ZTWHHH commited on
Commit
bbdcbb7
·
verified ·
1 Parent(s): 3df26c1

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. parrot/lib/python3.10/site-packages/numpy/lib/__pycache__/_function_base_impl.cpython-310.pyc +3 -0
  3. parrot/lib/python3.10/site-packages/numpy/lib/tests/data/win64python2.npy +3 -0
  4. parrot/lib/python3.10/site-packages/scipy/_lib/__pycache__/__init__.cpython-310.pyc +0 -0
  5. parrot/lib/python3.10/site-packages/scipy/_lib/__pycache__/_array_api.cpython-310.pyc +0 -0
  6. parrot/lib/python3.10/site-packages/scipy/_lib/__pycache__/_ccallback.cpython-310.pyc +0 -0
  7. parrot/lib/python3.10/site-packages/scipy/_lib/__pycache__/_disjoint_set.cpython-310.pyc +0 -0
  8. parrot/lib/python3.10/site-packages/scipy/_lib/__pycache__/_docscrape.cpython-310.pyc +0 -0
  9. parrot/lib/python3.10/site-packages/scipy/_lib/__pycache__/_elementwise_iterative_method.cpython-310.pyc +0 -0
  10. parrot/lib/python3.10/site-packages/scipy/_lib/__pycache__/_gcutils.cpython-310.pyc +0 -0
  11. parrot/lib/python3.10/site-packages/scipy/_lib/__pycache__/_pep440.cpython-310.pyc +0 -0
  12. parrot/lib/python3.10/site-packages/scipy/_lib/__pycache__/_testutils.cpython-310.pyc +0 -0
  13. parrot/lib/python3.10/site-packages/scipy/_lib/__pycache__/_threadsafety.cpython-310.pyc +0 -0
  14. parrot/lib/python3.10/site-packages/scipy/_lib/__pycache__/_tmpdirs.cpython-310.pyc +0 -0
  15. parrot/lib/python3.10/site-packages/scipy/_lib/__pycache__/_util.cpython-310.pyc +0 -0
  16. parrot/lib/python3.10/site-packages/scipy/_lib/__pycache__/decorator.cpython-310.pyc +0 -0
  17. parrot/lib/python3.10/site-packages/scipy/_lib/__pycache__/deprecation.cpython-310.pyc +0 -0
  18. parrot/lib/python3.10/site-packages/scipy/_lib/_uarray/LICENSE +29 -0
  19. parrot/lib/python3.10/site-packages/scipy/_lib/_uarray/__init__.py +116 -0
  20. parrot/lib/python3.10/site-packages/scipy/_lib/_uarray/__pycache__/__init__.cpython-310.pyc +0 -0
  21. parrot/lib/python3.10/site-packages/scipy/_lib/_uarray/__pycache__/_backend.cpython-310.pyc +0 -0
  22. parrot/lib/python3.10/site-packages/scipy/_lib/_uarray/_backend.py +704 -0
  23. parrot/lib/python3.10/site-packages/scipy/_lib/tests/__pycache__/test__gcutils.cpython-310.pyc +0 -0
  24. parrot/lib/python3.10/site-packages/scipy/_lib/tests/__pycache__/test__threadsafety.cpython-310.pyc +0 -0
  25. parrot/lib/python3.10/site-packages/scipy/_lib/tests/__pycache__/test__util.cpython-310.pyc +0 -0
  26. parrot/lib/python3.10/site-packages/scipy/_lib/tests/__pycache__/test_array_api.cpython-310.pyc +0 -0
  27. parrot/lib/python3.10/site-packages/scipy/_lib/tests/__pycache__/test_deprecation.cpython-310.pyc +0 -0
  28. parrot/lib/python3.10/site-packages/scipy/_lib/tests/__pycache__/test_public_api.cpython-310.pyc +0 -0
  29. parrot/lib/python3.10/site-packages/scipy/_lib/tests/__pycache__/test_tmpdirs.cpython-310.pyc +0 -0
  30. parrot/lib/python3.10/site-packages/scipy/stats/__init__.py +649 -0
  31. parrot/lib/python3.10/site-packages/scipy/stats/_axis_nan_policy.py +686 -0
  32. parrot/lib/python3.10/site-packages/scipy/stats/_biasedurn.pxd +27 -0
  33. parrot/lib/python3.10/site-packages/scipy/stats/_binomtest.py +375 -0
  34. parrot/lib/python3.10/site-packages/scipy/stats/_bws_test.py +177 -0
  35. parrot/lib/python3.10/site-packages/scipy/stats/_censored_data.py +459 -0
  36. parrot/lib/python3.10/site-packages/scipy/stats/_crosstab.py +204 -0
  37. parrot/lib/python3.10/site-packages/scipy/stats/_discrete_distns.py +1922 -0
  38. parrot/lib/python3.10/site-packages/scipy/stats/_distr_params.py +292 -0
  39. parrot/lib/python3.10/site-packages/scipy/stats/_entropy.py +426 -0
  40. parrot/lib/python3.10/site-packages/scipy/stats/_fit.py +1354 -0
  41. parrot/lib/python3.10/site-packages/scipy/stats/_hypotests.py +2027 -0
  42. parrot/lib/python3.10/site-packages/scipy/stats/_kde.py +725 -0
  43. parrot/lib/python3.10/site-packages/scipy/stats/_ksstats.py +600 -0
  44. parrot/lib/python3.10/site-packages/scipy/stats/_mannwhitneyu.py +494 -0
  45. parrot/lib/python3.10/site-packages/scipy/stats/_morestats.py +0 -0
  46. parrot/lib/python3.10/site-packages/scipy/stats/_mstats_basic.py +0 -0
  47. parrot/lib/python3.10/site-packages/scipy/stats/_multicomp.py +459 -0
  48. parrot/lib/python3.10/site-packages/scipy/stats/_multivariate.py +0 -0
  49. parrot/lib/python3.10/site-packages/scipy/stats/_mvn.cpython-310-x86_64-linux-gnu.so +0 -0
  50. parrot/lib/python3.10/site-packages/scipy/stats/_odds_ratio.py +482 -0
.gitattributes CHANGED
@@ -1440,3 +1440,4 @@ vllm/lib/python3.10/site-packages/huggingface_hub/inference/_generated/__pycache
1440
  vllm/lib/python3.10/site-packages/huggingface_hub/inference/__pycache__/_client.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
1441
  vglm/bin/python filter=lfs diff=lfs merge=lfs -text
1442
  vllm/lib/python3.10/site-packages/huggingface_hub/__pycache__/hf_api.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
 
 
1440
  vllm/lib/python3.10/site-packages/huggingface_hub/inference/__pycache__/_client.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
1441
  vglm/bin/python filter=lfs diff=lfs merge=lfs -text
1442
  vllm/lib/python3.10/site-packages/huggingface_hub/__pycache__/hf_api.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
1443
+ parrot/lib/python3.10/site-packages/numpy/lib/__pycache__/_function_base_impl.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
parrot/lib/python3.10/site-packages/numpy/lib/__pycache__/_function_base_impl.cpython-310.pyc ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82269618ca3158bed8098a2e1a4fdd2725dfa6cdf520df1c090d03d95c82debd
3
+ size 166337
parrot/lib/python3.10/site-packages/numpy/lib/tests/data/win64python2.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a039c807558149ad5fa7ad12436c69d49c5e194cf617b92785f8cb60ec63297
3
+ size 96
parrot/lib/python3.10/site-packages/scipy/_lib/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (519 Bytes). View file
 
parrot/lib/python3.10/site-packages/scipy/_lib/__pycache__/_array_api.cpython-310.pyc ADDED
Binary file (13.7 kB). View file
 
parrot/lib/python3.10/site-packages/scipy/_lib/__pycache__/_ccallback.cpython-310.pyc ADDED
Binary file (7 kB). View file
 
parrot/lib/python3.10/site-packages/scipy/_lib/__pycache__/_disjoint_set.cpython-310.pyc ADDED
Binary file (6.41 kB). View file
 
parrot/lib/python3.10/site-packages/scipy/_lib/__pycache__/_docscrape.cpython-310.pyc ADDED
Binary file (18.9 kB). View file
 
parrot/lib/python3.10/site-packages/scipy/_lib/__pycache__/_elementwise_iterative_method.cpython-310.pyc ADDED
Binary file (11 kB). View file
 
parrot/lib/python3.10/site-packages/scipy/_lib/__pycache__/_gcutils.cpython-310.pyc ADDED
Binary file (3.04 kB). View file
 
parrot/lib/python3.10/site-packages/scipy/_lib/__pycache__/_pep440.cpython-310.pyc ADDED
Binary file (12.7 kB). View file
 
parrot/lib/python3.10/site-packages/scipy/_lib/__pycache__/_testutils.cpython-310.pyc ADDED
Binary file (9.88 kB). View file
 
parrot/lib/python3.10/site-packages/scipy/_lib/__pycache__/_threadsafety.cpython-310.pyc ADDED
Binary file (2.28 kB). View file
 
parrot/lib/python3.10/site-packages/scipy/_lib/__pycache__/_tmpdirs.cpython-310.pyc ADDED
Binary file (2.74 kB). View file
 
parrot/lib/python3.10/site-packages/scipy/_lib/__pycache__/_util.cpython-310.pyc ADDED
Binary file (30.4 kB). View file
 
parrot/lib/python3.10/site-packages/scipy/_lib/__pycache__/decorator.cpython-310.pyc ADDED
Binary file (11.4 kB). View file
 
parrot/lib/python3.10/site-packages/scipy/_lib/__pycache__/deprecation.cpython-310.pyc ADDED
Binary file (7.38 kB). View file
 
parrot/lib/python3.10/site-packages/scipy/_lib/_uarray/LICENSE ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ BSD 3-Clause License
2
+
3
+ Copyright (c) 2018, Quansight-Labs
4
+ All rights reserved.
5
+
6
+ Redistribution and use in source and binary forms, with or without
7
+ modification, are permitted provided that the following conditions are met:
8
+
9
+ * Redistributions of source code must retain the above copyright notice, this
10
+ list of conditions and the following disclaimer.
11
+
12
+ * Redistributions in binary form must reproduce the above copyright notice,
13
+ this list of conditions and the following disclaimer in the documentation
14
+ and/or other materials provided with the distribution.
15
+
16
+ * Neither the name of the copyright holder nor the names of its
17
+ contributors may be used to endorse or promote products derived from
18
+ this software without specific prior written permission.
19
+
20
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
23
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
24
+ FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25
+ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
26
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
27
+ CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28
+ OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
parrot/lib/python3.10/site-packages/scipy/_lib/_uarray/__init__.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ .. note:
3
+ If you are looking for overrides for NumPy-specific methods, see the
4
+ documentation for :obj:`unumpy`. This page explains how to write
5
+ back-ends and multimethods.
6
+
7
+ ``uarray`` is built around a back-end protocol, and overridable multimethods.
8
+ It is necessary to define multimethods for back-ends to be able to override them.
9
+ See the documentation of :obj:`generate_multimethod` on how to write multimethods.
10
+
11
+
12
+
13
+ Let's start with the simplest:
14
+
15
+ ``__ua_domain__`` defines the back-end *domain*. The domain consists of period-
16
+ separated string consisting of the modules you extend plus the submodule. For
17
+ example, if a submodule ``module2.submodule`` extends ``module1``
18
+ (i.e., it exposes dispatchables marked as types available in ``module1``),
19
+ then the domain string should be ``"module1.module2.submodule"``.
20
+
21
+
22
+ For the purpose of this demonstration, we'll be creating an object and setting
23
+ its attributes directly. However, note that you can use a module or your own type
24
+ as a backend as well.
25
+
26
+ >>> class Backend: pass
27
+ >>> be = Backend()
28
+ >>> be.__ua_domain__ = "ua_examples"
29
+
30
+ It might be useful at this point to sidetrack to the documentation of
31
+ :obj:`generate_multimethod` to find out how to generate a multimethod
32
+ overridable by :obj:`uarray`. Needless to say, writing a backend and
33
+ creating multimethods are mostly orthogonal activities, and knowing
34
+ one doesn't necessarily require knowledge of the other, although it
35
+ is certainly helpful. We expect core API designers/specifiers to write the
36
+ multimethods, and implementors to override them. But, as is often the case,
37
+ similar people write both.
38
+
39
+ Without further ado, here's an example multimethod:
40
+
41
+ >>> import uarray as ua
42
+ >>> from uarray import Dispatchable
43
+ >>> def override_me(a, b):
44
+ ... return Dispatchable(a, int),
45
+ >>> def override_replacer(args, kwargs, dispatchables):
46
+ ... return (dispatchables[0], args[1]), {}
47
+ >>> overridden_me = ua.generate_multimethod(
48
+ ... override_me, override_replacer, "ua_examples"
49
+ ... )
50
+
51
+ Next comes the part about overriding the multimethod. This requires
52
+ the ``__ua_function__`` protocol, and the ``__ua_convert__``
53
+ protocol. The ``__ua_function__`` protocol has the signature
54
+ ``(method, args, kwargs)`` where ``method`` is the passed
55
+ multimethod, ``args``/``kwargs`` specify the arguments and ``dispatchables``
56
+ is the list of converted dispatchables passed in.
57
+
58
+ >>> def __ua_function__(method, args, kwargs):
59
+ ... return method.__name__, args, kwargs
60
+ >>> be.__ua_function__ = __ua_function__
61
+
62
+ The other protocol of interest is the ``__ua_convert__`` protocol. It has the
63
+ signature ``(dispatchables, coerce)``. When ``coerce`` is ``False``, conversion
64
+ between the formats should ideally be an ``O(1)`` operation, but it means that
65
+ no memory copying should be involved, only views of the existing data.
66
+
67
+ >>> def __ua_convert__(dispatchables, coerce):
68
+ ... for d in dispatchables:
69
+ ... if d.type is int:
70
+ ... if coerce and d.coercible:
71
+ ... yield str(d.value)
72
+ ... else:
73
+ ... yield d.value
74
+ >>> be.__ua_convert__ = __ua_convert__
75
+
76
+ Now that we have defined the backend, the next thing to do is to call the multimethod.
77
+
78
+ >>> with ua.set_backend(be):
79
+ ... overridden_me(1, "2")
80
+ ('override_me', (1, '2'), {})
81
+
82
+ Note that the marked type has no effect on the actual type of the passed object.
83
+ We can also coerce the type of the input.
84
+
85
+ >>> with ua.set_backend(be, coerce=True):
86
+ ... overridden_me(1, "2")
87
+ ... overridden_me(1.0, "2")
88
+ ('override_me', ('1', '2'), {})
89
+ ('override_me', ('1.0', '2'), {})
90
+
91
+ Another feature is that if you remove ``__ua_convert__``, the arguments are not
92
+ converted at all and it's up to the backend to handle that.
93
+
94
+ >>> del be.__ua_convert__
95
+ >>> with ua.set_backend(be):
96
+ ... overridden_me(1, "2")
97
+ ('override_me', (1, '2'), {})
98
+
99
+ You also have the option to return ``NotImplemented``, in which case processing moves on
100
+ to the next back-end, which in this case, doesn't exist. The same applies to
101
+ ``__ua_convert__``.
102
+
103
+ >>> be.__ua_function__ = lambda *a, **kw: NotImplemented
104
+ >>> with ua.set_backend(be):
105
+ ... overridden_me(1, "2")
106
+ Traceback (most recent call last):
107
+ ...
108
+ uarray.BackendNotImplementedError: ...
109
+
110
+ The last possibility is if we don't have ``__ua_convert__``, in which case the job is
111
+ left up to ``__ua_function__``, but putting things back into arrays after conversion
112
+ will not be possible.
113
+ """
114
+
115
+ from ._backend import *
116
+ __version__ = '0.8.8.dev0+aa94c5a4.scipy'
parrot/lib/python3.10/site-packages/scipy/_lib/_uarray/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (4.68 kB). View file
 
parrot/lib/python3.10/site-packages/scipy/_lib/_uarray/__pycache__/_backend.cpython-310.pyc ADDED
Binary file (20.4 kB). View file
 
parrot/lib/python3.10/site-packages/scipy/_lib/_uarray/_backend.py ADDED
@@ -0,0 +1,704 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import typing
2
+ import types
3
+ import inspect
4
+ import functools
5
+ from . import _uarray
6
+ import copyreg
7
+ import pickle
8
+ import contextlib
9
+
10
+ from ._uarray import ( # type: ignore
11
+ BackendNotImplementedError,
12
+ _Function,
13
+ _SkipBackendContext,
14
+ _SetBackendContext,
15
+ _BackendState,
16
+ )
17
+
18
+ __all__ = [
19
+ "set_backend",
20
+ "set_global_backend",
21
+ "skip_backend",
22
+ "register_backend",
23
+ "determine_backend",
24
+ "determine_backend_multi",
25
+ "clear_backends",
26
+ "create_multimethod",
27
+ "generate_multimethod",
28
+ "_Function",
29
+ "BackendNotImplementedError",
30
+ "Dispatchable",
31
+ "wrap_single_convertor",
32
+ "wrap_single_convertor_instance",
33
+ "all_of_type",
34
+ "mark_as",
35
+ "set_state",
36
+ "get_state",
37
+ "reset_state",
38
+ "_BackendState",
39
+ "_SkipBackendContext",
40
+ "_SetBackendContext",
41
+ ]
42
+
43
+ ArgumentExtractorType = typing.Callable[..., tuple["Dispatchable", ...]]
44
+ ArgumentReplacerType = typing.Callable[
45
+ [tuple, dict, tuple], tuple[tuple, dict]
46
+ ]
47
+
48
+ def unpickle_function(mod_name, qname, self_):
49
+ import importlib
50
+
51
+ try:
52
+ module = importlib.import_module(mod_name)
53
+ qname = qname.split(".")
54
+ func = module
55
+ for q in qname:
56
+ func = getattr(func, q)
57
+
58
+ if self_ is not None:
59
+ func = types.MethodType(func, self_)
60
+
61
+ return func
62
+ except (ImportError, AttributeError) as e:
63
+ from pickle import UnpicklingError
64
+
65
+ raise UnpicklingError from e
66
+
67
+
68
+ def pickle_function(func):
69
+ mod_name = getattr(func, "__module__", None)
70
+ qname = getattr(func, "__qualname__", None)
71
+ self_ = getattr(func, "__self__", None)
72
+
73
+ try:
74
+ test = unpickle_function(mod_name, qname, self_)
75
+ except pickle.UnpicklingError:
76
+ test = None
77
+
78
+ if test is not func:
79
+ raise pickle.PicklingError(
80
+ f"Can't pickle {func}: it's not the same object as {test}"
81
+ )
82
+
83
+ return unpickle_function, (mod_name, qname, self_)
84
+
85
+
86
+ def pickle_state(state):
87
+ return _uarray._BackendState._unpickle, state._pickle()
88
+
89
+
90
+ def pickle_set_backend_context(ctx):
91
+ return _SetBackendContext, ctx._pickle()
92
+
93
+
94
+ def pickle_skip_backend_context(ctx):
95
+ return _SkipBackendContext, ctx._pickle()
96
+
97
+
98
+ copyreg.pickle(_Function, pickle_function)
99
+ copyreg.pickle(_uarray._BackendState, pickle_state)
100
+ copyreg.pickle(_SetBackendContext, pickle_set_backend_context)
101
+ copyreg.pickle(_SkipBackendContext, pickle_skip_backend_context)
102
+
103
+
104
+ def get_state():
105
+ """
106
+ Returns an opaque object containing the current state of all the backends.
107
+
108
+ Can be used for synchronization between threads/processes.
109
+
110
+ See Also
111
+ --------
112
+ set_state
113
+ Sets the state returned by this function.
114
+ """
115
+ return _uarray.get_state()
116
+
117
+
118
+ @contextlib.contextmanager
119
+ def reset_state():
120
+ """
121
+ Returns a context manager that resets all state once exited.
122
+
123
+ See Also
124
+ --------
125
+ set_state
126
+ Context manager that sets the backend state.
127
+ get_state
128
+ Gets a state to be set by this context manager.
129
+ """
130
+ with set_state(get_state()):
131
+ yield
132
+
133
+
134
+ @contextlib.contextmanager
135
+ def set_state(state):
136
+ """
137
+ A context manager that sets the state of the backends to one returned by :obj:`get_state`.
138
+
139
+ See Also
140
+ --------
141
+ get_state
142
+ Gets a state to be set by this context manager.
143
+ """ # noqa: E501
144
+ old_state = get_state()
145
+ _uarray.set_state(state)
146
+ try:
147
+ yield
148
+ finally:
149
+ _uarray.set_state(old_state, True)
150
+
151
+
152
+ def create_multimethod(*args, **kwargs):
153
+ """
154
+ Creates a decorator for generating multimethods.
155
+
156
+ This function creates a decorator that can be used with an argument
157
+ extractor in order to generate a multimethod. Other than for the
158
+ argument extractor, all arguments are passed on to
159
+ :obj:`generate_multimethod`.
160
+
161
+ See Also
162
+ --------
163
+ generate_multimethod
164
+ Generates a multimethod.
165
+ """
166
+
167
+ def wrapper(a):
168
+ return generate_multimethod(a, *args, **kwargs)
169
+
170
+ return wrapper
171
+
172
+
173
+ def generate_multimethod(
174
+ argument_extractor: ArgumentExtractorType,
175
+ argument_replacer: ArgumentReplacerType,
176
+ domain: str,
177
+ default: typing.Optional[typing.Callable] = None,
178
+ ):
179
+ """
180
+ Generates a multimethod.
181
+
182
+ Parameters
183
+ ----------
184
+ argument_extractor : ArgumentExtractorType
185
+ A callable which extracts the dispatchable arguments. Extracted arguments
186
+ should be marked by the :obj:`Dispatchable` class. It has the same signature
187
+ as the desired multimethod.
188
+ argument_replacer : ArgumentReplacerType
189
+ A callable with the signature (args, kwargs, dispatchables), which should also
190
+ return an (args, kwargs) pair with the dispatchables replaced inside the
191
+ args/kwargs.
192
+ domain : str
193
+ A string value indicating the domain of this multimethod.
194
+ default: Optional[Callable], optional
195
+ The default implementation of this multimethod, where ``None`` (the default)
196
+ specifies there is no default implementation.
197
+
198
+ Examples
199
+ --------
200
+ In this example, ``a`` is to be dispatched over, so we return it, while marking it
201
+ as an ``int``.
202
+ The trailing comma is needed because the args have to be returned as an iterable.
203
+
204
+ >>> def override_me(a, b):
205
+ ... return Dispatchable(a, int),
206
+
207
+ Next, we define the argument replacer that replaces the dispatchables inside
208
+ args/kwargs with the supplied ones.
209
+
210
+ >>> def override_replacer(args, kwargs, dispatchables):
211
+ ... return (dispatchables[0], args[1]), {}
212
+
213
+ Next, we define the multimethod.
214
+
215
+ >>> overridden_me = generate_multimethod(
216
+ ... override_me, override_replacer, "ua_examples"
217
+ ... )
218
+
219
+ Notice that there's no default implementation, unless you supply one.
220
+
221
+ >>> overridden_me(1, "a")
222
+ Traceback (most recent call last):
223
+ ...
224
+ uarray.BackendNotImplementedError: ...
225
+
226
+ >>> overridden_me2 = generate_multimethod(
227
+ ... override_me, override_replacer, "ua_examples", default=lambda x, y: (x, y)
228
+ ... )
229
+ >>> overridden_me2(1, "a")
230
+ (1, 'a')
231
+
232
+ See Also
233
+ --------
234
+ uarray
235
+ See the module documentation for how to override the method by creating
236
+ backends.
237
+ """
238
+ kw_defaults, arg_defaults, opts = get_defaults(argument_extractor)
239
+ ua_func = _Function(
240
+ argument_extractor,
241
+ argument_replacer,
242
+ domain,
243
+ arg_defaults,
244
+ kw_defaults,
245
+ default,
246
+ )
247
+
248
+ return functools.update_wrapper(ua_func, argument_extractor)
249
+
250
+
251
+ def set_backend(backend, coerce=False, only=False):
252
+ """
253
+ A context manager that sets the preferred backend.
254
+
255
+ Parameters
256
+ ----------
257
+ backend
258
+ The backend to set.
259
+ coerce
260
+ Whether or not to coerce to a specific backend's types. Implies ``only``.
261
+ only
262
+ Whether or not this should be the last backend to try.
263
+
264
+ See Also
265
+ --------
266
+ skip_backend: A context manager that allows skipping of backends.
267
+ set_global_backend: Set a single, global backend for a domain.
268
+ """
269
+ try:
270
+ return backend.__ua_cache__["set", coerce, only]
271
+ except AttributeError:
272
+ backend.__ua_cache__ = {}
273
+ except KeyError:
274
+ pass
275
+
276
+ ctx = _SetBackendContext(backend, coerce, only)
277
+ backend.__ua_cache__["set", coerce, only] = ctx
278
+ return ctx
279
+
280
+
281
+ def skip_backend(backend):
282
+ """
283
+ A context manager that allows one to skip a given backend from processing
284
+ entirely. This allows one to use another backend's code in a library that
285
+ is also a consumer of the same backend.
286
+
287
+ Parameters
288
+ ----------
289
+ backend
290
+ The backend to skip.
291
+
292
+ See Also
293
+ --------
294
+ set_backend: A context manager that allows setting of backends.
295
+ set_global_backend: Set a single, global backend for a domain.
296
+ """
297
+ try:
298
+ return backend.__ua_cache__["skip"]
299
+ except AttributeError:
300
+ backend.__ua_cache__ = {}
301
+ except KeyError:
302
+ pass
303
+
304
+ ctx = _SkipBackendContext(backend)
305
+ backend.__ua_cache__["skip"] = ctx
306
+ return ctx
307
+
308
+
309
+ def get_defaults(f):
310
+ sig = inspect.signature(f)
311
+ kw_defaults = {}
312
+ arg_defaults = []
313
+ opts = set()
314
+ for k, v in sig.parameters.items():
315
+ if v.default is not inspect.Parameter.empty:
316
+ kw_defaults[k] = v.default
317
+ if v.kind in (
318
+ inspect.Parameter.POSITIONAL_ONLY,
319
+ inspect.Parameter.POSITIONAL_OR_KEYWORD,
320
+ ):
321
+ arg_defaults.append(v.default)
322
+ opts.add(k)
323
+
324
+ return kw_defaults, tuple(arg_defaults), opts
325
+
326
+
327
+ def set_global_backend(backend, coerce=False, only=False, *, try_last=False):
328
+ """
329
+ This utility method replaces the default backend for permanent use. It
330
+ will be tried in the list of backends automatically, unless the
331
+ ``only`` flag is set on a backend. This will be the first tried
332
+ backend outside the :obj:`set_backend` context manager.
333
+
334
+ Note that this method is not thread-safe.
335
+
336
+ .. warning::
337
+ We caution library authors against using this function in
338
+ their code. We do *not* support this use-case. This function
339
+ is meant to be used only by users themselves, or by a reference
340
+ implementation, if one exists.
341
+
342
+ Parameters
343
+ ----------
344
+ backend
345
+ The backend to register.
346
+ coerce : bool
347
+ Whether to coerce input types when trying this backend.
348
+ only : bool
349
+ If ``True``, no more backends will be tried if this fails.
350
+ Implied by ``coerce=True``.
351
+ try_last : bool
352
+ If ``True``, the global backend is tried after registered backends.
353
+
354
+ See Also
355
+ --------
356
+ set_backend: A context manager that allows setting of backends.
357
+ skip_backend: A context manager that allows skipping of backends.
358
+ """
359
+ _uarray.set_global_backend(backend, coerce, only, try_last)
360
+
361
+
362
+ def register_backend(backend):
363
+ """
364
+ This utility method sets registers backend for permanent use. It
365
+ will be tried in the list of backends automatically, unless the
366
+ ``only`` flag is set on a backend.
367
+
368
+ Note that this method is not thread-safe.
369
+
370
+ Parameters
371
+ ----------
372
+ backend
373
+ The backend to register.
374
+ """
375
+ _uarray.register_backend(backend)
376
+
377
+
378
+ def clear_backends(domain, registered=True, globals=False):
379
+ """
380
+ This utility method clears registered backends.
381
+
382
+ .. warning::
383
+ We caution library authors against using this function in
384
+ their code. We do *not* support this use-case. This function
385
+ is meant to be used only by users themselves.
386
+
387
+ .. warning::
388
+ Do NOT use this method inside a multimethod call, or the
389
+ program is likely to crash.
390
+
391
+ Parameters
392
+ ----------
393
+ domain : Optional[str]
394
+ The domain for which to de-register backends. ``None`` means
395
+ de-register for all domains.
396
+ registered : bool
397
+ Whether or not to clear registered backends. See :obj:`register_backend`.
398
+ globals : bool
399
+ Whether or not to clear global backends. See :obj:`set_global_backend`.
400
+
401
+ See Also
402
+ --------
403
+ register_backend : Register a backend globally.
404
+ set_global_backend : Set a global backend.
405
+ """
406
+ _uarray.clear_backends(domain, registered, globals)
407
+
408
+
409
+ class Dispatchable:
410
+ """
411
+ A utility class which marks an argument with a specific dispatch type.
412
+
413
+
414
+ Attributes
415
+ ----------
416
+ value
417
+ The value of the Dispatchable.
418
+
419
+ type
420
+ The type of the Dispatchable.
421
+
422
+ Examples
423
+ --------
424
+ >>> x = Dispatchable(1, str)
425
+ >>> x
426
+ <Dispatchable: type=<class 'str'>, value=1>
427
+
428
+ See Also
429
+ --------
430
+ all_of_type
431
+ Marks all unmarked parameters of a function.
432
+
433
+ mark_as
434
+ Allows one to create a utility function to mark as a given type.
435
+ """
436
+
437
+ def __init__(self, value, dispatch_type, coercible=True):
438
+ self.value = value
439
+ self.type = dispatch_type
440
+ self.coercible = coercible
441
+
442
+ def __getitem__(self, index):
443
+ return (self.type, self.value)[index]
444
+
445
+ def __str__(self):
446
+ return f"<{type(self).__name__}: type={self.type!r}, value={self.value!r}>"
447
+
448
+ __repr__ = __str__
449
+
450
+
451
+ def mark_as(dispatch_type):
452
+ """
453
+ Creates a utility function to mark something as a specific type.
454
+
455
+ Examples
456
+ --------
457
+ >>> mark_int = mark_as(int)
458
+ >>> mark_int(1)
459
+ <Dispatchable: type=<class 'int'>, value=1>
460
+ """
461
+ return functools.partial(Dispatchable, dispatch_type=dispatch_type)
462
+
463
+
464
+ def all_of_type(arg_type):
465
+ """
466
+ Marks all unmarked arguments as a given type.
467
+
468
+ Examples
469
+ --------
470
+ >>> @all_of_type(str)
471
+ ... def f(a, b):
472
+ ... return a, Dispatchable(b, int)
473
+ >>> f('a', 1)
474
+ (<Dispatchable: type=<class 'str'>, value='a'>,
475
+ <Dispatchable: type=<class 'int'>, value=1>)
476
+ """
477
+
478
+ def outer(func):
479
+ @functools.wraps(func)
480
+ def inner(*args, **kwargs):
481
+ extracted_args = func(*args, **kwargs)
482
+ return tuple(
483
+ Dispatchable(arg, arg_type)
484
+ if not isinstance(arg, Dispatchable)
485
+ else arg
486
+ for arg in extracted_args
487
+ )
488
+
489
+ return inner
490
+
491
+ return outer
492
+
493
+
494
+ def wrap_single_convertor(convert_single):
495
+ """
496
+ Wraps a ``__ua_convert__`` defined for a single element to all elements.
497
+ If any of them return ``NotImplemented``, the operation is assumed to be
498
+ undefined.
499
+
500
+ Accepts a signature of (value, type, coerce).
501
+ """
502
+
503
+ @functools.wraps(convert_single)
504
+ def __ua_convert__(dispatchables, coerce):
505
+ converted = []
506
+ for d in dispatchables:
507
+ c = convert_single(d.value, d.type, coerce and d.coercible)
508
+
509
+ if c is NotImplemented:
510
+ return NotImplemented
511
+
512
+ converted.append(c)
513
+
514
+ return converted
515
+
516
+ return __ua_convert__
517
+
518
+
519
+ def wrap_single_convertor_instance(convert_single):
520
+ """
521
+ Wraps a ``__ua_convert__`` defined for a single element to all elements.
522
+ If any of them return ``NotImplemented``, the operation is assumed to be
523
+ undefined.
524
+
525
+ Accepts a signature of (value, type, coerce).
526
+ """
527
+
528
+ @functools.wraps(convert_single)
529
+ def __ua_convert__(self, dispatchables, coerce):
530
+ converted = []
531
+ for d in dispatchables:
532
+ c = convert_single(self, d.value, d.type, coerce and d.coercible)
533
+
534
+ if c is NotImplemented:
535
+ return NotImplemented
536
+
537
+ converted.append(c)
538
+
539
+ return converted
540
+
541
+ return __ua_convert__
542
+
543
+
544
+ def determine_backend(value, dispatch_type, *, domain, only=True, coerce=False):
545
+ """Set the backend to the first active backend that supports ``value``
546
+
547
+ This is useful for functions that call multimethods without any dispatchable
548
+ arguments. You can use :func:`determine_backend` to ensure the same backend
549
+ is used everywhere in a block of multimethod calls.
550
+
551
+ Parameters
552
+ ----------
553
+ value
554
+ The value being tested
555
+ dispatch_type
556
+ The dispatch type associated with ``value``, aka
557
+ ":ref:`marking <MarkingGlossary>`".
558
+ domain: string
559
+ The domain to query for backends and set.
560
+ coerce: bool
561
+ Whether or not to allow coercion to the backend's types. Implies ``only``.
562
+ only: bool
563
+ Whether or not this should be the last backend to try.
564
+
565
+ See Also
566
+ --------
567
+ set_backend: For when you know which backend to set
568
+
569
+ Notes
570
+ -----
571
+
572
+ Support is determined by the ``__ua_convert__`` protocol. Backends not
573
+ supporting the type must return ``NotImplemented`` from their
574
+ ``__ua_convert__`` if they don't support input of that type.
575
+
576
+ Examples
577
+ --------
578
+
579
+ Suppose we have two backends ``BackendA`` and ``BackendB`` each supporting
580
+ different types, ``TypeA`` and ``TypeB``. Neither supporting the other type:
581
+
582
+ >>> with ua.set_backend(ex.BackendA):
583
+ ... ex.call_multimethod(ex.TypeB(), ex.TypeB())
584
+ Traceback (most recent call last):
585
+ ...
586
+ uarray.BackendNotImplementedError: ...
587
+
588
+ Now consider a multimethod that creates a new object of ``TypeA``, or
589
+ ``TypeB`` depending on the active backend.
590
+
591
+ >>> with ua.set_backend(ex.BackendA), ua.set_backend(ex.BackendB):
592
+ ... res = ex.creation_multimethod()
593
+ ... ex.call_multimethod(res, ex.TypeA())
594
+ Traceback (most recent call last):
595
+ ...
596
+ uarray.BackendNotImplementedError: ...
597
+
598
+ ``res`` is an object of ``TypeB`` because ``BackendB`` is set in the
599
+ innermost with statement. So, ``call_multimethod`` fails since the types
600
+ don't match.
601
+
602
+ Instead, we need to first find a backend suitable for all of our objects.
603
+
604
+ >>> with ua.set_backend(ex.BackendA), ua.set_backend(ex.BackendB):
605
+ ... x = ex.TypeA()
606
+ ... with ua.determine_backend(x, "mark", domain="ua_examples"):
607
+ ... res = ex.creation_multimethod()
608
+ ... ex.call_multimethod(res, x)
609
+ TypeA
610
+
611
+ """
612
+ dispatchables = (Dispatchable(value, dispatch_type, coerce),)
613
+ backend = _uarray.determine_backend(domain, dispatchables, coerce)
614
+
615
+ return set_backend(backend, coerce=coerce, only=only)
616
+
617
+
618
+ def determine_backend_multi(
619
+ dispatchables, *, domain, only=True, coerce=False, **kwargs
620
+ ):
621
+ """Set a backend supporting all ``dispatchables``
622
+
623
+ This is useful for functions that call multimethods without any dispatchable
624
+ arguments. You can use :func:`determine_backend_multi` to ensure the same
625
+ backend is used everywhere in a block of multimethod calls involving
626
+ multiple arrays.
627
+
628
+ Parameters
629
+ ----------
630
+ dispatchables: Sequence[Union[uarray.Dispatchable, Any]]
631
+ The dispatchables that must be supported
632
+ domain: string
633
+ The domain to query for backends and set.
634
+ coerce: bool
635
+ Whether or not to allow coercion to the backend's types. Implies ``only``.
636
+ only: bool
637
+ Whether or not this should be the last backend to try.
638
+ dispatch_type: Optional[Any]
639
+ The default dispatch type associated with ``dispatchables``, aka
640
+ ":ref:`marking <MarkingGlossary>`".
641
+
642
+ See Also
643
+ --------
644
+ determine_backend: For a single dispatch value
645
+ set_backend: For when you know which backend to set
646
+
647
+ Notes
648
+ -----
649
+
650
+ Support is determined by the ``__ua_convert__`` protocol. Backends not
651
+ supporting the type must return ``NotImplemented`` from their
652
+ ``__ua_convert__`` if they don't support input of that type.
653
+
654
+ Examples
655
+ --------
656
+
657
+ :func:`determine_backend` allows the backend to be set from a single
658
+ object. :func:`determine_backend_multi` allows multiple objects to be
659
+ checked simultaneously for support in the backend. Suppose we have a
660
+ ``BackendAB`` which supports ``TypeA`` and ``TypeB`` in the same call,
661
+ and a ``BackendBC`` that doesn't support ``TypeA``.
662
+
663
+ >>> with ua.set_backend(ex.BackendAB), ua.set_backend(ex.BackendBC):
664
+ ... a, b = ex.TypeA(), ex.TypeB()
665
+ ... with ua.determine_backend_multi(
666
+ ... [ua.Dispatchable(a, "mark"), ua.Dispatchable(b, "mark")],
667
+ ... domain="ua_examples"
668
+ ... ):
669
+ ... res = ex.creation_multimethod()
670
+ ... ex.call_multimethod(res, a, b)
671
+ TypeA
672
+
673
+ This won't call ``BackendBC`` because it doesn't support ``TypeA``.
674
+
675
+ We can also use leave out the ``ua.Dispatchable`` if we specify the
676
+ default ``dispatch_type`` for the ``dispatchables`` argument.
677
+
678
+ >>> with ua.set_backend(ex.BackendAB), ua.set_backend(ex.BackendBC):
679
+ ... a, b = ex.TypeA(), ex.TypeB()
680
+ ... with ua.determine_backend_multi(
681
+ ... [a, b], dispatch_type="mark", domain="ua_examples"
682
+ ... ):
683
+ ... res = ex.creation_multimethod()
684
+ ... ex.call_multimethod(res, a, b)
685
+ TypeA
686
+
687
+ """
688
+ if "dispatch_type" in kwargs:
689
+ disp_type = kwargs.pop("dispatch_type")
690
+ dispatchables = tuple(
691
+ d if isinstance(d, Dispatchable) else Dispatchable(d, disp_type)
692
+ for d in dispatchables
693
+ )
694
+ else:
695
+ dispatchables = tuple(dispatchables)
696
+ if not all(isinstance(d, Dispatchable) for d in dispatchables):
697
+ raise TypeError("dispatchables must be instances of uarray.Dispatchable")
698
+
699
+ if len(kwargs) != 0:
700
+ raise TypeError(f"Received unexpected keyword arguments: {kwargs}")
701
+
702
+ backend = _uarray.determine_backend(domain, dispatchables, coerce)
703
+
704
+ return set_backend(backend, coerce=coerce, only=only)
parrot/lib/python3.10/site-packages/scipy/_lib/tests/__pycache__/test__gcutils.cpython-310.pyc ADDED
Binary file (3.6 kB). View file
 
parrot/lib/python3.10/site-packages/scipy/_lib/tests/__pycache__/test__threadsafety.cpython-310.pyc ADDED
Binary file (1.75 kB). View file
 
parrot/lib/python3.10/site-packages/scipy/_lib/tests/__pycache__/test__util.cpython-310.pyc ADDED
Binary file (14.1 kB). View file
 
parrot/lib/python3.10/site-packages/scipy/_lib/tests/__pycache__/test_array_api.cpython-310.pyc ADDED
Binary file (4.25 kB). View file
 
parrot/lib/python3.10/site-packages/scipy/_lib/tests/__pycache__/test_deprecation.cpython-310.pyc ADDED
Binary file (615 Bytes). View file
 
parrot/lib/python3.10/site-packages/scipy/_lib/tests/__pycache__/test_public_api.cpython-310.pyc ADDED
Binary file (9.6 kB). View file
 
parrot/lib/python3.10/site-packages/scipy/_lib/tests/__pycache__/test_tmpdirs.cpython-310.pyc ADDED
Binary file (1.6 kB). View file
 
