
+
def from_FF(K1, a, K0):
|
| 602 |
+
"""Convert ``ModularInteger(int)`` to ``dtype``. """
|
| 603 |
+
return None
|
| 604 |
+
|
| 605 |
+
def from_FF_python(K1, a, K0):
|
| 606 |
+
"""Convert ``ModularInteger(int)`` to ``dtype``. """
|
| 607 |
+
return None
|
| 608 |
+
|
| 609 |
+
def from_ZZ_python(K1, a, K0):
|
| 610 |
+
"""Convert a Python ``int`` object to ``dtype``. """
|
| 611 |
+
return None
|
| 612 |
+
|
| 613 |
+
def from_QQ_python(K1, a, K0):
|
| 614 |
+
"""Convert a Python ``Fraction`` object to ``dtype``. """
|
| 615 |
+
return None
|
| 616 |
+
|
| 617 |
+
def from_FF_gmpy(K1, a, K0):
|
| 618 |
+
"""Convert ``ModularInteger(mpz)`` to ``dtype``. """
|
| 619 |
+
return None
|
| 620 |
+
|
| 621 |
+
def from_ZZ_gmpy(K1, a, K0):
|
| 622 |
+
"""Convert a GMPY ``mpz`` object to ``dtype``. """
|
| 623 |
+
return None
|
| 624 |
+
|
| 625 |
+
def from_QQ_gmpy(K1, a, K0):
|
| 626 |
+
"""Convert a GMPY ``mpq`` object to ``dtype``. """
|
| 627 |
+
return None
|
| 628 |
+
|
| 629 |
+
def from_RealField(K1, a, K0):
|
| 630 |
+
"""Convert a real element object to ``dtype``. """
|
| 631 |
+
return None
|
| 632 |
+
|
| 633 |
+
def from_ComplexField(K1, a, K0):
|
| 634 |
+
"""Convert a complex element to ``dtype``. """
|
| 635 |
+
return None
|
| 636 |
+
|
| 637 |
+
def from_AlgebraicField(K1, a, K0):
|
| 638 |
+
"""Convert an algebraic number to ``dtype``. """
|
| 639 |
+
return None
|
| 640 |
+
|
| 641 |
+
def from_PolynomialRing(K1, a, K0):
|
| 642 |
+
"""Convert a polynomial to ``dtype``. """
|
| 643 |
+
if a.is_ground:
|
| 644 |
+
return K1.convert(a.LC, K0.dom)
|
| 645 |
+
|
| 646 |
+
def from_FractionField(K1, a, K0):
|
| 647 |
+
"""Convert a rational function to ``dtype``. """
|
| 648 |
+
return None
|
| 649 |
+
|
| 650 |
+
def from_MonogenicFiniteExtension(K1, a, K0):
|
| 651 |
+
"""Convert an ``ExtensionElement`` to ``dtype``. """
|
| 652 |
+
return K1.convert_from(a.rep, K0.ring)
|
| 653 |
+
|
| 654 |
+
def from_ExpressionDomain(K1, a, K0):
|
| 655 |
+
"""Convert a ``EX`` object to ``dtype``. """
|
| 656 |
+
return K1.from_sympy(a.ex)
|
| 657 |
+
|
| 658 |
+
def from_ExpressionRawDomain(K1, a, K0):
|
| 659 |
+
"""Convert a ``EX`` object to ``dtype``. """
|
| 660 |
+
return K1.from_sympy(a)
|
| 661 |
+
|
| 662 |
+
def from_GlobalPolynomialRing(K1, a, K0):
|
| 663 |
+
"""Convert a polynomial to ``dtype``. """
|
| 664 |
+
if a.degree() <= 0:
|
| 665 |
+
return K1.convert(a.LC(), K0.dom)
|
| 666 |
+
|
| 667 |
+
def from_GeneralizedPolynomialRing(K1, a, K0):
|
| 668 |
+
return K1.from_FractionField(a, K0)
|
| 669 |
+
|
| 670 |
+
def unify_with_symbols(K0, K1, symbols):
|
| 671 |
+
if (K0.is_Composite and (set(K0.symbols) & set(symbols))) or (K1.is_Composite and (set(K1.symbols) & set(symbols))):
|
| 672 |
+
raise UnificationFailed("Cannot unify %s with %s, given %s generators" % (K0, K1, tuple(symbols)))
|
| 673 |
+
|
| 674 |
+
return K0.unify(K1)
|
| 675 |
+
|
| 676 |
+
def unify_composite(K0, K1):
|
| 677 |
+
"""Unify two domains where at least one is composite."""
|
| 678 |
+
K0_ground = K0.dom if K0.is_Composite else K0
|
| 679 |
+
K1_ground = K1.dom if K1.is_Composite else K1
|
| 680 |
+
|
| 681 |
+
K0_symbols = K0.symbols if K0.is_Composite else ()
|
| 682 |
+
K1_symbols = K1.symbols if K1.is_Composite else ()
|
| 683 |
+
|
| 684 |
+
domain = K0_ground.unify(K1_ground)
|
| 685 |
+
symbols = _unify_gens(K0_symbols, K1_symbols)
|
| 686 |
+
order = K0.order if K0.is_Composite else K1.order
|
| 687 |
+
|
| 688 |
+
# E.g. ZZ[x].unify(QQ.frac_field(x)) -> ZZ.frac_field(x)
|
| 689 |
+
if ((K0.is_FractionField and K1.is_PolynomialRing or
|
| 690 |
+
K1.is_FractionField and K0.is_PolynomialRing) and
|
| 691 |
+
(not K0_ground.is_Field or not K1_ground.is_Field) and domain.is_Field
|
| 692 |
+
and domain.has_assoc_Ring):
|
| 693 |
+
domain = domain.get_ring()
|
| 694 |
+
|
| 695 |
+
if K0.is_Composite and (not K1.is_Composite or K0.is_FractionField or K1.is_PolynomialRing):
|
| 696 |
+
cls = K0.__class__
|
| 697 |
+
else:
|
| 698 |
+
cls = K1.__class__
|
| 699 |
+
|
| 700 |
+
# Here cls might be PolynomialRing, FractionField, GlobalPolynomialRing
|
| 701 |
+
# (dense/old Polynomialring) or dense/old FractionField.
|
| 702 |
+
|
| 703 |
+
from sympy.polys.domains.old_polynomialring import GlobalPolynomialRing
|
| 704 |
+
if cls == GlobalPolynomialRing:
|
| 705 |
+
return cls(domain, symbols)
|
| 706 |
+
|
| 707 |
+
return cls(domain, symbols, order)
|
| 708 |
+
|
| 709 |
+
def unify(K0, K1, symbols=None):
|
| 710 |
+
"""
|
| 711 |
+
Construct a minimal domain that contains elements of ``K0`` and ``K1``.
