Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/__pycache__/__init__.cpython-310.pyc +0 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/__pycache__/basic.cpython-310.pyc +0 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/__pycache__/centrality.cpython-310.pyc +0 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/__pycache__/cluster.cpython-310.pyc +0 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/__pycache__/covering.cpython-310.pyc +0 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/__pycache__/edgelist.cpython-310.pyc +0 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/__pycache__/extendability.cpython-310.pyc +0 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/__pycache__/matching.cpython-310.pyc +0 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/__pycache__/matrix.cpython-310.pyc +0 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/__pycache__/projection.cpython-310.pyc +0 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/__pycache__/redundancy.cpython-310.pyc +0 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/__pycache__/spectral.cpython-310.pyc +0 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/tests/__pycache__/test_centrality.cpython-310.pyc +0 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/tests/__pycache__/test_cluster.cpython-310.pyc +0 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/tests/__pycache__/test_extendability.cpython-310.pyc +0 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/tests/__pycache__/test_generators.cpython-310.pyc +0 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/tests/__pycache__/test_matching.cpython-310.pyc +0 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/tests/__pycache__/test_redundancy.cpython-310.pyc +0 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/tests/__pycache__/test_spectral_bipartivity.cpython-310.pyc +0 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/tests/test_redundancy.py +37 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/__init__.py +20 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/betweenness.py +435 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/betweenness_subset.py +274 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/closeness.py +281 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/current_flow_betweenness.py +341 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/current_flow_betweenness_subset.py +226 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/current_flow_closeness.py +95 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/degree_alg.py +149 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/dispersion.py +107 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/eigenvector.py +341 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/flow_matrix.py +130 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/group.py +786 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/harmonic.py +80 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/katz.py +330 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/laplacian.py +149 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/load.py +199 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/percolation.py +128 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/reaching.py +206 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/second_order.py +141 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/subgraph_alg.py +339 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/tests/__init__.py +0 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/tests/__pycache__/test_percolation_centrality.cpython-310.pyc +0 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/tests/test_betweenness_centrality.py +780 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/tests/test_betweenness_centrality_subset.py +340 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/tests/test_closeness_centrality.py +306 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/tests/test_current_flow_betweenness_centrality.py +197 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/tests/test_current_flow_betweenness_centrality_subset.py +147 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/tests/test_current_flow_closeness.py +43 -0
- parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/tests/test_degree_centrality.py +144 -0
parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (3.99 kB). View file
|
|
|
parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/__pycache__/basic.cpython-310.pyc
ADDED
|
Binary file (8.47 kB). View file
|
|
|
parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/__pycache__/centrality.cpython-310.pyc
ADDED
|
Binary file (9.13 kB). View file
|
|
|
parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/__pycache__/cluster.cpython-310.pyc
ADDED
|
Binary file (7.49 kB). View file
|
|
|
parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/__pycache__/covering.cpython-310.pyc
ADDED
|
Binary file (2.26 kB). View file
|
|
|
parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/__pycache__/edgelist.cpython-310.pyc
ADDED
|
Binary file (10.8 kB). View file
|
|
|
parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/__pycache__/extendability.cpython-310.pyc
ADDED
|
Binary file (4.05 kB). View file
|
|
|
parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/__pycache__/matching.cpython-310.pyc
ADDED
|
Binary file (16.2 kB). View file
|
|
|
parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/__pycache__/matrix.cpython-310.pyc
ADDED
|
Binary file (6.03 kB). View file
|
|
|
parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/__pycache__/projection.cpython-310.pyc
ADDED
|
Binary file (17.9 kB). View file
|
|
|
parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/__pycache__/redundancy.cpython-310.pyc
ADDED
|
Binary file (4.03 kB). View file
|
|
|
parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/__pycache__/spectral.cpython-310.pyc
ADDED
|
Binary file (1.92 kB). View file
|
|
|
parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/tests/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (187 Bytes). View file
|
|
|
parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/tests/__pycache__/test_centrality.cpython-310.pyc
ADDED
|
Binary file (5.32 kB). View file
|
|
|
parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/tests/__pycache__/test_cluster.cpython-310.pyc
ADDED
|
Binary file (3.34 kB). View file
|
|
|
parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/tests/__pycache__/test_extendability.cpython-310.pyc
ADDED
|
Binary file (5.23 kB). View file
|
|
|
parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/tests/__pycache__/test_generators.cpython-310.pyc
ADDED
|
Binary file (9.38 kB). View file
|
|
|
parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/tests/__pycache__/test_matching.cpython-310.pyc
ADDED
|
Binary file (12.4 kB). View file
|
|
|
parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/tests/__pycache__/test_redundancy.cpython-310.pyc
ADDED
|
Binary file (1.41 kB). View file
|
|
|
parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/tests/__pycache__/test_spectral_bipartivity.cpython-310.pyc
ADDED
|
Binary file (2.19 kB). View file
|
|
|
parrot/lib/python3.10/site-packages/networkx/algorithms/bipartite/tests/test_redundancy.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Unit tests for the :mod:`networkx.algorithms.bipartite.redundancy` module.
|
| 2 |
+
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import pytest
|
| 6 |
+
|
| 7 |
+
from networkx import NetworkXError, cycle_graph
|
| 8 |
+
from networkx.algorithms.bipartite import complete_bipartite_graph, node_redundancy
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def test_no_redundant_nodes():
|
| 12 |
+
G = complete_bipartite_graph(2, 2)
|
| 13 |
+
|
| 14 |
+
# when nodes is None
|
| 15 |
+
rc = node_redundancy(G)
|
| 16 |
+
assert all(redundancy == 1 for redundancy in rc.values())
|
| 17 |
+
|
| 18 |
+
# when set of nodes is specified
|
| 19 |
+
rc = node_redundancy(G, (2, 3))
|
| 20 |
+
assert rc == {2: 1.0, 3: 1.0}
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def test_redundant_nodes():
|
| 24 |
+
G = cycle_graph(6)
|
| 25 |
+
edge = {0, 3}
|
| 26 |
+
G.add_edge(*edge)
|
| 27 |
+
redundancy = node_redundancy(G)
|
| 28 |
+
for v in edge:
|
| 29 |
+
assert redundancy[v] == 2 / 3
|
| 30 |
+
for v in set(G) - edge:
|
| 31 |
+
assert redundancy[v] == 1
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def test_not_enough_neighbors():
|
| 35 |
+
with pytest.raises(NetworkXError):
|
| 36 |
+
G = complete_bipartite_graph(1, 2)
|
| 37 |
+
node_redundancy(G)
|
parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/__init__.py
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .betweenness import *
|
| 2 |
+
from .betweenness_subset import *
|
| 3 |
+
from .closeness import *
|
| 4 |
+
from .current_flow_betweenness import *
|
| 5 |
+
from .current_flow_betweenness_subset import *
|
| 6 |
+
from .current_flow_closeness import *
|
| 7 |
+
from .degree_alg import *
|
| 8 |
+
from .dispersion import *
|
| 9 |
+
from .eigenvector import *
|
| 10 |
+
from .group import *
|
| 11 |
+
from .harmonic import *
|
| 12 |
+
from .katz import *
|
| 13 |
+
from .load import *
|
| 14 |
+
from .percolation import *
|
| 15 |
+
from .reaching import *
|
| 16 |
+
from .second_order import *
|
| 17 |
+
from .subgraph_alg import *
|
| 18 |
+
from .trophic import *
|
| 19 |
+
from .voterank_alg import *
|
| 20 |
+
from .laplacian import *
|
parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/betweenness.py
ADDED
|
@@ -0,0 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Betweenness centrality measures."""
|
| 2 |
+
from collections import deque
|
| 3 |
+
from heapq import heappop, heappush
|
| 4 |
+
from itertools import count
|
| 5 |
+
|
| 6 |
+
import networkx as nx
|
| 7 |
+
from networkx.algorithms.shortest_paths.weighted import _weight_function
|
| 8 |
+
from networkx.utils import py_random_state
|
| 9 |
+
from networkx.utils.decorators import not_implemented_for
|
| 10 |
+
|
| 11 |
+
__all__ = ["betweenness_centrality", "edge_betweenness_centrality"]
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
@py_random_state(5)
|
| 15 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 16 |
+
def betweenness_centrality(
|
| 17 |
+
G, k=None, normalized=True, weight=None, endpoints=False, seed=None
|
| 18 |
+
):
|
| 19 |
+
r"""Compute the shortest-path betweenness centrality for nodes.
|
| 20 |
+
|
| 21 |
+
Betweenness centrality of a node $v$ is the sum of the
|
| 22 |
+
fraction of all-pairs shortest paths that pass through $v$
|
| 23 |
+
|
| 24 |
+
.. math::
|
| 25 |
+
|
| 26 |
+
c_B(v) =\sum_{s,t \in V} \frac{\sigma(s, t|v)}{\sigma(s, t)}
|
| 27 |
+
|
| 28 |
+
where $V$ is the set of nodes, $\sigma(s, t)$ is the number of
|
| 29 |
+
shortest $(s, t)$-paths, and $\sigma(s, t|v)$ is the number of
|
| 30 |
+
those paths passing through some node $v$ other than $s, t$.
|
| 31 |
+
If $s = t$, $\sigma(s, t) = 1$, and if $v \in {s, t}$,
|
| 32 |
+
$\sigma(s, t|v) = 0$ [2]_.
|
| 33 |
+
|
| 34 |
+
Parameters
|
| 35 |
+
----------
|
| 36 |
+
G : graph
|
| 37 |
+
A NetworkX graph.
|
| 38 |
+
|
| 39 |
+
k : int, optional (default=None)
|
| 40 |
+
If k is not None use k node samples to estimate betweenness.
|
| 41 |
+
The value of k <= n where n is the number of nodes in the graph.
|
| 42 |
+
Higher values give better approximation.
|
| 43 |
+
|
| 44 |
+
normalized : bool, optional
|
| 45 |
+
If True the betweenness values are normalized by `2/((n-1)(n-2))`
|
| 46 |
+
for graphs, and `1/((n-1)(n-2))` for directed graphs where `n`
|
| 47 |
+
is the number of nodes in G.
|
| 48 |
+
|
| 49 |
+
weight : None or string, optional (default=None)
|
| 50 |
+
If None, all edge weights are considered equal.
|
| 51 |
+
Otherwise holds the name of the edge attribute used as weight.
|
| 52 |
+
Weights are used to calculate weighted shortest paths, so they are
|
| 53 |
+
interpreted as distances.
|
| 54 |
+
|
| 55 |
+
endpoints : bool, optional
|
| 56 |
+
If True include the endpoints in the shortest path counts.
|
| 57 |
+
|
| 58 |
+
seed : integer, random_state, or None (default)
|
| 59 |
+
Indicator of random number generation state.
|
| 60 |
+
See :ref:`Randomness<randomness>`.
|
| 61 |
+
Note that this is only used if k is not None.
|
| 62 |
+
|
| 63 |
+
Returns
|
| 64 |
+
-------
|
| 65 |
+
nodes : dictionary
|
| 66 |
+
Dictionary of nodes with betweenness centrality as the value.
|
| 67 |
+
|
| 68 |
+
See Also
|
| 69 |
+
--------
|
| 70 |
+
edge_betweenness_centrality
|
| 71 |
+
load_centrality
|
| 72 |
+
|
| 73 |
+
Notes
|
| 74 |
+
-----
|
| 75 |
+
The algorithm is from Ulrik Brandes [1]_.
|
| 76 |
+
See [4]_ for the original first published version and [2]_ for details on
|
| 77 |
+
algorithms for variations and related metrics.
|
| 78 |
+
|
| 79 |
+
For approximate betweenness calculations set k=#samples to use
|
| 80 |
+
k nodes ("pivots") to estimate the betweenness values. For an estimate
|
| 81 |
+
of the number of pivots needed see [3]_.
|
| 82 |
+
|
| 83 |
+
For weighted graphs the edge weights must be greater than zero.
|
| 84 |
+
Zero edge weights can produce an infinite number of equal length
|
| 85 |
+
paths between pairs of nodes.
|
| 86 |
+
|
| 87 |
+
The total number of paths between source and target is counted
|
| 88 |
+
differently for directed and undirected graphs. Directed paths
|
| 89 |
+
are easy to count. Undirected paths are tricky: should a path
|
| 90 |
+
from "u" to "v" count as 1 undirected path or as 2 directed paths?
|
| 91 |
+
|
| 92 |
+
For betweenness_centrality we report the number of undirected
|
| 93 |
+
paths when G is undirected.
|
| 94 |
+
|
| 95 |
+
For betweenness_centrality_subset the reporting is different.
|
| 96 |
+
If the source and target subsets are the same, then we want
|
| 97 |
+
to count undirected paths. But if the source and target subsets
|
| 98 |
+
differ -- for example, if sources is {0} and targets is {1},
|
| 99 |
+
then we are only counting the paths in one direction. They are
|
| 100 |
+
undirected paths but we are counting them in a directed way.
|
| 101 |
+
To count them as undirected paths, each should count as half a path.
|
| 102 |
+
|
| 103 |
+
This algorithm is not guaranteed to be correct if edge weights
|
| 104 |
+
are floating point numbers. As a workaround you can use integer
|
| 105 |
+
numbers by multiplying the relevant edge attributes by a convenient
|
| 106 |
+
constant factor (eg 100) and converting to integers.
|
| 107 |
+
|
| 108 |
+
References
|
| 109 |
+
----------
|
| 110 |
+
.. [1] Ulrik Brandes:
|
| 111 |
+
A Faster Algorithm for Betweenness Centrality.
|
| 112 |
+
Journal of Mathematical Sociology 25(2):163-177, 2001.
|
| 113 |
+
https://doi.org/10.1080/0022250X.2001.9990249
|
| 114 |
+
.. [2] Ulrik Brandes:
|
| 115 |
+
On Variants of Shortest-Path Betweenness
|
| 116 |
+
Centrality and their Generic Computation.
|
| 117 |
+
Social Networks 30(2):136-145, 2008.
|
| 118 |
+
https://doi.org/10.1016/j.socnet.2007.11.001
|
| 119 |
+
.. [3] Ulrik Brandes and Christian Pich:
|
| 120 |
+
Centrality Estimation in Large Networks.
|
| 121 |
+
International Journal of Bifurcation and Chaos 17(7):2303-2318, 2007.
|
| 122 |
+
https://dx.doi.org/10.1142/S0218127407018403
|
| 123 |
+
.. [4] Linton C. Freeman:
|
| 124 |
+
A set of measures of centrality based on betweenness.
|
| 125 |
+
Sociometry 40: 35–41, 1977
|
| 126 |
+
https://doi.org/10.2307/3033543
|
| 127 |
+
"""
|
| 128 |
+
betweenness = dict.fromkeys(G, 0.0) # b[v]=0 for v in G
|
| 129 |
+
if k is None:
|
| 130 |
+
nodes = G
|
| 131 |
+
else:
|
| 132 |
+
nodes = seed.sample(list(G.nodes()), k)
|
| 133 |
+
for s in nodes:
|
| 134 |
+
# single source shortest paths
|
| 135 |
+
if weight is None: # use BFS
|
| 136 |
+
S, P, sigma, _ = _single_source_shortest_path_basic(G, s)
|
| 137 |
+
else: # use Dijkstra's algorithm
|
| 138 |
+
S, P, sigma, _ = _single_source_dijkstra_path_basic(G, s, weight)
|
| 139 |
+
# accumulation
|
| 140 |
+
if endpoints:
|
| 141 |
+
betweenness, _ = _accumulate_endpoints(betweenness, S, P, sigma, s)
|
| 142 |
+
else:
|
| 143 |
+
betweenness, _ = _accumulate_basic(betweenness, S, P, sigma, s)
|
| 144 |
+
# rescaling
|
| 145 |
+
betweenness = _rescale(
|
| 146 |
+
betweenness,
|
| 147 |
+
len(G),
|
| 148 |
+
normalized=normalized,
|
| 149 |
+
directed=G.is_directed(),
|
| 150 |
+
k=k,
|
| 151 |
+
endpoints=endpoints,
|
| 152 |
+
)
|
| 153 |
+
return betweenness
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
@py_random_state(4)
|
| 157 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 158 |
+
def edge_betweenness_centrality(G, k=None, normalized=True, weight=None, seed=None):
|
| 159 |
+
r"""Compute betweenness centrality for edges.
|
| 160 |
+
|
| 161 |
+
Betweenness centrality of an edge $e$ is the sum of the
|
| 162 |
+
fraction of all-pairs shortest paths that pass through $e$
|
| 163 |
+
|
| 164 |
+
.. math::
|
| 165 |
+
|
| 166 |
+
c_B(e) =\sum_{s,t \in V} \frac{\sigma(s, t|e)}{\sigma(s, t)}
|
| 167 |
+
|
| 168 |
+
where $V$ is the set of nodes, $\sigma(s, t)$ is the number of
|
| 169 |
+
shortest $(s, t)$-paths, and $\sigma(s, t|e)$ is the number of
|
| 170 |
+
those paths passing through edge $e$ [2]_.
|
| 171 |
+
|
| 172 |
+
Parameters
|
| 173 |
+
----------
|
| 174 |
+
G : graph
|
| 175 |
+
A NetworkX graph.
|
| 176 |
+
|
| 177 |
+
k : int, optional (default=None)
|
| 178 |
+
If k is not None use k node samples to estimate betweenness.
|
| 179 |
+
The value of k <= n where n is the number of nodes in the graph.
|
| 180 |
+
Higher values give better approximation.
|
| 181 |
+
|
| 182 |
+
normalized : bool, optional
|
| 183 |
+
If True the betweenness values are normalized by $2/(n(n-1))$
|
| 184 |
+
for graphs, and $1/(n(n-1))$ for directed graphs where $n$
|
| 185 |
+
is the number of nodes in G.
|
| 186 |
+
|
| 187 |
+
weight : None or string, optional (default=None)
|
| 188 |
+
If None, all edge weights are considered equal.
|
| 189 |
+
Otherwise holds the name of the edge attribute used as weight.
|
| 190 |
+
Weights are used to calculate weighted shortest paths, so they are
|
| 191 |
+
interpreted as distances.