parrot/lib/python3.10/site-packages/scipy/stats/__init__.py ADDED
@@ -0,0 +1,649 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ .. _statsrefmanual:
3
+
4
+ ==========================================
5
+ Statistical functions (:mod:`scipy.stats`)
6
+ ==========================================
7
+
8
+ .. currentmodule:: scipy.stats
9
+
10
+ This module contains a large number of probability distributions,
11
+ summary and frequency statistics, correlation functions and statistical
12
+ tests, masked statistics, kernel density estimation, quasi-Monte Carlo
13
+ functionality, and more.
14
+
15
+ Statistics is a very large area, and there are topics that are out of scope
16
+ for SciPy and are covered by other packages. Some of the most important ones
17
+ are:
18
+
19
+ - `statsmodels <https://www.statsmodels.org/stable/index.html>`__:
20
+ regression, linear models, time series analysis, extensions to topics
21
+ also covered by ``scipy.stats``.
22
+ - `Pandas <https://pandas.pydata.org/>`__: tabular data, time series
23
+ functionality, interfaces to other statistical languages.
24
+ - `PyMC <https://docs.pymc.io/>`__: Bayesian statistical
25
+ modeling, probabilistic machine learning.
26
+ - `scikit-learn <https://scikit-learn.org/>`__: classification, regression,
27
+ model selection.
28
+ - `Seaborn <https://seaborn.pydata.org/>`__: statistical data visualization.
29
+ - `rpy2 <https://rpy2.github.io/>`__: Python to R bridge.
30
+
31
+
32
+ Probability distributions
33
+ =========================
34
+
35
+ Each univariate distribution is an instance of a subclass of `rv_continuous`
36
+ (`rv_discrete` for discrete distributions):
37
+
38
+ .. autosummary::
39
+ :toctree: generated/
40
+
41
+ rv_continuous
42
+ rv_discrete
43
+ rv_histogram
44
+
45
+ Continuous distributions
46
+ ------------------------
47
+
48
+ .. autosummary::
49
+ :toctree: generated/
50
+
51
+ alpha -- Alpha
52
+ anglit -- Anglit
53
+ arcsine -- Arcsine
54
+ argus -- Argus
55
+ beta -- Beta
56
+ betaprime -- Beta Prime
57
+ bradford -- Bradford
58
+ burr -- Burr (Type III)
59
+ burr12 -- Burr (Type XII)
60
+ cauchy -- Cauchy
61
+ chi -- Chi
62
+ chi2 -- Chi-squared
63
+ cosine -- Cosine
64
+ crystalball -- Crystalball
65
+ dgamma -- Double Gamma
66
+ dweibull -- Double Weibull
67
+ erlang -- Erlang
68
+ expon -- Exponential
69
+ exponnorm -- Exponentially Modified Normal
70
+ exponweib -- Exponentiated Weibull
71
+ exponpow -- Exponential Power
72
+ f -- F (Snecdor F)
73
+ fatiguelife -- Fatigue Life (Birnbaum-Saunders)
74
+ fisk -- Fisk
75
+ foldcauchy -- Folded Cauchy
76
+ foldnorm -- Folded Normal
77
+ genlogistic -- Generalized Logistic
78
+ gennorm -- Generalized normal
79
+ genpareto -- Generalized Pareto
80
+ genexpon -- Generalized Exponential
81
+ genextreme -- Generalized Extreme Value
82
+ gausshyper -- Gauss Hypergeometric
83
+ gamma -- Gamma
84
+ gengamma -- Generalized gamma
85
+ genhalflogistic -- Generalized Half Logistic
86
+ genhyperbolic -- Generalized Hyperbolic
87
+ geninvgauss -- Generalized Inverse Gaussian
88
+ gibrat -- Gibrat
89
+ gompertz -- Gompertz (Truncated Gumbel)
90
+ gumbel_r -- Right Sided Gumbel, Log-Weibull, Fisher-Tippett, Extreme Value Type I
91
+ gumbel_l -- Left Sided Gumbel, etc.
92
+ halfcauchy -- Half Cauchy
93
+ halflogistic -- Half Logistic
94
+ halfnorm -- Half Normal
95
+ halfgennorm -- Generalized Half Normal
96
+ hypsecant -- Hyperbolic Secant
97
+ invgamma -- Inverse Gamma
98
+ invgauss -- Inverse Gaussian
99
+ invweibull -- Inverse Weibull
100
+ irwinhall -- Irwin-Hall
101
+ jf_skew_t -- Jones and Faddy Skew-T
102
+ johnsonsb -- Johnson SB
103
+ johnsonsu -- Johnson SU
104
+ kappa4 -- Kappa 4 parameter
105
+ kappa3 -- Kappa 3 parameter
106
+ ksone -- Distribution of Kolmogorov-Smirnov one-sided test statistic
107
+ kstwo -- Distribution of Kolmogorov-Smirnov two-sided test statistic
108
+ kstwobign -- Limiting Distribution of scaled Kolmogorov-Smirnov two-sided test statistic.
109
+ laplace -- Laplace
110
+ laplace_asymmetric -- Asymmetric Laplace
111
+ levy -- Levy
112
+ levy_l
113
+ levy_stable
114
+ logistic -- Logistic
115
+ loggamma -- Log-Gamma
116
+ loglaplace -- Log-Laplace (Log Double Exponential)
117
+ lognorm -- Log-Normal
118
+ loguniform -- Log-Uniform
119
+ lomax -- Lomax (Pareto of the second kind)
120
+ maxwell -- Maxwell
121
+ mielke -- Mielke's Beta-Kappa
122
+ moyal -- Moyal
123
+ nakagami -- Nakagami
124
+ ncx2 -- Non-central chi-squared
125
+ ncf -- Non-central F
126
+ nct -- Non-central Student's T
127
+ norm -- Normal (Gaussian)
128
+ norminvgauss -- Normal Inverse Gaussian
129
+ pareto -- Pareto
130
+ pearson3 -- Pearson type III
131
+ powerlaw -- Power-function
132
+ powerlognorm -- Power log normal
133
+ powernorm -- Power normal
134
+ rdist -- R-distribution
135
+ rayleigh -- Rayleigh
136
+ rel_breitwigner -- Relativistic Breit-Wigner
137
+ rice -- Rice
138
+ recipinvgauss -- Reciprocal Inverse Gaussian
139
+ semicircular -- Semicircular
140
+ skewcauchy -- Skew Cauchy
141
+ skewnorm -- Skew normal
142
+ studentized_range -- Studentized Range
143
+ t -- Student's T
144
+ trapezoid -- Trapezoidal
145
+ triang -- Triangular
146
+ truncexpon -- Truncated Exponential
147
+ truncnorm -- Truncated Normal
148
+ truncpareto -- Truncated Pareto
149
+ truncweibull_min -- Truncated minimum Weibull distribution
150
+ tukeylambda -- Tukey-Lambda
151
+ uniform -- Uniform
152
+ vonmises -- Von-Mises (Circular)
153
+ vonmises_line -- Von-Mises (Line)
154
+ wald -- Wald
155
+ weibull_min -- Minimum Weibull (see Frechet)
156
+ weibull_max -- Maximum Weibull (see Frechet)
157
+ wrapcauchy -- Wrapped Cauchy
158
+
159
+ The ``fit`` method of the univariate continuous distributions uses
160
+ maximum likelihood estimation to fit the distribution to a data set.
161
+ The ``fit`` method can accept regular data or *censored data*.
162
+ Censored data is represented with instances of the `CensoredData`
163
+ class.
164
+
165
+ .. autosummary::
166
+ :toctree: generated/
167
+
168
+ CensoredData
169
+
170
+
171
+ Multivariate distributions
172
+ --------------------------
173
+
174
+ .. autosummary::
175
+ :toctree: generated/
176
+
177
+ multivariate_normal -- Multivariate normal distribution
178
+ matrix_normal -- Matrix normal distribution
179
+ dirichlet -- Dirichlet
180
+ dirichlet_multinomial -- Dirichlet multinomial distribution
181
+ wishart -- Wishart
182
+ invwishart -- Inverse Wishart
183
+ multinomial -- Multinomial distribution
184
+ special_ortho_group -- SO(N) group
185
+ ortho_group -- O(N) group
186
+ unitary_group -- U(N) group
187
+ random_correlation -- random correlation matrices
188
+ multivariate_t -- Multivariate t-distribution
189
+ multivariate_hypergeom -- Multivariate hypergeometric distribution
190
+ random_table -- Distribution of random tables with given marginals
191
+ uniform_direction -- Uniform distribution on S(N-1)
192
+ vonmises_fisher -- Von Mises-Fisher distribution
193
+
194
+ `scipy.stats.multivariate_normal` methods accept instances
195
+ of the following class to represent the covariance.
196
+
197
+ .. autosummary::
198
+ :toctree: generated/
199
+
200
+ Covariance -- Representation of a covariance matrix
201
+
202
+
203
+ Discrete distributions
204
+ ----------------------
205
+
206
+ .. autosummary::
207
+ :toctree: generated/
208
+
209
+ bernoulli -- Bernoulli
210
+ betabinom -- Beta-Binomial
211
+ betanbinom -- Beta-Negative Binomial
212
+ binom -- Binomial
213
+ boltzmann -- Boltzmann (Truncated Discrete Exponential)
214
+ dlaplace -- Discrete Laplacian
215
+ geom -- Geometric
216
+ hypergeom -- Hypergeometric
217
+ logser -- Logarithmic (Log-Series, Series)
218
+ nbinom -- Negative Binomial
219
+ nchypergeom_fisher -- Fisher's Noncentral Hypergeometric
220
+ nchypergeom_wallenius -- Wallenius's Noncentral Hypergeometric
221
+ nhypergeom -- Negative Hypergeometric
222
+ planck -- Planck (Discrete Exponential)
223
+ poisson -- Poisson
224
+ randint -- Discrete Uniform
225
+ skellam -- Skellam
226
+ yulesimon -- Yule-Simon
227
+ zipf -- Zipf (Zeta)
228
+ zipfian -- Zipfian
229
+
230
+
231
+ An overview of statistical functions is given below. Many of these functions
232
+ have a similar version in `scipy.stats.mstats` which work for masked arrays.
233
+
234
+ Summary statistics
235
+ ==================
236
+
237
+ .. autosummary::
238
+ :toctree: generated/
239
+
240
+ describe -- Descriptive statistics
241
+ gmean -- Geometric mean
242
+ hmean -- Harmonic mean
243
+ pmean -- Power mean
244
+ kurtosis -- Fisher or Pearson kurtosis
245
+ mode -- Modal value
246
+ moment -- Central moment
247
+ expectile -- Expectile
248
+ skew -- Skewness
249
+ kstat --
250
+ kstatvar --
251
+ tmean -- Truncated arithmetic mean
252
+ tvar -- Truncated variance
253
+ tmin --
254
+ tmax --
255
+ tstd --
256
+ tsem --
257
+ variation -- Coefficient of variation
258
+ find_repeats
259
+ rankdata
260
+ tiecorrect
261
+ trim_mean
262
+ gstd -- Geometric Standard Deviation
263
+ iqr
264
+ sem
265
+ bayes_mvs
266
+ mvsdist
267
+ entropy
268
+ differential_entropy
269
+ median_abs_deviation
270
+
271
+ Frequency statistics
272
+ ====================
273
+
274
+ .. autosummary::
275
+ :toctree: generated/
276
+
277
+ cumfreq
278
+ percentileofscore
279
+ scoreatpercentile
280
+ relfreq
281
+
282
+ .. autosummary::
283
+ :toctree: generated/
284
+
285
+ binned_statistic -- Compute a binned statistic for a set of data.
286
+ binned_statistic_2d -- Compute a 2-D binned statistic for a set of data.
287
+ binned_statistic_dd -- Compute a d-D binned statistic for a set of data.
288
+
289
+ .. _hypotests:
290
+
291
+ Hypothesis Tests and related functions
292
+ ======================================
293
+ SciPy has many functions for performing hypothesis tests that return a
294
+ test statistic and a p-value, and several of them return confidence intervals
295
+ and/or other related information.
296
+
297
+ The headings below are based on common uses of the functions within, but due to
298
+ the wide variety of statistical procedures, any attempt at coarse-grained
299
+ categorization will be imperfect. Also, note that tests within the same heading
300
+ are not interchangeable in general (e.g. many have different distributional
301
+ assumptions).
302
+
303
+ One Sample Tests / Paired Sample Tests
304
+ --------------------------------------
305
+ One sample tests are typically used to assess whether a single sample was
306
+ drawn from a specified distribution or a distribution with specified properties
307
+ (e.g. zero mean).
308
+
309
+ .. autosummary::
310
+ :toctree: generated/
311
+
312
+ ttest_1samp
313
+ binomtest
314
+ quantile_test
315
+ skewtest
316
+ kurtosistest
317
+ normaltest
318
+ jarque_bera
319
+ shapiro
320
+ anderson
321
+ cramervonmises
322
+ ks_1samp
323
+ goodness_of_fit
324
+ chisquare
325
+ power_divergence
326
+
327
+ Paired sample tests are often used to assess whether two samples were drawn
328
+ from the same distribution; they differ from the independent sample tests below
329
+ in that each observation in one sample is treated as paired with a
330
+ closely-related observation in the other sample (e.g. when environmental
331
+ factors are controlled between observations within a pair but not among pairs).
332
+ They can also be interpreted or used as one-sample tests (e.g. tests on the
333
+ mean or median of *differences* between paired observations).
334
+
335
+ .. autosummary::
336
+ :toctree: generated/
337
+
338
+ ttest_rel
339
+ wilcoxon
340
+
341
+ Association/Correlation Tests
342
+ -----------------------------
343
+
344
+ These tests are often used to assess whether there is a relationship (e.g.
345
+ linear) between paired observations in multiple samples or among the
346
+ coordinates of multivariate observations.
347
+
348
+ .. autosummary::
349
+ :toctree: generated/
350
+
351
+ linregress
352
+ pearsonr
353
+ spearmanr
354
+ pointbiserialr
355
+ kendalltau
356
+ weightedtau
357
+ somersd
358
+ siegelslopes
359
+ theilslopes
360
+ page_trend_test
361
+ multiscale_graphcorr
362
+
363
+ These association tests and are to work with samples in the form of contingency
364
+ tables. Supporting functions are available in `scipy.stats.contingency`.
365
+
366
+ .. autosummary::
367
+ :toctree: generated/
368
+
369
+ chi2_contingency
370
+ fisher_exact
371
+ barnard_exact
372
+ boschloo_exact
373
+
374
+ Independent Sample Tests
375
+ ------------------------
376
+ Independent sample tests are typically used to assess whether multiple samples
377
+ were independently drawn from the same distribution or different distributions
378
+ with a shared property (e.g. equal means).
379
+
380
+ Some tests are specifically for comparing two samples.
381
+
382
+ .. autosummary::
383
+ :toctree: generated/
384
+
385
+ ttest_ind_from_stats
386
+ poisson_means_test
387
+ ttest_ind
388
+ mannwhitneyu
389
+ bws_test
390
+ ranksums
391
+ brunnermunzel
392
+ mood
393
+ ansari
394
+ cramervonmises_2samp
395
+ epps_singleton_2samp
396
+ ks_2samp
397
+ kstest
398
+
399
+ Others are generalized to multiple samples.
400
+
401
+ .. autosummary::
402
+ :toctree: generated/
403
+
404
+ f_oneway
405
+ tukey_hsd
406
+ dunnett
407
+ kruskal
408
+ alexandergovern
409
+ fligner
410
+ levene
411
+ bartlett
412
+ median_test
413
+ friedmanchisquare
414
+ anderson_ksamp
415
+
416
+ Resampling and Monte Carlo Methods
417
+ ----------------------------------
418
+ The following functions can reproduce the p-value and confidence interval
419
+ results of most of the functions above, and often produce accurate results in a
420
+ wider variety of conditions. They can also be used to perform hypothesis tests
421
+ and generate confidence intervals for custom statistics. This flexibility comes
422
+ at the cost of greater computational requirements and stochastic results.
423
+
424
+ .. autosummary::
425
+ :toctree: generated/
426
+
427
+ monte_carlo_test
428
+ permutation_test
429
+ bootstrap
430
+ power
431
+
432
+ Instances of the following object can be passed into some hypothesis test
433
+ functions to perform a resampling or Monte Carlo version of the hypothesis
434
+ test.
435
+
436
+ .. autosummary::
437
+ :toctree: generated/
438
+
439
+ MonteCarloMethod
440
+ PermutationMethod
441
+ BootstrapMethod
442
+
443
+ Multiple Hypothesis Testing and Meta-Analysis
444
+ ---------------------------------------------
445
+ These functions are for assessing the results of individual tests as a whole.
446
+ Functions for performing specific multiple hypothesis tests (e.g. post hoc
447
+ tests) are listed above.
448
+
449
+ .. autosummary::
450
+ :toctree: generated/
451
+
452
+ combine_pvalues
453
+ false_discovery_control
454
+
455
+
456
+ The following functions are related to the tests above but do not belong in the
457
+ above categories.
458
+
459
+ Quasi-Monte Carlo
460
+ =================
461
+
462
+ .. toctree::
463
+ :maxdepth: 4
464
+
465
+ stats.qmc
466
+
467
+ Contingency Tables
468
+ ==================
469
+
470
+ .. toctree::
471
+ :maxdepth: 4
472
+
473
+ stats.contingency
474
+
475
+ Masked statistics functions
476
+ ===========================
477
+
478
+ .. toctree::
479
+
480
+ stats.mstats
481
+
482
+
483
+ Other statistical functionality
484
+ ===============================
485
+
486
+ Transformations
487
+ ---------------
488
+
489
+ .. autosummary::
490
+ :toctree: generated/
491
+
492
+ boxcox
493
+ boxcox_normmax
494
+ boxcox_llf
495
+ yeojohnson
496
+ yeojohnson_normmax
497
+ yeojohnson_llf
498
+ obrientransform
499
+ sigmaclip
500
+ trimboth
501
+ trim1
502
+ zmap
503
+ zscore
504
+ gzscore
505
+
506
+ Statistical distances
507
+ ---------------------
508
+
509
+ .. autosummary::
510
+ :toctree: generated/
511
+
512
+ wasserstein_distance
513
+ wasserstein_distance_nd
514
+ energy_distance
515
+
516
+ Sampling
517
+ --------
518
+
519
+ .. toctree::
520
+ :maxdepth: 4
521
+
522
+ stats.sampling
523
+
524
+ Random variate generation / CDF Inversion
525
+ -----------------------------------------
526
+
527
+ .. autosummary::
528
+ :toctree: generated/
529
+
530
+ rvs_ratio_uniforms
531
+
532
+ Fitting / Survival Analysis
533
+ ---------------------------
534
+
535
+ .. autosummary::
536
+ :toctree: generated/
537
+
538
+ fit
539
+ ecdf
540
+ logrank
541
+
542
+ Directional statistical functions
543
+ ---------------------------------
544
+
545
+ .. autosummary::
546
+ :toctree: generated/
547
+
548
+ directional_stats
549
+ circmean
550
+ circvar
551
+ circstd
552
+
553
+ Sensitivity Analysis
554
+ --------------------
555
+
556
+ .. autosummary::
557
+ :toctree: generated/
558
+
559
+ sobol_indices
560
+
561
+ Plot-tests
562
+ ----------
563
+
564
+ .. autosummary::
565
+ :toctree: generated/
566
+
567
+ ppcc_max
568
+ ppcc_plot
569
+ probplot
570
+ boxcox_normplot
571
+ yeojohnson_normplot
572
+
573
+ Univariate and multivariate kernel density estimation
574
+ -----------------------------------------------------
575
+
576
+ .. autosummary::
577
+ :toctree: generated/
578
+
579
+ gaussian_kde
580
+
581
+ Warnings / Errors used in :mod:`scipy.stats`
582
+ --------------------------------------------
583
+
584
+ .. autosummary::
585
+ :toctree: generated/
586
+
587
+ DegenerateDataWarning
588
+ ConstantInputWarning
589
+ NearConstantInputWarning
590
+ FitError
591
+
592
+ Result classes used in :mod:`scipy.stats`
593
+ -----------------------------------------
594
+
595
+ .. warning::
596
+
597
+ These classes are private, but they are included here because instances
598
+ of them are returned by other statistical functions. User import and
599
+ instantiation is not supported.
600
+
601
+ .. toctree::
602
+ :maxdepth: 2
603
+
604
+ stats._result_classes
605
+
606
+ """ # noqa: E501
607
+
608
+ from ._warnings_errors import (ConstantInputWarning, NearConstantInputWarning,
609
+ DegenerateDataWarning, FitError)
610
+ from ._stats_py import *
611
+ from ._variation import variation
612
+ from .distributions import *
613
+ from ._morestats import *
614
+ from ._multicomp import *
615
+ from ._binomtest import binomtest
616
+ from ._binned_statistic import *
617
+ from ._kde import gaussian_kde
618
+ from . import mstats
619
+ from . import qmc
620
+ from ._multivariate import *
621
+ from . import contingency
622
+ from .contingency import chi2_contingency
623
+ from ._censored_data import CensoredData
624
+ from ._resampling import (bootstrap, monte_carlo_test, permutation_test, power,
625
+ MonteCarloMethod, PermutationMethod, BootstrapMethod)
626
+ from ._entropy import *
627
+ from ._hypotests import *
628
+ from ._rvs_sampling import rvs_ratio_uniforms
629
+ from ._page_trend_test import page_trend_test
630
+ from ._mannwhitneyu import mannwhitneyu
631
+ from ._bws_test import bws_test
632
+ from ._fit import fit, goodness_of_fit
633
+ from ._covariance import Covariance
634
+ from ._sensitivity_analysis import *
635
+ from ._survival import *
636
+ from ._mgc import multiscale_graphcorr
637
+
638
+
639
+ # Deprecated namespaces, to be removed in v2.0.0
640
+ from . import (
641
+ biasedurn, kde, morestats, mstats_basic, mstats_extras, mvn, stats
642
+ )
643
+
644
+
645
+ __all__ = [s for s in dir() if not s.startswith("_")] # Remove dunders.
646
+
647
+ from scipy._lib._testutils import PytestTester
648
+ test = PytestTester(__name__)
649
+ del PytestTester
parrot/lib/python3.10/site-packages/scipy/stats/_axis_nan_policy.py ADDED
@@ -0,0 +1,686 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Many scipy.stats functions support `axis` and `nan_policy` parameters.
2
+ # When the two are combined, it can be tricky to get all the behavior just
3
+ # right. This file contains utility functions useful for scipy.stats functions
4
+ # that support `axis` and `nan_policy`, including a decorator that
5
+ # automatically adds `axis` and `nan_policy` arguments to a function.
6
+
7
+ import warnings
8
+ import numpy as np
9
+ from functools import wraps
10
+ from scipy._lib._docscrape import FunctionDoc, Parameter
11
+ from scipy._lib._util import _contains_nan, AxisError, _get_nan
12
+ from scipy._lib._array_api import array_namespace, is_numpy
13
+
14
+ import inspect
15
+
16
+ too_small_1d_not_omit = (
17
+ "One or more sample arguments is too small; all "
18
+ "returned values will be NaN. "
19
+ "See documentation for sample size requirements.")
20
+
21
+ too_small_1d_omit = (
22
+ "After omitting NaNs, one or more sample arguments "
23
+ "is too small; all returned values will be NaN. "
24
+ "See documentation for sample size requirements.")
25
+
26
+ too_small_nd_not_omit = (
27
+ "All axis-slices of one or more sample arguments are "
28
+ "too small; all elements of returned arrays will be NaN. "
29
+ "See documentation for sample size requirements.")
30
+
31
+ too_small_nd_omit = (
32
+ "After omitting NaNs, one or more axis-slices of one "
33
+ "or more sample arguments is too small; corresponding "
34
+ "elements of returned arrays will be NaN. "
35
+ "See documentation for sample size requirements.")
36
+
37
+ class SmallSampleWarning(RuntimeWarning):
38
+ pass
39
+
40
+
41
+ def _broadcast_arrays(arrays, axis=None, xp=None):
42
+ """
43
+ Broadcast shapes of arrays, ignoring incompatibility of specified axes
44
+ """
45
+ if not arrays:
46
+ return arrays
47
+ xp = array_namespace(*arrays) if xp is None else xp
48
+ arrays = [xp.asarray(arr) for arr in arrays]
49
+ shapes = [arr.shape for arr in arrays]
50
+ new_shapes = _broadcast_shapes(shapes, axis)
51
+ if axis is None:
52
+ new_shapes = [new_shapes]*len(arrays)
53
+ return [xp.broadcast_to(array, new_shape)
54
+ for array, new_shape in zip(arrays, new_shapes)]
55
+
56
+
57
+ def _broadcast_shapes(shapes, axis=None):
58
+ """
59
+ Broadcast shapes, ignoring incompatibility of specified axes
60
+ """
61
+ if not shapes:
62
+ return shapes
63
+
64
+ # input validation
65
+ if axis is not None:
66
+ axis = np.atleast_1d(axis)
67
+ axis_int = axis.astype(int)
68
+ if not np.array_equal(axis_int, axis):
69
+ raise AxisError('`axis` must be an integer, a '
70
+ 'tuple of integers, or `None`.')
71
+ axis = axis_int
72
+
73
+ # First, ensure all shapes have same number of dimensions by prepending 1s.
74
+ n_dims = max([len(shape) for shape in shapes])
75
+ new_shapes = np.ones((len(shapes), n_dims), dtype=int)
76
+ for row, shape in zip(new_shapes, shapes):
77
+ row[len(row)-len(shape):] = shape # can't use negative indices (-0:)
78
+
79
+ # Remove the shape elements of the axes to be ignored, but remember them.
80
+ if axis is not None:
81
+ axis[axis < 0] = n_dims + axis[axis < 0]
82
+ axis = np.sort(axis)
83
+ if axis[-1] >= n_dims or axis[0] < 0:
84
+ message = (f"`axis` is out of bounds "
85
+ f"for array of dimension {n_dims}")
86
+ raise AxisError(message)
87
+
88
+ if len(np.unique(axis)) != len(axis):
89
+ raise AxisError("`axis` must contain only distinct elements")
90
+
91
+ removed_shapes = new_shapes[:, axis]
92
+ new_shapes = np.delete(new_shapes, axis, axis=1)
93
+
94
+ # If arrays are broadcastable, shape elements that are 1 may be replaced
95
+ # with a corresponding non-1 shape element. Assuming arrays are
96
+ # broadcastable, that final shape element can be found with:
97
+ new_shape = np.max(new_shapes, axis=0)
98
+ # except in case of an empty array:
99
+ new_shape *= new_shapes.all(axis=0)
100
+
101
+ # Among all arrays, there can only be one unique non-1 shape element.
102
+ # Therefore, if any non-1 shape element does not match what we found
103
+ # above, the arrays must not be broadcastable after all.
104
+ if np.any(~((new_shapes == 1) | (new_shapes == new_shape))):
105
+ raise ValueError("Array shapes are incompatible for broadcasting.")
106
+
107
+ if axis is not None:
108
+ # Add back the shape elements that were ignored
109
+ new_axis = axis - np.arange(len(axis))
110
+ new_shapes = [tuple(np.insert(new_shape, new_axis, removed_shape))
111
+ for removed_shape in removed_shapes]
112
+ return new_shapes
113
+ else:
114
+ return tuple(new_shape)
115
+
116
+
117
+ def _broadcast_array_shapes_remove_axis(arrays, axis=None):
118
+ """
119
+ Broadcast shapes of arrays, dropping specified axes
120
+
121
+ Given a sequence of arrays `arrays` and an integer or tuple `axis`, find
122
+ the shape of the broadcast result after consuming/dropping `axis`.
123
+ In other words, return output shape of a typical hypothesis test on
124
+ `arrays` vectorized along `axis`.
125
+
126
+ Examples
127
+ --------
128
+ >>> import numpy as np
129
+ >>> from scipy.stats._axis_nan_policy import _broadcast_array_shapes_remove_axis
130
+ >>> a = np.zeros((5, 2, 1))
131
+ >>> b = np.zeros((9, 3))
132
+ >>> _broadcast_array_shapes_remove_axis((a, b), 1)
133
+ (5, 3)
134
+ """
135
+ # Note that here, `axis=None` means do not consume/drop any axes - _not_
136
+ # ravel arrays before broadcasting.
137
+ shapes = [arr.shape for arr in arrays]
138
+ return _broadcast_shapes_remove_axis(shapes, axis)
139
+
140
+
141
+ def _broadcast_shapes_remove_axis(shapes, axis=None):
142
+ """
143
+ Broadcast shapes, dropping specified axes
144
+
145
+ Same as _broadcast_array_shapes_remove_axis, but given a sequence
146
+ of array shapes `shapes` instead of the arrays themselves.
147
+ """
148
+ shapes = _broadcast_shapes(shapes, axis)
149
+ shape = shapes[0]
150
+ if axis is not None:
151
+ shape = np.delete(shape, axis)
152
+ return tuple(shape)
153
+
154
+
155
+ def _broadcast_concatenate(arrays, axis, paired=False):
156
+ """Concatenate arrays along an axis with broadcasting."""
157
+ arrays = _broadcast_arrays(arrays, axis if not paired else None)
158
+ res = np.concatenate(arrays, axis=axis)
159
+ return res
160
+
161
+
162
+ # TODO: add support for `axis` tuples
163
+ def _remove_nans(samples, paired):
164
+ "Remove nans from paired or unpaired 1D samples"
165
+ # potential optimization: don't copy arrays that don't contain nans
166
+ if not paired:
167
+ return [sample[~np.isnan(sample)] for sample in samples]
168
+
169
+ # for paired samples, we need to remove the whole pair when any part
170
+ # has a nan
171
+ nans = np.isnan(samples[0])
172
+ for sample in samples[1:]:
173
+ nans = nans | np.isnan(sample)
174
+ not_nans = ~nans
175
+ return [sample[not_nans] for sample in samples]
176
+
177
+
178
+ def _remove_sentinel(samples, paired, sentinel):
179
+ "Remove sentinel values from paired or unpaired 1D samples"
180
+ # could consolidate with `_remove_nans`, but it's not quite as simple as
181
+ # passing `sentinel=np.nan` because `(np.nan == np.nan) is False`
182
+
183
+ # potential optimization: don't copy arrays that don't contain sentinel
184
+ if not paired:
185
+ return [sample[sample != sentinel] for sample in samples]
186
+
187
+ # for paired samples, we need to remove the whole pair when any part
188
+ # has a nan
189
+ sentinels = (samples[0] == sentinel)
190
+ for sample in samples[1:]:
191
+ sentinels = sentinels | (sample == sentinel)
192
+ not_sentinels = ~sentinels
193
+ return [sample[not_sentinels] for sample in samples]
194
+
195
+
196
+ def _masked_arrays_2_sentinel_arrays(samples):
197
+ # masked arrays in `samples` are converted to regular arrays, and values
198
+ # corresponding with masked elements are replaced with a sentinel value
199
+
200
+ # return without modifying arrays if none have a mask
201
+ has_mask = False
202
+ for sample in samples:
203
+ mask = getattr(sample, 'mask', False)
204
+ has_mask = has_mask or np.any(mask)
205
+ if not has_mask:
206
+ return samples, None # None means there is no sentinel value
207
+
208
+ # Choose a sentinel value. We can't use `np.nan`, because sentinel (masked)
209
+ # values are always omitted, but there are different nan policies.
210
+ dtype = np.result_type(*samples)
211
+ dtype = dtype if np.issubdtype(dtype, np.number) else np.float64
212
+ for i in range(len(samples)):
213
+ # Things get more complicated if the arrays are of different types.
214
+ # We could have different sentinel values for each array, but
215
+ # the purpose of this code is convenience, not efficiency.
216
+ samples[i] = samples[i].astype(dtype, copy=False)
217
+
218
+ inexact = np.issubdtype(dtype, np.inexact)
219
+ info = np.finfo if inexact else np.iinfo
220
+ max_possible, min_possible = info(dtype).max, info(dtype).min
221
+ nextafter = np.nextafter if inexact else (lambda x, _: x - 1)
222
+
223
+ sentinel = max_possible
224
+ # For simplicity, min_possible/np.infs are not candidate sentinel values
225
+ while sentinel > min_possible:
226
+ for sample in samples:
227
+ if np.any(sample == sentinel): # choose a new sentinel value
228
+ sentinel = nextafter(sentinel, -np.inf)
229
+ break
230
+ else: # when sentinel value is OK, break the while loop
231
+ break
232
+ else:
233
+ message = ("This function replaces masked elements with sentinel "
234
+ "values, but the data contains all distinct values of this "
235
+ "data type. Consider promoting the dtype to `np.float64`.")
236
+ raise ValueError(message)
237
+
238
+ # replace masked elements with sentinel value
239
+ out_samples = []
240
+ for sample in samples:
241
+ mask = getattr(sample, 'mask', None)
242
+ if mask is not None: # turn all masked arrays into sentinel arrays
243
+ mask = np.broadcast_to(mask, sample.shape)
244
+ sample = sample.data.copy() if np.any(mask) else sample.data
245
+ sample = np.asarray(sample) # `sample.data` could be a memoryview?
246
+ sample[mask] = sentinel
247
+ out_samples.append(sample)
248
+
249
+ return out_samples, sentinel
250
+
251
+
252
+ def _check_empty_inputs(samples, axis):
253
+ """
254
+ Check for empty sample; return appropriate output for a vectorized hypotest
255
+ """
256
+ # if none of the samples are empty, we need to perform the test
257
+ if not any(sample.size == 0 for sample in samples):
258
+ return None
259
+ # otherwise, the statistic and p-value will be either empty arrays or
260
+ # arrays with NaNs. Produce the appropriate array and return it.
261
+ output_shape = _broadcast_array_shapes_remove_axis(samples, axis)
262
+ output = np.ones(output_shape) * _get_nan(*samples)
263
+ return output
264
+
265
+
266
+ def _add_reduced_axes(res, reduced_axes, keepdims):
267
+ """
268
+ Add reduced axes back to all the arrays in the result object
269
+ if keepdims = True.
270
+ """
271
+ return ([np.expand_dims(output, reduced_axes)
272
+ if not isinstance(output, int) else output for output in res]
273
+ if keepdims else res)
274
+
275
+
276
+ # Standard docstring / signature entries for `axis`, `nan_policy`, `keepdims`
277
+ _name = 'axis'
278
+ _desc = (
279
+ """If an int, the axis of the input along which to compute the statistic.
280
+ The statistic of each axis-slice (e.g. row) of the input will appear in a
281
+ corresponding element of the output.
282
+ If ``None``, the input will be raveled before computing the statistic."""
283
+ .split('\n'))
284
+
285
+
286
+ def _get_axis_params(default_axis=0, _name=_name, _desc=_desc): # bind NOW
287
+ _type = f"int or None, default: {default_axis}"
288
+ _axis_parameter_doc = Parameter(_name, _type, _desc)
289
+ _axis_parameter = inspect.Parameter(_name,
290
+ inspect.Parameter.KEYWORD_ONLY,
291
+ default=default_axis)
292
+ return _axis_parameter_doc, _axis_parameter
293
+
294
+
295
+ _name = 'nan_policy'
296
+ _type = "{'propagate', 'omit', 'raise'}"
297
+ _desc = (
298
+ """Defines how to handle input NaNs.
299
+
300
+ - ``propagate``: if a NaN is present in the axis slice (e.g. row) along
301
+ which the statistic is computed, the corresponding entry of the output
302
+ will be NaN.
303
+ - ``omit``: NaNs will be omitted when performing the calculation.
304
+ If insufficient data remains in the axis slice along which the
305
+ statistic is computed, the corresponding entry of the output will be
306
+ NaN.
307
+ - ``raise``: if a NaN is present, a ``ValueError`` will be raised."""
308
+ .split('\n'))
309
+ _nan_policy_parameter_doc = Parameter(_name, _type, _desc)
310
+ _nan_policy_parameter = inspect.Parameter(_name,
311
+ inspect.Parameter.KEYWORD_ONLY,
312
+ default='propagate')
313
+
314
+ _name = 'keepdims'
315
+ _type = "bool, default: False"
316
+ _desc = (
317
+ """If this is set to True, the axes which are reduced are left
318
+ in the result as dimensions with size one. With this option,
319
+ the result will broadcast correctly against the input array."""
320
+ .split('\n'))
321
+ _keepdims_parameter_doc = Parameter(_name, _type, _desc)
322
+ _keepdims_parameter = inspect.Parameter(_name,
323
+ inspect.Parameter.KEYWORD_ONLY,
324
+ default=False)
325
+
326
+ _standard_note_addition = (
327
+ """\nBeginning in SciPy 1.9, ``np.matrix`` inputs (not recommended for new
328
+ code) are converted to ``np.ndarray`` before the calculation is performed. In
329
+ this case, the output will be a scalar or ``np.ndarray`` of appropriate shape
330
+ rather than a 2D ``np.matrix``. Similarly, while masked elements of masked
331
+ arrays are ignored, the output will be a scalar or ``np.ndarray`` rather than a
332
+ masked array with ``mask=False``.""").split('\n')
333
+
334
+
335
+ def _axis_nan_policy_factory(tuple_to_result, default_axis=0,
336
+ n_samples=1, paired=False,
337
+ result_to_tuple=None, too_small=0,
338
+ n_outputs=2, kwd_samples=[], override=None):
339
+ """Factory for a wrapper that adds axis/nan_policy params to a function.
340
+
341
+ Parameters
342
+ ----------
343
+ tuple_to_result : callable
344
+ Callable that returns an object of the type returned by the function
345
+ being wrapped (e.g. the namedtuple or dataclass returned by a
346
+ statistical test) provided the separate components (e.g. statistic,
347
+ pvalue).
348
+ default_axis : int, default: 0
349
+ The default value of the axis argument. Standard is 0 except when
350
+ backwards compatibility demands otherwise (e.g. `None`).
351
+ n_samples : int or callable, default: 1
352
+ The number of data samples accepted by the function
353
+ (e.g. `mannwhitneyu`), a callable that accepts a dictionary of
354
+ parameters passed into the function and returns the number of data
355
+ samples (e.g. `wilcoxon`), or `None` to indicate an arbitrary number
356
+ of samples (e.g. `kruskal`).
357
+ paired : {False, True}
358
+ Whether the function being wrapped treats the samples as paired (i.e.
359
+ corresponding elements of each sample should be considered as different
360
+ components of the same sample.)
361
+ result_to_tuple : callable, optional
362
+ Function that unpacks the results of the function being wrapped into
363
+ a tuple. This is essentially the inverse of `tuple_to_result`. Default
364
+ is `None`, which is appropriate for statistical tests that return a
365
+ statistic, pvalue tuple (rather than, e.g., a non-iterable datalass).
366
+ too_small : int or callable, default: 0
367
+ The largest unnacceptably small sample for the function being wrapped.
368
+ For example, some functions require samples of size two or more or they
369
+ raise an error. This argument prevents the error from being raised when
370
+ input is not 1D and instead places a NaN in the corresponding element
371
+ of the result. If callable, it must accept a list of samples, axis,
372
+ and a dictionary of keyword arguments passed to the wrapper function as
373
+ arguments and return a bool indicating weather the samples passed are
374
+ too small.
375
+ n_outputs : int or callable, default: 2
376
+ The number of outputs produced by the function given 1d sample(s). For
377
+ example, hypothesis tests that return a namedtuple or result object
378
+ with attributes ``statistic`` and ``pvalue`` use the default
379
+ ``n_outputs=2``; summary statistics with scalar output use
380
+ ``n_outputs=1``. Alternatively, may be a callable that accepts a
381
+ dictionary of arguments passed into the wrapped function and returns
382
+ the number of outputs corresponding with those arguments.
383
+ kwd_samples : sequence, default: []
384
+ The names of keyword parameters that should be treated as samples. For
385
+ example, `gmean` accepts as its first argument a sample `a` but
386
+ also `weights` as a fourth, optional keyword argument. In this case, we
387
+ use `n_samples=1` and kwd_samples=['weights'].
388
+ override : dict, default: {'vectorization': False, 'nan_propagation': True}
389
+ Pass a dictionary with ``'vectorization': True`` to ensure that the
390
+ decorator overrides the function's behavior for multimensional input.
391
+ Use ``'nan_propagation': False`` to ensure that the decorator does not
392
+ override the function's behavior for ``nan_policy='propagate'``.
393
+ """
394
+ # Specify which existing behaviors the decorator must override
395
+ temp = override or {}
396
+ override = {'vectorization': False,
397
+ 'nan_propagation': True}
398
+ override.update(temp)
399
+
400
+ if result_to_tuple is None:
401
+ def result_to_tuple(res):
402
+ return res
403
+
404
+ if not callable(too_small):
405
+ def is_too_small(samples, *ts_args, axis=-1, **ts_kwargs):
406
+ for sample in samples:
407
+ if sample.shape[axis] <= too_small:
408
+ return True
409
+ return False
410
+ else:
411
+ is_too_small = too_small
412
+
413
+ def axis_nan_policy_decorator(hypotest_fun_in):
414
+ @wraps(hypotest_fun_in)
415
+ def axis_nan_policy_wrapper(*args, _no_deco=False, **kwds):
416
+
417
+ if _no_deco: # for testing, decorator does nothing
418
+ return hypotest_fun_in(*args, **kwds)
419
+
420
+ # For now, skip the decorator entirely if using array API. In the future,
421
+ # we'll probably want to use it for `keepdims`, `axis` tuples, etc.
422
+ if len(args) == 0: # extract sample from `kwds` if there are no `args`
423
+ used_kwd_samples = list(set(kwds).intersection(set(kwd_samples)))
424
+ temp = used_kwd_samples[:1]
425
+ else:
426
+ temp = args[0]
427
+
428
+ if not is_numpy(array_namespace(temp)):
429
+ msg = ("Use of `nan_policy` and `keepdims` "
430
+ "is incompatible with non-NumPy arrays.")
431
+ if 'nan_policy' in kwds or 'keepdims' in kwds:
432
+ raise NotImplementedError(msg)
433
+ return hypotest_fun_in(*args, **kwds)
434
+
435
+ # We need to be flexible about whether position or keyword
436
+ # arguments are used, but we need to make sure users don't pass
437
+ # both for the same parameter. To complicate matters, some
438
+ # functions accept samples with *args, and some functions already
439
+ # accept `axis` and `nan_policy` as positional arguments.
440
+ # The strategy is to make sure that there is no duplication
441
+ # between `args` and `kwds`, combine the two into `kwds`, then
442
+ # the samples, `nan_policy`, and `axis` from `kwds`, as they are
443
+ # dealt with separately.
444
+
445
+ # Check for intersection between positional and keyword args
446
+ params = list(inspect.signature(hypotest_fun_in).parameters)
447
+ if n_samples is None:
448
+ # Give unique names to each positional sample argument
449
+ # Note that *args can't be provided as a keyword argument
450
+ params = [f"arg{i}" for i in range(len(args))] + params[1:]
451
+
452
+ # raise if there are too many positional args
453
+ maxarg = (np.inf if inspect.getfullargspec(hypotest_fun_in).varargs
454
+ else len(inspect.getfullargspec(hypotest_fun_in).args))
455
+ if len(args) > maxarg: # let the function raise the right error
456
+ hypotest_fun_in(*args, **kwds)
457
+
458
+ # raise if multiple values passed for same parameter
459
+ d_args = dict(zip(params, args))
460
+ intersection = set(d_args) & set(kwds)
461
+ if intersection: # let the function raise the right error
462
+ hypotest_fun_in(*args, **kwds)
463
+
464
+ # Consolidate other positional and keyword args into `kwds`
465
+ kwds.update(d_args)
466
+
467
+ # rename avoids UnboundLocalError
468
+ if callable(n_samples):
469
+ # Future refactoring idea: no need for callable n_samples.
470
+ # Just replace `n_samples` and `kwd_samples` with a single
471
+ # list of the names of all samples, and treat all of them
472
+ # as `kwd_samples` are treated below.
473
+ n_samp = n_samples(kwds)
474
+ else:
475
+ n_samp = n_samples or len(args)
476
+
477
+ # get the number of outputs
478
+ n_out = n_outputs # rename to avoid UnboundLocalError
479
+ if callable(n_out):
480
+ n_out = n_out(kwds)
481
+
482
+ # If necessary, rearrange function signature: accept other samples
483
+ # as positional args right after the first n_samp args
484
+ kwd_samp = [name for name in kwd_samples
485
+ if kwds.get(name, None) is not None]
486
+ n_kwd_samp = len(kwd_samp)
487
+ if not kwd_samp:
488
+ hypotest_fun_out = hypotest_fun_in
489
+ else:
490
+ def hypotest_fun_out(*samples, **kwds):
491
+ new_kwds = dict(zip(kwd_samp, samples[n_samp:]))
492
+ kwds.update(new_kwds)
493
+ return hypotest_fun_in(*samples[:n_samp], **kwds)
494
+
495
+ # Extract the things we need here
496
+ try: # if something is missing
497
+ samples = [np.atleast_1d(kwds.pop(param))
498
+ for param in (params[:n_samp] + kwd_samp)]
499
+ except KeyError: # let the function raise the right error
500
+ # might need to revisit this if required arg is not a "sample"
501
+ hypotest_fun_in(*args, **kwds)
502
+ vectorized = True if 'axis' in params else False
503
+ vectorized = vectorized and not override['vectorization']
504
+ axis = kwds.pop('axis', default_axis)
505
+ nan_policy = kwds.pop('nan_policy', 'propagate')
506
+ keepdims = kwds.pop("keepdims", False)
507
+ del args # avoid the possibility of passing both `args` and `kwds`
508
+
509
+ # convert masked arrays to regular arrays with sentinel values
510
+ samples, sentinel = _masked_arrays_2_sentinel_arrays(samples)
511
+
512
+ # standardize to always work along last axis
513
+ reduced_axes = axis
514
+ if axis is None:
515
+ if samples:
516
+ # when axis=None, take the maximum of all dimensions since
517
+ # all the dimensions are reduced.
518
+ n_dims = np.max([sample.ndim for sample in samples])
519
+ reduced_axes = tuple(range(n_dims))
520
+ samples = [np.asarray(sample.ravel()) for sample in samples]
521
+ else:
522
+ samples = _broadcast_arrays(samples, axis=axis)
523
+ axis = np.atleast_1d(axis)
524
+ n_axes = len(axis)
525
+ # move all axes in `axis` to the end to be raveled
526
+ samples = [np.moveaxis(sample, axis, range(-len(axis), 0))
527
+ for sample in samples]
528
+ shapes = [sample.shape for sample in samples]
529
+ # New shape is unchanged for all axes _not_ in `axis`
530
+ # At the end, we append the product of the shapes of the axes
531
+ # in `axis`. Appending -1 doesn't work for zero-size arrays!
532
+ new_shapes = [shape[:-n_axes] + (np.prod(shape[-n_axes:]),)
533
+ for shape in shapes]
534
+ samples = [sample.reshape(new_shape)
535
+ for sample, new_shape in zip(samples, new_shapes)]
536
+ axis = -1 # work over the last axis
537
+ NaN = _get_nan(*samples) if samples else np.nan
538
+
539
+ # if axis is not needed, just handle nan_policy and return
540
+ ndims = np.array([sample.ndim for sample in samples])
541
+ if np.all(ndims <= 1):
542
+ # Addresses nan_policy == "raise"
543
+ if nan_policy != 'propagate' or override['nan_propagation']:
544
+ contains_nan = [_contains_nan(sample, nan_policy)[0]
545
+ for sample in samples]
546
+ else:
547
+ # Behave as though there are no NaNs (even if there are)
548
+ contains_nan = [False]*len(samples)
549
+
550
+ # Addresses nan_policy == "propagate"
551
+ if any(contains_nan) and (nan_policy == 'propagate'
552
+ and override['nan_propagation']):
553
+ res = np.full(n_out, NaN)
554
+ res = _add_reduced_axes(res, reduced_axes, keepdims)
555
+ return tuple_to_result(*res)
556
+
557
+ # Addresses nan_policy == "omit"
558
+ too_small_msg = too_small_1d_not_omit
559
+ if any(contains_nan) and nan_policy == 'omit':
560
+ # consider passing in contains_nan
561
+ samples = _remove_nans(samples, paired)
562
+ too_small_msg = too_small_1d_omit
563
+
564
+ if sentinel:
565
+ samples = _remove_sentinel(samples, paired, sentinel)
566
+
567
+ if is_too_small(samples, kwds):
568
+ warnings.warn(too_small_msg, SmallSampleWarning, stacklevel=2)
569
+ res = np.full(n_out, NaN)
570
+ res = _add_reduced_axes(res, reduced_axes, keepdims)
571
+ return tuple_to_result(*res)
572
+
573
+ res = hypotest_fun_out(*samples, **kwds)
574
+ res = result_to_tuple(res)
575
+ res = _add_reduced_axes(res, reduced_axes, keepdims)
576
+ return tuple_to_result(*res)
577
+
578
+ # check for empty input
579
+ empty_output = _check_empty_inputs(samples, axis)
580
+ # only return empty output if zero sized input is too small.
581
+ if (
582
+ empty_output is not None
583
+ and (is_too_small(samples, kwds) or empty_output.size == 0)
584
+ ):
585
+ if is_too_small(samples, kwds) and empty_output.size != 0:
586
+ warnings.warn(too_small_nd_not_omit, SmallSampleWarning,
587
+ stacklevel=2)
588
+ res = [empty_output.copy() for i in range(n_out)]
589
+ res = _add_reduced_axes(res, reduced_axes, keepdims)
590
+ return tuple_to_result(*res)
591
+
592
+ # otherwise, concatenate all samples along axis, remembering where
593
+ # each separate sample begins
594
+ lengths = np.array([sample.shape[axis] for sample in samples])
595
+ split_indices = np.cumsum(lengths)
596
+ x = _broadcast_concatenate(samples, axis)
597
+
598
+ # Addresses nan_policy == "raise"
599
+ if nan_policy != 'propagate' or override['nan_propagation']:
600
+ contains_nan, _ = _contains_nan(x, nan_policy)
601
+ else:
602
+ contains_nan = False # behave like there are no NaNs
603
+
604
+ if vectorized and not contains_nan and not sentinel:
605
+ res = hypotest_fun_out(*samples, axis=axis, **kwds)
606
+ res = result_to_tuple(res)
607
+ res = _add_reduced_axes(res, reduced_axes, keepdims)
608
+ return tuple_to_result(*res)
609
+
610
+ # Addresses nan_policy == "omit"
611
+ if contains_nan and nan_policy == 'omit':
612
+ def hypotest_fun(x):
613
+ samples = np.split(x, split_indices)[:n_samp+n_kwd_samp]
614
+ samples = _remove_nans(samples, paired)
615
+ if sentinel:
616
+ samples = _remove_sentinel(samples, paired, sentinel)
617
+ if is_too_small(samples, kwds):
618
+ warnings.warn(too_small_nd_omit, SmallSampleWarning,
619
+ stacklevel=4)
620
+ return np.full(n_out, NaN)
621
+ return result_to_tuple(hypotest_fun_out(*samples, **kwds))
622
+
623
+ # Addresses nan_policy == "propagate"
624
+ elif (contains_nan and nan_policy == 'propagate'
625
+ and override['nan_propagation']):
626
+ def hypotest_fun(x):
627
+ if np.isnan(x).any():
628
+ return np.full(n_out, NaN)
629
+
630
+ samples = np.split(x, split_indices)[:n_samp+n_kwd_samp]
631
+ if sentinel:
632
+ samples = _remove_sentinel(samples, paired, sentinel)
633
+ if is_too_small(samples, kwds):
634
+ return np.full(n_out, NaN)
635
+ return result_to_tuple(hypotest_fun_out(*samples, **kwds))
636
+
637
+ else:
638
+ def hypotest_fun(x):
639
+ samples = np.split(x, split_indices)[:n_samp+n_kwd_samp]
640
+ if sentinel:
641
+ samples = _remove_sentinel(samples, paired, sentinel)
642
+ if is_too_small(samples, kwds):
643
+ return np.full(n_out, NaN)
644
+ return result_to_tuple(hypotest_fun_out(*samples, **kwds))
645
+
646
+ x = np.moveaxis(x, axis, 0)
647
+ res = np.apply_along_axis(hypotest_fun, axis=0, arr=x)
648
+ res = _add_reduced_axes(res, reduced_axes, keepdims)
649
+ return tuple_to_result(*res)
650
+
651
+ _axis_parameter_doc, _axis_parameter = _get_axis_params(default_axis)
652
+ doc = FunctionDoc(axis_nan_policy_wrapper)
653
+ parameter_names = [param.name for param in doc['Parameters']]
654
+ if 'axis' in parameter_names:
655
+ doc['Parameters'][parameter_names.index('axis')] = (
656
+ _axis_parameter_doc)
657
+ else:
658
+ doc['Parameters'].append(_axis_parameter_doc)
659
+ if 'nan_policy' in parameter_names:
660
+ doc['Parameters'][parameter_names.index('nan_policy')] = (
661
+ _nan_policy_parameter_doc)
662
+ else:
663
+ doc['Parameters'].append(_nan_policy_parameter_doc)
664
+ if 'keepdims' in parameter_names:
665
+ doc['Parameters'][parameter_names.index('keepdims')] = (
666
+ _keepdims_parameter_doc)
667
+ else:
668
+ doc['Parameters'].append(_keepdims_parameter_doc)
669
+ doc['Notes'] += _standard_note_addition
670
+ doc = str(doc).split("\n", 1)[1] # remove signature
671
+ axis_nan_policy_wrapper.__doc__ = str(doc)
672
+
673
+ sig = inspect.signature(axis_nan_policy_wrapper)
674
+ parameters = sig.parameters
675
+ parameter_list = list(parameters.values())
676
+ if 'axis' not in parameters:
677
+ parameter_list.append(_axis_parameter)
678
+ if 'nan_policy' not in parameters:
679
+ parameter_list.append(_nan_policy_parameter)
680
+ if 'keepdims' not in parameters:
681
+ parameter_list.append(_keepdims_parameter)
682
+ sig = sig.replace(parameters=parameter_list)
683
+ axis_nan_policy_wrapper.__signature__ = sig
684
+
685
+ return axis_nan_policy_wrapper
686
+ return axis_nan_policy_decorator
parrot/lib/python3.10/site-packages/scipy/stats/_biasedurn.pxd ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Declare the class with cdef
2
+ cdef extern from "biasedurn/stocc.h" nogil:
3
+ cdef cppclass CFishersNCHypergeometric:
4
+ CFishersNCHypergeometric(int, int, int, double, double) except +
5
+ int mode()
6
+ double mean()
7
+ double variance()
8
+ double probability(int x)
9
+ double moments(double * mean, double * var)
10
+
11
+ cdef cppclass CWalleniusNCHypergeometric:
12
+ CWalleniusNCHypergeometric() except +
13
+ CWalleniusNCHypergeometric(int, int, int, double, double) except +
14
+ int mode()
15
+ double mean()
16
+ double variance()
17
+ double probability(int x)
18
+ double moments(double * mean, double * var)
19
+
20
+ cdef cppclass StochasticLib3:
21
+ StochasticLib3(int seed) except +
22
+ double Random() except +
23
+ void SetAccuracy(double accur)
24
+ int FishersNCHyp (int n, int m, int N, double odds) except +
25
+ int WalleniusNCHyp (int n, int m, int N, double odds) except +
26
+ double(*next_double)()
27
+ double(*next_normal)(const double m, const double s)
parrot/lib/python3.10/site-packages/scipy/stats/_binomtest.py ADDED
@@ -0,0 +1,375 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from math import sqrt
2
+ import numpy as np
3
+ from scipy._lib._util import _validate_int
4
+ from scipy.optimize import brentq
5
+ from scipy.special import ndtri
6
+ from ._discrete_distns import binom
7
+ from ._common import ConfidenceInterval
8
+
9
+
10
+ class BinomTestResult:
11
+ """
12
+ Result of `scipy.stats.binomtest`.
13
+
14
+ Attributes
15
+ ----------
16
+ k : int
17
+ The number of successes (copied from `binomtest` input).
18
+ n : int
19
+ The number of trials (copied from `binomtest` input).
20
+ alternative : str
21
+ Indicates the alternative hypothesis specified in the input
22
+ to `binomtest`. It will be one of ``'two-sided'``, ``'greater'``,
23
+ or ``'less'``.
24
+ statistic: float
25
+ The estimate of the proportion of successes.
26
+ pvalue : float
27
+ The p-value of the hypothesis test.
28
+
29
+ """
30
+ def __init__(self, k, n, alternative, statistic, pvalue):
31
+ self.k = k
32
+ self.n = n
33
+ self.alternative = alternative
34
+ self.statistic = statistic
35
+ self.pvalue = pvalue
36
+
37
+ # add alias for backward compatibility
38
+ self.proportion_estimate = statistic
39
+
40
+ def __repr__(self):
41
+ s = ("BinomTestResult("
42
+ f"k={self.k}, "
43
+ f"n={self.n}, "
44
+ f"alternative={self.alternative!r}, "
45
+ f"statistic={self.statistic}, "
46
+ f"pvalue={self.pvalue})")
47
+ return s
48
+
49
+ def proportion_ci(self, confidence_level=0.95, method='exact'):
50
+ """
51
+ Compute the confidence interval for ``statistic``.
52
+
53
+ Parameters
54
+ ----------
55
+ confidence_level : float, optional
56
+ Confidence level for the computed confidence interval
57
+ of the estimated proportion. Default is 0.95.
58
+ method : {'exact', 'wilson', 'wilsoncc'}, optional
59
+ Selects the method used to compute the confidence interval
60
+ for the estimate of the proportion:
61
+
62
+ 'exact' :
63
+ Use the Clopper-Pearson exact method [1]_.
64
+ 'wilson' :
65
+ Wilson's method, without continuity correction ([2]_, [3]_).
66
+ 'wilsoncc' :
67
+ Wilson's method, with continuity correction ([2]_, [3]_).
68
+
69
+ Default is ``'exact'``.
70
+
71
+ Returns
72
+ -------
73
+ ci : ``ConfidenceInterval`` object
74
+ The object has attributes ``low`` and ``high`` that hold the
75
+ lower and upper bounds of the confidence interval.
76
+
77
+ References
78
+ ----------
79
+ .. [1] C. J. Clopper and E. S. Pearson, The use of confidence or
80
+ fiducial limits illustrated in the case of the binomial,
81
+ Biometrika, Vol. 26, No. 4, pp 404-413 (Dec. 1934).
82
+ .. [2] E. B. Wilson, Probable inference, the law of succession, and
83
+ statistical inference, J. Amer. Stat. Assoc., 22, pp 209-212
84
+ (1927).
85
+ .. [3] Robert G. Newcombe, Two-sided confidence intervals for the
86
+ single proportion: comparison of seven methods, Statistics
87
+ in Medicine, 17, pp 857-872 (1998).
88
+
89
+ Examples
90
+ --------
91
+ >>> from scipy.stats import binomtest
92
+ >>> result = binomtest(k=7, n=50, p=0.1)
93
+ >>> result.statistic
94
+ 0.14
95
+ >>> result.proportion_ci()
96
+ ConfidenceInterval(low=0.05819170033997342, high=0.26739600249700846)
97
+ """
98
+ if method not in ('exact', 'wilson', 'wilsoncc'):
99
+ raise ValueError(f"method ('{method}') must be one of 'exact', "
100
+ "'wilson' or 'wilsoncc'.")
101
+ if not (0 <= confidence_level <= 1):
102
+ raise ValueError(f'confidence_level ({confidence_level}) must be in '
103
+ 'the interval [0, 1].')
104
+ if method == 'exact':
105
+ low, high = _binom_exact_conf_int(self.k, self.n,
106
+ confidence_level,
107
+ self.alternative)
108
+ else:
109
+ # method is 'wilson' or 'wilsoncc'
110
+ low, high = _binom_wilson_conf_int(self.k, self.n,
111
+ confidence_level,
112
+ self.alternative,
113
+ correction=method == 'wilsoncc')
114
+ return ConfidenceInterval(low=low, high=high)
115
+
116
+
117
+ def _findp(func):
118
+ try:
119
+ p = brentq(func, 0, 1)
120
+ except RuntimeError:
121
+ raise RuntimeError('numerical solver failed to converge when '
122
+ 'computing the confidence limits') from None
123
+ except ValueError as exc:
124
+ raise ValueError('brentq raised a ValueError; report this to the '
125
+ 'SciPy developers') from exc
126
+ return p
127
+
128
+
129
+ def _binom_exact_conf_int(k, n, confidence_level, alternative):
130
+ """
131
+ Compute the estimate and confidence interval for the binomial test.
132
+
133
+ Returns proportion, prop_low, prop_high
134
+ """
135
+ if alternative == 'two-sided':
136
+ alpha = (1 - confidence_level) / 2
137
+ if k == 0:
138
+ plow = 0.0
139
+ else:
140
+ plow = _findp(lambda p: binom.sf(k-1, n, p) - alpha)
141
+ if k == n:
142
+ phigh = 1.0
143
+ else:
144
+ phigh = _findp(lambda p: binom.cdf(k, n, p) - alpha)
145
+ elif alternative == 'less':
146
+ alpha = 1 - confidence_level
147
+ plow = 0.0
148
+ if k == n:
149
+ phigh = 1.0
150
+ else:
151
+ phigh = _findp(lambda p: binom.cdf(k, n, p) - alpha)
152
+ elif alternative == 'greater':
153
+ alpha = 1 - confidence_level
154
+ if k == 0:
155
+ plow = 0.0
156
+ else:
157
+ plow = _findp(lambda p: binom.sf(k-1, n, p) - alpha)
158
+ phigh = 1.0
159
+ return plow, phigh
160
+
161
+
162
+ def _binom_wilson_conf_int(k, n, confidence_level, alternative, correction):
163
+ # This function assumes that the arguments have already been validated.
164
+ # In particular, `alternative` must be one of 'two-sided', 'less' or
165
+ # 'greater'.
166
+ p = k / n
167
+ if alternative == 'two-sided':
168
+ z = ndtri(0.5 + 0.5*confidence_level)
169
+ else:
170
+ z = ndtri(confidence_level)
171
+
172
+ # For reference, the formulas implemented here are from
173
+ # Newcombe (1998) (ref. [3] in the proportion_ci docstring).
174
+ denom = 2*(n + z**2)
175
+ center = (2*n*p + z**2)/denom
176
+ q = 1 - p
177
+ if correction:
178
+ if alternative == 'less' or k == 0:
179
+ lo = 0.0
180
+ else:
181
+ dlo = (1 + z*sqrt(z**2 - 2 - 1/n + 4*p*(n*q + 1))) / denom
182
+ lo = center - dlo
183
+ if alternative == 'greater' or k == n:
184
+ hi = 1.0
185
+ else:
186
+ dhi = (1 + z*sqrt(z**2 + 2 - 1/n + 4*p*(n*q - 1))) / denom
187
+ hi = center + dhi
188
+ else:
189
+ delta = z/denom * sqrt(4*n*p*q + z**2)
190
+ if alternative == 'less' or k == 0:
191
+ lo = 0.0
192
+ else:
193
+ lo = center - delta
194
+ if alternative == 'greater' or k == n:
195
+ hi = 1.0
196
+ else:
197
+ hi = center + delta
198
+
199
+ return lo, hi
200
+
201
+
202
+ def binomtest(k, n, p=0.5, alternative='two-sided'):
203
+ """
204
+ Perform a test that the probability of success is p.
205
+
206
+ The binomial test [1]_ is a test of the null hypothesis that the
207
+ probability of success in a Bernoulli experiment is `p`.
208
+
209
+ Details of the test can be found in many texts on statistics, such
210
+ as section 24.5 of [2]_.
211
+
212
+ Parameters
213
+ ----------
214
+ k : int
215
+ The number of successes.
216
+ n : int
217
+ The number of trials.
218
+ p : float, optional
219
+ The hypothesized probability of success, i.e. the expected
220
+ proportion of successes. The value must be in the interval
221
+ ``0 <= p <= 1``. The default value is ``p = 0.5``.
222
+ alternative : {'two-sided', 'greater', 'less'}, optional
223
+ Indicates the alternative hypothesis. The default value is
224
+ 'two-sided'.
225
+
226
+ Returns
227
+ -------
228
+ result : `~scipy.stats._result_classes.BinomTestResult` instance
229
+ The return value is an object with the following attributes:
230
+
231
+ k : int
232
+ The number of successes (copied from `binomtest` input).
233
+ n : int
234
+ The number of trials (copied from `binomtest` input).
235
+ alternative : str
236
+ Indicates the alternative hypothesis specified in the input
237
+ to `binomtest`. It will be one of ``'two-sided'``, ``'greater'``,
238
+ or ``'less'``.
239
+ statistic : float
240
+ The estimate of the proportion of successes.
241
+ pvalue : float
242
+ The p-value of the hypothesis test.
243
+
244
+ The object has the following methods:
245
+
246
+ proportion_ci(confidence_level=0.95, method='exact') :
247
+ Compute the confidence interval for ``statistic``.
248
+
249
+ Notes
250
+ -----
251
+ .. versionadded:: 1.7.0
252
+
253
+ References
254
+ ----------
255
+ .. [1] Binomial test, https://en.wikipedia.org/wiki/Binomial_test
256
+ .. [2] Jerrold H. Zar, Biostatistical Analysis (fifth edition),
257
+ Prentice Hall, Upper Saddle River, New Jersey USA (2010)
258
+
259
+ Examples
260
+ --------
261
+ >>> from scipy.stats import binomtest
262
+
263
+ A car manufacturer claims that no more than 10% of their cars are unsafe.
264
+ 15 cars are inspected for safety, 3 were found to be unsafe. Test the
265
+ manufacturer's claim:
266
+
267
+ >>> result = binomtest(3, n=15, p=0.1, alternative='greater')
268
+ >>> result.pvalue
269
+ 0.18406106910639114
270
+
271
+ The null hypothesis cannot be rejected at the 5% level of significance
272
+ because the returned p-value is greater than the critical value of 5%.
273
+
274
+ The test statistic is equal to the estimated proportion, which is simply
275
+ ``3/15``:
276
+
277
+ >>> result.statistic
278
+ 0.2
279
+
280
+ We can use the `proportion_ci()` method of the result to compute the
281
+ confidence interval of the estimate:
282
+
283
+ >>> result.proportion_ci(confidence_level=0.95)
284
+ ConfidenceInterval(low=0.05684686759024681, high=1.0)
285
+
286
+ """
287
+ k = _validate_int(k, 'k', minimum=0)
288
+ n = _validate_int(n, 'n', minimum=1)
289
+ if k > n:
290
+ raise ValueError(f'k ({k}) must not be greater than n ({n}).')
291
+
292
+ if not (0 <= p <= 1):
293
+ raise ValueError(f"p ({p}) must be in range [0,1]")
294
+
295
+ if alternative not in ('two-sided', 'less', 'greater'):
296
+ raise ValueError(f"alternative ('{alternative}') not recognized; \n"
297
+ "must be 'two-sided', 'less' or 'greater'")
298
+ if alternative == 'less':
299
+ pval = binom.cdf(k, n, p)
300
+ elif alternative == 'greater':
301
+ pval = binom.sf(k-1, n, p)
302
+ else:
303
+ # alternative is 'two-sided'
304
+ d = binom.pmf(k, n, p)
305
+ rerr = 1 + 1e-7
306
+ if k == p * n:
307
+ # special case as shortcut, would also be handled by `else` below
308
+ pval = 1.
309
+ elif k < p * n:
310
+ ix = _binary_search_for_binom_tst(lambda x1: -binom.pmf(x1, n, p),
311
+ -d*rerr, np.ceil(p * n), n)
312
+ # y is the number of terms between mode and n that are <= d*rerr.
313
+ # ix gave us the first term where a(ix) <= d*rerr < a(ix-1)
314
+ # if the first equality doesn't hold, y=n-ix. Otherwise, we
315
+ # need to include ix as well as the equality holds. Note that
316
+ # the equality will hold in very very rare situations due to rerr.
317
+ y = n - ix + int(d*rerr == binom.pmf(ix, n, p))
318
+ pval = binom.cdf(k, n, p) + binom.sf(n - y, n, p)
319
+ else:
320
+ ix = _binary_search_for_binom_tst(lambda x1: binom.pmf(x1, n, p),
321
+ d*rerr, 0, np.floor(p * n))
322
+ # y is the number of terms between 0 and mode that are <= d*rerr.
323
+ # we need to add a 1 to account for the 0 index.
324
+ # For comparing this with old behavior, see
325
+ # tst_binary_srch_for_binom_tst method in test_morestats.
326
+ y = ix + 1
327
+ pval = binom.cdf(y-1, n, p) + binom.sf(k-1, n, p)
328
+
329
+ pval = min(1.0, pval)
330
+
331
+ result = BinomTestResult(k=k, n=n, alternative=alternative,
332
+ statistic=k/n, pvalue=pval)
333
+ return result
334
+
335
+
336
+ def _binary_search_for_binom_tst(a, d, lo, hi):
337
+ """
338
+ Conducts an implicit binary search on a function specified by `a`.
339
+
340
+ Meant to be used on the binomial PMF for the case of two-sided tests
341
+ to obtain the value on the other side of the mode where the tail
342
+ probability should be computed. The values on either side of
343
+ the mode are always in order, meaning binary search is applicable.
344
+
345
+ Parameters
346
+ ----------
347
+ a : callable
348
+ The function over which to perform binary search. Its values
349
+ for inputs lo and hi should be in ascending order.
350
+ d : float
351
+ The value to search.
352
+ lo : int
353
+ The lower end of range to search.
354
+ hi : int
355
+ The higher end of the range to search.
356
+
357
+ Returns
358
+ -------
359
+ int
360
+ The index, i between lo and hi
361
+ such that a(i)<=d<a(i+1)
362
+ """
363
+ while lo < hi:
364
+ mid = lo + (hi-lo)//2
365
+ midval = a(mid)
366
+ if midval < d:
367
+ lo = mid+1
368
+ elif midval > d:
369
+ hi = mid-1
370
+ else:
371
+ return mid
372
+ if a(lo) <= d:
373
+ return lo
374
+ else:
375
+ return lo-1
parrot/lib/python3.10/site-packages/scipy/stats/_bws_test.py ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from functools import partial
3
+ from scipy import stats
4
+
5
+
6
+ def _bws_input_validation(x, y, alternative, method):
7
+ ''' Input validation and standardization for bws test'''
8
+ x, y = np.atleast_1d(x, y)
9
+ if x.ndim > 1 or y.ndim > 1:
10
+ raise ValueError('`x` and `y` must be exactly one-dimensional.')
11
+ if np.isnan(x).any() or np.isnan(y).any():
12
+ raise ValueError('`x` and `y` must not contain NaNs.')
13
+ if np.size(x) == 0 or np.size(y) == 0:
14
+ raise ValueError('`x` and `y` must be of nonzero size.')
15
+
16
+ z = stats.rankdata(np.concatenate((x, y)))
17
+ x, y = z[:len(x)], z[len(x):]
18
+
19
+ alternatives = {'two-sided', 'less', 'greater'}
20
+ alternative = alternative.lower()
21
+ if alternative not in alternatives:
22
+ raise ValueError(f'`alternative` must be one of {alternatives}.')
23
+
24
+ method = stats.PermutationMethod() if method is None else method
25
+ if not isinstance(method, stats.PermutationMethod):
26
+ raise ValueError('`method` must be an instance of '
27
+ '`scipy.stats.PermutationMethod`')
28
+
29
+ return x, y, alternative, method
30
+
31
+
32
+ def _bws_statistic(x, y, alternative, axis):
33
+ '''Compute the BWS test statistic for two independent samples'''
34
+ # Public function currently does not accept `axis`, but `permutation_test`
35
+ # uses `axis` to make vectorized call.
36
+
37
+ Ri, Hj = np.sort(x, axis=axis), np.sort(y, axis=axis)
38
+ n, m = Ri.shape[axis], Hj.shape[axis]
39
+ i, j = np.arange(1, n+1), np.arange(1, m+1)
40
+
41
+ Bx_num = Ri - (m + n)/n * i
42
+ By_num = Hj - (m + n)/m * j
43
+
44
+ if alternative == 'two-sided':
45
+ Bx_num *= Bx_num
46
+ By_num *= By_num
47
+ else:
48
+ Bx_num *= np.abs(Bx_num)
49
+ By_num *= np.abs(By_num)
50
+
51
+ Bx_den = i/(n+1) * (1 - i/(n+1)) * m*(m+n)/n
52
+ By_den = j/(m+1) * (1 - j/(m+1)) * n*(m+n)/m
53
+
54
+ Bx = 1/n * np.sum(Bx_num/Bx_den, axis=axis)
55
+ By = 1/m * np.sum(By_num/By_den, axis=axis)
56
+
57
+ B = (Bx + By) / 2 if alternative == 'two-sided' else (Bx - By) / 2
58
+
59
+ return B
60
+
61
+
62
+ def bws_test(x, y, *, alternative="two-sided", method=None):
63
+ r'''Perform the Baumgartner-Weiss-Schindler test on two independent samples.
64
+
65
+ The Baumgartner-Weiss-Schindler (BWS) test is a nonparametric test of
66
+ the null hypothesis that the distribution underlying sample `x`
67
+ is the same as the distribution underlying sample `y`. Unlike
68
+ the Kolmogorov-Smirnov, Wilcoxon, and Cramer-Von Mises tests,
69
+ the BWS test weights the integral by the variance of the difference
70
+ in cumulative distribution functions (CDFs), emphasizing the tails of the
71
+ distributions, which increases the power of the test in many applications.
72
+
73
+ Parameters
74
+ ----------
75
+ x, y : array-like
76
+ 1-d arrays of samples.
77
+ alternative : {'two-sided', 'less', 'greater'}, optional
78
+ Defines the alternative hypothesis. Default is 'two-sided'.
79
+ Let *F(u)* and *G(u)* be the cumulative distribution functions of the
80
+ distributions underlying `x` and `y`, respectively. Then the following
81
+ alternative hypotheses are available:
82
+
83
+ * 'two-sided': the distributions are not equal, i.e. *F(u) ≠ G(u)* for
84
+ at least one *u*.
85
+ * 'less': the distribution underlying `x` is stochastically less than
86
+ the distribution underlying `y`, i.e. *F(u) >= G(u)* for all *u*.
87
+ * 'greater': the distribution underlying `x` is stochastically greater
88
+ than the distribution underlying `y`, i.e. *F(u) <= G(u)* for all
89
+ *u*.
90
+
91
+ Under a more restrictive set of assumptions, the alternative hypotheses
92
+ can be expressed in terms of the locations of the distributions;
93
+ see [2] section 5.1.
94
+ method : PermutationMethod, optional
95
+ Configures the method used to compute the p-value. The default is
96
+ the default `PermutationMethod` object.
97
+
98
+ Returns
99
+ -------
100
+ res : PermutationTestResult
101
+ An object with attributes:
102
+
103
+ statistic : float
104
+ The observed test statistic of the data.
105
+ pvalue : float
106
+ The p-value for the given alternative.
107
+ null_distribution : ndarray
108
+ The values of the test statistic generated under the null hypothesis.
109
+
110
+ See also
111
+ --------
112
+ scipy.stats.wilcoxon, scipy.stats.mannwhitneyu, scipy.stats.ttest_ind
113
+
114
+ Notes
115
+ -----
116
+ When ``alternative=='two-sided'``, the statistic is defined by the
117
+ equations given in [1]_ Section 2. This statistic is not appropriate for
118
+ one-sided alternatives; in that case, the statistic is the *negative* of
119
+ that given by the equations in [1]_ Section 2. Consequently, when the
120
+ distribution of the first sample is stochastically greater than that of the
121
+ second sample, the statistic will tend to be positive.
122
+
123
+ References
124
+ ----------
125
+ .. [1] Neuhäuser, M. (2005). Exact Tests Based on the
126
+ Baumgartner-Weiss-Schindler Statistic: A Survey. Statistical Papers,
127
+ 46(1), 1-29.
128
+ .. [2] Fay, M. P., & Proschan, M. A. (2010). Wilcoxon-Mann-Whitney or t-test?
129
+ On assumptions for hypothesis tests and multiple interpretations of
130
+ decision rules. Statistics surveys, 4, 1.
131
+
132
+ Examples
133
+ --------
134
+ We follow the example of table 3 in [1]_: Fourteen children were divided
135
+ randomly into two groups. Their ranks at performing a specific tests are
136
+ as follows.
137
+
138
+ >>> import numpy as np
139
+ >>> x = [1, 2, 3, 4, 6, 7, 8]
140
+ >>> y = [5, 9, 10, 11, 12, 13, 14]
141
+
142
+ We use the BWS test to assess whether there is a statistically significant
143
+ difference between the two groups.
144
+ The null hypothesis is that there is no difference in the distributions of
145
+ performance between the two groups. We decide that a significance level of
146
+ 1% is required to reject the null hypothesis in favor of the alternative
147
+ that the distributions are different.
148
+ Since the number of samples is very small, we can compare the observed test
149
+ statistic against the *exact* distribution of the test statistic under the
150
+ null hypothesis.
151
+
152
+ >>> from scipy.stats import bws_test
153
+ >>> res = bws_test(x, y)
154
+ >>> print(res.statistic)
155
+ 5.132167152575315
156
+
157
+ This agrees with :math:`B = 5.132` reported in [1]_. The *p*-value produced
158
+ by `bws_test` also agrees with :math:`p = 0.0029` reported in [1]_.
159
+
160
+ >>> print(res.pvalue)
161
+ 0.002913752913752914
162
+
163
+ Because the p-value is below our threshold of 1%, we take this as evidence
164
+ against the null hypothesis in favor of the alternative that there is a
165
+ difference in performance between the two groups.
166
+ '''
167
+
168
+ x, y, alternative, method = _bws_input_validation(x, y, alternative,
169
+ method)
170
+ bws_statistic = partial(_bws_statistic, alternative=alternative)
171
+
172
+ permutation_alternative = 'less' if alternative == 'less' else 'greater'
173
+ res = stats.permutation_test((x, y), bws_statistic,
174
+ alternative=permutation_alternative,
175
+ **method._asdict())
176
+
177
+ return res
parrot/lib/python3.10/site-packages/scipy/stats/_censored_data.py ADDED
@@ -0,0 +1,459 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+
4
+ def _validate_1d(a, name, allow_inf=False):
5
+ if np.ndim(a) != 1:
6
+ raise ValueError(f'`{name}` must be a one-dimensional sequence.')
7
+ if np.isnan(a).any():
8
+ raise ValueError(f'`{name}` must not contain nan.')
9
+ if not allow_inf and np.isinf(a).any():
10
+ raise ValueError(f'`{name}` must contain only finite values.')
11
+
12
+
13
+ def _validate_interval(interval):
14
+ interval = np.asarray(interval)
15
+ if interval.shape == (0,):
16
+ # The input was a sequence with length 0.
17
+ interval = interval.reshape((0, 2))
18
+ if interval.ndim != 2 or interval.shape[-1] != 2:
19
+ raise ValueError('`interval` must be a two-dimensional array with '
20
+ 'shape (m, 2), where m is the number of '
21
+ 'interval-censored values, but got shape '
22
+ f'{interval.shape}')
23
+
24
+ if np.isnan(interval).any():
25
+ raise ValueError('`interval` must not contain nan.')
26
+ if np.isinf(interval).all(axis=1).any():
27
+ raise ValueError('In each row in `interval`, both values must not'
28
+ ' be infinite.')
29
+ if (interval[:, 0] > interval[:, 1]).any():
30
+ raise ValueError('In each row of `interval`, the left value must not'
31
+ ' exceed the right value.')
32
+
33
+ uncensored_mask = interval[:, 0] == interval[:, 1]
34
+ left_mask = np.isinf(interval[:, 0])
35
+ right_mask = np.isinf(interval[:, 1])
36
+ interval_mask = np.isfinite(interval).all(axis=1) & ~uncensored_mask
37
+
38
+ uncensored2 = interval[uncensored_mask, 0]
39
+ left2 = interval[left_mask, 1]
40
+ right2 = interval[right_mask, 0]
41
+ interval2 = interval[interval_mask]
42
+
43
+ return uncensored2, left2, right2, interval2
44
+
45
+
46
+ def _validate_x_censored(x, censored):
47
+ x = np.asarray(x)
48
+ if x.ndim != 1:
49
+ raise ValueError('`x` must be one-dimensional.')
50
+ censored = np.asarray(censored)
51
+ if censored.ndim != 1:
52
+ raise ValueError('`censored` must be one-dimensional.')
53
+ if (~np.isfinite(x)).any():
54
+ raise ValueError('`x` must not contain nan or inf.')
55
+ if censored.size != x.size:
56
+ raise ValueError('`x` and `censored` must have the same length.')
57
+ return x, censored.astype(bool)
58
+
59
+
60
+ class CensoredData:
61
+ """
62
+ Instances of this class represent censored data.
63
+
64
+ Instances may be passed to the ``fit`` method of continuous
65
+ univariate SciPy distributions for maximum likelihood estimation.
66
+ The *only* method of the univariate continuous distributions that
67
+ understands `CensoredData` is the ``fit`` method. An instance of
68
+ `CensoredData` can not be passed to methods such as ``pdf`` and
69
+ ``cdf``.
70
+
71
+ An observation is said to be *censored* when the precise value is unknown,
72
+ but it has a known upper and/or lower bound. The conventional terminology
73
+ is:
74
+
75
+ * left-censored: an observation is below a certain value but it is
76
+ unknown by how much.
77
+ * right-censored: an observation is above a certain value but it is
78
+ unknown by how much.
79
+ * interval-censored: an observation lies somewhere on an interval between
80
+ two values.
81
+
82
+ Left-, right-, and interval-censored data can be represented by
83
+ `CensoredData`.
84
+
85
+ For convenience, the class methods ``left_censored`` and
86
+ ``right_censored`` are provided to create a `CensoredData`
87
+ instance from a single one-dimensional array of measurements
88
+ and a corresponding boolean array to indicate which measurements
89
+ are censored. The class method ``interval_censored`` accepts two
90
+ one-dimensional arrays that hold the lower and upper bounds of the
91
+ intervals.
92
+
93
+ Parameters
94
+ ----------
95
+ uncensored : array_like, 1D
96
+ Uncensored observations.
97
+ left : array_like, 1D
98
+ Left-censored observations.
99
+ right : array_like, 1D
100
+ Right-censored observations.
101
+ interval : array_like, 2D, with shape (m, 2)
102
+ Interval-censored observations. Each row ``interval[k, :]``
103
+ represents the interval for the kth interval-censored observation.
104
+
105
+ Notes
106
+ -----
107
+ In the input array `interval`, the lower bound of the interval may
108
+ be ``-inf``, and the upper bound may be ``inf``, but at least one must be
109
+ finite. When the lower bound is ``-inf``, the row represents a left-
110
+ censored observation, and when the upper bound is ``inf``, the row
111
+ represents a right-censored observation. If the length of an interval
112
+ is 0 (i.e. ``interval[k, 0] == interval[k, 1]``, the observation is
113
+ treated as uncensored. So one can represent all the types of censored
114
+ and uncensored data in ``interval``, but it is generally more convenient
115
+ to use `uncensored`, `left` and `right` for uncensored, left-censored and
116
+ right-censored observations, respectively.
117
+
118
+ Examples
119
+ --------
120
+ In the most general case, a censored data set may contain values that
121
+ are left-censored, right-censored, interval-censored, and uncensored.
122
+ For example, here we create a data set with five observations. Two
123
+ are uncensored (values 1 and 1.5), one is a left-censored observation
124
+ of 0, one is a right-censored observation of 10 and one is
125
+ interval-censored in the interval [2, 3].
126
+
127
+ >>> import numpy as np
128
+ >>> from scipy.stats import CensoredData
129
+ >>> data = CensoredData(uncensored=[1, 1.5], left=[0], right=[10],
130
+ ... interval=[[2, 3]])
131
+ >>> print(data)
132
+ CensoredData(5 values: 2 not censored, 1 left-censored,
133
+ 1 right-censored, 1 interval-censored)
134
+
135
+ Equivalently,
136
+
137
+ >>> data = CensoredData(interval=[[1, 1],
138
+ ... [1.5, 1.5],
139
+ ... [-np.inf, 0],
140
+ ... [10, np.inf],
141
+ ... [2, 3]])
142
+ >>> print(data)
143
+ CensoredData(5 values: 2 not censored, 1 left-censored,
144
+ 1 right-censored, 1 interval-censored)
145
+
146
+ A common case is to have a mix of uncensored observations and censored
147
+ observations that are all right-censored (or all left-censored). For
148
+ example, consider an experiment in which six devices are started at
149
+ various times and left running until they fail. Assume that time is
150
+ measured in hours, and the experiment is stopped after 30 hours, even
151
+ if all the devices have not failed by that time. We might end up with
152
+ data such as this::
153
+
154
+ Device Start-time Fail-time Time-to-failure
155
+ 1 0 13 13
156
+ 2 2 24 22
157
+ 3 5 22 17
158
+ 4 8 23 15
159
+ 5 10 *** >20
160
+ 6 12 *** >18
161
+
162
+ Two of the devices had not failed when the experiment was stopped;
163
+ the observations of the time-to-failure for these two devices are
164
+ right-censored. We can represent this data with
165
+
166
+ >>> data = CensoredData(uncensored=[13, 22, 17, 15], right=[20, 18])
167
+ >>> print(data)
168
+ CensoredData(6 values: 4 not censored, 2 right-censored)
169
+
170
+ Alternatively, we can use the method `CensoredData.right_censored` to
171
+ create a representation of this data. The time-to-failure observations
172
+ are put the list ``ttf``. The ``censored`` list indicates which values
173
+ in ``ttf`` are censored.
174
+
175
+ >>> ttf = [13, 22, 17, 15, 20, 18]
176
+ >>> censored = [False, False, False, False, True, True]
177
+
178
+ Pass these lists to `CensoredData.right_censored` to create an
179
+ instance of `CensoredData`.
180
+
181
+ >>> data = CensoredData.right_censored(ttf, censored)
182
+ >>> print(data)
183
+ CensoredData(6 values: 4 not censored, 2 right-censored)
184
+
185
+ If the input data is interval censored and already stored in two
186
+ arrays, one holding the low end of the intervals and another
187
+ holding the high ends, the class method ``interval_censored`` can