|
| 712 |
+
|
| 713 |
+
Known domains (from smallest to largest):
|
| 714 |
+
|
| 715 |
+
- ``GF(p)``
|
| 716 |
+
- ``ZZ``
|
| 717 |
+
- ``QQ``
|
| 718 |
+
- ``RR(prec, tol)``
|
| 719 |
+
- ``CC(prec, tol)``
|
| 720 |
+
- ``ALG(a, b, c)``
|
| 721 |
+
- ``K[x, y, z]``
|
| 722 |
+
- ``K(x, y, z)``
|
| 723 |
+
- ``EX``
|
| 724 |
+
|
| 725 |
+
"""
|
| 726 |
+
if symbols is not None:
|
| 727 |
+
return K0.unify_with_symbols(K1, symbols)
|
| 728 |
+
|
| 729 |
+
if K0 == K1:
|
| 730 |
+
return K0
|
| 731 |
+
|
| 732 |
+
if not (K0.has_CharacteristicZero and K1.has_CharacteristicZero):
|
| 733 |
+
# Reject unification of domains with different characteristics.
|
| 734 |
+
if K0.characteristic() != K1.characteristic():
|
| 735 |
+
raise UnificationFailed("Cannot unify %s with %s" % (K0, K1))
|
| 736 |
+
|
| 737 |
+
# We do not get here if K0 == K1. The two domains have the same
|
| 738 |
+
# characteristic but are unequal so at least one is composite and
|
| 739 |
+
# we are unifying something like GF(3).unify(GF(3)[x]).
|
| 740 |
+
return K0.unify_composite(K1)
|
| 741 |
+
|
| 742 |
+
# From here we know both domains have characteristic zero and it can be
|
| 743 |
+
# acceptable to fall back on EX.
|
| 744 |
+
|
| 745 |
+
if K0.is_EXRAW:
|
| 746 |
+
return K0
|
| 747 |
+
if K1.is_EXRAW:
|
| 748 |
+
return K1
|
| 749 |
+
|
| 750 |
+
if K0.is_EX:
|
| 751 |
+
return K0
|
| 752 |
+
if K1.is_EX:
|
| 753 |
+
return K1
|
| 754 |
+
|
| 755 |
+
if K0.is_FiniteExtension or K1.is_FiniteExtension:
|
| 756 |
+
if K1.is_FiniteExtension:
|
| 757 |
+
K0, K1 = K1, K0
|
| 758 |
+
if K1.is_FiniteExtension:
|
| 759 |
+
# Unifying two extensions.
|
| 760 |
+
# Try to ensure that K0.unify(K1) == K1.unify(K0)
|
| 761 |
+
if list(ordered([K0.modulus, K1.modulus]))[1] == K0.modulus:
|
| 762 |
+
K0, K1 = K1, K0
|
| 763 |
+
return K1.set_domain(K0)
|
| 764 |
+
else:
|
| 765 |
+
# Drop the generator from other and unify with the base domain
|
| 766 |
+
K1 = K1.drop(K0.symbol)
|
| 767 |
+
K1 = K0.domain.unify(K1)
|
| 768 |
+
return K0.set_domain(K1)
|
| 769 |
+
|
| 770 |
+
if K0.is_Composite or K1.is_Composite:
|
| 771 |
+
return K0.unify_composite(K1)
|
| 772 |
+
|
| 773 |
+
def mkinexact(cls, K0, K1):
|
| 774 |
+
prec = max(K0.precision, K1.precision)
|
| 775 |
+
tol = max(K0.tolerance, K1.tolerance)
|
| 776 |
+
return cls(prec=prec, tol=tol)
|
| 777 |
+
|
| 778 |
+
if K1.is_ComplexField:
|
| 779 |
+
K0, K1 = K1, K0
|
| 780 |
+
if K0.is_ComplexField:
|
| 781 |
+
if K1.is_ComplexField or K1.is_RealField:
|
| 782 |
+
return mkinexact(K0.__class__, K0, K1)
|
| 783 |
+
else:
|
| 784 |
+
return K0
|
| 785 |
+
|
| 786 |
+
if K1.is_RealField:
|
| 787 |
+
K0, K1 = K1, K0
|
| 788 |
+
if K0.is_RealField:
|
| 789 |
+
if K1.is_RealField:
|
| 790 |
+
return mkinexact(K0.__class__, K0, K1)
|
| 791 |
+
elif K1.is_GaussianRing or K1.is_GaussianField:
|
| 792 |
+
from sympy.polys.domains.complexfield import ComplexField
|
| 793 |
+
return ComplexField(prec=K0.precision, tol=K0.tolerance)
|
| 794 |
+
else:
|
| 795 |
+
return K0
|
| 796 |
+
|
| 797 |
+
if K1.is_AlgebraicField:
|
| 798 |
+
K0, K1 = K1, K0
|
| 799 |
+
if K0.is_AlgebraicField:
|
| 800 |
+
if K1.is_GaussianRing:
|
| 801 |
+
K1 = K1.get_field()
|
| 802 |
+
if K1.is_GaussianField:
|
| 803 |
+
K1 = K1.as_AlgebraicField()
|
| 804 |
+
if K1.is_AlgebraicField:
|
| 805 |
+
return K0.__class__(K0.dom.unify(K1.dom), *_unify_gens(K0.orig_ext, K1.orig_ext))
|
| 806 |
+
else:
|
| 807 |
+
return K0
|
| 808 |
+
|
| 809 |
+
if K0.is_GaussianField:
|
| 810 |
+
return K0
|
| 811 |
+
if K1.is_GaussianField:
|
| 812 |
+
return K1
|
| 813 |
+
|
| 814 |
+
if K0.is_GaussianRing:
|
| 815 |
+
if K1.is_RationalField:
|
| 816 |
+
K0 = K0.get_field()
|
| 817 |
+
return K0
|
| 818 |
+
if K1.is_GaussianRing:
|
| 819 |
+
if K0.is_RationalField:
|
| 820 |
+
K1 = K1.get_field()
|
| 821 |
+
return K1
|
| 822 |
+
|
| 823 |
+
if K0.is_RationalField:
|
| 824 |
+
return K0
|
| 825 |
+
if K1.is_RationalField:
|
| 826 |
+
return K1
|
| 827 |
+
|
| 828 |
+
if K0.is_IntegerRing:
|
| 829 |
+
return K0
|
| 830 |
+
if K1.is_IntegerRing:
|
| 831 |
+
return K1
|
| 832 |
+
|
| 833 |
+
from sympy.polys.domains import EX
|
| 834 |
+
return EX
|
| 835 |
+
|
| 836 |
+
def __eq__(self, other):
|
| 837 |
+
"""Returns ``True`` if two domains are equivalent. """