|
| 192 |
+
|
| 193 |
+
seed : integer, random_state, or None (default)
|
| 194 |
+
Indicator of random number generation state.
|
| 195 |
+
See :ref:`Randomness<randomness>`.
|
| 196 |
+
Note that this is only used if k is not None.
|
| 197 |
+
|
| 198 |
+
Returns
|
| 199 |
+
-------
|
| 200 |
+
edges : dictionary
|
| 201 |
+
Dictionary of edges with betweenness centrality as the value.
|
| 202 |
+
|
| 203 |
+
See Also
|
| 204 |
+
--------
|
| 205 |
+
betweenness_centrality
|
| 206 |
+
edge_load
|
| 207 |
+
|
| 208 |
+
Notes
|
| 209 |
+
-----
|
| 210 |
+
The algorithm is from Ulrik Brandes [1]_.
|
| 211 |
+
|
| 212 |
+
For weighted graphs the edge weights must be greater than zero.
|
| 213 |
+
Zero edge weights can produce an infinite number of equal length
|
| 214 |
+
paths between pairs of nodes.
|
| 215 |
+
|
| 216 |
+
References
|
| 217 |
+
----------
|
| 218 |
+
.. [1] A Faster Algorithm for Betweenness Centrality. Ulrik Brandes,
|
| 219 |
+
Journal of Mathematical Sociology 25(2):163-177, 2001.
|
| 220 |
+
https://doi.org/10.1080/0022250X.2001.9990249
|
| 221 |
+
.. [2] Ulrik Brandes: On Variants of Shortest-Path Betweenness
|
| 222 |
+
Centrality and their Generic Computation.
|
| 223 |
+
Social Networks 30(2):136-145, 2008.
|
| 224 |
+
https://doi.org/10.1016/j.socnet.2007.11.001
|
| 225 |
+
"""
|
| 226 |
+
betweenness = dict.fromkeys(G, 0.0) # b[v]=0 for v in G
|
| 227 |
+
# b[e]=0 for e in G.edges()
|
| 228 |
+
betweenness.update(dict.fromkeys(G.edges(), 0.0))
|
| 229 |
+
if k is None:
|
| 230 |
+
nodes = G
|
| 231 |
+
else:
|
| 232 |
+
nodes = seed.sample(list(G.nodes()), k)
|
| 233 |
+
for s in nodes:
|
| 234 |
+
# single source shortest paths
|
| 235 |
+
if weight is None: # use BFS
|
| 236 |
+
S, P, sigma, _ = _single_source_shortest_path_basic(G, s)
|
| 237 |
+
else: # use Dijkstra's algorithm
|
| 238 |
+
S, P, sigma, _ = _single_source_dijkstra_path_basic(G, s, weight)
|
| 239 |
+
# accumulation
|
| 240 |
+
betweenness = _accumulate_edges(betweenness, S, P, sigma, s)
|
| 241 |
+
# rescaling
|
| 242 |
+
for n in G: # remove nodes to only return edges
|
| 243 |
+
del betweenness[n]
|
| 244 |
+
betweenness = _rescale_e(
|
| 245 |
+
betweenness, len(G), normalized=normalized, directed=G.is_directed()
|
| 246 |
+
)
|
| 247 |
+
if G.is_multigraph():
|
| 248 |
+
betweenness = _add_edge_keys(G, betweenness, weight=weight)
|
| 249 |
+
return betweenness
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
# helpers for betweenness centrality
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
def _single_source_shortest_path_basic(G, s):
|
| 256 |
+
S = []
|
| 257 |
+
P = {}
|
| 258 |
+
for v in G:
|
| 259 |
+
P[v] = []
|
| 260 |
+
sigma = dict.fromkeys(G, 0.0) # sigma[v]=0 for v in G
|
| 261 |
+
D = {}
|
| 262 |
+
sigma[s] = 1.0
|
| 263 |
+
D[s] = 0
|
| 264 |
+
Q = deque([s])
|
| 265 |
+
while Q: # use BFS to find shortest paths
|
| 266 |
+
v = Q.popleft()
|
| 267 |
+
S.append(v)
|
| 268 |
+
Dv = D[v]
|
| 269 |
+
sigmav = sigma[v]
|
| 270 |
+
for w in G[v]:
|
| 271 |
+
if w not in D:
|
| 272 |
+
Q.append(w)
|
| 273 |
+
D[w] = Dv + 1
|
| 274 |
+
if D[w] == Dv + 1: # this is a shortest path, count paths
|
| 275 |
+
sigma[w] += sigmav
|
| 276 |
+
P[w].append(v) # predecessors
|
| 277 |
+
return S, P, sigma, D
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
def _single_source_dijkstra_path_basic(G, s, weight):
|
| 281 |
+
weight = _weight_function(G, weight)
|
| 282 |
+
# modified from Eppstein
|
| 283 |
+
S = []
|
| 284 |
+
P = {}
|
| 285 |
+
for v in G:
|
| 286 |
+
P[v] = []
|
| 287 |
+
sigma = dict.fromkeys(G, 0.0) # sigma[v]=0 for v in G
|
| 288 |
+
D = {}
|
| 289 |
+
sigma[s] = 1.0
|
| 290 |
+
push = heappush
|
| 291 |
+
pop = heappop
|
| 292 |
+
seen = {s: 0}
|
| 293 |
+
c = count()
|
| 294 |
+
Q = [] # use Q as heap with (distance,node id) tuples
|
| 295 |
+
push(Q, (0, next(c), s, s))
|
| 296 |
+
while Q:
|
| 297 |
+
(dist, _, pred, v) = pop(Q)
|
| 298 |
+
if v in D:
|
| 299 |
+
continue # already searched this node.
|
| 300 |
+
sigma[v] += sigma[pred] # count paths
|
| 301 |
+
S.append(v)
|
| 302 |
+
D[v] = dist
|
| 303 |
+
for w, edgedata in G[v].items():
|
| 304 |
+
vw_dist = dist + weight(v, w, edgedata)
|
| 305 |
+
if w not in D and (w not in seen or vw_dist < seen[w]):
|
| 306 |
+
seen[w] = vw_dist
|
| 307 |
+
push(Q, (vw_dist, next(c), v, w))
|
| 308 |
+
sigma[w] = 0.0
|
| 309 |
+
P[w] = [v]
|
| 310 |
+
elif vw_dist == seen[w]: # handle equal paths
|
| 311 |
+
sigma[w] += sigma[v]
|
| 312 |
+
P[w].append(v)
|
| 313 |
+
return S, P, sigma, D
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
def _accumulate_basic(betweenness, S, P, sigma, s):
|
| 317 |
+
delta = dict.fromkeys(S, 0)
|
| 318 |
+
while S:
|
| 319 |
+
w = S.pop()
|
| 320 |
+
coeff = (1 + delta[w]) / sigma[w]
|
| 321 |
+
for v in P[w]:
|
| 322 |
+
delta[v] += sigma[v] * coeff
|
| 323 |
+
if w != s:
|
| 324 |
+
betweenness[w] += delta[w]
|
| 325 |
+
return betweenness, delta
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
def _accumulate_endpoints(betweenness, S, P, sigma, s):
|
| 329 |
+
betweenness[s] += len(S) - 1
|
| 330 |
+
delta = dict.fromkeys(S, 0)
|
| 331 |
+
while S:
|
| 332 |
+
w = S.pop()
|
| 333 |
+
coeff = (1 + delta[w]) / sigma[w]
|
| 334 |
+
for v in P[w]:
|
| 335 |
+
delta[v] += sigma[v] * coeff
|
| 336 |
+
if w != s:
|
| 337 |
+
betweenness[w] += delta[w] + 1
|
| 338 |
+
return betweenness, delta
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
def _accumulate_edges(betweenness, S, P, sigma, s):
|
| 342 |
+
delta = dict.fromkeys(S, 0)
|
| 343 |
+
while S:
|
| 344 |
+
w = S.pop()
|
| 345 |
+
coeff = (1 + delta[w]) / sigma[w]
|
| 346 |
+
for v in P[w]:
|
| 347 |
+
c = sigma[v] * coeff
|
| 348 |
+
if (v, w) not in betweenness:
|
| 349 |
+
betweenness[(w, v)] += c
|
| 350 |
+
else:
|
| 351 |
+
betweenness[(v, w)] += c
|
| 352 |
+
delta[v] += c
|
| 353 |
+
if w != s:
|
| 354 |
+
betweenness[w] += delta[w]
|
| 355 |
+
return betweenness
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
def _rescale(betweenness, n, normalized, directed=False, k=None, endpoints=False):
|
| 359 |
+
if normalized:
|
| 360 |
+
if endpoints:
|
| 361 |
+
if n < 2:
|
| 362 |
+
scale = None # no normalization
|
| 363 |
+
else:
|
| 364 |
+
# Scale factor should include endpoint nodes
|
| 365 |
+
scale = 1 / (n * (n - 1))
|
| 366 |
+
elif n <= 2:
|
| 367 |
+
scale = None # no normalization b=0 for all nodes
|
| 368 |
+
else:
|
| 369 |
+
scale = 1 / ((n - 1) * (n - 2))
|
| 370 |
+
else: # rescale by 2 for undirected graphs
|
| 371 |
+
if not directed:
|
| 372 |
+
scale = 0.5
|
| 373 |
+
else:
|
| 374 |
+
scale = None
|
| 375 |
+
if scale is not None:
|
| 376 |
+
if k is not None:
|
| 377 |
+
scale = scale * n / k
|
| 378 |
+
for v in betweenness:
|
| 379 |
+
betweenness[v] *= scale
|
| 380 |
+
return betweenness
|
| 381 |
+
|
| 382 |
+
|
| 383 |
+
def _rescale_e(betweenness, n, normalized, directed=False, k=None):
|
| 384 |
+
if normalized:
|
| 385 |
+
if n <= 1:
|
| 386 |
+
scale = None # no normalization b=0 for all nodes
|
| 387 |
+
else:
|
| 388 |
+
scale = 1 / (n * (n - 1))
|
| 389 |
+
else: # rescale by 2 for undirected graphs
|
| 390 |
+
if not directed:
|
| 391 |
+
scale = 0.5
|
| 392 |
+
else:
|
| 393 |
+
scale = None
|
| 394 |
+
if scale is not None:
|
| 395 |
+
if k is not None:
|
| 396 |
+
scale = scale * n / k
|
| 397 |
+
for v in betweenness:
|
| 398 |
+
betweenness[v] *= scale
|
| 399 |
+
return betweenness
|
| 400 |
+
|
| 401 |
+
|
| 402 |
+
@not_implemented_for("graph")
|
| 403 |
+
def _add_edge_keys(G, betweenness, weight=None):
|
| 404 |
+
r"""Adds the corrected betweenness centrality (BC) values for multigraphs.
|
| 405 |
+
|
| 406 |
+
Parameters
|
| 407 |
+
----------
|
| 408 |
+
G : NetworkX graph.
|
| 409 |
+
|
| 410 |
+
betweenness : dictionary
|
| 411 |
+
Dictionary mapping adjacent node tuples to betweenness centrality values.
|
| 412 |
+
|
| 413 |
+
weight : string or function
|
| 414 |
+
See `_weight_function` for details. Defaults to `None`.
|
| 415 |
+
|
| 416 |
+
Returns
|
| 417 |
+
-------
|
| 418 |
+
edges : dictionary
|
| 419 |
+
The parameter `betweenness` including edges with keys and their
|
| 420 |
+
betweenness centrality values.
|
| 421 |
+
|
| 422 |
+
The BC value is divided among edges of equal weight.
|
| 423 |
+
"""
|
| 424 |
+
_weight = _weight_function(G, weight)
|
| 425 |
+
|
| 426 |
+
edge_bc = dict.fromkeys(G.edges, 0.0)
|
| 427 |
+
for u, v in betweenness:
|
| 428 |
+
d = G[u][v]
|
| 429 |
+
wt = _weight(u, v, d)
|
| 430 |
+
keys = [k for k in d if _weight(u, v, {k: d[k]}) == wt]
|
| 431 |
+
bc = betweenness[(u, v)] / len(keys)
|
| 432 |
+
for k in keys:
|
| 433 |
+
edge_bc[(u, v, k)] = bc
|
| 434 |
+
|
| 435 |
+
return edge_bc
|
parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/betweenness_subset.py
ADDED
|
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Betweenness centrality measures for subsets of nodes."""
|
| 2 |
+
import networkx as nx
|
| 3 |
+
from networkx.algorithms.centrality.betweenness import (
|
| 4 |
+
_add_edge_keys,
|
| 5 |
+
)
|
| 6 |
+
from networkx.algorithms.centrality.betweenness import (
|
| 7 |
+
_single_source_dijkstra_path_basic as dijkstra,
|
| 8 |
+
)
|
| 9 |
+
from networkx.algorithms.centrality.betweenness import (
|
| 10 |
+
_single_source_shortest_path_basic as shortest_path,
|
| 11 |
+
)
|
| 12 |
+
|
| 13 |
+
__all__ = [
|
| 14 |
+
"betweenness_centrality_subset",
|
| 15 |
+
"edge_betweenness_centrality_subset",
|
| 16 |
+
]
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 20 |
+
def betweenness_centrality_subset(G, sources, targets, normalized=False, weight=None):
|
| 21 |
+
r"""Compute betweenness centrality for a subset of nodes.
|
| 22 |
+
|
| 23 |
+
.. math::
|
| 24 |
+
|
| 25 |
+
c_B(v) =\sum_{s\in S, t \in T} \frac{\sigma(s, t|v)}{\sigma(s, t)}
|
| 26 |
+
|
| 27 |
+
where $S$ is the set of sources, $T$ is the set of targets,
|
| 28 |
+
$\sigma(s, t)$ is the number of shortest $(s, t)$-paths,
|
| 29 |
+
and $\sigma(s, t|v)$ is the number of those paths
|
| 30 |
+
passing through some node $v$ other than $s, t$.
|
| 31 |
+
If $s = t$, $\sigma(s, t) = 1$,
|
| 32 |
+
and if $v \in {s, t}$, $\sigma(s, t|v) = 0$ [2]_.
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
Parameters
|
| 36 |
+
----------
|
| 37 |
+
G : graph
|
| 38 |
+
A NetworkX graph.
|
| 39 |
+
|
| 40 |
+
sources: list of nodes
|
| 41 |
+
Nodes to use as sources for shortest paths in betweenness
|
| 42 |
+
|
| 43 |
+
targets: list of nodes
|
| 44 |
+
Nodes to use as targets for shortest paths in betweenness
|
| 45 |
+
|
| 46 |
+
normalized : bool, optional
|
| 47 |
+
If True the betweenness values are normalized by $2/((n-1)(n-2))$
|
| 48 |
+
for graphs, and $1/((n-1)(n-2))$ for directed graphs where $n$
|
| 49 |
+
is the number of nodes in G.
|
| 50 |
+
|
| 51 |
+
weight : None or string, optional (default=None)
|
| 52 |
+
If None, all edge weights are considered equal.
|
| 53 |
+
Otherwise holds the name of the edge attribute used as weight.
|
| 54 |
+
Weights are used to calculate weighted shortest paths, so they are
|
| 55 |
+
interpreted as distances.
|
| 56 |
+
|
| 57 |
+
Returns
|
| 58 |
+
-------
|
| 59 |
+
nodes : dictionary
|
| 60 |
+
Dictionary of nodes with betweenness centrality as the value.
|
| 61 |
+
|
| 62 |
+
See Also
|
| 63 |
+
--------
|
| 64 |
+
edge_betweenness_centrality
|
| 65 |
+
load_centrality
|
| 66 |
+
|
| 67 |
+
Notes
|
| 68 |
+
-----
|
| 69 |
+
The basic algorithm is from [1]_.
|
| 70 |
+
|
| 71 |
+
For weighted graphs the edge weights must be greater than zero.
|
| 72 |
+
Zero edge weights can produce an infinite number of equal length
|
| 73 |
+
paths between pairs of nodes.
|
| 74 |
+
|
| 75 |
+
The normalization might seem a little strange but it is
|
| 76 |
+
designed to make betweenness_centrality(G) be the same as
|
| 77 |
+
betweenness_centrality_subset(G,sources=G.nodes(),targets=G.nodes()).
|
| 78 |
+
|
| 79 |
+
The total number of paths between source and target is counted
|
| 80 |
+
differently for directed and undirected graphs. Directed paths
|
| 81 |
+
are easy to count. Undirected paths are tricky: should a path
|
| 82 |
+
from "u" to "v" count as 1 undirected path or as 2 directed paths?
|
| 83 |
+
|
| 84 |
+
For betweenness_centrality we report the number of undirected
|
| 85 |
+
paths when G is undirected.
|
| 86 |
+
|
| 87 |
+
For betweenness_centrality_subset the reporting is different.
|
| 88 |
+
If the source and target subsets are the same, then we want
|
| 89 |
+
to count undirected paths. But if the source and target subsets
|
| 90 |
+
differ -- for example, if sources is {0} and targets is {1},
|
| 91 |
+
then we are only counting the paths in one direction. They are
|
| 92 |
+
undirected paths but we are counting them in a directed way.
|
| 93 |
+
To count them as undirected paths, each should count as half a path.
|
| 94 |
+
|
| 95 |
+
References
|
| 96 |
+
----------
|
| 97 |
+
.. [1] Ulrik Brandes, A Faster Algorithm for Betweenness Centrality.
|
| 98 |
+
Journal of Mathematical Sociology 25(2):163-177, 2001.
|
| 99 |
+
https://doi.org/10.1080/0022250X.2001.9990249
|
| 100 |
+
.. [2] Ulrik Brandes: On Variants of Shortest-Path Betweenness
|
| 101 |
+
Centrality and their Generic Computation.
|
| 102 |
+
Social Networks 30(2):136-145, 2008.