188
+ be used to create the `CensoredData` instance.
189
+
190
+ This example creates an instance with four interval-censored values.
191
+ The intervals are [10, 11], [0.5, 1], [2, 3], and [12.5, 13.5].
192
+
193
+ >>> a = [10, 0.5, 2, 12.5] # Low ends of the intervals
194
+ >>> b = [11, 1.0, 3, 13.5] # High ends of the intervals
195
+ >>> data = CensoredData.interval_censored(low=a, high=b)
196
+ >>> print(data)
197
+ CensoredData(4 values: 0 not censored, 4 interval-censored)
198
+
199
+ Finally, we create and censor some data from the `weibull_min`
200
+ distribution, and then fit `weibull_min` to that data. We'll assume
201
+ that the location parameter is known to be 0.
202
+
203
+ >>> from scipy.stats import weibull_min
204
+ >>> rng = np.random.default_rng()
205
+
206
+ Create the random data set.
207
+
208
+ >>> x = weibull_min.rvs(2.5, loc=0, scale=30, size=250, random_state=rng)
209
+ >>> x[x > 40] = 40 # Right-censor values greater or equal to 40.
210
+
211
+ Create the `CensoredData` instance with the `right_censored` method.
212
+ The censored values are those where the value is 40.
213
+
214
+ >>> data = CensoredData.right_censored(x, x == 40)
215
+ >>> print(data)
216
+ CensoredData(250 values: 215 not censored, 35 right-censored)
217
+
218
+ 35 values have been right-censored.
219
+
220
+ Fit `weibull_min` to the censored data. We expect to shape and scale
221
+ to be approximately 2.5 and 30, respectively.
222
+
223
+ >>> weibull_min.fit(data, floc=0)
224
+ (2.3575922823897315, 0, 30.40650074451254)
225
+
226
+ """
227
+
228
+ def __init__(self, uncensored=None, *, left=None, right=None,
229
+ interval=None):
230
+ if uncensored is None:
231
+ uncensored = []
232
+ if left is None:
233
+ left = []
234
+ if right is None:
235
+ right = []
236
+ if interval is None:
237
+ interval = np.empty((0, 2))
238
+
239
+ _validate_1d(uncensored, 'uncensored')
240
+ _validate_1d(left, 'left')
241
+ _validate_1d(right, 'right')
242
+ uncensored2, left2, right2, interval2 = _validate_interval(interval)
243
+
244
+ self._uncensored = np.concatenate((uncensored, uncensored2))
245
+ self._left = np.concatenate((left, left2))
246
+ self._right = np.concatenate((right, right2))
247
+ # Note that by construction, the private attribute _interval
248
+ # will be a 2D array that contains only finite values representing
249
+ # intervals with nonzero but finite length.
250
+ self._interval = interval2
251
+
252
+ def __repr__(self):
253
+ uncensored_str = " ".join(np.array_repr(self._uncensored).split())
254
+ left_str = " ".join(np.array_repr(self._left).split())
255
+ right_str = " ".join(np.array_repr(self._right).split())
256
+ interval_str = " ".join(np.array_repr(self._interval).split())
257
+ return (f"CensoredData(uncensored={uncensored_str}, left={left_str}, "
258
+ f"right={right_str}, interval={interval_str})")
259
+
260
+ def __str__(self):
261
+ num_nc = len(self._uncensored)
262
+ num_lc = len(self._left)
263
+ num_rc = len(self._right)
264
+ num_ic = len(self._interval)
265
+ n = num_nc + num_lc + num_rc + num_ic
266
+ parts = [f'{num_nc} not censored']
267
+ if num_lc > 0:
268
+ parts.append(f'{num_lc} left-censored')
269
+ if num_rc > 0:
270
+ parts.append(f'{num_rc} right-censored')
271
+ if num_ic > 0:
272
+ parts.append(f'{num_ic} interval-censored')
273
+ return f'CensoredData({n} values: ' + ', '.join(parts) + ')'
274
+
275
+ # This is not a complete implementation of the arithmetic operators.
276
+ # All we need is subtracting a scalar and dividing by a scalar.
277
+
278
+ def __sub__(self, other):
279
+ return CensoredData(uncensored=self._uncensored - other,
280
+ left=self._left - other,
281
+ right=self._right - other,
282
+ interval=self._interval - other)
283
+
284
+ def __truediv__(self, other):
285
+ return CensoredData(uncensored=self._uncensored / other,
286
+ left=self._left / other,
287
+ right=self._right / other,
288
+ interval=self._interval / other)
289
+
290
+ def __len__(self):
291
+ """
292
+ The number of values (censored and not censored).
293
+ """
294
+ return (len(self._uncensored) + len(self._left) + len(self._right)
295
+ + len(self._interval))
296
+
297
+ def num_censored(self):
298
+ """
299
+ Number of censored values.
300
+ """
301
+ return len(self._left) + len(self._right) + len(self._interval)
302
+
303
+ @classmethod
304
+ def right_censored(cls, x, censored):
305
+ """
306
+ Create a `CensoredData` instance of right-censored data.
307
+
308
+ Parameters
309
+ ----------
310
+ x : array_like
311
+ `x` is the array of observed data or measurements.
312
+ `x` must be a one-dimensional sequence of finite numbers.
313
+ censored : array_like of bool
314
+ `censored` must be a one-dimensional sequence of boolean
315
+ values. If ``censored[k]`` is True, the corresponding value
316
+ in `x` is right-censored. That is, the value ``x[k]``
317
+ is the lower bound of the true (but unknown) value.
318
+
319
+ Returns
320
+ -------
321
+ data : `CensoredData`
322
+ An instance of `CensoredData` that represents the
323
+ collection of uncensored and right-censored values.
324
+
325
+ Examples
326
+ --------
327
+ >>> from scipy.stats import CensoredData
328
+
329
+ Two uncensored values (4 and 10) and two right-censored values
330
+ (24 and 25).
331
+
332
+ >>> data = CensoredData.right_censored([4, 10, 24, 25],
333
+ ... [False, False, True, True])
334
+ >>> data
335
+ CensoredData(uncensored=array([ 4., 10.]),
336
+ left=array([], dtype=float64), right=array([24., 25.]),
337
+ interval=array([], shape=(0, 2), dtype=float64))
338
+ >>> print(data)
339
+ CensoredData(4 values: 2 not censored, 2 right-censored)
340
+ """
341
+ x, censored = _validate_x_censored(x, censored)
342
+ return cls(uncensored=x[~censored], right=x[censored])
343
+
344
+ @classmethod
345
+ def left_censored(cls, x, censored):
346
+ """
347
+ Create a `CensoredData` instance of left-censored data.
348
+
349
+ Parameters
350
+ ----------
351
+ x : array_like
352
+ `x` is the array of observed data or measurements.
353
+ `x` must be a one-dimensional sequence of finite numbers.
354
+ censored : array_like of bool
355
+ `censored` must be a one-dimensional sequence of boolean
356
+ values. If ``censored[k]`` is True, the corresponding value
357
+ in `x` is left-censored. That is, the value ``x[k]``
358
+ is the upper bound of the true (but unknown) value.
359
+
360
+ Returns
361
+ -------
362
+ data : `CensoredData`
363
+ An instance of `CensoredData` that represents the
364
+ collection of uncensored and left-censored values.
365
+
366
+ Examples
367
+ --------
368
+ >>> from scipy.stats import CensoredData
369
+
370
+ Two uncensored values (0.12 and 0.033) and two left-censored values
371
+ (both 1e-3).
372
+
373
+ >>> data = CensoredData.left_censored([0.12, 0.033, 1e-3, 1e-3],
374
+ ... [False, False, True, True])
375
+ >>> data
376
+ CensoredData(uncensored=array([0.12 , 0.033]),
377
+ left=array([0.001, 0.001]), right=array([], dtype=float64),
378
+ interval=array([], shape=(0, 2), dtype=float64))
379
+ >>> print(data)
380
+ CensoredData(4 values: 2 not censored, 2 left-censored)
381
+ """
382
+ x, censored = _validate_x_censored(x, censored)
383
+ return cls(uncensored=x[~censored], left=x[censored])
384
+
385
+ @classmethod
386
+ def interval_censored(cls, low, high):
387
+ """
388
+ Create a `CensoredData` instance of interval-censored data.
389
+
390
+ This method is useful when all the data is interval-censored, and
391
+ the low and high ends of the intervals are already stored in
392
+ separate one-dimensional arrays.
393
+
394
+ Parameters
395
+ ----------
396
+ low : array_like
397
+ The one-dimensional array containing the low ends of the
398
+ intervals.
399
+ high : array_like
400
+ The one-dimensional array containing the high ends of the
401
+ intervals.
402
+
403
+ Returns
404
+ -------
405
+ data : `CensoredData`
406
+ An instance of `CensoredData` that represents the
407
+ collection of censored values.
408
+
409
+ Examples
410
+ --------
411
+ >>> import numpy as np
412
+ >>> from scipy.stats import CensoredData
413
+
414
+ ``a`` and ``b`` are the low and high ends of a collection of
415
+ interval-censored values.
416
+
417
+ >>> a = [0.5, 2.0, 3.0, 5.5]
418
+ >>> b = [1.0, 2.5, 3.5, 7.0]
419
+ >>> data = CensoredData.interval_censored(low=a, high=b)
420
+ >>> print(data)
421
+ CensoredData(4 values: 0 not censored, 4 interval-censored)
422
+ """
423
+ _validate_1d(low, 'low', allow_inf=True)
424
+ _validate_1d(high, 'high', allow_inf=True)
425
+ if len(low) != len(high):
426
+ raise ValueError('`low` and `high` must have the same length.')
427
+ interval = np.column_stack((low, high))
428
+ uncensored, left, right, interval = _validate_interval(interval)
429
+ return cls(uncensored=uncensored, left=left, right=right,
430
+ interval=interval)
431
+
432
+ def _uncensor(self):
433
+ """
434
+ This function is used when a non-censored version of the data
435
+ is needed to create a rough estimate of the parameters of a
436
+ distribution via the method of moments or some similar method.
437
+ The data is "uncensored" by taking the given endpoints as the
438
+ data for the left- or right-censored data, and the mean for the
439
+ interval-censored data.
440
+ """
441
+ data = np.concatenate((self._uncensored, self._left, self._right,
442
+ self._interval.mean(axis=1)))
443
+ return data
444
+
445
+ def _supported(self, a, b):
446
+ """
447
+ Return a subset of self containing the values that are in
448
+ (or overlap with) the interval (a, b).
449
+ """
450
+ uncensored = self._uncensored
451
+ uncensored = uncensored[(a < uncensored) & (uncensored < b)]
452
+ left = self._left
453
+ left = left[a < left]
454
+ right = self._right
455
+ right = right[right < b]
456
+ interval = self._interval
457
+ interval = interval[(a < interval[:, 1]) & (interval[:, 0] < b)]
458
+ return CensoredData(uncensored, left=left, right=right,
459
+ interval=interval)
parrot/lib/python3.10/site-packages/scipy/stats/_crosstab.py ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from scipy.sparse import coo_matrix
3
+ from scipy._lib._bunch import _make_tuple_bunch
4
+
5
+
6
+ CrosstabResult = _make_tuple_bunch(
7
+ "CrosstabResult", ["elements", "count"]
8
+ )
9
+
10
+
11
+ def crosstab(*args, levels=None, sparse=False):
12
+ """
13
+ Return table of counts for each possible unique combination in ``*args``.
14
+
15
+ When ``len(args) > 1``, the array computed by this function is
16
+ often referred to as a *contingency table* [1]_.
17
+
18
+ The arguments must be sequences with the same length. The second return
19
+ value, `count`, is an integer array with ``len(args)`` dimensions. If
20
+ `levels` is None, the shape of `count` is ``(n0, n1, ...)``, where ``nk``
21
+ is the number of unique elements in ``args[k]``.
22
+
23
+ Parameters
24
+ ----------
25
+ *args : sequences
26
+ A sequence of sequences whose unique aligned elements are to be
27
+ counted. The sequences in args must all be the same length.
28
+ levels : sequence, optional
29
+ If `levels` is given, it must be a sequence that is the same length as
30
+ `args`. Each element in `levels` is either a sequence or None. If it
31
+ is a sequence, it gives the values in the corresponding sequence in
32
+ `args` that are to be counted. If any value in the sequences in `args`
33
+ does not occur in the corresponding sequence in `levels`, that value
34
+ is ignored and not counted in the returned array `count`. The default
35
+ value of `levels` for ``args[i]`` is ``np.unique(args[i])``
36
+ sparse : bool, optional
37
+ If True, return a sparse matrix. The matrix will be an instance of
38
+ the `scipy.sparse.coo_matrix` class. Because SciPy's sparse matrices
39
+ must be 2-d, only two input sequences are allowed when `sparse` is
40
+ True. Default is False.
41
+
42
+ Returns
43
+ -------
44
+ res : CrosstabResult
45
+ An object containing the following attributes:
46
+
47
+ elements : tuple of numpy.ndarrays.
48
+ Tuple of length ``len(args)`` containing the arrays of elements
49
+ that are counted in `count`. These can be interpreted as the
50
+ labels of the corresponding dimensions of `count`. If `levels` was
51
+ given, then if ``levels[i]`` is not None, ``elements[i]`` will
52
+ hold the values given in ``levels[i]``.
53
+ count : numpy.ndarray or scipy.sparse.coo_matrix
54
+ Counts of the unique elements in ``zip(*args)``, stored in an
55
+ array. Also known as a *contingency table* when ``len(args) > 1``.
56
+
57
+ See Also
58
+ --------
59
+ numpy.unique
60
+
61
+ Notes
62
+ -----
63
+ .. versionadded:: 1.7.0
64
+
65
+ References
66
+ ----------
67
+ .. [1] "Contingency table", http://en.wikipedia.org/wiki/Contingency_table
68
+
69
+ Examples
70
+ --------
71
+ >>> from scipy.stats.contingency import crosstab
72
+
73
+ Given the lists `a` and `x`, create a contingency table that counts the
74
+ frequencies of the corresponding pairs.
75
+
76
+ >>> a = ['A', 'B', 'A', 'A', 'B', 'B', 'A', 'A', 'B', 'B']
77
+ >>> x = ['X', 'X', 'X', 'Y', 'Z', 'Z', 'Y', 'Y', 'Z', 'Z']
78
+ >>> res = crosstab(a, x)
79
+ >>> avals, xvals = res.elements
80
+ >>> avals
81
+ array(['A', 'B'], dtype='<U1')
82
+ >>> xvals
83
+ array(['X', 'Y', 'Z'], dtype='<U1')
84
+ >>> res.count
85
+ array([[2, 3, 0],
86
+ [1, 0, 4]])
87
+
88
+ So `('A', 'X')` occurs twice, `('A', 'Y')` occurs three times, etc.
89
+
90
+ Higher dimensional contingency tables can be created.
91
+
92
+ >>> p = [0, 0, 0, 0, 1, 1, 1, 0, 0, 1]
93
+ >>> res = crosstab(a, x, p)
94
+ >>> res.count
95
+ array([[[2, 0],
96
+ [2, 1],
97
+ [0, 0]],
98
+ [[1, 0],
99
+ [0, 0],
100
+ [1, 3]]])
101
+ >>> res.count.shape
102
+ (2, 3, 2)
103
+
104
+ The values to be counted can be set by using the `levels` argument.
105
+ It allows the elements of interest in each input sequence to be
106
+ given explicitly instead finding the unique elements of the sequence.
107
+
108
+ For example, suppose one of the arguments is an array containing the
109
+ answers to a survey question, with integer values 1 to 4. Even if the
110
+ value 1 does not occur in the data, we want an entry for it in the table.
111
+
112
+ >>> q1 = [2, 3, 3, 2, 4, 4, 2, 3, 4, 4, 4, 3, 3, 3, 4] # 1 does not occur.
113
+ >>> q2 = [4, 4, 2, 2, 2, 4, 1, 1, 2, 2, 4, 2, 2, 2, 4] # 3 does not occur.
114
+ >>> options = [1, 2, 3, 4]
115
+ >>> res = crosstab(q1, q2, levels=(options, options))
116
+ >>> res.count
117
+ array([[0, 0, 0, 0],
118
+ [1, 1, 0, 1],
119
+ [1, 4, 0, 1],
120
+ [0, 3, 0, 3]])
121
+
122
+ If `levels` is given, but an element of `levels` is None, the unique values
123
+ of the corresponding argument are used. For example,
124
+
125
+ >>> res = crosstab(q1, q2, levels=(None, options))
126
+ >>> res.elements
127
+ [array([2, 3, 4]), [1, 2, 3, 4]]
128
+ >>> res.count
129
+ array([[1, 1, 0, 1],
130
+ [1, 4, 0, 1],
131
+ [0, 3, 0, 3]])
132
+
133
+ If we want to ignore the pairs where 4 occurs in ``q2``, we can
134
+ give just the values [1, 2] to `levels`, and the 4 will be ignored:
135
+
136
+ >>> res = crosstab(q1, q2, levels=(None, [1, 2]))
137
+ >>> res.elements
138
+ [array([2, 3, 4]), [1, 2]]
139
+ >>> res.count
140
+ array([[1, 1],
141
+ [1, 4],
142
+ [0, 3]])
143
+
144
+ Finally, let's repeat the first example, but return a sparse matrix:
145
+
146
+ >>> res = crosstab(a, x, sparse=True)
147
+ >>> res.count
148
+ <COOrdinate sparse matrix of dtype 'int64'
149
+ with 4 stored elements and shape (2, 3)>
150
+ >>> res.count.toarray()
151
+ array([[2, 3, 0],
152
+ [1, 0, 4]])
153
+
154
+ """
155
+ nargs = len(args)
156
+ if nargs == 0:
157
+ raise TypeError("At least one input sequence is required.")
158
+
159
+ len0 = len(args[0])
160
+ if not all(len(a) == len0 for a in args[1:]):
161
+ raise ValueError("All input sequences must have the same length.")
162
+
163
+ if sparse and nargs != 2:
164
+ raise ValueError("When `sparse` is True, only two input sequences "
165
+ "are allowed.")
166
+
167
+ if levels is None:
168
+ # Call np.unique with return_inverse=True on each argument.
169
+ actual_levels, indices = zip(*[np.unique(a, return_inverse=True)
170
+ for a in args])
171
+ else:
172
+ # `levels` is not None...
173
+ if len(levels) != nargs:
174
+ raise ValueError('len(levels) must equal the number of input '
175
+ 'sequences')
176
+
177
+ args = [np.asarray(arg) for arg in args]
178
+ mask = np.zeros((nargs, len0), dtype=np.bool_)
179
+ inv = np.zeros((nargs, len0), dtype=np.intp)
180
+ actual_levels = []
181
+ for k, (levels_list, arg) in enumerate(zip(levels, args)):
182
+ if levels_list is None:
183
+ levels_list, inv[k, :] = np.unique(arg, return_inverse=True)
184
+ mask[k, :] = True
185
+ else:
186
+ q = arg == np.asarray(levels_list).reshape(-1, 1)
187
+ mask[k, :] = np.any(q, axis=0)
188
+ qnz = q.T.nonzero()
189
+ inv[k, qnz[0]] = qnz[1]
190
+ actual_levels.append(levels_list)
191
+
192
+ mask_all = mask.all(axis=0)
193
+ indices = tuple(inv[:, mask_all])
194
+
195
+ if sparse:
196
+ count = coo_matrix((np.ones(len(indices[0]), dtype=int),
197
+ (indices[0], indices[1])))
198
+ count.sum_duplicates()
199
+ else:
200
+ shape = [len(u) for u in actual_levels]
201
+ count = np.zeros(shape, dtype=int)
202
+ np.add.at(count, indices, 1)
203
+
204
+ return CrosstabResult(actual_levels, count)
parrot/lib/python3.10/site-packages/scipy/stats/_discrete_distns.py ADDED
@@ -0,0 +1,1922 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Author: Travis Oliphant 2002-2011 with contributions from
3
+ # SciPy Developers 2004-2011
4
+ #
5
+ from functools import partial
6
+
7
+ from scipy import special
8
+ from scipy.special import entr, logsumexp, betaln, gammaln as gamln, zeta
9
+ from scipy._lib._util import _lazywhere, rng_integers
10
+ from scipy.interpolate import interp1d
11
+
12
+ from numpy import floor, ceil, log, exp, sqrt, log1p, expm1, tanh, cosh, sinh
13
+
14
+ import numpy as np
15
+
16
+ from ._distn_infrastructure import (rv_discrete, get_distribution_names,
17
+ _vectorize_rvs_over_shapes,
18
+ _ShapeInfo, _isintegral)
19
+ from ._biasedurn import (_PyFishersNCHypergeometric,
20
+ _PyWalleniusNCHypergeometric,
21
+ _PyStochasticLib3)
22
+ import scipy.special._ufuncs as scu
23
+
24
+
25
+
26
+ class binom_gen(rv_discrete):
27
+ r"""A binomial discrete random variable.
28
+
29
+ %(before_notes)s
30
+
31
+ Notes
32
+ -----
33
+ The probability mass function for `binom` is:
34
+
35
+ .. math::
36
+
37
+ f(k) = \binom{n}{k} p^k (1-p)^{n-k}
38
+
39
+ for :math:`k \in \{0, 1, \dots, n\}`, :math:`0 \leq p \leq 1`
40
+
41
+ `binom` takes :math:`n` and :math:`p` as shape parameters,
42
+ where :math:`p` is the probability of a single success
43
+ and :math:`1-p` is the probability of a single failure.
44
+
45
+ %(after_notes)s
46
+
47
+ %(example)s
48
+
49
+ See Also
50
+ --------
51
+ hypergeom, nbinom, nhypergeom
52
+
53
+ """
54
+ def _shape_info(self):
55
+ return [_ShapeInfo("n", True, (0, np.inf), (True, False)),
56
+ _ShapeInfo("p", False, (0, 1), (True, True))]
57
+
58
+ def _rvs(self, n, p, size=None, random_state=None):
59
+ return random_state.binomial(n, p, size)
60
+
61
+ def _argcheck(self, n, p):
62
+ return (n >= 0) & _isintegral(n) & (p >= 0) & (p <= 1)
63
+
64
+ def _get_support(self, n, p):
65
+ return self.a, n
66
+
67
+ def _logpmf(self, x, n, p):
68
+ k = floor(x)
69
+ combiln = (gamln(n+1) - (gamln(k+1) + gamln(n-k+1)))
70
+ return combiln + special.xlogy(k, p) + special.xlog1py(n-k, -p)
71
+
72
+ def _pmf(self, x, n, p):
73
+ # binom.pmf(k) = choose(n, k) * p**k * (1-p)**(n-k)
74
+ return scu._binom_pmf(x, n, p)
75
+
76
+ def _cdf(self, x, n, p):
77
+ k = floor(x)
78
+ return scu._binom_cdf(k, n, p)
79
+
80
+ def _sf(self, x, n, p):
81
+ k = floor(x)
82
+ return scu._binom_sf(k, n, p)
83
+
84
+ def _isf(self, x, n, p):
85
+ return scu._binom_isf(x, n, p)
86
+
87
+ def _ppf(self, q, n, p):
88
+ return scu._binom_ppf(q, n, p)
89
+
90
+ def _stats(self, n, p, moments='mv'):
91
+ mu = n * p
92
+ var = mu - n * np.square(p)
93
+ g1, g2 = None, None
94
+ if 's' in moments:
95
+ pq = p - np.square(p)
96
+ npq_sqrt = np.sqrt(n * pq)
97
+ t1 = np.reciprocal(npq_sqrt)
98
+ t2 = (2.0 * p) / npq_sqrt
99
+ g1 = t1 - t2
100
+ if 'k' in moments:
101
+ pq = p - np.square(p)
102
+ npq = n * pq
103
+ t1 = np.reciprocal(npq)
104
+ t2 = 6.0/n
105
+ g2 = t1 - t2
106
+ return mu, var, g1, g2
107
+
108
+ def _entropy(self, n, p):
109
+ k = np.r_[0:n + 1]
110
+ vals = self._pmf(k, n, p)
111
+ return np.sum(entr(vals), axis=0)
112
+
113
+
114
+ binom = binom_gen(name='binom')
115
+
116
+
117
+ class bernoulli_gen(binom_gen):
118
+ r"""A Bernoulli discrete random variable.
119
+
120
+ %(before_notes)s
121
+
122
+ Notes
123
+ -----
124
+ The probability mass function for `bernoulli` is:
125
+
126
+ .. math::
127
+
128
+ f(k) = \begin{cases}1-p &\text{if } k = 0\\
129
+ p &\text{if } k = 1\end{cases}
130
+
131
+ for :math:`k` in :math:`\{0, 1\}`, :math:`0 \leq p \leq 1`
132
+
133
+ `bernoulli` takes :math:`p` as shape parameter,
134
+ where :math:`p` is the probability of a single success
135
+ and :math:`1-p` is the probability of a single failure.
136
+
137
+ %(after_notes)s
138
+
139
+ %(example)s
140
+
141
+ """
142
+ def _shape_info(self):
143
+ return [_ShapeInfo("p", False, (0, 1), (True, True))]
144
+
145
+ def _rvs(self, p, size=None, random_state=None):
146
+ return binom_gen._rvs(self, 1, p, size=size, random_state=random_state)
147
+
148
+ def _argcheck(self, p):
149
+ return (p >= 0) & (p <= 1)
150
+
151
+ def _get_support(self, p):
152
+ # Overrides binom_gen._get_support!x
153
+ return self.a, self.b
154
+
155
+ def _logpmf(self, x, p):
156
+ return binom._logpmf(x, 1, p)
157
+
158
+ def _pmf(self, x, p):
159
+ # bernoulli.pmf(k) = 1-p if k = 0
160
+ # = p if k = 1
161
+ return binom._pmf(x, 1, p)
162
+
163
+ def _cdf(self, x, p):
164
+ return binom._cdf(x, 1, p)
165
+
166
+ def _sf(self, x, p):
167
+ return binom._sf(x, 1, p)
168
+
169
+ def _isf(self, x, p):
170
+ return binom._isf(x, 1, p)
171
+
172
+ def _ppf(self, q, p):
173
+ return binom._ppf(q, 1, p)
174
+
175
+ def _stats(self, p):
176
+ return binom._stats(1, p)
177
+
178
+ def _entropy(self, p):
179
+ return entr(p) + entr(1-p)
180
+
181
+
182
+ bernoulli = bernoulli_gen(b=1, name='bernoulli')
183
+
184
+
185
+ class betabinom_gen(rv_discrete):
186
+ r"""A beta-binomial discrete random variable.
187
+
188
+ %(before_notes)s
189
+
190
+ Notes
191
+ -----
192
+ The beta-binomial distribution is a binomial distribution with a
193
+ probability of success `p` that follows a beta distribution.
194
+
195
+ The probability mass function for `betabinom` is:
196
+
197
+ .. math::
198
+
199
+ f(k) = \binom{n}{k} \frac{B(k + a, n - k + b)}{B(a, b)}
200
+
201
+ for :math:`k \in \{0, 1, \dots, n\}`, :math:`n \geq 0`, :math:`a > 0`,
202
+ :math:`b > 0`, where :math:`B(a, b)` is the beta function.
203
+
204
+ `betabinom` takes :math:`n`, :math:`a`, and :math:`b` as shape parameters.
205
+
206
+ References
207
+ ----------
208
+ .. [1] https://en.wikipedia.org/wiki/Beta-binomial_distribution
209
+
210
+ %(after_notes)s
211
+
212
+ .. versionadded:: 1.4.0
213
+
214
+ See Also
215
+ --------
216
+ beta, binom
217
+
218
+ %(example)s
219
+
220
+ """
221
+ def _shape_info(self):
222
+ return [_ShapeInfo("n", True, (0, np.inf), (True, False)),
223
+ _ShapeInfo("a", False, (0, np.inf), (False, False)),
224
+ _ShapeInfo("b", False, (0, np.inf), (False, False))]
225
+
226
+ def _rvs(self, n, a, b, size=None, random_state=None):
227
+ p = random_state.beta(a, b, size)
228
+ return random_state.binomial(n, p, size)
229
+
230
+ def _get_support(self, n, a, b):
231
+ return 0, n
232
+
233
+ def _argcheck(self, n, a, b):
234
+ return (n >= 0) & _isintegral(n) & (a > 0) & (b > 0)
235
+
236
+ def _logpmf(self, x, n, a, b):
237
+ k = floor(x)
238
+ combiln = -log(n + 1) - betaln(n - k + 1, k + 1)
239
+ return combiln + betaln(k + a, n - k + b) - betaln(a, b)
240
+
241
+ def _pmf(self, x, n, a, b):
242
+ return exp(self._logpmf(x, n, a, b))
243
+
244
+ def _stats(self, n, a, b, moments='mv'):
245
+ e_p = a / (a + b)
246
+ e_q = 1 - e_p
247
+ mu = n * e_p
248
+ var = n * (a + b + n) * e_p * e_q / (a + b + 1)
249
+ g1, g2 = None, None
250
+ if 's' in moments:
251
+ g1 = 1.0 / sqrt(var)
252
+ g1 *= (a + b + 2 * n) * (b - a)
253
+ g1 /= (a + b + 2) * (a + b)
254
+ if 'k' in moments:
255
+ g2 = (a + b).astype(e_p.dtype)
256
+ g2 *= (a + b - 1 + 6 * n)
257
+ g2 += 3 * a * b * (n - 2)
258
+ g2 += 6 * n ** 2
259
+ g2 -= 3 * e_p * b * n * (6 - n)
260
+ g2 -= 18 * e_p * e_q * n ** 2
261
+ g2 *= (a + b) ** 2 * (1 + a + b)
262
+ g2 /= (n * a * b * (a + b + 2) * (a + b + 3) * (a + b + n))
263
+ g2 -= 3
264
+ return mu, var, g1, g2
265
+
266
+
267
+ betabinom = betabinom_gen(name='betabinom')
268
+
269
+
270
+ class nbinom_gen(rv_discrete):
271
+ r"""A negative binomial discrete random variable.
272
+
273
+ %(before_notes)s
274
+
275
+ Notes
276
+ -----
277
+ Negative binomial distribution describes a sequence of i.i.d. Bernoulli
278
+ trials, repeated until a predefined, non-random number of successes occurs.
279
+
280
+ The probability mass function of the number of failures for `nbinom` is:
281
+
282
+ .. math::
283
+
284
+ f(k) = \binom{k+n-1}{n-1} p^n (1-p)^k
285
+
286
+ for :math:`k \ge 0`, :math:`0 < p \leq 1`
287
+
288
+ `nbinom` takes :math:`n` and :math:`p` as shape parameters where :math:`n`
289
+ is the number of successes, :math:`p` is the probability of a single
290
+ success, and :math:`1-p` is the probability of a single failure.
291
+
292
+ Another common parameterization of the negative binomial distribution is
293
+ in terms of the mean number of failures :math:`\mu` to achieve :math:`n`
294
+ successes. The mean :math:`\mu` is related to the probability of success
295
+ as
296
+
297
+ .. math::
298
+
299
+ p = \frac{n}{n + \mu}
300
+
301
+ The number of successes :math:`n` may also be specified in terms of a
302
+ "dispersion", "heterogeneity", or "aggregation" parameter :math:`\alpha`,
303
+ which relates the mean :math:`\mu` to the variance :math:`\sigma^2`,
304
+ e.g. :math:`\sigma^2 = \mu + \alpha \mu^2`. Regardless of the convention
305
+ used for :math:`\alpha`,
306
+
307
+ .. math::
308
+
309
+ p &= \frac{\mu}{\sigma^2} \\
310
+ n &= \frac{\mu^2}{\sigma^2 - \mu}
311
+
312
+ %(after_notes)s
313
+
314
+ %(example)s
315
+
316
+ See Also
317
+ --------
318
+ hypergeom, binom, nhypergeom
319
+
320
+ """
321
+ def _shape_info(self):
322
+ return [_ShapeInfo("n", True, (0, np.inf), (True, False)),
323
+ _ShapeInfo("p", False, (0, 1), (True, True))]
324
+
325
+ def _rvs(self, n, p, size=None, random_state=None):
326
+ return random_state.negative_binomial(n, p, size)
327
+
328
+ def _argcheck(self, n, p):
329
+ return (n > 0) & (p > 0) & (p <= 1)
330
+
331
+ def _pmf(self, x, n, p):
332
+ # nbinom.pmf(k) = choose(k+n-1, n-1) * p**n * (1-p)**k
333
+ return scu._nbinom_pmf(x, n, p)
334
+
335
+ def _logpmf(self, x, n, p):
336
+ coeff = gamln(n+x) - gamln(x+1) - gamln(n)
337
+ return coeff + n*log(p) + special.xlog1py(x, -p)
338
+
339
+ def _cdf(self, x, n, p):
340
+ k = floor(x)
341
+ return scu._nbinom_cdf(k, n, p)
342
+
343
+ def _logcdf(self, x, n, p):
344
+ k = floor(x)
345
+ k, n, p = np.broadcast_arrays(k, n, p)
346
+ cdf = self._cdf(k, n, p)
347
+ cond = cdf > 0.5
348
+ def f1(k, n, p):
349
+ return np.log1p(-special.betainc(k + 1, n, 1 - p))
350
+
351
+ # do calc in place
352
+ logcdf = cdf
353
+ with np.errstate(divide='ignore'):
354
+ logcdf[cond] = f1(k[cond], n[cond], p[cond])
355
+ logcdf[~cond] = np.log(cdf[~cond])
356
+ return logcdf
357
+
358
+ def _sf(self, x, n, p):
359
+ k = floor(x)
360
+ return scu._nbinom_sf(k, n, p)
361
+
362
+ def _isf(self, x, n, p):
363
+ with np.errstate(over='ignore'): # see gh-17432
364
+ return scu._nbinom_isf(x, n, p)
365
+
366
+ def _ppf(self, q, n, p):
367
+ with np.errstate(over='ignore'): # see gh-17432
368
+ return scu._nbinom_ppf(q, n, p)
369
+
370
+ def _stats(self, n, p):
371
+ return (
372
+ scu._nbinom_mean(n, p),
373
+ scu._nbinom_variance(n, p),
374
+ scu._nbinom_skewness(n, p),
375
+ scu._nbinom_kurtosis_excess(n, p),
376
+ )
377
+
378
+
379
+ nbinom = nbinom_gen(name='nbinom')
380
+
381
+
382
+ class betanbinom_gen(rv_discrete):
383
+ r"""A beta-negative-binomial discrete random variable.
384
+
385
+ %(before_notes)s
386
+
387
+ Notes
388
+ -----
389
+ The beta-negative-binomial distribution is a negative binomial
390
+ distribution with a probability of success `p` that follows a
391
+ beta distribution.
392
+
393
+ The probability mass function for `betanbinom` is:
394
+
395
+ .. math::
396
+
397
+ f(k) = \binom{n + k - 1}{k} \frac{B(a + n, b + k)}{B(a, b)}
398
+
399
+ for :math:`k \ge 0`, :math:`n \geq 0`, :math:`a > 0`,
400
+ :math:`b > 0`, where :math:`B(a, b)` is the beta function.
401
+
402
+ `betanbinom` takes :math:`n`, :math:`a`, and :math:`b` as shape parameters.
403
+
404
+ References
405
+ ----------
406
+ .. [1] https://en.wikipedia.org/wiki/Beta_negative_binomial_distribution
407
+
408
+ %(after_notes)s
409
+
410
+ .. versionadded:: 1.12.0
411
+
412
+ See Also
413
+ --------
414
+ betabinom : Beta binomial distribution
415
+
416
+ %(example)s
417
+
418
+ """
419
+ def _shape_info(self):
420
+ return [_ShapeInfo("n", True, (0, np.inf), (True, False)),
421
+ _ShapeInfo("a", False, (0, np.inf), (False, False)),
422
+ _ShapeInfo("b", False, (0, np.inf), (False, False))]
423
+
424
+ def _rvs(self, n, a, b, size=None, random_state=None):
425
+ p = random_state.beta(a, b, size)
426
+ return random_state.negative_binomial(n, p, size)
427
+
428
+ def _argcheck(self, n, a, b):
429
+ return (n >= 0) & _isintegral(n) & (a > 0) & (b > 0)
430
+
431
+ def _logpmf(self, x, n, a, b):
432
+ k = floor(x)
433
+ combiln = -np.log(n + k) - betaln(n, k + 1)
434
+ return combiln + betaln(a + n, b + k) - betaln(a, b)
435
+
436
+ def _pmf(self, x, n, a, b):
437
+ return exp(self._logpmf(x, n, a, b))
438
+
439
+ def _stats(self, n, a, b, moments='mv'):
440
+ # reference: Wolfram Alpha input
441
+ # BetaNegativeBinomialDistribution[a, b, n]
442
+ def mean(n, a, b):
443
+ return n * b / (a - 1.)
444
+ mu = _lazywhere(a > 1, (n, a, b), f=mean, fillvalue=np.inf)
445
+ def var(n, a, b):
446
+ return (n * b * (n + a - 1.) * (a + b - 1.)
447
+ / ((a - 2.) * (a - 1.)**2.))
448
+ var = _lazywhere(a > 2, (n, a, b), f=var, fillvalue=np.inf)
449
+ g1, g2 = None, None
450
+ def skew(n, a, b):
451
+ return ((2 * n + a - 1.) * (2 * b + a - 1.)
452
+ / (a - 3.) / sqrt(n * b * (n + a - 1.) * (b + a - 1.)
453
+ / (a - 2.)))
454
+ if 's' in moments:
455
+ g1 = _lazywhere(a > 3, (n, a, b), f=skew, fillvalue=np.inf)
456
+ def kurtosis(n, a, b):
457
+ term = (a - 2.)
458
+ term_2 = ((a - 1.)**2. * (a**2. + a * (6 * b - 1.)
459
+ + 6. * (b - 1.) * b)
460
+ + 3. * n**2. * ((a + 5.) * b**2. + (a + 5.)
461
+ * (a - 1.) * b + 2. * (a - 1.)**2)
462
+ + 3 * (a - 1.) * n
463
+ * ((a + 5.) * b**2. + (a + 5.) * (a - 1.) * b
464
+ + 2. * (a - 1.)**2.))
465
+ denominator = ((a - 4.) * (a - 3.) * b * n
466
+ * (a + b - 1.) * (a + n - 1.))
467
+ # Wolfram Alpha uses Pearson kurtosis, so we substract 3 to get
468
+ # scipy's Fisher kurtosis
469
+ return term * term_2 / denominator - 3.
470
+ if 'k' in moments:
471
+ g2 = _lazywhere(a > 4, (n, a, b), f=kurtosis, fillvalue=np.inf)
472
+ return mu, var, g1, g2
473
+
474
+
475
+ betanbinom = betanbinom_gen(name='betanbinom')
476
+
477
+
478
+ class geom_gen(rv_discrete):
479
+ r"""A geometric discrete random variable.
480
+
481
+ %(before_notes)s
482
+
483
+ Notes
484
+ -----
485
+ The probability mass function for `geom` is:
486
+
487
+ .. math::
488
+
489
+ f(k) = (1-p)^{k-1} p
490
+
491
+ for :math:`k \ge 1`, :math:`0 < p \leq 1`
492
+
493
+ `geom` takes :math:`p` as shape parameter,
494
+ where :math:`p` is the probability of a single success
495
+ and :math:`1-p` is the probability of a single failure.
496
+
497
+ %(after_notes)s
498
+
499
+ See Also
500
+ --------
501
+ planck
502
+
503
+ %(example)s
504
+
505
+ """
506
+
507
+ def _shape_info(self):
508
+ return [_ShapeInfo("p", False, (0, 1), (True, True))]
509
+
510
+ def _rvs(self, p, size=None, random_state=None):
511
+ return random_state.geometric(p, size=size)
512
+
513
+ def _argcheck(self, p):
514
+ return (p <= 1) & (p > 0)
515
+
516
+ def _pmf(self, k, p):
517
+ return np.power(1-p, k-1) * p
518
+
519
+ def _logpmf(self, k, p):
520
+ return special.xlog1py(k - 1, -p) + log(p)
521
+
522
+ def _cdf(self, x, p):
523
+ k = floor(x)
524
+ return -expm1(log1p(-p)*k)
525
+
526
+ def _sf(self, x, p):
527
+ return np.exp(self._logsf(x, p))
528
+
529
+ def _logsf(self, x, p):
530
+ k = floor(x)
531
+ return k*log1p(-p)
532
+
533
+ def _ppf(self, q, p):
534
+ vals = ceil(log1p(-q) / log1p(-p))
535
+ temp = self._cdf(vals-1, p)
536
+ return np.where((temp >= q) & (vals > 0), vals-1, vals)
537
+
538
+ def _stats(self, p):
539
+ mu = 1.0/p
540
+ qr = 1.0-p
541
+ var = qr / p / p
542
+ g1 = (2.0-p) / sqrt(qr)
543
+ g2 = np.polyval([1, -6, 6], p)/(1.0-p)
544
+ return mu, var, g1, g2
545
+
546
+ def _entropy(self, p):
547
+ return -np.log(p) - np.log1p(-p) * (1.0-p) / p
548
+
549
+
550
+ geom = geom_gen(a=1, name='geom', longname="A geometric")
551
+
552
+
553
+ class hypergeom_gen(rv_discrete):
554
+ r"""A hypergeometric discrete random variable.
555
+
556
+ The hypergeometric distribution models drawing objects from a bin.
557
+ `M` is the total number of objects, `n` is total number of Type I objects.
558
+ The random variate represents the number of Type I objects in `N` drawn
559
+ without replacement from the total population.
560
+
561
+ %(before_notes)s
562
+
563
+ Notes
564
+ -----
565
+ The symbols used to denote the shape parameters (`M`, `n`, and `N`) are not
566
+ universally accepted. See the Examples for a clarification of the
567
+ definitions used here.
568
+
569
+ The probability mass function is defined as,
570
+
571
+ .. math:: p(k, M, n, N) = \frac{\binom{n}{k} \binom{M - n}{N - k}}
572
+ {\binom{M}{N}}
573
+
574
+ for :math:`k \in [\max(0, N - M + n), \min(n, N)]`, where the binomial
575
+ coefficients are defined as,
576
+
577
+ .. math:: \binom{n}{k} \equiv \frac{n!}{k! (n - k)!}.
578
+
579
+ %(after_notes)s
580
+
581
+ Examples
582
+ --------
583
+ >>> import numpy as np
584
+ >>> from scipy.stats import hypergeom
585
+ >>> import matplotlib.pyplot as plt
586
+
587
+ Suppose we have a collection of 20 animals, of which 7 are dogs. Then if
588
+ we want to know the probability of finding a given number of dogs if we
589
+ choose at random 12 of the 20 animals, we can initialize a frozen
590
+ distribution and plot the probability mass function:
591
+
592
+ >>> [M, n, N] = [20, 7, 12]
593
+ >>> rv = hypergeom(M, n, N)
594
+ >>> x = np.arange(0, n+1)
595
+ >>> pmf_dogs = rv.pmf(x)
596
+
597
+ >>> fig = plt.figure()
598
+ >>> ax = fig.add_subplot(111)
599
+ >>> ax.plot(x, pmf_dogs, 'bo')
600
+ >>> ax.vlines(x, 0, pmf_dogs, lw=2)
601
+ >>> ax.set_xlabel('# of dogs in our group of chosen animals')
602
+ >>> ax.set_ylabel('hypergeom PMF')
603
+ >>> plt.show()
604
+
605
+ Instead of using a frozen distribution we can also use `hypergeom`
606
+ methods directly. To for example obtain the cumulative distribution
607
+ function, use:
608
+
609
+ >>> prb = hypergeom.cdf(x, M, n, N)
610
+
611
+ And to generate random numbers:
612
+
613
+ >>> R = hypergeom.rvs(M, n, N, size=10)
614
+
615
+ See Also
616
+ --------
617
+ nhypergeom, binom, nbinom
618
+
619
+ """
620
+ def _shape_info(self):
621
+ return [_ShapeInfo("M", True, (0, np.inf), (True, False)),
622
+ _ShapeInfo("n", True, (0, np.inf), (True, False)),
623
+ _ShapeInfo("N", True, (0, np.inf), (True, False))]
624
+
625
+ def _rvs(self, M, n, N, size=None, random_state=None):
626
+ return random_state.hypergeometric(n, M-n, N, size=size)
627
+
628
+ def _get_support(self, M, n, N):
629
+ return np.maximum(N-(M-n), 0), np.minimum(n, N)
630
+
631
+ def _argcheck(self, M, n, N):
632
+ cond = (M > 0) & (n >= 0) & (N >= 0)
633
+ cond &= (n <= M) & (N <= M)
634
+ cond &= _isintegral(M) & _isintegral(n) & _isintegral(N)
635
+ return cond
636
+
637
+ def _logpmf(self, k, M, n, N):
638
+ tot, good = M, n
639
+ bad = tot - good
640
+ result = (betaln(good+1, 1) + betaln(bad+1, 1) + betaln(tot-N+1, N+1) -
641
+ betaln(k+1, good-k+1) - betaln(N-k+1, bad-N+k+1) -
642
+ betaln(tot+1, 1))
643
+ return result
644
+
645
+ def _pmf(self, k, M, n, N):
646
+ return scu._hypergeom_pmf(k, n, N, M)
647
+
648
+ def _cdf(self, k, M, n, N):
649
+ return scu._hypergeom_cdf(k, n, N, M)
650
+
651
+ def _stats(self, M, n, N):
652
+ M, n, N = 1. * M, 1. * n, 1. * N
653
+ m = M - n
654
+
655
+ # Boost kurtosis_excess doesn't return the same as the value
656
+ # computed here.
657
+ g2 = M * (M + 1) - 6. * N * (M - N) - 6. * n * m
658
+ g2 *= (M - 1) * M * M
659
+ g2 += 6. * n * N * (M - N) * m * (5. * M - 6)
660
+ g2 /= n * N * (M - N) * m * (M - 2.) * (M - 3.)
661
+ return (
662
+ scu._hypergeom_mean(n, N, M),
663
+ scu._hypergeom_variance(n, N, M),
664
+ scu._hypergeom_skewness(n, N, M),
665
+ g2,
666
+ )
667
+
668
+ def _entropy(self, M, n, N):
669
+ k = np.r_[N - (M - n):min(n, N) + 1]
670
+ vals = self.pmf(k, M, n, N)
671
+ return np.sum(entr(vals), axis=0)
672
+
673
+ def _sf(self, k, M, n, N):
674
+ return scu._hypergeom_sf(k, n, N, M)
675
+
676
+ def _logsf(self, k, M, n, N):
677
+ res = []
678
+ for quant, tot, good, draw in zip(*np.broadcast_arrays(k, M, n, N)):
679
+ if (quant + 0.5) * (tot + 0.5) < (good - 0.5) * (draw - 0.5):
680
+ # Less terms to sum if we calculate log(1-cdf)
681
+ res.append(log1p(-exp(self.logcdf(quant, tot, good, draw))))
682
+ else:
683
+ # Integration over probability mass function using logsumexp
684
+ k2 = np.arange(quant + 1, draw + 1)
685
+ res.append(logsumexp(self._logpmf(k2, tot, good, draw)))
686
+ return np.asarray(res)
687
+
688
+ def _logcdf(self, k, M, n, N):
689
+ res = []
690
+ for quant, tot, good, draw in zip(*np.broadcast_arrays(k, M, n, N)):
691
+ if (quant + 0.5) * (tot + 0.5) > (good - 0.5) * (draw - 0.5):
692
+ # Less terms to sum if we calculate log(1-sf)
693
+ res.append(log1p(-exp(self.logsf(quant, tot, good, draw))))
694
+ else:
695
+ # Integration over probability mass function using logsumexp
696
+ k2 = np.arange(0, quant + 1)
697
+ res.append(logsumexp(self._logpmf(k2, tot, good, draw)))
698
+ return np.asarray(res)
699
+
700
+
701
+ hypergeom = hypergeom_gen(name='hypergeom')
702
+
703
+
704
+ class nhypergeom_gen(rv_discrete):
705
+ r"""A negative hypergeometric discrete random variable.
706
+
707
+ Consider a box containing :math:`M` balls:, :math:`n` red and
708
+ :math:`M-n` blue. We randomly sample balls from the box, one
709
+ at a time and *without* replacement, until we have picked :math:`r`
710
+ blue balls. `nhypergeom` is the distribution of the number of
711
+ red balls :math:`k` we have picked.
712
+
713
+ %(before_notes)s
714
+
715
+ Notes
716
+ -----
717
+ The symbols used to denote the shape parameters (`M`, `n`, and `r`) are not
718
+ universally accepted. See the Examples for a clarification of the
719
+ definitions used here.
720
+
721
+ The probability mass function is defined as,
722
+
723
+ .. math:: f(k; M, n, r) = \frac{{{k+r-1}\choose{k}}{{M-r-k}\choose{n-k}}}
724
+ {{M \choose n}}
725
+
726
+ for :math:`k \in [0, n]`, :math:`n \in [0, M]`, :math:`r \in [0, M-n]`,
727
+ and the binomial coefficient is:
728
+
729
+ .. math:: \binom{n}{k} \equiv \frac{n!}{k! (n - k)!}.
730
+
731
+ It is equivalent to observing :math:`k` successes in :math:`k+r-1`
732
+ samples with :math:`k+r`'th sample being a failure. The former
733
+ can be modelled as a hypergeometric distribution. The probability
734
+ of the latter is simply the number of failures remaining
735
+ :math:`M-n-(r-1)` divided by the size of the remaining population
736
+ :math:`M-(k+r-1)`. This relationship can be shown as:
737
+
738
+ .. math:: NHG(k;M,n,r) = HG(k;M,n,k+r-1)\frac{(M-n-(r-1))}{(M-(k+r-1))}
739
+
740
+ where :math:`NHG` is probability mass function (PMF) of the
741
+ negative hypergeometric distribution and :math:`HG` is the
742
+ PMF of the hypergeometric distribution.
743
+
744
+ %(after_notes)s
745
+
746
+ Examples
747
+ --------
748
+ >>> import numpy as np
749
+ >>> from scipy.stats import nhypergeom
750
+ >>> import matplotlib.pyplot as plt
751
+
752
+ Suppose we have a collection of 20 animals, of which 7 are dogs.
753
+ Then if we want to know the probability of finding a given number
754
+ of dogs (successes) in a sample with exactly 12 animals that
755
+ aren't dogs (failures), we can initialize a frozen distribution
756
+ and plot the probability mass function:
757
+
758
+ >>> M, n, r = [20, 7, 12]
759
+ >>> rv = nhypergeom(M, n, r)
760
+ >>> x = np.arange(0, n+2)
761
+ >>> pmf_dogs = rv.pmf(x)
762
+
763
+ >>> fig = plt.figure()
764
+ >>> ax = fig.add_subplot(111)
765
+ >>> ax.plot(x, pmf_dogs, 'bo')
766
+ >>> ax.vlines(x, 0, pmf_dogs, lw=2)
767
+ >>> ax.set_xlabel('# of dogs in our group with given 12 failures')
768
+ >>> ax.set_ylabel('nhypergeom PMF')
769
+ >>> plt.show()
770
+
771
+ Instead of using a frozen distribution we can also use `nhypergeom`
772
+ methods directly. To for example obtain the probability mass
773
+ function, use:
774
+
775
+ >>> prb = nhypergeom.pmf(x, M, n, r)
776
+
777
+ And to generate random numbers:
778
+
779
+ >>> R = nhypergeom.rvs(M, n, r, size=10)
780
+
781
+ To verify the relationship between `hypergeom` and `nhypergeom`, use:
782
+
783
+ >>> from scipy.stats import hypergeom, nhypergeom
784
+ >>> M, n, r = 45, 13, 8
785
+ >>> k = 6
786
+ >>> nhypergeom.pmf(k, M, n, r)
787
+ 0.06180776620271643
788
+ >>> hypergeom.pmf(k, M, n, k+r-1) * (M - n - (r-1)) / (M - (k+r-1))
789
+ 0.06180776620271644
790
+
791
+ See Also
792
+ --------
793
+ hypergeom, binom, nbinom
794
+
795
+ References
796
+ ----------
797
+ .. [1] Negative Hypergeometric Distribution on Wikipedia
798
+ https://en.wikipedia.org/wiki/Negative_hypergeometric_distribution
799
+
800
+ .. [2] Negative Hypergeometric Distribution from
801
+ http://www.math.wm.edu/~leemis/chart/UDR/PDFs/Negativehypergeometric.pdf
802
+
803
+ """
804
+
805
+ def _shape_info(self):
806
+ return [_ShapeInfo("M", True, (0, np.inf), (True, False)),
807
+ _ShapeInfo("n", True, (0, np.inf), (True, False)),
808
+ _ShapeInfo("r", True, (0, np.inf), (True, False))]
809
+
810
+ def _get_support(self, M, n, r):
811
+ return 0, n
812
+
813
+ def _argcheck(self, M, n, r):
814
+ cond = (n >= 0) & (n <= M) & (r >= 0) & (r <= M-n)
815
+ cond &= _isintegral(M) & _isintegral(n) & _isintegral(r)
816
+ return cond
817
+
818
+ def _rvs(self, M, n, r, size=None, random_state=None):
819
+
820
+ @_vectorize_rvs_over_shapes
821
+ def _rvs1(M, n, r, size, random_state):
822
+ # invert cdf by calculating all values in support, scalar M, n, r
823
+ a, b = self.support(M, n, r)
824
+ ks = np.arange(a, b+1)
825
+ cdf = self.cdf(ks, M, n, r)
826
+ ppf = interp1d(cdf, ks, kind='next', fill_value='extrapolate')
827
+ rvs = ppf(random_state.uniform(size=size)).astype(int)
828
+ if size is None:
829
+ return rvs.item()
830
+ return rvs
831
+
832
+ return _rvs1(M, n, r, size=size, random_state=random_state)
833
+
834
+ def _logpmf(self, k, M, n, r):
835
+ cond = ((r == 0) & (k == 0))
836
+ result = _lazywhere(~cond, (k, M, n, r),
837
+ lambda k, M, n, r:
838
+ (-betaln(k+1, r) + betaln(k+r, 1) -
839
+ betaln(n-k+1, M-r-n+1) + betaln(M-r-k+1, 1) +
840
+ betaln(n+1, M-n+1) - betaln(M+1, 1)),
841
+ fillvalue=0.0)
842
+ return result
843
+
844
+ def _pmf(self, k, M, n, r):
845
+ # same as the following but numerically more precise
846
+ # return comb(k+r-1, k) * comb(M-r-k, n-k) / comb(M, n)
847
+ return exp(self._logpmf(k, M, n, r))
848
+
849
+ def _stats(self, M, n, r):
850
+ # Promote the datatype to at least float
851
+ # mu = rn / (M-n+1)
852
+ M, n, r = 1.*M, 1.*n, 1.*r
853
+ mu = r*n / (M-n+1)
854
+
855
+ var = r*(M+1)*n / ((M-n+1)*(M-n+2)) * (1 - r / (M-n+1))
856
+
857
+ # The skew and kurtosis are mathematically
858
+ # intractable so return `None`. See [2]_.
859
+ g1, g2 = None, None
860
+ return mu, var, g1, g2
861
+
862
+
863
+ nhypergeom = nhypergeom_gen(name='nhypergeom')
864
+
865
+
866
+ # FIXME: Fails _cdfvec
867
+ class logser_gen(rv_discrete):
868
+ r"""A Logarithmic (Log-Series, Series) discrete random variable.
869
+
870
+ %(before_notes)s
871
+
872
+ Notes
873
+ -----
874
+ The probability mass function for `logser` is:
875
+
876
+ .. math::
877
+
878
+ f(k) = - \frac{p^k}{k \log(1-p)}
879
+
880
+ for :math:`k \ge 1`, :math:`0 < p < 1`
881
+
882
+ `logser` takes :math:`p` as shape parameter,
883
+ where :math:`p` is the probability of a single success
884
+ and :math:`1-p` is the probability of a single failure.
885
+
886
+ %(after_notes)s
887
+
888
+ %(example)s
889
+
890
+ """
891
+
892
+ def _shape_info(self):
893
+ return [_ShapeInfo("p", False, (0, 1), (True, True))]
894
+
895
+ def _rvs(self, p, size=None, random_state=None):
896
+ # looks wrong for p>0.5, too few k=1
897
+ # trying to use generic is worse, no k=1 at all
898
+ return random_state.logseries(p, size=size)
899
+
900
+ def _argcheck(self, p):
901
+ return (p > 0) & (p < 1)
902
+
903
+ def _pmf(self, k, p):
904
+ # logser.pmf(k) = - p**k / (k*log(1-p))
905
+ return -np.power(p, k) * 1.0 / k / special.log1p(-p)
906
+
907
+ def _stats(self, p):
908
+ r = special.log1p(-p)
909
+ mu = p / (p - 1.0) / r
910
+ mu2p = -p / r / (p - 1.0)**2
911
+ var = mu2p - mu*mu
912
+ mu3p = -p / r * (1.0+p) / (1.0 - p)**3
913
+ mu3 = mu3p - 3*mu*mu2p + 2*mu**3
914
+ g1 = mu3 / np.power(var, 1.5)
915
+
916
+ mu4p = -p / r * (
917
+ 1.0 / (p-1)**2 - 6*p / (p - 1)**3 + 6*p*p / (p-1)**4)
918
+ mu4 = mu4p - 4*mu3p*mu + 6*mu2p*mu*mu - 3*mu**4
919
+ g2 = mu4 / var**2 - 3.0
920
+ return mu, var, g1, g2
921
+
922
+
923
+ logser = logser_gen(a=1, name='logser', longname='A logarithmic')
924
+
925
+
926
+ class poisson_gen(rv_discrete):
927
+ r"""A Poisson discrete random variable.
928
+
929
+ %(before_notes)s
930
+
931
+ Notes
932
+ -----
933
+ The probability mass function for `poisson` is:
934
+
935
+ .. math::
936
+
937
+ f(k) = \exp(-\mu) \frac{\mu^k}{k!}
938
+
939
+ for :math:`k \ge 0`.
940
+
941
+ `poisson` takes :math:`\mu \geq 0` as shape parameter.
942
+ When :math:`\mu = 0`, the ``pmf`` method
943
+ returns ``1.0`` at quantile :math:`k = 0`.
944
+
945
+ %(after_notes)s
946
+
947
+ %(example)s
948
+
949
+ """
950
+
951
+ def _shape_info(self):
952
+ return [_ShapeInfo("mu", False, (0, np.inf), (True, False))]
953
+
954
+ # Override rv_discrete._argcheck to allow mu=0.
955
+ def _argcheck(self, mu):
956
+ return mu >= 0
957
+
958
+ def _rvs(self, mu, size=None, random_state=None):
959
+ return random_state.poisson(mu, size)
960
+
961
+ def _logpmf(self, k, mu):
962
+ Pk = special.xlogy(k, mu) - gamln(k + 1) - mu
963
+ return Pk
964
+
965
+ def _pmf(self, k, mu):
966
+ # poisson.pmf(k) = exp(-mu) * mu**k / k!
967
+ return exp(self._logpmf(k, mu))
968
+
969
+ def _cdf(self, x, mu):
970
+ k = floor(x)
971
+ return special.pdtr(k, mu)
972
+
973
+ def _sf(self, x, mu):
974
+ k = floor(x)
975
+ return special.pdtrc(k, mu)
976
+
977
+ def _ppf(self, q, mu):
978
+ vals = ceil(special.pdtrik(q, mu))
979
+ vals1 = np.maximum(vals - 1, 0)
980
+ temp = special.pdtr(vals1, mu)
981
+ return np.where(temp >= q, vals1, vals)
982
+
983
+ def _stats(self, mu):
984
+ var = mu
985
+ tmp = np.asarray(mu)
986
+ mu_nonzero = tmp > 0
987
+ g1 = _lazywhere(mu_nonzero, (tmp,), lambda x: sqrt(1.0/x), np.inf)
988
+ g2 = _lazywhere(mu_nonzero, (tmp,), lambda x: 1.0/x, np.inf)
989
+ return mu, var, g1, g2
990
+
991
+
992
+ poisson = poisson_gen(name="poisson", longname='A Poisson')
993
+
994
+
995
+ class planck_gen(rv_discrete):
996
+ r"""A Planck discrete exponential random variable.
997
+
998
+ %(before_notes)s
999
+
1000
+ Notes
1001
+ -----
1002
+ The probability mass function for `planck` is:
1003
+
1004
+ .. math::
1005
+
1006
+ f(k) = (1-\exp(-\lambda)) \exp(-\lambda k)
1007
+
1008
+ for :math:`k \ge 0` and :math:`\lambda > 0`.
1009
+
1010
+ `planck` takes :math:`\lambda` as shape parameter. The Planck distribution
1011
+ can be written as a geometric distribution (`geom`) with
1012
+ :math:`p = 1 - \exp(-\lambda)` shifted by ``loc = -1``.
1013
+
1014
+ %(after_notes)s
1015
+
1016
+ See Also
1017
+ --------
1018
+ geom
1019
+
1020
+ %(example)s
1021
+
1022
+ """
1023
+ def _shape_info(self):
1024
+ return [_ShapeInfo("lambda", False, (0, np.inf), (False, False))]
1025
+
1026
+ def _argcheck(self, lambda_):
1027
+ return lambda_ > 0
1028
+
1029
+ def _pmf(self, k, lambda_):
1030
+ return -expm1(-lambda_)*exp(-lambda_*k)
1031
+
1032
+ def _cdf(self, x, lambda_):
1033
+ k = floor(x)
1034
+ return -expm1(-lambda_*(k+1))
1035
+
1036
+ def _sf(self, x, lambda_):
1037
+ return exp(self._logsf(x, lambda_))
1038
+
1039
+ def _logsf(self, x, lambda_):
1040
+ k = floor(x)
1041
+ return -lambda_*(k+1)
1042
+
1043
+ def _ppf(self, q, lambda_):
1044
+ vals = ceil(-1.0/lambda_ * log1p(-q)-1)
1045
+ vals1 = (vals-1).clip(*(self._get_support(lambda_)))
1046
+ temp = self._cdf(vals1, lambda_)
1047
+ return np.where(temp >= q, vals1, vals)
1048
+
1049
+ def _rvs(self, lambda_, size=None, random_state=None):
1050
+ # use relation to geometric distribution for sampling
1051
+ p = -expm1(-lambda_)
1052
+ return random_state.geometric(p, size=size) - 1.0
1053
+
1054
+ def _stats(self, lambda_):
1055
+ mu = 1/expm1(lambda_)
1056
+ var = exp(-lambda_)/(expm1(-lambda_))**2
1057
+ g1 = 2*cosh(lambda_/2.0)
1058
+ g2 = 4+2*cosh(lambda_)
1059
+ return mu, var, g1, g2
1060
+
1061
+ def _entropy(self, lambda_):
1062
+ C = -expm1(-lambda_)
1063
+ return lambda_*exp(-lambda_)/C - log(C)
1064
+
1065
+
1066
+ planck = planck_gen(a=0, name='planck', longname='A discrete exponential ')
1067
+
1068
+
1069
+ class boltzmann_gen(rv_discrete):
1070
+ r"""A Boltzmann (Truncated Discrete Exponential) random variable.
1071
+
1072
+ %(before_notes)s
1073
+
1074
+ Notes
1075
+ -----
1076
+ The probability mass function for `boltzmann` is:
1077
+
1078
+ .. math::
1079
+
1080
+ f(k) = (1-\exp(-\lambda)) \exp(-\lambda k) / (1-\exp(-\lambda N))
1081
+
1082
+ for :math:`k = 0,..., N-1`.
1083
+
1084
+ `boltzmann` takes :math:`\lambda > 0` and :math:`N > 0` as shape parameters.
1085
+
1086
+ %(after_notes)s
1087
+
1088
+ %(example)s
1089
+
1090
+ """
1091
+ def _shape_info(self):
1092
+ return [_ShapeInfo("lambda_", False, (0, np.inf), (False, False)),
1093
+ _ShapeInfo("N", True, (0, np.inf), (False, False))]
1094
+
1095
+ def _argcheck(self, lambda_, N):
1096
+ return (lambda_ > 0) & (N > 0) & _isintegral(N)
1097
+
1098
+ def _get_support(self, lambda_, N):
1099
+ return self.a, N - 1
1100
+
1101
+ def _pmf(self, k, lambda_, N):
1102
+ # boltzmann.pmf(k) =
1103
+ # (1-exp(-lambda_)*exp(-lambda_*k)/(1-exp(-lambda_*N))
1104
+ fact = (1-exp(-lambda_))/(1-exp(-lambda_*N))
1105
+ return fact*exp(-lambda_*k)
1106
+
1107
+ def _cdf(self, x, lambda_, N):
1108
+ k = floor(x)
1109
+ return (1-exp(-lambda_*(k+1)))/(1-exp(-lambda_*N))
1110
+
1111
+ def _ppf(self, q, lambda_, N):
1112
+ qnew = q*(1-exp(-lambda_*N))
1113
+ vals = ceil(-1.0/lambda_ * log(1-qnew)-1)
1114
+ vals1 = (vals-1).clip(0.0, np.inf)
1115
+ temp = self._cdf(vals1, lambda_, N)
1116
+ return np.where(temp >= q, vals1, vals)
1117
+
1118
+ def _stats(self, lambda_, N):
1119
+ z = exp(-lambda_)
1120
+ zN = exp(-lambda_*N)
1121
+ mu = z/(1.0-z)-N*zN/(1-zN)
1122
+ var = z/(1.0-z)**2 - N*N*zN/(1-zN)**2
1123
+ trm = (1-zN)/(1-z)
1124
+ trm2 = (z*trm**2 - N*N*zN)
1125
+ g1 = z*(1+z)*trm**3 - N**3*zN*(1+zN)
1126
+ g1 = g1 / trm2**(1.5)
1127
+ g2 = z*(1+4*z+z*z)*trm**4 - N**4 * zN*(1+4*zN+zN*zN)
1128
+ g2 = g2 / trm2 / trm2
1129
+ return mu, var, g1, g2
1130
+
1131
+
1132
+ boltzmann = boltzmann_gen(name='boltzmann', a=0,
1133
+ longname='A truncated discrete exponential ')
1134
+
1135
+
1136
+ class randint_gen(rv_discrete):
1137
+ r"""A uniform discrete random variable.
1138
+
1139
+ %(before_notes)s
1140
+
1141
+ Notes
1142
+ -----
1143
+ The probability mass function for `randint` is:
1144
+
1145
+ .. math::
1146
+
1147
+ f(k) = \frac{1}{\texttt{high} - \texttt{low}}
1148
+
1149
+ for :math:`k \in \{\texttt{low}, \dots, \texttt{high} - 1\}`.
1150
+
1151
+ `randint` takes :math:`\texttt{low}` and :math:`\texttt{high}` as shape
1152
+ parameters.
1153
+
1154
+ %(after_notes)s
1155
+
1156
+ Examples
1157
+ --------
1158
+ >>> import numpy as np
1159
+ >>> from scipy.stats import randint
1160
+ >>> import matplotlib.pyplot as plt
1161
+ >>> fig, ax = plt.subplots(1, 1)
1162
+
1163
+ Calculate the first four moments:
1164
+
1165
+ >>> low, high = 7, 31
1166
+ >>> mean, var, skew, kurt = randint.stats(low, high, moments='mvsk')
1167
+
1168
+ Display the probability mass function (``pmf``):
1169
+
1170
+ >>> x = np.arange(low - 5, high + 5)
1171
+ >>> ax.plot(x, randint.pmf(x, low, high), 'bo', ms=8, label='randint pmf')
1172
+ >>> ax.vlines(x, 0, randint.pmf(x, low, high), colors='b', lw=5, alpha=0.5)
1173
+
1174
+ Alternatively, the distribution object can be called (as a function) to
1175
+ fix the shape and location. This returns a "frozen" RV object holding the
1176
+ given parameters fixed.
1177
+
1178
+ Freeze the distribution and display the frozen ``pmf``:
1179
+
1180
+ >>> rv = randint(low, high)
1181
+ >>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-',
1182
+ ... lw=1, label='frozen pmf')
1183
+ >>> ax.legend(loc='lower center')
1184
+ >>> plt.show()
1185
+
1186
+ Check the relationship between the cumulative distribution function
1187
+ (``cdf``) and its inverse, the percent point function (``ppf``):
1188
+
1189
+ >>> q = np.arange(low, high)
1190
+ >>> p = randint.cdf(q, low, high)
1191
+ >>> np.allclose(q, randint.ppf(p, low, high))
1192
+ True
1193
+
1194
+ Generate random numbers:
1195
+
1196
+ >>> r = randint.rvs(low, high, size=1000)
1197
+
1198
+ """
1199
+
1200
+ def _shape_info(self):
1201
+ return [_ShapeInfo("low", True, (-np.inf, np.inf), (False, False)),
1202
+ _ShapeInfo("high", True, (-np.inf, np.inf), (False, False))]
1203
+
1204
+ def _argcheck(self, low, high):
1205
+ return (high > low) & _isintegral(low) & _isintegral(high)
1206
+
1207
+ def _get_support(self, low, high):
1208
+ return low, high-1
1209
+
1210
+ def _pmf(self, k, low, high):
1211
+ # randint.pmf(k) = 1./(high - low)
1212
+ p = np.ones_like(k) / (high - low)
1213
+ return np.where((k >= low) & (k < high), p, 0.)
1214
+
1215
+ def _cdf(self, x, low, high):
1216
+ k = floor(x)
1217
+ return (k - low + 1.) / (high - low)
1218
+
1219
+ def _ppf(self, q, low, high):
1220
+ vals = ceil(q * (high - low) + low) - 1
1221
+ vals1 = (vals - 1).clip(low, high)
1222
+ temp = self._cdf(vals1, low, high)
1223
+ return np.where(temp >= q, vals1, vals)
1224
+
1225
+ def _stats(self, low, high):
1226
+ m2, m1 = np.asarray(high), np.asarray(low)
1227
+ mu = (m2 + m1 - 1.0) / 2
1228
+ d = m2 - m1
1229
+ var = (d*d - 1) / 12.0
1230
+ g1 = 0.0
1231
+ g2 = -6.0/5.0 * (d*d + 1.0) / (d*d - 1.0)
1232
+ return mu, var, g1, g2
1233
+
1234
+ def _rvs(self, low, high, size=None, random_state=None):
1235
+ """An array of *size* random integers >= ``low`` and < ``high``."""
1236
+ if np.asarray(low).size == 1 and np.asarray(high).size == 1:
1237
+ # no need to vectorize in that case
1238
+ return rng_integers(random_state, low, high, size=size)
1239
+
1240
+ if size is not None:
1241
+ # NumPy's RandomState.randint() doesn't broadcast its arguments.
1242
+ # Use `broadcast_to()` to extend the shapes of low and high
1243
+ # up to size. Then we can use the numpy.vectorize'd
1244
+ # randint without needing to pass it a `size` argument.
1245
+ low = np.broadcast_to(low, size)
1246
+ high = np.broadcast_to(high, size)
1247
+ randint = np.vectorize(partial(rng_integers, random_state),
1248
+ otypes=[np.dtype(int)])
1249
+ return randint(low, high)
1250
+
1251
+ def _entropy(self, low, high):
1252
+ return log(high - low)
1253
+
1254
+
1255
+ randint = randint_gen(name='randint', longname='A discrete uniform '
1256
+ '(random integer)')
1257
+
1258
+
1259
+ # FIXME: problems sampling.
1260
+ class zipf_gen(rv_discrete):
1261
+ r"""A Zipf (Zeta) discrete random variable.
1262
+
1263
+ %(before_notes)s
1264
+
1265
+ See Also
1266
+ --------
1267
+ zipfian
1268
+
1269
+ Notes
1270
+ -----
1271
+ The probability mass function for `zipf` is:
1272
+
1273
+ .. math::
1274
+
1275
+ f(k, a) = \frac{1}{\zeta(a) k^a}
1276
+
1277
+ for :math:`k \ge 1`, :math:`a > 1`.
1278
+
1279
+ `zipf` takes :math:`a > 1` as shape parameter. :math:`\zeta` is the
1280
+ Riemann zeta function (`scipy.special.zeta`)
1281
+
1282
+ The Zipf distribution is also known as the zeta distribution, which is
1283
+ a special case of the Zipfian distribution (`zipfian`).
1284
+
1285
+ %(after_notes)s
1286
+
1287
+ References
1288
+ ----------
1289
+ .. [1] "Zeta Distribution", Wikipedia,
1290
+ https://en.wikipedia.org/wiki/Zeta_distribution
1291
+
1292
+ %(example)s
1293
+
1294
+ Confirm that `zipf` is the large `n` limit of `zipfian`.
1295
+
1296
+ >>> import numpy as np
1297
+ >>> from scipy.stats import zipf, zipfian
1298
+ >>> k = np.arange(11)
1299
+ >>> np.allclose(zipf.pmf(k, a), zipfian.pmf(k, a, n=10000000))
1300
+ True
1301
+
1302
+ """
1303
+
1304
+ def _shape_info(self):
1305
+ return [_ShapeInfo("a", False, (1, np.inf), (False, False))]
1306
+
1307
+ def _rvs(self, a, size=None, random_state=None):
1308
+ return random_state.zipf(a, size=size)
1309
+
1310
+ def _argcheck(self, a):
1311
+ return a > 1
1312
+
1313
+ def _pmf(self, k, a):
1314
+ k = k.astype(np.float64)
1315
+ # zipf.pmf(k, a) = 1/(zeta(a) * k**a)
1316
+ Pk = 1.0 / special.zeta(a, 1) * k**-a
1317
+ return Pk
1318
+
1319
+ def _munp(self, n, a):
1320
+ return _lazywhere(
1321
+ a > n + 1, (a, n),
1322
+ lambda a, n: special.zeta(a - n, 1) / special.zeta(a, 1),
1323
+ np.inf)
1324
+
1325
+
1326
+ zipf = zipf_gen(a=1, name='zipf', longname='A Zipf')
1327
+
1328
+
1329
+ def _gen_harmonic_gt1(n, a):
1330
+ """Generalized harmonic number, a > 1"""
1331
+ # See https://en.wikipedia.org/wiki/Harmonic_number; search for "hurwitz"
1332
+ return zeta(a, 1) - zeta(a, n+1)
1333
+
1334
+
1335
+ def _gen_harmonic_leq1(n, a):
1336
+ """Generalized harmonic number, a <= 1"""
1337
+ if not np.size(n):
1338
+ return n
1339
+ n_max = np.max(n) # loop starts at maximum of all n
1340
+ out = np.zeros_like(a, dtype=float)
1341
+ # add terms of harmonic series; starting from smallest to avoid roundoff
1342
+ for i in np.arange(n_max, 0, -1, dtype=float):
1343
+ mask = i <= n # don't add terms after nth
1344
+ out[mask] += 1/i**a[mask]
1345
+ return out
1346
+
1347
+
1348
+ def _gen_harmonic(n, a):
1349
+ """Generalized harmonic number"""
1350
+ n, a = np.broadcast_arrays(n, a)
1351
+ return _lazywhere(a > 1, (n, a),
1352
+ f=_gen_harmonic_gt1, f2=_gen_harmonic_leq1)
1353
+
1354
+
1355
+ class zipfian_gen(rv_discrete):
1356
+ r"""A Zipfian discrete random variable.
1357
+
1358
+ %(before_notes)s
1359
+
1360
+ See Also
1361
+ --------
1362
+ zipf
1363
+
1364
+ Notes
1365
+ -----
1366
+ The probability mass function for `zipfian` is:
1367
+
1368
+ .. math::
1369
+
1370
+ f(k, a, n) = \frac{1}{H_{n,a} k^a}
1371
+
1372
+ for :math:`k \in \{1, 2, \dots, n-1, n\}`, :math:`a \ge 0`,
1373
+ :math:`n \in \{1, 2, 3, \dots\}`.
1374
+
1375
+ `zipfian` takes :math:`a` and :math:`n` as shape parameters.
1376
+ :math:`H_{n,a}` is the :math:`n`:sup:`th` generalized harmonic
1377
+ number of order :math:`a`.
1378
+
1379
+ The Zipfian distribution reduces to the Zipf (zeta) distribution as
1380
+ :math:`n \rightarrow \infty`.
1381
+
1382
+ %(after_notes)s
1383
+
1384
+ References
1385
+ ----------
1386
+ .. [1] "Zipf's Law", Wikipedia, https://en.wikipedia.org/wiki/Zipf's_law
1387
+ .. [2] Larry Leemis, "Zipf Distribution", Univariate Distribution
1388
+ Relationships. http://www.math.wm.edu/~leemis/chart/UDR/PDFs/Zipf.pdf
1389
+
1390
+ %(example)s
1391
+
1392
+ Confirm that `zipfian` reduces to `zipf` for large `n`, `a > 1`.
1393
+
1394
+ >>> import numpy as np
1395
+ >>> from scipy.stats import zipf, zipfian
1396
+ >>> k = np.arange(11)
1397
+ >>> np.allclose(zipfian.pmf(k, a=3.5, n=10000000), zipf.pmf(k, a=3.5))
1398
+ True
1399
+
1400
+ """
1401
+
1402
+ def _shape_info(self):
1403
+ return [_ShapeInfo("a", False, (0, np.inf), (True, False)),
1404
+ _ShapeInfo("n", True, (0, np.inf), (False, False))]
1405
+
1406
+ def _argcheck(self, a, n):
1407
+ # we need np.asarray here because moment (maybe others) don't convert
1408
+ return (a >= 0) & (n > 0) & (n == np.asarray(n, dtype=int))
1409
+
1410
+ def _get_support(self, a, n):
1411
+ return 1, n
1412
+
1413
+ def _pmf(self, k, a, n):
1414
+ k = k.astype(np.float64)
1415
+ return 1.0 / _gen_harmonic(n, a) * k**-a
1416
+
1417
+ def _cdf(self, k, a, n):
1418
+ return _gen_harmonic(k, a) / _gen_harmonic(n, a)
1419
+
1420
+ def _sf(self, k, a, n):
1421
+ k = k + 1 # # to match SciPy convention
1422
+ # see http://www.math.wm.edu/~leemis/chart/UDR/PDFs/Zipf.pdf
1423
+ return ((k**a*(_gen_harmonic(n, a) - _gen_harmonic(k, a)) + 1)
1424
+ / (k**a*_gen_harmonic(n, a)))
1425
+
1426
+ def _stats(self, a, n):
1427
+ # see # see http://www.math.wm.edu/~leemis/chart/UDR/PDFs/Zipf.pdf
1428
+ Hna = _gen_harmonic(n, a)
1429
+ Hna1 = _gen_harmonic(n, a-1)
1430
+ Hna2 = _gen_harmonic(n, a-2)
1431
+ Hna3 = _gen_harmonic(n, a-3)
1432
+ Hna4 = _gen_harmonic(n, a-4)
1433
+ mu1 = Hna1/Hna
1434
+ mu2n = (Hna2*Hna - Hna1**2)
1435
+ mu2d = Hna**2
1436
+ mu2 = mu2n / mu2d
1437
+ g1 = (Hna3/Hna - 3*Hna1*Hna2/Hna**2 + 2*Hna1**3/Hna**3)/mu2**(3/2)
1438
+ g2 = (Hna**3*Hna4 - 4*Hna**2*Hna1*Hna3 + 6*Hna*Hna1**2*Hna2
1439
+ - 3*Hna1**4) / mu2n**2
1440
+ g2 -= 3
1441
+ return mu1, mu2, g1, g2
1442
+
1443
+
1444
+ zipfian = zipfian_gen(a=1, name='zipfian', longname='A Zipfian')
1445
+
1446
+
1447
+ class dlaplace_gen(rv_discrete):
1448
+ r"""A Laplacian discrete random variable.
1449
+
1450
+ %(before_notes)s
1451
+
1452
+ Notes
1453
+ -----
1454
+ The probability mass function for `dlaplace` is:
1455
+
1456
+ .. math::
1457
+
1458
+ f(k) = \tanh(a/2) \exp(-a |k|)
1459
+
1460
+ for integers :math:`k` and :math:`a > 0`.
1461
+
1462
+ `dlaplace` takes :math:`a` as shape parameter.
1463
+
1464
+ %(after_notes)s
1465
+
1466
+ %(example)s
1467
+
1468
+ """
1469
+
1470
+ def _shape_info(self):
1471
+ return [_ShapeInfo("a", False, (0, np.inf), (False, False))]
1472
+
1473
+ def _pmf(self, k, a):
1474
+ # dlaplace.pmf(k) = tanh(a/2) * exp(-a*abs(k))
1475
+ return tanh(a/2.0) * exp(-a * abs(k))
1476
+
1477
+ def _cdf(self, x, a):
1478
+ k = floor(x)
1479
+
1480
+ def f(k, a):
1481
+ return 1.0 - exp(-a * k) / (exp(a) + 1)
1482
+
1483
+ def f2(k, a):
1484
+ return exp(a * (k + 1)) / (exp(a) + 1)
1485
+
1486
+ return _lazywhere(k >= 0, (k, a), f=f, f2=f2)
1487
+
1488
+ def _ppf(self, q, a):
1489
+ const = 1 + exp(a)
1490
+ vals = ceil(np.where(q < 1.0 / (1 + exp(-a)),
1491
+ log(q*const) / a - 1,
1492
+ -log((1-q) * const) / a))
1493
+ vals1 = vals - 1
1494
+ return np.where(self._cdf(vals1, a) >= q, vals1, vals)
1495
+
1496
+ def _stats(self, a):
1497
+ ea = exp(a)
1498
+ mu2 = 2.*ea/(ea-1.)**2
1499
+ mu4 = 2.*ea*(ea**2+10.*ea+1.) / (ea-1.)**4
1500
+ return 0., mu2, 0., mu4/mu2**2 - 3.
1501
+
1502
+ def _entropy(self, a):
1503
+ return a / sinh(a) - log(tanh(a/2.0))
1504
+
1505
+ def _rvs(self, a, size=None, random_state=None):
1506
+ # The discrete Laplace is equivalent to the two-sided geometric
1507
+ # distribution with PMF:
1508
+ # f(k) = (1 - alpha)/(1 + alpha) * alpha^abs(k)
1509
+ # Reference:
1510
+ # https://www.sciencedirect.com/science/
1511
+ # article/abs/pii/S0378375804003519
1512
+ # Furthermore, the two-sided geometric distribution is
1513
+ # equivalent to the difference between two iid geometric
1514
+ # distributions.
1515
+ # Reference (page 179):
1516
+ # https://pdfs.semanticscholar.org/61b3/
1517
+ # b99f466815808fd0d03f5d2791eea8b541a1.pdf
1518
+ # Thus, we can leverage the following:
1519
+ # 1) alpha = e^-a
1520
+ # 2) probability_of_success = 1 - alpha (Bernoulli trial)
1521
+ probOfSuccess = -np.expm1(-np.asarray(a))
1522
+ x = random_state.geometric(probOfSuccess, size=size)
1523
+ y = random_state.geometric(probOfSuccess, size=size)
1524
+ return x - y
1525
+
1526
+
1527
+ dlaplace = dlaplace_gen(a=-np.inf,
1528
+ name='dlaplace', longname='A discrete Laplacian')
1529
+
1530
+
1531
+ class skellam_gen(rv_discrete):
1532
+ r"""A Skellam discrete random variable.
1533
+
1534
+ %(before_notes)s
1535
+
1536
+ Notes
1537
+ -----
1538
+ Probability distribution of the difference of two correlated or
1539
+ uncorrelated Poisson random variables.
1540
+
1541
+ Let :math:`k_1` and :math:`k_2` be two Poisson-distributed r.v. with
1542
+ expected values :math:`\lambda_1` and :math:`\lambda_2`. Then,
1543
+ :math:`k_1 - k_2` follows a Skellam distribution with parameters
1544
+ :math:`\mu_1 = \lambda_1 - \rho \sqrt{\lambda_1 \lambda_2}` and
1545
+ :math:`\mu_2 = \lambda_2 - \rho \sqrt{\lambda_1 \lambda_2}`, where
1546
+ :math:`\rho` is the correlation coefficient between :math:`k_1` and
1547
+ :math:`k_2`. If the two Poisson-distributed r.v. are independent then
1548
+ :math:`\rho = 0`.
1549
+
1550
+ Parameters :math:`\mu_1` and :math:`\mu_2` must be strictly positive.
1551
+
1552
+ For details see: https://en.wikipedia.org/wiki/Skellam_distribution
1553
+
1554
+ `skellam` takes :math:`\mu_1` and :math:`\mu_2` as shape parameters.
1555
+
1556
+ %(after_notes)s
1557
+
1558
+ %(example)s
1559
+
1560
+ """
1561
+ def _shape_info(self):
1562
+ return [_ShapeInfo("mu1", False, (0, np.inf), (False, False)),
1563
+ _ShapeInfo("mu2", False, (0, np.inf), (False, False))]
1564
+
1565
+ def _rvs(self, mu1, mu2, size=None, random_state=None):
1566
+ n = size
1567
+ return (random_state.poisson(mu1, n) -
1568
+ random_state.poisson(mu2, n))
1569
+
1570
+ def _pmf(self, x, mu1, mu2):
1571
+ with np.errstate(over='ignore'): # see gh-17432
1572
+ px = np.where(x < 0,
1573
+ scu._ncx2_pdf(2*mu2, 2*(1-x), 2*mu1)*2,
1574
+ scu._ncx2_pdf(2*mu1, 2*(1+x), 2*mu2)*2)
1575
+ # ncx2.pdf() returns nan's for extremely low probabilities
1576
+ return px
1577
+
1578
+ def _cdf(self, x, mu1, mu2):
1579
+ x = floor(x)
1580
+ with np.errstate(over='ignore'): # see gh-17432
1581
+ px = np.where(x < 0,
1582
+ scu._ncx2_cdf(2*mu2, -2*x, 2*mu1),
1583
+ 1 - scu._ncx2_cdf(2*mu1, 2*(x+1), 2*mu2))
1584
+ return px
1585
+
1586
+ def _stats(self, mu1, mu2):
1587
+ mean = mu1 - mu2
1588
+ var = mu1 + mu2
1589
+ g1 = mean / sqrt((var)**3)
1590
+ g2 = 1 / var
1591
+ return mean, var, g1, g2
1592
+
1593
+
1594
+ skellam = skellam_gen(a=-np.inf, name="skellam", longname='A Skellam')
1595
+
1596
+
1597
+ class yulesimon_gen(rv_discrete):
1598
+ r"""A Yule-Simon discrete random variable.
1599
+
1600
+ %(before_notes)s
1601
+
1602
+ Notes
1603
+ -----
1604
+
1605
+ The probability mass function for the `yulesimon` is:
1606
+
1607
+ .. math::
1608
+
1609
+ f(k) = \alpha B(k, \alpha+1)
1610
+
1611
+ for :math:`k=1,2,3,...`, where :math:`\alpha>0`.
1612
+ Here :math:`B` refers to the `scipy.special.beta` function.
1613
+
1614
+ The sampling of random variates is based on pg 553, Section 6.3 of [1]_.
1615
+ Our notation maps to the referenced logic via :math:`\alpha=a-1`.
1616
+
1617
+ For details see the wikipedia entry [2]_.
1618
+
1619
+ References
1620
+ ----------
1621
+ .. [1] Devroye, Luc. "Non-uniform Random Variate Generation",
1622
+ (1986) Springer, New York.
1623
+
1624
+ .. [2] https://en.wikipedia.org/wiki/Yule-Simon_distribution
1625
+
1626
+ %(after_notes)s
1627
+
1628
+ %(example)s
1629
+
1630
+ """
1631
+ def _shape_info(self):
1632
+ return [_ShapeInfo("alpha", False, (0, np.inf), (False, False))]
1633
+
1634
+ def _rvs(self, alpha, size=None, random_state=None):
1635
+ E1 = random_state.standard_exponential(size)
1636
+ E2 = random_state.standard_exponential(size)
1637
+ ans = ceil(-E1 / log1p(-exp(-E2 / alpha)))
1638
+ return ans
1639
+
1640
+ def _pmf(self, x, alpha):
1641
+ return alpha * special.beta(x, alpha + 1)
1642
+
1643
+ def _argcheck(self, alpha):
1644
+ return (alpha > 0)
1645
+
1646
+ def _logpmf(self, x, alpha):
1647
+ return log(alpha) + special.betaln(x, alpha + 1)
1648
+
1649
+ def _cdf(self, x, alpha):
1650
+ return 1 - x * special.beta(x, alpha + 1)
1651
+
1652
+ def _sf(self, x, alpha):
1653
+ return x * special.beta(x, alpha + 1)
1654
+
1655
+ def _logsf(self, x, alpha):
1656
+ return log(x) + special.betaln(x, alpha + 1)
1657
+
1658
+ def _stats(self, alpha):
1659
+ mu = np.where(alpha <= 1, np.inf, alpha / (alpha - 1))
1660
+ mu2 = np.where(alpha > 2,
1661
+ alpha**2 / ((alpha - 2.0) * (alpha - 1)**2),
1662
+ np.inf)
1663
+ mu2 = np.where(alpha <= 1, np.nan, mu2)
1664
+ g1 = np.where(alpha > 3,
1665
+ sqrt(alpha - 2) * (alpha + 1)**2 / (alpha * (alpha - 3)),
1666
+ np.inf)
1667
+ g1 = np.where(alpha <= 2, np.nan, g1)
1668
+ g2 = np.where(alpha > 4,
1669
+ alpha + 3 + ((11 * alpha**3 - 49 * alpha - 22) /
1670
+ (alpha * (alpha - 4) * (alpha - 3))),
1671
+ np.inf)
1672
+ g2 = np.where(alpha <= 2, np.nan, g2)
1673
+ return mu, mu2, g1, g2
1674
+
1675
+
1676
+ yulesimon = yulesimon_gen(name='yulesimon', a=1)
1677
+
1678
+
1679
+ class _nchypergeom_gen(rv_discrete):
1680
+ r"""A noncentral hypergeometric discrete random variable.
1681
+
1682
+ For subclassing by nchypergeom_fisher_gen and nchypergeom_wallenius_gen.
1683
+
1684
+ """
1685
+
1686
+ rvs_name = None
1687
+ dist = None
1688
+
1689
+ def _shape_info(self):
1690
+ return [_ShapeInfo("M", True, (0, np.inf), (True, False)),
1691
+ _ShapeInfo("n", True, (0, np.inf), (True, False)),
1692
+ _ShapeInfo("N", True, (0, np.inf), (True, False)),
1693
+ _ShapeInfo("odds", False, (0, np.inf), (False, False))]
1694
+
1695
+ def _get_support(self, M, n, N, odds):
1696
+ N, m1, n = M, n, N # follow Wikipedia notation
1697
+ m2 = N - m1
1698
+ x_min = np.maximum(0, n - m2)
1699
+ x_max = np.minimum(n, m1)
1700
+ return x_min, x_max
1701
+
1702
+ def _argcheck(self, M, n, N, odds):
1703
+ M, n = np.asarray(M), np.asarray(n),
1704
+ N, odds = np.asarray(N), np.asarray(odds)
1705
+ cond1 = (M.astype(int) == M) & (M >= 0)
1706
+ cond2 = (n.astype(int) == n) & (n >= 0)
1707
+ cond3 = (N.astype(int) == N) & (N >= 0)
1708
+ cond4 = odds > 0
1709
+ cond5 = N <= M
1710
+ cond6 = n <= M
1711
+ return cond1 & cond2 & cond3 & cond4 & cond5 & cond6
1712
+
1713
+ def _rvs(self, M, n, N, odds, size=None, random_state=None):
1714
+
1715
+ @_vectorize_rvs_over_shapes
1716
+ def _rvs1(M, n, N, odds, size, random_state):
1717
+ length = np.prod(size)
1718
+ urn = _PyStochasticLib3()
1719
+ rv_gen = getattr(urn, self.rvs_name)
1720
+ rvs = rv_gen(N, n, M, odds, length, random_state)
1721
+ rvs = rvs.reshape(size)
1722
+ return rvs
1723
+
1724
+ return _rvs1(M, n, N, odds, size=size, random_state=random_state)
1725
+
1726
+ def _pmf(self, x, M, n, N, odds):
1727
+
1728
+ x, M, n, N, odds = np.broadcast_arrays(x, M, n, N, odds)
1729
+ if x.size == 0: # np.vectorize doesn't work with zero size input
1730
+ return np.empty_like(x)
1731
+
1732
+ @np.vectorize
1733
+ def _pmf1(x, M, n, N, odds):
1734
+ urn = self.dist(N, n, M, odds, 1e-12)
1735
+ return urn.probability(x)
1736
+
1737
+ return _pmf1(x, M, n, N, odds)
1738
+
1739
+ def _stats(self, M, n, N, odds, moments):
1740
+
1741
+ @np.vectorize
1742
+ def _moments1(M, n, N, odds):
1743
+ urn = self.dist(N, n, M, odds, 1e-12)
1744
+ return urn.moments()
1745
+
1746
+ m, v = (_moments1(M, n, N, odds) if ("m" in moments or "v" in moments)
1747
+ else (None, None))
1748
+ s, k = None, None
1749
+ return m, v, s, k
1750
+
1751
+
1752
+ class nchypergeom_fisher_gen(_nchypergeom_gen):
1753
+ r"""A Fisher's noncentral hypergeometric discrete random variable.
1754
+
1755
+ Fisher's noncentral hypergeometric distribution models drawing objects of
1756
+ two types from a bin. `M` is the total number of objects, `n` is the
1757
+ number of Type I objects, and `odds` is the odds ratio: the odds of
1758
+ selecting a Type I object rather than a Type II object when there is only
1759
+ one object of each type.
1760
+ The random variate represents the number of Type I objects drawn if we
1761
+ take a handful of objects from the bin at once and find out afterwards
1762
+ that we took `N` objects.
1763
+
1764
+ %(before_notes)s
1765
+
1766
+ See Also
1767
+ --------
1768
+ nchypergeom_wallenius, hypergeom, nhypergeom
1769
+
1770
+ Notes
1771
+ -----
1772
+ Let mathematical symbols :math:`N`, :math:`n`, and :math:`M` correspond
1773
+ with parameters `N`, `n`, and `M` (respectively) as defined above.
1774
+
1775
+ The probability mass function is defined as
1776
+
1777
+ .. math::
1778
+
1779
+ p(x; M, n, N, \omega) =
1780
+ \frac{\binom{n}{x}\binom{M - n}{N-x}\omega^x}{P_0},
1781
+
1782
+ for
1783
+ :math:`x \in [x_l, x_u]`,
1784
+ :math:`M \in {\mathbb N}`,
1785
+ :math:`n \in [0, M]`,
1786
+ :math:`N \in [0, M]`,
1787
+ :math:`\omega > 0`,
1788
+ where
1789
+ :math:`x_l = \max(0, N - (M - n))`,
1790
+ :math:`x_u = \min(N, n)`,
1791
+
1792
+ .. math::
1793
+
1794
+ P_0 = \sum_{y=x_l}^{x_u} \binom{n}{y}\binom{M - n}{N-y}\omega^y,
1795
+
1796
+ and the binomial coefficients are defined as
1797
+
1798
+ .. math:: \binom{n}{k} \equiv \frac{n!}{k! (n - k)!}.
1799
+
1800
+ `nchypergeom_fisher` uses the BiasedUrn package by Agner Fog with
1801
+ permission for it to be distributed under SciPy's license.
1802
+
1803
+ The symbols used to denote the shape parameters (`N`, `n`, and `M`) are not
1804
+ universally accepted; they are chosen for consistency with `hypergeom`.
1805
+
1806
+ Note that Fisher's noncentral hypergeometric distribution is distinct
1807
+ from Wallenius' noncentral hypergeometric distribution, which models
1808
+ drawing a pre-determined `N` objects from a bin one by one.
1809
+ When the odds ratio is unity, however, both distributions reduce to the
1810
+ ordinary hypergeometric distribution.
1811
+
1812
+ %(after_notes)s
1813
+
1814
+ References
1815
+ ----------
1816
+ .. [1] Agner Fog, "Biased Urn Theory".
1817
+ https://cran.r-project.org/web/packages/BiasedUrn/vignettes/UrnTheory.pdf
1818
+
1819
+ .. [2] "Fisher's noncentral hypergeometric distribution", Wikipedia,
1820
+ https://en.wikipedia.org/wiki/Fisher's_noncentral_hypergeometric_distribution
1821
+
1822
+ %(example)s
1823
+
1824
+ """
1825
+
1826
+ rvs_name = "rvs_fisher"
1827
+ dist = _PyFishersNCHypergeometric
1828
+
1829
+
1830
+ nchypergeom_fisher = nchypergeom_fisher_gen(
1831
+ name='nchypergeom_fisher',
1832
+ longname="A Fisher's noncentral hypergeometric")
1833
+
1834
+
1835
+ class nchypergeom_wallenius_gen(_nchypergeom_gen):
1836
+ r"""A Wallenius' noncentral hypergeometric discrete random variable.
1837
+
1838
+ Wallenius' noncentral hypergeometric distribution models drawing objects of
1839
+ two types from a bin. `M` is the total number of objects, `n` is the
1840
+ number of Type I objects, and `odds` is the odds ratio: the odds of
1841
+ selecting a Type I object rather than a Type II object when there is only
1842
+ one object of each type.
1843
+ The random variate represents the number of Type I objects drawn if we
1844
+ draw a pre-determined `N` objects from a bin one by one.
1845
+
1846
+ %(before_notes)s
1847
+
1848
+ See Also
1849
+ --------
1850
+ nchypergeom_fisher, hypergeom, nhypergeom
1851
+
1852
+ Notes
1853
+ -----
1854
+ Let mathematical symbols :math:`N`, :math:`n`, and :math:`M` correspond
1855
+ with parameters `N`, `n`, and `M` (respectively) as defined above.
1856
+
1857
+ The probability mass function is defined as
1858
+
1859
+ .. math::
1860
+
1861
+ p(x; N, n, M) = \binom{n}{x} \binom{M - n}{N-x}
1862
+ \int_0^1 \left(1-t^{\omega/D}\right)^x\left(1-t^{1/D}\right)^{N-x} dt
1863
+
1864
+ for
1865
+ :math:`x \in [x_l, x_u]`,
1866
+ :math:`M \in {\mathbb N}`,
1867
+ :math:`n \in [0, M]`,
1868
+ :math:`N \in [0, M]`,
1869
+ :math:`\omega > 0`,
1870
+ where
1871
+ :math:`x_l = \max(0, N - (M - n))`,
1872
+ :math:`x_u = \min(N, n)`,
1873
+
1874
+ .. math::
1875
+
1876
+ D = \omega(n - x) + ((M - n)-(N-x)),
1877
+
1878
+ and the binomial coefficients are defined as
1879
+
1880
+ .. math:: \binom{n}{k} \equiv \frac{n!}{k! (n - k)!}.
1881
+
1882
+ `nchypergeom_wallenius` uses the BiasedUrn package by Agner Fog with
1883
+ permission for it to be distributed under SciPy's license.
1884
+
1885
+ The symbols used to denote the shape parameters (`N`, `n`, and `M`) are not
1886
+ universally accepted; they are chosen for consistency with `hypergeom`.
1887
+
1888
+ Note that Wallenius' noncentral hypergeometric distribution is distinct
1889
+ from Fisher's noncentral hypergeometric distribution, which models
1890
+ take a handful of objects from the bin at once, finding out afterwards
1891
+ that `N` objects were taken.
1892
+ When the odds ratio is unity, however, both distributions reduce to the
1893
+ ordinary hypergeometric distribution.
1894
+
1895
+ %(after_notes)s
1896
+
1897
+ References
1898
+ ----------
1899
+ .. [1] Agner Fog, "Biased Urn Theory".
1900
+ https://cran.r-project.org/web/packages/BiasedUrn/vignettes/UrnTheory.pdf
1901
+
1902
+ .. [2] "Wallenius' noncentral hypergeometric distribution", Wikipedia,
1903
+ https://en.wikipedia.org/wiki/Wallenius'_noncentral_hypergeometric_distribution
1904
+
1905
+ %(example)s
1906
+
1907
+ """
1908
+
1909
+ rvs_name = "rvs_wallenius"
1910
+ dist = _PyWalleniusNCHypergeometric