|
| 838 |
+
# XXX: Remove this.
|
| 839 |
+
return isinstance(other, Domain) and self.dtype == other.dtype
|
| 840 |
+
|
| 841 |
+
def __ne__(self, other):
|
| 842 |
+
"""Returns ``False`` if two domains are equivalent. """
|
| 843 |
+
return not self == other
|
| 844 |
+
|
| 845 |
+
def map(self, seq):
|
| 846 |
+
"""Rersively apply ``self`` to all elements of ``seq``. """
|
| 847 |
+
result = []
|
| 848 |
+
|
| 849 |
+
for elt in seq:
|
| 850 |
+
if isinstance(elt, list):
|
| 851 |
+
result.append(self.map(elt))
|
| 852 |
+
else:
|
| 853 |
+
result.append(self(elt))
|
| 854 |
+
|
| 855 |
+
return result
|
| 856 |
+
|
| 857 |
+
def get_ring(self):
|
| 858 |
+
"""Returns a ring associated with ``self``. """
|
| 859 |
+
raise DomainError('there is no ring associated with %s' % self)
|
| 860 |
+
|
| 861 |
+
def get_field(self):
|
| 862 |
+
"""Returns a field associated with ``self``. """
|
| 863 |
+
raise DomainError('there is no field associated with %s' % self)
|
| 864 |
+
|
| 865 |
+
def get_exact(self):
|
| 866 |
+
"""Returns an exact domain associated with ``self``. """
|
| 867 |
+
return self
|
| 868 |
+
|
| 869 |
+
def __getitem__(self, symbols):
|
| 870 |
+
"""The mathematical way to make a polynomial ring. """
|
| 871 |
+
if hasattr(symbols, '__iter__'):
|
| 872 |
+
return self.poly_ring(*symbols)
|
| 873 |
+
else:
|
| 874 |
+
return self.poly_ring(symbols)
|
| 875 |
+
|
| 876 |
+
def poly_ring(self, *symbols, order=lex):
|
| 877 |
+
"""Returns a polynomial ring, i.e. `K[X]`. """
|
| 878 |
+
from sympy.polys.domains.polynomialring import PolynomialRing
|
| 879 |
+
return PolynomialRing(self, symbols, order)
|
| 880 |
+
|
| 881 |
+
def frac_field(self, *symbols, order=lex):
|
| 882 |
+
"""Returns a fraction field, i.e. `K(X)`. """
|
| 883 |
+
from sympy.polys.domains.fractionfield import FractionField
|
| 884 |
+
return FractionField(self, symbols, order)
|
| 885 |
+
|
| 886 |
+
def old_poly_ring(self, *symbols, **kwargs):
|
| 887 |
+
"""Returns a polynomial ring, i.e. `K[X]`. """
|
| 888 |
+
from sympy.polys.domains.old_polynomialring import PolynomialRing
|
| 889 |
+
return PolynomialRing(self, *symbols, **kwargs)
|
| 890 |
+
|
| 891 |
+
def old_frac_field(self, *symbols, **kwargs):
|
| 892 |
+
"""Returns a fraction field, i.e. `K(X)`. """
|
| 893 |
+
from sympy.polys.domains.old_fractionfield import FractionField
|
| 894 |
+
return FractionField(self, *symbols, **kwargs)
|
| 895 |
+
|
| 896 |
+
def algebraic_field(self, *extension, alias=None):
|
| 897 |
+
r"""Returns an algebraic field, i.e. `K(\alpha, \ldots)`. """
|
| 898 |
+
raise DomainError("Cannot create algebraic field over %s" % self)
|
| 899 |
+
|
| 900 |
+
def alg_field_from_poly(self, poly, alias=None, root_index=-1):
|
| 901 |
+
r"""
|
| 902 |
+
Convenience method to construct an algebraic extension on a root of a
|
| 903 |
+
polynomial, chosen by root index.
|
| 904 |
+
|
| 905 |
+
Parameters
|
| 906 |
+
==========
|
| 907 |
+
|
| 908 |
+
poly : :py:class:`~.Poly`
|
| 909 |
+
The polynomial whose root generates the extension.
|
| 910 |
+
alias : str, optional (default=None)
|
| 911 |
+
Symbol name for the generator of the extension.
|
| 912 |
+
E.g. "alpha" or "theta".
|
| 913 |
+
root_index : int, optional (default=-1)
|
| 914 |
+
Specifies which root of the polynomial is desired. The ordering is
|
| 915 |
+
as defined by the :py:class:`~.ComplexRootOf` class. The default of
|
| 916 |
+
``-1`` selects the most natural choice in the common cases of
|
| 917 |
+
quadratic and cyclotomic fields (the square root on the positive
|
| 918 |
+
real or imaginary axis, resp. $\mathrm{e}^{2\pi i/n}$).
|
| 919 |
+
|
| 920 |
+
Examples
|
| 921 |
+
========
|
| 922 |
+
|
| 923 |
+
>>> from sympy import QQ, Poly
|
| 924 |
+
>>> from sympy.abc import x
|
| 925 |
+
>>> f = Poly(x**2 - 2)
|
| 926 |
+
>>> K = QQ.alg_field_from_poly(f)
|
| 927 |
+
>>> K.ext.minpoly == f
|
| 928 |
+
True
|
| 929 |
+
>>> g = Poly(8*x**3 - 6*x - 1)
|
| 930 |
+
>>> L = QQ.alg_field_from_poly(g, "alpha")
|
| 931 |
+
>>> L.ext.minpoly == g
|
| 932 |
+
True
|
| 933 |
+
>>> L.to_sympy(L([1, 1, 1]))
|
| 934 |
+
alpha**2 + alpha + 1
|
| 935 |
+
|
| 936 |
+
"""
|
| 937 |
+
from sympy.polys.rootoftools import CRootOf
|
| 938 |
+
root = CRootOf(poly, root_index)
|
| 939 |
+
alpha = AlgebraicNumber(root, alias=alias)
|
| 940 |
+
return self.algebraic_field(alpha, alias=alias)
|
| 941 |
+
|
| 942 |
+
def cyclotomic_field(self, n, ss=False, alias="zeta", gen=None, root_index=-1):
|
| 943 |
+
r"""
|
| 944 |
+
Convenience method to construct a cyclotomic field.
|
| 945 |
+
|
| 946 |
+
Parameters
|
| 947 |
+
==========
|
| 948 |
+
|
| 949 |
+
n : int
|
| 950 |
+
Construct the nth cyclotomic field.
|
| 951 |
+
ss : boolean, optional (default=False)
|
| 952 |
+
If True, append *n* as a subscript on the alias string.
|
| 953 |
+
alias : str, optional (default="zeta")
|
| 954 |
+
Symbol name for the generator.
|
| 955 |
+
gen : :py:class:`~.Symbol`, optional (default=None)
|
| 956 |
+
Desired variable for the cyclotomic polynomial that defines the
|
| 957 |
+
field. If ``None``, a dummy variable will be used.
|
| 958 |
+
root_index : int, optional (default=-1)
|
| 959 |
+
Specifies which root of the polynomial is desired. The ordering is
|
| 960 |
+
as defined by the :py:class:`~.ComplexRootOf` class. The default of
|
| 961 |
+
``-1`` selects the root $\mathrm{e}^{2\pi i/n}$.