|
| 103 |
+
https://doi.org/10.1016/j.socnet.2007.11.001
|
| 104 |
+
"""
|
| 105 |
+
b = dict.fromkeys(G, 0.0) # b[v]=0 for v in G
|
| 106 |
+
for s in sources:
|
| 107 |
+
# single source shortest paths
|
| 108 |
+
if weight is None: # use BFS
|
| 109 |
+
S, P, sigma, _ = shortest_path(G, s)
|
| 110 |
+
else: # use Dijkstra's algorithm
|
| 111 |
+
S, P, sigma, _ = dijkstra(G, s, weight)
|
| 112 |
+
b = _accumulate_subset(b, S, P, sigma, s, targets)
|
| 113 |
+
b = _rescale(b, len(G), normalized=normalized, directed=G.is_directed())
|
| 114 |
+
return b
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 118 |
+
def edge_betweenness_centrality_subset(
|
| 119 |
+
G, sources, targets, normalized=False, weight=None
|
| 120 |
+
):
|
| 121 |
+
r"""Compute betweenness centrality for edges for a subset of nodes.
|
| 122 |
+
|
| 123 |
+
.. math::
|
| 124 |
+
|
| 125 |
+
c_B(v) =\sum_{s\in S,t \in T} \frac{\sigma(s, t|e)}{\sigma(s, t)}
|
| 126 |
+
|
| 127 |
+
where $S$ is the set of sources, $T$ is the set of targets,
|
| 128 |
+
$\sigma(s, t)$ is the number of shortest $(s, t)$-paths,
|
| 129 |
+
and $\sigma(s, t|e)$ is the number of those paths
|
| 130 |
+
passing through edge $e$ [2]_.
|
| 131 |
+
|
| 132 |
+
Parameters
|
| 133 |
+
----------
|
| 134 |
+
G : graph
|
| 135 |
+
A networkx graph.
|
| 136 |
+
|
| 137 |
+
sources: list of nodes
|
| 138 |
+
Nodes to use as sources for shortest paths in betweenness
|
| 139 |
+
|
| 140 |
+
targets: list of nodes
|
| 141 |
+
Nodes to use as targets for shortest paths in betweenness
|
| 142 |
+
|
| 143 |
+
normalized : bool, optional
|
| 144 |
+
If True the betweenness values are normalized by `2/(n(n-1))`
|
| 145 |
+
for graphs, and `1/(n(n-1))` for directed graphs where `n`
|
| 146 |
+
is the number of nodes in G.
|
| 147 |
+
|
| 148 |
+
weight : None or string, optional (default=None)
|
| 149 |
+
If None, all edge weights are considered equal.
|
| 150 |
+
Otherwise holds the name of the edge attribute used as weight.
|
| 151 |
+
Weights are used to calculate weighted shortest paths, so they are
|
| 152 |
+
interpreted as distances.
|
| 153 |
+
|
| 154 |
+
Returns
|
| 155 |
+
-------
|
| 156 |
+
edges : dictionary
|
| 157 |
+
Dictionary of edges with Betweenness centrality as the value.
|
| 158 |
+
|
| 159 |
+
See Also
|
| 160 |
+
--------
|
| 161 |
+
betweenness_centrality
|
| 162 |
+
edge_load
|
| 163 |
+
|
| 164 |
+
Notes
|
| 165 |
+
-----
|
| 166 |
+
The basic algorithm is from [1]_.
|
| 167 |
+
|
| 168 |
+
For weighted graphs the edge weights must be greater than zero.
|
| 169 |
+
Zero edge weights can produce an infinite number of equal length
|
| 170 |
+
paths between pairs of nodes.
|
| 171 |
+
|
| 172 |
+
The normalization might seem a little strange but it is the same
|
| 173 |
+
as in edge_betweenness_centrality() and is designed to make
|
| 174 |
+
edge_betweenness_centrality(G) be the same as
|
| 175 |
+
edge_betweenness_centrality_subset(G,sources=G.nodes(),targets=G.nodes()).
|
| 176 |
+
|
| 177 |
+
References
|
| 178 |
+
----------
|
| 179 |
+
.. [1] Ulrik Brandes, A Faster Algorithm for Betweenness Centrality.
|
| 180 |
+
Journal of Mathematical Sociology 25(2):163-177, 2001.
|
| 181 |
+
https://doi.org/10.1080/0022250X.2001.9990249
|
| 182 |
+
.. [2] Ulrik Brandes: On Variants of Shortest-Path Betweenness
|
| 183 |
+
Centrality and their Generic Computation.
|
| 184 |
+
Social Networks 30(2):136-145, 2008.
|
| 185 |
+
https://doi.org/10.1016/j.socnet.2007.11.001
|
| 186 |
+
"""
|
| 187 |
+
b = dict.fromkeys(G, 0.0) # b[v]=0 for v in G
|
| 188 |
+
b.update(dict.fromkeys(G.edges(), 0.0)) # b[e] for e in G.edges()
|
| 189 |
+
for s in sources:
|
| 190 |
+
# single source shortest paths
|
| 191 |
+
if weight is None: # use BFS
|
| 192 |
+
S, P, sigma, _ = shortest_path(G, s)
|
| 193 |
+
else: # use Dijkstra's algorithm
|
| 194 |
+
S, P, sigma, _ = dijkstra(G, s, weight)
|
| 195 |
+
b = _accumulate_edges_subset(b, S, P, sigma, s, targets)
|
| 196 |
+
for n in G: # remove nodes to only return edges
|
| 197 |
+
del b[n]
|
| 198 |
+
b = _rescale_e(b, len(G), normalized=normalized, directed=G.is_directed())
|
| 199 |
+
if G.is_multigraph():
|
| 200 |
+
b = _add_edge_keys(G, b, weight=weight)
|
| 201 |
+
return b
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
def _accumulate_subset(betweenness, S, P, sigma, s, targets):
|
| 205 |
+
delta = dict.fromkeys(S, 0.0)
|
| 206 |
+
target_set = set(targets) - {s}
|
| 207 |
+
while S:
|
| 208 |
+
w = S.pop()
|
| 209 |
+
if w in target_set:
|
| 210 |
+
coeff = (delta[w] + 1.0) / sigma[w]
|
| 211 |
+
else:
|
| 212 |
+
coeff = delta[w] / sigma[w]
|
| 213 |
+
for v in P[w]:
|
| 214 |
+
delta[v] += sigma[v] * coeff
|
| 215 |
+
if w != s:
|
| 216 |
+
betweenness[w] += delta[w]
|
| 217 |
+
return betweenness
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
def _accumulate_edges_subset(betweenness, S, P, sigma, s, targets):
|
| 221 |
+
"""edge_betweenness_centrality_subset helper."""
|
| 222 |
+
delta = dict.fromkeys(S, 0)
|
| 223 |
+
target_set = set(targets)
|
| 224 |
+
while S:
|
| 225 |
+
w = S.pop()
|
| 226 |
+
for v in P[w]:
|
| 227 |
+
if w in target_set:
|
| 228 |
+
c = (sigma[v] / sigma[w]) * (1.0 + delta[w])
|
| 229 |
+
else:
|
| 230 |
+
c = delta[w] / len(P[w])
|
| 231 |
+
if (v, w) not in betweenness:
|
| 232 |
+
betweenness[(w, v)] += c
|
| 233 |
+
else:
|
| 234 |
+
betweenness[(v, w)] += c
|
| 235 |
+
delta[v] += c
|
| 236 |
+
if w != s:
|
| 237 |
+
betweenness[w] += delta[w]
|
| 238 |
+
return betweenness
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
def _rescale(betweenness, n, normalized, directed=False):
|
| 242 |
+
"""betweenness_centrality_subset helper."""
|
| 243 |
+
if normalized:
|
| 244 |
+
if n <= 2:
|
| 245 |
+
scale = None # no normalization b=0 for all nodes
|
| 246 |
+
else:
|
| 247 |
+
scale = 1.0 / ((n - 1) * (n - 2))
|
| 248 |
+
else: # rescale by 2 for undirected graphs
|
| 249 |
+
if not directed:
|
| 250 |
+
scale = 0.5
|
| 251 |
+
else:
|
| 252 |
+
scale = None
|
| 253 |
+
if scale is not None:
|
| 254 |
+
for v in betweenness:
|
| 255 |
+
betweenness[v] *= scale
|
| 256 |
+
return betweenness
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
def _rescale_e(betweenness, n, normalized, directed=False):
|
| 260 |
+
"""edge_betweenness_centrality_subset helper."""
|
| 261 |
+
if normalized:
|
| 262 |
+
if n <= 1:
|
| 263 |
+
scale = None # no normalization b=0 for all nodes
|
| 264 |
+
else:
|
| 265 |
+
scale = 1.0 / (n * (n - 1))
|
| 266 |
+
else: # rescale by 2 for undirected graphs
|
| 267 |
+
if not directed:
|
| 268 |
+
scale = 0.5
|
| 269 |
+
else:
|
| 270 |
+
scale = None
|
| 271 |
+
if scale is not None:
|
| 272 |
+
for v in betweenness:
|
| 273 |
+
betweenness[v] *= scale
|
| 274 |
+
return betweenness
|
parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/closeness.py
ADDED
|
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Closeness centrality measures.
|
| 3 |
+
"""
|
| 4 |
+
import functools
|
| 5 |
+
|
| 6 |
+
import networkx as nx
|
| 7 |
+
from networkx.exception import NetworkXError
|
| 8 |
+
from networkx.utils.decorators import not_implemented_for
|
| 9 |
+
|
| 10 |
+
__all__ = ["closeness_centrality", "incremental_closeness_centrality"]
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
@nx._dispatchable(edge_attrs="distance")
|
| 14 |
+
def closeness_centrality(G, u=None, distance=None, wf_improved=True):
|
| 15 |
+
r"""Compute closeness centrality for nodes.
|
| 16 |
+
|
| 17 |
+
Closeness centrality [1]_ of a node `u` is the reciprocal of the
|
| 18 |
+
average shortest path distance to `u` over all `n-1` reachable nodes.
|
| 19 |
+
|
| 20 |
+
.. math::
|
| 21 |
+
|
| 22 |
+
C(u) = \frac{n - 1}{\sum_{v=1}^{n-1} d(v, u)},
|
| 23 |
+
|
| 24 |
+
where `d(v, u)` is the shortest-path distance between `v` and `u`,
|
| 25 |
+
and `n-1` is the number of nodes reachable from `u`. Notice that the
|
| 26 |
+
closeness distance function computes the incoming distance to `u`
|
| 27 |
+
for directed graphs. To use outward distance, act on `G.reverse()`.
|
| 28 |
+
|
| 29 |
+
Notice that higher values of closeness indicate higher centrality.
|
| 30 |
+
|
| 31 |
+
Wasserman and Faust propose an improved formula for graphs with
|
| 32 |
+
more than one connected component. The result is "a ratio of the
|
| 33 |
+
fraction of actors in the group who are reachable, to the average
|
| 34 |
+
distance" from the reachable actors [2]_. You might think this
|
| 35 |
+
scale factor is inverted but it is not. As is, nodes from small
|
| 36 |
+
components receive a smaller closeness value. Letting `N` denote
|
| 37 |
+
the number of nodes in the graph,
|
| 38 |
+
|
| 39 |
+
.. math::
|
| 40 |
+
|
| 41 |
+
C_{WF}(u) = \frac{n-1}{N-1} \frac{n - 1}{\sum_{v=1}^{n-1} d(v, u)},
|
| 42 |
+
|
| 43 |
+
Parameters
|
| 44 |
+
----------
|
| 45 |
+
G : graph
|
| 46 |
+
A NetworkX graph
|
| 47 |
+
|
| 48 |
+
u : node, optional
|
| 49 |
+
Return only the value for node u
|
| 50 |
+
|
| 51 |
+
distance : edge attribute key, optional (default=None)
|
| 52 |
+
Use the specified edge attribute as the edge distance in shortest
|
| 53 |
+
path calculations. If `None` (the default) all edges have a distance of 1.
|
| 54 |
+
Absent edge attributes are assigned a distance of 1. Note that no check
|
| 55 |
+
is performed to ensure that edges have the provided attribute.
|
| 56 |
+
|
| 57 |
+
wf_improved : bool, optional (default=True)
|
| 58 |
+
If True, scale by the fraction of nodes reachable. This gives the
|
| 59 |
+
Wasserman and Faust improved formula. For single component graphs
|
| 60 |
+
it is the same as the original formula.
|
| 61 |
+
|
| 62 |
+
Returns
|
| 63 |
+
-------
|
| 64 |
+
nodes : dictionary
|
| 65 |
+
Dictionary of nodes with closeness centrality as the value.
|
| 66 |
+
|
| 67 |
+
Examples
|
| 68 |
+
--------
|
| 69 |
+
>>> G = nx.Graph([(0, 1), (0, 2), (0, 3), (1, 2), (1, 3)])
|
| 70 |
+
>>> nx.closeness_centrality(G)
|
| 71 |
+
{0: 1.0, 1: 1.0, 2: 0.75, 3: 0.75}
|
| 72 |
+
|
| 73 |
+
See Also
|
| 74 |
+
--------
|
| 75 |
+
betweenness_centrality, load_centrality, eigenvector_centrality,
|
| 76 |
+
degree_centrality, incremental_closeness_centrality
|
| 77 |
+
|
| 78 |
+
Notes
|
| 79 |
+
-----
|
| 80 |
+
The closeness centrality is normalized to `(n-1)/(|G|-1)` where
|
| 81 |
+
`n` is the number of nodes in the connected part of graph
|
| 82 |
+
containing the node. If the graph is not completely connected,
|
| 83 |
+
this algorithm computes the closeness centrality for each
|
| 84 |
+
connected part separately scaled by that parts size.
|
| 85 |
+
|
| 86 |
+
If the 'distance' keyword is set to an edge attribute key then the
|
| 87 |
+
shortest-path length will be computed using Dijkstra's algorithm with
|
| 88 |
+
that edge attribute as the edge weight.
|
| 89 |
+
|
| 90 |
+
The closeness centrality uses *inward* distance to a node, not outward.
|
| 91 |
+
If you want to use outword distances apply the function to `G.reverse()`
|
| 92 |
+
|
| 93 |
+
In NetworkX 2.2 and earlier a bug caused Dijkstra's algorithm to use the
|
| 94 |
+
outward distance rather than the inward distance. If you use a 'distance'
|
| 95 |
+
keyword and a DiGraph, your results will change between v2.2 and v2.3.
|
| 96 |
+
|
| 97 |
+
References
|
| 98 |
+
----------
|
| 99 |
+
.. [1] Linton C. Freeman: Centrality in networks: I.
|
| 100 |
+
Conceptual clarification. Social Networks 1:215-239, 1979.
|
| 101 |
+
https://doi.org/10.1016/0378-8733(78)90021-7
|
| 102 |
+
.. [2] pg. 201 of Wasserman, S. and Faust, K.,
|
| 103 |
+
Social Network Analysis: Methods and Applications, 1994,
|
| 104 |
+
Cambridge University Press.
|
| 105 |
+
"""
|
| 106 |
+
if G.is_directed():
|
| 107 |
+
G = G.reverse() # create a reversed graph view
|
| 108 |
+
|
| 109 |
+
if distance is not None:
|
| 110 |
+
# use Dijkstra's algorithm with specified attribute as edge weight
|
| 111 |
+
path_length = functools.partial(
|
| 112 |
+
nx.single_source_dijkstra_path_length, weight=distance
|
| 113 |
+
)
|
| 114 |
+
else:
|
| 115 |
+
path_length = nx.single_source_shortest_path_length
|
| 116 |
+
|
| 117 |
+
if u is None:
|
| 118 |
+
nodes = G.nodes
|
| 119 |
+
else:
|
| 120 |
+
nodes = [u]
|
| 121 |
+
closeness_dict = {}
|
| 122 |
+
for n in nodes:
|
| 123 |
+
sp = path_length(G, n)
|
| 124 |
+
totsp = sum(sp.values())
|
| 125 |
+
len_G = len(G)
|
| 126 |
+
_closeness_centrality = 0.0
|
| 127 |
+
if totsp > 0.0 and len_G > 1:
|
| 128 |
+
_closeness_centrality = (len(sp) - 1.0) / totsp
|
| 129 |
+
# normalize to number of nodes-1 in connected part
|
| 130 |
+
if wf_improved:
|
| 131 |
+
s = (len(sp) - 1.0) / (len_G - 1)
|
| 132 |
+
_closeness_centrality *= s
|
| 133 |
+
closeness_dict[n] = _closeness_centrality
|
| 134 |
+
if u is not None:
|
| 135 |
+
return closeness_dict[u]
|
| 136 |
+
return closeness_dict
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
@not_implemented_for("directed")
|
| 140 |
+
@nx._dispatchable(mutates_input=True)
|
| 141 |
+
def incremental_closeness_centrality(
|
| 142 |
+
G, edge, prev_cc=None, insertion=True, wf_improved=True
|
| 143 |
+
):
|
| 144 |
+
r"""Incremental closeness centrality for nodes.
|
| 145 |
+
|
| 146 |
+
Compute closeness centrality for nodes using level-based work filtering
|
| 147 |
+
as described in Incremental Algorithms for Closeness Centrality by Sariyuce et al.
|
| 148 |
+
|
| 149 |
+
Level-based work filtering detects unnecessary updates to the closeness
|
| 150 |
+
centrality and filters them out.
|
| 151 |
+
|
| 152 |
+
---
|
| 153 |
+
From "Incremental Algorithms for Closeness Centrality":
|
| 154 |
+
|
| 155 |
+
Theorem 1: Let :math:`G = (V, E)` be a graph and u and v be two vertices in V
|
| 156 |
+
such that there is no edge (u, v) in E. Let :math:`G' = (V, E \cup uv)`
|
| 157 |
+
Then :math:`cc[s] = cc'[s]` if and only if :math:`\left|dG(s, u) - dG(s, v)\right| \leq 1`.
|
| 158 |
+
|
| 159 |
+
Where :math:`dG(u, v)` denotes the length of the shortest path between
|
| 160 |
+
two vertices u, v in a graph G, cc[s] is the closeness centrality for a
|
| 161 |
+
vertex s in V, and cc'[s] is the closeness centrality for a
|
| 162 |
+
vertex s in V, with the (u, v) edge added.
|
| 163 |
+
---
|
| 164 |
+
|
| 165 |
+
We use Theorem 1 to filter out updates when adding or removing an edge.