1911
+
1912
+
1913
+ nchypergeom_wallenius = nchypergeom_wallenius_gen(
1914
+ name='nchypergeom_wallenius',
1915
+ longname="A Wallenius' noncentral hypergeometric")
1916
+
1917
+
1918
+ # Collect names of classes and objects in this module.
1919
+ pairs = list(globals().copy().items())
1920
+ _distn_names, _distn_gen_names = get_distribution_names(pairs, rv_discrete)
1921
+
1922
+ __all__ = _distn_names + _distn_gen_names
parrot/lib/python3.10/site-packages/scipy/stats/_distr_params.py ADDED
@@ -0,0 +1,292 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Sane parameters for stats.distributions.
3
+ """
4
+ import numpy as np
5
+
6
+ distcont = [
7
+ ['alpha', (3.5704770516650459,)],
8
+ ['anglit', ()],
9
+ ['arcsine', ()],
10
+ ['argus', (1.0,)],
11
+ ['beta', (2.3098496451481823, 0.62687954300963677)],
12
+ ['betaprime', (5, 6)],
13
+ ['bradford', (0.29891359763170633,)],
14
+ ['burr', (10.5, 4.3)],
15
+ ['burr12', (10, 4)],
16
+ ['cauchy', ()],
17
+ ['chi', (78,)],
18
+ ['chi2', (55,)],
19
+ ['cosine', ()],
20
+ ['crystalball', (2.0, 3.0)],
21
+ ['dgamma', (1.1023326088288166,)],
22
+ ['dweibull', (2.0685080649914673,)],
23
+ ['erlang', (10,)],
24
+ ['expon', ()],
25
+ ['exponnorm', (1.5,)],
26
+ ['exponpow', (2.697119160358469,)],
27
+ ['exponweib', (2.8923945291034436, 1.9505288745913174)],
28
+ ['f', (29, 18)],
29
+ ['fatiguelife', (29,)], # correction numargs = 1
30
+ ['fisk', (3.0857548622253179,)],
31
+ ['foldcauchy', (4.7164673455831894,)],
32
+ ['foldnorm', (1.9521253373555869,)],
33
+ ['gamma', (1.9932305483800778,)],
34
+ ['gausshyper', (13.763771604130699, 3.1189636648681431,
35
+ 2.5145980350183019, 5.1811649903971615)], # veryslow
36
+ ['genexpon', (9.1325976465418908, 16.231956600590632, 3.2819552690843983)],
37
+ ['genextreme', (-0.1,)],
38
+ ['gengamma', (4.4162385429431925, 3.1193091679242761)],
39
+ ['gengamma', (4.4162385429431925, -3.1193091679242761)],
40
+ ['genhalflogistic', (0.77274727809929322,)],
41
+ ['genhyperbolic', (0.5, 1.5, -0.5,)],
42
+ ['geninvgauss', (2.3, 1.5)],
43
+ ['genlogistic', (0.41192440799679475,)],
44
+ ['gennorm', (1.2988442399460265,)],
45
+ ['halfgennorm', (0.6748054997000371,)],
46
+ ['genpareto', (0.1,)], # use case with finite moments
47
+ ['gibrat', ()],
48
+ ['gompertz', (0.94743713075105251,)],
49
+ ['gumbel_l', ()],
50
+ ['gumbel_r', ()],
51
+ ['halfcauchy', ()],
52
+ ['halflogistic', ()],
53
+ ['halfnorm', ()],
54
+ ['hypsecant', ()],
55
+ ['invgamma', (4.0668996136993067,)],
56
+ ['invgauss', (0.14546264555347513,)],
57
+ ['invweibull', (10.58,)],
58
+ ['irwinhall', (10,)],
59
+ ['jf_skew_t', (8, 4)],
60
+ ['johnsonsb', (4.3172675099141058, 3.1837781130785063)],
61
+ ['johnsonsu', (2.554395574161155, 2.2482281679651965)],
62
+ ['kappa4', (0.0, 0.0)],
63
+ ['kappa4', (-0.1, 0.1)],
64
+ ['kappa4', (0.0, 0.1)],
65
+ ['kappa4', (0.1, 0.0)],
66
+ ['kappa3', (1.0,)],
67
+ ['ksone', (1000,)], # replace 22 by 100 to avoid failing range, ticket 956
68
+ ['kstwo', (10,)],
69
+ ['kstwobign', ()],
70
+ ['laplace', ()],
71
+ ['laplace_asymmetric', (2,)],
72
+ ['levy', ()],
73
+ ['levy_l', ()],
74
+ ['levy_stable', (1.8, -0.5)],
75
+ ['loggamma', (0.41411931826052117,)],
76
+ ['logistic', ()],
77
+ ['loglaplace', (3.2505926592051435,)],
78
+ ['lognorm', (0.95368226960575331,)],
79
+ ['loguniform', (0.01, 1.25)],
80
+ ['lomax', (1.8771398388773268,)],
81
+ ['maxwell', ()],
82
+ ['mielke', (10.4, 4.6)],
83
+ ['moyal', ()],
84
+ ['nakagami', (4.9673794866666237,)],
85
+ ['ncf', (27, 27, 0.41578441799226107)],
86
+ ['nct', (14, 0.24045031331198066)],
87
+ ['ncx2', (21, 1.0560465975116415)],
88
+ ['norm', ()],
89
+ ['norminvgauss', (1.25, 0.5)],
90
+ ['pareto', (2.621716532144454,)],
91
+ ['pearson3', (0.1,)],
92
+ ['pearson3', (-2,)],
93
+ ['powerlaw', (1.6591133289905851,)],
94
+ ['powerlaw', (0.6591133289905851,)],
95
+ ['powerlognorm', (2.1413923530064087, 0.44639540782048337)],
96
+ ['powernorm', (4.4453652254590779,)],
97
+ ['rayleigh', ()],
98
+ ['rdist', (1.6,)],
99
+ ['recipinvgauss', (0.63004267809369119,)],
100
+ ['reciprocal', (0.01, 1.25)],
101
+ ['rel_breitwigner', (36.545206797050334, )],
102
+ ['rice', (0.7749725210111873,)],
103
+ ['semicircular', ()],
104
+ ['skewcauchy', (0.5,)],
105
+ ['skewnorm', (4.0,)],
106
+ ['studentized_range', (3.0, 10.0)],
107
+ ['t', (2.7433514990818093,)],
108
+ ['trapezoid', (0.2, 0.8)],
109
+ ['triang', (0.15785029824528218,)],
110
+ ['truncexpon', (4.6907725456810478,)],
111
+ ['truncnorm', (-1.0978730080013919, 2.7306754109031979)],
112
+ ['truncnorm', (0.1, 2.)],
113
+ ['truncpareto', (1.8, 5.3)],
114
+ ['truncpareto', (2, 5)],
115
+ ['truncweibull_min', (2.5, 0.25, 1.75)],
116
+ ['tukeylambda', (3.1321477856738267,)],
117
+ ['uniform', ()],
118
+ ['vonmises', (3.9939042581071398,)],
119
+ ['vonmises_line', (3.9939042581071398,)],
120
+ ['wald', ()],
121
+ ['weibull_max', (2.8687961709100187,)],
122
+ ['weibull_min', (1.7866166930421596,)],
123
+ ['wrapcauchy', (0.031071279018614728,)]]
124
+
125
+
126
+ distdiscrete = [
127
+ ['bernoulli',(0.3,)],
128
+ ['betabinom', (5, 2.3, 0.63)],
129
+ ['betanbinom', (5, 9.3, 1)],
130
+ ['binom', (5, 0.4)],
131
+ ['boltzmann',(1.4, 19)],
132
+ ['dlaplace', (0.8,)], # 0.5
133
+ ['geom', (0.5,)],
134
+ ['hypergeom',(30, 12, 6)],
135
+ ['hypergeom',(21,3,12)], # numpy.random (3,18,12) numpy ticket:921
136
+ ['hypergeom',(21,18,11)], # numpy.random (18,3,11) numpy ticket:921
137
+ ['nchypergeom_fisher', (140, 80, 60, 0.5)],
138
+ ['nchypergeom_wallenius', (140, 80, 60, 0.5)],
139
+ ['logser', (0.6,)], # re-enabled, numpy ticket:921
140
+ ['nbinom', (0.4, 0.4)], # from tickets: 583
141
+ ['nbinom', (5, 0.5)],
142
+ ['planck', (0.51,)], # 4.1
143
+ ['poisson', (0.6,)],
144
+ ['randint', (7, 31)],
145
+ ['skellam', (15, 8)],
146
+ ['zipf', (6.6,)],
147
+ ['zipfian', (0.75, 15)],
148
+ ['zipfian', (1.25, 10)],
149
+ ['yulesimon', (11.0,)],
150
+ ['nhypergeom', (20, 7, 1)]
151
+ ]
152
+
153
+
154
+ invdistdiscrete = [
155
+ # In each of the following, at least one shape parameter is invalid
156
+ ['hypergeom', (3, 3, 4)],
157
+ ['nhypergeom', (5, 2, 8)],
158
+ ['nchypergeom_fisher', (3, 3, 4, 1)],
159
+ ['nchypergeom_wallenius', (3, 3, 4, 1)],
160
+ ['bernoulli', (1.5, )],
161
+ ['binom', (10, 1.5)],
162
+ ['betabinom', (10, -0.4, -0.5)],
163
+ ['betanbinom', (10, -0.4, -0.5)],
164
+ ['boltzmann', (-1, 4)],
165
+ ['dlaplace', (-0.5, )],
166
+ ['geom', (1.5, )],
167
+ ['logser', (1.5, )],
168
+ ['nbinom', (10, 1.5)],
169
+ ['planck', (-0.5, )],
170
+ ['poisson', (-0.5, )],
171
+ ['randint', (5, 2)],
172
+ ['skellam', (-5, -2)],
173
+ ['zipf', (-2, )],
174
+ ['yulesimon', (-2, )],
175
+ ['zipfian', (-0.75, 15)]
176
+ ]
177
+
178
+
179
+ invdistcont = [
180
+ # In each of the following, at least one shape parameter is invalid
181
+ ['alpha', (-1, )],
182
+ ['anglit', ()],
183
+ ['arcsine', ()],
184
+ ['argus', (-1, )],
185
+ ['beta', (-2, 2)],
186
+ ['betaprime', (-2, 2)],
187
+ ['bradford', (-1, )],
188
+ ['burr', (-1, 1)],
189
+ ['burr12', (-1, 1)],
190
+ ['cauchy', ()],
191
+ ['chi', (-1, )],
192
+ ['chi2', (-1, )],
193
+ ['cosine', ()],
194
+ ['crystalball', (-1, 2)],
195
+ ['dgamma', (-1, )],
196
+ ['dweibull', (-1, )],
197
+ ['erlang', (-1, )],
198
+ ['expon', ()],
199
+ ['exponnorm', (-1, )],
200
+ ['exponweib', (1, -1)],
201
+ ['exponpow', (-1, )],
202
+ ['f', (10, -10)],
203
+ ['fatiguelife', (-1, )],
204
+ ['fisk', (-1, )],
205
+ ['foldcauchy', (-1, )],
206
+ ['foldnorm', (-1, )],
207
+ ['genlogistic', (-1, )],
208
+ ['gennorm', (-1, )],
209
+ ['genpareto', (np.inf, )],
210
+ ['genexpon', (1, 2, -3)],
211
+ ['genextreme', (np.inf, )],
212
+ ['genhyperbolic', (0.5, -0.5, -1.5,)],
213
+ ['gausshyper', (1, 2, 3, -4)],
214
+ ['gamma', (-1, )],
215
+ ['gengamma', (-1, 0)],
216
+ ['genhalflogistic', (-1, )],
217
+ ['geninvgauss', (1, 0)],
218
+ ['gibrat', ()],
219
+ ['gompertz', (-1, )],
220
+ ['gumbel_r', ()],
221
+ ['gumbel_l', ()],
222
+ ['halfcauchy', ()],
223
+ ['halflogistic', ()],
224
+ ['halfnorm', ()],
225
+ ['halfgennorm', (-1, )],
226
+ ['hypsecant', ()],
227
+ ['invgamma', (-1, )],
228
+ ['invgauss', (-1, )],
229
+ ['invweibull', (-1, )],
230
+ ['irwinhall', (-1,)],
231
+ ['irwinhall', (0,)],
232
+ ['irwinhall', (2.5,)],
233
+ ['jf_skew_t', (-1, 0)],
234
+ ['johnsonsb', (1, -2)],
235
+ ['johnsonsu', (1, -2)],
236
+ ['kappa4', (np.nan, 0)],
237
+ ['kappa3', (-1, )],
238
+ ['ksone', (-1, )],
239
+ ['kstwo', (-1, )],
240
+ ['kstwobign', ()],
241
+ ['laplace', ()],
242
+ ['laplace_asymmetric', (-1, )],
243
+ ['levy', ()],
244
+ ['levy_l', ()],
245
+ ['levy_stable', (-1, 1)],
246
+ ['logistic', ()],
247
+ ['loggamma', (-1, )],
248
+ ['loglaplace', (-1, )],
249
+ ['lognorm', (-1, )],
250
+ ['loguniform', (10, 5)],
251
+ ['lomax', (-1, )],
252
+ ['maxwell', ()],
253
+ ['mielke', (1, -2)],
254
+ ['moyal', ()],
255
+ ['nakagami', (-1, )],
256
+ ['ncx2', (-1, 2)],
257
+ ['ncf', (10, 20, -1)],
258
+ ['nct', (-1, 2)],
259
+ ['norm', ()],
260
+ ['norminvgauss', (5, -10)],
261
+ ['pareto', (-1, )],
262
+ ['pearson3', (np.nan, )],
263
+ ['powerlaw', (-1, )],
264
+ ['powerlognorm', (1, -2)],
265
+ ['powernorm', (-1, )],
266
+ ['rdist', (-1, )],
267
+ ['rayleigh', ()],
268
+ ['rice', (-1, )],
269
+ ['recipinvgauss', (-1, )],
270
+ ['semicircular', ()],
271
+ ['skewnorm', (np.inf, )],
272
+ ['studentized_range', (-1, 1)],
273
+ ['rel_breitwigner', (-2, )],
274
+ ['t', (-1, )],
275
+ ['trapezoid', (0, 2)],
276
+ ['triang', (2, )],
277
+ ['truncexpon', (-1, )],
278
+ ['truncnorm', (10, 5)],
279
+ ['truncpareto', (-1, 5)],
280
+ ['truncpareto', (1.8, .5)],
281
+ ['truncweibull_min', (-2.5, 0.25, 1.75)],
282
+ ['tukeylambda', (np.nan, )],
283
+ ['uniform', ()],
284
+ ['vonmises', (-1, )],
285
+ ['vonmises_line', (-1, )],
286
+ ['wald', ()],
287
+ ['weibull_min', (-1, )],
288
+ ['weibull_max', (-1, )],
289
+ ['wrapcauchy', (2, )],
290
+ ['reciprocal', (15, 10)],
291
+ ['skewcauchy', (2, )]
292
+ ]
parrot/lib/python3.10/site-packages/scipy/stats/_entropy.py ADDED
@@ -0,0 +1,426 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Created on Fri Apr 2 09:06:05 2021
3
+
4
+ @author: matth
5
+ """
6
+
7
+ from __future__ import annotations
8
+ import math
9
+ import numpy as np
10
+ from scipy import special
11
+ from ._axis_nan_policy import _axis_nan_policy_factory, _broadcast_arrays
12
+ from scipy._lib._array_api import array_namespace
13
+
14
+ __all__ = ['entropy', 'differential_entropy']
15
+
16
+
17
+ @_axis_nan_policy_factory(
18
+ lambda x: x,
19
+ n_samples=lambda kwgs: (
20
+ 2 if ("qk" in kwgs and kwgs["qk"] is not None)
21
+ else 1
22
+ ),
23
+ n_outputs=1, result_to_tuple=lambda x: (x,), paired=True,
24
+ too_small=-1 # entropy doesn't have too small inputs
25
+ )
26
+ def entropy(pk: np.typing.ArrayLike,
27
+ qk: np.typing.ArrayLike | None = None,
28
+ base: float | None = None,
29
+ axis: int = 0
30
+ ) -> np.number | np.ndarray:
31
+ """
32
+ Calculate the Shannon entropy/relative entropy of given distribution(s).
33
+
34
+ If only probabilities `pk` are given, the Shannon entropy is calculated as
35
+ ``H = -sum(pk * log(pk))``.
36
+
37
+ If `qk` is not None, then compute the relative entropy
38
+ ``D = sum(pk * log(pk / qk))``. This quantity is also known
39
+ as the Kullback-Leibler divergence.
40
+
41
+ This routine will normalize `pk` and `qk` if they don't sum to 1.
42
+
43
+ Parameters
44
+ ----------
45
+ pk : array_like
46
+ Defines the (discrete) distribution. Along each axis-slice of ``pk``,
47
+ element ``i`` is the (possibly unnormalized) probability of event
48
+ ``i``.
49
+ qk : array_like, optional
50
+ Sequence against which the relative entropy is computed. Should be in
51
+ the same format as `pk`.
52
+ base : float, optional
53
+ The logarithmic base to use, defaults to ``e`` (natural logarithm).
54
+ axis : int, optional
55
+ The axis along which the entropy is calculated. Default is 0.
56
+
57
+ Returns
58
+ -------
59
+ S : {float, array_like}
60
+ The calculated entropy.
61
+
62
+ Notes
63
+ -----
64
+ Informally, the Shannon entropy quantifies the expected uncertainty
65
+ inherent in the possible outcomes of a discrete random variable.
66
+ For example,
67
+ if messages consisting of sequences of symbols from a set are to be
68
+ encoded and transmitted over a noiseless channel, then the Shannon entropy
69
+ ``H(pk)`` gives a tight lower bound for the average number of units of
70
+ information needed per symbol if the symbols occur with frequencies
71
+ governed by the discrete distribution `pk` [1]_. The choice of base
72
+ determines the choice of units; e.g., ``e`` for nats, ``2`` for bits, etc.
73
+
74
+ The relative entropy, ``D(pk|qk)``, quantifies the increase in the average
75
+ number of units of information needed per symbol if the encoding is
76
+ optimized for the probability distribution `qk` instead of the true
77
+ distribution `pk`. Informally, the relative entropy quantifies the expected
78
+ excess in surprise experienced if one believes the true distribution is
79
+ `qk` when it is actually `pk`.
80
+
81
+ A related quantity, the cross entropy ``CE(pk, qk)``, satisfies the
82
+ equation ``CE(pk, qk) = H(pk) + D(pk|qk)`` and can also be calculated with
83
+ the formula ``CE = -sum(pk * log(qk))``. It gives the average
84
+ number of units of information needed per symbol if an encoding is
85
+ optimized for the probability distribution `qk` when the true distribution
86
+ is `pk`. It is not computed directly by `entropy`, but it can be computed
87
+ using two calls to the function (see Examples).
88
+
89
+ See [2]_ for more information.
90
+
91
+ References
92
+ ----------
93
+ .. [1] Shannon, C.E. (1948), A Mathematical Theory of Communication.
94
+ Bell System Technical Journal, 27: 379-423.
95
+ https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
96
+ .. [2] Thomas M. Cover and Joy A. Thomas. 2006. Elements of Information
97
+ Theory (Wiley Series in Telecommunications and Signal Processing).
98
+ Wiley-Interscience, USA.
99
+
100
+
101
+ Examples
102
+ --------
103
+ The outcome of a fair coin is the most uncertain:
104
+
105
+ >>> import numpy as np
106
+ >>> from scipy.stats import entropy
107
+ >>> base = 2 # work in units of bits
108
+ >>> pk = np.array([1/2, 1/2]) # fair coin
109
+ >>> H = entropy(pk, base=base)
110
+ >>> H
111
+ 1.0
112
+ >>> H == -np.sum(pk * np.log(pk)) / np.log(base)
113
+ True
114
+
115
+ The outcome of a biased coin is less uncertain:
116
+
117
+ >>> qk = np.array([9/10, 1/10]) # biased coin
118
+ >>> entropy(qk, base=base)
119
+ 0.46899559358928117
120
+
121
+ The relative entropy between the fair coin and biased coin is calculated
122
+ as:
123
+
124
+ >>> D = entropy(pk, qk, base=base)
125
+ >>> D
126
+ 0.7369655941662062
127
+ >>> D == np.sum(pk * np.log(pk/qk)) / np.log(base)
128
+ True
129
+
130
+ The cross entropy can be calculated as the sum of the entropy and
131
+ relative entropy`:
132
+
133
+ >>> CE = entropy(pk, base=base) + entropy(pk, qk, base=base)
134
+ >>> CE
135
+ 1.736965594166206
136
+ >>> CE == -np.sum(pk * np.log(qk)) / np.log(base)
137
+ True
138
+
139
+ """
140
+ if base is not None and base <= 0:
141
+ raise ValueError("`base` must be a positive number or `None`.")
142
+
143
+ xp = array_namespace(pk) if qk is None else array_namespace(pk, qk)
144
+
145
+ pk = xp.asarray(pk)
146
+ with np.errstate(invalid='ignore'):
147
+ pk = 1.0*pk / xp.sum(pk, axis=axis, keepdims=True) # type: ignore[operator]
148
+ if qk is None:
149
+ vec = special.entr(pk)
150
+ else:
151
+ qk = xp.asarray(qk)
152
+ pk, qk = _broadcast_arrays((pk, qk), axis=None, xp=xp) # don't ignore any axes
153
+ sum_kwargs = dict(axis=axis, keepdims=True)
154
+ qk = 1.0*qk / xp.sum(qk, **sum_kwargs) # type: ignore[operator, call-overload]
155
+ vec = special.rel_entr(pk, qk)
156
+ S = xp.sum(vec, axis=axis)
157
+ if base is not None:
158
+ S /= math.log(base)
159
+ return S
160
+
161
+
162
+ def _differential_entropy_is_too_small(samples, kwargs, axis=-1):
163
+ values = samples[0]
164
+ n = values.shape[axis]
165
+ window_length = kwargs.get("window_length",
166
+ math.floor(math.sqrt(n) + 0.5))
167
+ if not 2 <= 2 * window_length < n:
168
+ return True
169
+ return False
170
+
171
+
172
+ @_axis_nan_policy_factory(
173
+ lambda x: x, n_outputs=1, result_to_tuple=lambda x: (x,),
174
+ too_small=_differential_entropy_is_too_small
175
+ )
176
+ def differential_entropy(
177
+ values: np.typing.ArrayLike,
178
+ *,
179
+ window_length: int | None = None,
180
+ base: float | None = None,
181
+ axis: int = 0,
182
+ method: str = "auto",
183
+ ) -> np.number | np.ndarray:
184
+ r"""Given a sample of a distribution, estimate the differential entropy.
185
+
186
+ Several estimation methods are available using the `method` parameter. By
187
+ default, a method is selected based the size of the sample.
188
+
189
+ Parameters
190
+ ----------
191
+ values : sequence
192
+ Sample from a continuous distribution.
193
+ window_length : int, optional
194
+ Window length for computing Vasicek estimate. Must be an integer
195
+ between 1 and half of the sample size. If ``None`` (the default), it
196
+ uses the heuristic value
197
+
198
+ .. math::
199
+ \left \lfloor \sqrt{n} + 0.5 \right \rfloor
200
+
201
+ where :math:`n` is the sample size. This heuristic was originally
202
+ proposed in [2]_ and has become common in the literature.
203
+ base : float, optional
204
+ The logarithmic base to use, defaults to ``e`` (natural logarithm).
205
+ axis : int, optional
206
+ The axis along which the differential entropy is calculated.
207
+ Default is 0.
208
+ method : {'vasicek', 'van es', 'ebrahimi', 'correa', 'auto'}, optional
209
+ The method used to estimate the differential entropy from the sample.
210
+ Default is ``'auto'``. See Notes for more information.
211
+
212
+ Returns
213
+ -------
214
+ entropy : float
215
+ The calculated differential entropy.
216
+
217
+ Notes
218
+ -----
219
+ This function will converge to the true differential entropy in the limit
220
+
221
+ .. math::
222
+ n \to \infty, \quad m \to \infty, \quad \frac{m}{n} \to 0
223
+
224
+ The optimal choice of ``window_length`` for a given sample size depends on
225
+ the (unknown) distribution. Typically, the smoother the density of the
226
+ distribution, the larger the optimal value of ``window_length`` [1]_.
227
+
228
+ The following options are available for the `method` parameter.
229
+
230
+ * ``'vasicek'`` uses the estimator presented in [1]_. This is
231
+ one of the first and most influential estimators of differential entropy.
232
+ * ``'van es'`` uses the bias-corrected estimator presented in [3]_, which
233
+ is not only consistent but, under some conditions, asymptotically normal.
234
+ * ``'ebrahimi'`` uses an estimator presented in [4]_, which was shown
235
+ in simulation to have smaller bias and mean squared error than
236
+ the Vasicek estimator.
237
+ * ``'correa'`` uses the estimator presented in [5]_ based on local linear
238
+ regression. In a simulation study, it had consistently smaller mean
239
+ square error than the Vasiceck estimator, but it is more expensive to
240
+ compute.
241
+ * ``'auto'`` selects the method automatically (default). Currently,
242
+ this selects ``'van es'`` for very small samples (<10), ``'ebrahimi'``
243
+ for moderate sample sizes (11-1000), and ``'vasicek'`` for larger
244
+ samples, but this behavior is subject to change in future versions.
245
+
246
+ All estimators are implemented as described in [6]_.
247
+
248
+ References
249
+ ----------
250
+ .. [1] Vasicek, O. (1976). A test for normality based on sample entropy.
251
+ Journal of the Royal Statistical Society:
252
+ Series B (Methodological), 38(1), 54-59.
253
+ .. [2] Crzcgorzewski, P., & Wirczorkowski, R. (1999). Entropy-based
254
+ goodness-of-fit test for exponentiality. Communications in
255
+ Statistics-Theory and Methods, 28(5), 1183-1202.
256
+ .. [3] Van Es, B. (1992). Estimating functionals related to a density by a
257
+ class of statistics based on spacings. Scandinavian Journal of
258
+ Statistics, 61-72.
259
+ .. [4] Ebrahimi, N., Pflughoeft, K., & Soofi, E. S. (1994). Two measures
260
+ of sample entropy. Statistics & Probability Letters, 20(3), 225-234.
261
+ .. [5] Correa, J. C. (1995). A new estimator of entropy. Communications
262
+ in Statistics-Theory and Methods, 24(10), 2439-2449.
263
+ .. [6] Noughabi, H. A. (2015). Entropy Estimation Using Numerical Methods.
264
+ Annals of Data Science, 2(2), 231-241.
265
+ https://link.springer.com/article/10.1007/s40745-015-0045-9
266
+
267
+ Examples
268
+ --------
269
+ >>> import numpy as np
270
+ >>> from scipy.stats import differential_entropy, norm
271
+
272
+ Entropy of a standard normal distribution:
273
+
274
+ >>> rng = np.random.default_rng()
275
+ >>> values = rng.standard_normal(100)
276
+ >>> differential_entropy(values)
277
+ 1.3407817436640392
278
+
279
+ Compare with the true entropy:
280
+
281
+ >>> float(norm.entropy())
282
+ 1.4189385332046727
283
+
284
+ For several sample sizes between 5 and 1000, compare the accuracy of
285
+ the ``'vasicek'``, ``'van es'``, and ``'ebrahimi'`` methods. Specifically,
286
+ compare the root mean squared error (over 1000 trials) between the estimate
287
+ and the true differential entropy of the distribution.
288
+
289
+ >>> from scipy import stats
290
+ >>> import matplotlib.pyplot as plt
291
+ >>>
292
+ >>>
293
+ >>> def rmse(res, expected):
294
+ ... '''Root mean squared error'''
295
+ ... return np.sqrt(np.mean((res - expected)**2))
296
+ >>>
297
+ >>>
298
+ >>> a, b = np.log10(5), np.log10(1000)
299
+ >>> ns = np.round(np.logspace(a, b, 10)).astype(int)
300
+ >>> reps = 1000 # number of repetitions for each sample size
301
+ >>> expected = stats.expon.entropy()
302
+ >>>
303
+ >>> method_errors = {'vasicek': [], 'van es': [], 'ebrahimi': []}
304
+ >>> for method in method_errors:
305
+ ... for n in ns:
306
+ ... rvs = stats.expon.rvs(size=(reps, n), random_state=rng)
307
+ ... res = stats.differential_entropy(rvs, method=method, axis=-1)
308
+ ... error = rmse(res, expected)
309
+ ... method_errors[method].append(error)
310
+ >>>
311
+ >>> for method, errors in method_errors.items():
312
+ ... plt.loglog(ns, errors, label=method)
313
+ >>>
314
+ >>> plt.legend()
315
+ >>> plt.xlabel('sample size')
316
+ >>> plt.ylabel('RMSE (1000 trials)')
317
+ >>> plt.title('Entropy Estimator Error (Exponential Distribution)')
318
+
319
+ """
320
+ values = np.asarray(values)
321
+ values = np.moveaxis(values, axis, -1)
322
+ n = values.shape[-1] # number of observations
323
+
324
+ if window_length is None:
325
+ window_length = math.floor(math.sqrt(n) + 0.5)
326
+
327
+ if not 2 <= 2 * window_length < n:
328
+ raise ValueError(
329
+ f"Window length ({window_length}) must be positive and less "
330
+ f"than half the sample size ({n}).",
331
+ )
332
+
333
+ if base is not None and base <= 0:
334
+ raise ValueError("`base` must be a positive number or `None`.")
335
+
336
+ sorted_data = np.sort(values, axis=-1)
337
+
338
+ methods = {"vasicek": _vasicek_entropy,
339
+ "van es": _van_es_entropy,
340
+ "correa": _correa_entropy,
341
+ "ebrahimi": _ebrahimi_entropy,
342
+ "auto": _vasicek_entropy}
343
+ method = method.lower()
344
+ if method not in methods:
345
+ message = f"`method` must be one of {set(methods)}"
346
+ raise ValueError(message)
347
+
348
+ if method == "auto":
349
+ if n <= 10:
350
+ method = 'van es'
351
+ elif n <= 1000:
352
+ method = 'ebrahimi'
353
+ else:
354
+ method = 'vasicek'
355
+
356
+ res = methods[method](sorted_data, window_length)
357
+
358
+ if base is not None:
359
+ res /= np.log(base)
360
+
361
+ return res
362
+
363
+
364
+ def _pad_along_last_axis(X, m):
365
+ """Pad the data for computing the rolling window difference."""
366
+ # scales a bit better than method in _vasicek_like_entropy
367
+ shape = np.array(X.shape)
368
+ shape[-1] = m
369
+ Xl = np.broadcast_to(X[..., [0]], shape) # [0] vs 0 to maintain shape
370
+ Xr = np.broadcast_to(X[..., [-1]], shape)
371
+ return np.concatenate((Xl, X, Xr), axis=-1)
372
+
373
+
374
+ def _vasicek_entropy(X, m):
375
+ """Compute the Vasicek estimator as described in [6] Eq. 1.3."""
376
+ n = X.shape[-1]
377
+ X = _pad_along_last_axis(X, m)
378
+ differences = X[..., 2 * m:] - X[..., : -2 * m:]
379
+ logs = np.log(n/(2*m) * differences)
380
+ return np.mean(logs, axis=-1)
381
+
382
+
383
+ def _van_es_entropy(X, m):
384
+ """Compute the van Es estimator as described in [6]."""
385
+ # No equation number, but referred to as HVE_mn.
386
+ # Typo: there should be a log within the summation.
387
+ n = X.shape[-1]
388
+ difference = X[..., m:] - X[..., :-m]
389
+ term1 = 1/(n-m) * np.sum(np.log((n+1)/m * difference), axis=-1)
390
+ k = np.arange(m, n+1)
391
+ return term1 + np.sum(1/k) + np.log(m) - np.log(n+1)
392
+
393
+
394
+ def _ebrahimi_entropy(X, m):
395
+ """Compute the Ebrahimi estimator as described in [6]."""
396
+ # No equation number, but referred to as HE_mn
397
+ n = X.shape[-1]
398
+ X = _pad_along_last_axis(X, m)
399
+
400
+ differences = X[..., 2 * m:] - X[..., : -2 * m:]
401
+
402
+ i = np.arange(1, n+1).astype(float)
403
+ ci = np.ones_like(i)*2
404
+ ci[i <= m] = 1 + (i[i <= m] - 1)/m
405
+ ci[i >= n - m + 1] = 1 + (n - i[i >= n-m+1])/m
406
+
407
+ logs = np.log(n * differences / (ci * m))
408
+ return np.mean(logs, axis=-1)
409
+
410
+
411
+ def _correa_entropy(X, m):
412
+ """Compute the Correa estimator as described in [6]."""
413
+ # No equation number, but referred to as HC_mn
414
+ n = X.shape[-1]
415
+ X = _pad_along_last_axis(X, m)
416
+
417
+ i = np.arange(1, n+1)
418
+ dj = np.arange(-m, m+1)[:, None]
419
+ j = i + dj
420
+ j0 = j + m - 1 # 0-indexed version of j
421
+
422
+ Xibar = np.mean(X[..., j0], axis=-2, keepdims=True)
423
+ difference = X[..., j0] - Xibar
424
+ num = np.sum(difference*dj, axis=-2) # dj is d-i
425
+ den = n*np.sum(difference**2, axis=-2)
426
+ return -np.mean(np.log(num/den), axis=-1)
parrot/lib/python3.10/site-packages/scipy/stats/_fit.py ADDED
@@ -0,0 +1,1354 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import warnings
2
+ from collections import namedtuple
3
+ import numpy as np
4
+ from scipy import optimize, stats
5
+ from scipy._lib._util import check_random_state
6
+
7
+
8
+ def _combine_bounds(name, user_bounds, shape_domain, integral):
9
+ """Intersection of user-defined bounds and distribution PDF/PMF domain"""
10
+
11
+ user_bounds = np.atleast_1d(user_bounds)
12
+
13
+ if user_bounds[0] > user_bounds[1]:
14
+ message = (f"There are no values for `{name}` on the interval "
15
+ f"{list(user_bounds)}.")
16
+ raise ValueError(message)
17
+
18
+ bounds = (max(user_bounds[0], shape_domain[0]),
19
+ min(user_bounds[1], shape_domain[1]))
20
+
21
+ if integral and (np.ceil(bounds[0]) > np.floor(bounds[1])):
22
+ message = (f"There are no integer values for `{name}` on the interval "
23
+ f"defined by the user-provided bounds and the domain "
24
+ "of the distribution.")
25
+ raise ValueError(message)
26
+ elif not integral and (bounds[0] > bounds[1]):
27
+ message = (f"There are no values for `{name}` on the interval "
28
+ f"defined by the user-provided bounds and the domain "
29
+ "of the distribution.")
30
+ raise ValueError(message)
31
+
32
+ if not np.all(np.isfinite(bounds)):
33
+ message = (f"The intersection of user-provided bounds for `{name}` "
34
+ f"and the domain of the distribution is not finite. Please "
35
+ f"provide finite bounds for shape `{name}` in `bounds`.")
36
+ raise ValueError(message)
37
+
38
+ return bounds
39
+
40
+
41
+ class FitResult:
42
+ r"""Result of fitting a discrete or continuous distribution to data
43
+
44
+ Attributes
45
+ ----------
46
+ params : namedtuple
47
+ A namedtuple containing the maximum likelihood estimates of the
48
+ shape parameters, location, and (if applicable) scale of the
49
+ distribution.
50
+ success : bool or None
51
+ Whether the optimizer considered the optimization to terminate
52
+ successfully or not.
53
+ message : str or None
54
+ Any status message provided by the optimizer.
55
+
56
+ """
57
+
58
+ def __init__(self, dist, data, discrete, res):
59
+ self._dist = dist
60
+ self._data = data
61
+ self.discrete = discrete
62
+ self.pxf = getattr(dist, "pmf", None) or getattr(dist, "pdf", None)
63
+
64
+ shape_names = [] if dist.shapes is None else dist.shapes.split(", ")
65
+ if not discrete:
66
+ FitParams = namedtuple('FitParams', shape_names + ['loc', 'scale'])
67
+ else:
68
+ FitParams = namedtuple('FitParams', shape_names + ['loc'])
69
+
70
+ self.params = FitParams(*res.x)
71
+
72
+ # Optimizer can report success even when nllf is infinite
73
+ if res.success and not np.isfinite(self.nllf()):
74
+ res.success = False
75
+ res.message = ("Optimization converged to parameter values that "
76
+ "are inconsistent with the data.")
77
+ self.success = getattr(res, "success", None)
78
+ self.message = getattr(res, "message", None)
79
+
80
+ def __repr__(self):
81
+ keys = ["params", "success", "message"]
82
+ m = max(map(len, keys)) + 1
83
+ return '\n'.join([key.rjust(m) + ': ' + repr(getattr(self, key))
84
+ for key in keys if getattr(self, key) is not None])
85
+
86
+ def nllf(self, params=None, data=None):
87
+ """Negative log-likelihood function
88
+
89
+ Evaluates the negative of the log-likelihood function of the provided
90
+ data at the provided parameters.
91
+
92
+ Parameters
93
+ ----------
94
+ params : tuple, optional
95
+ The shape parameters, location, and (if applicable) scale of the
96
+ distribution as a single tuple. Default is the maximum likelihood
97
+ estimates (``self.params``).
98
+ data : array_like, optional
99
+ The data for which the log-likelihood function is to be evaluated.
100
+ Default is the data to which the distribution was fit.
101
+
102
+ Returns
103
+ -------
104
+ nllf : float
105
+ The negative of the log-likelihood function.
106
+
107
+ """
108
+ params = params if params is not None else self.params
109
+ data = data if data is not None else self._data
110
+ return self._dist.nnlf(theta=params, x=data)
111
+
112
+ def plot(self, ax=None, *, plot_type="hist"):
113
+ """Visually compare the data against the fitted distribution.
114
+
115
+ Available only if `matplotlib` is installed.
116
+
117
+ Parameters
118
+ ----------
119
+ ax : `matplotlib.axes.Axes`
120
+ Axes object to draw the plot onto, otherwise uses the current Axes.
121
+ plot_type : {"hist", "qq", "pp", "cdf"}
122
+ Type of plot to draw. Options include:
123
+
124
+ - "hist": Superposes the PDF/PMF of the fitted distribution
125
+ over a normalized histogram of the data.
126
+ - "qq": Scatter plot of theoretical quantiles against the
127
+ empirical quantiles. Specifically, the x-coordinates are the
128
+ values of the fitted distribution PPF evaluated at the
129
+ percentiles ``(np.arange(1, n) - 0.5)/n``, where ``n`` is the
130
+ number of data points, and the y-coordinates are the sorted
131
+ data points.
132
+ - "pp": Scatter plot of theoretical percentiles against the
133
+ observed percentiles. Specifically, the x-coordinates are the
134
+ percentiles ``(np.arange(1, n) - 0.5)/n``, where ``n`` is
135
+ the number of data points, and the y-coordinates are the values
136
+ of the fitted distribution CDF evaluated at the sorted
137
+ data points.
138
+ - "cdf": Superposes the CDF of the fitted distribution over the
139
+ empirical CDF. Specifically, the x-coordinates of the empirical
140
+ CDF are the sorted data points, and the y-coordinates are the
141
+ percentiles ``(np.arange(1, n) - 0.5)/n``, where ``n`` is
142
+ the number of data points.
143
+
144
+ Returns
145
+ -------
146
+ ax : `matplotlib.axes.Axes`
147
+ The matplotlib Axes object on which the plot was drawn.
148
+
149
+ Examples
150
+ --------
151
+ >>> import numpy as np
152
+ >>> from scipy import stats
153
+ >>> import matplotlib.pyplot as plt # matplotlib must be installed
154
+ >>> rng = np.random.default_rng()
155
+ >>> data = stats.nbinom(5, 0.5).rvs(size=1000, random_state=rng)
156
+ >>> bounds = [(0, 30), (0, 1)]
157
+ >>> res = stats.fit(stats.nbinom, data, bounds)
158
+ >>> ax = res.plot() # save matplotlib Axes object
159
+
160
+ The `matplotlib.axes.Axes` object can be used to customize the plot.
161
+ See `matplotlib.axes.Axes` documentation for details.
162
+
163
+ >>> ax.set_xlabel('number of trials') # customize axis label
164
+ >>> ax.get_children()[0].set_linewidth(5) # customize line widths
165
+ >>> ax.legend()
166
+ >>> plt.show()
167
+ """
168
+ try:
169
+ import matplotlib # noqa: F401
170
+ except ModuleNotFoundError as exc:
171
+ message = "matplotlib must be installed to use method `plot`."
172
+ raise ModuleNotFoundError(message) from exc
173
+
174
+ plots = {'histogram': self._hist_plot, 'qq': self._qq_plot,
175
+ 'pp': self._pp_plot, 'cdf': self._cdf_plot,
176
+ 'hist': self._hist_plot}
177
+ if plot_type.lower() not in plots:
178
+ message = f"`plot_type` must be one of {set(plots.keys())}"
179
+ raise ValueError(message)
180
+ plot = plots[plot_type.lower()]
181
+
182
+ if ax is None:
183
+ import matplotlib.pyplot as plt
184
+ ax = plt.gca()
185
+
186
+ fit_params = np.atleast_1d(self.params)
187
+
188
+ return plot(ax=ax, fit_params=fit_params)
189
+
190
+ def _hist_plot(self, ax, fit_params):
191
+ from matplotlib.ticker import MaxNLocator
192
+
193
+ support = self._dist.support(*fit_params)
194
+ lb = support[0] if np.isfinite(support[0]) else min(self._data)
195
+ ub = support[1] if np.isfinite(support[1]) else max(self._data)
196
+ pxf = "PMF" if self.discrete else "PDF"
197
+
198
+ if self.discrete:
199
+ x = np.arange(lb, ub + 2)
200
+ y = self.pxf(x, *fit_params)
201
+ ax.vlines(x[:-1], 0, y[:-1], label='Fitted Distribution PMF',
202
+ color='C0')
203
+ options = dict(density=True, bins=x, align='left', color='C1')
204
+ ax.xaxis.set_major_locator(MaxNLocator(integer=True))
205
+ ax.set_xlabel('k')
206
+ ax.set_ylabel('PMF')
207
+ else:
208
+ x = np.linspace(lb, ub, 200)
209
+ y = self.pxf(x, *fit_params)
210
+ ax.plot(x, y, '--', label='Fitted Distribution PDF', color='C0')
211
+ options = dict(density=True, bins=50, align='mid', color='C1')
212
+ ax.set_xlabel('x')
213
+ ax.set_ylabel('PDF')
214
+
215
+ if len(self._data) > 50 or self.discrete:
216
+ ax.hist(self._data, label="Histogram of Data", **options)
217
+ else:
218
+ ax.plot(self._data, np.zeros_like(self._data), "*",
219
+ label='Data', color='C1')
220
+
221
+ ax.set_title(rf"Fitted $\tt {self._dist.name}$ {pxf} and Histogram")
222
+ ax.legend(*ax.get_legend_handles_labels())
223
+ return ax
224
+
225
+ def _qp_plot(self, ax, fit_params, qq):
226
+ data = np.sort(self._data)
227
+ ps = self._plotting_positions(len(self._data))
228
+
229
+ if qq:
230
+ qp = "Quantiles"
231
+ plot_type = 'Q-Q'
232
+ x = self._dist.ppf(ps, *fit_params)
233
+ y = data
234
+ else:
235
+ qp = "Percentiles"
236
+ plot_type = 'P-P'
237
+ x = ps
238
+ y = self._dist.cdf(data, *fit_params)
239
+
240
+ ax.plot(x, y, '.', label=f'Fitted Distribution {plot_type}',
241
+ color='C0', zorder=1)
242
+ xlim = ax.get_xlim()
243
+ ylim = ax.get_ylim()
244
+ lim = [min(xlim[0], ylim[0]), max(xlim[1], ylim[1])]
245
+ if not qq:
246
+ lim = max(lim[0], 0), min(lim[1], 1)
247
+
248
+ if self.discrete and qq:
249
+ q_min, q_max = int(lim[0]), int(lim[1]+1)
250
+ q_ideal = np.arange(q_min, q_max)
251
+ # q_ideal = np.unique(self._dist.ppf(ps, *fit_params))
252
+ ax.plot(q_ideal, q_ideal, 'o', label='Reference', color='k',
253
+ alpha=0.25, markerfacecolor='none', clip_on=True)
254
+ elif self.discrete and not qq:
255
+ # The intent of this is to match the plot that would be produced
256
+ # if x were continuous on [0, 1] and y were cdf(ppf(x)).
257
+ # It can be approximated by letting x = np.linspace(0, 1, 1000),
258
+ # but this might not look great when zooming in. The vertical
259
+ # portions are included to indicate where the transition occurs
260
+ # where the data completely obscures the horizontal portions.
261
+ p_min, p_max = lim
262
+ a, b = self._dist.support(*fit_params)
263
+ p_min = max(p_min, 0 if np.isfinite(a) else 1e-3)
264
+ p_max = min(p_max, 1 if np.isfinite(b) else 1-1e-3)
265
+ q_min, q_max = self._dist.ppf([p_min, p_max], *fit_params)
266
+ qs = np.arange(q_min-1, q_max+1)
267
+ ps = self._dist.cdf(qs, *fit_params)
268
+ ax.step(ps, ps, '-', label='Reference', color='k', alpha=0.25,
269
+ clip_on=True)
270
+ else:
271
+ ax.plot(lim, lim, '-', label='Reference', color='k', alpha=0.25,
272
+ clip_on=True)
273
+
274
+ ax.set_xlim(lim)
275
+ ax.set_ylim(lim)
276
+ ax.set_xlabel(rf"Fitted $\tt {self._dist.name}$ Theoretical {qp}")
277
+ ax.set_ylabel(f"Data {qp}")
278
+ ax.set_title(rf"Fitted $\tt {self._dist.name}$ {plot_type} Plot")
279
+ ax.legend(*ax.get_legend_handles_labels())
280
+ ax.set_aspect('equal')
281
+ return ax
282
+
283
+ def _qq_plot(self, **kwargs):
284
+ return self._qp_plot(qq=True, **kwargs)
285
+
286
+ def _pp_plot(self, **kwargs):
287
+ return self._qp_plot(qq=False, **kwargs)
288
+
289
+ def _plotting_positions(self, n, a=.5):
290
+ # See https://en.wikipedia.org/wiki/Q%E2%80%93Q_plot#Plotting_positions
291
+ k = np.arange(1, n+1)
292
+ return (k-a) / (n + 1 - 2*a)
293
+
294
+ def _cdf_plot(self, ax, fit_params):
295
+ data = np.sort(self._data)
296
+ ecdf = self._plotting_positions(len(self._data))
297
+ ls = '--' if len(np.unique(data)) < 30 else '.'
298
+ xlabel = 'k' if self.discrete else 'x'
299
+ ax.step(data, ecdf, ls, label='Empirical CDF', color='C1', zorder=0)
300
+
301
+ xlim = ax.get_xlim()
302
+ q = np.linspace(*xlim, 300)
303
+ tcdf = self._dist.cdf(q, *fit_params)
304
+
305
+ ax.plot(q, tcdf, label='Fitted Distribution CDF', color='C0', zorder=1)
306
+ ax.set_xlim(xlim)
307
+ ax.set_ylim(0, 1)
308
+ ax.set_xlabel(xlabel)
309
+ ax.set_ylabel("CDF")
310
+ ax.set_title(rf"Fitted $\tt {self._dist.name}$ and Empirical CDF")
311
+ handles, labels = ax.get_legend_handles_labels()
312
+ ax.legend(handles[::-1], labels[::-1])
313
+ return ax
314
+
315
+
316
+ def fit(dist, data, bounds=None, *, guess=None, method='mle',
317
+ optimizer=optimize.differential_evolution):
318
+ r"""Fit a discrete or continuous distribution to data
319
+
320
+ Given a distribution, data, and bounds on the parameters of the
321
+ distribution, return maximum likelihood estimates of the parameters.
322
+
323
+ Parameters
324
+ ----------
325
+ dist : `scipy.stats.rv_continuous` or `scipy.stats.rv_discrete`
326
+ The object representing the distribution to be fit to the data.
327
+ data : 1D array_like
328
+ The data to which the distribution is to be fit. If the data contain
329
+ any of ``np.nan``, ``np.inf``, or -``np.inf``, the fit method will
330
+ raise a ``ValueError``.
331
+ bounds : dict or sequence of tuples, optional
332
+ If a dictionary, each key is the name of a parameter of the
333
+ distribution, and the corresponding value is a tuple containing the
334
+ lower and upper bound on that parameter. If the distribution is
335
+ defined only for a finite range of values of that parameter, no entry
336
+ for that parameter is required; e.g., some distributions have
337
+ parameters which must be on the interval [0, 1]. Bounds for parameters
338
+ location (``loc``) and scale (``scale``) are optional; by default,
339
+ they are fixed to 0 and 1, respectively.
340
+
341
+ If a sequence, element *i* is a tuple containing the lower and upper
342
+ bound on the *i*\ th parameter of the distribution. In this case,
343
+ bounds for *all* distribution shape parameters must be provided.
344
+ Optionally, bounds for location and scale may follow the
345
+ distribution shape parameters.
346
+
347
+ If a shape is to be held fixed (e.g. if it is known), the
348
+ lower and upper bounds may be equal. If a user-provided lower or upper
349
+ bound is beyond a bound of the domain for which the distribution is
350
+ defined, the bound of the distribution's domain will replace the
351
+ user-provided value. Similarly, parameters which must be integral
352
+ will be constrained to integral values within the user-provided bounds.
353
+ guess : dict or array_like, optional
354
+ If a dictionary, each key is the name of a parameter of the
355
+ distribution, and the corresponding value is a guess for the value
356
+ of the parameter.
357
+
358
+ If a sequence, element *i* is a guess for the *i*\ th parameter of the
359
+ distribution. In this case, guesses for *all* distribution shape
360
+ parameters must be provided.
361
+
362
+ If `guess` is not provided, guesses for the decision variables will
363
+ not be passed to the optimizer. If `guess` is provided, guesses for
364
+ any missing parameters will be set at the mean of the lower and
365
+ upper bounds. Guesses for parameters which must be integral will be
366
+ rounded to integral values, and guesses that lie outside the
367
+ intersection of the user-provided bounds and the domain of the
368
+ distribution will be clipped.
369
+ method : {'mle', 'mse'}
370
+ With ``method="mle"`` (default), the fit is computed by minimizing
371
+ the negative log-likelihood function. A large, finite penalty
372
+ (rather than infinite negative log-likelihood) is applied for
373
+ observations beyond the support of the distribution.
374
+ With ``method="mse"``, the fit is computed by minimizing
375
+ the negative log-product spacing function. The same penalty is applied
376
+ for observations beyond the support. We follow the approach of [1]_,
377
+ which is generalized for samples with repeated observations.
378
+ optimizer : callable, optional
379
+ `optimizer` is a callable that accepts the following positional
380
+ argument.
381
+
382
+ fun : callable
383
+ The objective function to be optimized. `fun` accepts one argument
384
+ ``x``, candidate shape parameters of the distribution, and returns
385
+ the objective function value given ``x``, `dist`, and the provided
386
+ `data`.
387
+ The job of `optimizer` is to find values of the decision variables
388
+ that minimizes `fun`.
389
+
390
+ `optimizer` must also accept the following keyword argument.
391
+
392
+ bounds : sequence of tuples
393
+ The bounds on values of the decision variables; each element will
394
+ be a tuple containing the lower and upper bound on a decision
395
+ variable.
396
+
397
+ If `guess` is provided, `optimizer` must also accept the following
398
+ keyword argument.
399
+
400
+ x0 : array_like
401
+ The guesses for each decision variable.
402
+
403
+ If the distribution has any shape parameters that must be integral or
404
+ if the distribution is discrete and the location parameter is not
405
+ fixed, `optimizer` must also accept the following keyword argument.
406
+
407
+ integrality : array_like of bools
408
+ For each decision variable, True if the decision variable
409
+ must be constrained to integer values and False if the decision
410
+ variable is continuous.
411
+
412
+ `optimizer` must return an object, such as an instance of
413
+ `scipy.optimize.OptimizeResult`, which holds the optimal values of
414
+ the decision variables in an attribute ``x``. If attributes
415
+ ``fun``, ``status``, or ``message`` are provided, they will be
416
+ included in the result object returned by `fit`.
417
+
418
+ Returns
419
+ -------
420
+ result : `~scipy.stats._result_classes.FitResult`
421
+ An object with the following fields.
422
+
423
+ params : namedtuple
424
+ A namedtuple containing the maximum likelihood estimates of the
425
+ shape parameters, location, and (if applicable) scale of the
426
+ distribution.
427
+ success : bool or None
428
+ Whether the optimizer considered the optimization to terminate
429
+ successfully or not.
430
+ message : str or None
431
+ Any status message provided by the optimizer.
432
+
433
+ The object has the following method:
434
+
435
+ nllf(params=None, data=None)
436
+ By default, the negative log-likehood function at the fitted
437
+ `params` for the given `data`. Accepts a tuple containing
438
+ alternative shapes, location, and scale of the distribution and
439
+ an array of alternative data.
440
+
441
+ plot(ax=None)
442
+ Superposes the PDF/PMF of the fitted distribution over a normalized
443
+ histogram of the data.
444
+
445
+ See Also
446
+ --------
447
+ rv_continuous, rv_discrete
448
+
449
+ Notes
450
+ -----
451
+ Optimization is more likely to converge to the maximum likelihood estimate
452
+ when the user provides tight bounds containing the maximum likelihood
453
+ estimate. For example, when fitting a binomial distribution to data, the
454
+ number of experiments underlying each sample may be known, in which case
455
+ the corresponding shape parameter ``n`` can be fixed.
456
+
457
+ References
458
+ ----------
459
+ .. [1] Shao, Yongzhao, and Marjorie G. Hahn. "Maximum product of spacings
460
+ method: a unified formulation with illustration of strong
461
+ consistency." Illinois Journal of Mathematics 43.3 (1999): 489-499.
462
+
463
+ Examples
464
+ --------
465
+ Suppose we wish to fit a distribution to the following data.
466
+
467
+ >>> import numpy as np
468
+ >>> from scipy import stats
469
+ >>> rng = np.random.default_rng()
470
+ >>> dist = stats.nbinom
471
+ >>> shapes = (5, 0.5)
472
+ >>> data = dist.rvs(*shapes, size=1000, random_state=rng)
473
+
474
+ Suppose we do not know how the data were generated, but we suspect that
475
+ it follows a negative binomial distribution with parameters *n* and *p*\.
476
+ (See `scipy.stats.nbinom`.) We believe that the parameter *n* was fewer
477
+ than 30, and we know that the parameter *p* must lie on the interval
478
+ [0, 1]. We record this information in a variable `bounds` and pass
479
+ this information to `fit`.
480
+
481
+ >>> bounds = [(0, 30), (0, 1)]
482
+ >>> res = stats.fit(dist, data, bounds)
483
+
484
+ `fit` searches within the user-specified `bounds` for the
485
+ values that best match the data (in the sense of maximum likelihood
486
+ estimation). In this case, it found shape values similar to those
487
+ from which the data were actually generated.
488
+
489
+ >>> res.params
490
+ FitParams(n=5.0, p=0.5028157644634368, loc=0.0) # may vary
491
+
492
+ We can visualize the results by superposing the probability mass function
493
+ of the distribution (with the shapes fit to the data) over a normalized
494
+ histogram of the data.
495
+
496
+ >>> import matplotlib.pyplot as plt # matplotlib must be installed to plot
497
+ >>> res.plot()
498
+ >>> plt.show()
499
+
500
+ Note that the estimate for *n* was exactly integral; this is because
501
+ the domain of the `nbinom` PMF includes only integral *n*, and the `nbinom`
502
+ object "knows" that. `nbinom` also knows that the shape *p* must be a
503
+ value between 0 and 1. In such a case - when the domain of the distribution
504
+ with respect to a parameter is finite - we are not required to specify
505
+ bounds for the parameter.
506
+
507
+ >>> bounds = {'n': (0, 30)} # omit parameter p using a `dict`
508
+ >>> res2 = stats.fit(dist, data, bounds)
509
+ >>> res2.params
510
+ FitParams(n=5.0, p=0.5016492009232932, loc=0.0) # may vary
511
+
512
+ If we wish to force the distribution to be fit with *n* fixed at 6, we can
513
+ set both the lower and upper bounds on *n* to 6. Note, however, that the
514
+ value of the objective function being optimized is typically worse (higher)
515
+ in this case.
516
+
517
+ >>> bounds = {'n': (6, 6)} # fix parameter `n`
518
+ >>> res3 = stats.fit(dist, data, bounds)
519
+ >>> res3.params
520
+ FitParams(n=6.0, p=0.5486556076755706, loc=0.0) # may vary
521
+ >>> res3.nllf() > res.nllf()
522
+ True # may vary
523
+
524
+ Note that the numerical results of the previous examples are typical, but
525
+ they may vary because the default optimizer used by `fit`,
526
+ `scipy.optimize.differential_evolution`, is stochastic. However, we can
527
+ customize the settings used by the optimizer to ensure reproducibility -
528
+ or even use a different optimizer entirely - using the `optimizer`
529
+ parameter.
530
+
531
+ >>> from scipy.optimize import differential_evolution
532
+ >>> rng = np.random.default_rng(767585560716548)
533
+ >>> def optimizer(fun, bounds, *, integrality):
534
+ ... return differential_evolution(fun, bounds, strategy='best2bin',
535
+ ... seed=rng, integrality=integrality)
536
+ >>> bounds = [(0, 30), (0, 1)]
537
+ >>> res4 = stats.fit(dist, data, bounds, optimizer=optimizer)
538
+ >>> res4.params
539
+ FitParams(n=5.0, p=0.5015183149259951, loc=0.0)
540
+
541
+ """
542
+ # --- Input Validation / Standardization --- #
543
+ user_bounds = bounds
544
+ user_guess = guess
545
+
546
+ # distribution input validation and information collection
547
+ if hasattr(dist, "pdf"): # can't use isinstance for types
548
+ default_bounds = {'loc': (0, 0), 'scale': (1, 1)}
549
+ discrete = False
550
+ elif hasattr(dist, "pmf"):
551
+ default_bounds = {'loc': (0, 0)}
552
+ discrete = True
553
+ else:
554
+ message = ("`dist` must be an instance of `rv_continuous` "
555
+ "or `rv_discrete.`")
556
+ raise ValueError(message)
557
+
558
+ try:
559
+ param_info = dist._param_info()
560
+ except AttributeError as e:
561
+ message = (f"Distribution `{dist.name}` is not yet supported by "
562
+ "`scipy.stats.fit` because shape information has "
563
+ "not been defined.")
564
+ raise ValueError(message) from e
565
+
566
+ # data input validation
567
+ data = np.asarray(data)
568
+ if data.ndim != 1:
569
+ message = "`data` must be exactly one-dimensional."
570
+ raise ValueError(message)
571
+ if not (np.issubdtype(data.dtype, np.number)
572
+ and np.all(np.isfinite(data))):
573
+ message = "All elements of `data` must be finite numbers."
574
+ raise ValueError(message)
575
+
576
+ # bounds input validation and information collection
577
+ n_params = len(param_info)
578
+ n_shapes = n_params - (1 if discrete else 2)
579
+ param_list = [param.name for param in param_info]
580
+ param_names = ", ".join(param_list)
581
+ shape_names = ", ".join(param_list[:n_shapes])
582
+
583
+ if user_bounds is None:
584
+ user_bounds = {}
585
+
586
+ if isinstance(user_bounds, dict):
587
+ default_bounds.update(user_bounds)
588
+ user_bounds = default_bounds
589
+ user_bounds_array = np.empty((n_params, 2))
590
+ for i in range(n_params):
591
+ param_name = param_info[i].name
592
+ user_bound = user_bounds.pop(param_name, None)
593
+ if user_bound is None:
594
+ user_bound = param_info[i].domain
595
+ user_bounds_array[i] = user_bound
596
+ if user_bounds:
597
+ message = ("Bounds provided for the following unrecognized "
598
+ f"parameters will be ignored: {set(user_bounds)}")
599
+ warnings.warn(message, RuntimeWarning, stacklevel=2)
600
+
601
+ else:
602
+ try:
603
+ user_bounds = np.asarray(user_bounds, dtype=float)
604
+ if user_bounds.size == 0:
605
+ user_bounds = np.empty((0, 2))
606
+ except ValueError as e:
607
+ message = ("Each element of a `bounds` sequence must be a tuple "
608
+ "containing two elements: the lower and upper bound of "
609
+ "a distribution parameter.")
610
+ raise ValueError(message) from e
611
+ if (user_bounds.ndim != 2 or user_bounds.shape[1] != 2):
612
+ message = ("Each element of `bounds` must be a tuple specifying "
613
+ "the lower and upper bounds of a shape parameter")
614
+ raise ValueError(message)
615
+ if user_bounds.shape[0] < n_shapes:
616
+ message = (f"A `bounds` sequence must contain at least {n_shapes} "
617
+ "elements: tuples specifying the lower and upper "
618
+ f"bounds of all shape parameters {shape_names}.")
619
+ raise ValueError(message)
620
+ if user_bounds.shape[0] > n_params:
621
+ message = ("A `bounds` sequence may not contain more than "
622
+ f"{n_params} elements: tuples specifying the lower and "
623
+ "upper bounds of distribution parameters "
624
+ f"{param_names}.")
625
+ raise ValueError(message)
626
+
627
+ user_bounds_array = np.empty((n_params, 2))
628
+ user_bounds_array[n_shapes:] = list(default_bounds.values())
629
+ user_bounds_array[:len(user_bounds)] = user_bounds
630
+
631
+ user_bounds = user_bounds_array
632
+ validated_bounds = []
633
+ for i in range(n_params):
634
+ name = param_info[i].name
635
+ user_bound = user_bounds_array[i]
636
+ param_domain = param_info[i].domain
637
+ integral = param_info[i].integrality
638
+ combined = _combine_bounds(name, user_bound, param_domain, integral)
639
+ validated_bounds.append(combined)
640
+
641
+ bounds = np.asarray(validated_bounds)
642
+ integrality = [param.integrality for param in param_info]
643
+
644
+ # guess input validation
645
+
646
+ if user_guess is None:
647
+ guess_array = None
648
+ elif isinstance(user_guess, dict):
649
+ default_guess = {param.name: np.mean(bound)
650
+ for param, bound in zip(param_info, bounds)}
651
+ unrecognized = set(user_guess) - set(default_guess)
652
+ if unrecognized:
653
+ message = ("Guesses provided for the following unrecognized "
654
+ f"parameters will be ignored: {unrecognized}")
655
+ warnings.warn(message, RuntimeWarning, stacklevel=2)
656
+ default_guess.update(user_guess)
657
+
658
+ message = ("Each element of `guess` must be a scalar "
659
+ "guess for a distribution parameter.")
660
+ try:
661
+ guess_array = np.asarray([default_guess[param.name]
662
+ for param in param_info], dtype=float)
663
+ except ValueError as e:
664
+ raise ValueError(message) from e
665
+
666
+ else:
667
+ message = ("Each element of `guess` must be a scalar "
668
+ "guess for a distribution parameter.")
669
+ try:
670
+ user_guess = np.asarray(user_guess, dtype=float)
671
+ except ValueError as e:
672
+ raise ValueError(message) from e
673
+ if user_guess.ndim != 1:
674
+ raise ValueError(message)
675
+ if user_guess.shape[0] < n_shapes:
676
+ message = (f"A `guess` sequence must contain at least {n_shapes} "
677
+ "elements: scalar guesses for the distribution shape "
678
+ f"parameters {shape_names}.")
679
+ raise ValueError(message)
680
+ if user_guess.shape[0] > n_params:
681
+ message = ("A `guess` sequence may not contain more than "
682
+ f"{n_params} elements: scalar guesses for the "
683
+ f"distribution parameters {param_names}.")
684
+ raise ValueError(message)
685
+
686
+ guess_array = np.mean(bounds, axis=1)
687
+ guess_array[:len(user_guess)] = user_guess
688
+
689
+ if guess_array is not None:
690
+ guess_rounded = guess_array.copy()
691
+
692
+ guess_rounded[integrality] = np.round(guess_rounded[integrality])
693
+ rounded = np.where(guess_rounded != guess_array)[0]
694
+ for i in rounded:
695
+ message = (f"Guess for parameter `{param_info[i].name}` "
696
+ f"rounded from {guess_array[i]} to {guess_rounded[i]}.")
697
+ warnings.warn(message, RuntimeWarning, stacklevel=2)
698
+
699
+ guess_clipped = np.clip(guess_rounded, bounds[:, 0], bounds[:, 1])
700
+ clipped = np.where(guess_clipped != guess_rounded)[0]
701
+ for i in clipped:
702
+ message = (f"Guess for parameter `{param_info[i].name}` "
703
+ f"clipped from {guess_rounded[i]} to "
704
+ f"{guess_clipped[i]}.")
705
+ warnings.warn(message, RuntimeWarning, stacklevel=2)
706
+
707
+ guess = guess_clipped
708
+ else:
709
+ guess = None
710
+
711
+ # --- Fitting --- #
712
+ def nllf(free_params, data=data): # bind data NOW
713
+ with np.errstate(invalid='ignore', divide='ignore'):
714
+ return dist._penalized_nnlf(free_params, data)
715
+
716
+ def nlpsf(free_params, data=data): # bind data NOW
717
+ with np.errstate(invalid='ignore', divide='ignore'):
718
+ return dist._penalized_nlpsf(free_params, data)
719
+
720
+ methods = {'mle': nllf, 'mse': nlpsf}
721
+ objective = methods[method.lower()]
722
+
723
+ with np.errstate(invalid='ignore', divide='ignore'):
724
+ kwds = {}
725
+ if bounds is not None:
726
+ kwds['bounds'] = bounds
727
+ if np.any(integrality):
728
+ kwds['integrality'] = integrality
729
+ if guess is not None:
730
+ kwds['x0'] = guess
731
+ res = optimizer(objective, **kwds)
732
+
733
+ return FitResult(dist, data, discrete, res)
734
+
735
+
736
+ GoodnessOfFitResult = namedtuple('GoodnessOfFitResult',
737
+ ('fit_result', 'statistic', 'pvalue',
738
+ 'null_distribution'))
739
+
740
+
741
+ def goodness_of_fit(dist, data, *, known_params=None, fit_params=None,
742
+ guessed_params=None, statistic='ad', n_mc_samples=9999,
743
+ random_state=None):
744
+ r"""
745
+ Perform a goodness of fit test comparing data to a distribution family.
746
+
747
+ Given a distribution family and data, perform a test of the null hypothesis
748
+ that the data were drawn from a distribution in that family. Any known
749
+ parameters of the distribution may be specified. Remaining parameters of
750
+ the distribution will be fit to the data, and the p-value of the test
751
+ is computed accordingly. Several statistics for comparing the distribution
752
+ to data are available.
753
+
754
+ Parameters
755
+ ----------
756
+ dist : `scipy.stats.rv_continuous`
757
+ The object representing the distribution family under the null
758
+ hypothesis.
759
+ data : 1D array_like
760
+ Finite, uncensored data to be tested.
761
+ known_params : dict, optional
762
+ A dictionary containing name-value pairs of known distribution
763
+ parameters. Monte Carlo samples are randomly drawn from the
764
+ null-hypothesized distribution with these values of the parameters.
765
+ Before the statistic is evaluated for each Monte Carlo sample, only
766
+ remaining unknown parameters of the null-hypothesized distribution
767
+ family are fit to the samples; the known parameters are held fixed.
768
+ If all parameters of the distribution family are known, then the step
769
+ of fitting the distribution family to each sample is omitted.
770
+ fit_params : dict, optional
771
+ A dictionary containing name-value pairs of distribution parameters
772
+ that have already been fit to the data, e.g. using `scipy.stats.fit`
773
+ or the ``fit`` method of `dist`. Monte Carlo samples are drawn from the
774
+ null-hypothesized distribution with these specified values of the
775
+ parameter. On those Monte Carlo samples, however, these and all other
776
+ unknown parameters of the null-hypothesized distribution family are
777
+ fit before the statistic is evaluated.
778
+ guessed_params : dict, optional
779
+ A dictionary containing name-value pairs of distribution parameters
780
+ which have been guessed. These parameters are always considered as
781
+ free parameters and are fit both to the provided `data` as well as
782
+ to the Monte Carlo samples drawn from the null-hypothesized
783
+ distribution. The purpose of these `guessed_params` is to be used as
784
+ initial values for the numerical fitting procedure.
785
+ statistic : {"ad", "ks", "cvm", "filliben"} or callable, optional
786
+ The statistic used to compare data to a distribution after fitting
787
+ unknown parameters of the distribution family to the data. The
788
+ Anderson-Darling ("ad") [1]_, Kolmogorov-Smirnov ("ks") [1]_,
789
+ Cramer-von Mises ("cvm") [1]_, and Filliben ("filliben") [7]_
790
+ statistics are available. Alternatively, a callable with signature
791
+ ``(dist, data, axis)`` may be supplied to compute the statistic. Here
792
+ ``dist`` is a frozen distribution object (potentially with array
793
+ parameters), ``data`` is an array of Monte Carlo samples (of
794
+ compatible shape), and ``axis`` is the axis of ``data`` along which
795
+ the statistic must be computed.
796
+ n_mc_samples : int, default: 9999
797
+ The number of Monte Carlo samples drawn from the null hypothesized
798
+ distribution to form the null distribution of the statistic. The
799
+ sample size of each is the same as the given `data`.
800
+ random_state : {None, int, `numpy.random.Generator`,
801
+ `numpy.random.RandomState`}, optional
802
+
803
+ Pseudorandom number generator state used to generate the Monte Carlo
804
+ samples.
805
+
806
+ If `random_state` is ``None`` (default), the
807
+ `numpy.random.RandomState` singleton is used.
808
+ If `random_state` is an int, a new ``RandomState`` instance is used,
809
+ seeded with `random_state`.
810
+ If `random_state` is already a ``Generator`` or ``RandomState``
811
+ instance, then the provided instance is used.
812
+
813
+ Returns
814
+ -------
815
+ res : GoodnessOfFitResult
816
+ An object with the following attributes.
817
+
818
+ fit_result : `~scipy.stats._result_classes.FitResult`
819
+ An object representing the fit of the provided `dist` to `data`.
820
+ This object includes the values of distribution family parameters
821
+ that fully define the null-hypothesized distribution, that is,
822
+ the distribution from which Monte Carlo samples are drawn.
823
+ statistic : float
824
+ The value of the statistic comparing provided `data` to the
825
+ null-hypothesized distribution.
826
+ pvalue : float
827
+ The proportion of elements in the null distribution with
828
+ statistic values at least as extreme as the statistic value of the
829
+ provided `data`.
830
+ null_distribution : ndarray
831
+ The value of the statistic for each Monte Carlo sample
832
+ drawn from the null-hypothesized distribution.
833
+
834
+ Notes
835
+ -----
836
+ This is a generalized Monte Carlo goodness-of-fit procedure, special cases
837
+ of which correspond with various Anderson-Darling tests, Lilliefors' test,
838
+ etc. The test is described in [2]_, [3]_, and [4]_ as a parametric
839
+ bootstrap test. This is a Monte Carlo test in which parameters that
840
+ specify the distribution from which samples are drawn have been estimated
841
+ from the data. We describe the test using "Monte Carlo" rather than
842
+ "parametric bootstrap" throughout to avoid confusion with the more familiar
843
+ nonparametric bootstrap, and describe how the test is performed below.
844
+
845
+ *Traditional goodness of fit tests*
846
+
847
+ Traditionally, critical values corresponding with a fixed set of
848
+ significance levels are pre-calculated using Monte Carlo methods. Users
849
+ perform the test by calculating the value of the test statistic only for
850
+ their observed `data` and comparing this value to tabulated critical
851
+ values. This practice is not very flexible, as tables are not available for
852
+ all distributions and combinations of known and unknown parameter values.
853
+ Also, results can be inaccurate when critical values are interpolated from
854
+ limited tabulated data to correspond with the user's sample size and
855
+ fitted parameter values. To overcome these shortcomings, this function
856
+ allows the user to perform the Monte Carlo trials adapted to their
857
+ particular data.
858
+
859
+ *Algorithmic overview*
860
+
861
+ In brief, this routine executes the following steps:
862
+
863
+ 1. Fit unknown parameters to the given `data`, thereby forming the
864
+ "null-hypothesized" distribution, and compute the statistic of
865
+ this pair of data and distribution.
866
+ 2. Draw random samples from this null-hypothesized distribution.
867
+ 3. Fit the unknown parameters to each random sample.
868
+ 4. Calculate the statistic between each sample and the distribution that
869
+ has been fit to the sample.
870
+ 5. Compare the value of the statistic corresponding with `data` from (1)
871
+ against the values of the statistic corresponding with the random
872
+ samples from (4). The p-value is the proportion of samples with a
873
+ statistic value greater than or equal to the statistic of the observed
874
+ data.
875
+
876
+ In more detail, the steps are as follows.
877
+
878
+ First, any unknown parameters of the distribution family specified by
879
+ `dist` are fit to the provided `data` using maximum likelihood estimation.
880
+ (One exception is the normal distribution with unknown location and scale:
881
+ we use the bias-corrected standard deviation ``np.std(data, ddof=1)`` for
882
+ the scale as recommended in [1]_.)
883
+ These values of the parameters specify a particular member of the
884
+ distribution family referred to as the "null-hypothesized distribution",
885
+ that is, the distribution from which the data were sampled under the null
886
+ hypothesis. The `statistic`, which compares data to a distribution, is
887
+ computed between `data` and the null-hypothesized distribution.
888
+
889
+ Next, many (specifically `n_mc_samples`) new samples, each containing the
890
+ same number of observations as `data`, are drawn from the
891
+ null-hypothesized distribution. All unknown parameters of the distribution
892
+ family `dist` are fit to *each resample*, and the `statistic` is computed
893
+ between each sample and its corresponding fitted distribution. These
894
+ values of the statistic form the Monte Carlo null distribution (not to be
895
+ confused with the "null-hypothesized distribution" above).
896
+
897
+ The p-value of the test is the proportion of statistic values in the Monte
898
+ Carlo null distribution that are at least as extreme as the statistic value
899
+ of the provided `data`. More precisely, the p-value is given by
900
+
901
+ .. math::
902
+
903
+ p = \frac{b + 1}
904
+ {m + 1}
905
+
906
+ where :math:`b` is the number of statistic values in the Monte Carlo null
907
+ distribution that are greater than or equal to the statistic value
908
+ calculated for `data`, and :math:`m` is the number of elements in the
909
+ Monte Carlo null distribution (`n_mc_samples`). The addition of :math:`1`
910
+ to the numerator and denominator can be thought of as including the
911
+ value of the statistic corresponding with `data` in the null distribution,
912
+ but a more formal explanation is given in [5]_.
913
+
914
+ *Limitations*
915
+
916
+ The test can be very slow for some distribution families because unknown
917
+ parameters of the distribution family must be fit to each of the Monte
918
+ Carlo samples, and for most distributions in SciPy, distribution fitting
919
+ performed via numerical optimization.
920
+
921
+ *Anti-Pattern*
922
+
923
+ For this reason, it may be tempting
924
+ to treat parameters of the distribution pre-fit to `data` (by the user)
925
+ as though they were `known_params`, as specification of all parameters of
926
+ the distribution precludes the need to fit the distribution to each Monte
927
+ Carlo sample. (This is essentially how the original Kilmogorov-Smirnov
928
+ test is performed.) Although such a test can provide evidence against the
929
+ null hypothesis, the test is conservative in the sense that small p-values
930
+ will tend to (greatly) *overestimate* the probability of making a type I
931
+ error (that is, rejecting the null hypothesis although it is true), and the
932
+ power of the test is low (that is, it is less likely to reject the null
933
+ hypothesis even when the null hypothesis is false).
934
+ This is because the Monte Carlo samples are less likely to agree with the
935
+ null-hypothesized distribution as well as `data`. This tends to increase
936
+ the values of the statistic recorded in the null distribution, so that a
937
+ larger number of them exceed the value of statistic for `data`, thereby
938
+ inflating the p-value.
939
+
940
+ References
941
+ ----------
942
+ .. [1] M. A. Stephens (1974). "EDF Statistics for Goodness of Fit and
943
+ Some Comparisons." Journal of the American Statistical Association,
944
+ Vol. 69, pp. 730-737.
945
+ .. [2] W. Stute, W. G. Manteiga, and M. P. Quindimil (1993).
946
+ "Bootstrap based goodness-of-fit-tests." Metrika 40.1: 243-256.
947
+ .. [3] C. Genest, & B Rémillard. (2008). "Validity of the parametric
948
+ bootstrap for goodness-of-fit testing in semiparametric models."
949
+ Annales de l'IHP Probabilités et statistiques. Vol. 44. No. 6.
950
+ .. [4] I. Kojadinovic and J. Yan (2012). "Goodness-of-fit testing based on
951
+ a weighted bootstrap: A fast large-sample alternative to the
952
+ parametric bootstrap." Canadian Journal of Statistics 40.3: 480-500.
953
+ .. [5] B. Phipson and G. K. Smyth (2010). "Permutation P-values Should
954
+ Never Be Zero: Calculating Exact P-values When Permutations Are
955
+ Randomly Drawn." Statistical Applications in Genetics and Molecular
956
+ Biology 9.1.
957
+ .. [6] H. W. Lilliefors (1967). "On the Kolmogorov-Smirnov test for
958
+ normality with mean and variance unknown." Journal of the American
959
+ statistical Association 62.318: 399-402.
960
+ .. [7] Filliben, James J. "The probability plot correlation coefficient
961
+ test for normality." Technometrics 17.1 (1975): 111-117.
962
+
963
+ Examples
964
+ --------
965
+ A well-known test of the null hypothesis that data were drawn from a
966
+ given distribution is the Kolmogorov-Smirnov (KS) test, available in SciPy
967
+ as `scipy.stats.ks_1samp`. Suppose we wish to test whether the following
968
+ data:
969
+
970
+ >>> import numpy as np
971
+ >>> from scipy import stats
972
+ >>> rng = np.random.default_rng()
973
+ >>> x = stats.uniform.rvs(size=75, random_state=rng)
974
+
975
+ were sampled from a normal distribution. To perform a KS test, the
976
+ empirical distribution function of the observed data will be compared
977
+ against the (theoretical) cumulative distribution function of a normal
978
+ distribution. Of course, to do this, the normal distribution under the null
979
+ hypothesis must be fully specified. This is commonly done by first fitting
980
+ the ``loc`` and ``scale`` parameters of the distribution to the observed
981
+ data, then performing the test.
982
+
983
+ >>> loc, scale = np.mean(x), np.std(x, ddof=1)
984
+ >>> cdf = stats.norm(loc, scale).cdf
985
+ >>> stats.ks_1samp(x, cdf)
986
+ KstestResult(statistic=0.1119257570456813,
987
+ pvalue=0.2827756409939257,
988
+ statistic_location=0.7751845155861765,
989
+ statistic_sign=-1)
990
+
991
+ An advantage of the KS-test is that the p-value - the probability of
992
+ obtaining a value of the test statistic under the null hypothesis as
993
+ extreme as the value obtained from the observed data - can be calculated
994
+ exactly and efficiently. `goodness_of_fit` can only approximate these
995
+ results.
996
+
997
+ >>> known_params = {'loc': loc, 'scale': scale}
998
+ >>> res = stats.goodness_of_fit(stats.norm, x, known_params=known_params,
999
+ ... statistic='ks', random_state=rng)
1000
+ >>> res.statistic, res.pvalue
1001
+ (0.1119257570456813, 0.2788)
1002
+
1003
+ The statistic matches exactly, but the p-value is estimated by forming
1004
+ a "Monte Carlo null distribution", that is, by explicitly drawing random
1005
+ samples from `scipy.stats.norm` with the provided parameters and
1006
+ calculating the stastic for each. The fraction of these statistic values
1007
+ at least as extreme as ``res.statistic`` approximates the exact p-value
1008
+ calculated by `scipy.stats.ks_1samp`.
1009
+
1010
+ However, in many cases, we would prefer to test only that the data were
1011
+ sampled from one of *any* member of the normal distribution family, not
1012
+ specifically from the normal distribution with the location and scale
1013
+ fitted to the observed sample. In this case, Lilliefors [6]_ argued that
1014
+ the KS test is far too conservative (that is, the p-value overstates
1015
+ the actual probability of rejecting a true null hypothesis) and thus lacks
1016
+ power - the ability to reject the null hypothesis when the null hypothesis
1017
+ is actually false.
1018
+ Indeed, our p-value above is approximately 0.28, which is far too large
1019
+ to reject the null hypothesis at any common significance level.
1020
+
1021
+ Consider why this might be. Note that in the KS test above, the statistic
1022
+ always compares data against the CDF of a normal distribution fitted to the
1023
+ *observed data*. This tends to reduce the value of the statistic for the
1024
+ observed data, but it is "unfair" when computing the statistic for other
1025
+ samples, such as those we randomly draw to form the Monte Carlo null
1026
+ distribution. It is easy to correct for this: whenever we compute the KS
1027
+ statistic of a sample, we use the CDF of a normal distribution fitted
1028
+ to *that sample*. The null distribution in this case has not been
1029
+ calculated exactly and is tyically approximated using Monte Carlo methods
1030
+ as described above. This is where `goodness_of_fit` excels.
1031
+
1032
+ >>> res = stats.goodness_of_fit(stats.norm, x, statistic='ks',
1033
+ ... random_state=rng)
1034
+ >>> res.statistic, res.pvalue
1035
+ (0.1119257570456813, 0.0196)
1036
+
1037
+ Indeed, this p-value is much smaller, and small enough to (correctly)
1038
+ reject the null hypothesis at common significance levels, including 5% and
1039
+ 2.5%.
1040
+
1041
+ However, the KS statistic is not very sensitive to all deviations from
1042
+ normality. The original advantage of the KS statistic was the ability
1043
+ to compute the null distribution theoretically, but a more sensitive
1044
+ statistic - resulting in a higher test power - can be used now that we can
1045
+ approximate the null distribution
1046
+ computationally. The Anderson-Darling statistic [1]_ tends to be more
1047
+ sensitive, and critical values of the this statistic have been tabulated
1048
+ for various significance levels and sample sizes using Monte Carlo methods.
1049
+
1050
+ >>> res = stats.anderson(x, 'norm')
1051
+ >>> print(res.statistic)
1052
+ 1.2139573337497467
1053
+ >>> print(res.critical_values)
1054
+ [0.549 0.625 0.75 0.875 1.041]
1055
+ >>> print(res.significance_level)
1056
+ [15. 10. 5. 2.5 1. ]
1057
+
1058
+ Here, the observed value of the statistic exceeds the critical value
1059
+ corresponding with a 1% significance level. This tells us that the p-value
1060
+ of the observed data is less than 1%, but what is it? We could interpolate
1061
+ from these (already-interpolated) values, but `goodness_of_fit` can
1062
+ estimate it directly.
1063
+
1064
+ >>> res = stats.goodness_of_fit(stats.norm, x, statistic='ad',
1065
+ ... random_state=rng)
1066
+ >>> res.statistic, res.pvalue
1067
+ (1.2139573337497467, 0.0034)
1068
+
1069
+ A further advantage is that use of `goodness_of_fit` is not limited to
1070
+ a particular set of distributions or conditions on which parameters
1071
+ are known versus which must be estimated from data. Instead,
1072
+ `goodness_of_fit` can estimate p-values relatively quickly for any
1073
+ distribution with a sufficiently fast and reliable ``fit`` method. For
1074
+ instance, here we perform a goodness of fit test using the Cramer-von Mises
1075
+ statistic against the Rayleigh distribution with known location and unknown
1076
+ scale.
1077
+
1078
+ >>> rng = np.random.default_rng()
1079
+ >>> x = stats.chi(df=2.2, loc=0, scale=2).rvs(size=1000, random_state=rng)
1080
+ >>> res = stats.goodness_of_fit(stats.rayleigh, x, statistic='cvm',
1081
+ ... known_params={'loc': 0}, random_state=rng)
1082
+
1083
+ This executes fairly quickly, but to check the reliability of the ``fit``
1084
+ method, we should inspect the fit result.
1085
+
1086
+ >>> res.fit_result # location is as specified, and scale is reasonable
1087
+ params: FitParams(loc=0.0, scale=2.1026719844231243)
1088
+ success: True
1089
+ message: 'The fit was performed successfully.'
1090
+ >>> import matplotlib.pyplot as plt # matplotlib must be installed to plot
1091
+ >>> res.fit_result.plot()
1092
+ >>> plt.show()
1093
+
1094
+ If the distribution is not fit to the observed data as well as possible,
1095
+ the test may not control the type I error rate, that is, the chance of
1096
+ rejecting the null hypothesis even when it is true.
1097
+
1098
+ We should also look for extreme outliers in the null distribution that
1099
+ may be caused by unreliable fitting. These do not necessarily invalidate
1100
+ the result, but they tend to reduce the test's power.
1101
+
1102
+ >>> _, ax = plt.subplots()
1103
+ >>> ax.hist(np.log10(res.null_distribution))
1104
+ >>> ax.set_xlabel("log10 of CVM statistic under the null hypothesis")
1105
+ >>> ax.set_ylabel("Frequency")
1106
+ >>> ax.set_title("Histogram of the Monte Carlo null distribution")
1107
+ >>> plt.show()
1108
+
1109
+ This plot seems reassuring.
1110
+
1111
+ If ``fit`` method is working reliably, and if the distribution of the test
1112
+ statistic is not particularly sensitive to the values of the fitted
1113
+ parameters, then the p-value provided by `goodness_of_fit` is expected to
1114
+ be a good approximation.
1115
+
1116
+ >>> res.statistic, res.pvalue
1117
+ (0.2231991510248692, 0.0525)
1118
+
1119
+ """
1120
+ args = _gof_iv(dist, data, known_params, fit_params, guessed_params,
1121
+ statistic, n_mc_samples, random_state)
1122
+ (dist, data, fixed_nhd_params, fixed_rfd_params, guessed_nhd_params,
1123
+ guessed_rfd_params, statistic, n_mc_samples_int, random_state) = args
1124
+
1125
+ # Fit null hypothesis distribution to data
1126
+ nhd_fit_fun = _get_fit_fun(dist, data, guessed_nhd_params,
1127
+ fixed_nhd_params)
1128
+ nhd_vals = nhd_fit_fun(data)
1129
+ nhd_dist = dist(*nhd_vals)
1130
+
1131
+ def rvs(size):
1132
+ return nhd_dist.rvs(size=size, random_state=random_state)
1133
+
1134
+ # Define statistic
1135
+ fit_fun = _get_fit_fun(dist, data, guessed_rfd_params, fixed_rfd_params)
1136
+ if callable(statistic):
1137
+ compare_fun = statistic
1138
+ else:
1139
+ compare_fun = _compare_dict[statistic]
1140
+ alternative = getattr(compare_fun, 'alternative', 'greater')
1141
+
1142
+ def statistic_fun(data, axis):
1143
+ # Make things simple by always working along the last axis.