|
| 962 |
+
|
| 963 |
+
Examples
|
| 964 |
+
========
|
| 965 |
+
|
| 966 |
+
>>> from sympy import QQ, latex
|
| 967 |
+
>>> K = QQ.cyclotomic_field(5)
|
| 968 |
+
>>> K.to_sympy(K([-1, 1]))
|
| 969 |
+
1 - zeta
|
| 970 |
+
>>> L = QQ.cyclotomic_field(7, True)
|
| 971 |
+
>>> a = L.to_sympy(L([-1, 1]))
|
| 972 |
+
>>> print(a)
|
| 973 |
+
1 - zeta7
|
| 974 |
+
>>> print(latex(a))
|
| 975 |
+
1 - \zeta_{7}
|
| 976 |
+
|
| 977 |
+
"""
|
| 978 |
+
from sympy.polys.specialpolys import cyclotomic_poly
|
| 979 |
+
if ss:
|
| 980 |
+
alias += str(n)
|
| 981 |
+
return self.alg_field_from_poly(cyclotomic_poly(n, gen), alias=alias,
|
| 982 |
+
root_index=root_index)
|
| 983 |
+
|
| 984 |
+
def inject(self, *symbols):
|
| 985 |
+
"""Inject generators into this domain. """
|
| 986 |
+
raise NotImplementedError
|
| 987 |
+
|
| 988 |
+
def drop(self, *symbols):
|
| 989 |
+
"""Drop generators from this domain. """
|
| 990 |
+
if self.is_Simple:
|
| 991 |
+
return self
|
| 992 |
+
raise NotImplementedError # pragma: no cover
|
| 993 |
+
|
| 994 |
+
def is_zero(self, a):
|
| 995 |
+
"""Returns True if ``a`` is zero. """
|
| 996 |
+
return not a
|
| 997 |
+
|
| 998 |
+
def is_one(self, a):
|
| 999 |
+
"""Returns True if ``a`` is one. """
|
| 1000 |
+
return a == self.one
|
| 1001 |
+
|
| 1002 |
+
def is_positive(self, a):
|
| 1003 |
+
"""Returns True if ``a`` is positive. """
|
| 1004 |
+
return a > 0
|
| 1005 |
+
|
| 1006 |
+
def is_negative(self, a):
|
| 1007 |
+
"""Returns True if ``a`` is negative. """
|
| 1008 |
+
return a < 0
|
| 1009 |
+
|
| 1010 |
+
def is_nonpositive(self, a):
|
| 1011 |
+
"""Returns True if ``a`` is non-positive. """
|
| 1012 |
+
return a <= 0
|
| 1013 |
+
|
| 1014 |
+
def is_nonnegative(self, a):
|
| 1015 |
+
"""Returns True if ``a`` is non-negative. """
|
| 1016 |
+
return a >= 0
|
| 1017 |
+
|
| 1018 |
+
def canonical_unit(self, a):
|
| 1019 |
+
if self.is_negative(a):
|
| 1020 |
+
return -self.one
|
| 1021 |
+
else:
|
| 1022 |
+
return self.one
|
| 1023 |
+
|
| 1024 |
+
def abs(self, a):
|
| 1025 |
+
"""Absolute value of ``a``, implies ``__abs__``. """
|
| 1026 |
+
return abs(a)
|
| 1027 |
+
|
| 1028 |
+
def neg(self, a):
|
| 1029 |
+
"""Returns ``a`` negated, implies ``__neg__``. """
|
| 1030 |
+
return -a
|
| 1031 |
+
|
| 1032 |
+
def pos(self, a):
|
| 1033 |
+
"""Returns ``a`` positive, implies ``__pos__``. """
|
| 1034 |
+
return +a
|
| 1035 |
+
|
| 1036 |
+
def add(self, a, b):
|
| 1037 |
+
"""Sum of ``a`` and ``b``, implies ``__add__``. """
|
| 1038 |
+
return a + b
|
| 1039 |
+
|
| 1040 |
+
def sub(self, a, b):
|
| 1041 |
+
"""Difference of ``a`` and ``b``, implies ``__sub__``. """
|
| 1042 |
+
return a - b
|
| 1043 |
+
|
| 1044 |
+
def mul(self, a, b):
|
| 1045 |
+
"""Product of ``a`` and ``b``, implies ``__mul__``. """
|
| 1046 |
+
return a * b
|
| 1047 |
+
|
| 1048 |
+
def pow(self, a, b):
|
| 1049 |
+
"""Raise ``a`` to power ``b``, implies ``__pow__``. """
|
| 1050 |
+
return a ** b
|
| 1051 |
+
|
| 1052 |
+
def exquo(self, a, b):
|
| 1053 |
+
"""Exact quotient of *a* and *b*. Analogue of ``a / b``.
|
| 1054 |
+
|
| 1055 |
+
Explanation
|
| 1056 |
+
===========
|
| 1057 |
+
|
| 1058 |
+
This is essentially the same as ``a / b`` except that an error will be
|
| 1059 |
+
raised if the division is inexact (if there is any remainder) and the
|
| 1060 |
+
result will always be a domain element. When working in a
|
| 1061 |
+
:py:class:`~.Domain` that is not a :py:class:`~.Field` (e.g. :ref:`ZZ`
|
| 1062 |
+
or :ref:`K[x]`) ``exquo`` should be used instead of ``/``.
|
| 1063 |
+
|
| 1064 |
+
The key invariant is that if ``q = K.exquo(a, b)`` (and ``exquo`` does
|
| 1065 |
+
not raise an exception) then ``a == b*q``.
|
| 1066 |
+
|
| 1067 |
+
Examples
|
| 1068 |
+
========
|
| 1069 |
+
|
| 1070 |
+
We can use ``K.exquo`` instead of ``/`` for exact division.
|
| 1071 |
+
|
| 1072 |
+
>>> from sympy import ZZ
|
| 1073 |
+
>>> ZZ.exquo(ZZ(4), ZZ(2))
|
| 1074 |
+
2
|
| 1075 |
+
>>> ZZ.exquo(ZZ(5), ZZ(2))
|
| 1076 |
+
Traceback (most recent call last):
|
| 1077 |
+
...
|
| 1078 |
+
ExactQuotientFailed: 2 does not divide 5 in ZZ
|
| 1079 |
+
|
| 1080 |
+
Over a :py:class:`~.Field` such as :ref:`QQ`, division (with nonzero
|
| 1081 |
+
divisor) is always exact so in that case ``/`` can be used instead of
|
| 1082 |
+
:py:meth:`~.Domain.exquo`.
|
| 1083 |
+
|
| 1084 |
+
>>> from sympy import QQ
|
| 1085 |
+
>>> QQ.exquo(QQ(5), QQ(2))
|
| 1086 |
+
5/2
|
| 1087 |
+
>>> QQ(5) / QQ(2)
|
| 1088 |
+
5/2
|
| 1089 |
+
|
| 1090 |
+
Parameters
|
| 1091 |
+
==========
|
| 1092 |
+
|
| 1093 |
+
a: domain element
|
| 1094 |
+
The dividend
|
| 1095 |
+
b: domain element
|
| 1096 |
+
The divisor
|
| 1097 |
+
|
| 1098 |
+
Returns
|
| 1099 |
+
=======
|
| 1100 |
+
|
| 1101 |
+
q: domain element
|
| 1102 |
+
The exact quotient
|
| 1103 |
+
|
| 1104 |
+
Raises
|
| 1105 |
+
======
|
| 1106 |
+
|
| 1107 |
+
ExactQuotientFailed: if exact division is not possible.
|
| 1108 |
+
ZeroDivisionError: when the divisor is zero.
|
| 1109 |
+
|
| 1110 |
+
See also
|
| 1111 |
+
========
|
| 1112 |
+
|
| 1113 |
+
quo: Analogue of ``a // b``
|
| 1114 |
+
rem: Analogue of ``a % b``
|
| 1115 |
+
div: Analogue of ``divmod(a, b)``
|
| 1116 |
+
|
| 1117 |
+
Notes
|
| 1118 |
+
=====
|
| 1119 |
+
|
| 1120 |
+
Since the default :py:attr:`~.Domain.dtype` for :ref:`ZZ` is ``int``
|
| 1121 |
+
(or ``mpz``) division as ``a / b`` should not be used as it would give
|
| 1122 |
+
a ``float`` which is not a domain element.