|
| 166 |
+
When adding an edge (u, v), we compute the shortest path lengths from all
|
| 167 |
+
other nodes to u and to v before the node is added. When removing an edge,
|
| 168 |
+
we compute the shortest path lengths after the edge is removed. Then we
|
| 169 |
+
apply Theorem 1 to use previously computed closeness centrality for nodes
|
| 170 |
+
where :math:`\left|dG(s, u) - dG(s, v)\right| \leq 1`. This works only for
|
| 171 |
+
undirected, unweighted graphs; the distance argument is not supported.
|
| 172 |
+
|
| 173 |
+
Closeness centrality [1]_ of a node `u` is the reciprocal of the
|
| 174 |
+
sum of the shortest path distances from `u` to all `n-1` other nodes.
|
| 175 |
+
Since the sum of distances depends on the number of nodes in the
|
| 176 |
+
graph, closeness is normalized by the sum of minimum possible
|
| 177 |
+
distances `n-1`.
|
| 178 |
+
|
| 179 |
+
.. math::
|
| 180 |
+
|
| 181 |
+
C(u) = \frac{n - 1}{\sum_{v=1}^{n-1} d(v, u)},
|
| 182 |
+
|
| 183 |
+
where `d(v, u)` is the shortest-path distance between `v` and `u`,
|
| 184 |
+
and `n` is the number of nodes in the graph.
|
| 185 |
+
|
| 186 |
+
Notice that higher values of closeness indicate higher centrality.
|
| 187 |
+
|
| 188 |
+
Parameters
|
| 189 |
+
----------
|
| 190 |
+
G : graph
|
| 191 |
+
A NetworkX graph
|
| 192 |
+
|
| 193 |
+
edge : tuple
|
| 194 |
+
The modified edge (u, v) in the graph.
|
| 195 |
+
|
| 196 |
+
prev_cc : dictionary
|
| 197 |
+
The previous closeness centrality for all nodes in the graph.
|
| 198 |
+
|
| 199 |
+
insertion : bool, optional
|
| 200 |
+
If True (default) the edge was inserted, otherwise it was deleted from the graph.
|
| 201 |
+
|
| 202 |
+
wf_improved : bool, optional (default=True)
|
| 203 |
+
If True, scale by the fraction of nodes reachable. This gives the
|
| 204 |
+
Wasserman and Faust improved formula. For single component graphs
|
| 205 |
+
it is the same as the original formula.
|
| 206 |
+
|
| 207 |
+
Returns
|
| 208 |
+
-------
|
| 209 |
+
nodes : dictionary
|
| 210 |
+
Dictionary of nodes with closeness centrality as the value.
|
| 211 |
+
|
| 212 |
+
See Also
|
| 213 |
+
--------
|
| 214 |
+
betweenness_centrality, load_centrality, eigenvector_centrality,
|
| 215 |
+
degree_centrality, closeness_centrality
|
| 216 |
+
|
| 217 |
+
Notes
|
| 218 |
+
-----
|
| 219 |
+
The closeness centrality is normalized to `(n-1)/(|G|-1)` where
|
| 220 |
+
`n` is the number of nodes in the connected part of graph
|
| 221 |
+
containing the node. If the graph is not completely connected,
|
| 222 |
+
this algorithm computes the closeness centrality for each
|
| 223 |
+
connected part separately.
|
| 224 |
+
|
| 225 |
+
References
|
| 226 |
+
----------
|
| 227 |
+
.. [1] Freeman, L.C., 1979. Centrality in networks: I.
|
| 228 |
+
Conceptual clarification. Social Networks 1, 215--239.
|
| 229 |
+
https://doi.org/10.1016/0378-8733(78)90021-7
|
| 230 |
+
.. [2] Sariyuce, A.E. ; Kaya, K. ; Saule, E. ; Catalyiirek, U.V. Incremental
|
| 231 |
+
Algorithms for Closeness Centrality. 2013 IEEE International Conference on Big Data
|
| 232 |
+
http://sariyuce.com/papers/bigdata13.pdf
|
| 233 |
+
"""
|
| 234 |
+
if prev_cc is not None and set(prev_cc.keys()) != set(G.nodes()):
|
| 235 |
+
raise NetworkXError("prev_cc and G do not have the same nodes")
|
| 236 |
+
|
| 237 |
+
# Unpack edge
|
| 238 |
+
(u, v) = edge
|
| 239 |
+
path_length = nx.single_source_shortest_path_length
|
| 240 |
+
|
| 241 |
+
if insertion:
|
| 242 |
+
# For edge insertion, we want shortest paths before the edge is inserted
|
| 243 |
+
du = path_length(G, u)
|
| 244 |
+
dv = path_length(G, v)
|
| 245 |
+
|
| 246 |
+
G.add_edge(u, v)
|
| 247 |
+
else:
|
| 248 |
+
G.remove_edge(u, v)
|
| 249 |
+
|
| 250 |
+
# For edge removal, we want shortest paths after the edge is removed
|
| 251 |
+
du = path_length(G, u)
|
| 252 |
+
dv = path_length(G, v)
|
| 253 |
+
|
| 254 |
+
if prev_cc is None:
|
| 255 |
+
return nx.closeness_centrality(G)
|
| 256 |
+
|
| 257 |
+
nodes = G.nodes()
|
| 258 |
+
closeness_dict = {}
|
| 259 |
+
for n in nodes:
|
| 260 |
+
if n in du and n in dv and abs(du[n] - dv[n]) <= 1:
|
| 261 |
+
closeness_dict[n] = prev_cc[n]
|
| 262 |
+
else:
|
| 263 |
+
sp = path_length(G, n)
|
| 264 |
+
totsp = sum(sp.values())
|
| 265 |
+
len_G = len(G)
|
| 266 |
+
_closeness_centrality = 0.0
|
| 267 |
+
if totsp > 0.0 and len_G > 1:
|
| 268 |
+
_closeness_centrality = (len(sp) - 1.0) / totsp
|
| 269 |
+
# normalize to number of nodes-1 in connected part
|
| 270 |
+
if wf_improved:
|
| 271 |
+
s = (len(sp) - 1.0) / (len_G - 1)
|
| 272 |
+
_closeness_centrality *= s
|
| 273 |
+
closeness_dict[n] = _closeness_centrality
|
| 274 |
+
|
| 275 |
+
# Leave the graph as we found it
|
| 276 |
+
if insertion:
|
| 277 |
+
G.remove_edge(u, v)
|
| 278 |
+
else:
|
| 279 |
+
G.add_edge(u, v)
|
| 280 |
+
|
| 281 |
+
return closeness_dict
|
parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/current_flow_betweenness.py
ADDED
|
@@ -0,0 +1,341 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Current-flow betweenness centrality measures."""
|
| 2 |
+
import networkx as nx
|
| 3 |
+
from networkx.algorithms.centrality.flow_matrix import (
|
| 4 |
+
CGInverseLaplacian,
|
| 5 |
+
FullInverseLaplacian,
|
| 6 |
+
SuperLUInverseLaplacian,
|
| 7 |
+
flow_matrix_row,
|
| 8 |
+
)
|
| 9 |
+
from networkx.utils import (
|
| 10 |
+
not_implemented_for,
|
| 11 |
+
py_random_state,
|
| 12 |
+
reverse_cuthill_mckee_ordering,
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
__all__ = [
|
| 16 |
+
"current_flow_betweenness_centrality",
|
| 17 |
+
"approximate_current_flow_betweenness_centrality",
|
| 18 |
+
"edge_current_flow_betweenness_centrality",
|
| 19 |
+
]
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
@not_implemented_for("directed")
|
| 23 |
+
@py_random_state(7)
|
| 24 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 25 |
+
def approximate_current_flow_betweenness_centrality(
|
| 26 |
+
G,
|
| 27 |
+
normalized=True,
|
| 28 |
+
weight=None,
|
| 29 |
+
dtype=float,
|
| 30 |
+
solver="full",
|
| 31 |
+
epsilon=0.5,
|
| 32 |
+
kmax=10000,
|
| 33 |
+
seed=None,
|
| 34 |
+
):
|
| 35 |
+
r"""Compute the approximate current-flow betweenness centrality for nodes.
|
| 36 |
+
|
| 37 |
+
Approximates the current-flow betweenness centrality within absolute
|
| 38 |
+
error of epsilon with high probability [1]_.
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
Parameters
|
| 42 |
+
----------
|
| 43 |
+
G : graph
|
| 44 |
+
A NetworkX graph
|
| 45 |
+
|
| 46 |
+
normalized : bool, optional (default=True)
|
| 47 |
+
If True the betweenness values are normalized by 2/[(n-1)(n-2)] where
|
| 48 |
+
n is the number of nodes in G.
|
| 49 |
+
|
| 50 |
+
weight : string or None, optional (default=None)
|
| 51 |
+
Key for edge data used as the edge weight.
|
| 52 |
+
If None, then use 1 as each edge weight.
|
| 53 |
+
The weight reflects the capacity or the strength of the
|
| 54 |
+
edge.
|
| 55 |
+
|
| 56 |
+
dtype : data type (float)
|
| 57 |
+
Default data type for internal matrices.
|
| 58 |
+
Set to np.float32 for lower memory consumption.
|
| 59 |
+
|
| 60 |
+
solver : string (default='full')
|
| 61 |
+
Type of linear solver to use for computing the flow matrix.
|
| 62 |
+
Options are "full" (uses most memory), "lu" (recommended), and
|
| 63 |
+
"cg" (uses least memory).
|
| 64 |
+
|
| 65 |
+
epsilon: float
|
| 66 |
+
Absolute error tolerance.
|
| 67 |
+
|
| 68 |
+
kmax: int
|
| 69 |
+
Maximum number of sample node pairs to use for approximation.
|
| 70 |
+
|
| 71 |
+
seed : integer, random_state, or None (default)
|
| 72 |
+
Indicator of random number generation state.
|
| 73 |
+
See :ref:`Randomness<randomness>`.
|
| 74 |
+
|
| 75 |
+
Returns
|
| 76 |
+
-------
|
| 77 |
+
nodes : dictionary
|
| 78 |
+
Dictionary of nodes with betweenness centrality as the value.
|
| 79 |
+
|
| 80 |
+
See Also
|
| 81 |
+
--------
|
| 82 |
+
current_flow_betweenness_centrality
|
| 83 |
+
|
| 84 |
+
Notes
|
| 85 |
+
-----
|
| 86 |
+
The running time is $O((1/\epsilon^2)m{\sqrt k} \log n)$
|
| 87 |
+
and the space required is $O(m)$ for $n$ nodes and $m$ edges.
|
| 88 |
+
|
| 89 |
+
If the edges have a 'weight' attribute they will be used as
|
| 90 |
+
weights in this algorithm. Unspecified weights are set to 1.
|
| 91 |
+
|
| 92 |
+
References
|
| 93 |
+
----------
|
| 94 |
+
.. [1] Ulrik Brandes and Daniel Fleischer:
|
| 95 |
+
Centrality Measures Based on Current Flow.
|
| 96 |
+
Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS '05).
|
| 97 |
+
LNCS 3404, pp. 533-544. Springer-Verlag, 2005.
|
| 98 |
+
https://doi.org/10.1007/978-3-540-31856-9_44
|
| 99 |
+
"""
|
| 100 |
+
import numpy as np
|
| 101 |
+
|
| 102 |
+
if not nx.is_connected(G):
|
| 103 |
+
raise nx.NetworkXError("Graph not connected.")
|
| 104 |
+
solvername = {
|
| 105 |
+
"full": FullInverseLaplacian,
|
| 106 |
+
"lu": SuperLUInverseLaplacian,
|
| 107 |
+
"cg": CGInverseLaplacian,
|
| 108 |
+
}
|
| 109 |
+
n = G.number_of_nodes()
|
| 110 |
+
ordering = list(reverse_cuthill_mckee_ordering(G))
|
| 111 |
+
# make a copy with integer labels according to rcm ordering
|
| 112 |
+
# this could be done without a copy if we really wanted to
|
| 113 |
+
H = nx.relabel_nodes(G, dict(zip(ordering, range(n))))
|
| 114 |
+
L = nx.laplacian_matrix(H, nodelist=range(n), weight=weight).asformat("csc")
|
| 115 |
+
L = L.astype(dtype)
|
| 116 |
+
C = solvername[solver](L, dtype=dtype) # initialize solver
|
| 117 |
+
betweenness = dict.fromkeys(H, 0.0)
|
| 118 |
+
nb = (n - 1.0) * (n - 2.0) # normalization factor
|
| 119 |
+
cstar = n * (n - 1) / nb
|
| 120 |
+
l = 1 # parameter in approximation, adjustable
|
| 121 |
+
k = l * int(np.ceil((cstar / epsilon) ** 2 * np.log(n)))
|
| 122 |
+
if k > kmax:
|
| 123 |
+
msg = f"Number random pairs k>kmax ({k}>{kmax}) "
|
| 124 |
+
raise nx.NetworkXError(msg, "Increase kmax or epsilon")
|
| 125 |
+
cstar2k = cstar / (2 * k)
|
| 126 |
+
for _ in range(k):
|
| 127 |
+
s, t = pair = seed.sample(range(n), 2)
|
| 128 |
+
b = np.zeros(n, dtype=dtype)
|
| 129 |
+
b[s] = 1
|
| 130 |
+
b[t] = -1
|
| 131 |
+
p = C.solve(b)
|
| 132 |
+
for v in H:
|
| 133 |
+
if v in pair:
|
| 134 |
+
continue
|
| 135 |
+
for nbr in H[v]:
|
| 136 |
+
w = H[v][nbr].get(weight, 1.0)
|
| 137 |
+
betweenness[v] += float(w * np.abs(p[v] - p[nbr]) * cstar2k)
|
| 138 |
+
if normalized:
|
| 139 |
+
factor = 1.0
|
| 140 |
+
else:
|
| 141 |
+
factor = nb / 2.0
|
| 142 |
+
# remap to original node names and "unnormalize" if required
|
| 143 |
+
return {ordering[k]: v * factor for k, v in betweenness.items()}
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
@not_implemented_for("directed")
|
| 147 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 148 |
+
def current_flow_betweenness_centrality(
|
| 149 |
+
G, normalized=True, weight=None, dtype=float, solver="full"
|
| 150 |
+
):
|
| 151 |
+
r"""Compute current-flow betweenness centrality for nodes.
|
| 152 |
+
|
| 153 |
+
Current-flow betweenness centrality uses an electrical current
|
| 154 |
+
model for information spreading in contrast to betweenness
|
| 155 |
+
centrality which uses shortest paths.
|
| 156 |
+
|
| 157 |
+
Current-flow betweenness centrality is also known as
|
| 158 |
+
random-walk betweenness centrality [2]_.
|
| 159 |
+
|
| 160 |
+
Parameters
|
| 161 |
+
----------
|
| 162 |
+
G : graph
|
| 163 |
+
A NetworkX graph
|
| 164 |
+
|
| 165 |
+
normalized : bool, optional (default=True)
|
| 166 |
+
If True the betweenness values are normalized by 2/[(n-1)(n-2)] where
|
| 167 |
+
n is the number of nodes in G.
|
| 168 |
+
|
| 169 |
+
weight : string or None, optional (default=None)
|
| 170 |
+
Key for edge data used as the edge weight.
|
| 171 |
+
If None, then use 1 as each edge weight.
|
| 172 |
+
The weight reflects the capacity or the strength of the
|
| 173 |
+
edge.
|
| 174 |
+
|
| 175 |
+
dtype : data type (float)
|
| 176 |
+
Default data type for internal matrices.
|
| 177 |
+
Set to np.float32 for lower memory consumption.
|
| 178 |
+
|
| 179 |
+
solver : string (default='full')
|
| 180 |
+
Type of linear solver to use for computing the flow matrix.
|
| 181 |
+
Options are "full" (uses most memory), "lu" (recommended), and
|
| 182 |
+
"cg" (uses least memory).
|
| 183 |
+
|
| 184 |
+
Returns
|
| 185 |
+
-------
|
| 186 |
+
nodes : dictionary
|
| 187 |
+
Dictionary of nodes with betweenness centrality as the value.
|
| 188 |
+
|
| 189 |
+
See Also
|
| 190 |
+
--------
|
| 191 |
+
approximate_current_flow_betweenness_centrality
|
| 192 |
+
betweenness_centrality
|
| 193 |
+
edge_betweenness_centrality
|
| 194 |
+
edge_current_flow_betweenness_centrality
|
| 195 |
+
|
| 196 |
+
Notes
|
| 197 |
+
-----
|
| 198 |
+
Current-flow betweenness can be computed in $O(I(n-1)+mn \log n)$
|
| 199 |
+
time [1]_, where $I(n-1)$ is the time needed to compute the
|
| 200 |
+
inverse Laplacian. For a full matrix this is $O(n^3)$ but using
|
| 201 |
+
sparse methods you can achieve $O(nm{\sqrt k})$ where $k$ is the
|
| 202 |
+
Laplacian matrix condition number.
|
| 203 |
+
|
| 204 |
+
The space required is $O(nw)$ where $w$ is the width of the sparse
|
| 205 |
+
Laplacian matrix. Worse case is $w=n$ for $O(n^2)$.
|
| 206 |
+
|
| 207 |
+
If the edges have a 'weight' attribute they will be used as
|
| 208 |
+
weights in this algorithm. Unspecified weights are set to 1.
|
| 209 |
+
|
| 210 |
+
References
|
| 211 |
+
----------
|
| 212 |
+
.. [1] Centrality Measures Based on Current Flow.
|
| 213 |
+
Ulrik Brandes and Daniel Fleischer,
|
| 214 |
+
Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS '05).
|
| 215 |
+
LNCS 3404, pp. 533-544. Springer-Verlag, 2005.
|
| 216 |
+
https://doi.org/10.1007/978-3-540-31856-9_44
|
| 217 |
+
|
| 218 |
+
.. [2] A measure of betweenness centrality based on random walks,
|
| 219 |
+
M. E. J. Newman, Social Networks 27, 39-54 (2005).
|
| 220 |
+
"""
|
| 221 |
+
if not nx.is_connected(G):
|
| 222 |
+
raise nx.NetworkXError("Graph not connected.")