1144
+ data = np.moveaxis(data, axis, -1)
1145
+ rfd_vals = fit_fun(data)
1146
+ rfd_dist = dist(*rfd_vals)
1147
+ return compare_fun(rfd_dist, data, axis=-1)
1148
+
1149
+ res = stats.monte_carlo_test(data, rvs, statistic_fun, vectorized=True,
1150
+ n_resamples=n_mc_samples, axis=-1,
1151
+ alternative=alternative)
1152
+ opt_res = optimize.OptimizeResult()
1153
+ opt_res.success = True
1154
+ opt_res.message = "The fit was performed successfully."
1155
+ opt_res.x = nhd_vals
1156
+ # Only continuous distributions for now, hence discrete=False
1157
+ # There's no fundamental limitation; it's just that we're not using
1158
+ # stats.fit, discrete distributions don't have `fit` method, and
1159
+ # we haven't written any vectorized fit functions for a discrete
1160
+ # distribution yet.
1161
+ return GoodnessOfFitResult(FitResult(dist, data, False, opt_res),
1162
+ res.statistic, res.pvalue,
1163
+ res.null_distribution)
1164
+
1165
+
1166
+ def _get_fit_fun(dist, data, guessed_params, fixed_params):
1167
+
1168
+ shape_names = [] if dist.shapes is None else dist.shapes.split(", ")
1169
+ param_names = shape_names + ['loc', 'scale']
1170
+ fparam_names = ['f'+name for name in param_names]
1171
+ all_fixed = not set(fparam_names).difference(fixed_params)
1172
+ guessed_shapes = [guessed_params.pop(x, None)
1173
+ for x in shape_names if x in guessed_params]
1174
+
1175
+ if all_fixed:
1176
+ def fit_fun(data):
1177
+ return [fixed_params[name] for name in fparam_names]
1178
+ # Define statistic, including fitting distribution to data
1179
+ elif dist in _fit_funs:
1180
+ def fit_fun(data):
1181
+ params = _fit_funs[dist](data, **fixed_params)
1182
+ params = np.asarray(np.broadcast_arrays(*params))
1183
+ if params.ndim > 1:
1184
+ params = params[..., np.newaxis]
1185
+ return params
1186
+ else:
1187
+ def fit_fun_1d(data):
1188
+ return dist.fit(data, *guessed_shapes, **guessed_params,
1189
+ **fixed_params)
1190
+
1191
+ def fit_fun(data):
1192
+ params = np.apply_along_axis(fit_fun_1d, axis=-1, arr=data)
1193
+ if params.ndim > 1:
1194
+ params = params.T[..., np.newaxis]
1195
+ return params
1196
+
1197
+ return fit_fun
1198
+
1199
+
1200
+ # Vectorized fitting functions. These are to accept ND `data` in which each
1201
+ # row (slice along last axis) is a sample to fit and scalar fixed parameters.
1202
+ # They return a tuple of shape parameter arrays, each of shape data.shape[:-1].
1203
+ def _fit_norm(data, floc=None, fscale=None):
1204
+ loc = floc
1205
+ scale = fscale
1206
+ if loc is None and scale is None:
1207
+ loc = np.mean(data, axis=-1)
1208
+ scale = np.std(data, ddof=1, axis=-1)
1209
+ elif loc is None:
1210
+ loc = np.mean(data, axis=-1)
1211
+ elif scale is None:
1212
+ scale = np.sqrt(((data - loc)**2).mean(axis=-1))
1213
+ return loc, scale
1214
+
1215
+
1216
+ _fit_funs = {stats.norm: _fit_norm} # type: ignore[attr-defined]
1217
+
1218
+
1219
+ # Vectorized goodness of fit statistic functions. These accept a frozen
1220
+ # distribution object and `data` in which each row (slice along last axis) is
1221
+ # a sample.
1222
+
1223
+
1224
+ def _anderson_darling(dist, data, axis):
1225
+ x = np.sort(data, axis=-1)
1226
+ n = data.shape[-1]
1227
+ i = np.arange(1, n+1)
1228
+ Si = (2*i - 1)/n * (dist.logcdf(x) + dist.logsf(x[..., ::-1]))
1229
+ S = np.sum(Si, axis=-1)
1230
+ return -n - S
1231
+
1232
+
1233
+ def _compute_dplus(cdfvals): # adapted from _stats_py before gh-17062
1234
+ n = cdfvals.shape[-1]
1235
+ return (np.arange(1.0, n + 1) / n - cdfvals).max(axis=-1)
1236
+
1237
+
1238
+ def _compute_dminus(cdfvals):
1239
+ n = cdfvals.shape[-1]
1240
+ return (cdfvals - np.arange(0.0, n)/n).max(axis=-1)
1241
+
1242
+
1243
+ def _kolmogorov_smirnov(dist, data, axis):
1244
+ x = np.sort(data, axis=-1)
1245
+ cdfvals = dist.cdf(x)
1246
+ Dplus = _compute_dplus(cdfvals) # always works along last axis
1247
+ Dminus = _compute_dminus(cdfvals)
1248
+ return np.maximum(Dplus, Dminus)
1249
+
1250
+
1251
+ def _corr(X, M):
1252
+ # Correlation coefficient r, simplified and vectorized as we need it.
1253
+ # See [7] Equation (2). Lemma 1/2 are only for distributions symmetric
1254
+ # about 0.
1255
+ Xm = X.mean(axis=-1, keepdims=True)
1256
+ Mm = M.mean(axis=-1, keepdims=True)
1257
+ num = np.sum((X - Xm) * (M - Mm), axis=-1)
1258
+ den = np.sqrt(np.sum((X - Xm)**2, axis=-1) * np.sum((M - Mm)**2, axis=-1))
1259
+ return num/den
1260
+
1261
+
1262
+ def _filliben(dist, data, axis):
1263
+ # [7] Section 8 # 1
1264
+ X = np.sort(data, axis=-1)
1265
+
1266
+ # [7] Section 8 # 2
1267
+ n = data.shape[-1]
1268
+ k = np.arange(1, n+1)
1269
+ # Filliben used an approximation for the uniform distribution order
1270
+ # statistic medians.
1271
+ # m = (k - .3175)/(n + 0.365)
1272
+ # m[-1] = 0.5**(1/n)
1273
+ # m[0] = 1 - m[-1]
1274
+ # We can just as easily use the (theoretically) exact values. See e.g.
1275
+ # https://en.wikipedia.org/wiki/Order_statistic
1276
+ # "Order statistics sampled from a uniform distribution"
1277
+ m = stats.beta(k, n + 1 - k).median()
1278
+
1279
+ # [7] Section 8 # 3
1280
+ M = dist.ppf(m)
1281
+
1282
+ # [7] Section 8 # 4
1283
+ return _corr(X, M)
1284
+ _filliben.alternative = 'less' # type: ignore[attr-defined]
1285
+
1286
+
1287
+ def _cramer_von_mises(dist, data, axis):
1288
+ x = np.sort(data, axis=-1)
1289
+ n = data.shape[-1]
1290
+ cdfvals = dist.cdf(x)
1291
+ u = (2*np.arange(1, n+1) - 1)/(2*n)
1292
+ w = 1 / (12*n) + np.sum((u - cdfvals)**2, axis=-1)
1293
+ return w
1294
+
1295
+
1296
+ _compare_dict = {"ad": _anderson_darling, "ks": _kolmogorov_smirnov,
1297
+ "cvm": _cramer_von_mises, "filliben": _filliben}
1298
+
1299
+
1300
+ def _gof_iv(dist, data, known_params, fit_params, guessed_params, statistic,
1301
+ n_mc_samples, random_state):
1302
+
1303
+ if not isinstance(dist, stats.rv_continuous):
1304
+ message = ("`dist` must be a (non-frozen) instance of "
1305
+ "`stats.rv_continuous`.")
1306
+ raise TypeError(message)
1307
+
1308
+ data = np.asarray(data, dtype=float)
1309
+ if not data.ndim == 1:
1310
+ message = "`data` must be a one-dimensional array of numbers."
1311
+ raise ValueError(message)
1312
+
1313
+ # Leave validation of these key/value pairs to the `fit` method,
1314
+ # but collect these into dictionaries that will be used
1315
+ known_params = known_params or dict()
1316
+ fit_params = fit_params or dict()
1317
+ guessed_params = guessed_params or dict()
1318
+
1319
+ known_params_f = {("f"+key): val for key, val in known_params.items()}
1320
+ fit_params_f = {("f"+key): val for key, val in fit_params.items()}
1321
+
1322
+ # These are the values of parameters of the null distribution family
1323
+ # with which resamples are drawn
1324
+ fixed_nhd_params = known_params_f.copy()
1325
+ fixed_nhd_params.update(fit_params_f)
1326
+
1327
+ # These are fixed when fitting the distribution family to resamples
1328
+ fixed_rfd_params = known_params_f.copy()
1329
+
1330
+ # These are used as guesses when fitting the distribution family to
1331
+ # the original data
1332
+ guessed_nhd_params = guessed_params.copy()
1333
+
1334
+ # These are used as guesses when fitting the distribution family to
1335
+ # resamples
1336
+ guessed_rfd_params = fit_params.copy()
1337
+ guessed_rfd_params.update(guessed_params)
1338
+
1339
+ if not callable(statistic):
1340
+ statistic = statistic.lower()
1341
+ statistics = {'ad', 'ks', 'cvm', 'filliben'}
1342
+ if statistic not in statistics:
1343
+ message = f"`statistic` must be one of {statistics}."
1344
+ raise ValueError(message)
1345
+
1346
+ n_mc_samples_int = int(n_mc_samples)
1347
+ if n_mc_samples_int != n_mc_samples:
1348
+ message = "`n_mc_samples` must be an integer."
1349
+ raise TypeError(message)
1350
+
1351
+ random_state = check_random_state(random_state)
1352
+
1353
+ return (dist, data, fixed_nhd_params, fixed_rfd_params, guessed_nhd_params,
1354
+ guessed_rfd_params, statistic, n_mc_samples_int, random_state)
parrot/lib/python3.10/site-packages/scipy/stats/_hypotests.py ADDED
@@ -0,0 +1,2027 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import namedtuple
2
+ from dataclasses import dataclass
3
+ from math import comb
4
+ import numpy as np
5
+ import warnings
6
+ from itertools import combinations
7
+ import scipy.stats
8
+ from scipy.optimize import shgo
9
+ from . import distributions
10
+ from ._common import ConfidenceInterval
11
+ from ._continuous_distns import norm
12
+ from scipy.special import gamma, kv, gammaln
13
+ from scipy.fft import ifft
14
+ from ._stats_pythran import _a_ij_Aij_Dij2
15
+ from ._stats_pythran import (
16
+ _concordant_pairs as _P, _discordant_pairs as _Q
17
+ )
18
+ from ._axis_nan_policy import _axis_nan_policy_factory
19
+ from scipy.stats import _stats_py
20
+
21
+ __all__ = ['epps_singleton_2samp', 'cramervonmises', 'somersd',
22
+ 'barnard_exact', 'boschloo_exact', 'cramervonmises_2samp',
23
+ 'tukey_hsd', 'poisson_means_test']
24
+
25
+ Epps_Singleton_2sampResult = namedtuple('Epps_Singleton_2sampResult',
26
+ ('statistic', 'pvalue'))
27
+
28
+
29
+ @_axis_nan_policy_factory(Epps_Singleton_2sampResult, n_samples=2, too_small=4)
30
+ def epps_singleton_2samp(x, y, t=(0.4, 0.8)):
31
+ """Compute the Epps-Singleton (ES) test statistic.
32
+
33
+ Test the null hypothesis that two samples have the same underlying
34
+ probability distribution.
35
+
36
+ Parameters
37
+ ----------
38
+ x, y : array-like
39
+ The two samples of observations to be tested. Input must not have more
40
+ than one dimension. Samples can have different lengths, but both
41
+ must have at least five observations.
42
+ t : array-like, optional
43
+ The points (t1, ..., tn) where the empirical characteristic function is
44
+ to be evaluated. It should be positive distinct numbers. The default
45
+ value (0.4, 0.8) is proposed in [1]_. Input must not have more than
46
+ one dimension.
47
+
48
+ Returns
49
+ -------
50
+ statistic : float
51
+ The test statistic.
52
+ pvalue : float
53
+ The associated p-value based on the asymptotic chi2-distribution.
54
+
55
+ See Also
56
+ --------
57
+ ks_2samp, anderson_ksamp
58
+
59
+ Notes
60
+ -----
61
+ Testing whether two samples are generated by the same underlying
62
+ distribution is a classical question in statistics. A widely used test is
63
+ the Kolmogorov-Smirnov (KS) test which relies on the empirical
64
+ distribution function. Epps and Singleton introduce a test based on the
65
+ empirical characteristic function in [1]_.
66
+
67
+ One advantage of the ES test compared to the KS test is that is does
68
+ not assume a continuous distribution. In [1]_, the authors conclude
69
+ that the test also has a higher power than the KS test in many
70
+ examples. They recommend the use of the ES test for discrete samples as
71
+ well as continuous samples with at least 25 observations each, whereas
72
+ `anderson_ksamp` is recommended for smaller sample sizes in the
73
+ continuous case.
74
+
75
+ The p-value is computed from the asymptotic distribution of the test
76
+ statistic which follows a `chi2` distribution. If the sample size of both
77
+ `x` and `y` is below 25, the small sample correction proposed in [1]_ is
78
+ applied to the test statistic.
79
+
80
+ The default values of `t` are determined in [1]_ by considering
81
+ various distributions and finding good values that lead to a high power
82
+ of the test in general. Table III in [1]_ gives the optimal values for
83
+ the distributions tested in that study. The values of `t` are scaled by
84
+ the semi-interquartile range in the implementation, see [1]_.
85
+
86
+ References
87
+ ----------
88
+ .. [1] T. W. Epps and K. J. Singleton, "An omnibus test for the two-sample
89
+ problem using the empirical characteristic function", Journal of
90
+ Statistical Computation and Simulation 26, p. 177--203, 1986.
91
+
92
+ .. [2] S. J. Goerg and J. Kaiser, "Nonparametric testing of distributions
93
+ - the Epps-Singleton two-sample test using the empirical characteristic
94
+ function", The Stata Journal 9(3), p. 454--465, 2009.
95
+
96
+ """
97
+ # x and y are converted to arrays by the decorator
98
+ t = np.asarray(t)
99
+ # check if x and y are valid inputs
100
+ nx, ny = len(x), len(y)
101
+ if (nx < 5) or (ny < 5):
102
+ raise ValueError('x and y should have at least 5 elements, but len(x) '
103
+ f'= {nx} and len(y) = {ny}.')
104
+ if not np.isfinite(x).all():
105
+ raise ValueError('x must not contain nonfinite values.')
106
+ if not np.isfinite(y).all():
107
+ raise ValueError('y must not contain nonfinite values.')
108
+ n = nx + ny
109
+
110
+ # check if t is valid
111
+ if t.ndim > 1:
112
+ raise ValueError(f't must be 1d, but t.ndim equals {t.ndim}.')
113
+ if np.less_equal(t, 0).any():
114
+ raise ValueError('t must contain positive elements only.')
115
+
116
+ # rescale t with semi-iqr as proposed in [1]; import iqr here to avoid
117
+ # circular import
118
+ from scipy.stats import iqr
119
+ sigma = iqr(np.hstack((x, y))) / 2
120
+ ts = np.reshape(t, (-1, 1)) / sigma
121
+
122
+ # covariance estimation of ES test
123
+ gx = np.vstack((np.cos(ts*x), np.sin(ts*x))).T # shape = (nx, 2*len(t))
124
+ gy = np.vstack((np.cos(ts*y), np.sin(ts*y))).T
125
+ cov_x = np.cov(gx.T, bias=True) # the test uses biased cov-estimate
126
+ cov_y = np.cov(gy.T, bias=True)
127
+ est_cov = (n/nx)*cov_x + (n/ny)*cov_y
128
+ est_cov_inv = np.linalg.pinv(est_cov)
129
+ r = np.linalg.matrix_rank(est_cov_inv)
130
+ if r < 2*len(t):
131
+ warnings.warn('Estimated covariance matrix does not have full rank. '
132
+ 'This indicates a bad choice of the input t and the '
133
+ 'test might not be consistent.', # see p. 183 in [1]_
134
+ stacklevel=2)
135
+
136
+ # compute test statistic w distributed asympt. as chisquare with df=r
137
+ g_diff = np.mean(gx, axis=0) - np.mean(gy, axis=0)
138
+ w = n*np.dot(g_diff.T, np.dot(est_cov_inv, g_diff))
139
+
140
+ # apply small-sample correction
141
+ if (max(nx, ny) < 25):
142
+ corr = 1.0/(1.0 + n**(-0.45) + 10.1*(nx**(-1.7) + ny**(-1.7)))
143
+ w = corr * w
144
+
145
+ chi2 = _stats_py._SimpleChi2(r)
146
+ p = _stats_py._get_pvalue(w, chi2, alternative='greater', symmetric=False, xp=np)
147
+
148
+ return Epps_Singleton_2sampResult(w, p)
149
+
150
+
151
+ def poisson_means_test(k1, n1, k2, n2, *, diff=0, alternative='two-sided'):
152
+ r"""
153
+ Performs the Poisson means test, AKA the "E-test".
154
+
155
+ This is a test of the null hypothesis that the difference between means of
156
+ two Poisson distributions is `diff`. The samples are provided as the
157
+ number of events `k1` and `k2` observed within measurement intervals
158
+ (e.g. of time, space, number of observations) of sizes `n1` and `n2`.
159
+
160
+ Parameters
161
+ ----------
162
+ k1 : int
163
+ Number of events observed from distribution 1.
164
+ n1: float
165
+ Size of sample from distribution 1.
166
+ k2 : int
167
+ Number of events observed from distribution 2.
168
+ n2 : float
169
+ Size of sample from distribution 2.
170
+ diff : float, default=0
171
+ The hypothesized difference in means between the distributions
172
+ underlying the samples.
173
+ alternative : {'two-sided', 'less', 'greater'}, optional
174
+ Defines the alternative hypothesis.
175
+ The following options are available (default is 'two-sided'):
176
+
177
+ * 'two-sided': the difference between distribution means is not
178
+ equal to `diff`
179
+ * 'less': the difference between distribution means is less than
180
+ `diff`
181
+ * 'greater': the difference between distribution means is greater
182
+ than `diff`
183
+
184
+ Returns
185
+ -------
186
+ statistic : float
187
+ The test statistic (see [1]_ equation 3.3).
188
+ pvalue : float
189
+ The probability of achieving such an extreme value of the test
190
+ statistic under the null hypothesis.
191
+
192
+ Notes
193
+ -----
194
+
195
+ Let:
196
+
197
+ .. math:: X_1 \sim \mbox{Poisson}(\mathtt{n1}\lambda_1)
198
+
199
+ be a random variable independent of
200
+
201
+ .. math:: X_2 \sim \mbox{Poisson}(\mathtt{n2}\lambda_2)
202
+
203
+ and let ``k1`` and ``k2`` be the observed values of :math:`X_1`
204
+ and :math:`X_2`, respectively. Then `poisson_means_test` uses the number
205
+ of observed events ``k1`` and ``k2`` from samples of size ``n1`` and
206
+ ``n2``, respectively, to test the null hypothesis that
207
+
208
+ .. math::
209
+ H_0: \lambda_1 - \lambda_2 = \mathtt{diff}
210
+
211
+ A benefit of the E-test is that it has good power for small sample sizes,
212
+ which can reduce sampling costs [1]_. It has been evaluated and determined
213
+ to be more powerful than the comparable C-test, sometimes referred to as
214
+ the Poisson exact test.
215
+
216
+ References
217
+ ----------
218
+ .. [1] Krishnamoorthy, K., & Thomson, J. (2004). A more powerful test for
219
+ comparing two Poisson means. Journal of Statistical Planning and
220
+ Inference, 119(1), 23-35.
221
+
222
+ .. [2] Przyborowski, J., & Wilenski, H. (1940). Homogeneity of results in
223
+ testing samples from Poisson series: With an application to testing
224
+ clover seed for dodder. Biometrika, 31(3/4), 313-323.
225
+
226
+ Examples
227
+ --------
228
+
229
+ Suppose that a gardener wishes to test the number of dodder (weed) seeds
230
+ in a sack of clover seeds that they buy from a seed company. It has
231
+ previously been established that the number of dodder seeds in clover
232
+ follows the Poisson distribution.
233
+
234
+ A 100 gram sample is drawn from the sack before being shipped to the
235
+ gardener. The sample is analyzed, and it is found to contain no dodder
236
+ seeds; that is, `k1` is 0. However, upon arrival, the gardener draws
237
+ another 100 gram sample from the sack. This time, three dodder seeds are
238
+ found in the sample; that is, `k2` is 3. The gardener would like to
239
+ know if the difference is significant and not due to chance. The
240
+ null hypothesis is that the difference between the two samples is merely
241
+ due to chance, or that :math:`\lambda_1 - \lambda_2 = \mathtt{diff}`
242
+ where :math:`\mathtt{diff} = 0`. The alternative hypothesis is that the
243
+ difference is not due to chance, or :math:`\lambda_1 - \lambda_2 \ne 0`.
244
+ The gardener selects a significance level of 5% to reject the null
245
+ hypothesis in favor of the alternative [2]_.
246
+
247
+ >>> import scipy.stats as stats
248
+ >>> res = stats.poisson_means_test(0, 100, 3, 100)
249
+ >>> res.statistic, res.pvalue
250
+ (-1.7320508075688772, 0.08837900929018157)
251
+
252
+ The p-value is .088, indicating a near 9% chance of observing a value of
253
+ the test statistic under the null hypothesis. This exceeds 5%, so the
254
+ gardener does not reject the null hypothesis as the difference cannot be
255
+ regarded as significant at this level.
256
+ """
257
+
258
+ _poisson_means_test_iv(k1, n1, k2, n2, diff, alternative)
259
+
260
+ # "for a given k_1 and k_2, an estimate of \lambda_2 is given by" [1] (3.4)
261
+ lmbd_hat2 = ((k1 + k2) / (n1 + n2) - diff * n1 / (n1 + n2))
262
+
263
+ # "\hat{\lambda_{2k}} may be less than or equal to zero ... and in this
264
+ # case the null hypothesis cannot be rejected ... [and] it is not necessary
265
+ # to compute the p-value". [1] page 26 below eq. (3.6).
266
+ if lmbd_hat2 <= 0:
267
+ return _stats_py.SignificanceResult(0, 1)
268
+
269
+ # The unbiased variance estimate [1] (3.2)
270
+ var = k1 / (n1 ** 2) + k2 / (n2 ** 2)
271
+
272
+ # The _observed_ pivot statistic from the input. It follows the
273
+ # unnumbered equation following equation (3.3) This is used later in
274
+ # comparison with the computed pivot statistics in an indicator function.
275
+ t_k1k2 = (k1 / n1 - k2 / n2 - diff) / np.sqrt(var)
276
+
277
+ # Equation (3.5) of [1] is lengthy, so it is broken into several parts,
278
+ # beginning here. Note that the probability mass function of poisson is
279
+ # exp^(-\mu)*\mu^k/k!, so and this is called with shape \mu, here noted
280
+ # here as nlmbd_hat*. The strategy for evaluating the double summation in
281
+ # (3.5) is to create two arrays of the values of the two products inside
282
+ # the summation and then broadcast them together into a matrix, and then
283
+ # sum across the entire matrix.
284
+
285
+ # Compute constants (as seen in the first and second separated products in
286
+ # (3.5).). (This is the shape (\mu) parameter of the poisson distribution.)
287
+ nlmbd_hat1 = n1 * (lmbd_hat2 + diff)
288
+ nlmbd_hat2 = n2 * lmbd_hat2
289
+
290
+ # Determine summation bounds for tail ends of distribution rather than
291
+ # summing to infinity. `x1*` is for the outer sum and `x2*` is the inner
292
+ # sum.
293
+ x1_lb, x1_ub = distributions.poisson.ppf([1e-10, 1 - 1e-16], nlmbd_hat1)
294
+ x2_lb, x2_ub = distributions.poisson.ppf([1e-10, 1 - 1e-16], nlmbd_hat2)
295
+
296
+ # Construct arrays to function as the x_1 and x_2 counters on the summation
297
+ # in (3.5). `x1` is in columns and `x2` is in rows to allow for
298
+ # broadcasting.
299
+ x1 = np.arange(x1_lb, x1_ub + 1)
300
+ x2 = np.arange(x2_lb, x2_ub + 1)[:, None]
301
+
302
+ # These are the two products in equation (3.5) with `prob_x1` being the
303
+ # first (left side) and `prob_x2` being the second (right side). (To
304
+ # make as clear as possible: the 1st contains a "+ d" term, the 2nd does
305
+ # not.)
306
+ prob_x1 = distributions.poisson.pmf(x1, nlmbd_hat1)
307
+ prob_x2 = distributions.poisson.pmf(x2, nlmbd_hat2)
308
+
309
+ # compute constants for use in the "pivot statistic" per the
310
+ # unnumbered equation following (3.3).
311
+ lmbd_x1 = x1 / n1
312
+ lmbd_x2 = x2 / n2
313
+ lmbds_diff = lmbd_x1 - lmbd_x2 - diff
314
+ var_x1x2 = lmbd_x1 / n1 + lmbd_x2 / n2
315
+
316
+ # This is the 'pivot statistic' for use in the indicator of the summation
317
+ # (left side of "I[.]").
318
+ with np.errstate(invalid='ignore', divide='ignore'):
319
+ t_x1x2 = lmbds_diff / np.sqrt(var_x1x2)
320
+
321
+ # `[indicator]` implements the "I[.] ... the indicator function" per
322
+ # the paragraph following equation (3.5).
323
+ if alternative == 'two-sided':
324
+ indicator = np.abs(t_x1x2) >= np.abs(t_k1k2)
325
+ elif alternative == 'less':
326
+ indicator = t_x1x2 <= t_k1k2
327
+ else:
328
+ indicator = t_x1x2 >= t_k1k2
329
+
330
+ # Multiply all combinations of the products together, exclude terms
331
+ # based on the `indicator` and then sum. (3.5)
332
+ pvalue = np.sum((prob_x1 * prob_x2)[indicator])
333
+ return _stats_py.SignificanceResult(t_k1k2, pvalue)
334
+
335
+
336
+ def _poisson_means_test_iv(k1, n1, k2, n2, diff, alternative):
337
+ # """check for valid types and values of input to `poisson_mean_test`."""
338
+ if k1 != int(k1) or k2 != int(k2):
339
+ raise TypeError('`k1` and `k2` must be integers.')
340
+
341
+ count_err = '`k1` and `k2` must be greater than or equal to 0.'
342
+ if k1 < 0 or k2 < 0:
343
+ raise ValueError(count_err)
344
+
345
+ if n1 <= 0 or n2 <= 0:
346
+ raise ValueError('`n1` and `n2` must be greater than 0.')
347
+
348
+ if diff < 0:
349
+ raise ValueError('diff must be greater than or equal to 0.')
350
+
351
+ alternatives = {'two-sided', 'less', 'greater'}
352
+ if alternative.lower() not in alternatives:
353
+ raise ValueError(f"Alternative must be one of '{alternatives}'.")
354
+
355
+
356
+ class CramerVonMisesResult:
357
+ def __init__(self, statistic, pvalue):
358
+ self.statistic = statistic
359
+ self.pvalue = pvalue
360
+
361
+ def __repr__(self):
362
+ return (f"{self.__class__.__name__}(statistic={self.statistic}, "
363
+ f"pvalue={self.pvalue})")
364
+
365
+
366
+ def _psi1_mod(x):
367
+ """
368
+ psi1 is defined in equation 1.10 in Csörgő, S. and Faraway, J. (1996).
369
+ This implements a modified version by excluding the term V(x) / 12
370
+ (here: _cdf_cvm_inf(x) / 12) to avoid evaluating _cdf_cvm_inf(x)
371
+ twice in _cdf_cvm.
372
+
373
+ Implementation based on MAPLE code of Julian Faraway and R code of the
374
+ function pCvM in the package goftest (v1.1.1), permission granted
375
+ by Adrian Baddeley. Main difference in the implementation: the code
376
+ here keeps adding terms of the series until the terms are small enough.
377
+ """
378
+
379
+ def _ed2(y):
380
+ z = y**2 / 4
381
+ b = kv(1/4, z) + kv(3/4, z)
382
+ return np.exp(-z) * (y/2)**(3/2) * b / np.sqrt(np.pi)
383
+
384
+ def _ed3(y):
385
+ z = y**2 / 4
386
+ c = np.exp(-z) / np.sqrt(np.pi)
387
+ return c * (y/2)**(5/2) * (2*kv(1/4, z) + 3*kv(3/4, z) - kv(5/4, z))
388
+
389
+ def _Ak(k, x):
390
+ m = 2*k + 1
391
+ sx = 2 * np.sqrt(x)
392
+ y1 = x**(3/4)
393
+ y2 = x**(5/4)
394
+
395
+ e1 = m * gamma(k + 1/2) * _ed2((4 * k + 3)/sx) / (9 * y1)
396
+ e2 = gamma(k + 1/2) * _ed3((4 * k + 1) / sx) / (72 * y2)
397
+ e3 = 2 * (m + 2) * gamma(k + 3/2) * _ed3((4 * k + 5) / sx) / (12 * y2)
398
+ e4 = 7 * m * gamma(k + 1/2) * _ed2((4 * k + 1) / sx) / (144 * y1)
399
+ e5 = 7 * m * gamma(k + 1/2) * _ed2((4 * k + 5) / sx) / (144 * y1)
400
+
401
+ return e1 + e2 + e3 + e4 + e5
402
+
403
+ x = np.asarray(x)
404
+ tot = np.zeros_like(x, dtype='float')
405
+ cond = np.ones_like(x, dtype='bool')
406
+ k = 0
407
+ while np.any(cond):
408
+ z = -_Ak(k, x[cond]) / (np.pi * gamma(k + 1))
409
+ tot[cond] = tot[cond] + z
410
+ cond[cond] = np.abs(z) >= 1e-7
411
+ k += 1
412
+
413
+ return tot
414
+
415
+
416
+ def _cdf_cvm_inf(x):
417
+ """
418
+ Calculate the cdf of the Cramér-von Mises statistic (infinite sample size).
419
+
420
+ See equation 1.2 in Csörgő, S. and Faraway, J. (1996).
421
+
422
+ Implementation based on MAPLE code of Julian Faraway and R code of the
423
+ function pCvM in the package goftest (v1.1.1), permission granted
424
+ by Adrian Baddeley. Main difference in the implementation: the code
425
+ here keeps adding terms of the series until the terms are small enough.
426
+
427
+ The function is not expected to be accurate for large values of x, say
428
+ x > 4, when the cdf is very close to 1.
429
+ """
430
+ x = np.asarray(x)
431
+
432
+ def term(x, k):
433
+ # this expression can be found in [2], second line of (1.3)
434
+ u = np.exp(gammaln(k + 0.5) - gammaln(k+1)) / (np.pi**1.5 * np.sqrt(x))
435
+ y = 4*k + 1
436
+ q = y**2 / (16*x)
437
+ b = kv(0.25, q)
438
+ return u * np.sqrt(y) * np.exp(-q) * b
439
+
440
+ tot = np.zeros_like(x, dtype='float')
441
+ cond = np.ones_like(x, dtype='bool')
442
+ k = 0
443
+ while np.any(cond):
444
+ z = term(x[cond], k)
445
+ tot[cond] = tot[cond] + z
446
+ cond[cond] = np.abs(z) >= 1e-7
447
+ k += 1
448
+
449
+ return tot
450
+
451
+
452
+ def _cdf_cvm(x, n=None):
453
+ """
454
+ Calculate the cdf of the Cramér-von Mises statistic for a finite sample
455
+ size n. If N is None, use the asymptotic cdf (n=inf).
456
+
457
+ See equation 1.8 in Csörgő, S. and Faraway, J. (1996) for finite samples,
458
+ 1.2 for the asymptotic cdf.
459
+
460
+ The function is not expected to be accurate for large values of x, say
461
+ x > 2, when the cdf is very close to 1 and it might return values > 1
462
+ in that case, e.g. _cdf_cvm(2.0, 12) = 1.0000027556716846. Moreover, it
463
+ is not accurate for small values of n, especially close to the bounds of
464
+ the distribution's domain, [1/(12*n), n/3], where the value jumps to 0
465
+ and 1, respectively. These are limitations of the approximation by Csörgő
466
+ and Faraway (1996) implemented in this function.
467
+ """
468
+ x = np.asarray(x)
469
+ if n is None:
470
+ y = _cdf_cvm_inf(x)
471
+ else:
472
+ # support of the test statistic is [12/n, n/3], see 1.1 in [2]
473
+ y = np.zeros_like(x, dtype='float')
474
+ sup = (1./(12*n) < x) & (x < n/3.)
475
+ # note: _psi1_mod does not include the term _cdf_cvm_inf(x) / 12
476
+ # therefore, we need to add it here
477
+ y[sup] = _cdf_cvm_inf(x[sup]) * (1 + 1./(12*n)) + _psi1_mod(x[sup]) / n
478
+ y[x >= n/3] = 1
479
+
480
+ if y.ndim == 0:
481
+ return y[()]
482
+ return y
483
+
484
+
485
+ def _cvm_result_to_tuple(res):
486
+ return res.statistic, res.pvalue
487
+
488
+
489
+ @_axis_nan_policy_factory(CramerVonMisesResult, n_samples=1, too_small=1,
490
+ result_to_tuple=_cvm_result_to_tuple)
491
+ def cramervonmises(rvs, cdf, args=()):
492
+ """Perform the one-sample Cramér-von Mises test for goodness of fit.
493
+
494
+ This performs a test of the goodness of fit of a cumulative distribution
495
+ function (cdf) :math:`F` compared to the empirical distribution function
496
+ :math:`F_n` of observed random variates :math:`X_1, ..., X_n` that are
497
+ assumed to be independent and identically distributed ([1]_).
498
+ The null hypothesis is that the :math:`X_i` have cumulative distribution
499
+ :math:`F`.
500
+
501
+ Parameters
502
+ ----------
503
+ rvs : array_like
504
+ A 1-D array of observed values of the random variables :math:`X_i`.
505
+ The sample must contain at least two observations.
506
+ cdf : str or callable
507
+ The cumulative distribution function :math:`F` to test the
508
+ observations against. If a string, it should be the name of a
509
+ distribution in `scipy.stats`. If a callable, that callable is used
510
+ to calculate the cdf: ``cdf(x, *args) -> float``.
511
+ args : tuple, optional
512
+ Distribution parameters. These are assumed to be known; see Notes.
513
+
514
+ Returns
515
+ -------
516
+ res : object with attributes
517
+ statistic : float
518
+ Cramér-von Mises statistic.
519
+ pvalue : float
520
+ The p-value.
521
+
522
+ See Also
523
+ --------
524
+ kstest, cramervonmises_2samp
525
+
526
+ Notes
527
+ -----
528
+ .. versionadded:: 1.6.0
529
+
530
+ The p-value relies on the approximation given by equation 1.8 in [2]_.
531
+ It is important to keep in mind that the p-value is only accurate if
532
+ one tests a simple hypothesis, i.e. the parameters of the reference
533
+ distribution are known. If the parameters are estimated from the data
534
+ (composite hypothesis), the computed p-value is not reliable.
535
+
536
+ References
537
+ ----------
538
+ .. [1] Cramér-von Mises criterion, Wikipedia,
539
+ https://en.wikipedia.org/wiki/Cram%C3%A9r%E2%80%93von_Mises_criterion
540
+ .. [2] Csörgő, S. and Faraway, J. (1996). The Exact and Asymptotic
541
+ Distribution of Cramér-von Mises Statistics. Journal of the
542
+ Royal Statistical Society, pp. 221-234.
543
+
544
+ Examples
545
+ --------
546
+
547
+ Suppose we wish to test whether data generated by ``scipy.stats.norm.rvs``
548
+ were, in fact, drawn from the standard normal distribution. We choose a
549
+ significance level of ``alpha=0.05``.
550
+
551
+ >>> import numpy as np
552
+ >>> from scipy import stats
553
+ >>> rng = np.random.default_rng(165417232101553420507139617764912913465)
554
+ >>> x = stats.norm.rvs(size=500, random_state=rng)
555
+ >>> res = stats.cramervonmises(x, 'norm')
556
+ >>> res.statistic, res.pvalue
557
+ (0.1072085112565724, 0.5508482238203407)
558
+
559
+ The p-value exceeds our chosen significance level, so we do not
560
+ reject the null hypothesis that the observed sample is drawn from the
561
+ standard normal distribution.
562
+
563
+ Now suppose we wish to check whether the same samples shifted by 2.1 is
564
+ consistent with being drawn from a normal distribution with a mean of 2.
565
+
566
+ >>> y = x + 2.1
567
+ >>> res = stats.cramervonmises(y, 'norm', args=(2,))
568
+ >>> res.statistic, res.pvalue
569
+ (0.8364446265294695, 0.00596286797008283)
570
+
571
+ Here we have used the `args` keyword to specify the mean (``loc``)
572
+ of the normal distribution to test the data against. This is equivalent
573
+ to the following, in which we create a frozen normal distribution with
574
+ mean 2.1, then pass its ``cdf`` method as an argument.
575
+
576
+ >>> frozen_dist = stats.norm(loc=2)
577
+ >>> res = stats.cramervonmises(y, frozen_dist.cdf)
578
+ >>> res.statistic, res.pvalue
579
+ (0.8364446265294695, 0.00596286797008283)
580
+
581
+ In either case, we would reject the null hypothesis that the observed
582
+ sample is drawn from a normal distribution with a mean of 2 (and default
583
+ variance of 1) because the p-value is less than our chosen
584
+ significance level.
585
+
586
+ """
587
+ if isinstance(cdf, str):
588
+ cdf = getattr(distributions, cdf).cdf
589
+
590
+ vals = np.sort(np.asarray(rvs))
591
+
592
+ if vals.size <= 1:
593
+ raise ValueError('The sample must contain at least two observations.')
594
+
595
+ n = len(vals)
596
+ cdfvals = cdf(vals, *args)
597
+
598
+ u = (2*np.arange(1, n+1) - 1)/(2*n)
599
+ w = 1/(12*n) + np.sum((u - cdfvals)**2)
600
+
601
+ # avoid small negative values that can occur due to the approximation
602
+ p = max(0, 1. - _cdf_cvm(w, n))
603
+
604
+ return CramerVonMisesResult(statistic=w, pvalue=p)
605
+
606
+
607
+ def _get_wilcoxon_distr(n):
608
+ """
609
+ Distribution of probability of the Wilcoxon ranksum statistic r_plus (sum
610
+ of ranks of positive differences).
611
+ Returns an array with the probabilities of all the possible ranks
612
+ r = 0, ..., n*(n+1)/2
613
+ """
614
+ c = np.ones(1, dtype=np.float64)
615
+ for k in range(1, n + 1):
616
+ prev_c = c
617
+ c = np.zeros(k * (k + 1) // 2 + 1, dtype=np.float64)
618
+ m = len(prev_c)
619
+ c[:m] = prev_c * 0.5
620
+ c[-m:] += prev_c * 0.5
621
+ return c
622
+
623
+
624
+ def _get_wilcoxon_distr2(n):
625
+ """
626
+ Distribution of probability of the Wilcoxon ranksum statistic r_plus (sum
627
+ of ranks of positive differences).
628
+ Returns an array with the probabilities of all the possible ranks
629
+ r = 0, ..., n*(n+1)/2
630
+ This is a slower reference function
631
+ References
632
+ ----------
633
+ .. [1] 1. Harris T, Hardin JW. Exact Wilcoxon Signed-Rank and Wilcoxon
634
+ Mann-Whitney Ranksum Tests. The Stata Journal. 2013;13(2):337-343.
635
+ """
636
+ ai = np.arange(1, n+1)[:, None]
637
+ t = n*(n+1)/2
638
+ q = 2*t
639
+ j = np.arange(q)
640
+ theta = 2*np.pi/q*j
641
+ phi_sp = np.prod(np.cos(theta*ai), axis=0)
642
+ phi_s = np.exp(1j*theta*t) * phi_sp
643
+ p = np.real(ifft(phi_s))
644
+ res = np.zeros(int(t)+1)
645
+ res[:-1:] = p[::2]
646
+ res[0] /= 2
647
+ res[-1] = res[0]
648
+ return res
649
+
650
+
651
+ def _tau_b(A):
652
+ """Calculate Kendall's tau-b and p-value from contingency table."""
653
+ # See [2] 2.2 and 4.2
654
+
655
+ # contingency table must be truly 2D
656
+ if A.shape[0] == 1 or A.shape[1] == 1:
657
+ return np.nan, np.nan
658
+
659
+ NA = A.sum()
660
+ PA = _P(A)
661
+ QA = _Q(A)
662
+ Sri2 = (A.sum(axis=1)**2).sum()
663
+ Scj2 = (A.sum(axis=0)**2).sum()
664
+ denominator = (NA**2 - Sri2)*(NA**2 - Scj2)
665
+
666
+ tau = (PA-QA)/(denominator)**0.5
667
+
668
+ numerator = 4*(_a_ij_Aij_Dij2(A) - (PA - QA)**2 / NA)
669
+ s02_tau_b = numerator/denominator
670
+ if s02_tau_b == 0: # Avoid divide by zero
671
+ return tau, 0
672
+ Z = tau/s02_tau_b**0.5
673
+ p = 2*norm.sf(abs(Z)) # 2-sided p-value
674
+
675
+ return tau, p
676
+
677
+
678
+ def _somers_d(A, alternative='two-sided'):
679
+ """Calculate Somers' D and p-value from contingency table."""
680
+ # See [3] page 1740
681
+
682
+ # contingency table must be truly 2D
683
+ if A.shape[0] <= 1 or A.shape[1] <= 1:
684
+ return np.nan, np.nan
685
+
686
+ NA = A.sum()
687
+ NA2 = NA**2
688
+ PA = _P(A)
689
+ QA = _Q(A)
690
+ Sri2 = (A.sum(axis=1)**2).sum()
691
+
692
+ d = (PA - QA)/(NA2 - Sri2)
693
+
694
+ S = _a_ij_Aij_Dij2(A) - (PA-QA)**2/NA
695
+
696
+ with np.errstate(divide='ignore'):
697
+ Z = (PA - QA)/(4*(S))**0.5
698
+
699
+ norm = _stats_py._SimpleNormal()
700
+ p = _stats_py._get_pvalue(Z, norm, alternative, xp=np)
701
+
702
+ return d, p
703
+
704
+
705
+ @dataclass
706
+ class SomersDResult:
707
+ statistic: float
708
+ pvalue: float
709
+ table: np.ndarray
710
+
711
+
712
+ def somersd(x, y=None, alternative='two-sided'):
713
+ r"""Calculates Somers' D, an asymmetric measure of ordinal association.
714
+
715
+ Like Kendall's :math:`\tau`, Somers' :math:`D` is a measure of the
716
+ correspondence between two rankings. Both statistics consider the
717
+ difference between the number of concordant and discordant pairs in two
718
+ rankings :math:`X` and :math:`Y`, and both are normalized such that values
719
+ close to 1 indicate strong agreement and values close to -1 indicate
720
+ strong disagreement. They differ in how they are normalized. To show the
721
+ relationship, Somers' :math:`D` can be defined in terms of Kendall's
722
+ :math:`\tau_a`:
723
+
724
+ .. math::
725
+ D(Y|X) = \frac{\tau_a(X, Y)}{\tau_a(X, X)}
726
+
727
+ Suppose the first ranking :math:`X` has :math:`r` distinct ranks and the
728
+ second ranking :math:`Y` has :math:`s` distinct ranks. These two lists of
729
+ :math:`n` rankings can also be viewed as an :math:`r \times s` contingency
730
+ table in which element :math:`i, j` is the number of rank pairs with rank
731
+ :math:`i` in ranking :math:`X` and rank :math:`j` in ranking :math:`Y`.
732
+ Accordingly, `somersd` also allows the input data to be supplied as a
733
+ single, 2D contingency table instead of as two separate, 1D rankings.
734
+
735
+ Note that the definition of Somers' :math:`D` is asymmetric: in general,
736
+ :math:`D(Y|X) \neq D(X|Y)`. ``somersd(x, y)`` calculates Somers'
737
+ :math:`D(Y|X)`: the "row" variable :math:`X` is treated as an independent
738
+ variable, and the "column" variable :math:`Y` is dependent. For Somers'
739
+ :math:`D(X|Y)`, swap the input lists or transpose the input table.
740
+
741
+ Parameters
742
+ ----------
743
+ x : array_like
744
+ 1D array of rankings, treated as the (row) independent variable.
745
+ Alternatively, a 2D contingency table.
746
+ y : array_like, optional
747
+ If `x` is a 1D array of rankings, `y` is a 1D array of rankings of the
748
+ same length, treated as the (column) dependent variable.
749
+ If `x` is 2D, `y` is ignored.
750
+ alternative : {'two-sided', 'less', 'greater'}, optional
751
+ Defines the alternative hypothesis. Default is 'two-sided'.
752
+ The following options are available:
753
+ * 'two-sided': the rank correlation is nonzero
754
+ * 'less': the rank correlation is negative (less than zero)
755
+ * 'greater': the rank correlation is positive (greater than zero)
756
+
757
+ Returns
758
+ -------
759
+ res : SomersDResult
760
+ A `SomersDResult` object with the following fields:
761
+
762
+ statistic : float
763
+ The Somers' :math:`D` statistic.
764
+ pvalue : float
765
+ The p-value for a hypothesis test whose null
766
+ hypothesis is an absence of association, :math:`D=0`.
767
+ See notes for more information.
768
+ table : 2D array
769
+ The contingency table formed from rankings `x` and `y` (or the
770
+ provided contingency table, if `x` is a 2D array)
771
+
772
+ See Also
773
+ --------
774
+ kendalltau : Calculates Kendall's tau, another correlation measure.
775
+ weightedtau : Computes a weighted version of Kendall's tau.
776
+ spearmanr : Calculates a Spearman rank-order correlation coefficient.
777
+ pearsonr : Calculates a Pearson correlation coefficient.
778
+
779
+ Notes
780
+ -----
781
+ This function follows the contingency table approach of [2]_ and
782
+ [3]_. *p*-values are computed based on an asymptotic approximation of
783
+ the test statistic distribution under the null hypothesis :math:`D=0`.
784
+
785
+ Theoretically, hypothesis tests based on Kendall's :math:`tau` and Somers'
786
+ :math:`D` should be identical.
787
+ However, the *p*-values returned by `kendalltau` are based
788
+ on the null hypothesis of *independence* between :math:`X` and :math:`Y`
789
+ (i.e. the population from which pairs in :math:`X` and :math:`Y` are
790
+ sampled contains equal numbers of all possible pairs), which is more
791
+ specific than the null hypothesis :math:`D=0` used here. If the null
792
+ hypothesis of independence is desired, it is acceptable to use the
793
+ *p*-value returned by `kendalltau` with the statistic returned by
794
+ `somersd` and vice versa. For more information, see [2]_.
795
+
796
+ Contingency tables are formatted according to the convention used by
797
+ SAS and R: the first ranking supplied (``x``) is the "row" variable, and
798
+ the second ranking supplied (``y``) is the "column" variable. This is
799
+ opposite the convention of Somers' original paper [1]_.
800
+
801
+ References
802
+ ----------
803
+ .. [1] Robert H. Somers, "A New Asymmetric Measure of Association for
804
+ Ordinal Variables", *American Sociological Review*, Vol. 27, No. 6,
805
+ pp. 799--811, 1962.
806
+
807
+ .. [2] Morton B. Brown and Jacqueline K. Benedetti, "Sampling Behavior of
808
+ Tests for Correlation in Two-Way Contingency Tables", *Journal of
809
+ the American Statistical Association* Vol. 72, No. 358, pp.
810
+ 309--315, 1977.
811
+
812
+ .. [3] SAS Institute, Inc., "The FREQ Procedure (Book Excerpt)",
813
+ *SAS/STAT 9.2 User's Guide, Second Edition*, SAS Publishing, 2009.
814
+
815
+ .. [4] Laerd Statistics, "Somers' d using SPSS Statistics", *SPSS
816
+ Statistics Tutorials and Statistical Guides*,
817
+ https://statistics.laerd.com/spss-tutorials/somers-d-using-spss-statistics.php,
818
+ Accessed July 31, 2020.
819
+
820
+ Examples
821
+ --------
822
+ We calculate Somers' D for the example given in [4]_, in which a hotel
823
+ chain owner seeks to determine the association between hotel room
824
+ cleanliness and customer satisfaction. The independent variable, hotel
825
+ room cleanliness, is ranked on an ordinal scale: "below average (1)",
826
+ "average (2)", or "above average (3)". The dependent variable, customer
827
+ satisfaction, is ranked on a second scale: "very dissatisfied (1)",
828
+ "moderately dissatisfied (2)", "neither dissatisfied nor satisfied (3)",
829
+ "moderately satisfied (4)", or "very satisfied (5)". 189 customers
830
+ respond to the survey, and the results are cast into a contingency table
831
+ with the hotel room cleanliness as the "row" variable and customer
832
+ satisfaction as the "column" variable.
833
+
834
+ +-----+-----+-----+-----+-----+-----+
835
+ | | (1) | (2) | (3) | (4) | (5) |
836
+ +=====+=====+=====+=====+=====+=====+
837
+ | (1) | 27 | 25 | 14 | 7 | 0 |
838
+ +-----+-----+-----+-----+-----+-----+
839
+ | (2) | 7 | 14 | 18 | 35 | 12 |
840
+ +-----+-----+-----+-----+-----+-----+
841
+ | (3) | 1 | 3 | 2 | 7 | 17 |
842
+ +-----+-----+-----+-----+-----+-----+
843
+
844
+ For example, 27 customers assigned their room a cleanliness ranking of
845
+ "below average (1)" and a corresponding satisfaction of "very
846
+ dissatisfied (1)". We perform the analysis as follows.
847
+
848
+ >>> from scipy.stats import somersd
849
+ >>> table = [[27, 25, 14, 7, 0], [7, 14, 18, 35, 12], [1, 3, 2, 7, 17]]
850
+ >>> res = somersd(table)
851
+ >>> res.statistic
852
+ 0.6032766111513396
853
+ >>> res.pvalue
854
+ 1.0007091191074533e-27
855
+
856
+ The value of the Somers' D statistic is approximately 0.6, indicating
857
+ a positive correlation between room cleanliness and customer satisfaction
858
+ in the sample.
859
+ The *p*-value is very small, indicating a very small probability of
860
+ observing such an extreme value of the statistic under the null
861
+ hypothesis that the statistic of the entire population (from which
862
+ our sample of 189 customers is drawn) is zero. This supports the
863
+ alternative hypothesis that the true value of Somers' D for the population
864
+ is nonzero.
865
+
866
+ """
867
+ x, y = np.array(x), np.array(y)
868
+ if x.ndim == 1:
869
+ if x.size != y.size:
870
+ raise ValueError("Rankings must be of equal length.")
871
+ table = scipy.stats.contingency.crosstab(x, y)[1]
872
+ elif x.ndim == 2:
873
+ if np.any(x < 0):
874
+ raise ValueError("All elements of the contingency table must be "
875
+ "non-negative.")
876
+ if np.any(x != x.astype(int)):
877
+ raise ValueError("All elements of the contingency table must be "
878
+ "integer.")
879
+ if x.nonzero()[0].size < 2:
880
+ raise ValueError("At least two elements of the contingency table "
881
+ "must be nonzero.")
882
+ table = x
883
+ else:
884
+ raise ValueError("x must be either a 1D or 2D array")
885
+ # The table type is converted to a float to avoid an integer overflow
886
+ d, p = _somers_d(table.astype(float), alternative)
887
+
888
+ # add alias for consistency with other correlation functions
889
+ res = SomersDResult(d, p, table)
890
+ res.correlation = d
891
+ return res
892
+
893
+
894
+ # This could be combined with `_all_partitions` in `_resampling.py`
895
+ def _all_partitions(nx, ny):
896
+ """
897
+ Partition a set of indices into two fixed-length sets in all possible ways
898
+
899
+ Partition a set of indices 0 ... nx + ny - 1 into two sets of length nx and
900
+ ny in all possible ways (ignoring order of elements).
901
+ """
902
+ z = np.arange(nx+ny)
903
+ for c in combinations(z, nx):
904
+ x = np.array(c)
905
+ mask = np.ones(nx+ny, bool)
906
+ mask[x] = False
907
+ y = z[mask]
908
+ yield x, y
909
+
910
+
911
+ def _compute_log_combinations(n):
912
+ """Compute all log combination of C(n, k)."""
913
+ gammaln_arr = gammaln(np.arange(n + 1) + 1)
914
+ return gammaln(n + 1) - gammaln_arr - gammaln_arr[::-1]
915
+
916
+
917
+ @dataclass
918
+ class BarnardExactResult:
919
+ statistic: float
920
+ pvalue: float
921
+
922
+
923
+ def barnard_exact(table, alternative="two-sided", pooled=True, n=32):
924
+ r"""Perform a Barnard exact test on a 2x2 contingency table.
925
+
926
+ Parameters
927
+ ----------
928
+ table : array_like of ints
929
+ A 2x2 contingency table. Elements should be non-negative integers.
930
+
931
+ alternative : {'two-sided', 'less', 'greater'}, optional
932
+ Defines the null and alternative hypotheses. Default is 'two-sided'.
933
+ Please see explanations in the Notes section below.
934
+
935
+ pooled : bool, optional
936
+ Whether to compute score statistic with pooled variance (as in
937
+ Student's t-test, for example) or unpooled variance (as in Welch's
938
+ t-test). Default is ``True``.
939
+
940
+ n : int, optional
941
+ Number of sampling points used in the construction of the sampling
942
+ method. Note that this argument will automatically be converted to
943
+ the next higher power of 2 since `scipy.stats.qmc.Sobol` is used to
944
+ select sample points. Default is 32. Must be positive. In most cases,
945
+ 32 points is enough to reach good precision. More points comes at
946
+ performance cost.
947
+
948
+ Returns
949
+ -------
950
+ ber : BarnardExactResult
951
+ A result object with the following attributes.
952
+
953
+ statistic : float
954
+ The Wald statistic with pooled or unpooled variance, depending
955
+ on the user choice of `pooled`.
956
+
957
+ pvalue : float
958
+ P-value, the probability of obtaining a distribution at least as
959
+ extreme as the one that was actually observed, assuming that the
960
+ null hypothesis is true.
961
+
962
+ See Also
963
+ --------
964
+ chi2_contingency : Chi-square test of independence of variables in a
965
+ contingency table.
966
+ fisher_exact : Fisher exact test on a 2x2 contingency table.
967
+ boschloo_exact : Boschloo's exact test on a 2x2 contingency table,
968
+ which is an uniformly more powerful alternative to Fisher's exact test.
969
+
970
+ Notes
971
+ -----
972
+ Barnard's test is an exact test used in the analysis of contingency
973
+ tables. It examines the association of two categorical variables, and
974
+ is a more powerful alternative than Fisher's exact test
975
+ for 2x2 contingency tables.
976
+
977
+ Let's define :math:`X_0` a 2x2 matrix representing the observed sample,
978
+ where each column stores the binomial experiment, as in the example
979
+ below. Let's also define :math:`p_1, p_2` the theoretical binomial
980
+ probabilities for :math:`x_{11}` and :math:`x_{12}`. When using
981
+ Barnard exact test, we can assert three different null hypotheses :
982
+
983
+ - :math:`H_0 : p_1 \geq p_2` versus :math:`H_1 : p_1 < p_2`,
984
+ with `alternative` = "less"
985
+
986
+ - :math:`H_0 : p_1 \leq p_2` versus :math:`H_1 : p_1 > p_2`,
987
+ with `alternative` = "greater"
988
+
989
+ - :math:`H_0 : p_1 = p_2` versus :math:`H_1 : p_1 \neq p_2`,
990
+ with `alternative` = "two-sided" (default one)
991
+
992
+ In order to compute Barnard's exact test, we are using the Wald
993
+ statistic [3]_ with pooled or unpooled variance.
994
+ Under the default assumption that both variances are equal
995
+ (``pooled = True``), the statistic is computed as:
996
+
997
+ .. math::
998
+
999
+ T(X) = \frac{
1000
+ \hat{p}_1 - \hat{p}_2
1001
+ }{
1002
+ \sqrt{
1003
+ \hat{p}(1 - \hat{p})
1004
+ (\frac{1}{c_1} +
1005
+ \frac{1}{c_2})
1006
+ }
1007
+ }
1008
+
1009
+ with :math:`\hat{p}_1, \hat{p}_2` and :math:`\hat{p}` the estimator of
1010
+ :math:`p_1, p_2` and :math:`p`, the latter being the combined probability,
1011
+ given the assumption that :math:`p_1 = p_2`.
1012
+
1013
+ If this assumption is invalid (``pooled = False``), the statistic is:
1014
+
1015
+ .. math::
1016
+
1017
+ T(X) = \frac{
1018
+ \hat{p}_1 - \hat{p}_2
1019
+ }{
1020
+ \sqrt{
1021
+ \frac{\hat{p}_1 (1 - \hat{p}_1)}{c_1} +
1022
+ \frac{\hat{p}_2 (1 - \hat{p}_2)}{c_2}
1023
+ }
1024
+ }
1025
+
1026
+ The p-value is then computed as:
1027
+
1028
+ .. math::
1029
+
1030
+ \sum
1031
+ \binom{c_1}{x_{11}}
1032
+ \binom{c_2}{x_{12}}
1033
+ \pi^{x_{11} + x_{12}}
1034
+ (1 - \pi)^{t - x_{11} - x_{12}}
1035
+
1036
+ where the sum is over all 2x2 contingency tables :math:`X` such that:
1037
+ * :math:`T(X) \leq T(X_0)` when `alternative` = "less",
1038
+ * :math:`T(X) \geq T(X_0)` when `alternative` = "greater", or
1039
+ * :math:`T(X) \geq |T(X_0)|` when `alternative` = "two-sided".
1040
+ Above, :math:`c_1, c_2` are the sum of the columns 1 and 2,
1041
+ and :math:`t` the total (sum of the 4 sample's element).
1042
+
1043
+ The returned p-value is the maximum p-value taken over the nuisance
1044
+ parameter :math:`\pi`, where :math:`0 \leq \pi \leq 1`.
1045
+
1046
+ This function's complexity is :math:`O(n c_1 c_2)`, where `n` is the
1047
+ number of sample points.
1048
+
1049
+ References
1050
+ ----------
1051
+ .. [1] Barnard, G. A. "Significance Tests for 2x2 Tables". *Biometrika*.
1052
+ 34.1/2 (1947): 123-138. :doi:`dpgkg3`
1053
+
1054
+ .. [2] Mehta, Cyrus R., and Pralay Senchaudhuri. "Conditional versus
1055
+ unconditional exact tests for comparing two binomials."
1056
+ *Cytel Software Corporation* 675 (2003): 1-5.
1057
+
1058
+ .. [3] "Wald Test". *Wikipedia*. https://en.wikipedia.org/wiki/Wald_test
1059
+
1060
+ Examples
1061
+ --------
1062
+ An example use of Barnard's test is presented in [2]_.
1063
+
1064
+ Consider the following example of a vaccine efficacy study
1065
+ (Chan, 1998). In a randomized clinical trial of 30 subjects, 15 were
1066
+ inoculated with a recombinant DNA influenza vaccine and the 15 were
1067
+ inoculated with a placebo. Twelve of the 15 subjects in the placebo
1068
+ group (80%) eventually became infected with influenza whereas for the
1069
+ vaccine group, only 7 of the 15 subjects (47%) became infected. The
1070
+ data are tabulated as a 2 x 2 table::
1071
+
1072
+ Vaccine Placebo
1073
+ Yes 7 12
1074
+ No 8 3
1075
+
1076
+ When working with statistical hypothesis testing, we usually use a
1077
+ threshold probability or significance level upon which we decide
1078
+ to reject the null hypothesis :math:`H_0`. Suppose we choose the common
1079
+ significance level of 5%.
1080
+
1081
+ Our alternative hypothesis is that the vaccine will lower the chance of
1082
+ becoming infected with the virus; that is, the probability :math:`p_1` of
1083
+ catching the virus with the vaccine will be *less than* the probability
1084
+ :math:`p_2` of catching the virus without the vaccine. Therefore, we call
1085
+ `barnard_exact` with the ``alternative="less"`` option:
1086
+
1087
+ >>> import scipy.stats as stats
1088
+ >>> res = stats.barnard_exact([[7, 12], [8, 3]], alternative="less")
1089
+ >>> res.statistic
1090
+ -1.894
1091
+ >>> res.pvalue
1092
+ 0.03407
1093
+
1094
+ Under the null hypothesis that the vaccine will not lower the chance of
1095
+ becoming infected, the probability of obtaining test results at least as
1096
+ extreme as the observed data is approximately 3.4%. Since this p-value is
1097
+ less than our chosen significance level, we have evidence to reject
1098
+ :math:`H_0` in favor of the alternative.
1099
+
1100
+ Suppose we had used Fisher's exact test instead:
1101
+
1102
+ >>> _, pvalue = stats.fisher_exact([[7, 12], [8, 3]], alternative="less")
1103
+ >>> pvalue
1104
+ 0.0640
1105
+
1106
+ With the same threshold significance of 5%, we would not have been able
1107
+ to reject the null hypothesis in favor of the alternative. As stated in
1108
+ [2]_, Barnard's test is uniformly more powerful than Fisher's exact test
1109
+ because Barnard's test does not condition on any margin. Fisher's test
1110
+ should only be used when both sets of marginals are fixed.
1111
+
1112
+ """
1113
+ if n <= 0:
1114
+ raise ValueError(
1115
+ "Number of points `n` must be strictly positive, "
1116
+ f"found {n!r}"
1117
+ )
1118
+
1119
+ table = np.asarray(table, dtype=np.int64)
1120
+
1121
+ if not table.shape == (2, 2):
1122
+ raise ValueError("The input `table` must be of shape (2, 2).")
1123
+
1124
+ if np.any(table < 0):
1125
+ raise ValueError("All values in `table` must be nonnegative.")
1126
+
1127
+ if 0 in table.sum(axis=0):
1128
+ # If both values in column are zero, the p-value is 1 and
1129
+ # the score's statistic is NaN.
1130
+ return BarnardExactResult(np.nan, 1.0)
1131
+
1132
+ total_col_1, total_col_2 = table.sum(axis=0)
1133
+
1134
+ x1 = np.arange(total_col_1 + 1, dtype=np.int64).reshape(-1, 1)
1135
+ x2 = np.arange(total_col_2 + 1, dtype=np.int64).reshape(1, -1)
1136
+
1137
+ # We need to calculate the wald statistics for each combination of x1 and
1138
+ # x2.
1139
+ p1, p2 = x1 / total_col_1, x2 / total_col_2
1140
+
1141
+ if pooled:
1142
+ p = (x1 + x2) / (total_col_1 + total_col_2)
1143
+ variances = p * (1 - p) * (1 / total_col_1 + 1 / total_col_2)
1144
+ else:
1145
+ variances = p1 * (1 - p1) / total_col_1 + p2 * (1 - p2) / total_col_2
1146
+
1147
+ # To avoid warning when dividing by 0
1148
+ with np.errstate(divide="ignore", invalid="ignore"):
1149
+ wald_statistic = np.divide((p1 - p2), np.sqrt(variances))
1150
+
1151
+ wald_statistic[p1 == p2] = 0 # Removing NaN values
1152
+
1153
+ wald_stat_obs = wald_statistic[table[0, 0], table[0, 1]]
1154
+
1155
+ if alternative == "two-sided":
1156
+ index_arr = np.abs(wald_statistic) >= abs(wald_stat_obs)
1157
+ elif alternative == "less":
1158
+ index_arr = wald_statistic <= wald_stat_obs
1159
+ elif alternative == "greater":
1160
+ index_arr = wald_statistic >= wald_stat_obs
1161
+ else:
1162
+ msg = (
1163
+ "`alternative` should be one of {'two-sided', 'less', 'greater'},"
1164
+ f" found {alternative!r}"
1165
+ )
1166
+ raise ValueError(msg)
1167
+
1168
+ x1_sum_x2 = x1 + x2
1169
+
1170
+ x1_log_comb = _compute_log_combinations(total_col_1)
1171
+ x2_log_comb = _compute_log_combinations(total_col_2)
1172
+ x1_sum_x2_log_comb = x1_log_comb[x1] + x2_log_comb[x2]
1173
+
1174
+ result = shgo(
1175
+ _get_binomial_log_p_value_with_nuisance_param,
1176
+ args=(x1_sum_x2, x1_sum_x2_log_comb, index_arr),
1177
+ bounds=((0, 1),),
1178
+ n=n,
1179
+ sampling_method="sobol",
1180
+ )
1181
+
1182
+ # result.fun is the negative log pvalue and therefore needs to be
1183
+ # changed before return
1184
+ p_value = np.clip(np.exp(-result.fun), a_min=0, a_max=1)
1185
+ return BarnardExactResult(wald_stat_obs, p_value)
1186
+
1187
+
1188
+ @dataclass
1189
+ class BoschlooExactResult:
1190
+ statistic: float
1191
+ pvalue: float
1192
+
1193
+
1194
+ def boschloo_exact(table, alternative="two-sided", n=32):
1195
+ r"""Perform Boschloo's exact test on a 2x2 contingency table.
1196
+
1197
+ Parameters
1198
+ ----------
1199
+ table : array_like of ints
1200
+ A 2x2 contingency table. Elements should be non-negative integers.
1201
+
1202
+ alternative : {'two-sided', 'less', 'greater'}, optional
1203
+ Defines the null and alternative hypotheses. Default is 'two-sided'.
1204
+ Please see explanations in the Notes section below.
1205
+
1206
+ n : int, optional
1207
+ Number of sampling points used in the construction of the sampling
1208
+ method. Note that this argument will automatically be converted to
1209
+ the next higher power of 2 since `scipy.stats.qmc.Sobol` is used to
1210
+ select sample points. Default is 32. Must be positive. In most cases,
1211
+ 32 points is enough to reach good precision. More points comes at
1212
+ performance cost.
1213
+
1214
+ Returns
1215
+ -------
1216
+ ber : BoschlooExactResult
1217
+ A result object with the following attributes.
1218
+
1219
+ statistic : float
1220
+ The statistic used in Boschloo's test; that is, the p-value
1221
+ from Fisher's exact test.
1222
+
1223
+ pvalue : float
1224
+ P-value, the probability of obtaining a distribution at least as
1225
+ extreme as the one that was actually observed, assuming that the
1226
+ null hypothesis is true.
1227
+
1228
+ See Also
1229
+ --------
1230
+ chi2_contingency : Chi-square test of independence of variables in a
1231
+ contingency table.
1232
+ fisher_exact : Fisher exact test on a 2x2 contingency table.
1233
+ barnard_exact : Barnard's exact test, which is a more powerful alternative
1234
+ than Fisher's exact test for 2x2 contingency tables.
1235
+
1236
+ Notes
1237
+ -----
1238
+ Boschloo's test is an exact test used in the analysis of contingency
1239
+ tables. It examines the association of two categorical variables, and
1240
+ is a uniformly more powerful alternative to Fisher's exact test
1241
+ for 2x2 contingency tables.
1242
+
1243
+ Boschloo's exact test uses the p-value of Fisher's exact test as a
1244
+ statistic, and Boschloo's p-value is the probability under the null
1245
+ hypothesis of observing such an extreme value of this statistic.
1246
+
1247
+ Let's define :math:`X_0` a 2x2 matrix representing the observed sample,
1248
+ where each column stores the binomial experiment, as in the example
1249
+ below. Let's also define :math:`p_1, p_2` the theoretical binomial
1250
+ probabilities for :math:`x_{11}` and :math:`x_{12}`. When using
1251
+ Boschloo exact test, we can assert three different alternative hypotheses:
1252
+
1253
+ - :math:`H_0 : p_1=p_2` versus :math:`H_1 : p_1 < p_2`,
1254
+ with `alternative` = "less"
1255
+
1256
+ - :math:`H_0 : p_1=p_2` versus :math:`H_1 : p_1 > p_2`,
1257
+ with `alternative` = "greater"
1258
+
1259
+ - :math:`H_0 : p_1=p_2` versus :math:`H_1 : p_1 \neq p_2`,
1260
+ with `alternative` = "two-sided" (default)
1261
+
1262
+ There are multiple conventions for computing a two-sided p-value when the
1263
+ null distribution is asymmetric. Here, we apply the convention that the
1264
+ p-value of a two-sided test is twice the minimum of the p-values of the
1265
+ one-sided tests (clipped to 1.0). Note that `fisher_exact` follows a
1266
+ different convention, so for a given `table`, the statistic reported by
1267
+ `boschloo_exact` may differ from the p-value reported by `fisher_exact`
1268
+ when ``alternative='two-sided'``.
1269
+
1270
+ .. versionadded:: 1.7.0
1271
+
1272
+ References
1273
+ ----------
1274
+ .. [1] R.D. Boschloo. "Raised conditional level of significance for the
1275
+ 2 x 2-table when testing the equality of two probabilities",
1276
+ Statistica Neerlandica, 24(1), 1970
1277
+
1278
+ .. [2] "Boschloo's test", Wikipedia,
1279
+ https://en.wikipedia.org/wiki/Boschloo%27s_test
1280
+
1281
+ .. [3] Lise M. Saari et al. "Employee attitudes and job satisfaction",
1282
+ Human Resource Management, 43(4), 395-407, 2004,
1283
+ :doi:`10.1002/hrm.20032`.
1284
+
1285
+ Examples
1286
+ --------
1287
+ In the following example, we consider the article "Employee
1288
+ attitudes and job satisfaction" [3]_
1289
+ which reports the results of a survey from 63 scientists and 117 college
1290
+ professors. Of the 63 scientists, 31 said they were very satisfied with
1291
+ their jobs, whereas 74 of the college professors were very satisfied
1292
+ with their work. Is this significant evidence that college
1293
+ professors are happier with their work than scientists?
1294
+ The following table summarizes the data mentioned above::
1295
+
1296
+ college professors scientists
1297
+ Very Satisfied 74 31
1298
+ Dissatisfied 43 32
1299
+
1300
+ When working with statistical hypothesis testing, we usually use a
1301
+ threshold probability or significance level upon which we decide
1302
+ to reject the null hypothesis :math:`H_0`. Suppose we choose the common
1303
+ significance level of 5%.
1304
+
1305
+ Our alternative hypothesis is that college professors are truly more
1306
+ satisfied with their work than scientists. Therefore, we expect
1307
+ :math:`p_1` the proportion of very satisfied college professors to be
1308
+ greater than :math:`p_2`, the proportion of very satisfied scientists.
1309
+ We thus call `boschloo_exact` with the ``alternative="greater"`` option:
1310
+
1311
+ >>> import scipy.stats as stats
1312
+ >>> res = stats.boschloo_exact([[74, 31], [43, 32]], alternative="greater")
1313
+ >>> res.statistic
1314
+ 0.0483
1315
+ >>> res.pvalue
1316
+ 0.0355
1317
+
1318
+ Under the null hypothesis that scientists are happier in their work than
1319
+ college professors, the probability of obtaining test
1320
+ results at least as extreme as the observed data is approximately 3.55%.
1321
+ Since this p-value is less than our chosen significance level, we have
1322
+ evidence to reject :math:`H_0` in favor of the alternative hypothesis.
1323
+
1324
+ """
1325
+ hypergeom = distributions.hypergeom
1326
+
1327
+ if n <= 0:
1328
+ raise ValueError(
1329
+ "Number of points `n` must be strictly positive,"
1330
+ f" found {n!r}"
1331
+ )
1332
+
1333
+ table = np.asarray(table, dtype=np.int64)
1334
+
1335
+ if not table.shape == (2, 2):
1336
+ raise ValueError("The input `table` must be of shape (2, 2).")
1337
+
1338
+ if np.any(table < 0):
1339
+ raise ValueError("All values in `table` must be nonnegative.")
1340
+
1341
+ if 0 in table.sum(axis=0):
1342
+ # If both values in column are zero, the p-value is 1 and
1343
+ # the score's statistic is NaN.
1344
+ return BoschlooExactResult(np.nan, np.nan)
1345
+
1346
+ total_col_1, total_col_2 = table.sum(axis=0)
1347
+ total = total_col_1 + total_col_2
1348
+ x1 = np.arange(total_col_1 + 1, dtype=np.int64).reshape(1, -1)
1349
+ x2 = np.arange(total_col_2 + 1, dtype=np.int64).reshape(-1, 1)
1350
+ x1_sum_x2 = x1 + x2
1351
+
1352
+ if alternative == 'less':
1353
+ pvalues = hypergeom.cdf(x1, total, x1_sum_x2, total_col_1).T
1354
+ elif alternative == 'greater':
1355
+ # Same formula as the 'less' case, but with the second column.
1356
+ pvalues = hypergeom.cdf(x2, total, x1_sum_x2, total_col_2).T
1357
+ elif alternative == 'two-sided':
1358
+ boschloo_less = boschloo_exact(table, alternative="less", n=n)
1359
+ boschloo_greater = boschloo_exact(table, alternative="greater", n=n)
1360
+
1361
+ res = (
1362
+ boschloo_less if boschloo_less.pvalue < boschloo_greater.pvalue
1363
+ else boschloo_greater
1364
+ )
1365
+
1366
+ # Two-sided p-value is defined as twice the minimum of the one-sided
1367
+ # p-values
1368
+ pvalue = np.clip(2 * res.pvalue, a_min=0, a_max=1)
1369
+ return BoschlooExactResult(res.statistic, pvalue)
1370
+ else:
1371
+ msg = (
1372
+ f"`alternative` should be one of {'two-sided', 'less', 'greater'},"
1373
+ f" found {alternative!r}"
1374
+ )
1375
+ raise ValueError(msg)
1376
+
1377
+ fisher_stat = pvalues[table[0, 0], table[0, 1]]
1378
+
1379
+ # fisher_stat * (1+1e-13) guards us from small numerical error. It is
1380
+ # equivalent to np.isclose with relative tol of 1e-13 and absolute tol of 0
1381
+ # For more throughout explanations, see gh-14178
1382
+ index_arr = pvalues <= fisher_stat * (1+1e-13)
1383
+
1384
+ x1, x2, x1_sum_x2 = x1.T, x2.T, x1_sum_x2.T
1385
+ x1_log_comb = _compute_log_combinations(total_col_1)
1386
+ x2_log_comb = _compute_log_combinations(total_col_2)
1387
+ x1_sum_x2_log_comb = x1_log_comb[x1] + x2_log_comb[x2]
1388
+
1389
+ result = shgo(
1390
+ _get_binomial_log_p_value_with_nuisance_param,
1391
+ args=(x1_sum_x2, x1_sum_x2_log_comb, index_arr),
1392
+ bounds=((0, 1),),
1393
+ n=n,
1394
+ sampling_method="sobol",
1395
+ )
1396
+
1397
+ # result.fun is the negative log pvalue and therefore needs to be
1398
+ # changed before return
1399
+ p_value = np.clip(np.exp(-result.fun), a_min=0, a_max=1)
1400
+ return BoschlooExactResult(fisher_stat, p_value)
1401
+
1402
+
1403
+ def _get_binomial_log_p_value_with_nuisance_param(
1404
+ nuisance_param, x1_sum_x2, x1_sum_x2_log_comb, index_arr
1405
+ ):
1406
+ r"""
1407
+ Compute the log pvalue in respect of a nuisance parameter considering
1408
+ a 2x2 sample space.
1409
+
1410
+ Parameters
1411
+ ----------
1412
+ nuisance_param : float
1413
+ nuisance parameter used in the computation of the maximisation of
1414
+ the p-value. Must be between 0 and 1
1415
+
1416
+ x1_sum_x2 : ndarray
1417
+ Sum of x1 and x2 inside barnard_exact
1418
+
1419
+ x1_sum_x2_log_comb : ndarray
1420
+ sum of the log combination of x1 and x2
1421
+
1422
+ index_arr : ndarray of boolean
1423
+
1424
+ Returns
1425
+ -------
1426
+ p_value : float
1427
+ Return the maximum p-value considering every nuisance parameter
1428
+ between 0 and 1
1429
+
1430
+ Notes
1431
+ -----
1432
+
1433
+ Both Barnard's test and Boschloo's test iterate over a nuisance parameter
1434
+ :math:`\pi \in [0, 1]` to find the maximum p-value. To search this
1435
+ maxima, this function return the negative log pvalue with respect to the
1436
+ nuisance parameter passed in params. This negative log p-value is then
1437
+ used in `shgo` to find the minimum negative pvalue which is our maximum
1438
+ pvalue.
1439
+
1440
+ Also, to compute the different combination used in the
1441
+ p-values' computation formula, this function uses `gammaln` which is
1442
+ more tolerant for large value than `scipy.special.comb`. `gammaln` gives
1443
+ a log combination. For the little precision loss, performances are
1444
+ improved a lot.
1445
+ """
1446
+ t1, t2 = x1_sum_x2.shape
1447
+ n = t1 + t2 - 2
1448
+ with np.errstate(divide="ignore", invalid="ignore"):
1449
+ log_nuisance = np.log(
1450
+ nuisance_param,
1451
+ out=np.zeros_like(nuisance_param),
1452
+ where=nuisance_param >= 0,
1453
+ )
1454
+ log_1_minus_nuisance = np.log(
1455
+ 1 - nuisance_param,
1456
+ out=np.zeros_like(nuisance_param),
1457
+ where=1 - nuisance_param >= 0,
1458
+ )
1459
+
1460
+ nuisance_power_x1_x2 = log_nuisance * x1_sum_x2
1461
+ nuisance_power_x1_x2[(x1_sum_x2 == 0)[:, :]] = 0
1462
+
1463
+ nuisance_power_n_minus_x1_x2 = log_1_minus_nuisance * (n - x1_sum_x2)
1464
+ nuisance_power_n_minus_x1_x2[(x1_sum_x2 == n)[:, :]] = 0
1465
+
1466
+ tmp_log_values_arr = (
1467
+ x1_sum_x2_log_comb
1468
+ + nuisance_power_x1_x2
1469
+ + nuisance_power_n_minus_x1_x2
1470
+ )
1471
+
1472
+ tmp_values_from_index = tmp_log_values_arr[index_arr]
1473
+
1474
+ # To avoid dividing by zero in log function and getting inf value,
1475
+ # values are centered according to the max
1476
+ max_value = tmp_values_from_index.max()
1477
+
1478
+ # To have better result's precision, the log pvalue is taken here.
1479
+ # Indeed, pvalue is included inside [0, 1] interval. Passing the
1480
+ # pvalue to log makes the interval a lot bigger ([-inf, 0]), and thus
1481
+ # help us to achieve better precision
1482
+ with np.errstate(divide="ignore", invalid="ignore"):
1483
+ log_probs = np.exp(tmp_values_from_index - max_value).sum()
1484
+ log_pvalue = max_value + np.log(
1485
+ log_probs,
1486
+ out=np.full_like(log_probs, -np.inf),
1487
+ where=log_probs > 0,
1488
+ )
1489
+
1490
+ # Since shgo find the minima, minus log pvalue is returned
1491
+ return -log_pvalue
1492
+
1493
+
1494
+ def _pval_cvm_2samp_exact(s, m, n):
1495
+ """
1496
+ Compute the exact p-value of the Cramer-von Mises two-sample test
1497
+ for a given value s of the test statistic.
1498
+ m and n are the sizes of the samples.
1499
+
1500
+ [1] Y. Xiao, A. Gordon, and A. Yakovlev, "A C++ Program for
1501
+ the Cramér-Von Mises Two-Sample Test", J. Stat. Soft.,
1502
+ vol. 17, no. 8, pp. 1-15, Dec. 2006.
1503
+ [2] T. W. Anderson "On the Distribution of the Two-Sample Cramer-von Mises
1504
+ Criterion," The Annals of Mathematical Statistics, Ann. Math. Statist.
1505
+ 33(3), 1148-1159, (September, 1962)
1506
+ """
1507
+
1508
+ # [1, p. 3]
1509
+ lcm = np.lcm(m, n)
1510
+ # [1, p. 4], below eq. 3
1511
+ a = lcm // m
1512
+ b = lcm // n
1513
+ # Combine Eq. 9 in [2] with Eq. 2 in [1] and solve for $\zeta$
1514
+ # Hint: `s` is $U$ in [2], and $T_2$ in [1] is $T$ in [2]
1515
+ mn = m * n
1516
+ zeta = lcm ** 2 * (m + n) * (6 * s - mn * (4 * mn - 1)) // (6 * mn ** 2)
1517
+
1518
+ # bound maximum value that may appear in `gs` (remember both rows!)
1519
+ zeta_bound = lcm**2 * (m + n) # bound elements in row 1
1520
+ combinations = comb(m + n, m) # sum of row 2
1521
+ max_gs = max(zeta_bound, combinations)
1522
+ dtype = np.min_scalar_type(max_gs)
1523
+
1524
+ # the frequency table of $g_{u, v}^+$ defined in [1, p. 6]
1525
+ gs = ([np.array([[0], [1]], dtype=dtype)]
1526
+ + [np.empty((2, 0), dtype=dtype) for _ in range(m)])
1527
+ for u in range(n + 1):
1528
+ next_gs = []
1529
+ tmp = np.empty((2, 0), dtype=dtype)
1530
+ for v, g in enumerate(gs):
1531
+ # Calculate g recursively with eq. 11 in [1]. Even though it
1532
+ # doesn't look like it, this also does 12/13 (all of Algorithm 1).
1533
+ vi, i0, i1 = np.intersect1d(tmp[0], g[0], return_indices=True)
1534
+ tmp = np.concatenate([
1535
+ np.stack([vi, tmp[1, i0] + g[1, i1]]),
1536
+ np.delete(tmp, i0, 1),
1537
+ np.delete(g, i1, 1)
1538
+ ], 1)
1539
+ res = (a * v - b * u) ** 2
1540
+ tmp[0] += res.astype(dtype)
1541
+ next_gs.append(tmp)
1542
+ gs = next_gs
1543
+ value, freq = gs[m]
1544
+ return np.float64(np.sum(freq[value >= zeta]) / combinations)
1545
+
1546
+
1547
+ @_axis_nan_policy_factory(CramerVonMisesResult, n_samples=2, too_small=1,
1548
+ result_to_tuple=_cvm_result_to_tuple)
1549
+ def cramervonmises_2samp(x, y, method='auto'):
1550
+ """Perform the two-sample Cramér-von Mises test for goodness of fit.
1551
+
1552
+ This is the two-sample version of the Cramér-von Mises test ([1]_):
1553
+ for two independent samples :math:`X_1, ..., X_n` and
1554
+ :math:`Y_1, ..., Y_m`, the null hypothesis is that the samples
1555
+ come from the same (unspecified) continuous distribution.
1556
+
1557
+ Parameters
1558
+ ----------
1559
+ x : array_like
1560
+ A 1-D array of observed values of the random variables :math:`X_i`.
1561
+ Must contain at least two observations.
1562
+ y : array_like
1563
+ A 1-D array of observed values of the random variables :math:`Y_i`.
1564
+ Must contain at least two observations.
1565
+ method : {'auto', 'asymptotic', 'exact'}, optional
1566
+ The method used to compute the p-value, see Notes for details.
1567
+ The default is 'auto'.
1568
+
1569
+ Returns
1570
+ -------
1571
+ res : object with attributes
1572
+ statistic : float
1573
+ Cramér-von Mises statistic.
1574
+ pvalue : float
1575
+ The p-value.
1576
+
1577
+ See Also
1578
+ --------
1579
+ cramervonmises, anderson_ksamp, epps_singleton_2samp, ks_2samp
1580
+
1581
+ Notes
1582
+ -----
1583
+ .. versionadded:: 1.7.0
1584
+
1585
+ The statistic is computed according to equation 9 in [2]_. The
1586
+ calculation of the p-value depends on the keyword `method`:
1587
+
1588
+ - ``asymptotic``: The p-value is approximated by using the limiting
1589
+ distribution of the test statistic.
1590
+ - ``exact``: The exact p-value is computed by enumerating all
1591
+ possible combinations of the test statistic, see [2]_.
1592
+
1593
+ If ``method='auto'``, the exact approach is used
1594
+ if both samples contain equal to or less than 20 observations,
1595
+ otherwise the asymptotic distribution is used.
1596
+
1597
+ If the underlying distribution is not continuous, the p-value is likely to
1598
+ be conservative (Section 6.2 in [3]_). When ranking the data to compute
1599
+ the test statistic, midranks are used if there are ties.
1600
+
1601
+ References
1602
+ ----------
1603
+ .. [1] https://en.wikipedia.org/wiki/Cramer-von_Mises_criterion
1604
+ .. [2] Anderson, T.W. (1962). On the distribution of the two-sample
1605
+ Cramer-von-Mises criterion. The Annals of Mathematical
1606
+ Statistics, pp. 1148-1159.
1607
+ .. [3] Conover, W.J., Practical Nonparametric Statistics, 1971.
1608
+
1609
+ Examples
1610
+ --------
1611
+
1612
+ Suppose we wish to test whether two samples generated by
1613
+ ``scipy.stats.norm.rvs`` have the same distribution. We choose a
1614
+ significance level of alpha=0.05.
1615
+
1616
+ >>> import numpy as np
1617
+ >>> from scipy import stats
1618
+ >>> rng = np.random.default_rng()
1619
+ >>> x = stats.norm.rvs(size=100, random_state=rng)
1620
+ >>> y = stats.norm.rvs(size=70, random_state=rng)
1621
+ >>> res = stats.cramervonmises_2samp(x, y)
1622
+ >>> res.statistic, res.pvalue
1623
+ (0.29376470588235293, 0.1412873014573014)
1624
+
1625
+ The p-value exceeds our chosen significance level, so we do not
1626
+ reject the null hypothesis that the observed samples are drawn from the
1627
+ same distribution.
1628
+
1629
+ For small sample sizes, one can compute the exact p-values:
1630
+
1631
+ >>> x = stats.norm.rvs(size=7, random_state=rng)
1632
+ >>> y = stats.t.rvs(df=2, size=6, random_state=rng)
1633
+ >>> res = stats.cramervonmises_2samp(x, y, method='exact')
1634
+ >>> res.statistic, res.pvalue
1635
+ (0.197802197802198, 0.31643356643356646)
1636
+
1637
+ The p-value based on the asymptotic distribution is a good approximation
1638
+ even though the sample size is small.
1639
+
1640
+ >>> res = stats.cramervonmises_2samp(x, y, method='asymptotic')
1641
+ >>> res.statistic, res.pvalue
1642
+ (0.197802197802198, 0.2966041181527128)
1643
+
1644
+ Independent of the method, one would not reject the null hypothesis at the
1645
+ chosen significance level in this example.
1646
+
1647
+ """
1648
+ xa = np.sort(np.asarray(x))
1649
+ ya = np.sort(np.asarray(y))
1650
+
1651
+ if xa.size <= 1 or ya.size <= 1:
1652
+ raise ValueError('x and y must contain at least two observations.')
1653
+ if method not in ['auto', 'exact', 'asymptotic']:
1654
+ raise ValueError('method must be either auto, exact or asymptotic.')
1655
+
1656
+ nx = len(xa)
1657
+ ny = len(ya)
1658
+
1659
+ if method == 'auto':
1660
+ if max(nx, ny) > 20:
1661
+ method = 'asymptotic'
1662
+ else:
1663
+ method = 'exact'
1664
+
1665
+ # get ranks of x and y in the pooled sample
1666
+ z = np.concatenate([xa, ya])
1667
+ # in case of ties, use midrank (see [1])
1668
+ r = scipy.stats.rankdata(z, method='average')
1669
+ rx = r[:nx]
1670
+ ry = r[nx:]
1671
+
1672
+ # compute U (eq. 10 in [2])
1673
+ u = nx * np.sum((rx - np.arange(1, nx+1))**2)
1674
+ u += ny * np.sum((ry - np.arange(1, ny+1))**2)
1675
+
1676
+ # compute T (eq. 9 in [2])
1677
+ k, N = nx*ny, nx + ny
1678
+ t = u / (k*N) - (4*k - 1)/(6*N)
1679
+
1680
+ if method == 'exact':
1681
+ p = _pval_cvm_2samp_exact(u, nx, ny)
1682
+ else:
1683
+ # compute expected value and variance of T (eq. 11 and 14 in [2])
1684
+ et = (1 + 1/N)/6
1685
+ vt = (N+1) * (4*k*N - 3*(nx**2 + ny**2) - 2*k)
1686
+ vt = vt / (45 * N**2 * 4 * k)
1687
+
1688
+ # computed the normalized statistic (eq. 15 in [2])
1689
+ tn = 1/6 + (t - et) / np.sqrt(45 * vt)
1690
+
1691
+ # approximate distribution of tn with limiting distribution
1692
+ # of the one-sample test statistic
1693
+ # if tn < 0.003, the _cdf_cvm_inf(tn) < 1.28*1e-18, return 1.0 directly
1694
+ if tn < 0.003:
1695
+ p = 1.0
1696
+ else:
1697
+ p = max(0, 1. - _cdf_cvm_inf(tn))
1698
+
1699
+ return CramerVonMisesResult(statistic=t, pvalue=p)
1700
+
1701
+
1702
+ class TukeyHSDResult:
1703
+ """Result of `scipy.stats.tukey_hsd`.
1704
+
1705
+ Attributes
1706
+ ----------
1707
+ statistic : float ndarray
1708
+ The computed statistic of the test for each comparison. The element
1709
+ at index ``(i, j)`` is the statistic for the comparison between groups
1710
+ ``i`` and ``j``.
1711
+ pvalue : float ndarray
1712
+ The associated p-value from the studentized range distribution. The
1713
+ element at index ``(i, j)`` is the p-value for the comparison
1714
+ between groups ``i`` and ``j``.
1715
+
1716
+ Notes
1717
+ -----
1718
+ The string representation of this object displays the most recently
1719
+ calculated confidence interval, and if none have been previously
1720
+ calculated, it will evaluate ``confidence_interval()``.
1721
+
1722
+ References
1723
+ ----------
1724
+ .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "7.4.7.1. Tukey's
1725
+ Method."
1726
+ https://www.itl.nist.gov/div898/handbook/prc/section4/prc471.htm,
1727
+ 28 November 2020.
1728
+ """
1729
+
1730
+ def __init__(self, statistic, pvalue, _nobs, _ntreatments, _stand_err):
1731
+ self.statistic = statistic
1732
+ self.pvalue = pvalue
1733
+ self._ntreatments = _ntreatments
1734
+ self._nobs = _nobs
1735
+ self._stand_err = _stand_err
1736
+ self._ci = None
1737
+ self._ci_cl = None
1738
+
1739
+ def __str__(self):
1740
+ # Note: `__str__` prints the confidence intervals from the most
1741
+ # recent call to `confidence_interval`. If it has not been called,
1742
+ # it will be called with the default CL of .95.
1743
+ if self._ci is None:
1744