|
| 1123 |
+
|
| 1124 |
+
>>> ZZ(4) / ZZ(2) # doctest: +SKIP
|
| 1125 |
+
2.0
|
| 1126 |
+
>>> ZZ(5) / ZZ(2) # doctest: +SKIP
|
| 1127 |
+
2.5
|
| 1128 |
+
|
| 1129 |
+
On the other hand with `SYMPY_GROUND_TYPES=flint` elements of :ref:`ZZ`
|
| 1130 |
+
are ``flint.fmpz`` and division would raise an exception:
|
| 1131 |
+
|
| 1132 |
+
>>> ZZ(4) / ZZ(2) # doctest: +SKIP
|
| 1133 |
+
Traceback (most recent call last):
|
| 1134 |
+
...
|
| 1135 |
+
TypeError: unsupported operand type(s) for /: 'fmpz' and 'fmpz'
|
| 1136 |
+
|
| 1137 |
+
Using ``/`` with :ref:`ZZ` will lead to incorrect results so
|
| 1138 |
+
:py:meth:`~.Domain.exquo` should be used instead.
|
| 1139 |
+
|
| 1140 |
+
"""
|
| 1141 |
+
raise NotImplementedError
|
| 1142 |
+
|
| 1143 |
+
def quo(self, a, b):
|
| 1144 |
+
"""Quotient of *a* and *b*. Analogue of ``a // b``.
|
| 1145 |
+
|
| 1146 |
+
``K.quo(a, b)`` is equivalent to ``K.div(a, b)[0]``. See
|
| 1147 |
+
:py:meth:`~.Domain.div` for more explanation.
|
| 1148 |
+
|
| 1149 |
+
See also
|
| 1150 |
+
========
|
| 1151 |
+
|
| 1152 |
+
rem: Analogue of ``a % b``
|
| 1153 |
+
div: Analogue of ``divmod(a, b)``
|
| 1154 |
+
exquo: Analogue of ``a / b``
|
| 1155 |
+
"""
|
| 1156 |
+
raise NotImplementedError
|
| 1157 |
+
|
| 1158 |
+
def rem(self, a, b):
|
| 1159 |
+
"""Modulo division of *a* and *b*. Analogue of ``a % b``.
|
| 1160 |
+
|
| 1161 |
+
``K.rem(a, b)`` is equivalent to ``K.div(a, b)[1]``. See
|
| 1162 |
+
:py:meth:`~.Domain.div` for more explanation.
|
| 1163 |
+
|
| 1164 |
+
See also
|
| 1165 |
+
========
|
| 1166 |
+
|
| 1167 |
+
quo: Analogue of ``a // b``
|
| 1168 |
+
div: Analogue of ``divmod(a, b)``
|
| 1169 |
+
exquo: Analogue of ``a / b``
|
| 1170 |
+
"""
|
| 1171 |
+
raise NotImplementedError
|
| 1172 |
+
|
| 1173 |
+
def div(self, a, b):
|
| 1174 |
+
"""Quotient and remainder for *a* and *b*. Analogue of ``divmod(a, b)``
|
| 1175 |
+
|
| 1176 |
+
Explanation
|
| 1177 |
+
===========
|
| 1178 |
+
|
| 1179 |
+
This is essentially the same as ``divmod(a, b)`` except that is more
|
| 1180 |
+
consistent when working over some :py:class:`~.Field` domains such as
|
| 1181 |
+
:ref:`QQ`. When working over an arbitrary :py:class:`~.Domain` the
|
| 1182 |
+
:py:meth:`~.Domain.div` method should be used instead of ``divmod``.
|
| 1183 |
+
|
| 1184 |
+
The key invariant is that if ``q, r = K.div(a, b)`` then
|
| 1185 |
+
``a == b*q + r``.
|
| 1186 |
+
|
| 1187 |
+
The result of ``K.div(a, b)`` is the same as the tuple
|
| 1188 |
+
``(K.quo(a, b), K.rem(a, b))`` except that if both quotient and
|
| 1189 |
+
remainder are needed then it is more efficient to use
|
| 1190 |
+
:py:meth:`~.Domain.div`.
|
| 1191 |
+
|
| 1192 |
+
Examples
|
| 1193 |
+
========
|
| 1194 |
+
|
| 1195 |
+
We can use ``K.div`` instead of ``divmod`` for floor division and
|
| 1196 |
+
remainder.
|
| 1197 |
+
|
| 1198 |
+
>>> from sympy import ZZ, QQ
|
| 1199 |
+
>>> ZZ.div(ZZ(5), ZZ(2))
|
| 1200 |
+
(2, 1)
|
| 1201 |
+
|
| 1202 |
+
If ``K`` is a :py:class:`~.Field` then the division is always exact
|
| 1203 |
+
with a remainder of :py:attr:`~.Domain.zero`.
|
| 1204 |
+
|
| 1205 |
+
>>> QQ.div(QQ(5), QQ(2))
|
| 1206 |
+
(5/2, 0)
|
| 1207 |
+
|
| 1208 |
+
Parameters
|
| 1209 |
+
==========
|
| 1210 |
+
|
| 1211 |
+
a: domain element
|
| 1212 |
+
The dividend
|
| 1213 |
+
b: domain element
|
| 1214 |
+
The divisor
|
| 1215 |
+
|
| 1216 |
+
Returns
|
| 1217 |
+
=======
|
| 1218 |
+
|
| 1219 |
+
(q, r): tuple of domain elements
|
| 1220 |
+
The quotient and remainder
|
| 1221 |
+
|
| 1222 |
+
Raises
|
| 1223 |
+
======
|
| 1224 |
+
|
| 1225 |
+
ZeroDivisionError: when the divisor is zero.
|
| 1226 |
+
|
| 1227 |
+
See also
|
| 1228 |
+
========
|
| 1229 |
+
|
| 1230 |
+
quo: Analogue of ``a // b``
|
| 1231 |
+
rem: Analogue of ``a % b``
|
| 1232 |
+
exquo: Analogue of ``a / b``
|
| 1233 |
+
|
| 1234 |
+
Notes
|
| 1235 |
+
=====
|
| 1236 |
+
|
| 1237 |
+
If ``gmpy`` is installed then the ``gmpy.mpq`` type will be used as
|
| 1238 |
+
the :py:attr:`~.Domain.dtype` for :ref:`QQ`. The ``gmpy.mpq`` type
|
| 1239 |
+
defines ``divmod`` in a way that is undesirable so
|
| 1240 |
+
:py:meth:`~.Domain.div` should be used instead of ``divmod``.
|
| 1241 |
+
|
| 1242 |
+
>>> a = QQ(1)
|
| 1243 |
+
>>> b = QQ(3, 2)
|
| 1244 |
+
>>> a # doctest: +SKIP
|
| 1245 |
+
mpq(1,1)
|
| 1246 |
+
>>> b # doctest: +SKIP
|
| 1247 |
+
mpq(3,2)
|
| 1248 |
+
>>> divmod(a, b) # doctest: +SKIP
|
| 1249 |
+
(mpz(0), mpq(1,1))
|
| 1250 |
+
>>> QQ.div(a, b) # doctest: +SKIP
|
| 1251 |
+
(mpq(2,3), mpq(0,1))
|
| 1252 |
+
|
| 1253 |
+
Using ``//`` or ``%`` with :ref:`QQ` will lead to incorrect results so
|
| 1254 |
+
:py:meth:`~.Domain.div` should be used instead.