|
| 223 |
+
N = G.number_of_nodes()
|
| 224 |
+
ordering = list(reverse_cuthill_mckee_ordering(G))
|
| 225 |
+
# make a copy with integer labels according to rcm ordering
|
| 226 |
+
# this could be done without a copy if we really wanted to
|
| 227 |
+
H = nx.relabel_nodes(G, dict(zip(ordering, range(N))))
|
| 228 |
+
betweenness = dict.fromkeys(H, 0.0) # b[n]=0 for n in H
|
| 229 |
+
for row, (s, t) in flow_matrix_row(H, weight=weight, dtype=dtype, solver=solver):
|
| 230 |
+
pos = dict(zip(row.argsort()[::-1], range(N)))
|
| 231 |
+
for i in range(N):
|
| 232 |
+
betweenness[s] += (i - pos[i]) * row.item(i)
|
| 233 |
+
betweenness[t] += (N - i - 1 - pos[i]) * row.item(i)
|
| 234 |
+
if normalized:
|
| 235 |
+
nb = (N - 1.0) * (N - 2.0) # normalization factor
|
| 236 |
+
else:
|
| 237 |
+
nb = 2.0
|
| 238 |
+
return {ordering[n]: (b - n) * 2.0 / nb for n, b in betweenness.items()}
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
@not_implemented_for("directed")
|
| 242 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 243 |
+
def edge_current_flow_betweenness_centrality(
|
| 244 |
+
G, normalized=True, weight=None, dtype=float, solver="full"
|
| 245 |
+
):
|
| 246 |
+
r"""Compute current-flow betweenness centrality for edges.
|
| 247 |
+
|
| 248 |
+
Current-flow betweenness centrality uses an electrical current
|
| 249 |
+
model for information spreading in contrast to betweenness
|
| 250 |
+
centrality which uses shortest paths.
|
| 251 |
+
|
| 252 |
+
Current-flow betweenness centrality is also known as
|
| 253 |
+
random-walk betweenness centrality [2]_.
|
| 254 |
+
|
| 255 |
+
Parameters
|
| 256 |
+
----------
|
| 257 |
+
G : graph
|
| 258 |
+
A NetworkX graph
|
| 259 |
+
|
| 260 |
+
normalized : bool, optional (default=True)
|
| 261 |
+
If True the betweenness values are normalized by 2/[(n-1)(n-2)] where
|
| 262 |
+
n is the number of nodes in G.
|
| 263 |
+
|
| 264 |
+
weight : string or None, optional (default=None)
|
| 265 |
+
Key for edge data used as the edge weight.
|
| 266 |
+
If None, then use 1 as each edge weight.
|
| 267 |
+
The weight reflects the capacity or the strength of the
|
| 268 |
+
edge.
|
| 269 |
+
|
| 270 |
+
dtype : data type (default=float)
|
| 271 |
+
Default data type for internal matrices.
|
| 272 |
+
Set to np.float32 for lower memory consumption.
|
| 273 |
+
|
| 274 |
+
solver : string (default='full')
|
| 275 |
+
Type of linear solver to use for computing the flow matrix.
|
| 276 |
+
Options are "full" (uses most memory), "lu" (recommended), and
|
| 277 |
+
"cg" (uses least memory).
|
| 278 |
+
|
| 279 |
+
Returns
|
| 280 |
+
-------
|
| 281 |
+
nodes : dictionary
|
| 282 |
+
Dictionary of edge tuples with betweenness centrality as the value.
|
| 283 |
+
|
| 284 |
+
Raises
|
| 285 |
+
------
|
| 286 |
+
NetworkXError
|
| 287 |
+
The algorithm does not support DiGraphs.
|
| 288 |
+
If the input graph is an instance of DiGraph class, NetworkXError
|
| 289 |
+
is raised.
|
| 290 |
+
|
| 291 |
+
See Also
|
| 292 |
+
--------
|
| 293 |
+
betweenness_centrality
|
| 294 |
+
edge_betweenness_centrality
|
| 295 |
+
current_flow_betweenness_centrality
|
| 296 |
+
|
| 297 |
+
Notes
|
| 298 |
+
-----
|
| 299 |
+
Current-flow betweenness can be computed in $O(I(n-1)+mn \log n)$
|
| 300 |
+
time [1]_, where $I(n-1)$ is the time needed to compute the
|
| 301 |
+
inverse Laplacian. For a full matrix this is $O(n^3)$ but using
|
| 302 |
+
sparse methods you can achieve $O(nm{\sqrt k})$ where $k$ is the
|
| 303 |
+
Laplacian matrix condition number.
|
| 304 |
+
|
| 305 |
+
The space required is $O(nw)$ where $w$ is the width of the sparse
|
| 306 |
+
Laplacian matrix. Worse case is $w=n$ for $O(n^2)$.
|
| 307 |
+
|
| 308 |
+
If the edges have a 'weight' attribute they will be used as
|
| 309 |
+
weights in this algorithm. Unspecified weights are set to 1.
|
| 310 |
+
|
| 311 |
+
References
|
| 312 |
+
----------
|
| 313 |
+
.. [1] Centrality Measures Based on Current Flow.
|
| 314 |
+
Ulrik Brandes and Daniel Fleischer,
|
| 315 |
+
Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS '05).
|
| 316 |
+
LNCS 3404, pp. 533-544. Springer-Verlag, 2005.
|
| 317 |
+
https://doi.org/10.1007/978-3-540-31856-9_44
|
| 318 |
+
|
| 319 |
+
.. [2] A measure of betweenness centrality based on random walks,
|
| 320 |
+
M. E. J. Newman, Social Networks 27, 39-54 (2005).
|
| 321 |
+
"""
|
| 322 |
+
if not nx.is_connected(G):
|
| 323 |
+
raise nx.NetworkXError("Graph not connected.")
|
| 324 |
+
N = G.number_of_nodes()
|
| 325 |
+
ordering = list(reverse_cuthill_mckee_ordering(G))
|
| 326 |
+
# make a copy with integer labels according to rcm ordering
|
| 327 |
+
# this could be done without a copy if we really wanted to
|
| 328 |
+
H = nx.relabel_nodes(G, dict(zip(ordering, range(N))))
|
| 329 |
+
edges = (tuple(sorted((u, v))) for u, v in H.edges())
|
| 330 |
+
betweenness = dict.fromkeys(edges, 0.0)
|
| 331 |
+
if normalized:
|
| 332 |
+
nb = (N - 1.0) * (N - 2.0) # normalization factor
|
| 333 |
+
else:
|
| 334 |
+
nb = 2.0
|
| 335 |
+
for row, (e) in flow_matrix_row(H, weight=weight, dtype=dtype, solver=solver):
|
| 336 |
+
pos = dict(zip(row.argsort()[::-1], range(1, N + 1)))
|
| 337 |
+
for i in range(N):
|
| 338 |
+
betweenness[e] += (i + 1 - pos[i]) * row.item(i)
|
| 339 |
+
betweenness[e] += (N - i - pos[i]) * row.item(i)
|
| 340 |
+
betweenness[e] /= nb
|
| 341 |
+
return {(ordering[s], ordering[t]): b for (s, t), b in betweenness.items()}
|
parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/current_flow_betweenness_subset.py
ADDED
|
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Current-flow betweenness centrality measures for subsets of nodes."""
|
| 2 |
+
import networkx as nx
|
| 3 |
+
from networkx.algorithms.centrality.flow_matrix import flow_matrix_row
|
| 4 |
+
from networkx.utils import not_implemented_for, reverse_cuthill_mckee_ordering
|
| 5 |
+
|
| 6 |
+
__all__ = [
|
| 7 |
+
"current_flow_betweenness_centrality_subset",
|
| 8 |
+
"edge_current_flow_betweenness_centrality_subset",
|
| 9 |
+
]
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
@not_implemented_for("directed")
|
| 13 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 14 |
+
def current_flow_betweenness_centrality_subset(
|
| 15 |
+
G, sources, targets, normalized=True, weight=None, dtype=float, solver="lu"
|
| 16 |
+
):
|
| 17 |
+
r"""Compute current-flow betweenness centrality for subsets of nodes.
|
| 18 |
+
|
| 19 |
+
Current-flow betweenness centrality uses an electrical current
|
| 20 |
+
model for information spreading in contrast to betweenness
|
| 21 |
+
centrality which uses shortest paths.
|
| 22 |
+
|
| 23 |
+
Current-flow betweenness centrality is also known as
|
| 24 |
+
random-walk betweenness centrality [2]_.
|
| 25 |
+
|
| 26 |
+
Parameters
|
| 27 |
+
----------
|
| 28 |
+
G : graph
|
| 29 |
+
A NetworkX graph
|
| 30 |
+
|
| 31 |
+
sources: list of nodes
|
| 32 |
+
Nodes to use as sources for current
|
| 33 |
+
|
| 34 |
+
targets: list of nodes
|
| 35 |
+
Nodes to use as sinks for current
|
| 36 |
+
|
| 37 |
+
normalized : bool, optional (default=True)
|
| 38 |
+
If True the betweenness values are normalized by b=b/(n-1)(n-2) where
|
| 39 |
+
n is the number of nodes in G.
|
| 40 |
+
|
| 41 |
+
weight : string or None, optional (default=None)
|
| 42 |
+
Key for edge data used as the edge weight.
|
| 43 |
+
If None, then use 1 as each edge weight.
|
| 44 |
+
The weight reflects the capacity or the strength of the
|
| 45 |
+
edge.
|
| 46 |
+
|
| 47 |
+
dtype: data type (float)
|
| 48 |
+
Default data type for internal matrices.
|
| 49 |
+
Set to np.float32 for lower memory consumption.
|
| 50 |
+
|
| 51 |
+
solver: string (default='lu')
|
| 52 |
+
Type of linear solver to use for computing the flow matrix.
|
| 53 |
+
Options are "full" (uses most memory), "lu" (recommended), and
|
| 54 |
+
"cg" (uses least memory).
|
| 55 |
+
|
| 56 |
+
Returns
|
| 57 |
+
-------
|
| 58 |
+
nodes : dictionary
|
| 59 |
+
Dictionary of nodes with betweenness centrality as the value.
|
| 60 |
+
|
| 61 |
+
See Also
|
| 62 |
+
--------
|
| 63 |
+
approximate_current_flow_betweenness_centrality
|
| 64 |
+
betweenness_centrality
|
| 65 |
+
edge_betweenness_centrality
|
| 66 |
+
edge_current_flow_betweenness_centrality
|
| 67 |
+
|
| 68 |
+
Notes
|
| 69 |
+
-----
|
| 70 |
+
Current-flow betweenness can be computed in $O(I(n-1)+mn \log n)$
|
| 71 |
+
time [1]_, where $I(n-1)$ is the time needed to compute the
|
| 72 |
+
inverse Laplacian. For a full matrix this is $O(n^3)$ but using
|
| 73 |
+
sparse methods you can achieve $O(nm{\sqrt k})$ where $k$ is the
|
| 74 |
+
Laplacian matrix condition number.
|
| 75 |
+
|
| 76 |
+
The space required is $O(nw)$ where $w$ is the width of the sparse
|
| 77 |
+
Laplacian matrix. Worse case is $w=n$ for $O(n^2)$.
|
| 78 |
+
|
| 79 |
+
If the edges have a 'weight' attribute they will be used as
|
| 80 |
+
weights in this algorithm. Unspecified weights are set to 1.
|
| 81 |
+
|
| 82 |
+
References
|
| 83 |
+
----------
|
| 84 |
+
.. [1] Centrality Measures Based on Current Flow.
|
| 85 |
+
Ulrik Brandes and Daniel Fleischer,
|
| 86 |
+
Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS '05).
|
| 87 |
+
LNCS 3404, pp. 533-544. Springer-Verlag, 2005.
|
| 88 |
+
https://doi.org/10.1007/978-3-540-31856-9_44
|
| 89 |
+
|
| 90 |
+
.. [2] A measure of betweenness centrality based on random walks,
|
| 91 |
+
M. E. J. Newman, Social Networks 27, 39-54 (2005).
|
| 92 |
+
"""
|
| 93 |
+
import numpy as np
|
| 94 |
+
|
| 95 |
+
from networkx.utils import reverse_cuthill_mckee_ordering
|
| 96 |
+
|
| 97 |
+
if not nx.is_connected(G):
|
| 98 |
+
raise nx.NetworkXError("Graph not connected.")
|
| 99 |
+
N = G.number_of_nodes()
|
| 100 |
+
ordering = list(reverse_cuthill_mckee_ordering(G))
|
| 101 |
+
# make a copy with integer labels according to rcm ordering
|
| 102 |
+
# this could be done without a copy if we really wanted to
|
| 103 |
+
mapping = dict(zip(ordering, range(N)))
|
| 104 |
+
H = nx.relabel_nodes(G, mapping)
|
| 105 |
+
betweenness = dict.fromkeys(H, 0.0) # b[n]=0 for n in H
|
| 106 |
+
for row, (s, t) in flow_matrix_row(H, weight=weight, dtype=dtype, solver=solver):
|
| 107 |
+
for ss in sources:
|
| 108 |
+
i = mapping[ss]
|
| 109 |
+
for tt in targets:
|
| 110 |
+
j = mapping[tt]
|
| 111 |
+
betweenness[s] += 0.5 * abs(row.item(i) - row.item(j))
|
| 112 |
+
betweenness[t] += 0.5 * abs(row.item(i) - row.item(j))
|
| 113 |
+
if normalized:
|
| 114 |
+
nb = (N - 1.0) * (N - 2.0) # normalization factor
|
| 115 |
+
else:
|
| 116 |
+
nb = 2.0
|
| 117 |
+
for node in H:
|
| 118 |
+
betweenness[node] = betweenness[node] / nb + 1.0 / (2 - N)
|
| 119 |
+
return {ordering[node]: value for node, value in betweenness.items()}
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
@not_implemented_for("directed")
|
| 123 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 124 |
+
def edge_current_flow_betweenness_centrality_subset(
|
| 125 |
+
G, sources, targets, normalized=True, weight=None, dtype=float, solver="lu"
|
| 126 |
+
):
|
| 127 |
+
r"""Compute current-flow betweenness centrality for edges using subsets
|
| 128 |
+
of nodes.
|
| 129 |
+
|
| 130 |
+
Current-flow betweenness centrality uses an electrical current
|
| 131 |
+
model for information spreading in contrast to betweenness
|
| 132 |
+
centrality which uses shortest paths.
|
| 133 |
+
|
| 134 |
+
Current-flow betweenness centrality is also known as
|
| 135 |
+
random-walk betweenness centrality [2]_.
|
| 136 |
+
|
| 137 |
+
Parameters
|
| 138 |
+
----------
|
| 139 |
+
G : graph
|
| 140 |
+
A NetworkX graph
|
| 141 |
+
|
| 142 |
+
sources: list of nodes
|
| 143 |
+
Nodes to use as sources for current
|
| 144 |
+
|
| 145 |
+
targets: list of nodes
|
| 146 |
+
Nodes to use as sinks for current
|
| 147 |
+
|
| 148 |
+
normalized : bool, optional (default=True)
|
| 149 |
+
If True the betweenness values are normalized by b=b/(n-1)(n-2) where
|
| 150 |
+
n is the number of nodes in G.
|
| 151 |
+
|
| 152 |
+
weight : string or None, optional (default=None)
|
| 153 |
+
Key for edge data used as the edge weight.
|
| 154 |
+
If None, then use 1 as each edge weight.
|
| 155 |
+
The weight reflects the capacity or the strength of the
|
| 156 |
+
edge.
|
| 157 |
+
|
| 158 |
+
dtype: data type (float)
|
| 159 |
+
Default data type for internal matrices.
|
| 160 |
+
Set to np.float32 for lower memory consumption.
|
| 161 |
+
|
| 162 |
+
solver: string (default='lu')
|
| 163 |
+
Type of linear solver to use for computing the flow matrix.
|
| 164 |
+
Options are "full" (uses most memory), "lu" (recommended), and
|
| 165 |
+
"cg" (uses least memory).
|
| 166 |
+
|
| 167 |
+
Returns
|
| 168 |
+
-------
|
| 169 |
+
nodes : dict
|
| 170 |
+
Dictionary of edge tuples with betweenness centrality as the value.
|
| 171 |
+
|
| 172 |
+
See Also
|
| 173 |
+
--------
|
| 174 |
+
betweenness_centrality
|
| 175 |
+
edge_betweenness_centrality
|
| 176 |
+
current_flow_betweenness_centrality
|
| 177 |
+
|
| 178 |
+
Notes
|
| 179 |
+
-----
|
| 180 |
+
Current-flow betweenness can be computed in $O(I(n-1)+mn \log n)$
|
| 181 |
+
time [1]_, where $I(n-1)$ is the time needed to compute the
|
| 182 |
+
inverse Laplacian. For a full matrix this is $O(n^3)$ but using
|
| 183 |
+
sparse methods you can achieve $O(nm{\sqrt k})$ where $k$ is the
|
| 184 |
+
Laplacian matrix condition number.
|
| 185 |
+
|
| 186 |
+
The space required is $O(nw)$ where $w$ is the width of the sparse
|
| 187 |
+
Laplacian matrix. Worse case is $w=n$ for $O(n^2)$.
|
| 188 |
+
|
| 189 |
+
If the edges have a 'weight' attribute they will be used as
|
| 190 |
+
weights in this algorithm. Unspecified weights are set to 1.
|
| 191 |
+
|
| 192 |
+
References
|
| 193 |
+
----------
|
| 194 |
+
.. [1] Centrality Measures Based on Current Flow.
|
| 195 |
+
Ulrik Brandes and Daniel Fleischer,
|
| 196 |
+
Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS '05).
|
| 197 |
+
LNCS 3404, pp. 533-544. Springer-Verlag, 2005.
|
| 198 |
+
https://doi.org/10.1007/978-3-540-31856-9_44
|
| 199 |
+
|
| 200 |
+
.. [2] A measure of betweenness centrality based on random walks,
|
| 201 |
+
M. E. J. Newman, Social Networks 27, 39-54 (2005).
|
| 202 |
+
"""
|
| 203 |
+
import numpy as np
|
| 204 |
+
|
| 205 |
+
if not nx.is_connected(G):
|
| 206 |
+
raise nx.NetworkXError("Graph not connected.")