+ self.confidence_interval(confidence_level=.95)
1745
+ s = ("Tukey's HSD Pairwise Group Comparisons"
1746
+ f" ({self._ci_cl*100:.1f}% Confidence Interval)\n")
1747
+ s += "Comparison Statistic p-value Lower CI Upper CI\n"
1748
+ for i in range(self.pvalue.shape[0]):
1749
+ for j in range(self.pvalue.shape[0]):
1750
+ if i != j:
1751
+ s += (f" ({i} - {j}) {self.statistic[i, j]:>10.3f}"
1752
+ f"{self.pvalue[i, j]:>10.3f}"
1753
+ f"{self._ci.low[i, j]:>10.3f}"
1754
+ f"{self._ci.high[i, j]:>10.3f}\n")
1755
+ return s
1756
+
1757
+ def confidence_interval(self, confidence_level=.95):
1758
+ """Compute the confidence interval for the specified confidence level.
1759
+
1760
+ Parameters
1761
+ ----------
1762
+ confidence_level : float, optional
1763
+ Confidence level for the computed confidence interval
1764
+ of the estimated proportion. Default is .95.
1765
+
1766
+ Returns
1767
+ -------
1768
+ ci : ``ConfidenceInterval`` object
1769
+ The object has attributes ``low`` and ``high`` that hold the
1770
+ lower and upper bounds of the confidence intervals for each
1771
+ comparison. The high and low values are accessible for each
1772
+ comparison at index ``(i, j)`` between groups ``i`` and ``j``.
1773
+
1774
+ References
1775
+ ----------
1776
+ .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "7.4.7.1.
1777
+ Tukey's Method."
1778
+ https://www.itl.nist.gov/div898/handbook/prc/section4/prc471.htm,
1779
+ 28 November 2020.
1780
+
1781
+ Examples
1782
+ --------
1783
+ >>> from scipy.stats import tukey_hsd
1784
+ >>> group0 = [24.5, 23.5, 26.4, 27.1, 29.9]
1785
+ >>> group1 = [28.4, 34.2, 29.5, 32.2, 30.1]
1786
+ >>> group2 = [26.1, 28.3, 24.3, 26.2, 27.8]
1787
+ >>> result = tukey_hsd(group0, group1, group2)
1788
+ >>> ci = result.confidence_interval()
1789
+ >>> ci.low
1790
+ array([[-3.649159, -8.249159, -3.909159],
1791
+ [ 0.950841, -3.649159, 0.690841],
1792
+ [-3.389159, -7.989159, -3.649159]])
1793
+ >>> ci.high
1794
+ array([[ 3.649159, -0.950841, 3.389159],
1795
+ [ 8.249159, 3.649159, 7.989159],
1796
+ [ 3.909159, -0.690841, 3.649159]])
1797
+ """
1798
+ # check to see if the supplied confidence level matches that of the
1799
+ # previously computed CI.
1800
+ if (self._ci is not None and self._ci_cl is not None and
1801
+ confidence_level == self._ci_cl):
1802
+ return self._ci
1803
+
1804
+ if not 0 < confidence_level < 1:
1805
+ raise ValueError("Confidence level must be between 0 and 1.")
1806
+ # determine the critical value of the studentized range using the
1807
+ # appropriate confidence level, number of treatments, and degrees
1808
+ # of freedom as determined by the number of data less the number of
1809
+ # treatments. ("Confidence limits for Tukey's method")[1]. Note that
1810
+ # in the cases of unequal sample sizes there will be a criterion for
1811
+ # each group comparison.
1812
+ params = (confidence_level, self._nobs, self._ntreatments - self._nobs)
1813
+ srd = distributions.studentized_range.ppf(*params)
1814
+ # also called maximum critical value, the Tukey criterion is the
1815
+ # studentized range critical value * the square root of mean square
1816
+ # error over the sample size.
1817
+ tukey_criterion = srd * self._stand_err
1818
+ # the confidence levels are determined by the
1819
+ # `mean_differences` +- `tukey_criterion`
1820
+ upper_conf = self.statistic + tukey_criterion
1821
+ lower_conf = self.statistic - tukey_criterion
1822
+ self._ci = ConfidenceInterval(low=lower_conf, high=upper_conf)
1823
+ self._ci_cl = confidence_level
1824
+ return self._ci
1825
+
1826
+
1827
+ def _tukey_hsd_iv(args):
1828
+ if (len(args)) < 2:
1829
+ raise ValueError("There must be more than 1 treatment.")
1830
+ args = [np.asarray(arg) for arg in args]
1831
+ for arg in args:
1832
+ if arg.ndim != 1:
1833
+ raise ValueError("Input samples must be one-dimensional.")
1834
+ if arg.size <= 1:
1835
+ raise ValueError("Input sample size must be greater than one.")
1836
+ if np.isinf(arg).any():
1837
+ raise ValueError("Input samples must be finite.")
1838
+ return args
1839
+
1840
+
1841
+ def tukey_hsd(*args):
1842
+ """Perform Tukey's HSD test for equality of means over multiple treatments.
1843
+
1844
+ Tukey's honestly significant difference (HSD) test performs pairwise
1845
+ comparison of means for a set of samples. Whereas ANOVA (e.g. `f_oneway`)
1846
+ assesses whether the true means underlying each sample are identical,
1847
+ Tukey's HSD is a post hoc test used to compare the mean of each sample
1848
+ to the mean of each other sample.
1849
+
1850
+ The null hypothesis is that the distributions underlying the samples all
1851
+ have the same mean. The test statistic, which is computed for every
1852
+ possible pairing of samples, is simply the difference between the sample
1853
+ means. For each pair, the p-value is the probability under the null
1854
+ hypothesis (and other assumptions; see notes) of observing such an extreme
1855
+ value of the statistic, considering that many pairwise comparisons are
1856
+ being performed. Confidence intervals for the difference between each pair
1857
+ of means are also available.
1858
+
1859
+ Parameters
1860
+ ----------
1861
+ sample1, sample2, ... : array_like
1862
+ The sample measurements for each group. There must be at least
1863
+ two arguments.
1864
+
1865
+ Returns
1866
+ -------
1867
+ result : `~scipy.stats._result_classes.TukeyHSDResult` instance
1868
+ The return value is an object with the following attributes:
1869
+
1870
+ statistic : float ndarray
1871
+ The computed statistic of the test for each comparison. The element
1872
+ at index ``(i, j)`` is the statistic for the comparison between
1873
+ groups ``i`` and ``j``.
1874
+ pvalue : float ndarray
1875
+ The computed p-value of the test for each comparison. The element
1876
+ at index ``(i, j)`` is the p-value for the comparison between
1877
+ groups ``i`` and ``j``.
1878
+
1879
+ The object has the following methods:
1880
+
1881
+ confidence_interval(confidence_level=0.95):
1882
+ Compute the confidence interval for the specified confidence level.
1883
+
1884
+ See Also
1885
+ --------
1886
+ dunnett : performs comparison of means against a control group.
1887
+
1888
+ Notes
1889
+ -----
1890
+ The use of this test relies on several assumptions.
1891
+
1892
+ 1. The observations are independent within and among groups.
1893
+ 2. The observations within each group are normally distributed.
1894
+ 3. The distributions from which the samples are drawn have the same finite
1895
+ variance.
1896
+
1897
+ The original formulation of the test was for samples of equal size [6]_.
1898
+ In case of unequal sample sizes, the test uses the Tukey-Kramer method
1899
+ [4]_.
1900
+
1901
+ References
1902
+ ----------
1903
+ .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "7.4.7.1. Tukey's
1904
+ Method."
1905
+ https://www.itl.nist.gov/div898/handbook/prc/section4/prc471.htm,
1906
+ 28 November 2020.
1907
+ .. [2] Abdi, Herve & Williams, Lynne. (2021). "Tukey's Honestly Significant
1908
+ Difference (HSD) Test."
1909
+ https://personal.utdallas.edu/~herve/abdi-HSD2010-pretty.pdf
1910
+ .. [3] "One-Way ANOVA Using SAS PROC ANOVA & PROC GLM." SAS
1911
+ Tutorials, 2007, www.stattutorials.com/SAS/TUTORIAL-PROC-GLM.htm.
1912
+ .. [4] Kramer, Clyde Young. "Extension of Multiple Range Tests to Group
1913
+ Means with Unequal Numbers of Replications." Biometrics, vol. 12,
1914
+ no. 3, 1956, pp. 307-310. JSTOR, www.jstor.org/stable/3001469.
1915
+ Accessed 25 May 2021.
1916
+ .. [5] NIST/SEMATECH e-Handbook of Statistical Methods, "7.4.3.3.
1917
+ The ANOVA table and tests of hypotheses about means"
1918
+ https://www.itl.nist.gov/div898/handbook/prc/section4/prc433.htm,
1919
+ 2 June 2021.
1920
+ .. [6] Tukey, John W. "Comparing Individual Means in the Analysis of
1921
+ Variance." Biometrics, vol. 5, no. 2, 1949, pp. 99-114. JSTOR,
1922
+ www.jstor.org/stable/3001913. Accessed 14 June 2021.
1923
+
1924
+
1925
+ Examples
1926
+ --------
1927
+ Here are some data comparing the time to relief of three brands of
1928
+ headache medicine, reported in minutes. Data adapted from [3]_.
1929
+
1930
+ >>> import numpy as np
1931
+ >>> from scipy.stats import tukey_hsd
1932
+ >>> group0 = [24.5, 23.5, 26.4, 27.1, 29.9]
1933
+ >>> group1 = [28.4, 34.2, 29.5, 32.2, 30.1]
1934
+ >>> group2 = [26.1, 28.3, 24.3, 26.2, 27.8]
1935
+
1936
+ We would like to see if the means between any of the groups are
1937
+ significantly different. First, visually examine a box and whisker plot.
1938
+
1939
+ >>> import matplotlib.pyplot as plt
1940
+ >>> fig, ax = plt.subplots(1, 1)
1941
+ >>> ax.boxplot([group0, group1, group2])
1942
+ >>> ax.set_xticklabels(["group0", "group1", "group2"]) # doctest: +SKIP
1943
+ >>> ax.set_ylabel("mean") # doctest: +SKIP
1944
+ >>> plt.show()
1945
+
1946
+ From the box and whisker plot, we can see overlap in the interquartile
1947
+ ranges group 1 to group 2 and group 3, but we can apply the ``tukey_hsd``
1948
+ test to determine if the difference between means is significant. We
1949
+ set a significance level of .05 to reject the null hypothesis.
1950
+
1951
+ >>> res = tukey_hsd(group0, group1, group2)
1952
+ >>> print(res)
1953
+ Tukey's HSD Pairwise Group Comparisons (95.0% Confidence Interval)
1954
+ Comparison Statistic p-value Lower CI Upper CI
1955
+ (0 - 1) -4.600 0.014 -8.249 -0.951
1956
+ (0 - 2) -0.260 0.980 -3.909 3.389
1957
+ (1 - 0) 4.600 0.014 0.951 8.249
1958
+ (1 - 2) 4.340 0.020 0.691 7.989
1959
+ (2 - 0) 0.260 0.980 -3.389 3.909
1960
+ (2 - 1) -4.340 0.020 -7.989 -0.691
1961
+
1962
+ The null hypothesis is that each group has the same mean. The p-value for
1963
+ comparisons between ``group0`` and ``group1`` as well as ``group1`` and
1964
+ ``group2`` do not exceed .05, so we reject the null hypothesis that they
1965
+ have the same means. The p-value of the comparison between ``group0``
1966
+ and ``group2`` exceeds .05, so we accept the null hypothesis that there
1967
+ is not a significant difference between their means.
1968
+
1969
+ We can also compute the confidence interval associated with our chosen
1970
+ confidence level.
1971
+
1972
+ >>> group0 = [24.5, 23.5, 26.4, 27.1, 29.9]
1973
+ >>> group1 = [28.4, 34.2, 29.5, 32.2, 30.1]
1974
+ >>> group2 = [26.1, 28.3, 24.3, 26.2, 27.8]
1975
+ >>> result = tukey_hsd(group0, group1, group2)
1976
+ >>> conf = res.confidence_interval(confidence_level=.99)
1977
+ >>> for ((i, j), l) in np.ndenumerate(conf.low):
1978
+ ... # filter out self comparisons
1979
+ ... if i != j:
1980
+ ... h = conf.high[i,j]
1981
+ ... print(f"({i} - {j}) {l:>6.3f} {h:>6.3f}")
1982
+ (0 - 1) -9.480 0.280
1983
+ (0 - 2) -5.140 4.620
1984
+ (1 - 0) -0.280 9.480
1985
+ (1 - 2) -0.540 9.220
1986
+ (2 - 0) -4.620 5.140
1987
+ (2 - 1) -9.220 0.540
1988
+ """
1989
+ args = _tukey_hsd_iv(args)
1990
+ ntreatments = len(args)
1991
+ means = np.asarray([np.mean(arg) for arg in args])
1992
+ nsamples_treatments = np.asarray([a.size for a in args])
1993
+ nobs = np.sum(nsamples_treatments)
1994
+
1995
+ # determine mean square error [5]. Note that this is sometimes called
1996
+ # mean square error within.
1997
+ mse = (np.sum([np.var(arg, ddof=1) for arg in args] *
1998
+ (nsamples_treatments - 1)) / (nobs - ntreatments))
1999
+
2000
+ # The calculation of the standard error differs when treatments differ in
2001
+ # size. See ("Unequal sample sizes")[1].
2002
+ if np.unique(nsamples_treatments).size == 1:
2003
+ # all input groups are the same length, so only one value needs to be
2004
+ # calculated [1].
2005
+ normalize = 2 / nsamples_treatments[0]
2006
+ else:
2007
+ # to compare groups of differing sizes, we must compute a variance
2008
+ # value for each individual comparison. Use broadcasting to get the
2009
+ # resulting matrix. [3], verified against [4] (page 308).
2010
+ normalize = 1 / nsamples_treatments + 1 / nsamples_treatments[None].T
2011
+
2012
+ # the standard error is used in the computation of the tukey criterion and
2013
+ # finding the p-values.
2014
+ stand_err = np.sqrt(normalize * mse / 2)
2015
+
2016
+ # the mean difference is the test statistic.
2017
+ mean_differences = means[None].T - means
2018
+
2019
+ # Calculate the t-statistic to use within the survival function of the
2020
+ # studentized range to get the p-value.
2021
+ t_stat = np.abs(mean_differences) / stand_err
2022
+
2023
+ params = t_stat, ntreatments, nobs - ntreatments
2024
+ pvalues = distributions.studentized_range.sf(*params)
2025
+
2026
+ return TukeyHSDResult(mean_differences, pvalues, ntreatments,
2027
+ nobs, stand_err)
parrot/lib/python3.10/site-packages/scipy/stats/_kde.py ADDED
@@ -0,0 +1,725 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #-------------------------------------------------------------------------------
2
+ #
3
+ # Define classes for (uni/multi)-variate kernel density estimation.
4
+ #
5
+ # Currently, only Gaussian kernels are implemented.
6
+ #
7
+ # Written by: Robert Kern
8
+ #
9
+ # Date: 2004-08-09
10
+ #
11
+ # Modified: 2005-02-10 by Robert Kern.
12
+ # Contributed to SciPy
13
+ # 2005-10-07 by Robert Kern.
14
+ # Some fixes to match the new scipy_core
15
+ #
16
+ # Copyright 2004-2005 by Enthought, Inc.
17
+ #
18
+ #-------------------------------------------------------------------------------
19
+
20
+ # Standard library imports.
21
+ import warnings
22
+
23
+ # SciPy imports.
24
+ from scipy import linalg, special
25
+ from scipy._lib._util import check_random_state
26
+
27
+ from numpy import (asarray, atleast_2d, reshape, zeros, newaxis, exp, pi,
28
+ sqrt, ravel, power, atleast_1d, squeeze, sum, transpose,
29
+ ones, cov)
30
+ import numpy as np
31
+
32
+ # Local imports.
33
+ from . import _mvn
34
+ from ._stats import gaussian_kernel_estimate, gaussian_kernel_estimate_log
35
+
36
+
37
+ __all__ = ['gaussian_kde']
38
+
39
+
40
+ class gaussian_kde:
41
+ """Representation of a kernel-density estimate using Gaussian kernels.
42
+
43
+ Kernel density estimation is a way to estimate the probability density
44
+ function (PDF) of a random variable in a non-parametric way.
45
+ `gaussian_kde` works for both uni-variate and multi-variate data. It
46
+ includes automatic bandwidth determination. The estimation works best for
47
+ a unimodal distribution; bimodal or multi-modal distributions tend to be
48
+ oversmoothed.
49
+
50
+ Parameters
51
+ ----------
52
+ dataset : array_like
53
+ Datapoints to estimate from. In case of univariate data this is a 1-D
54
+ array, otherwise a 2-D array with shape (# of dims, # of data).
55
+ bw_method : str, scalar or callable, optional
56
+ The method used to calculate the estimator bandwidth. This can be
57
+ 'scott', 'silverman', a scalar constant or a callable. If a scalar,
58
+ this will be used directly as `kde.factor`. If a callable, it should
59
+ take a `gaussian_kde` instance as only parameter and return a scalar.
60
+ If None (default), 'scott' is used. See Notes for more details.
61
+ weights : array_like, optional
62
+ weights of datapoints. This must be the same shape as dataset.
63
+ If None (default), the samples are assumed to be equally weighted
64
+
65
+ Attributes
66
+ ----------
67
+ dataset : ndarray
68
+ The dataset with which `gaussian_kde` was initialized.
69
+ d : int
70
+ Number of dimensions.
71
+ n : int
72
+ Number of datapoints.
73
+ neff : int
74
+ Effective number of datapoints.
75
+
76
+ .. versionadded:: 1.2.0
77
+ factor : float
78
+ The bandwidth factor, obtained from `kde.covariance_factor`. The square
79
+ of `kde.factor` multiplies the covariance matrix of the data in the kde
80
+ estimation.
81
+ covariance : ndarray
82
+ The covariance matrix of `dataset`, scaled by the calculated bandwidth
83
+ (`kde.factor`).
84
+ inv_cov : ndarray
85
+ The inverse of `covariance`.
86
+
87
+ Methods
88
+ -------
89
+ evaluate
90
+ __call__
91
+ integrate_gaussian
92
+ integrate_box_1d
93
+ integrate_box
94
+ integrate_kde
95
+ pdf
96
+ logpdf
97
+ resample
98
+ set_bandwidth
99
+ covariance_factor
100
+
101
+ Notes
102
+ -----
103
+ Bandwidth selection strongly influences the estimate obtained from the KDE
104
+ (much more so than the actual shape of the kernel). Bandwidth selection
105
+ can be done by a "rule of thumb", by cross-validation, by "plug-in
106
+ methods" or by other means; see [3]_, [4]_ for reviews. `gaussian_kde`
107
+ uses a rule of thumb, the default is Scott's Rule.
108
+
109
+ Scott's Rule [1]_, implemented as `scotts_factor`, is::
110
+
111
+ n**(-1./(d+4)),
112
+
113
+ with ``n`` the number of data points and ``d`` the number of dimensions.
114
+ In the case of unequally weighted points, `scotts_factor` becomes::
115
+
116
+ neff**(-1./(d+4)),
117
+
118
+ with ``neff`` the effective number of datapoints.
119
+ Silverman's Rule [2]_, implemented as `silverman_factor`, is::
120
+
121
+ (n * (d + 2) / 4.)**(-1. / (d + 4)).
122
+
123
+ or in the case of unequally weighted points::
124
+
125
+ (neff * (d + 2) / 4.)**(-1. / (d + 4)).
126
+
127
+ Good general descriptions of kernel density estimation can be found in [1]_
128
+ and [2]_, the mathematics for this multi-dimensional implementation can be
129
+ found in [1]_.
130
+
131
+ With a set of weighted samples, the effective number of datapoints ``neff``
132
+ is defined by::
133
+
134
+ neff = sum(weights)^2 / sum(weights^2)
135
+
136
+ as detailed in [5]_.
137
+
138
+ `gaussian_kde` does not currently support data that lies in a
139
+ lower-dimensional subspace of the space in which it is expressed. For such
140
+ data, consider performing principle component analysis / dimensionality
141
+ reduction and using `gaussian_kde` with the transformed data.
142
+
143
+ References
144
+ ----------
145
+ .. [1] D.W. Scott, "Multivariate Density Estimation: Theory, Practice, and
146
+ Visualization", John Wiley & Sons, New York, Chicester, 1992.
147
+ .. [2] B.W. Silverman, "Density Estimation for Statistics and Data
148
+ Analysis", Vol. 26, Monographs on Statistics and Applied Probability,
149
+ Chapman and Hall, London, 1986.
150
+ .. [3] B.A. Turlach, "Bandwidth Selection in Kernel Density Estimation: A
151
+ Review", CORE and Institut de Statistique, Vol. 19, pp. 1-33, 1993.
152
+ .. [4] D.M. Bashtannyk and R.J. Hyndman, "Bandwidth selection for kernel
153
+ conditional density estimation", Computational Statistics & Data
154
+ Analysis, Vol. 36, pp. 279-298, 2001.
155
+ .. [5] Gray P. G., 1969, Journal of the Royal Statistical Society.
156
+ Series A (General), 132, 272
157
+
158
+ Examples
159
+ --------
160
+ Generate some random two-dimensional data:
161
+
162
+ >>> import numpy as np
163
+ >>> from scipy import stats
164
+ >>> def measure(n):
165
+ ... "Measurement model, return two coupled measurements."
166
+ ... m1 = np.random.normal(size=n)
167
+ ... m2 = np.random.normal(scale=0.5, size=n)
168
+ ... return m1+m2, m1-m2
169
+
170
+ >>> m1, m2 = measure(2000)
171
+ >>> xmin = m1.min()
172
+ >>> xmax = m1.max()
173
+ >>> ymin = m2.min()
174
+ >>> ymax = m2.max()
175
+
176
+ Perform a kernel density estimate on the data:
177
+
178
+ >>> X, Y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j]
179
+ >>> positions = np.vstack([X.ravel(), Y.ravel()])
180
+ >>> values = np.vstack([m1, m2])
181
+ >>> kernel = stats.gaussian_kde(values)
182
+ >>> Z = np.reshape(kernel(positions).T, X.shape)
183
+
184
+ Plot the results:
185
+
186
+ >>> import matplotlib.pyplot as plt
187
+ >>> fig, ax = plt.subplots()
188
+ >>> ax.imshow(np.rot90(Z), cmap=plt.cm.gist_earth_r,
189
+ ... extent=[xmin, xmax, ymin, ymax])
190
+ >>> ax.plot(m1, m2, 'k.', markersize=2)
191
+ >>> ax.set_xlim([xmin, xmax])
192
+ >>> ax.set_ylim([ymin, ymax])
193
+ >>> plt.show()
194
+
195
+ """
196
+ def __init__(self, dataset, bw_method=None, weights=None):
197
+ self.dataset = atleast_2d(asarray(dataset))
198
+ if not self.dataset.size > 1:
199
+ raise ValueError("`dataset` input should have multiple elements.")
200
+
201
+ self.d, self.n = self.dataset.shape
202
+
203
+ if weights is not None:
204
+ self._weights = atleast_1d(weights).astype(float)
205
+ self._weights /= sum(self._weights)
206
+ if self.weights.ndim != 1:
207
+ raise ValueError("`weights` input should be one-dimensional.")
208
+ if len(self._weights) != self.n:
209
+ raise ValueError("`weights` input should be of length n")
210
+ self._neff = 1/sum(self._weights**2)
211
+
212
+ # This can be converted to a warning once gh-10205 is resolved
213
+ if self.d > self.n:
214
+ msg = ("Number of dimensions is greater than number of samples. "
215
+ "This results in a singular data covariance matrix, which "
216
+ "cannot be treated using the algorithms implemented in "
217
+ "`gaussian_kde`. Note that `gaussian_kde` interprets each "
218
+ "*column* of `dataset` to be a point; consider transposing "
219
+ "the input to `dataset`.")
220
+ raise ValueError(msg)
221
+
222
+ try:
223
+ self.set_bandwidth(bw_method=bw_method)
224
+ except linalg.LinAlgError as e:
225
+ msg = ("The data appears to lie in a lower-dimensional subspace "
226
+ "of the space in which it is expressed. This has resulted "
227
+ "in a singular data covariance matrix, which cannot be "
228
+ "treated using the algorithms implemented in "
229
+ "`gaussian_kde`. Consider performing principle component "
230
+ "analysis / dimensionality reduction and using "
231
+ "`gaussian_kde` with the transformed data.")
232
+ raise linalg.LinAlgError(msg) from e
233
+
234
+ def evaluate(self, points):
235
+ """Evaluate the estimated pdf on a set of points.
236
+
237
+ Parameters
238
+ ----------
239
+ points : (# of dimensions, # of points)-array
240
+ Alternatively, a (# of dimensions,) vector can be passed in and
241
+ treated as a single point.
242
+
243
+ Returns
244
+ -------
245
+ values : (# of points,)-array
246
+ The values at each point.
247
+
248
+ Raises
249
+ ------
250
+ ValueError : if the dimensionality of the input points is different than
251
+ the dimensionality of the KDE.
252
+
253
+ """
254
+ points = atleast_2d(asarray(points))
255
+
256
+ d, m = points.shape
257
+ if d != self.d:
258
+ if d == 1 and m == self.d:
259
+ # points was passed in as a row vector
260
+ points = reshape(points, (self.d, 1))
261
+ m = 1
262
+ else:
263
+ msg = (f"points have dimension {d}, "
264
+ f"dataset has dimension {self.d}")
265
+ raise ValueError(msg)
266
+
267
+ output_dtype, spec = _get_output_dtype(self.covariance, points)
268
+ result = gaussian_kernel_estimate[spec](
269
+ self.dataset.T, self.weights[:, None],
270
+ points.T, self.cho_cov, output_dtype)
271
+
272
+ return result[:, 0]
273
+
274
+ __call__ = evaluate
275
+
276
+ def integrate_gaussian(self, mean, cov):
277
+ """
278
+ Multiply estimated density by a multivariate Gaussian and integrate
279
+ over the whole space.
280
+
281
+ Parameters
282
+ ----------
283
+ mean : aray_like
284
+ A 1-D array, specifying the mean of the Gaussian.
285
+ cov : array_like
286
+ A 2-D array, specifying the covariance matrix of the Gaussian.
287
+
288
+ Returns
289
+ -------
290
+ result : scalar
291
+ The value of the integral.
292
+
293
+ Raises
294
+ ------
295
+ ValueError
296
+ If the mean or covariance of the input Gaussian differs from
297
+ the KDE's dimensionality.
298
+
299
+ """
300
+ mean = atleast_1d(squeeze(mean))
301
+ cov = atleast_2d(cov)
302
+
303
+ if mean.shape != (self.d,):
304
+ raise ValueError("mean does not have dimension %s" % self.d)
305
+ if cov.shape != (self.d, self.d):
306
+ raise ValueError("covariance does not have dimension %s" % self.d)
307
+
308
+ # make mean a column vector
309
+ mean = mean[:, newaxis]
310
+
311
+ sum_cov = self.covariance + cov
312
+
313
+ # This will raise LinAlgError if the new cov matrix is not s.p.d
314
+ # cho_factor returns (ndarray, bool) where bool is a flag for whether
315
+ # or not ndarray is upper or lower triangular
316
+ sum_cov_chol = linalg.cho_factor(sum_cov)
317
+
318
+ diff = self.dataset - mean
319
+ tdiff = linalg.cho_solve(sum_cov_chol, diff)
320
+
321
+ sqrt_det = np.prod(np.diagonal(sum_cov_chol[0]))
322
+ norm_const = power(2 * pi, sum_cov.shape[0] / 2.0) * sqrt_det
323
+
324
+ energies = sum(diff * tdiff, axis=0) / 2.0
325
+ result = sum(exp(-energies)*self.weights, axis=0) / norm_const
326
+
327
+ return result
328
+
329
+ def integrate_box_1d(self, low, high):
330
+ """
331
+ Computes the integral of a 1D pdf between two bounds.
332
+
333
+ Parameters
334
+ ----------
335
+ low : scalar
336
+ Lower bound of integration.
337
+ high : scalar
338
+ Upper bound of integration.
339
+
340
+ Returns
341
+ -------
342
+ value : scalar
343
+ The result of the integral.
344
+
345
+ Raises
346
+ ------
347
+ ValueError
348
+ If the KDE is over more than one dimension.
349
+
350
+ """
351
+ if self.d != 1:
352
+ raise ValueError("integrate_box_1d() only handles 1D pdfs")
353
+
354
+ stdev = ravel(sqrt(self.covariance))[0]
355
+
356
+ normalized_low = ravel((low - self.dataset) / stdev)
357
+ normalized_high = ravel((high - self.dataset) / stdev)
358
+
359
+ value = np.sum(self.weights*(
360
+ special.ndtr(normalized_high) -
361
+ special.ndtr(normalized_low)))
362
+ return value
363
+
364
+ def integrate_box(self, low_bounds, high_bounds, maxpts=None):
365
+ """Computes the integral of a pdf over a rectangular interval.
366
+
367
+ Parameters
368
+ ----------
369
+ low_bounds : array_like
370
+ A 1-D array containing the lower bounds of integration.
371
+ high_bounds : array_like
372
+ A 1-D array containing the upper bounds of integration.
373
+ maxpts : int, optional
374
+ The maximum number of points to use for integration.
375
+
376
+ Returns
377
+ -------
378
+ value : scalar
379
+ The result of the integral.
380
+
381
+ """
382
+ if maxpts is not None:
383
+ extra_kwds = {'maxpts': maxpts}
384
+ else:
385
+ extra_kwds = {}
386
+
387
+ value, inform = _mvn.mvnun_weighted(low_bounds, high_bounds,
388
+ self.dataset, self.weights,
389
+ self.covariance, **extra_kwds)
390
+ if inform:
391
+ msg = ('An integral in _mvn.mvnun requires more points than %s' %
392
+ (self.d * 1000))
393
+ warnings.warn(msg, stacklevel=2)
394
+
395
+ return value
396
+
397
+ def integrate_kde(self, other):
398
+ """
399
+ Computes the integral of the product of this kernel density estimate
400
+ with another.
401
+
402
+ Parameters
403
+ ----------
404
+ other : gaussian_kde instance
405
+ The other kde.
406
+
407
+ Returns
408
+ -------
409
+ value : scalar
410
+ The result of the integral.
411
+
412
+ Raises
413
+ ------
414
+ ValueError
415
+ If the KDEs have different dimensionality.
416
+
417
+ """
418
+ if other.d != self.d:
419
+ raise ValueError("KDEs are not the same dimensionality")
420
+
421
+ # we want to iterate over the smallest number of points
422
+ if other.n < self.n:
423
+ small = other
424
+ large = self
425
+ else:
426
+ small = self
427
+ large = other
428
+
429
+ sum_cov = small.covariance + large.covariance
430
+ sum_cov_chol = linalg.cho_factor(sum_cov)
431
+ result = 0.0
432
+ for i in range(small.n):
433
+ mean = small.dataset[:, i, newaxis]
434
+ diff = large.dataset - mean
435
+ tdiff = linalg.cho_solve(sum_cov_chol, diff)
436
+
437
+ energies = sum(diff * tdiff, axis=0) / 2.0
438
+ result += sum(exp(-energies)*large.weights, axis=0)*small.weights[i]
439
+
440
+ sqrt_det = np.prod(np.diagonal(sum_cov_chol[0]))
441
+ norm_const = power(2 * pi, sum_cov.shape[0] / 2.0) * sqrt_det
442
+
443
+ result /= norm_const
444
+
445
+ return result
446
+
447
+ def resample(self, size=None, seed=None):
448
+ """Randomly sample a dataset from the estimated pdf.
449
+
450
+ Parameters
451
+ ----------
452
+ size : int, optional
453
+ The number of samples to draw. If not provided, then the size is
454
+ the same as the effective number of samples in the underlying
455
+ dataset.
456
+ seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional
457
+ If `seed` is None (or `np.random`), the `numpy.random.RandomState`
458
+ singleton is used.
459
+ If `seed` is an int, a new ``RandomState`` instance is used,
460
+ seeded with `seed`.
461
+ If `seed` is already a ``Generator`` or ``RandomState`` instance then
462
+ that instance is used.
463
+
464
+ Returns
465
+ -------
466
+ resample : (self.d, `size`) ndarray
467
+ The sampled dataset.
468
+
469
+ """ # numpy/numpydoc#87 # noqa: E501
470
+ if size is None:
471
+ size = int(self.neff)
472
+
473
+ random_state = check_random_state(seed)
474
+ norm = transpose(random_state.multivariate_normal(
475
+ zeros((self.d,), float), self.covariance, size=size
476
+ ))
477
+ indices = random_state.choice(self.n, size=size, p=self.weights)
478
+ means = self.dataset[:, indices]
479
+
480
+ return means + norm
481
+
482
+ def scotts_factor(self):
483
+ """Compute Scott's factor.
484
+
485
+ Returns
486
+ -------
487
+ s : float
488
+ Scott's factor.
489
+ """
490
+ return power(self.neff, -1./(self.d+4))
491
+
492
+ def silverman_factor(self):
493
+ """Compute the Silverman factor.
494
+
495
+ Returns
496
+ -------
497
+ s : float
498
+ The silverman factor.
499
+ """
500
+ return power(self.neff*(self.d+2.0)/4.0, -1./(self.d+4))
501
+
502
+ # Default method to calculate bandwidth, can be overwritten by subclass
503
+ covariance_factor = scotts_factor
504
+ covariance_factor.__doc__ = """Computes the coefficient (`kde.factor`) that
505
+ multiplies the data covariance matrix to obtain the kernel covariance
506
+ matrix. The default is `scotts_factor`. A subclass can overwrite this
507
+ method to provide a different method, or set it through a call to
508
+ `kde.set_bandwidth`."""
509
+
510
+ def set_bandwidth(self, bw_method=None):
511
+ """Compute the estimator bandwidth with given method.
512
+
513
+ The new bandwidth calculated after a call to `set_bandwidth` is used
514
+ for subsequent evaluations of the estimated density.
515
+
516
+ Parameters
517
+ ----------
518
+ bw_method : str, scalar or callable, optional
519
+ The method used to calculate the estimator bandwidth. This can be
520
+ 'scott', 'silverman', a scalar constant or a callable. If a
521
+ scalar, this will be used directly as `kde.factor`. If a callable,
522
+ it should take a `gaussian_kde` instance as only parameter and
523
+ return a scalar. If None (default), nothing happens; the current
524
+ `kde.covariance_factor` method is kept.
525
+
526
+ Notes
527
+ -----
528
+ .. versionadded:: 0.11
529
+
530
+ Examples
531
+ --------
532
+ >>> import numpy as np
533
+ >>> import scipy.stats as stats
534
+ >>> x1 = np.array([-7, -5, 1, 4, 5.])
535
+ >>> kde = stats.gaussian_kde(x1)
536
+ >>> xs = np.linspace(-10, 10, num=50)
537
+ >>> y1 = kde(xs)
538
+ >>> kde.set_bandwidth(bw_method='silverman')
539
+ >>> y2 = kde(xs)
540
+ >>> kde.set_bandwidth(bw_method=kde.factor / 3.)
541
+ >>> y3 = kde(xs)
542
+
543
+ >>> import matplotlib.pyplot as plt
544
+ >>> fig, ax = plt.subplots()
545
+ >>> ax.plot(x1, np.full(x1.shape, 1 / (4. * x1.size)), 'bo',
546
+ ... label='Data points (rescaled)')
547
+ >>> ax.plot(xs, y1, label='Scott (default)')
548
+ >>> ax.plot(xs, y2, label='Silverman')
549
+ >>> ax.plot(xs, y3, label='Const (1/3 * Silverman)')
550
+ >>> ax.legend()
551
+ >>> plt.show()
552
+
553
+ """
554
+ if bw_method is None:
555
+ pass
556
+ elif bw_method == 'scott':
557
+ self.covariance_factor = self.scotts_factor
558
+ elif bw_method == 'silverman':
559
+ self.covariance_factor = self.silverman_factor
560
+ elif np.isscalar(bw_method) and not isinstance(bw_method, str):
561
+ self._bw_method = 'use constant'
562
+ self.covariance_factor = lambda: bw_method
563
+ elif callable(bw_method):
564
+ self._bw_method = bw_method
565
+ self.covariance_factor = lambda: self._bw_method(self)
566
+ else:
567
+ msg = "`bw_method` should be 'scott', 'silverman', a scalar " \
568
+ "or a callable."
569
+ raise ValueError(msg)
570
+
571
+ self._compute_covariance()
572
+
573
+ def _compute_covariance(self):
574
+ """Computes the covariance matrix for each Gaussian kernel using
575
+ covariance_factor().
576
+ """
577
+ self.factor = self.covariance_factor()
578
+ # Cache covariance and Cholesky decomp of covariance
579
+ if not hasattr(self, '_data_cho_cov'):
580
+ self._data_covariance = atleast_2d(cov(self.dataset, rowvar=1,
581
+ bias=False,
582
+ aweights=self.weights))
583
+ self._data_cho_cov = linalg.cholesky(self._data_covariance,
584
+ lower=True)
585
+
586
+ self.covariance = self._data_covariance * self.factor**2
587
+ self.cho_cov = (self._data_cho_cov * self.factor).astype(np.float64)
588
+ self.log_det = 2*np.log(np.diag(self.cho_cov
589
+ * np.sqrt(2*pi))).sum()
590
+
591
+ @property
592
+ def inv_cov(self):
593
+ # Re-compute from scratch each time because I'm not sure how this is
594
+ # used in the wild. (Perhaps users change the `dataset`, since it's
595
+ # not a private attribute?) `_compute_covariance` used to recalculate
596
+ # all these, so we'll recalculate everything now that this is a
597
+ # a property.
598
+ self.factor = self.covariance_factor()
599
+ self._data_covariance = atleast_2d(cov(self.dataset, rowvar=1,
600
+ bias=False, aweights=self.weights))
601
+ return linalg.inv(self._data_covariance) / self.factor**2
602
+
603
+ def pdf(self, x):
604
+ """
605
+ Evaluate the estimated pdf on a provided set of points.
606
+
607
+ Notes
608
+ -----
609
+ This is an alias for `gaussian_kde.evaluate`. See the ``evaluate``
610
+ docstring for more details.
611
+
612
+ """
613
+ return self.evaluate(x)
614
+
615
+ def logpdf(self, x):
616
+ """
617
+ Evaluate the log of the estimated pdf on a provided set of points.
618
+ """
619
+ points = atleast_2d(x)
620
+
621
+ d, m = points.shape
622
+ if d != self.d:
623
+ if d == 1 and m == self.d:
624
+ # points was passed in as a row vector
625
+ points = reshape(points, (self.d, 1))
626
+ m = 1
627
+ else:
628
+ msg = (f"points have dimension {d}, "
629
+ f"dataset has dimension {self.d}")
630
+ raise ValueError(msg)
631
+
632
+ output_dtype, spec = _get_output_dtype(self.covariance, points)
633
+ result = gaussian_kernel_estimate_log[spec](
634
+ self.dataset.T, self.weights[:, None],
635
+ points.T, self.cho_cov, output_dtype)
636
+
637
+ return result[:, 0]
638
+
639
+ def marginal(self, dimensions):
640
+ """Return a marginal KDE distribution
641
+
642
+ Parameters
643
+ ----------
644
+ dimensions : int or 1-d array_like
645
+ The dimensions of the multivariate distribution corresponding
646
+ with the marginal variables, that is, the indices of the dimensions
647
+ that are being retained. The other dimensions are marginalized out.
648
+
649
+ Returns
650
+ -------
651
+ marginal_kde : gaussian_kde
652
+ An object representing the marginal distribution.
653
+
654
+ Notes
655
+ -----
656
+ .. versionadded:: 1.10.0
657
+
658
+ """
659
+
660
+ dims = np.atleast_1d(dimensions)
661
+
662
+ if not np.issubdtype(dims.dtype, np.integer):
663
+ msg = ("Elements of `dimensions` must be integers - the indices "
664
+ "of the marginal variables being retained.")
665
+ raise ValueError(msg)
666
+
667
+ n = len(self.dataset) # number of dimensions
668
+ original_dims = dims.copy()
669
+
670
+ dims[dims < 0] = n + dims[dims < 0]
671
+
672
+ if len(np.unique(dims)) != len(dims):
673
+ msg = ("All elements of `dimensions` must be unique.")
674
+ raise ValueError(msg)
675
+
676
+ i_invalid = (dims < 0) | (dims >= n)
677
+ if np.any(i_invalid):
678
+ msg = (f"Dimensions {original_dims[i_invalid]} are invalid "
679
+ f"for a distribution in {n} dimensions.")
680
+ raise ValueError(msg)
681
+
682
+ dataset = self.dataset[dims]
683
+ weights = self.weights
684
+
685
+ return gaussian_kde(dataset, bw_method=self.covariance_factor(),
686
+ weights=weights)
687
+
688
+ @property
689
+ def weights(self):
690
+ try:
691
+ return self._weights
692
+ except AttributeError:
693
+ self._weights = ones(self.n)/self.n
694
+ return self._weights
695
+
696
+ @property
697
+ def neff(self):
698
+ try:
699
+ return self._neff
700
+ except AttributeError:
701
+ self._neff = 1/sum(self.weights**2)
702
+ return self._neff
703
+
704
+
705
+ def _get_output_dtype(covariance, points):
706
+ """
707
+ Calculates the output dtype and the "spec" (=C type name).
708
+
709
+ This was necessary in order to deal with the fused types in the Cython
710
+ routine `gaussian_kernel_estimate`. See gh-10824 for details.
711
+ """
712
+ output_dtype = np.common_type(covariance, points)
713
+ itemsize = np.dtype(output_dtype).itemsize
714
+ if itemsize == 4:
715
+ spec = 'float'
716
+ elif itemsize == 8:
717
+ spec = 'double'
718
+ elif itemsize in (12, 16):
719
+ spec = 'long double'
720
+ else:
721
+ raise ValueError(
722
+ f"{output_dtype} has unexpected item size: {itemsize}"
723
+ )
724
+
725
+ return output_dtype, spec
parrot/lib/python3.10/site-packages/scipy/stats/_ksstats.py ADDED
@@ -0,0 +1,600 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Compute the two-sided one-sample Kolmogorov-Smirnov Prob(Dn <= d) where:
2
+ # D_n = sup_x{|F_n(x) - F(x)|},
3
+ # F_n(x) is the empirical CDF for a sample of size n {x_i: i=1,...,n},
4
+ # F(x) is the CDF of a probability distribution.
5
+ #
6
+ # Exact methods:
7
+ # Prob(D_n >= d) can be computed via a matrix algorithm of Durbin[1]
8
+ # or a recursion algorithm due to Pomeranz[2].
9
+ # Marsaglia, Tsang & Wang[3] gave a computation-efficient way to perform
10
+ # the Durbin algorithm.
11
+ # D_n >= d <==> D_n+ >= d or D_n- >= d (the one-sided K-S statistics), hence
12
+ # Prob(D_n >= d) = 2*Prob(D_n+ >= d) - Prob(D_n+ >= d and D_n- >= d).
13
+ # For d > 0.5, the latter intersection probability is 0.
14
+ #
15
+ # Approximate methods:
16
+ # For d close to 0.5, ignoring that intersection term may still give a
17
+ # reasonable approximation.
18
+ # Li-Chien[4] and Korolyuk[5] gave an asymptotic formula extending
19
+ # Kolmogorov's initial asymptotic, suitable for large d. (See
20
+ # scipy.special.kolmogorov for that asymptotic)
21
+ # Pelz-Good[6] used the functional equation for Jacobi theta functions to
22
+ # transform the Li-Chien/Korolyuk formula produce a computational formula
23
+ # suitable for small d.
24
+ #
25
+ # Simard and L'Ecuyer[7] provided an algorithm to decide when to use each of
26
+ # the above approaches and it is that which is used here.
27
+ #
28
+ # Other approaches:
29
+ # Carvalho[8] optimizes Durbin's matrix algorithm for large values of d.
30
+ # Moscovich and Nadler[9] use FFTs to compute the convolutions.
31
+
32
+ # References:
33
+ # [1] Durbin J (1968).
34
+ # "The Probability that the Sample Distribution Function Lies Between Two
35
+ # Parallel Straight Lines."
36
+ # Annals of Mathematical Statistics, 39, 398-411.
37
+ # [2] Pomeranz J (1974).
38
+ # "Exact Cumulative Distribution of the Kolmogorov-Smirnov Statistic for
39
+ # Small Samples (Algorithm 487)."
40
+ # Communications of the ACM, 17(12), 703-704.
41
+ # [3] Marsaglia G, Tsang WW, Wang J (2003).
42
+ # "Evaluating Kolmogorov's Distribution."
43
+ # Journal of Statistical Software, 8(18), 1-4.
44
+ # [4] LI-CHIEN, C. (1956).
45
+ # "On the exact distribution of the statistics of A. N. Kolmogorov and
46
+ # their asymptotic expansion."
47
+ # Acta Matematica Sinica, 6, 55-81.
48
+ # [5] KOROLYUK, V. S. (1960).
49
+ # "Asymptotic analysis of the distribution of the maximum deviation in
50
+ # the Bernoulli scheme."
51
+ # Theor. Probability Appl., 4, 339-366.
52
+ # [6] Pelz W, Good IJ (1976).
53
+ # "Approximating the Lower Tail-areas of the Kolmogorov-Smirnov One-sample
54
+ # Statistic."
55
+ # Journal of the Royal Statistical Society, Series B, 38(2), 152-156.
56
+ # [7] Simard, R., L'Ecuyer, P. (2011)
57
+ # "Computing the Two-Sided Kolmogorov-Smirnov Distribution",
58
+ # Journal of Statistical Software, Vol 39, 11, 1-18.
59
+ # [8] Carvalho, Luis (2015)
60
+ # "An Improved Evaluation of Kolmogorov's Distribution"
61
+ # Journal of Statistical Software, Code Snippets; Vol 65(3), 1-8.
62
+ # [9] Amit Moscovich, Boaz Nadler (2017)
63
+ # "Fast calculation of boundary crossing probabilities for Poisson
64
+ # processes",
65
+ # Statistics & Probability Letters, Vol 123, 177-182.
66
+
67
+
68
+ import numpy as np
69
+ import scipy.special
70
+ import scipy.special._ufuncs as scu
71
+ from scipy._lib._finite_differences import _derivative
72
+
73
+ _E128 = 128
74
+ _EP128 = np.ldexp(np.longdouble(1), _E128)
75
+ _EM128 = np.ldexp(np.longdouble(1), -_E128)
76
+
77
+ _SQRT2PI = np.sqrt(2 * np.pi)
78
+ _LOG_2PI = np.log(2 * np.pi)
79
+ _MIN_LOG = -708
80
+ _SQRT3 = np.sqrt(3)
81
+ _PI_SQUARED = np.pi ** 2
82
+ _PI_FOUR = np.pi ** 4
83
+ _PI_SIX = np.pi ** 6
84
+
85
+ # [Lifted from _loggamma.pxd.] If B_m are the Bernoulli numbers,
86
+ # then Stirling coeffs are B_{2j}/(2j)/(2j-1) for j=8,...1.
87
+ _STIRLING_COEFFS = [-2.955065359477124183e-2, 6.4102564102564102564e-3,
88
+ -1.9175269175269175269e-3, 8.4175084175084175084e-4,
89
+ -5.952380952380952381e-4, 7.9365079365079365079e-4,
90
+ -2.7777777777777777778e-3, 8.3333333333333333333e-2]
91
+
92
+
93
+ def _log_nfactorial_div_n_pow_n(n):
94
+ # Computes n! / n**n
95
+ # = (n-1)! / n**(n-1)
96
+ # Uses Stirling's approximation, but removes n*log(n) up-front to
97
+ # avoid subtractive cancellation.
98
+ # = log(n)/2 - n + log(sqrt(2pi)) + sum B_{2j}/(2j)/(2j-1)/n**(2j-1)
99
+ rn = 1.0/n
100
+ return np.log(n)/2 - n + _LOG_2PI/2 + rn * np.polyval(_STIRLING_COEFFS, rn/n)
101
+
102
+
103
+ def _clip_prob(p):
104
+ """clips a probability to range 0<=p<=1."""
105
+ return np.clip(p, 0.0, 1.0)
106
+
107
+
108
+ def _select_and_clip_prob(cdfprob, sfprob, cdf=True):
109
+ """Selects either the CDF or SF, and then clips to range 0<=p<=1."""
110
+ p = np.where(cdf, cdfprob, sfprob)
111
+ return _clip_prob(p)
112
+
113
+
114
+ def _kolmogn_DMTW(n, d, cdf=True):
115
+ r"""Computes the Kolmogorov CDF: Pr(D_n <= d) using the MTW approach to
116
+ the Durbin matrix algorithm.
117
+
118
+ Durbin (1968); Marsaglia, Tsang, Wang (2003). [1], [3].
119
+ """
120
+ # Write d = (k-h)/n, where k is positive integer and 0 <= h < 1
121
+ # Generate initial matrix H of size m*m where m=(2k-1)
122
+ # Compute k-th row of (n!/n^n) * H^n, scaling intermediate results.
123
+ # Requires memory O(m^2) and computation O(m^2 log(n)).
124
+ # Most suitable for small m.
125
+
126
+ if d >= 1.0:
127
+ return _select_and_clip_prob(1.0, 0.0, cdf)
128
+ nd = n * d
129
+ if nd <= 0.5:
130
+ return _select_and_clip_prob(0.0, 1.0, cdf)
131
+ k = int(np.ceil(nd))
132
+ h = k - nd
133
+ m = 2 * k - 1
134
+
135
+ H = np.zeros([m, m])
136
+
137
+ # Initialize: v is first column (and last row) of H
138
+ # v[j] = (1-h^(j+1)/(j+1)! (except for v[-1])
139
+ # w[j] = 1/(j)!
140
+ # q = k-th row of H (actually i!/n^i*H^i)
141
+ intm = np.arange(1, m + 1)
142
+ v = 1.0 - h ** intm
143
+ w = np.empty(m)
144
+ fac = 1.0
145
+ for j in intm:
146
+ w[j - 1] = fac
147
+ fac /= j # This might underflow. Isn't a problem.
148
+ v[j - 1] *= fac
149
+ tt = max(2 * h - 1.0, 0)**m - 2*h**m
150
+ v[-1] = (1.0 + tt) * fac
151
+
152
+ for i in range(1, m):
153
+ H[i - 1:, i] = w[:m - i + 1]
154
+ H[:, 0] = v
155
+ H[-1, :] = np.flip(v, axis=0)
156
+
157
+ Hpwr = np.eye(np.shape(H)[0]) # Holds intermediate powers of H
158
+ nn = n
159
+ expnt = 0 # Scaling of Hpwr
160
+ Hexpnt = 0 # Scaling of H
161
+ while nn > 0:
162
+ if nn % 2:
163
+ Hpwr = np.matmul(Hpwr, H)
164
+ expnt += Hexpnt
165
+ H = np.matmul(H, H)
166
+ Hexpnt *= 2
167
+ # Scale as needed.
168
+ if np.abs(H[k - 1, k - 1]) > _EP128:
169
+ H /= _EP128
170
+ Hexpnt += _E128
171
+ nn = nn // 2
172
+
173
+ p = Hpwr[k - 1, k - 1]
174
+
175
+ # Multiply by n!/n^n
176
+ for i in range(1, n + 1):
177
+ p = i * p / n
178
+ if np.abs(p) < _EM128:
179
+ p *= _EP128
180
+ expnt -= _E128
181
+
182
+ # unscale
183
+ if expnt != 0:
184
+ p = np.ldexp(p, expnt)
185
+
186
+ return _select_and_clip_prob(p, 1.0-p, cdf)
187
+
188
+
189
+ def _pomeranz_compute_j1j2(i, n, ll, ceilf, roundf):
190
+ """Compute the endpoints of the interval for row i."""
191
+ if i == 0:
192
+ j1, j2 = -ll - ceilf - 1, ll + ceilf - 1
193
+ else:
194
+ # i + 1 = 2*ip1div2 + ip1mod2
195
+ ip1div2, ip1mod2 = divmod(i + 1, 2)
196
+ if ip1mod2 == 0: # i is odd
197
+ if ip1div2 == n + 1:
198
+ j1, j2 = n - ll - ceilf - 1, n + ll + ceilf - 1
199
+ else:
200
+ j1, j2 = ip1div2 - 1 - ll - roundf - 1, ip1div2 + ll - 1 + ceilf - 1
201
+ else:
202
+ j1, j2 = ip1div2 - 1 - ll - 1, ip1div2 + ll + roundf - 1
203
+
204
+ return max(j1 + 2, 0), min(j2, n)
205
+
206
+
207
+ def _kolmogn_Pomeranz(n, x, cdf=True):
208
+ r"""Computes Pr(D_n <= d) using the Pomeranz recursion algorithm.
209
+
210
+ Pomeranz (1974) [2]
211
+ """
212
+
213
+ # V is n*(2n+2) matrix.
214
+ # Each row is convolution of the previous row and probabilities from a
215
+ # Poisson distribution.
216
+ # Desired CDF probability is n! V[n-1, 2n+1] (final entry in final row).
217
+ # Only two rows are needed at any given stage:
218
+ # - Call them V0 and V1.
219
+ # - Swap each iteration
220
+ # Only a few (contiguous) entries in each row can be non-zero.
221
+ # - Keep track of start and end (j1 and j2 below)
222
+ # - V0s and V1s track the start in the two rows
223
+ # Scale intermediate results as needed.
224
+ # Only a few different Poisson distributions can occur
225
+ t = n * x
226
+ ll = int(np.floor(t))
227
+ f = 1.0 * (t - ll) # fractional part of t
228
+ g = min(f, 1.0 - f)
229
+ ceilf = (1 if f > 0 else 0)
230
+ roundf = (1 if f > 0.5 else 0)
231
+ npwrs = 2 * (ll + 1) # Maximum number of powers needed in convolutions
232
+ gpower = np.empty(npwrs) # gpower = (g/n)^m/m!
233
+ twogpower = np.empty(npwrs) # twogpower = (2g/n)^m/m!
234
+ onem2gpower = np.empty(npwrs) # onem2gpower = ((1-2g)/n)^m/m!
235
+ # gpower etc are *almost* Poisson probs, just missing normalizing factor.
236
+
237
+ gpower[0] = 1.0
238
+ twogpower[0] = 1.0
239
+ onem2gpower[0] = 1.0
240
+ expnt = 0
241
+ g_over_n, two_g_over_n, one_minus_two_g_over_n = g/n, 2*g/n, (1 - 2*g)/n
242
+ for m in range(1, npwrs):
243
+ gpower[m] = gpower[m - 1] * g_over_n / m
244
+ twogpower[m] = twogpower[m - 1] * two_g_over_n / m
245
+ onem2gpower[m] = onem2gpower[m - 1] * one_minus_two_g_over_n / m
246
+
247
+ V0 = np.zeros([npwrs])
248
+ V1 = np.zeros([npwrs])
249
+ V1[0] = 1 # first row
250
+ V0s, V1s = 0, 0 # start indices of the two rows
251
+
252
+ j1, j2 = _pomeranz_compute_j1j2(0, n, ll, ceilf, roundf)
253
+ for i in range(1, 2 * n + 2):
254
+ # Preserve j1, V1, V1s, V0s from last iteration
255
+ k1 = j1
256
+ V0, V1 = V1, V0
257
+ V0s, V1s = V1s, V0s
258
+ V1.fill(0.0)
259
+ j1, j2 = _pomeranz_compute_j1j2(i, n, ll, ceilf, roundf)
260
+ if i == 1 or i == 2 * n + 1:
261
+ pwrs = gpower
262
+ else:
263
+ pwrs = (twogpower if i % 2 else onem2gpower)
264
+ ln2 = j2 - k1 + 1
265
+ if ln2 > 0:
266
+ conv = np.convolve(V0[k1 - V0s:k1 - V0s + ln2], pwrs[:ln2])
267
+ conv_start = j1 - k1 # First index to use from conv
268
+ conv_len = j2 - j1 + 1 # Number of entries to use from conv
269
+ V1[:conv_len] = conv[conv_start:conv_start + conv_len]
270
+ # Scale to avoid underflow.
271
+ if 0 < np.max(V1) < _EM128:
272
+ V1 *= _EP128
273
+ expnt -= _E128
274
+ V1s = V0s + j1 - k1
275
+
276
+ # multiply by n!
277
+ ans = V1[n - V1s]
278
+ for m in range(1, n + 1):
279
+ if np.abs(ans) > _EP128:
280
+ ans *= _EM128
281
+ expnt += _E128
282
+ ans *= m
283
+
284
+ # Undo any intermediate scaling
285
+ if expnt != 0:
286
+ ans = np.ldexp(ans, expnt)
287
+ ans = _select_and_clip_prob(ans, 1.0 - ans, cdf)
288
+ return ans
289
+
290
+
291
+ def _kolmogn_PelzGood(n, x, cdf=True):
292
+ """Computes the Pelz-Good approximation to Prob(Dn <= x) with 0<=x<=1.
293
+
294
+ Start with Li-Chien, Korolyuk approximation:
295
+ Prob(Dn <= x) ~ K0(z) + K1(z)/sqrt(n) + K2(z)/n + K3(z)/n**1.5
296
+ where z = x*sqrt(n).
297
+ Transform each K_(z) using Jacobi theta functions into a form suitable
298
+ for small z.
299
+ Pelz-Good (1976). [6]
300
+ """
301
+ if x <= 0.0:
302
+ return _select_and_clip_prob(0.0, 1.0, cdf=cdf)
303
+ if x >= 1.0:
304
+ return _select_and_clip_prob(1.0, 0.0, cdf=cdf)
305
+
306
+ z = np.sqrt(n) * x
307
+ zsquared, zthree, zfour, zsix = z**2, z**3, z**4, z**6
308
+
309
+ qlog = -_PI_SQUARED / 8 / zsquared
310
+ if qlog < _MIN_LOG: # z ~ 0.041743441416853426
311
+ return _select_and_clip_prob(0.0, 1.0, cdf=cdf)
312
+
313
+ q = np.exp(qlog)
314
+
315
+ # Coefficients of terms in the sums for K1, K2 and K3
316
+ k1a = -zsquared
317
+ k1b = _PI_SQUARED / 4
318
+
319
+ k2a = 6 * zsix + 2 * zfour
320
+ k2b = (2 * zfour - 5 * zsquared) * _PI_SQUARED / 4
321
+ k2c = _PI_FOUR * (1 - 2 * zsquared) / 16
322
+
323
+ k3d = _PI_SIX * (5 - 30 * zsquared) / 64
324
+ k3c = _PI_FOUR * (-60 * zsquared + 212 * zfour) / 16
325
+ k3b = _PI_SQUARED * (135 * zfour - 96 * zsix) / 4
326
+ k3a = -30 * zsix - 90 * z**8
327
+
328
+ K0to3 = np.zeros(4)
329
+ # Use a Horner scheme to evaluate sum c_i q^(i^2)
330
+ # Reduces to a sum over odd integers.
331
+ maxk = int(np.ceil(16 * z / np.pi))
332
+ for k in range(maxk, 0, -1):
333
+ m = 2 * k - 1
334
+ msquared, mfour, msix = m**2, m**4, m**6
335
+ qpower = np.power(q, 8 * k)
336
+ coeffs = np.array([1.0,
337
+ k1a + k1b*msquared,
338
+ k2a + k2b*msquared + k2c*mfour,
339
+ k3a + k3b*msquared + k3c*mfour + k3d*msix])
340
+ K0to3 *= qpower
341
+ K0to3 += coeffs
342
+ K0to3 *= q
343
+ K0to3 *= _SQRT2PI
344
+ # z**10 > 0 as z > 0.04
345
+ K0to3 /= np.array([z, 6 * zfour, 72 * z**7, 6480 * z**10])
346
+
347
+ # Now do the other sum over the other terms, all integers k
348
+ # K_2: (pi^2 k^2) q^(k^2),
349
+ # K_3: (3pi^2 k^2 z^2 - pi^4 k^4)*q^(k^2)
350
+ # Don't expect much subtractive cancellation so use direct calculation
351
+ q = np.exp(-_PI_SQUARED / 2 / zsquared)
352
+ ks = np.arange(maxk, 0, -1)
353
+ ksquared = ks ** 2
354
+ sqrt3z = _SQRT3 * z
355
+ kspi = np.pi * ks
356
+ qpwers = q ** ksquared
357
+ k2extra = np.sum(ksquared * qpwers)
358
+ k2extra *= _PI_SQUARED * _SQRT2PI/(-36 * zthree)
359
+ K0to3[2] += k2extra
360
+ k3extra = np.sum((sqrt3z + kspi) * (sqrt3z - kspi) * ksquared * qpwers)
361
+ k3extra *= _PI_SQUARED * _SQRT2PI/(216 * zsix)
362
+ K0to3[3] += k3extra
363
+ powers_of_n = np.power(n * 1.0, np.arange(len(K0to3)) / 2.0)
364
+ K0to3 /= powers_of_n
365
+
366
+ if not cdf:
367
+ K0to3 *= -1
368
+ K0to3[0] += 1
369
+
370
+ Ksum = sum(K0to3)
371
+ return Ksum
372
+
373
+
374
+ def _kolmogn(n, x, cdf=True):
375
+ """Computes the CDF(or SF) for the two-sided Kolmogorov-Smirnov statistic.
376
+
377
+ x must be of type float, n of type integer.
378
+
379
+ Simard & L'Ecuyer (2011) [7].
380
+ """
381
+ if np.isnan(n):
382
+ return n # Keep the same type of nan
383
+ if int(n) != n or n <= 0:
384
+ return np.nan
385
+ if x >= 1.0:
386
+ return _select_and_clip_prob(1.0, 0.0, cdf=cdf)
387
+ if x <= 0.0:
388
+ return _select_and_clip_prob(0.0, 1.0, cdf=cdf)
389
+ t = n * x
390
+ if t <= 1.0: # Ruben-Gambino: 1/2n <= x <= 1/n
391
+ if t <= 0.5:
392
+ return _select_and_clip_prob(0.0, 1.0, cdf=cdf)
393
+ if n <= 140:
394
+ prob = np.prod(np.arange(1, n+1) * (1.0/n) * (2*t - 1))
395
+ else:
396
+ prob = np.exp(_log_nfactorial_div_n_pow_n(n) + n * np.log(2*t-1))
397
+ return _select_and_clip_prob(prob, 1.0 - prob, cdf=cdf)
398
+ if t >= n - 1: # Ruben-Gambino
399
+ prob = 2 * (1.0 - x)**n
400
+ return _select_and_clip_prob(1 - prob, prob, cdf=cdf)
401
+ if x >= 0.5: # Exact: 2 * smirnov
402
+ prob = 2 * scipy.special.smirnov(n, x)
403
+ return _select_and_clip_prob(1.0 - prob, prob, cdf=cdf)
404
+
405
+ nxsquared = t * x
406
+ if n <= 140:
407
+ if nxsquared <= 0.754693:
408
+ prob = _kolmogn_DMTW(n, x, cdf=True)
409
+ return _select_and_clip_prob(prob, 1.0 - prob, cdf=cdf)
410
+ if nxsquared <= 4:
411
+ prob = _kolmogn_Pomeranz(n, x, cdf=True)
412
+ return _select_and_clip_prob(prob, 1.0 - prob, cdf=cdf)
413
+ # Now use Miller approximation of 2*smirnov
414
+ prob = 2 * scipy.special.smirnov(n, x)
415
+ return _select_and_clip_prob(1.0 - prob, prob, cdf=cdf)
416
+
417
+ # Split CDF and SF as they have different cutoffs on nxsquared.
418
+ if not cdf:
419
+ if nxsquared >= 370.0:
420
+ return 0.0
421
+ if nxsquared >= 2.2:
422
+ prob = 2 * scipy.special.smirnov(n, x)
423
+ return _clip_prob(prob)
424
+ # Fall through and compute the SF as 1.0-CDF
425
+ if nxsquared >= 18.0:
426
+ cdfprob = 1.0
427
+ elif n <= 100000 and n * x**1.5 <= 1.4:
428
+ cdfprob = _kolmogn_DMTW(n, x, cdf=True)
429
+ else:
430
+ cdfprob = _kolmogn_PelzGood(n, x, cdf=True)
431
+ return _select_and_clip_prob(cdfprob, 1.0 - cdfprob, cdf=cdf)
432
+
433
+
434
+ def _kolmogn_p(n, x):
435
+ """Computes the PDF for the two-sided Kolmogorov-Smirnov statistic.
436
+
437
+ x must be of type float, n of type integer.
438
+ """
439
+ if np.isnan(n):
440
+ return n # Keep the same type of nan
441
+ if int(n) != n or n <= 0:
442
+ return np.nan
443
+ if x >= 1.0 or x <= 0:
444
+ return 0
445
+ t = n * x
446
+ if t <= 1.0:
447
+ # Ruben-Gambino: n!/n^n * (2t-1)^n -> 2 n!/n^n * n^2 * (2t-1)^(n-1)
448
+ if t <= 0.5:
449
+ return 0.0
450
+ if n <= 140:
451
+ prd = np.prod(np.arange(1, n) * (1.0 / n) * (2 * t - 1))
452
+ else:
453
+ prd = np.exp(_log_nfactorial_div_n_pow_n(n) + (n-1) * np.log(2 * t - 1))
454
+ return prd * 2 * n**2
455
+ if t >= n - 1:
456
+ # Ruben-Gambino : 1-2(1-x)**n -> 2n*(1-x)**(n-1)
457
+ return 2 * (1.0 - x) ** (n-1) * n
458
+ if x >= 0.5:
459
+ return 2 * scipy.stats.ksone.pdf(x, n)
460
+
461
+ # Just take a small delta.
462
+ # Ideally x +/- delta would stay within [i/n, (i+1)/n] for some integer a.
463
+ # as the CDF is a piecewise degree n polynomial.
464
+ # It has knots at 1/n, 2/n, ... (n-1)/n
465
+ # and is not a C-infinity function at the knots
466
+ delta = x / 2.0**16
467
+ delta = min(delta, x - 1.0/n)
468
+ delta = min(delta, 0.5 - x)
469
+
470
+ def _kk(_x):
471
+ return kolmogn(n, _x)
472
+
473
+ return _derivative(_kk, x, dx=delta, order=5)
474
+
475
+
476
+ def _kolmogni(n, p, q):
477
+ """Computes the PPF/ISF of kolmogn.
478
+
479
+ n of type integer, n>= 1
480
+ p is the CDF, q the SF, p+q=1
481
+ """
482
+ if np.isnan(n):
483
+ return n # Keep the same type of nan
484
+ if int(n) != n or n <= 0:
485
+ return np.nan
486
+ if p <= 0:
487
+ return 1.0/n
488
+ if q <= 0:
489
+ return 1.0
490
+ delta = np.exp((np.log(p) - scipy.special.loggamma(n+1))/n)
491
+ if delta <= 1.0/n:
492
+ return (delta + 1.0 / n) / 2
493
+ x = -np.expm1(np.log(q/2.0)/n)
494
+ if x >= 1 - 1.0/n:
495
+ return x
496
+ x1 = scu._kolmogci(p)/np.sqrt(n)
497
+ x1 = min(x1, 1.0 - 1.0/n)
498
+
499
+ def _f(x):
500
+ return _kolmogn(n, x) - p
501
+
502
+ return scipy.optimize.brentq(_f, 1.0/n, x1, xtol=1e-14)
503
+
504
+
505
+ def kolmogn(n, x, cdf=True):
506
+ """Computes the CDF for the two-sided Kolmogorov-Smirnov distribution.
507
+
508
+ The two-sided Kolmogorov-Smirnov distribution has as its CDF Pr(D_n <= x),
509
+ for a sample of size n drawn from a distribution with CDF F(t), where
510
+ :math:`D_n &= sup_t |F_n(t) - F(t)|`, and
511
+ :math:`F_n(t)` is the Empirical Cumulative Distribution Function of the sample.
512
+
513
+ Parameters
514
+ ----------
515
+ n : integer, array_like
516
+ the number of samples
517
+ x : float, array_like
518
+ The K-S statistic, float between 0 and 1
519
+ cdf : bool, optional
520
+ whether to compute the CDF(default=true) or the SF.
521
+
522
+ Returns
523
+ -------
524
+ cdf : ndarray
525
+ CDF (or SF it cdf is False) at the specified locations.
526
+
527
+ The return value has shape the result of numpy broadcasting n and x.
528
+ """
529
+ it = np.nditer([n, x, cdf, None],
530
+ op_dtypes=[None, np.float64, np.bool_, np.float64])
531
+ for _n, _x, _cdf, z in it:
532
+ if np.isnan(_n):
533
+ z[...] = _n
534
+ continue
535
+ if int(_n) != _n:
536
+ raise ValueError(f'n is not integral: {_n}')
537
+ z[...] = _kolmogn(int(_n), _x, cdf=_cdf)
538
+ result = it.operands[-1]
539
+ return result
540
+
541
+
542
+ def kolmognp(n, x):
543
+ """Computes the PDF for the two-sided Kolmogorov-Smirnov distribution.
544
+
545
+ Parameters
546
+ ----------
547
+ n : integer, array_like
548
+ the number of samples
549
+ x : float, array_like
550
+ The K-S statistic, float between 0 and 1
551
+
552
+ Returns
553
+ -------
554
+ pdf : ndarray
555
+ The PDF at the specified locations
556
+
557
+ The return value has shape the result of numpy broadcasting n and x.
558
+ """
559
+ it = np.nditer([n, x, None])
560
+ for _n, _x, z in it:
561
+ if np.isnan(_n):
562
+ z[...] = _n
563
+ continue
564
+ if int(_n) != _n:
565
+ raise ValueError(f'n is not integral: {_n}')
566
+ z[...] = _kolmogn_p(int(_n), _x)
567
+ result = it.operands[-1]
568
+ return result
569
+
570
+
571
+ def kolmogni(n, q, cdf=True):
572
+ """Computes the PPF(or ISF) for the two-sided Kolmogorov-Smirnov distribution.
573
+
574
+ Parameters
575
+ ----------
576
+ n : integer, array_like
577
+ the number of samples
578
+ q : float, array_like
579
+ Probabilities, float between 0 and 1
580
+ cdf : bool, optional
581
+ whether to compute the PPF(default=true) or the ISF.
582
+
583
+ Returns
584
+ -------
585
+ ppf : ndarray
586
+ PPF (or ISF if cdf is False) at the specified locations
587
+
588
+ The return value has shape the result of numpy broadcasting n and x.
589
+ """
590
+ it = np.nditer([n, q, cdf, None])
591
+ for _n, _q, _cdf, z in it:
592
+ if np.isnan(_n):
593
+ z[...] = _n
594
+ continue
595
+ if int(_n) != _n:
596
+ raise ValueError(f'n is not integral: {_n}')
597
+ _pcdf, _psf = (_q, 1-_q) if _cdf else (1-_q, _q)
598
+ z[...] = _kolmogni(int(_n), _pcdf, _psf)
599
+ result = it.operands[-1]
600
+ return result
parrot/lib/python3.10/site-packages/scipy/stats/_mannwhitneyu.py ADDED
@@ -0,0 +1,494 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from collections import namedtuple
3
+ from scipy import special
4
+ from scipy import stats
5
+ from scipy.stats._stats_py import _rankdata
6
+ from ._axis_nan_policy import _axis_nan_policy_factory
7
+
8
+
9
+ def _broadcast_concatenate(x, y, axis):
10
+ '''Broadcast then concatenate arrays, leaving concatenation axis last'''
11
+ x = np.moveaxis(x, axis, -1)
12
+ y = np.moveaxis(y, axis, -1)
13
+ z = np.broadcast(x[..., 0], y[..., 0])
14
+ x = np.broadcast_to(x, z.shape + (x.shape[-1],))
15
+ y = np.broadcast_to(y, z.shape + (y.shape[-1],))
16
+ z = np.concatenate((x, y), axis=-1)
17
+ return x, y, z
18
+
19
+
20
+ class _MWU:
21
+ '''Distribution of MWU statistic under the null hypothesis'''
22
+
23
+ def __init__(self, n1, n2):
24
+ self._reset(n1, n2)
25
+
26
+ def set_shapes(self, n1, n2):
27
+ n1, n2 = min(n1, n2), max(n1, n2)
28
+ if (n1, n2) == (self.n1, self.n2):
29
+ return
30
+
31
+ self.n1 = n1
32
+ self.n2 = n2
33
+ self.s_array = np.zeros(0, dtype=int)
34
+ self.configurations = np.zeros(0, dtype=np.uint64)
35
+
36
+ def reset(self):
37
+ self._reset(self.n1, self.n2)
38
+
39
+ def _reset(self, n1, n2):
40
+ self.n1 = None
41
+ self.n2 = None
42
+ self.set_shapes(n1, n2)
43
+
44
+ def pmf(self, k):
45
+
46
+ # In practice, `pmf` is never called with k > m*n/2.
47
+ # If it were, we'd exploit symmetry here:
48
+ # k = np.array(k, copy=True)
49
+ # k2 = m*n - k
50
+ # i = k2 < k
51
+ # k[i] = k2[i]
52
+
53
+ pmfs = self.build_u_freqs_array(np.max(k))
54
+ return pmfs[k]
55
+
56
+ def cdf(self, k):
57
+ '''Cumulative distribution function'''
58
+
59
+ # In practice, `cdf` is never called with k > m*n/2.
60
+ # If it were, we'd exploit symmetry here rather than in `sf`
61
+ pmfs = self.build_u_freqs_array(np.max(k))
62
+ cdfs = np.cumsum(pmfs)
63
+ return cdfs[k]
64
+
65
+ def sf(self, k):
66
+ '''Survival function'''
67
+ # Note that both CDF and SF include the PMF at k. The p-value is
68
+ # calculated from the SF and should include the mass at k, so this
69
+ # is desirable
70
+
71
+ # Use the fact that the distribution is symmetric and sum from the left
72
+ kc = np.asarray(self.n1*self.n2 - k) # complement of k
73
+ i = k < kc
74
+ if np.any(i):
75
+ kc[i] = k[i]
76
+ cdfs = np.asarray(self.cdf(kc))
77
+ cdfs[i] = 1. - cdfs[i] + self.pmf(kc[i])
78
+ else:
79
+ cdfs = np.asarray(self.cdf(kc))
80
+ return cdfs[()]
81
+
82
+ # build_sigma_array and build_u_freqs_array adapted from code
83
+ # by @toobaz with permission. Thanks to @andreasloe for the suggestion.
84
+ # See https://github.com/scipy/scipy/pull/4933#issuecomment-1898082691
85
+ def build_sigma_array(self, a):
86
+ n1, n2 = self.n1, self.n2
87
+ if a + 1 <= self.s_array.size:
88
+ return self.s_array[1:a+1]
89
+
90
+ s_array = np.zeros(a + 1, dtype=int)
91
+
92
+ for d in np.arange(1, n1 + 1):
93
+ # All multiples of d, except 0:
94
+ indices = np.arange(d, a + 1, d)
95
+ # \epsilon_d = 1:
96
+ s_array[indices] += d
97
+
98
+ for d in np.arange(n2 + 1, n2 + n1 + 1):
99
+ # All multiples of d, except 0:
100
+ indices = np.arange(d, a + 1, d)
101
+ # \epsilon_d = -1:
102
+ s_array[indices] -= d
103
+
104
+ # We don't need 0:
105
+ self.s_array = s_array
106
+ return s_array[1:]
107
+
108
+ def build_u_freqs_array(self, maxu):
109
+ """
110
+ Build all the array of frequencies for u from 0 to maxu.
111
+ Assumptions:
112
+ n1 <= n2
113
+ maxu <= n1 * n2 / 2
114
+ """
115
+ n1, n2 = self.n1, self.n2
116
+ total = special.binom(n1 + n2, n1)
117
+
118
+ if maxu + 1 <= self.configurations.size:
119
+ return self.configurations[:maxu + 1] / total
120
+
121
+ s_array = self.build_sigma_array(maxu)
122
+
123
+ # Start working with ints, for maximum precision and efficiency:
124
+ configurations = np.zeros(maxu + 1, dtype=np.uint64)
125
+ configurations_is_uint = True
126
+ uint_max = np.iinfo(np.uint64).max
127
+ # How many ways to have U=0? 1
128
+ configurations[0] = 1
129
+
130
+ for u in np.arange(1, maxu + 1):
131
+ coeffs = s_array[u - 1::-1]
132
+ new_val = np.dot(configurations[:u], coeffs) / u
133
+ if new_val > uint_max and configurations_is_uint:
134
+ # OK, we got into numbers too big for uint64.
135
+ # So now we start working with floats.
136
+ # By doing this since the beginning, we would have lost precision.
137
+ # (And working on python long ints would be unbearably slow)
138
+ configurations = configurations.astype(float)
139
+ configurations_is_uint = False
140
+ configurations[u] = new_val
141
+
142
+ self.configurations = configurations
143
+ return configurations / total
144
+
145
+
146
+ _mwu_state = _MWU(0, 0)
147
+
148
+
149
+ def _get_mwu_z(U, n1, n2, t, axis=0, continuity=True):
150
+ '''Standardized MWU statistic'''
151
+ # Follows mannwhitneyu [2]
152
+ mu = n1 * n2 / 2
153
+ n = n1 + n2
154
+
155
+ # Tie correction according to [2], "Normal approximation and tie correction"
156
+ # "A more computationally-efficient form..."
157
+ tie_term = (t**3 - t).sum(axis=-1)
158
+ s = np.sqrt(n1*n2/12 * ((n + 1) - tie_term/(n*(n-1))))
159
+
160
+ numerator = U - mu
161
+
162
+ # Continuity correction.
163
+ # Because SF is always used to calculate the p-value, we can always
164
+ # _subtract_ 0.5 for the continuity correction. This always increases the
165
+ # p-value to account for the rest of the probability mass _at_ q = U.
166
+ if continuity:
167
+ numerator -= 0.5
168
+
169
+ # no problem evaluating the norm SF at an infinity
170
+ with np.errstate(divide='ignore', invalid='ignore'):
171
+ z = numerator / s
172
+ return z
173
+
174
+
175
+ def _mwu_input_validation(x, y, use_continuity, alternative, axis, method):
176
+ ''' Input validation and standardization for mannwhitneyu '''
177
+ # Would use np.asarray_chkfinite, but infs are OK
178
+ x, y = np.atleast_1d(x), np.atleast_1d(y)
179
+ if np.isnan(x).any() or np.isnan(y).any():
180
+ raise ValueError('`x` and `y` must not contain NaNs.')
181
+ if np.size(x) == 0 or np.size(y) == 0:
182
+ raise ValueError('`x` and `y` must be of nonzero size.')
183
+
184
+ bools = {True, False}
185
+ if use_continuity not in bools:
186
+ raise ValueError(f'`use_continuity` must be one of {bools}.')
187
+
188
+ alternatives = {"two-sided", "less", "greater"}
189
+ alternative = alternative.lower()
190
+ if alternative not in alternatives:
191
+ raise ValueError(f'`alternative` must be one of {alternatives}.')
192
+
193
+ axis_int = int(axis)
194
+ if axis != axis_int:
195
+ raise ValueError('`axis` must be an integer.')
196
+
197
+ if not isinstance(method, stats.PermutationMethod):
198
+ methods = {"asymptotic", "exact", "auto"}
199
+ method = method.lower()
200
+ if method not in methods:
201
+ raise ValueError(f'`method` must be one of {methods}.')
202
+
203
+ return x, y, use_continuity, alternative, axis_int, method
204
+
205
+
206
+ def _mwu_choose_method(n1, n2, ties):
207
+ """Choose method 'asymptotic' or 'exact' depending on input size, ties"""
208
+
209
+ # if both inputs are large, asymptotic is OK
210
+ if n1 > 8 and n2 > 8:
211
+ return "asymptotic"
212
+
213
+ # if there are any ties, asymptotic is preferred
214
+ if ties:
215
+ return "asymptotic"
216
+
217
+ return "exact"
218
+
219
+
220
+ MannwhitneyuResult = namedtuple('MannwhitneyuResult', ('statistic', 'pvalue'))
221
+
222
+
223
+ @_axis_nan_policy_factory(MannwhitneyuResult, n_samples=2)
224
+ def mannwhitneyu(x, y, use_continuity=True, alternative="two-sided",
225
+ axis=0, method="auto"):
226
+ r'''Perform the Mann-Whitney U rank test on two independent samples.
227
+
228
+ The Mann-Whitney U test is a nonparametric test of the null hypothesis
229
+ that the distribution underlying sample `x` is the same as the
230
+ distribution underlying sample `y`. It is often used as a test of
231
+ difference in location between distributions.
232
+
233
+ Parameters
234
+ ----------
235
+ x, y : array-like
236
+ N-d arrays of samples. The arrays must be broadcastable except along
237
+ the dimension given by `axis`.
238
+ use_continuity : bool, optional
239
+ Whether a continuity correction (1/2) should be applied.
240
+ Default is True when `method` is ``'asymptotic'``; has no effect
241
+ otherwise.
242
+ alternative : {'two-sided', 'less', 'greater'}, optional
243
+ Defines the alternative hypothesis. Default is 'two-sided'.
244
+ Let *F(u)* and *G(u)* be the cumulative distribution functions of the
245
+ distributions underlying `x` and `y`, respectively. Then the following
246
+ alternative hypotheses are available:
247
+
248
+ * 'two-sided': the distributions are not equal, i.e. *F(u) ≠ G(u)* for
249
+ at least one *u*.
250
+ * 'less': the distribution underlying `x` is stochastically less
251
+ than the distribution underlying `y`, i.e. *F(u) > G(u)* for all *u*.
252
+ * 'greater': the distribution underlying `x` is stochastically greater
253
+ than the distribution underlying `y`, i.e. *F(u) < G(u)* for all *u*.
254
+
255
+ Note that the mathematical expressions in the alternative hypotheses
256
+ above describe the CDFs of the underlying distributions. The directions
257
+ of the inequalities appear inconsistent with the natural language
258
+ description at first glance, but they are not. For example, suppose
259
+ *X* and *Y* are random variables that follow distributions with CDFs
260
+ *F* and *G*, respectively. If *F(u) > G(u)* for all *u*, samples drawn
261
+ from *X* tend to be less than those drawn from *Y*.
262
+
263
+ Under a more restrictive set of assumptions, the alternative hypotheses
264
+ can be expressed in terms of the locations of the distributions;
265
+ see [5] section 5.1.
266
+ axis : int, optional
267
+ Axis along which to perform the test. Default is 0.
268
+ method : {'auto', 'asymptotic', 'exact'} or `PermutationMethod` instance, optional
269
+ Selects the method used to calculate the *p*-value.
270
+ Default is 'auto'. The following options are available.
271
+
272
+ * ``'asymptotic'``: compares the standardized test statistic
273
+ against the normal distribution, correcting for ties.
274
+ * ``'exact'``: computes the exact *p*-value by comparing the observed
275
+ :math:`U` statistic against the exact distribution of the :math:`U`
276
+ statistic under the null hypothesis. No correction is made for ties.
277
+ * ``'auto'``: chooses ``'exact'`` when the size of one of the samples
278
+ is less than or equal to 8 and there are no ties;
279
+ chooses ``'asymptotic'`` otherwise.
280
+ * `PermutationMethod` instance. In this case, the p-value
281
+ is computed using `permutation_test` with the provided
282
+ configuration options and other appropriate settings.
283
+
284
+ Returns
285
+ -------
286
+ res : MannwhitneyuResult
287
+ An object containing attributes:
288
+
289
+ statistic : float
290
+ The Mann-Whitney U statistic corresponding with sample `x`. See
291
+ Notes for the test statistic corresponding with sample `y`.
292
+ pvalue : float
293
+ The associated *p*-value for the chosen `alternative`.
294
+
295
+ Notes
296
+ -----
297
+ If ``U1`` is the statistic corresponding with sample `x`, then the
298
+ statistic corresponding with sample `y` is
299
+ ``U2 = x.shape[axis] * y.shape[axis] - U1``.
300
+
301
+ `mannwhitneyu` is for independent samples. For related / paired samples,
302
+ consider `scipy.stats.wilcoxon`.
303
+
304
+ `method` ``'exact'`` is recommended when there are no ties and when either
305
+ sample size is less than 8 [1]_. The implementation follows the algorithm
306
+ reported in [3]_.
307
+ Note that the exact method is *not* corrected for ties, but
308
+ `mannwhitneyu` will not raise errors or warnings if there are ties in the
309
+ data. If there are ties and either samples is small (fewer than ~10
310
+ observations), consider passing an instance of `PermutationMethod`
311
+ as the `method` to perform a permutation test.
312
+
313
+ The Mann-Whitney U test is a non-parametric version of the t-test for
314
+ independent samples. When the means of samples from the populations
315
+ are normally distributed, consider `scipy.stats.ttest_ind`.
316
+
317
+ See Also
318
+ --------
319
+ scipy.stats.wilcoxon, scipy.stats.ranksums, scipy.stats.ttest_ind
320
+
321
+ References
322
+ ----------
323
+ .. [1] H.B. Mann and D.R. Whitney, "On a test of whether one of two random
324
+ variables is stochastically larger than the other", The Annals of
325
+ Mathematical Statistics, Vol. 18, pp. 50-60, 1947.
326
+ .. [2] Mann-Whitney U Test, Wikipedia,
327
+ http://en.wikipedia.org/wiki/Mann-Whitney_U_test
328
+ .. [3] Andreas Löffler,
329
+ "Über eine Partition der nat. Zahlen und ihr Anwendung beim U-Test",
330
+ Wiss. Z. Univ. Halle, XXXII'83 pp. 87-89.
331
+ .. [4] Rosie Shier, "Statistics: 2.3 The Mann-Whitney U Test", Mathematics
332
+ Learning Support Centre, 2004.
333
+ .. [5] Michael P. Fay and Michael A. Proschan. "Wilcoxon-Mann-Whitney
334
+ or t-test? On assumptions for hypothesis tests and multiple \
335
+ interpretations of decision rules." Statistics surveys, Vol. 4, pp.
336
+ 1-39, 2010. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857732/
337
+
338
+ Examples
339
+ --------
340
+ We follow the example from [4]_: nine randomly sampled young adults were
341
+ diagnosed with type II diabetes at the ages below.
342
+
343
+ >>> males = [19, 22, 16, 29, 24]
344
+ >>> females = [20, 11, 17, 12]
345
+
346
+ We use the Mann-Whitney U test to assess whether there is a statistically
347
+ significant difference in the diagnosis age of males and females.
348
+ The null hypothesis is that the distribution of male diagnosis ages is
349
+ the same as the distribution of female diagnosis ages. We decide
350
+ that a confidence level of 95% is required to reject the null hypothesis
351
+ in favor of the alternative that the distributions are different.
352
+ Since the number of samples is very small and there are no ties in the
353
+ data, we can compare the observed test statistic against the *exact*
354
+ distribution of the test statistic under the null hypothesis.
355
+
356
+ >>> from scipy.stats import mannwhitneyu
357
+ >>> U1, p = mannwhitneyu(males, females, method="exact")
358
+ >>> print(U1)
359
+ 17.0
360
+
361
+ `mannwhitneyu` always reports the statistic associated with the first
362
+ sample, which, in this case, is males. This agrees with :math:`U_M = 17`
363
+ reported in [4]_. The statistic associated with the second statistic
364
+ can be calculated:
365
+
366
+ >>> nx, ny = len(males), len(females)
367
+ >>> U2 = nx*ny - U1
368
+ >>> print(U2)
369
+ 3.0
370
+
371
+ This agrees with :math:`U_F = 3` reported in [4]_. The two-sided
372
+ *p*-value can be calculated from either statistic, and the value produced
373
+ by `mannwhitneyu` agrees with :math:`p = 0.11` reported in [4]_.
374
+
375
+ >>> print(p)
376
+ 0.1111111111111111
377
+
378
+ The exact distribution of the test statistic is asymptotically normal, so
379
+ the example continues by comparing the exact *p*-value against the
380
+ *p*-value produced using the normal approximation.
381
+
382
+ >>> _, pnorm = mannwhitneyu(males, females, method="asymptotic")
383
+ >>> print(pnorm)
384
+ 0.11134688653314041
385
+
386
+ Here `mannwhitneyu`'s reported *p*-value appears to conflict with the
387
+ value :math:`p = 0.09` given in [4]_. The reason is that [4]_
388
+ does not apply the continuity correction performed by `mannwhitneyu`;
389
+ `mannwhitneyu` reduces the distance between the test statistic and the
390
+ mean :math:`\mu = n_x n_y / 2` by 0.5 to correct for the fact that the
391
+ discrete statistic is being compared against a continuous distribution.
392
+ Here, the :math:`U` statistic used is less than the mean, so we reduce
393
+ the distance by adding 0.5 in the numerator.
394
+
395
+ >>> import numpy as np
396
+ >>> from scipy.stats import norm
397
+ >>> U = min(U1, U2)
398
+ >>> N = nx + ny
399
+ >>> z = (U - nx*ny/2 + 0.5) / np.sqrt(nx*ny * (N + 1)/ 12)
400
+ >>> p = 2 * norm.cdf(z) # use CDF to get p-value from smaller statistic
401
+ >>> print(p)
402
+ 0.11134688653314041
403
+
404
+ If desired, we can disable the continuity correction to get a result
405
+ that agrees with that reported in [4]_.
406
+
407
+ >>> _, pnorm = mannwhitneyu(males, females, use_continuity=False,
408
+ ... method="asymptotic")
409
+ >>> print(pnorm)
410
+ 0.0864107329737
411
+
412
+ Regardless of whether we perform an exact or asymptotic test, the
413
+ probability of the test statistic being as extreme or more extreme by
414
+ chance exceeds 5%, so we do not consider the results statistically
415
+ significant.
416
+
417
+ Suppose that, before seeing the data, we had hypothesized that females
418
+ would tend to be diagnosed at a younger age than males.
419
+ In that case, it would be natural to provide the female ages as the
420
+ first input, and we would have performed a one-sided test using
421
+ ``alternative = 'less'``: females are diagnosed at an age that is
422
+ stochastically less than that of males.
423
+
424
+ >>> res = mannwhitneyu(females, males, alternative="less", method="exact")
425
+ >>> print(res)
426
+ MannwhitneyuResult(statistic=3.0, pvalue=0.05555555555555555)
427
+
428
+ Again, the probability of getting a sufficiently low value of the
429
+ test statistic by chance under the null hypothesis is greater than 5%,
430
+ so we do not reject the null hypothesis in favor of our alternative.
431
+
432
+ If it is reasonable to assume that the means of samples from the
433
+ populations are normally distributed, we could have used a t-test to
434
+ perform the analysis.
435
+
436
+ >>> from scipy.stats import ttest_ind
437
+ >>> res = ttest_ind(females, males, alternative="less")
438
+ >>> print(res)
439
+ TtestResult(statistic=-2.239334696520584,
440
+ pvalue=0.030068441095757924,
441
+ df=7.0)
442
+
443
+ Under this assumption, the *p*-value would be low enough to reject the
444
+ null hypothesis in favor of the alternative.
445
+
446
+ '''
447
+
448
+ x, y, use_continuity, alternative, axis_int, method = (
449
+ _mwu_input_validation(x, y, use_continuity, alternative, axis, method))
450
+
451
+ x, y, xy = _broadcast_concatenate(x, y, axis)
452
+
453
+ n1, n2 = x.shape[-1], y.shape[-1]
454
+
455
+ # Follows [2]
456
+ ranks, t = _rankdata(xy, 'average', return_ties=True) # method 2, step 1
457
+ R1 = ranks[..., :n1].sum(axis=-1) # method 2, step 2
458
+ U1 = R1 - n1*(n1+1)/2 # method 2, step 3
459
+ U2 = n1 * n2 - U1 # as U1 + U2 = n1 * n2
460
+
461
+ if alternative == "greater":
462
+ U, f = U1, 1 # U is the statistic to use for p-value, f is a factor
463
+ elif alternative == "less":
464
+ U, f = U2, 1 # Due to symmetry, use SF of U2 rather than CDF of U1
465
+ else:
466
+ U, f = np.maximum(U1, U2), 2 # multiply SF by two for two-sided test
467
+
468
+ if method == "auto":
469
+ method = _mwu_choose_method(n1, n2, np.any(t > 1))
470
+
471
+ if method == "exact":
472
+ _mwu_state.set_shapes(n1, n2)
473
+ p = _mwu_state.sf(U.astype(int))
474
+ elif method == "asymptotic":
475
+ z = _get_mwu_z(U, n1, n2, t, continuity=use_continuity)
476
+ p = stats.norm.sf(z)
477
+ else: # `PermutationMethod` instance (already validated)
478
+ def statistic(x, y, axis):
479
+ return mannwhitneyu(x, y, use_continuity=use_continuity,
480
+ alternative=alternative, axis=axis,
481
+ method="asymptotic").statistic
482
+
483
+ res = stats.permutation_test((x, y), statistic, axis=axis,
484
+ **method._asdict(), alternative=alternative)
485
+ p = res.pvalue
486
+ f = 1
487
+
488
+ p *= f
489
+
490
+ # Ensure that test statistic is not greater than 1
491
+ # This could happen for exact test when U = m*n/2
492
+ p = np.clip(p, 0, 1)
493
+
494
+ return MannwhitneyuResult(U1, p)
parrot/lib/python3.10/site-packages/scipy/stats/_morestats.py ADDED
The diff for this file is too large to render. See raw diff
 