|
| 1255 |
+
|
| 1256 |
+
"""
|
| 1257 |
+
raise NotImplementedError
|
| 1258 |
+
|
| 1259 |
+
def invert(self, a, b):
|
| 1260 |
+
"""Returns inversion of ``a mod b``, implies something. """
|
| 1261 |
+
raise NotImplementedError
|
| 1262 |
+
|
| 1263 |
+
def revert(self, a):
|
| 1264 |
+
"""Returns ``a**(-1)`` if possible. """
|
| 1265 |
+
raise NotImplementedError
|
| 1266 |
+
|
| 1267 |
+
def numer(self, a):
|
| 1268 |
+
"""Returns numerator of ``a``. """
|
| 1269 |
+
raise NotImplementedError
|
| 1270 |
+
|
| 1271 |
+
def denom(self, a):
|
| 1272 |
+
"""Returns denominator of ``a``. """
|
| 1273 |
+
raise NotImplementedError
|
| 1274 |
+
|
| 1275 |
+
def half_gcdex(self, a, b):
|
| 1276 |
+
"""Half extended GCD of ``a`` and ``b``. """
|
| 1277 |
+
s, t, h = self.gcdex(a, b)
|
| 1278 |
+
return s, h
|
| 1279 |
+
|
| 1280 |
+
def gcdex(self, a, b):
|
| 1281 |
+
"""Extended GCD of ``a`` and ``b``. """
|
| 1282 |
+
raise NotImplementedError
|
| 1283 |
+
|
| 1284 |
+
def cofactors(self, a, b):
|
| 1285 |
+
"""Returns GCD and cofactors of ``a`` and ``b``. """
|
| 1286 |
+
gcd = self.gcd(a, b)
|
| 1287 |
+
cfa = self.quo(a, gcd)
|
| 1288 |
+
cfb = self.quo(b, gcd)
|
| 1289 |
+
return gcd, cfa, cfb
|
| 1290 |
+
|
| 1291 |
+
def gcd(self, a, b):
|
| 1292 |
+
"""Returns GCD of ``a`` and ``b``. """
|
| 1293 |
+
raise NotImplementedError
|
| 1294 |
+
|
| 1295 |
+
def lcm(self, a, b):
|
| 1296 |
+
"""Returns LCM of ``a`` and ``b``. """
|
| 1297 |
+
raise NotImplementedError
|
| 1298 |
+
|
| 1299 |
+
def log(self, a, b):
|
| 1300 |
+
"""Returns b-base logarithm of ``a``. """
|
| 1301 |
+
raise NotImplementedError
|
| 1302 |
+
|
| 1303 |
+
def sqrt(self, a):
|
| 1304 |
+
"""Returns a (possibly inexact) square root of ``a``.
|
| 1305 |
+
|
| 1306 |
+
Explanation
|
| 1307 |
+
===========
|
| 1308 |
+
There is no universal definition of "inexact square root" for all
|
| 1309 |
+
domains. It is not recommended to implement this method for domains
|
| 1310 |
+
other then :ref:`ZZ`.
|
| 1311 |
+
|
| 1312 |
+
See also
|
| 1313 |
+
========
|
| 1314 |
+
exsqrt
|
| 1315 |
+
"""
|
| 1316 |
+
raise NotImplementedError
|
| 1317 |
+
|
| 1318 |
+
def is_square(self, a):
|
| 1319 |
+
"""Returns whether ``a`` is a square in the domain.
|
| 1320 |
+
|
| 1321 |
+
Explanation
|
| 1322 |
+
===========
|
| 1323 |
+
Returns ``True`` if there is an element ``b`` in the domain such that
|
| 1324 |
+
``b * b == a``, otherwise returns ``False``. For inexact domains like
|
| 1325 |
+
:ref:`RR` and :ref:`CC`, a tiny difference in this equality can be
|
| 1326 |
+
tolerated.
|
| 1327 |
+
|
| 1328 |
+
See also
|
| 1329 |
+
========
|
| 1330 |
+
exsqrt
|
| 1331 |
+
"""
|
| 1332 |
+
raise NotImplementedError
|
| 1333 |
+
|
| 1334 |
+
def exsqrt(self, a):
|
| 1335 |
+
"""Principal square root of a within the domain if ``a`` is square.
|
| 1336 |
+
|
| 1337 |
+
Explanation
|
| 1338 |
+
===========
|
| 1339 |
+
The implementation of this method should return an element ``b`` in the
|
| 1340 |
+
domain such that ``b * b == a``, or ``None`` if there is no such ``b``.
|
| 1341 |
+
For inexact domains like :ref:`RR` and :ref:`CC`, a tiny difference in
|
| 1342 |
+
this equality can be tolerated. The choice of a "principal" square root
|
| 1343 |
+
should follow a consistent rule whenever possible.
|
| 1344 |
+
|
| 1345 |
+
See also
|
| 1346 |
+
========
|
| 1347 |
+
sqrt, is_square
|
| 1348 |
+
"""
|
| 1349 |
+
raise NotImplementedError
|
| 1350 |
+
|
| 1351 |
+
def evalf(self, a, prec=None, **options):
|
| 1352 |
+
"""Returns numerical approximation of ``a``. """
|
| 1353 |
+
return self.to_sympy(a).evalf(prec, **options)
|
| 1354 |
+
|
| 1355 |
+
n = evalf
|
| 1356 |
+
|
| 1357 |
+
def real(self, a):
|
| 1358 |
+
return a
|
| 1359 |
+
|
| 1360 |
+
def imag(self, a):
|
| 1361 |
+
return self.zero
|
| 1362 |
+
|
| 1363 |
+
def almosteq(self, a, b, tolerance=None):
|
| 1364 |
+
"""Check if ``a`` and ``b`` are almost equal. """
|
| 1365 |
+
return a == b
|
| 1366 |
+
|
| 1367 |
+
def characteristic(self):
|
| 1368 |
+
"""Return the characteristic of this domain. """
|
| 1369 |
+
raise NotImplementedError('characteristic()')
|
| 1370 |
+
|
| 1371 |
+
|
| 1372 |
+
__all__ = ['Domain']
|
mgm/lib/python3.10/site-packages/sympy/polys/domains/domainelement.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Trait for implementing domain elements. """
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
from sympy.utilities import public
|
| 5 |
+
|
| 6 |
+
@public
|
| 7 |
+
class DomainElement:
|
| 8 |
+
"""
|
| 9 |
+
Represents an element of a domain.
|
| 10 |
+
|
| 11 |
+
Mix in this trait into a class whose instances should be recognized as
|
| 12 |
+
elements of a domain. Method ``parent()`` gives that domain.
|
| 13 |
+
"""
|
| 14 |
+
|
| 15 |
+
__slots__ = ()
|
| 16 |
+
|
| 17 |
+
def parent(self):
|
| 18 |
+
"""Get the domain associated with ``self``
|
| 19 |
+
|
| 20 |
+
Examples
|
| 21 |
+
========
|
| 22 |
+
|
| 23 |
+
>>> from sympy import ZZ, symbols
|
| 24 |
+
>>> x, y = symbols('x, y')
|
| 25 |
+
>>> K = ZZ[x,y]
|
| 26 |
+
>>> p = K(x)**2 + K(y)**2
|
| 27 |
+
>>> p
|
| 28 |
+
x**2 + y**2
|
| 29 |
+
>>> p.parent()
|
| 30 |
+
ZZ[x,y]
|
| 31 |
+
|
| 32 |
+
Notes
|
| 33 |
+
=====
|
| 34 |
+
|
| 35 |
+
This is used by :py:meth:`~.Domain.convert` to identify the domain
|
| 36 |
+
associated with a domain element.