|
| 207 |
+
N = G.number_of_nodes()
|
| 208 |
+
ordering = list(reverse_cuthill_mckee_ordering(G))
|
| 209 |
+
# make a copy with integer labels according to rcm ordering
|
| 210 |
+
# this could be done without a copy if we really wanted to
|
| 211 |
+
mapping = dict(zip(ordering, range(N)))
|
| 212 |
+
H = nx.relabel_nodes(G, mapping)
|
| 213 |
+
edges = (tuple(sorted((u, v))) for u, v in H.edges())
|
| 214 |
+
betweenness = dict.fromkeys(edges, 0.0)
|
| 215 |
+
if normalized:
|
| 216 |
+
nb = (N - 1.0) * (N - 2.0) # normalization factor
|
| 217 |
+
else:
|
| 218 |
+
nb = 2.0
|
| 219 |
+
for row, (e) in flow_matrix_row(H, weight=weight, dtype=dtype, solver=solver):
|
| 220 |
+
for ss in sources:
|
| 221 |
+
i = mapping[ss]
|
| 222 |
+
for tt in targets:
|
| 223 |
+
j = mapping[tt]
|
| 224 |
+
betweenness[e] += 0.5 * abs(row.item(i) - row.item(j))
|
| 225 |
+
betweenness[e] /= nb
|
| 226 |
+
return {(ordering[s], ordering[t]): value for (s, t), value in betweenness.items()}
|
parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/current_flow_closeness.py
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Current-flow closeness centrality measures."""
|
| 2 |
+
import networkx as nx
|
| 3 |
+
from networkx.algorithms.centrality.flow_matrix import (
|
| 4 |
+
CGInverseLaplacian,
|
| 5 |
+
FullInverseLaplacian,
|
| 6 |
+
SuperLUInverseLaplacian,
|
| 7 |
+
)
|
| 8 |
+
from networkx.utils import not_implemented_for, reverse_cuthill_mckee_ordering
|
| 9 |
+
|
| 10 |
+
__all__ = ["current_flow_closeness_centrality", "information_centrality"]
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
@not_implemented_for("directed")
|
| 14 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 15 |
+
def current_flow_closeness_centrality(G, weight=None, dtype=float, solver="lu"):
|
| 16 |
+
"""Compute current-flow closeness centrality for nodes.
|
| 17 |
+
|
| 18 |
+
Current-flow closeness centrality is variant of closeness
|
| 19 |
+
centrality based on effective resistance between nodes in
|
| 20 |
+
a network. This metric is also known as information centrality.
|
| 21 |
+
|
| 22 |
+
Parameters
|
| 23 |
+
----------
|
| 24 |
+
G : graph
|
| 25 |
+
A NetworkX graph.
|
| 26 |
+
|
| 27 |
+
weight : None or string, optional (default=None)
|
| 28 |
+
If None, all edge weights are considered equal.
|
| 29 |
+
Otherwise holds the name of the edge attribute used as weight.
|
| 30 |
+
The weight reflects the capacity or the strength of the
|
| 31 |
+
edge.
|
| 32 |
+
|
| 33 |
+
dtype: data type (default=float)
|
| 34 |
+
Default data type for internal matrices.
|
| 35 |
+
Set to np.float32 for lower memory consumption.
|
| 36 |
+
|
| 37 |
+
solver: string (default='lu')
|
| 38 |
+
Type of linear solver to use for computing the flow matrix.
|
| 39 |
+
Options are "full" (uses most memory), "lu" (recommended), and
|
| 40 |
+
"cg" (uses least memory).
|
| 41 |
+
|
| 42 |
+
Returns
|
| 43 |
+
-------
|
| 44 |
+
nodes : dictionary
|
| 45 |
+
Dictionary of nodes with current flow closeness centrality as the value.
|
| 46 |
+
|
| 47 |
+
See Also
|
| 48 |
+
--------
|
| 49 |
+
closeness_centrality
|
| 50 |
+
|
| 51 |
+
Notes
|
| 52 |
+
-----
|
| 53 |
+
The algorithm is from Brandes [1]_.
|
| 54 |
+
|
| 55 |
+
See also [2]_ for the original definition of information centrality.
|
| 56 |
+
|
| 57 |
+
References
|
| 58 |
+
----------
|
| 59 |
+
.. [1] Ulrik Brandes and Daniel Fleischer,
|
| 60 |
+
Centrality Measures Based on Current Flow.
|
| 61 |
+
Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS '05).
|
| 62 |
+
LNCS 3404, pp. 533-544. Springer-Verlag, 2005.
|
| 63 |
+
https://doi.org/10.1007/978-3-540-31856-9_44
|
| 64 |
+
|
| 65 |
+
.. [2] Karen Stephenson and Marvin Zelen:
|
| 66 |
+
Rethinking centrality: Methods and examples.
|
| 67 |
+
Social Networks 11(1):1-37, 1989.
|
| 68 |
+
https://doi.org/10.1016/0378-8733(89)90016-6
|
| 69 |
+
"""
|
| 70 |
+
if not nx.is_connected(G):
|
| 71 |
+
raise nx.NetworkXError("Graph not connected.")
|
| 72 |
+
solvername = {
|
| 73 |
+
"full": FullInverseLaplacian,
|
| 74 |
+
"lu": SuperLUInverseLaplacian,
|
| 75 |
+
"cg": CGInverseLaplacian,
|
| 76 |
+
}
|
| 77 |
+
N = G.number_of_nodes()
|
| 78 |
+
ordering = list(reverse_cuthill_mckee_ordering(G))
|
| 79 |
+
# make a copy with integer labels according to rcm ordering
|
| 80 |
+
# this could be done without a copy if we really wanted to
|
| 81 |
+
H = nx.relabel_nodes(G, dict(zip(ordering, range(N))))
|
| 82 |
+
betweenness = dict.fromkeys(H, 0.0) # b[n]=0 for n in H
|
| 83 |
+
N = H.number_of_nodes()
|
| 84 |
+
L = nx.laplacian_matrix(H, nodelist=range(N), weight=weight).asformat("csc")
|
| 85 |
+
L = L.astype(dtype)
|
| 86 |
+
C2 = solvername[solver](L, width=1, dtype=dtype) # initialize solver
|
| 87 |
+
for v in H:
|
| 88 |
+
col = C2.get_row(v)
|
| 89 |
+
for w in H:
|
| 90 |
+
betweenness[v] += col.item(v) - 2 * col.item(w)
|
| 91 |
+
betweenness[w] += col.item(v)
|
| 92 |
+
return {ordering[node]: 1 / value for node, value in betweenness.items()}
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
information_centrality = current_flow_closeness_centrality
|
parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/degree_alg.py
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Degree centrality measures."""
|
| 2 |
+
import networkx as nx
|
| 3 |
+
from networkx.utils.decorators import not_implemented_for
|
| 4 |
+
|
| 5 |
+
__all__ = ["degree_centrality", "in_degree_centrality", "out_degree_centrality"]
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
@nx._dispatchable
|
| 9 |
+
def degree_centrality(G):
|
| 10 |
+
"""Compute the degree centrality for nodes.
|
| 11 |
+
|
| 12 |
+
The degree centrality for a node v is the fraction of nodes it
|
| 13 |
+
is connected to.
|
| 14 |
+
|
| 15 |
+
Parameters
|
| 16 |
+
----------
|
| 17 |
+
G : graph
|
| 18 |
+
A networkx graph
|
| 19 |
+
|
| 20 |
+
Returns
|
| 21 |
+
-------
|
| 22 |
+
nodes : dictionary
|
| 23 |
+
Dictionary of nodes with degree centrality as the value.
|
| 24 |
+
|
| 25 |
+
Examples
|
| 26 |
+
--------
|
| 27 |
+
>>> G = nx.Graph([(0, 1), (0, 2), (0, 3), (1, 2), (1, 3)])
|
| 28 |
+
>>> nx.degree_centrality(G)
|
| 29 |
+
{0: 1.0, 1: 1.0, 2: 0.6666666666666666, 3: 0.6666666666666666}
|
| 30 |
+
|
| 31 |
+
See Also
|
| 32 |
+
--------
|
| 33 |
+
betweenness_centrality, load_centrality, eigenvector_centrality
|
| 34 |
+
|
| 35 |
+
Notes
|
| 36 |
+
-----
|
| 37 |
+
The degree centrality values are normalized by dividing by the maximum
|
| 38 |
+
possible degree in a simple graph n-1 where n is the number of nodes in G.
|
| 39 |
+
|
| 40 |
+
For multigraphs or graphs with self loops the maximum degree might
|
| 41 |
+
be higher than n-1 and values of degree centrality greater than 1
|
| 42 |
+
are possible.
|
| 43 |
+
"""
|
| 44 |
+
if len(G) <= 1:
|
| 45 |
+
return {n: 1 for n in G}
|
| 46 |
+
|
| 47 |
+
s = 1.0 / (len(G) - 1.0)
|
| 48 |
+
centrality = {n: d * s for n, d in G.degree()}
|
| 49 |
+
return centrality
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
@not_implemented_for("undirected")
|
| 53 |
+
@nx._dispatchable
|
| 54 |
+
def in_degree_centrality(G):
|
| 55 |
+
"""Compute the in-degree centrality for nodes.
|
| 56 |
+
|
| 57 |
+
The in-degree centrality for a node v is the fraction of nodes its
|
| 58 |
+
incoming edges are connected to.
|
| 59 |
+
|
| 60 |
+
Parameters
|
| 61 |
+
----------
|
| 62 |
+
G : graph
|
| 63 |
+
A NetworkX graph
|
| 64 |
+
|
| 65 |
+
Returns
|
| 66 |
+
-------
|
| 67 |
+
nodes : dictionary
|
| 68 |
+
Dictionary of nodes with in-degree centrality as values.
|
| 69 |
+
|
| 70 |
+
Raises
|
| 71 |
+
------
|
| 72 |
+
NetworkXNotImplemented
|
| 73 |
+
If G is undirected.
|
| 74 |
+
|
| 75 |
+
Examples
|
| 76 |
+
--------
|
| 77 |
+
>>> G = nx.DiGraph([(0, 1), (0, 2), (0, 3), (1, 2), (1, 3)])
|
| 78 |
+
>>> nx.in_degree_centrality(G)
|
| 79 |
+
{0: 0.0, 1: 0.3333333333333333, 2: 0.6666666666666666, 3: 0.6666666666666666}
|
| 80 |
+
|
| 81 |
+
See Also
|
| 82 |
+
--------
|
| 83 |
+
degree_centrality, out_degree_centrality
|
| 84 |
+
|
| 85 |
+
Notes
|
| 86 |
+
-----
|
| 87 |
+
The degree centrality values are normalized by dividing by the maximum
|
| 88 |
+
possible degree in a simple graph n-1 where n is the number of nodes in G.
|
| 89 |
+
|
| 90 |
+
For multigraphs or graphs with self loops the maximum degree might
|
| 91 |
+
be higher than n-1 and values of degree centrality greater than 1
|
| 92 |
+
are possible.
|
| 93 |
+
"""
|
| 94 |
+
if len(G) <= 1:
|
| 95 |
+
return {n: 1 for n in G}
|
| 96 |
+
|
| 97 |
+
s = 1.0 / (len(G) - 1.0)
|
| 98 |
+
centrality = {n: d * s for n, d in G.in_degree()}
|
| 99 |
+
return centrality
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
@not_implemented_for("undirected")
|
| 103 |
+
@nx._dispatchable
|
| 104 |
+
def out_degree_centrality(G):
|
| 105 |
+
"""Compute the out-degree centrality for nodes.
|
| 106 |
+
|
| 107 |
+
The out-degree centrality for a node v is the fraction of nodes its
|
| 108 |
+
outgoing edges are connected to.
|
| 109 |
+
|
| 110 |
+
Parameters
|
| 111 |
+
----------
|
| 112 |
+
G : graph
|
| 113 |
+
A NetworkX graph
|
| 114 |
+
|
| 115 |
+
Returns
|
| 116 |
+
-------
|
| 117 |
+
nodes : dictionary
|
| 118 |
+
Dictionary of nodes with out-degree centrality as values.
|
| 119 |
+
|
| 120 |
+
Raises
|
| 121 |
+
------
|
| 122 |
+
NetworkXNotImplemented
|
| 123 |
+
If G is undirected.
|
| 124 |
+
|
| 125 |
+
Examples
|
| 126 |
+
--------
|
| 127 |
+
>>> G = nx.DiGraph([(0, 1), (0, 2), (0, 3), (1, 2), (1, 3)])
|
| 128 |
+
>>> nx.out_degree_centrality(G)
|
| 129 |
+
{0: 1.0, 1: 0.6666666666666666, 2: 0.0, 3: 0.0}
|
| 130 |
+
|
| 131 |
+
See Also
|
| 132 |
+
--------
|
| 133 |
+
degree_centrality, in_degree_centrality
|
| 134 |
+
|
| 135 |
+
Notes
|
| 136 |
+
-----
|
| 137 |
+
The degree centrality values are normalized by dividing by the maximum
|
| 138 |
+
possible degree in a simple graph n-1 where n is the number of nodes in G.
|
| 139 |
+
|
| 140 |
+
For multigraphs or graphs with self loops the maximum degree might
|
| 141 |
+
be higher than n-1 and values of degree centrality greater than 1
|
| 142 |
+
are possible.
|
| 143 |
+
"""
|
| 144 |
+
if len(G) <= 1:
|
| 145 |
+
return {n: 1 for n in G}
|
| 146 |
+
|
| 147 |
+
s = 1.0 / (len(G) - 1.0)
|
| 148 |
+
centrality = {n: d * s for n, d in G.out_degree()}
|
| 149 |
+
return centrality
|
parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/dispersion.py
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from itertools import combinations
|
| 2 |
+
|
| 3 |
+
import networkx as nx
|
| 4 |
+
|
| 5 |
+
__all__ = ["dispersion"]
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
@nx._dispatchable
|
| 9 |
+
def dispersion(G, u=None, v=None, normalized=True, alpha=1.0, b=0.0, c=0.0):
|
| 10 |
+
r"""Calculate dispersion between `u` and `v` in `G`.
|
| 11 |
+
|
| 12 |
+
A link between two actors (`u` and `v`) has a high dispersion when their
|
| 13 |
+
mutual ties (`s` and `t`) are not well connected with each other.
|
| 14 |
+
|
| 15 |
+
Parameters
|
| 16 |
+
----------
|
| 17 |
+
G : graph
|
| 18 |
+
A NetworkX graph.
|
| 19 |
+
u : node, optional
|
| 20 |
+
The source for the dispersion score (e.g. ego node of the network).
|
| 21 |
+
v : node, optional
|
| 22 |
+
The target of the dispersion score if specified.
|
| 23 |
+
normalized : bool
|
| 24 |
+
If True (default) normalize by the embeddedness of the nodes (u and v).
|
| 25 |
+
alpha, b, c : float
|
| 26 |
+
Parameters for the normalization procedure. When `normalized` is True,
|
| 27 |
+
the dispersion value is normalized by::
|
| 28 |
+
|
| 29 |
+
result = ((dispersion + b) ** alpha) / (embeddedness + c)
|
| 30 |
+
|
| 31 |
+
as long as the denominator is nonzero.
|
| 32 |
+
|
| 33 |
+
Returns
|
| 34 |
+
-------
|
| 35 |
+
nodes : dictionary
|
| 36 |
+
If u (v) is specified, returns a dictionary of nodes with dispersion
|
| 37 |
+
score for all "target" ("source") nodes. If neither u nor v is
|
| 38 |
+
specified, returns a dictionary of dictionaries for all nodes 'u' in the
|
| 39 |
+
graph with a dispersion score for each node 'v'.
|
| 40 |
+
|
| 41 |
+
Notes
|
| 42 |
+
-----
|
| 43 |
+
This implementation follows Lars Backstrom and Jon Kleinberg [1]_. Typical
|
| 44 |
+
usage would be to run dispersion on the ego network $G_u$ if $u$ were
|
| 45 |
+
specified. Running :func:`dispersion` with neither $u$ nor $v$ specified
|
| 46 |
+
can take some time to complete.
|
| 47 |
+
|
| 48 |
+
References
|
| 49 |
+
----------
|
| 50 |
+
.. [1] Romantic Partnerships and the Dispersion of Social Ties:
|
| 51 |
+
A Network Analysis of Relationship Status on Facebook.
|
| 52 |
+
Lars Backstrom, Jon Kleinberg.