parrot/lib/python3.10/site-packages/scipy/stats/_mstats_basic.py ADDED
The diff for this file is too large to render. See raw diff
 
parrot/lib/python3.10/site-packages/scipy/stats/_multicomp.py ADDED
@@ -0,0 +1,459 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import warnings
4
+ from dataclasses import dataclass, field
5
+ from typing import TYPE_CHECKING
6
+
7
+ import numpy as np
8
+
9
+ from scipy import stats
10
+ from scipy.optimize import minimize_scalar
11
+ from scipy.stats._common import ConfidenceInterval
12
+ from scipy.stats._qmc import check_random_state
13
+ from scipy.stats._stats_py import _var
14
+
15
+ if TYPE_CHECKING:
16
+ import numpy.typing as npt
17
+ from scipy._lib._util import DecimalNumber, SeedType
18
+ from typing import Literal, Sequence # noqa: UP035
19
+
20
+
21
+ __all__ = [
22
+ 'dunnett'
23
+ ]
24
+
25
+
26
+ @dataclass
27
+ class DunnettResult:
28
+ """Result object returned by `scipy.stats.dunnett`.
29
+
30
+ Attributes
31
+ ----------
32
+ statistic : float ndarray
33
+ The computed statistic of the test for each comparison. The element
34
+ at index ``i`` is the statistic for the comparison between
35
+ groups ``i`` and the control.
36
+ pvalue : float ndarray
37
+ The computed p-value of the test for each comparison. The element
38
+ at index ``i`` is the p-value for the comparison between
39
+ group ``i`` and the control.
40
+ """
41
+ statistic: np.ndarray
42
+ pvalue: np.ndarray
43
+ _alternative: Literal['two-sided', 'less', 'greater'] = field(repr=False)
44
+ _rho: np.ndarray = field(repr=False)
45
+ _df: int = field(repr=False)
46
+ _std: float = field(repr=False)
47
+ _mean_samples: np.ndarray = field(repr=False)
48
+ _mean_control: np.ndarray = field(repr=False)
49
+ _n_samples: np.ndarray = field(repr=False)
50
+ _n_control: int = field(repr=False)
51
+ _rng: SeedType = field(repr=False)
52
+ _ci: ConfidenceInterval | None = field(default=None, repr=False)
53
+ _ci_cl: DecimalNumber | None = field(default=None, repr=False)
54
+
55
+ def __str__(self):
56
+ # Note: `__str__` prints the confidence intervals from the most
57
+ # recent call to `confidence_interval`. If it has not been called,
58
+ # it will be called with the default CL of .95.
59
+ if self._ci is None:
60
+ self.confidence_interval(confidence_level=.95)
61
+ s = (
62
+ "Dunnett's test"
63
+ f" ({self._ci_cl*100:.1f}% Confidence Interval)\n"
64
+ "Comparison Statistic p-value Lower CI Upper CI\n"
65
+ )
66
+ for i in range(self.pvalue.size):
67
+ s += (f" (Sample {i} - Control) {self.statistic[i]:>10.3f}"
68
+ f"{self.pvalue[i]:>10.3f}"
69
+ f"{self._ci.low[i]:>10.3f}"
70
+ f"{self._ci.high[i]:>10.3f}\n")
71
+
72
+ return s
73
+
74
+ def _allowance(
75
+ self, confidence_level: DecimalNumber = 0.95, tol: DecimalNumber = 1e-3
76
+ ) -> float:
77
+ """Allowance.
78
+
79
+ It is the quantity to add/subtract from the observed difference
80
+ between the means of observed groups and the mean of the control
81
+ group. The result gives confidence limits.
82
+
83
+ Parameters
84
+ ----------
85
+ confidence_level : float, optional
86
+ Confidence level for the computed confidence interval.
87
+ Default is .95.
88
+ tol : float, optional
89
+ A tolerance for numerical optimization: the allowance will produce
90
+ a confidence within ``10*tol*(1 - confidence_level)`` of the
91
+ specified level, or a warning will be emitted. Tight tolerances
92
+ may be impractical due to noisy evaluation of the objective.
93
+ Default is 1e-3.
94
+
95
+ Returns
96
+ -------
97
+ allowance : float
98
+ Allowance around the mean.
99
+ """
100
+ alpha = 1 - confidence_level
101
+
102
+ def pvalue_from_stat(statistic):
103
+ statistic = np.array(statistic)
104
+ sf = _pvalue_dunnett(
105
+ rho=self._rho, df=self._df,
106
+ statistic=statistic, alternative=self._alternative,
107
+ rng=self._rng
108
+ )
109
+ return abs(sf - alpha)/alpha
110
+
111
+ # Evaluation of `pvalue_from_stat` is noisy due to the use of RQMC to
112
+ # evaluate `multivariate_t.cdf`. `minimize_scalar` is not designed
113
+ # to tolerate a noisy objective function and may fail to find the
114
+ # minimum accurately. We mitigate this possibility with the validation
115
+ # step below, but implementation of a noise-tolerant root finder or
116
+ # minimizer would be a welcome enhancement. See gh-18150.
117
+ res = minimize_scalar(pvalue_from_stat, method='brent', tol=tol)
118
+ critical_value = res.x
119
+
120
+ # validation
121
+ # tol*10 because tol=1e-3 means we tolerate a 1% change at most
122
+ if res.success is False or res.fun >= tol*10:
123
+ warnings.warn(
124
+ "Computation of the confidence interval did not converge to "
125
+ "the desired level. The confidence level corresponding with "
126
+ f"the returned interval is approximately {alpha*(1+res.fun)}.",
127
+ stacklevel=3
128
+ )
129
+
130
+ # From [1] p. 1101 between (1) and (3)
131
+ allowance = critical_value*self._std*np.sqrt(
132
+ 1/self._n_samples + 1/self._n_control
133
+ )
134
+ return abs(allowance)
135
+
136
+ def confidence_interval(
137
+ self, confidence_level: DecimalNumber = 0.95
138
+ ) -> ConfidenceInterval:
139
+ """Compute the confidence interval for the specified confidence level.
140
+
141
+ Parameters
142
+ ----------
143
+ confidence_level : float, optional
144
+ Confidence level for the computed confidence interval.
145
+ Default is .95.
146
+
147
+ Returns
148
+ -------
149
+ ci : ``ConfidenceInterval`` object
150
+ The object has attributes ``low`` and ``high`` that hold the
151
+ lower and upper bounds of the confidence intervals for each
152
+ comparison. The high and low values are accessible for each
153
+ comparison at index ``i`` for each group ``i``.
154
+
155
+ """
156
+ # check to see if the supplied confidence level matches that of the
157
+ # previously computed CI.
158
+ if (self._ci is not None) and (confidence_level == self._ci_cl):
159
+ return self._ci
160
+
161
+ if not (0 < confidence_level < 1):
162
+ raise ValueError("Confidence level must be between 0 and 1.")
163
+
164
+ allowance = self._allowance(confidence_level=confidence_level)
165
+ diff_means = self._mean_samples - self._mean_control
166
+
167
+ low = diff_means-allowance
168
+ high = diff_means+allowance
169
+
170
+ if self._alternative == 'greater':
171
+ high = [np.inf] * len(diff_means)
172
+ elif self._alternative == 'less':
173
+ low = [-np.inf] * len(diff_means)
174
+
175
+ self._ci_cl = confidence_level
176
+ self._ci = ConfidenceInterval(
177
+ low=low,
178
+ high=high
179
+ )
180
+ return self._ci
181
+
182
+
183
+ def dunnett(
184
+ *samples: npt.ArrayLike, # noqa: D417
185
+ control: npt.ArrayLike,
186
+ alternative: Literal['two-sided', 'less', 'greater'] = "two-sided",
187
+ random_state: SeedType = None
188
+ ) -> DunnettResult:
189
+ """Dunnett's test: multiple comparisons of means against a control group.
190
+
191
+ This is an implementation of Dunnett's original, single-step test as
192
+ described in [1]_.
193
+
194
+ Parameters
195
+ ----------
196
+ sample1, sample2, ... : 1D array_like
197
+ The sample measurements for each experimental group.
198
+ control : 1D array_like
199
+ The sample measurements for the control group.
200
+ alternative : {'two-sided', 'less', 'greater'}, optional
201
+ Defines the alternative hypothesis.
202
+
203
+ The null hypothesis is that the means of the distributions underlying
204
+ the samples and control are equal. The following alternative
205
+ hypotheses are available (default is 'two-sided'):
206
+
207
+ * 'two-sided': the means of the distributions underlying the samples
208
+ and control are unequal.
209
+ * 'less': the means of the distributions underlying the samples
210
+ are less than the mean of the distribution underlying the control.
211
+ * 'greater': the means of the distributions underlying the
212
+ samples are greater than the mean of the distribution underlying
213
+ the control.
214
+ random_state : {None, int, `numpy.random.Generator`}, optional
215
+ If `random_state` is an int or None, a new `numpy.random.Generator` is
216
+ created using ``np.random.default_rng(random_state)``.
217
+ If `random_state` is already a ``Generator`` instance, then the
218
+ provided instance is used.
219
+
220
+ The random number generator is used to control the randomized
221
+ Quasi-Monte Carlo integration of the multivariate-t distribution.
222
+
223
+ Returns
224
+ -------
225
+ res : `~scipy.stats._result_classes.DunnettResult`
226
+ An object containing attributes:
227
+
228
+ statistic : float ndarray
229
+ The computed statistic of the test for each comparison. The element
230
+ at index ``i`` is the statistic for the comparison between
231
+ groups ``i`` and the control.
232
+ pvalue : float ndarray
233
+ The computed p-value of the test for each comparison. The element
234
+ at index ``i`` is the p-value for the comparison between
235
+ group ``i`` and the control.
236
+
237
+ And the following method:
238
+
239
+ confidence_interval(confidence_level=0.95) :
240
+ Compute the difference in means of the groups
241
+ with the control +- the allowance.
242
+
243
+ See Also
244
+ --------
245
+ tukey_hsd : performs pairwise comparison of means.
246
+
247
+ Notes
248
+ -----
249
+ Like the independent-sample t-test, Dunnett's test [1]_ is used to make
250
+ inferences about the means of distributions from which samples were drawn.
251
+ However, when multiple t-tests are performed at a fixed significance level,
252
+ the "family-wise error rate" - the probability of incorrectly rejecting the
253
+ null hypothesis in at least one test - will exceed the significance level.
254
+ Dunnett's test is designed to perform multiple comparisons while
255
+ controlling the family-wise error rate.
256
+
257
+ Dunnett's test compares the means of multiple experimental groups
258
+ against a single control group. Tukey's Honestly Significant Difference Test
259
+ is another multiple-comparison test that controls the family-wise error
260
+ rate, but `tukey_hsd` performs *all* pairwise comparisons between groups.
261
+ When pairwise comparisons between experimental groups are not needed,
262
+ Dunnett's test is preferable due to its higher power.
263
+
264
+
265
+ The use of this test relies on several assumptions.
266
+
267
+ 1. The observations are independent within and among groups.
268
+ 2. The observations within each group are normally distributed.
269
+ 3. The distributions from which the samples are drawn have the same finite
270
+ variance.
271
+
272
+ References
273
+ ----------
274
+ .. [1] Charles W. Dunnett. "A Multiple Comparison Procedure for Comparing
275
+ Several Treatments with a Control."
276
+ Journal of the American Statistical Association, 50:272, 1096-1121,
277
+ :doi:`10.1080/01621459.1955.10501294`, 1955.
278
+
279
+ Examples
280
+ --------
281
+ In [1]_, the influence of drugs on blood count measurements on three groups
282
+ of animal is investigated.
283
+
284
+ The following table summarizes the results of the experiment in which
285
+ two groups received different drugs, and one group acted as a control.
286
+ Blood counts (in millions of cells per cubic millimeter) were recorded::
287
+
288
+ >>> import numpy as np
289
+ >>> control = np.array([7.40, 8.50, 7.20, 8.24, 9.84, 8.32])
290
+ >>> drug_a = np.array([9.76, 8.80, 7.68, 9.36])
291
+ >>> drug_b = np.array([12.80, 9.68, 12.16, 9.20, 10.55])
292
+
293
+ We would like to see if the means between any of the groups are
294
+ significantly different. First, visually examine a box and whisker plot.
295
+
296
+ >>> import matplotlib.pyplot as plt
297
+ >>> fig, ax = plt.subplots(1, 1)
298
+ >>> ax.boxplot([control, drug_a, drug_b])
299
+ >>> ax.set_xticklabels(["Control", "Drug A", "Drug B"]) # doctest: +SKIP
300
+ >>> ax.set_ylabel("mean") # doctest: +SKIP
301
+ >>> plt.show()
302
+
303
+ Note the overlapping interquartile ranges of the drug A group and control
304
+ group and the apparent separation between the drug B group and control
305
+ group.
306
+
307
+ Next, we will use Dunnett's test to assess whether the difference
308
+ between group means is significant while controlling the family-wise error
309
+ rate: the probability of making any false discoveries.
310
+ Let the null hypothesis be that the experimental groups have the same
311
+ mean as the control and the alternative be that an experimental group does
312
+ not have the same mean as the control. We will consider a 5% family-wise
313
+ error rate to be acceptable, and therefore we choose 0.05 as the threshold
314
+ for significance.
315
+
316
+ >>> from scipy.stats import dunnett
317
+ >>> res = dunnett(drug_a, drug_b, control=control)
318
+ >>> res.pvalue
319
+ array([0.62004941, 0.0059035 ]) # may vary
320
+
321
+ The p-value corresponding with the comparison between group A and control
322
+ exceeds 0.05, so we do not reject the null hypothesis for that comparison.
323
+ However, the p-value corresponding with the comparison between group B
324
+ and control is less than 0.05, so we consider the experimental results
325
+ to be evidence against the null hypothesis in favor of the alternative:
326
+ group B has a different mean than the control group.
327
+
328
+ """
329
+ samples_, control_, rng = _iv_dunnett(
330
+ samples=samples, control=control,
331
+ alternative=alternative, random_state=random_state
332
+ )
333
+
334
+ rho, df, n_group, n_samples, n_control = _params_dunnett(
335
+ samples=samples_, control=control_
336
+ )
337
+
338
+ statistic, std, mean_control, mean_samples = _statistic_dunnett(
339
+ samples_, control_, df, n_samples, n_control
340
+ )
341
+
342
+ pvalue = _pvalue_dunnett(
343
+ rho=rho, df=df, statistic=statistic, alternative=alternative, rng=rng
344
+ )
345
+
346
+ return DunnettResult(
347
+ statistic=statistic, pvalue=pvalue,
348
+ _alternative=alternative,
349
+ _rho=rho, _df=df, _std=std,
350
+ _mean_samples=mean_samples,
351
+ _mean_control=mean_control,
352
+ _n_samples=n_samples,
353
+ _n_control=n_control,
354
+ _rng=rng
355
+ )
356
+
357
+
358
+ def _iv_dunnett(
359
+ samples: Sequence[npt.ArrayLike],
360
+ control: npt.ArrayLike,
361
+ alternative: Literal['two-sided', 'less', 'greater'],
362
+ random_state: SeedType
363
+ ) -> tuple[list[np.ndarray], np.ndarray, SeedType]:
364
+ """Input validation for Dunnett's test."""
365
+ rng = check_random_state(random_state)
366
+
367
+ if alternative not in {'two-sided', 'less', 'greater'}:
368
+ raise ValueError(
369
+ "alternative must be 'less', 'greater' or 'two-sided'"
370
+ )
371
+
372
+ ndim_msg = "Control and samples groups must be 1D arrays"
373
+ n_obs_msg = "Control and samples groups must have at least 1 observation"
374
+
375
+ control = np.asarray(control)
376
+ samples_ = [np.asarray(sample) for sample in samples]
377
+
378
+ # samples checks
379
+ samples_control: list[np.ndarray] = samples_ + [control]
380
+ for sample in samples_control:
381
+ if sample.ndim > 1:
382
+ raise ValueError(ndim_msg)
383
+
384
+ if sample.size < 1:
385
+ raise ValueError(n_obs_msg)
386
+
387
+ return samples_, control, rng
388
+
389
+
390
+ def _params_dunnett(
391
+ samples: list[np.ndarray], control: np.ndarray
392
+ ) -> tuple[np.ndarray, int, int, np.ndarray, int]:
393
+ """Specific parameters for Dunnett's test.
394
+
395
+ Degree of freedom is the number of observations minus the number of groups
396
+ including the control.
397
+ """
398
+ n_samples = np.array([sample.size for sample in samples])
399
+
400
+ # From [1] p. 1100 d.f. = (sum N)-(p+1)
401
+ n_sample = n_samples.sum()
402
+ n_control = control.size
403
+ n = n_sample + n_control
404
+ n_groups = len(samples)
405
+ df = n - n_groups - 1
406
+
407
+ # From [1] p. 1103 rho_ij = 1/sqrt((N0/Ni+1)(N0/Nj+1))
408
+ rho = n_control/n_samples + 1
409
+ rho = 1/np.sqrt(rho[:, None] * rho[None, :])
410
+ np.fill_diagonal(rho, 1)
411
+
412
+ return rho, df, n_groups, n_samples, n_control
413
+
414
+
415
+ def _statistic_dunnett(
416
+ samples: list[np.ndarray], control: np.ndarray, df: int,
417
+ n_samples: np.ndarray, n_control: int
418
+ ) -> tuple[np.ndarray, float, np.ndarray, np.ndarray]:
419
+ """Statistic of Dunnett's test.
420
+
421
+ Computation based on the original single-step test from [1].
422
+ """
423
+ mean_control = np.mean(control)
424
+ mean_samples = np.array([np.mean(sample) for sample in samples])
425
+ all_samples = [control] + samples
426
+ all_means = np.concatenate([[mean_control], mean_samples])
427
+
428
+ # Variance estimate s^2 from [1] Eq. 1
429
+ s2 = np.sum([_var(sample, mean=mean)*sample.size
430
+ for sample, mean in zip(all_samples, all_means)]) / df
431
+ std = np.sqrt(s2)
432
+
433
+ # z score inferred from [1] unlabeled equation after Eq. 1
434
+ z = (mean_samples - mean_control) / np.sqrt(1/n_samples + 1/n_control)
435
+
436
+ return z / std, std, mean_control, mean_samples
437
+
438
+
439
+ def _pvalue_dunnett(
440
+ rho: np.ndarray, df: int, statistic: np.ndarray,
441
+ alternative: Literal['two-sided', 'less', 'greater'],
442
+ rng: SeedType = None
443
+ ) -> np.ndarray:
444
+ """pvalue from the multivariate t-distribution.
445
+
446
+ Critical values come from the multivariate student-t distribution.
447
+ """
448
+ statistic = statistic.reshape(-1, 1)
449
+
450
+ mvt = stats.multivariate_t(shape=rho, df=df, seed=rng)
451
+ if alternative == "two-sided":
452
+ statistic = abs(statistic)
453
+ pvalue = 1 - mvt.cdf(statistic, lower_limit=-statistic)
454
+ elif alternative == "greater":
455
+ pvalue = 1 - mvt.cdf(statistic, lower_limit=-np.inf)
456
+ else:
457
+ pvalue = 1 - mvt.cdf(np.inf, lower_limit=statistic)
458
+
459
+ return np.atleast_1d(pvalue)
parrot/lib/python3.10/site-packages/scipy/stats/_multivariate.py ADDED
The diff for this file is too large to render. See raw diff
 