|
| 37 |
+
"""
|
| 38 |
+
raise NotImplementedError("abstract method")
|
mgm/lib/python3.10/site-packages/sympy/polys/domains/expressiondomain.py
ADDED
|
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Implementation of :class:`ExpressionDomain` class. """
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
from sympy.core import sympify, SympifyError
|
| 5 |
+
from sympy.polys.domains.domainelement import DomainElement
|
| 6 |
+
from sympy.polys.domains.characteristiczero import CharacteristicZero
|
| 7 |
+
from sympy.polys.domains.field import Field
|
| 8 |
+
from sympy.polys.domains.simpledomain import SimpleDomain
|
| 9 |
+
from sympy.polys.polyutils import PicklableWithSlots
|
| 10 |
+
from sympy.utilities import public
|
| 11 |
+
|
| 12 |
+
eflags = {"deep": False, "mul": True, "power_exp": False, "power_base": False,
|
| 13 |
+
"basic": False, "multinomial": False, "log": False}
|
| 14 |
+
|
| 15 |
+
@public
|
| 16 |
+
class ExpressionDomain(Field, CharacteristicZero, SimpleDomain):
|
| 17 |
+
"""A class for arbitrary expressions. """
|
| 18 |
+
|
| 19 |
+
is_SymbolicDomain = is_EX = True
|
| 20 |
+
|
| 21 |
+
class Expression(DomainElement, PicklableWithSlots):
|
| 22 |
+
"""An arbitrary expression. """
|
| 23 |
+
|
| 24 |
+
__slots__ = ('ex',)
|
| 25 |
+
|
| 26 |
+
def __init__(self, ex):
|
| 27 |
+
if not isinstance(ex, self.__class__):
|
| 28 |
+
self.ex = sympify(ex)
|
| 29 |
+
else:
|
| 30 |
+
self.ex = ex.ex
|
| 31 |
+
|
| 32 |
+
def __repr__(f):
|
| 33 |
+
return 'EX(%s)' % repr(f.ex)
|
| 34 |
+
|
| 35 |
+
def __str__(f):
|
| 36 |
+
return 'EX(%s)' % str(f.ex)
|
| 37 |
+
|
| 38 |
+
def __hash__(self):
|
| 39 |
+
return hash((self.__class__.__name__, self.ex))
|
| 40 |
+
|
| 41 |
+
def parent(self):
|
| 42 |
+
return EX
|
| 43 |
+
|
| 44 |
+
def as_expr(f):
|
| 45 |
+
return f.ex
|
| 46 |
+
|
| 47 |
+
def numer(f):
|
| 48 |
+
return f.__class__(f.ex.as_numer_denom()[0])
|
| 49 |
+
|
| 50 |
+
def denom(f):
|
| 51 |
+
return f.__class__(f.ex.as_numer_denom()[1])
|
| 52 |
+
|
| 53 |
+
def simplify(f, ex):
|
| 54 |
+
return f.__class__(ex.cancel().expand(**eflags))
|
| 55 |
+
|
| 56 |
+
def __abs__(f):
|
| 57 |
+
return f.__class__(abs(f.ex))
|
| 58 |
+
|
| 59 |
+
def __neg__(f):
|
| 60 |
+
return f.__class__(-f.ex)
|
| 61 |
+
|
| 62 |
+
def _to_ex(f, g):
|
| 63 |
+
try:
|
| 64 |
+
return f.__class__(g)
|
| 65 |
+
except SympifyError:
|
| 66 |
+
return None
|
| 67 |
+
|
| 68 |
+
def __lt__(f, g):
|
| 69 |
+
return f.ex.sort_key() < g.ex.sort_key()
|
| 70 |
+
|
| 71 |
+
def __add__(f, g):
|
| 72 |
+
g = f._to_ex(g)
|
| 73 |
+
|
| 74 |
+
if g is None:
|
| 75 |
+
return NotImplemented
|
| 76 |
+
elif g == EX.zero:
|
| 77 |
+
return f
|
| 78 |
+
elif f == EX.zero:
|
| 79 |
+
return g
|
| 80 |
+
else:
|
| 81 |
+
return f.simplify(f.ex + g.ex)
|
| 82 |
+
|
| 83 |
+
def __radd__(f, g):
|
| 84 |
+
return f.simplify(f.__class__(g).ex + f.ex)
|
| 85 |
+
|
| 86 |
+
def __sub__(f, g):
|
| 87 |
+
g = f._to_ex(g)
|
| 88 |
+
|
| 89 |
+
if g is None:
|
| 90 |
+
return NotImplemented
|
| 91 |
+
elif g == EX.zero:
|
| 92 |
+
return f
|
| 93 |
+
elif f == EX.zero:
|
| 94 |
+
return -g
|
| 95 |
+
else:
|
| 96 |
+
return f.simplify(f.ex - g.ex)
|
| 97 |
+
|
| 98 |
+
def __rsub__(f, g):
|
| 99 |
+
return f.simplify(f.__class__(g).ex - f.ex)
|
| 100 |
+
|
| 101 |
+
def __mul__(f, g):
|
| 102 |
+
g = f._to_ex(g)
|
| 103 |
+
|
| 104 |
+
if g is None:
|
| 105 |
+
return NotImplemented
|
| 106 |
+
|
| 107 |
+
if EX.zero in (f, g):
|
| 108 |
+
return EX.zero
|
| 109 |
+
elif f.ex.is_Number and g.ex.is_Number:
|
| 110 |
+
return f.__class__(f.ex*g.ex)
|
| 111 |
+
|
| 112 |
+
return f.simplify(f.ex*g.ex)
|
| 113 |
+
|
| 114 |
+
def __rmul__(f, g):
|
| 115 |
+
return f.simplify(f.__class__(g).ex*f.ex)
|
| 116 |
+
|
| 117 |
+
def __pow__(f, n):
|
| 118 |
+
n = f._to_ex(n)
|
| 119 |
+
|
| 120 |
+
if n is not None:
|
| 121 |
+
return f.simplify(f.ex**n.ex)
|
| 122 |
+
else:
|
| 123 |
+
return NotImplemented
|
| 124 |
+
|
| 125 |
+
def __truediv__(f, g):
|
| 126 |
+
g = f._to_ex(g)
|
| 127 |
+
|
| 128 |
+
if g is not None:
|
| 129 |
+
return f.simplify(f.ex/g.ex)
|
| 130 |
+
else:
|
| 131 |
+
return NotImplemented
|
| 132 |
+
|
| 133 |
+
def __rtruediv__(f, g):
|
| 134 |
+
return f.simplify(f.__class__(g).ex/f.ex)
|
| 135 |
+
|
| 136 |
+
def __eq__(f, g):
|
| 137 |
+
return f.ex == f.__class__(g).ex
|
| 138 |
+
|
| 139 |
+
def __ne__(f, g):
|
| 140 |
+
return not f == g
|
| 141 |
+
|
| 142 |
+
def __bool__(f):
|
| 143 |
+
return not f.ex.is_zero
|
| 144 |
+
|
| 145 |
+
def gcd(f, g):
|
| 146 |
+
from sympy.polys import gcd
|
| 147 |
+
return f.__class__(gcd(f.ex, f.__class__(g).ex))