|
| 53 |
+
https://arxiv.org/pdf/1310.6753v1.pdf
|
| 54 |
+
|
| 55 |
+
"""
|
| 56 |
+
|
| 57 |
+
def _dispersion(G_u, u, v):
|
| 58 |
+
"""dispersion for all nodes 'v' in a ego network G_u of node 'u'"""
|
| 59 |
+
u_nbrs = set(G_u[u])
|
| 60 |
+
ST = {n for n in G_u[v] if n in u_nbrs}
|
| 61 |
+
set_uv = {u, v}
|
| 62 |
+
# all possible ties of connections that u and b share
|
| 63 |
+
possib = combinations(ST, 2)
|
| 64 |
+
total = 0
|
| 65 |
+
for s, t in possib:
|
| 66 |
+
# neighbors of s that are in G_u, not including u and v
|
| 67 |
+
nbrs_s = u_nbrs.intersection(G_u[s]) - set_uv
|
| 68 |
+
# s and t are not directly connected
|
| 69 |
+
if t not in nbrs_s:
|
| 70 |
+
# s and t do not share a connection
|
| 71 |
+
if nbrs_s.isdisjoint(G_u[t]):
|
| 72 |
+
# tick for disp(u, v)
|
| 73 |
+
total += 1
|
| 74 |
+
# neighbors that u and v share
|
| 75 |
+
embeddedness = len(ST)
|
| 76 |
+
|
| 77 |
+
dispersion_val = total
|
| 78 |
+
if normalized:
|
| 79 |
+
dispersion_val = (total + b) ** alpha
|
| 80 |
+
if embeddedness + c != 0:
|
| 81 |
+
dispersion_val /= embeddedness + c
|
| 82 |
+
|
| 83 |
+
return dispersion_val
|
| 84 |
+
|
| 85 |
+
if u is None:
|
| 86 |
+
# v and u are not specified
|
| 87 |
+
if v is None:
|
| 88 |
+
results = {n: {} for n in G}
|
| 89 |
+
for u in G:
|
| 90 |
+
for v in G[u]:
|
| 91 |
+
results[u][v] = _dispersion(G, u, v)
|
| 92 |
+
# u is not specified, but v is
|
| 93 |
+
else:
|
| 94 |
+
results = dict.fromkeys(G[v], {})
|
| 95 |
+
for u in G[v]:
|
| 96 |
+
results[u] = _dispersion(G, v, u)
|
| 97 |
+
else:
|
| 98 |
+
# u is specified with no target v
|
| 99 |
+
if v is None:
|
| 100 |
+
results = dict.fromkeys(G[u], {})
|
| 101 |
+
for v in G[u]:
|
| 102 |
+
results[v] = _dispersion(G, u, v)
|
| 103 |
+
# both u and v are specified
|
| 104 |
+
else:
|
| 105 |
+
results = _dispersion(G, u, v)
|
| 106 |
+
|
| 107 |
+
return results
|
parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/eigenvector.py
ADDED
|
@@ -0,0 +1,341 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Functions for computing eigenvector centrality."""
|
| 2 |
+
import math
|
| 3 |
+
|
| 4 |
+
import networkx as nx
|
| 5 |
+
from networkx.utils import not_implemented_for
|
| 6 |
+
|
| 7 |
+
__all__ = ["eigenvector_centrality", "eigenvector_centrality_numpy"]
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
@not_implemented_for("multigraph")
|
| 11 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 12 |
+
def eigenvector_centrality(G, max_iter=100, tol=1.0e-6, nstart=None, weight=None):
|
| 13 |
+
r"""Compute the eigenvector centrality for the graph G.
|
| 14 |
+
|
| 15 |
+
Eigenvector centrality computes the centrality for a node by adding
|
| 16 |
+
the centrality of its predecessors. The centrality for node $i$ is the
|
| 17 |
+
$i$-th element of a left eigenvector associated with the eigenvalue $\lambda$
|
| 18 |
+
of maximum modulus that is positive. Such an eigenvector $x$ is
|
| 19 |
+
defined up to a multiplicative constant by the equation
|
| 20 |
+
|
| 21 |
+
.. math::
|
| 22 |
+
|
| 23 |
+
\lambda x^T = x^T A,
|
| 24 |
+
|
| 25 |
+
where $A$ is the adjacency matrix of the graph G. By definition of
|
| 26 |
+
row-column product, the equation above is equivalent to
|
| 27 |
+
|
| 28 |
+
.. math::
|
| 29 |
+
|
| 30 |
+
\lambda x_i = \sum_{j\to i}x_j.
|
| 31 |
+
|
| 32 |
+
That is, adding the eigenvector centralities of the predecessors of
|
| 33 |
+
$i$ one obtains the eigenvector centrality of $i$ multiplied by
|
| 34 |
+
$\lambda$. In the case of undirected graphs, $x$ also solves the familiar
|
| 35 |
+
right-eigenvector equation $Ax = \lambda x$.
|
| 36 |
+
|
| 37 |
+
By virtue of the Perron–Frobenius theorem [1]_, if G is strongly
|
| 38 |
+
connected there is a unique eigenvector $x$, and all its entries
|
| 39 |
+
are strictly positive.
|
| 40 |
+
|
| 41 |
+
If G is not strongly connected there might be several left
|
| 42 |
+
eigenvectors associated with $\lambda$, and some of their elements
|
| 43 |
+
might be zero.
|
| 44 |
+
|
| 45 |
+
Parameters
|
| 46 |
+
----------
|
| 47 |
+
G : graph
|
| 48 |
+
A networkx graph.
|
| 49 |
+
|
| 50 |
+
max_iter : integer, optional (default=100)
|
| 51 |
+
Maximum number of power iterations.
|
| 52 |
+
|
| 53 |
+
tol : float, optional (default=1.0e-6)
|
| 54 |
+
Error tolerance (in Euclidean norm) used to check convergence in
|
| 55 |
+
power iteration.
|
| 56 |
+
|
| 57 |
+
nstart : dictionary, optional (default=None)
|
| 58 |
+
Starting value of power iteration for each node. Must have a nonzero
|
| 59 |
+
projection on the desired eigenvector for the power method to converge.
|
| 60 |
+
If None, this implementation uses an all-ones vector, which is a safe
|
| 61 |
+
choice.
|
| 62 |
+
|
| 63 |
+
weight : None or string, optional (default=None)
|
| 64 |
+
If None, all edge weights are considered equal. Otherwise holds the
|
| 65 |
+
name of the edge attribute used as weight. In this measure the
|
| 66 |
+
weight is interpreted as the connection strength.
|
| 67 |
+
|
| 68 |
+
Returns
|
| 69 |
+
-------
|
| 70 |
+
nodes : dictionary
|
| 71 |
+
Dictionary of nodes with eigenvector centrality as the value. The
|
| 72 |
+
associated vector has unit Euclidean norm and the values are
|
| 73 |
+
nonegative.
|
| 74 |
+
|
| 75 |
+
Examples
|
| 76 |
+
--------
|
| 77 |
+
>>> G = nx.path_graph(4)
|
| 78 |
+
>>> centrality = nx.eigenvector_centrality(G)
|
| 79 |
+
>>> sorted((v, f"{c:0.2f}") for v, c in centrality.items())
|
| 80 |
+
[(0, '0.37'), (1, '0.60'), (2, '0.60'), (3, '0.37')]
|
| 81 |
+
|
| 82 |
+
Raises
|
| 83 |
+
------
|
| 84 |
+
NetworkXPointlessConcept
|
| 85 |
+
If the graph G is the null graph.
|
| 86 |
+
|
| 87 |
+
NetworkXError
|
| 88 |
+
If each value in `nstart` is zero.
|
| 89 |
+
|
| 90 |
+
PowerIterationFailedConvergence
|
| 91 |
+
If the algorithm fails to converge to the specified tolerance
|
| 92 |
+
within the specified number of iterations of the power iteration
|
| 93 |
+
method.
|
| 94 |
+
|
| 95 |
+
See Also
|
| 96 |
+
--------
|
| 97 |
+
eigenvector_centrality_numpy
|
| 98 |
+
:func:`~networkx.algorithms.link_analysis.pagerank_alg.pagerank`
|
| 99 |
+
:func:`~networkx.algorithms.link_analysis.hits_alg.hits`
|
| 100 |
+
|
| 101 |
+
Notes
|
| 102 |
+
-----
|
| 103 |
+
Eigenvector centrality was introduced by Landau [2]_ for chess
|
| 104 |
+
tournaments. It was later rediscovered by Wei [3]_ and then
|
| 105 |
+
popularized by Kendall [4]_ in the context of sport ranking. Berge
|
| 106 |
+
introduced a general definition for graphs based on social connections
|
| 107 |
+
[5]_. Bonacich [6]_ reintroduced again eigenvector centrality and made
|
| 108 |
+
it popular in link analysis.
|
| 109 |
+
|
| 110 |
+
This function computes the left dominant eigenvector, which corresponds
|
| 111 |
+
to adding the centrality of predecessors: this is the usual approach.
|
| 112 |
+
To add the centrality of successors first reverse the graph with
|
| 113 |
+
``G.reverse()``.
|
| 114 |
+
|
| 115 |
+
The implementation uses power iteration [7]_ to compute a dominant
|
| 116 |
+
eigenvector starting from the provided vector `nstart`. Convergence is
|
| 117 |
+
guaranteed as long as `nstart` has a nonzero projection on a dominant
|
| 118 |
+
eigenvector, which certainly happens using the default value.
|
| 119 |
+
|
| 120 |
+
The method stops when the change in the computed vector between two
|
| 121 |
+
iterations is smaller than an error tolerance of ``G.number_of_nodes()
|
| 122 |
+
* tol`` or after ``max_iter`` iterations, but in the second case it
|
| 123 |
+
raises an exception.
|
| 124 |
+
|
| 125 |
+
This implementation uses $(A + I)$ rather than the adjacency matrix
|
| 126 |
+
$A$ because the change preserves eigenvectors, but it shifts the
|
| 127 |
+
spectrum, thus guaranteeing convergence even for networks with
|
| 128 |
+
negative eigenvalues of maximum modulus.
|
| 129 |
+
|
| 130 |
+
References
|
| 131 |
+
----------
|
| 132 |
+
.. [1] Abraham Berman and Robert J. Plemmons.
|
| 133 |
+
"Nonnegative Matrices in the Mathematical Sciences."
|
| 134 |
+
Classics in Applied Mathematics. SIAM, 1994.
|
| 135 |
+
|
| 136 |
+
.. [2] Edmund Landau.
|
| 137 |
+
"Zur relativen Wertbemessung der Turnierresultate."
|
| 138 |
+
Deutsches Wochenschach, 11:366–369, 1895.
|
| 139 |
+
|
| 140 |
+
.. [3] Teh-Hsing Wei.
|
| 141 |
+
"The Algebraic Foundations of Ranking Theory."
|
| 142 |
+
PhD thesis, University of Cambridge, 1952.
|
| 143 |
+
|
| 144 |
+
.. [4] Maurice G. Kendall.
|
| 145 |
+
"Further contributions to the theory of paired comparisons."
|
| 146 |
+
Biometrics, 11(1):43–62, 1955.
|
| 147 |
+
https://www.jstor.org/stable/3001479
|
| 148 |
+
|
| 149 |
+
.. [5] Claude Berge
|
| 150 |
+
"Théorie des graphes et ses applications."
|
| 151 |
+
Dunod, Paris, France, 1958.
|
| 152 |
+
|
| 153 |
+
.. [6] Phillip Bonacich.
|
| 154 |
+
"Technique for analyzing overlapping memberships."
|
| 155 |
+
Sociological Methodology, 4:176–185, 1972.
|
| 156 |
+
https://www.jstor.org/stable/270732
|
| 157 |
+
|
| 158 |
+
.. [7] Power iteration:: https://en.wikipedia.org/wiki/Power_iteration
|
| 159 |
+
|
| 160 |
+
"""
|
| 161 |
+
if len(G) == 0:
|
| 162 |
+
raise nx.NetworkXPointlessConcept(
|
| 163 |
+
"cannot compute centrality for the null graph"
|
| 164 |
+
)
|
| 165 |
+
# If no initial vector is provided, start with the all-ones vector.
|
| 166 |
+
if nstart is None:
|
| 167 |
+
nstart = {v: 1 for v in G}
|
| 168 |
+
if all(v == 0 for v in nstart.values()):
|
| 169 |
+
raise nx.NetworkXError("initial vector cannot have all zero values")
|
| 170 |
+
# Normalize the initial vector so that each entry is in [0, 1]. This is
|
| 171 |
+
# guaranteed to never have a divide-by-zero error by the previous line.
|
| 172 |
+
nstart_sum = sum(nstart.values())
|
| 173 |
+
x = {k: v / nstart_sum for k, v in nstart.items()}
|
| 174 |
+
nnodes = G.number_of_nodes()
|
| 175 |
+
# make up to max_iter iterations
|
| 176 |
+
for _ in range(max_iter):
|
| 177 |
+
xlast = x
|
| 178 |
+
x = xlast.copy() # Start with xlast times I to iterate with (A+I)
|
| 179 |
+
# do the multiplication y^T = x^T A (left eigenvector)
|
| 180 |
+
for n in x:
|
| 181 |
+
for nbr in G[n]:
|
| 182 |
+
w = G[n][nbr].get(weight, 1) if weight else 1
|
| 183 |
+
x[nbr] += xlast[n] * w
|
| 184 |
+
# Normalize the vector. The normalization denominator `norm`
|
| 185 |
+
# should never be zero by the Perron--Frobenius
|
| 186 |
+
# theorem. However, in case it is due to numerical error, we
|
| 187 |
+
# assume the norm to be one instead.
|
| 188 |
+
norm = math.hypot(*x.values()) or 1
|
| 189 |
+
x = {k: v / norm for k, v in x.items()}
|
| 190 |
+
# Check for convergence (in the L_1 norm).
|
| 191 |
+
if sum(abs(x[n] - xlast[n]) for n in x) < nnodes * tol:
|
| 192 |
+
return x
|
| 193 |
+
raise nx.PowerIterationFailedConvergence(max_iter)
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 197 |
+
def eigenvector_centrality_numpy(G, weight=None, max_iter=50, tol=0):
|
| 198 |
+
r"""Compute the eigenvector centrality for the graph G.
|
| 199 |
+
|
| 200 |
+
Eigenvector centrality computes the centrality for a node by adding
|
| 201 |
+
the centrality of its predecessors. The centrality for node $i$ is the
|
| 202 |
+
$i$-th element of a left eigenvector associated with the eigenvalue $\lambda$
|
| 203 |
+
of maximum modulus that is positive. Such an eigenvector $x$ is
|
| 204 |
+
defined up to a multiplicative constant by the equation
|
| 205 |
+
|
| 206 |
+
.. math::
|
| 207 |
+
|
| 208 |
+
\lambda x^T = x^T A,
|
| 209 |
+
|
| 210 |
+
where $A$ is the adjacency matrix of the graph G. By definition of
|
| 211 |
+
row-column product, the equation above is equivalent to
|
| 212 |
+
|
| 213 |
+
.. math::
|
| 214 |
+
|
| 215 |
+
\lambda x_i = \sum_{j\to i}x_j.
|
| 216 |
+
|
| 217 |
+
That is, adding the eigenvector centralities of the predecessors of
|
| 218 |
+
$i$ one obtains the eigenvector centrality of $i$ multiplied by
|
| 219 |
+
$\lambda$. In the case of undirected graphs, $x$ also solves the familiar
|
| 220 |
+
right-eigenvector equation $Ax = \lambda x$.
|
| 221 |
+
|
| 222 |
+
By virtue of the Perron–Frobenius theorem [1]_, if G is strongly
|
| 223 |
+
connected there is a unique eigenvector $x$, and all its entries
|
| 224 |
+
are strictly positive.
|
| 225 |
+
|
| 226 |
+
If G is not strongly connected there might be several left
|
| 227 |
+
eigenvectors associated with $\lambda$, and some of their elements
|
| 228 |
+
might be zero.
|
| 229 |
+
|
| 230 |
+
Parameters
|
| 231 |
+
----------
|
| 232 |
+
G : graph
|
| 233 |
+
A networkx graph.
|
| 234 |
+
|
| 235 |
+
max_iter : integer, optional (default=50)
|
| 236 |
+
Maximum number of Arnoldi update iterations allowed.
|
| 237 |
+
|
| 238 |
+
tol : float, optional (default=0)
|
| 239 |
+
Relative accuracy for eigenvalues (stopping criterion).
|
| 240 |
+
The default value of 0 implies machine precision.
|
| 241 |
+
|
| 242 |
+
weight : None or string, optional (default=None)
|
| 243 |
+
If None, all edge weights are considered equal. Otherwise holds the
|
| 244 |
+
name of the edge attribute used as weight. In this measure the
|
| 245 |
+
weight is interpreted as the connection strength.
|
| 246 |
+
|
| 247 |
+
Returns
|
| 248 |
+
-------
|
| 249 |
+
nodes : dictionary
|
| 250 |
+
Dictionary of nodes with eigenvector centrality as the value. The
|
| 251 |
+
associated vector has unit Euclidean norm and the values are
|
| 252 |
+
nonegative.
|
| 253 |
+
|
| 254 |
+
Examples
|
| 255 |
+
--------
|
| 256 |
+
>>> G = nx.path_graph(4)
|
| 257 |
+
>>> centrality = nx.eigenvector_centrality_numpy(G)
|
| 258 |
+
>>> print([f"{node} {centrality[node]:0.2f}" for node in centrality])
|
| 259 |
+
['0 0.37', '1 0.60', '2 0.60', '3 0.37']
|
| 260 |
+
|
| 261 |
+
Raises
|
| 262 |
+
------
|
| 263 |
+
NetworkXPointlessConcept
|
| 264 |
+
If the graph G is the null graph.
|
| 265 |
+
|
| 266 |
+
ArpackNoConvergence
|
| 267 |
+
When the requested convergence is not obtained. The currently
|
| 268 |
+
converged eigenvalues and eigenvectors can be found as
|
| 269 |
+
eigenvalues and eigenvectors attributes of the exception object.
|
| 270 |
+
|
| 271 |
+
See Also
|
| 272 |
+
--------
|
| 273 |
+
:func:`scipy.sparse.linalg.eigs`
|
| 274 |
+
eigenvector_centrality
|
| 275 |
+
:func:`~networkx.algorithms.link_analysis.pagerank_alg.pagerank`
|
| 276 |
+
:func:`~networkx.algorithms.link_analysis.hits_alg.hits`
|
| 277 |
+
|
| 278 |
+
Notes
|
| 279 |
+
-----
|
| 280 |
+
Eigenvector centrality was introduced by Landau [2]_ for chess
|
| 281 |
+
tournaments. It was later rediscovered by Wei [3]_ and then
|
| 282 |
+
popularized by Kendall [4]_ in the context of sport ranking. Berge
|
| 283 |
+
introduced a general definition for graphs based on social connections
|
| 284 |
+
[5]_. Bonacich [6]_ reintroduced again eigenvector centrality and made
|
| 285 |
+
it popular in link analysis.
|
| 286 |
+
|
| 287 |
+
This function computes the left dominant eigenvector, which corresponds
|
| 288 |
+
to adding the centrality of predecessors: this is the usual approach.
|
| 289 |
+
To add the centrality of successors first reverse the graph with
|
| 290 |
+
``G.reverse()``.