parrot/lib/python3.10/site-packages/scipy/stats/_mvn.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (85 kB). View file
 
parrot/lib/python3.10/site-packages/scipy/stats/_odds_ratio.py ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ from scipy.special import ndtri
4
+ from scipy.optimize import brentq
5
+ from ._discrete_distns import nchypergeom_fisher
6
+ from ._common import ConfidenceInterval
7
+
8
+
9
+ def _sample_odds_ratio(table):
10
+ """
11
+ Given a table [[a, b], [c, d]], compute a*d/(b*c).
12
+
13
+ Return nan if the numerator and denominator are 0.
14
+ Return inf if just the denominator is 0.
15
+ """
16
+ # table must be a 2x2 numpy array.
17
+ if table[1, 0] > 0 and table[0, 1] > 0:
18
+ oddsratio = table[0, 0] * table[1, 1] / (table[1, 0] * table[0, 1])
19
+ elif table[0, 0] == 0 or table[1, 1] == 0:
20
+ oddsratio = np.nan
21
+ else:
22
+ oddsratio = np.inf
23
+ return oddsratio
24
+
25
+
26
+ def _solve(func):
27
+ """
28
+ Solve func(nc) = 0. func must be an increasing function.
29
+ """
30
+ # We could just as well call the variable `x` instead of `nc`, but we
31
+ # always call this function with functions for which nc (the noncentrality
32
+ # parameter) is the variable for which we are solving.
33
+ nc = 1.0
34
+ value = func(nc)
35
+ if value == 0:
36
+ return nc
37
+
38
+ # Multiplicative factor by which to increase or decrease nc when
39
+ # searching for a bracketing interval.
40
+ factor = 2.0
41
+ # Find a bracketing interval.
42
+ if value > 0:
43
+ nc /= factor
44
+ while func(nc) > 0:
45
+ nc /= factor
46
+ lo = nc
47
+ hi = factor*nc
48
+ else:
49
+ nc *= factor
50
+ while func(nc) < 0:
51
+ nc *= factor
52
+ lo = nc/factor
53
+ hi = nc
54
+
55
+ # lo and hi bracket the solution for nc.
56
+ nc = brentq(func, lo, hi, xtol=1e-13)
57
+ return nc
58
+
59
+
60
+ def _nc_hypergeom_mean_inverse(x, M, n, N):
61
+ """
62
+ For the given noncentral hypergeometric parameters x, M, n,and N
63
+ (table[0,0], total, row 0 sum and column 0 sum, resp., of a 2x2
64
+ contingency table), find the noncentrality parameter of Fisher's
65
+ noncentral hypergeometric distribution whose mean is x.
66
+ """
67
+ nc = _solve(lambda nc: nchypergeom_fisher.mean(M, n, N, nc) - x)
68
+ return nc
69
+
70
+
71
+ def _hypergeom_params_from_table(table):
72
+ # The notation M, n and N is consistent with stats.hypergeom and
73
+ # stats.nchypergeom_fisher.
74
+ x = table[0, 0]
75
+ M = table.sum()
76
+ n = table[0].sum()
77
+ N = table[:, 0].sum()
78
+ return x, M, n, N
79
+
80
+
81
+ def _ci_upper(table, alpha):
82
+ """
83
+ Compute the upper end of the confidence interval.
84
+ """
85
+ if _sample_odds_ratio(table) == np.inf:
86
+ return np.inf
87
+
88
+ x, M, n, N = _hypergeom_params_from_table(table)
89
+
90
+ # nchypergeom_fisher.cdf is a decreasing function of nc, so we negate
91
+ # it in the lambda expression.
92
+ nc = _solve(lambda nc: -nchypergeom_fisher.cdf(x, M, n, N, nc) + alpha)
93
+ return nc
94
+
95
+
96
+ def _ci_lower(table, alpha):
97
+ """
98
+ Compute the lower end of the confidence interval.
99
+ """
100
+ if _sample_odds_ratio(table) == 0:
101
+ return 0
102
+
103
+ x, M, n, N = _hypergeom_params_from_table(table)
104
+
105
+ nc = _solve(lambda nc: nchypergeom_fisher.sf(x - 1, M, n, N, nc) - alpha)
106
+ return nc
107
+
108
+
109
+ def _conditional_oddsratio(table):
110
+ """
111
+ Conditional MLE of the odds ratio for the 2x2 contingency table.
112
+ """
113
+ x, M, n, N = _hypergeom_params_from_table(table)
114
+ # Get the bounds of the support. The support of the noncentral
115
+ # hypergeometric distribution with parameters M, n, and N is the same
116
+ # for all values of the noncentrality parameter, so we can use 1 here.
117
+ lo, hi = nchypergeom_fisher.support(M, n, N, 1)
118
+
119
+ # Check if x is at one of the extremes of the support. If so, we know
120
+ # the odds ratio is either 0 or inf.
121
+ if x == lo:
122
+ # x is at the low end of the support.
123
+ return 0
124
+ if x == hi:
125
+ # x is at the high end of the support.
126
+ return np.inf
127
+
128
+ nc = _nc_hypergeom_mean_inverse(x, M, n, N)
129
+ return nc
130
+
131
+
132
+ def _conditional_oddsratio_ci(table, confidence_level=0.95,
133
+ alternative='two-sided'):
134
+ """
135
+ Conditional exact confidence interval for the odds ratio.
136
+ """
137
+ if alternative == 'two-sided':
138
+ alpha = 0.5*(1 - confidence_level)
139
+ lower = _ci_lower(table, alpha)
140
+ upper = _ci_upper(table, alpha)
141
+ elif alternative == 'less':
142
+ lower = 0.0
143
+ upper = _ci_upper(table, 1 - confidence_level)
144
+ else:
145
+ # alternative == 'greater'
146
+ lower = _ci_lower(table, 1 - confidence_level)
147
+ upper = np.inf
148
+
149
+ return lower, upper
150
+
151
+
152
+ def _sample_odds_ratio_ci(table, confidence_level=0.95,
153
+ alternative='two-sided'):
154
+ oddsratio = _sample_odds_ratio(table)
155
+ log_or = np.log(oddsratio)
156
+ se = np.sqrt((1/table).sum())
157
+ if alternative == 'less':
158
+ z = ndtri(confidence_level)
159
+ loglow = -np.inf
160
+ loghigh = log_or + z*se
161
+ elif alternative == 'greater':
162
+ z = ndtri(confidence_level)
163
+ loglow = log_or - z*se
164
+ loghigh = np.inf
165
+ else:
166
+ # alternative is 'two-sided'
167
+ z = ndtri(0.5*confidence_level + 0.5)
168
+ loglow = log_or - z*se
169
+ loghigh = log_or + z*se
170
+
171
+ return np.exp(loglow), np.exp(loghigh)
172
+
173
+
174
+ class OddsRatioResult:
175
+ """
176
+ Result of `scipy.stats.contingency.odds_ratio`. See the
177
+ docstring for `odds_ratio` for more details.
178
+
179
+ Attributes
180
+ ----------
181
+ statistic : float
182
+ The computed odds ratio.
183
+
184
+ * If `kind` is ``'sample'``, this is sample (or unconditional)
185
+ estimate, given by
186
+ ``table[0, 0]*table[1, 1]/(table[0, 1]*table[1, 0])``.
187
+ * If `kind` is ``'conditional'``, this is the conditional
188
+ maximum likelihood estimate for the odds ratio. It is
189
+ the noncentrality parameter of Fisher's noncentral
190
+ hypergeometric distribution with the same hypergeometric
191
+ parameters as `table` and whose mean is ``table[0, 0]``.
192
+
193
+ Methods
194
+ -------
195
+ confidence_interval :
196
+ Confidence interval for the odds ratio.
197
+ """
198
+
199
+ def __init__(self, _table, _kind, statistic):
200
+ # for now, no need to make _table and _kind public, since this sort of
201
+ # information is returned in very few `scipy.stats` results
202
+ self._table = _table
203
+ self._kind = _kind
204
+ self.statistic = statistic
205
+
206
+ def __repr__(self):
207
+ return f"OddsRatioResult(statistic={self.statistic})"
208
+
209
+ def confidence_interval(self, confidence_level=0.95,
210
+ alternative='two-sided'):
211
+ """
212
+ Confidence interval for the odds ratio.
213
+
214
+ Parameters
215
+ ----------
216
+ confidence_level: float
217
+ Desired confidence level for the confidence interval.
218
+ The value must be given as a fraction between 0 and 1.
219
+ Default is 0.95 (meaning 95%).
220
+
221
+ alternative : {'two-sided', 'less', 'greater'}, optional
222
+ The alternative hypothesis of the hypothesis test to which the
223
+ confidence interval corresponds. That is, suppose the null
224
+ hypothesis is that the true odds ratio equals ``OR`` and the
225
+ confidence interval is ``(low, high)``. Then the following options
226
+ for `alternative` are available (default is 'two-sided'):
227
+
228
+ * 'two-sided': the true odds ratio is not equal to ``OR``. There
229
+ is evidence against the null hypothesis at the chosen
230
+ `confidence_level` if ``high < OR`` or ``low > OR``.
231
+ * 'less': the true odds ratio is less than ``OR``. The ``low`` end
232
+ of the confidence interval is 0, and there is evidence against
233
+ the null hypothesis at the chosen `confidence_level` if
234
+ ``high < OR``.
235
+ * 'greater': the true odds ratio is greater than ``OR``. The
236
+ ``high`` end of the confidence interval is ``np.inf``, and there
237
+ is evidence against the null hypothesis at the chosen
238
+ `confidence_level` if ``low > OR``.
239
+
240
+ Returns
241
+ -------
242
+ ci : ``ConfidenceInterval`` instance
243
+ The confidence interval, represented as an object with
244
+ attributes ``low`` and ``high``.
245
+
246
+ Notes
247
+ -----
248
+ When `kind` is ``'conditional'``, the limits of the confidence
249
+ interval are the conditional "exact confidence limits" as described
250
+ by Fisher [1]_. The conditional odds ratio and confidence interval are
251
+ also discussed in Section 4.1.2 of the text by Sahai and Khurshid [2]_.
252
+
253
+ When `kind` is ``'sample'``, the confidence interval is computed
254
+ under the assumption that the logarithm of the odds ratio is normally
255
+ distributed with standard error given by::
256
+
257
+ se = sqrt(1/a + 1/b + 1/c + 1/d)
258
+
259
+ where ``a``, ``b``, ``c`` and ``d`` are the elements of the
260
+ contingency table. (See, for example, [2]_, section 3.1.3.2,
261
+ or [3]_, section 2.3.3).
262
+
263
+ References
264
+ ----------
265
+ .. [1] R. A. Fisher (1935), The logic of inductive inference,
266
+ Journal of the Royal Statistical Society, Vol. 98, No. 1,
267
+ pp. 39-82.
268
+ .. [2] H. Sahai and A. Khurshid (1996), Statistics in Epidemiology:
269
+ Methods, Techniques, and Applications, CRC Press LLC, Boca
270
+ Raton, Florida.
271
+ .. [3] Alan Agresti, An Introduction to Categorical Data Analysis
272
+ (second edition), Wiley, Hoboken, NJ, USA (2007).
273
+ """
274
+ if alternative not in ['two-sided', 'less', 'greater']:
275
+ raise ValueError("`alternative` must be 'two-sided', 'less' or "
276
+ "'greater'.")
277
+
278
+ if confidence_level < 0 or confidence_level > 1:
279
+ raise ValueError('confidence_level must be between 0 and 1')
280
+
281
+ if self._kind == 'conditional':
282
+ ci = self._conditional_odds_ratio_ci(confidence_level, alternative)
283
+ else:
284
+ ci = self._sample_odds_ratio_ci(confidence_level, alternative)
285
+ return ci
286
+
287
+ def _conditional_odds_ratio_ci(self, confidence_level=0.95,
288
+ alternative='two-sided'):
289
+ """
290
+ Confidence interval for the conditional odds ratio.
291
+ """
292
+
293
+ table = self._table
294
+ if 0 in table.sum(axis=0) or 0 in table.sum(axis=1):
295
+ # If both values in a row or column are zero, the p-value is 1,
296
+ # the odds ratio is NaN and the confidence interval is (0, inf).
297
+ ci = (0, np.inf)
298
+ else:
299
+ ci = _conditional_oddsratio_ci(table,
300
+ confidence_level=confidence_level,
301
+ alternative=alternative)
302
+ return ConfidenceInterval(low=ci[0], high=ci[1])
303
+
304
+ def _sample_odds_ratio_ci(self, confidence_level=0.95,
305
+ alternative='two-sided'):
306
+ """
307
+ Confidence interval for the sample odds ratio.
308
+ """
309
+ if confidence_level < 0 or confidence_level > 1:
310
+ raise ValueError('confidence_level must be between 0 and 1')
311
+
312
+ table = self._table
313
+ if 0 in table.sum(axis=0) or 0 in table.sum(axis=1):
314
+ # If both values in a row or column are zero, the p-value is 1,
315
+ # the odds ratio is NaN and the confidence interval is (0, inf).
316
+ ci = (0, np.inf)
317
+ else:
318
+ ci = _sample_odds_ratio_ci(table,
319
+ confidence_level=confidence_level,
320
+ alternative=alternative)
321
+ return ConfidenceInterval(low=ci[0], high=ci[1])
322
+
323
+
324
+ def odds_ratio(table, *, kind='conditional'):
325
+ r"""
326
+ Compute the odds ratio for a 2x2 contingency table.
327
+
328
+ Parameters
329
+ ----------
330
+ table : array_like of ints
331
+ A 2x2 contingency table. Elements must be non-negative integers.
332
+ kind : str, optional
333
+ Which kind of odds ratio to compute, either the sample
334
+ odds ratio (``kind='sample'``) or the conditional odds ratio
335
+ (``kind='conditional'``). Default is ``'conditional'``.
336
+
337
+ Returns
338
+ -------
339
+ result : `~scipy.stats._result_classes.OddsRatioResult` instance
340
+ The returned object has two computed attributes:
341
+
342
+ statistic : float
343
+ * If `kind` is ``'sample'``, this is sample (or unconditional)
344
+ estimate, given by
345
+ ``table[0, 0]*table[1, 1]/(table[0, 1]*table[1, 0])``.
346
+ * If `kind` is ``'conditional'``, this is the conditional
347
+ maximum likelihood estimate for the odds ratio. It is
348
+ the noncentrality parameter of Fisher's noncentral
349
+ hypergeometric distribution with the same hypergeometric
350
+ parameters as `table` and whose mean is ``table[0, 0]``.
351
+
352
+ The object has the method `confidence_interval` that computes
353
+ the confidence interval of the odds ratio.
354
+
355
+ See Also
356
+ --------
357
+ scipy.stats.fisher_exact
358
+ relative_risk
359
+
360
+ Notes
361
+ -----
362
+ The conditional odds ratio was discussed by Fisher (see "Example 1"
363
+ of [1]_). Texts that cover the odds ratio include [2]_ and [3]_.
364
+
365
+ .. versionadded:: 1.10.0
366
+
367
+ References
368
+ ----------
369
+ .. [1] R. A. Fisher (1935), The logic of inductive inference,
370
+ Journal of the Royal Statistical Society, Vol. 98, No. 1,
371
+ pp. 39-82.
372
+ .. [2] Breslow NE, Day NE (1980). Statistical methods in cancer research.
373
+ Volume I - The analysis of case-control studies. IARC Sci Publ.
374
+ (32):5-338. PMID: 7216345. (See section 4.2.)
375
+ .. [3] H. Sahai and A. Khurshid (1996), Statistics in Epidemiology:
376
+ Methods, Techniques, and Applications, CRC Press LLC, Boca
377
+ Raton, Florida.
378
+ .. [4] Berger, Jeffrey S. et al. "Aspirin for the Primary Prevention of
379
+ Cardiovascular Events in Women and Men: A Sex-Specific
380
+ Meta-analysis of Randomized Controlled Trials."
381
+ JAMA, 295(3):306-313, :doi:`10.1001/jama.295.3.306`, 2006.
382
+
383
+ Examples
384
+ --------
385
+ In epidemiology, individuals are classified as "exposed" or
386
+ "unexposed" to some factor or treatment. If the occurrence of some
387
+ illness is under study, those who have the illness are often
388
+ classified as "cases", and those without it are "noncases". The
389
+ counts of the occurrences of these classes gives a contingency
390
+ table::
391
+
392
+ exposed unexposed
393
+ cases a b
394
+ noncases c d
395
+
396
+ The sample odds ratio may be written ``(a/c) / (b/d)``. ``a/c`` can
397
+ be interpreted as the odds of a case occurring in the exposed group,
398
+ and ``b/d`` as the odds of a case occurring in the unexposed group.
399
+ The sample odds ratio is the ratio of these odds. If the odds ratio
400
+ is greater than 1, it suggests that there is a positive association
401
+ between being exposed and being a case.
402
+
403
+ Interchanging the rows or columns of the contingency table inverts
404
+ the odds ratio, so it is important to understand the meaning of labels
405
+ given to the rows and columns of the table when interpreting the
406
+ odds ratio.
407
+
408
+ In [4]_, the use of aspirin to prevent cardiovascular events in women
409
+ and men was investigated. The study notably concluded:
410
+
411
+ ...aspirin therapy reduced the risk of a composite of
412
+ cardiovascular events due to its effect on reducing the risk of
413
+ ischemic stroke in women [...]
414
+
415
+ The article lists studies of various cardiovascular events. Let's
416
+ focus on the ischemic stoke in women.
417
+
418
+ The following table summarizes the results of the experiment in which
419
+ participants took aspirin or a placebo on a regular basis for several
420
+ years. Cases of ischemic stroke were recorded::
421
+
422
+ Aspirin Control/Placebo
423
+ Ischemic stroke 176 230
424
+ No stroke 21035 21018
425
+
426
+ The question we ask is "Is there evidence that the aspirin reduces the
427
+ risk of ischemic stroke?"
428
+
429
+ Compute the odds ratio:
430
+
431
+ >>> from scipy.stats.contingency import odds_ratio
432
+ >>> res = odds_ratio([[176, 230], [21035, 21018]])
433
+ >>> res.statistic
434
+ 0.7646037659999126
435
+
436
+ For this sample, the odds of getting an ischemic stroke for those who have
437
+ been taking aspirin are 0.76 times that of those
438
+ who have received the placebo.
439
+
440
+ To make statistical inferences about the population under study,
441
+ we can compute the 95% confidence interval for the odds ratio:
442
+
443
+ >>> res.confidence_interval(confidence_level=0.95)
444
+ ConfidenceInterval(low=0.6241234078749812, high=0.9354102892100372)
445
+
446
+ The 95% confidence interval for the conditional odds ratio is
447
+ approximately (0.62, 0.94).
448
+
449
+ The fact that the entire 95% confidence interval falls below 1 supports
450
+ the authors' conclusion that the aspirin was associated with a
451
+ statistically significant reduction in ischemic stroke.
452
+ """
453
+ if kind not in ['conditional', 'sample']:
454
+ raise ValueError("`kind` must be 'conditional' or 'sample'.")
455
+
456
+ c = np.asarray(table)
457
+
458
+ if c.shape != (2, 2):
459
+ raise ValueError(f"Invalid shape {c.shape}. The input `table` must be "
460
+ "of shape (2, 2).")
461
+
462
+ if not np.issubdtype(c.dtype, np.integer):
463
+ raise ValueError("`table` must be an array of integers, but got "
464
+ f"type {c.dtype}")
465
+ c = c.astype(np.int64)
466
+
467
+ if np.any(c < 0):
468
+ raise ValueError("All values in `table` must be nonnegative.")
469
+
470
+ if 0 in c.sum(axis=0) or 0 in c.sum(axis=1):
471
+ # If both values in a row or column are zero, the p-value is NaN and
472
+ # the odds ratio is NaN.
473
+ result = OddsRatioResult(_table=c, _kind=kind, statistic=np.nan)
474
+ return result
475
+
476
+ if kind == 'sample':
477
+ oddsratio = _sample_odds_ratio(c)
478
+ else: # kind is 'conditional'
479
+ oddsratio = _conditional_oddsratio(c)
480
+
481
+ result = OddsRatioResult(_table=c, _kind=kind, statistic=oddsratio)
482
+ return result