|
| 148 |
+
|
| 149 |
+
def lcm(f, g):
|
| 150 |
+
from sympy.polys import lcm
|
| 151 |
+
return f.__class__(lcm(f.ex, f.__class__(g).ex))
|
| 152 |
+
|
| 153 |
+
dtype = Expression
|
| 154 |
+
|
| 155 |
+
zero = Expression(0)
|
| 156 |
+
one = Expression(1)
|
| 157 |
+
|
| 158 |
+
rep = 'EX'
|
| 159 |
+
|
| 160 |
+
has_assoc_Ring = False
|
| 161 |
+
has_assoc_Field = True
|
| 162 |
+
|
| 163 |
+
def __init__(self):
|
| 164 |
+
pass
|
| 165 |
+
|
| 166 |
+
def __eq__(self, other):
|
| 167 |
+
if isinstance(other, ExpressionDomain):
|
| 168 |
+
return True
|
| 169 |
+
else:
|
| 170 |
+
return NotImplemented
|
| 171 |
+
|
| 172 |
+
def __hash__(self):
|
| 173 |
+
return hash("EX")
|
| 174 |
+
|
| 175 |
+
def to_sympy(self, a):
|
| 176 |
+
"""Convert ``a`` to a SymPy object. """
|
| 177 |
+
return a.as_expr()
|
| 178 |
+
|
| 179 |
+
def from_sympy(self, a):
|
| 180 |
+
"""Convert SymPy's expression to ``dtype``. """
|
| 181 |
+
return self.dtype(a)
|
| 182 |
+
|
| 183 |
+
def from_ZZ(K1, a, K0):
|
| 184 |
+
"""Convert a Python ``int`` object to ``dtype``. """
|
| 185 |
+
return K1(K0.to_sympy(a))
|
| 186 |
+
|
| 187 |
+
def from_ZZ_python(K1, a, K0):
|
| 188 |
+
"""Convert a Python ``int`` object to ``dtype``. """
|
| 189 |
+
return K1(K0.to_sympy(a))
|
| 190 |
+
|
| 191 |
+
def from_QQ(K1, a, K0):
|
| 192 |
+
"""Convert a Python ``Fraction`` object to ``dtype``. """
|
| 193 |
+
return K1(K0.to_sympy(a))
|
| 194 |
+
|
| 195 |
+
def from_QQ_python(K1, a, K0):
|
| 196 |
+
"""Convert a Python ``Fraction`` object to ``dtype``. """
|
| 197 |
+
return K1(K0.to_sympy(a))
|
| 198 |
+
|
| 199 |
+
def from_ZZ_gmpy(K1, a, K0):
|
| 200 |
+
"""Convert a GMPY ``mpz`` object to ``dtype``. """
|
| 201 |
+
return K1(K0.to_sympy(a))
|
| 202 |
+
|
| 203 |
+
def from_QQ_gmpy(K1, a, K0):
|
| 204 |
+
"""Convert a GMPY ``mpq`` object to ``dtype``. """
|
| 205 |
+
return K1(K0.to_sympy(a))
|
| 206 |
+
|
| 207 |
+
def from_GaussianIntegerRing(K1, a, K0):
|
| 208 |
+
"""Convert a ``GaussianRational`` object to ``dtype``. """
|
| 209 |
+
return K1(K0.to_sympy(a))
|
| 210 |
+
|
| 211 |
+
def from_GaussianRationalField(K1, a, K0):
|
| 212 |
+
"""Convert a ``GaussianRational`` object to ``dtype``. """
|
| 213 |
+
return K1(K0.to_sympy(a))
|
| 214 |
+
|
| 215 |
+
def from_AlgebraicField(K1, a, K0):
|
| 216 |
+
"""Convert an ``ANP`` object to ``dtype``. """
|
| 217 |
+
return K1(K0.to_sympy(a))
|
| 218 |
+
|
| 219 |
+
def from_RealField(K1, a, K0):
|
| 220 |
+
"""Convert a mpmath ``mpf`` object to ``dtype``. """
|
| 221 |
+
return K1(K0.to_sympy(a))
|
| 222 |
+
|
| 223 |
+
def from_ComplexField(K1, a, K0):
|
| 224 |
+
"""Convert a mpmath ``mpc`` object to ``dtype``. """
|
| 225 |
+
return K1(K0.to_sympy(a))
|
| 226 |
+
|
| 227 |
+
def from_PolynomialRing(K1, a, K0):
|
| 228 |
+
"""Convert a ``DMP`` object to ``dtype``. """
|
| 229 |
+
return K1(K0.to_sympy(a))
|
| 230 |
+
|
| 231 |
+
def from_FractionField(K1, a, K0):
|
| 232 |
+
"""Convert a ``DMF`` object to ``dtype``. """
|
| 233 |
+
return K1(K0.to_sympy(a))
|
| 234 |
+
|
| 235 |
+
def from_ExpressionDomain(K1, a, K0):
|
| 236 |
+
"""Convert a ``EX`` object to ``dtype``. """
|
| 237 |
+
return a
|
| 238 |
+
|
| 239 |
+
def get_ring(self):
|
| 240 |
+
"""Returns a ring associated with ``self``. """
|
| 241 |
+
return self # XXX: EX is not a ring but we don't have much choice here.
|
| 242 |
+
|
| 243 |
+
def get_field(self):
|
| 244 |
+
"""Returns a field associated with ``self``. """
|
| 245 |
+
return self
|
| 246 |
+
|
| 247 |
+
def is_positive(self, a):
|
| 248 |
+
"""Returns True if ``a`` is positive. """
|
| 249 |
+
return a.ex.as_coeff_mul()[0].is_positive
|
| 250 |
+
|
| 251 |
+
def is_negative(self, a):
|
| 252 |
+
"""Returns True if ``a`` is negative. """
|
| 253 |
+
return a.ex.could_extract_minus_sign()
|
| 254 |
+
|
| 255 |
+
def is_nonpositive(self, a):
|
| 256 |
+
"""Returns True if ``a`` is non-positive. """
|
| 257 |
+
return a.ex.as_coeff_mul()[0].is_nonpositive
|
| 258 |
+
|
| 259 |
+
def is_nonnegative(self, a):
|
| 260 |
+
"""Returns True if ``a`` is non-negative. """
|
| 261 |
+
return a.ex.as_coeff_mul()[0].is_nonnegative
|
| 262 |
+
|
| 263 |
+
def numer(self, a):
|
| 264 |
+
"""Returns numerator of ``a``. """
|
| 265 |
+
return a.numer()
|
| 266 |
+
|
| 267 |
+
def denom(self, a):
|
| 268 |
+
"""Returns denominator of ``a``. """
|
| 269 |
+
return a.denom()
|
| 270 |
+
|
| 271 |
+
def gcd(self, a, b):
|
| 272 |
+
return self(1)
|
| 273 |
+
|
| 274 |
+
def lcm(self, a, b):
|
| 275 |
+
return a.lcm(b)
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
EX = ExpressionDomain()
|