|
| 291 |
+
|
| 292 |
+
This implementation uses the
|
| 293 |
+
:func:`SciPy sparse eigenvalue solver<scipy.sparse.linalg.eigs>` (ARPACK)
|
| 294 |
+
to find the largest eigenvalue/eigenvector pair using Arnoldi iterations
|
| 295 |
+
[7]_.
|
| 296 |
+
|
| 297 |
+
References
|
| 298 |
+
----------
|
| 299 |
+
.. [1] Abraham Berman and Robert J. Plemmons.
|
| 300 |
+
"Nonnegative Matrices in the Mathematical Sciences."
|
| 301 |
+
Classics in Applied Mathematics. SIAM, 1994.
|
| 302 |
+
|
| 303 |
+
.. [2] Edmund Landau.
|
| 304 |
+
"Zur relativen Wertbemessung der Turnierresultate."
|
| 305 |
+
Deutsches Wochenschach, 11:366–369, 1895.
|
| 306 |
+
|
| 307 |
+
.. [3] Teh-Hsing Wei.
|
| 308 |
+
"The Algebraic Foundations of Ranking Theory."
|
| 309 |
+
PhD thesis, University of Cambridge, 1952.
|
| 310 |
+
|
| 311 |
+
.. [4] Maurice G. Kendall.
|
| 312 |
+
"Further contributions to the theory of paired comparisons."
|
| 313 |
+
Biometrics, 11(1):43–62, 1955.
|
| 314 |
+
https://www.jstor.org/stable/3001479
|
| 315 |
+
|
| 316 |
+
.. [5] Claude Berge
|
| 317 |
+
"Théorie des graphes et ses applications."
|
| 318 |
+
Dunod, Paris, France, 1958.
|
| 319 |
+
|
| 320 |
+
.. [6] Phillip Bonacich.
|
| 321 |
+
"Technique for analyzing overlapping memberships."
|
| 322 |
+
Sociological Methodology, 4:176–185, 1972.
|
| 323 |
+
https://www.jstor.org/stable/270732
|
| 324 |
+
|
| 325 |
+
.. [7] Arnoldi iteration:: https://en.wikipedia.org/wiki/Arnoldi_iteration
|
| 326 |
+
|
| 327 |
+
"""
|
| 328 |
+
import numpy as np
|
| 329 |
+
import scipy as sp
|
| 330 |
+
|
| 331 |
+
if len(G) == 0:
|
| 332 |
+
raise nx.NetworkXPointlessConcept(
|
| 333 |
+
"cannot compute centrality for the null graph"
|
| 334 |
+
)
|
| 335 |
+
M = nx.to_scipy_sparse_array(G, nodelist=list(G), weight=weight, dtype=float)
|
| 336 |
+
_, eigenvector = sp.sparse.linalg.eigs(
|
| 337 |
+
M.T, k=1, which="LR", maxiter=max_iter, tol=tol
|
| 338 |
+
)
|
| 339 |
+
largest = eigenvector.flatten().real
|
| 340 |
+
norm = np.sign(largest.sum()) * sp.linalg.norm(largest)
|
| 341 |
+
return dict(zip(G, (largest / norm).tolist()))
|
parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/flow_matrix.py
ADDED
|
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Helpers for current-flow betweenness and current-flow closeness
|
| 2 |
+
# Lazy computations for inverse Laplacian and flow-matrix rows.
|
| 3 |
+
import networkx as nx
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 7 |
+
def flow_matrix_row(G, weight=None, dtype=float, solver="lu"):
|
| 8 |
+
# Generate a row of the current-flow matrix
|
| 9 |
+
import numpy as np
|
| 10 |
+
|
| 11 |
+
solvername = {
|
| 12 |
+
"full": FullInverseLaplacian,
|
| 13 |
+
"lu": SuperLUInverseLaplacian,
|
| 14 |
+
"cg": CGInverseLaplacian,
|
| 15 |
+
}
|
| 16 |
+
n = G.number_of_nodes()
|
| 17 |
+
L = nx.laplacian_matrix(G, nodelist=range(n), weight=weight).asformat("csc")
|
| 18 |
+
L = L.astype(dtype)
|
| 19 |
+
C = solvername[solver](L, dtype=dtype) # initialize solver
|
| 20 |
+
w = C.w # w is the Laplacian matrix width
|
| 21 |
+
# row-by-row flow matrix
|
| 22 |
+
for u, v in sorted(sorted((u, v)) for u, v in G.edges()):
|
| 23 |
+
B = np.zeros(w, dtype=dtype)
|
| 24 |
+
c = G[u][v].get(weight, 1.0)
|
| 25 |
+
B[u % w] = c
|
| 26 |
+
B[v % w] = -c
|
| 27 |
+
# get only the rows needed in the inverse laplacian
|
| 28 |
+
# and multiply to get the flow matrix row
|
| 29 |
+
row = B @ C.get_rows(u, v)
|
| 30 |
+
yield row, (u, v)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
# Class to compute the inverse laplacian only for specified rows
|
| 34 |
+
# Allows computation of the current-flow matrix without storing entire
|
| 35 |
+
# inverse laplacian matrix
|
| 36 |
+
class InverseLaplacian:
|
| 37 |
+
def __init__(self, L, width=None, dtype=None):
|
| 38 |
+
global np
|
| 39 |
+
import numpy as np
|
| 40 |
+
|
| 41 |
+
(n, n) = L.shape
|
| 42 |
+
self.dtype = dtype
|
| 43 |
+
self.n = n
|
| 44 |
+
if width is None:
|
| 45 |
+
self.w = self.width(L)
|
| 46 |
+
else:
|
| 47 |
+
self.w = width
|
| 48 |
+
self.C = np.zeros((self.w, n), dtype=dtype)
|
| 49 |
+
self.L1 = L[1:, 1:]
|
| 50 |
+
self.init_solver(L)
|
| 51 |
+
|
| 52 |
+
def init_solver(self, L):
|
| 53 |
+
pass
|
| 54 |
+
|
| 55 |
+
def solve(self, r):
|
| 56 |
+
raise nx.NetworkXError("Implement solver")
|
| 57 |
+
|
| 58 |
+
def solve_inverse(self, r):
|
| 59 |
+
raise nx.NetworkXError("Implement solver")
|
| 60 |
+
|
| 61 |
+
def get_rows(self, r1, r2):
|
| 62 |
+
for r in range(r1, r2 + 1):
|
| 63 |
+
self.C[r % self.w, 1:] = self.solve_inverse(r)
|
| 64 |
+
return self.C
|
| 65 |
+
|
| 66 |
+
def get_row(self, r):
|
| 67 |
+
self.C[r % self.w, 1:] = self.solve_inverse(r)
|
| 68 |
+
return self.C[r % self.w]
|
| 69 |
+
|
| 70 |
+
def width(self, L):
|
| 71 |
+
m = 0
|
| 72 |
+
for i, row in enumerate(L):
|
| 73 |
+
w = 0
|
| 74 |
+
x, y = np.nonzero(row)
|
| 75 |
+
if len(y) > 0:
|
| 76 |
+
v = y - i
|
| 77 |
+
w = v.max() - v.min() + 1
|
| 78 |
+
m = max(w, m)
|
| 79 |
+
return m
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
class FullInverseLaplacian(InverseLaplacian):
|
| 83 |
+
def init_solver(self, L):
|
| 84 |
+
self.IL = np.zeros(L.shape, dtype=self.dtype)
|
| 85 |
+
self.IL[1:, 1:] = np.linalg.inv(self.L1.todense())
|
| 86 |
+
|
| 87 |
+
def solve(self, rhs):
|
| 88 |
+
s = np.zeros(rhs.shape, dtype=self.dtype)
|
| 89 |
+
s = self.IL @ rhs
|
| 90 |
+
return s
|
| 91 |
+
|
| 92 |
+
def solve_inverse(self, r):
|
| 93 |
+
return self.IL[r, 1:]
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
class SuperLUInverseLaplacian(InverseLaplacian):
|
| 97 |
+
def init_solver(self, L):
|
| 98 |
+
import scipy as sp
|
| 99 |
+
|
| 100 |
+
self.lusolve = sp.sparse.linalg.factorized(self.L1.tocsc())
|
| 101 |
+
|
| 102 |
+
def solve_inverse(self, r):
|
| 103 |
+
rhs = np.zeros(self.n, dtype=self.dtype)
|
| 104 |
+
rhs[r] = 1
|
| 105 |
+
return self.lusolve(rhs[1:])
|
| 106 |
+
|
| 107 |
+
def solve(self, rhs):
|
| 108 |
+
s = np.zeros(rhs.shape, dtype=self.dtype)
|
| 109 |
+
s[1:] = self.lusolve(rhs[1:])
|
| 110 |
+
return s
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
class CGInverseLaplacian(InverseLaplacian):
|
| 114 |
+
def init_solver(self, L):
|
| 115 |
+
global sp
|
| 116 |
+
import scipy as sp
|
| 117 |
+
|
| 118 |
+
ilu = sp.sparse.linalg.spilu(self.L1.tocsc())
|
| 119 |
+
n = self.n - 1
|
| 120 |
+
self.M = sp.sparse.linalg.LinearOperator(shape=(n, n), matvec=ilu.solve)
|
| 121 |
+
|
| 122 |
+
def solve(self, rhs):
|
| 123 |
+
s = np.zeros(rhs.shape, dtype=self.dtype)
|
| 124 |
+
s[1:] = sp.sparse.linalg.cg(self.L1, rhs[1:], M=self.M, atol=0)[0]
|
| 125 |
+
return s
|
| 126 |
+
|
| 127 |
+
def solve_inverse(self, r):
|
| 128 |
+
rhs = np.zeros(self.n, self.dtype)
|
| 129 |
+
rhs[r] = 1
|
| 130 |
+
return sp.sparse.linalg.cg(self.L1, rhs[1:], M=self.M, atol=0)[0]
|
parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/group.py
ADDED
|
@@ -0,0 +1,786 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Group centrality measures."""
|
| 2 |
+
from copy import deepcopy
|
| 3 |
+
|
| 4 |
+
import networkx as nx
|
| 5 |
+
from networkx.algorithms.centrality.betweenness import (
|
| 6 |
+
_accumulate_endpoints,
|
| 7 |
+
_single_source_dijkstra_path_basic,
|
| 8 |
+
_single_source_shortest_path_basic,
|
| 9 |
+
)
|
| 10 |
+
from networkx.utils.decorators import not_implemented_for
|
| 11 |
+
|
| 12 |
+
__all__ = [
|
| 13 |
+
"group_betweenness_centrality",
|
| 14 |
+
"group_closeness_centrality",
|
| 15 |
+
"group_degree_centrality",
|
| 16 |
+
"group_in_degree_centrality",
|
| 17 |
+
"group_out_degree_centrality",
|
| 18 |
+
"prominent_group",
|
| 19 |
+
]
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 23 |
+
def group_betweenness_centrality(G, C, normalized=True, weight=None, endpoints=False):
|
| 24 |
+
r"""Compute the group betweenness centrality for a group of nodes.
|
| 25 |
+
|
| 26 |
+
Group betweenness centrality of a group of nodes $C$ is the sum of the
|
| 27 |
+
fraction of all-pairs shortest paths that pass through any vertex in $C$
|
| 28 |
+
|
| 29 |
+
.. math::
|
| 30 |
+
|
| 31 |
+
c_B(v) =\sum_{s,t \in V} \frac{\sigma(s, t|v)}{\sigma(s, t)}
|
| 32 |
+
|
| 33 |
+
where $V$ is the set of nodes, $\sigma(s, t)$ is the number of
|
| 34 |
+
shortest $(s, t)$-paths, and $\sigma(s, t|C)$ is the number of
|
| 35 |
+
those paths passing through some node in group $C$. Note that
|
| 36 |
+
$(s, t)$ are not members of the group ($V-C$ is the set of nodes
|
| 37 |
+
in $V$ that are not in $C$).
|
| 38 |
+
|
| 39 |
+
Parameters
|
| 40 |
+
----------
|
| 41 |
+
G : graph
|
| 42 |
+
A NetworkX graph.
|
| 43 |
+
|
| 44 |
+
C : list or set or list of lists or list of sets
|
| 45 |
+
A group or a list of groups containing nodes which belong to G, for which group betweenness
|
| 46 |
+
centrality is to be calculated.
|
| 47 |
+
|
| 48 |
+
normalized : bool, optional (default=True)
|
| 49 |
+
If True, group betweenness is normalized by `1/((|V|-|C|)(|V|-|C|-1))`
|
| 50 |
+
where `|V|` is the number of nodes in G and `|C|` is the number of nodes in C.
|
| 51 |
+
|
| 52 |
+
weight : None or string, optional (default=None)
|
| 53 |
+
If None, all edge weights are considered equal.
|
| 54 |
+
Otherwise holds the name of the edge attribute used as weight.
|
| 55 |
+
The weight of an edge is treated as the length or distance between the two sides.
|
| 56 |
+
|
| 57 |
+
endpoints : bool, optional (default=False)
|
| 58 |
+
If True include the endpoints in the shortest path counts.
|
| 59 |
+
|
| 60 |
+
Raises
|
| 61 |
+
------
|
| 62 |
+
NodeNotFound
|
| 63 |
+
If node(s) in C are not present in G.
|
| 64 |
+
|
| 65 |
+
Returns
|
| 66 |
+
-------
|
| 67 |
+
betweenness : list of floats or float
|
| 68 |
+
If C is a single group then return a float. If C is a list with
|
| 69 |
+
several groups then return a list of group betweenness centralities.
|
| 70 |
+
|
| 71 |
+
See Also
|
| 72 |
+
--------
|
| 73 |
+
betweenness_centrality
|
| 74 |
+
|
| 75 |
+
Notes
|
| 76 |
+
-----
|
| 77 |
+
Group betweenness centrality is described in [1]_ and its importance discussed in [3]_.
|
| 78 |
+
The initial implementation of the algorithm is mentioned in [2]_. This function uses
|
| 79 |
+
an improved algorithm presented in [4]_.
|
| 80 |
+
|
| 81 |
+
The number of nodes in the group must be a maximum of n - 2 where `n`
|
| 82 |
+
is the total number of nodes in the graph.
|
| 83 |
+
|
| 84 |
+
For weighted graphs the edge weights must be greater than zero.
|
| 85 |
+
Zero edge weights can produce an infinite number of equal length
|
| 86 |
+
paths between pairs of nodes.
|
| 87 |
+
|
| 88 |
+
The total number of paths between source and target is counted
|
| 89 |
+
differently for directed and undirected graphs. Directed paths
|
| 90 |
+
between "u" and "v" are counted as two possible paths (one each
|
| 91 |
+
direction) while undirected paths between "u" and "v" are counted
|
| 92 |
+
as one path. Said another way, the sum in the expression above is
|
| 93 |
+
over all ``s != t`` for directed graphs and for ``s < t`` for undirected graphs.
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
References
|
| 97 |
+
----------
|
| 98 |
+
.. [1] M G Everett and S P Borgatti:
|
| 99 |
+
The Centrality of Groups and Classes.
|
| 100 |
+
Journal of Mathematical Sociology. 23(3): 181-201. 1999.
|
| 101 |
+
http://www.analytictech.com/borgatti/group_centrality.htm
|
| 102 |
+
.. [2] Ulrik Brandes:
|
| 103 |
+
On Variants of Shortest-Path Betweenness
|
| 104 |
+
Centrality and their Generic Computation.
|
| 105 |
+
Social Networks 30(2):136-145, 2008.
|
| 106 |
+
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.72.9610&rep=rep1&type=pdf
|
| 107 |
+
.. [3] Sourav Medya et. al.:
|
| 108 |
+
Group Centrality Maximization via Network Design.
|
| 109 |
+
SIAM International Conference on Data Mining, SDM 2018, 126–134.
|
| 110 |
+
https://sites.cs.ucsb.edu/~arlei/pubs/sdm18.pdf
|
| 111 |
+
.. [4] Rami Puzis, Yuval Elovici, and Shlomi Dolev.
|
| 112 |
+
"Fast algorithm for successive computation of group betweenness centrality."
|
| 113 |
+
https://journals.aps.org/pre/pdf/10.1103/PhysRevE.76.056709
|
| 114 |
+
|
| 115 |
+
"""
|
| 116 |
+
GBC = [] # initialize betweenness
|
| 117 |
+
list_of_groups = True
|
| 118 |
+
# check weather C contains one or many groups
|
| 119 |
+
if any(el in G for el in C):
|
| 120 |
+
C = [C]
|
| 121 |
+
list_of_groups = False
|
| 122 |
+
set_v = {node for group in C for node in group}
|
| 123 |
+
if set_v - G.nodes: # element(s) of C not in G
|
| 124 |
+
raise nx.NodeNotFound(f"The node(s) {set_v - G.nodes} are in C but not in G.")
|
| 125 |
+
|
| 126 |
+
# pre-processing
|
| 127 |
+
PB, sigma, D = _group_preprocessing(G, set_v, weight)
|
| 128 |
+
|
| 129 |
+
# the algorithm for each group
|
| 130 |
+
for group in C:
|
| 131 |
+
group = set(group) # set of nodes in group
|
| 132 |
+
# initialize the matrices of the sigma and the PB
|
| 133 |
+
GBC_group = 0
|
| 134 |
+
sigma_m = deepcopy(sigma)
|
| 135 |
+
PB_m = deepcopy(PB)
|
| 136 |
+
sigma_m_v = deepcopy(sigma_m)
|
| 137 |
+
PB_m_v = deepcopy(PB_m)
|
| 138 |
+
for v in group:
|
| 139 |
+
GBC_group += PB_m[v][v]
|
| 140 |
+
for x in group:
|
| 141 |
+
for y in group:
|
| 142 |
+
dxvy = 0
|
| 143 |
+
dxyv = 0
|
| 144 |
+
dvxy = 0
|
| 145 |
+
if not (
|
| 146 |
+
sigma_m[x][y] == 0 or sigma_m[x][v] == 0 or sigma_m[v][y] == 0
|
| 147 |
+
):
|
| 148 |
+
if D[x][v] == D[x][y] + D[y][v]:
|
| 149 |
+
dxyv = sigma_m[x][y] * sigma_m[y][v] / sigma_m[x][v]
|
| 150 |
+
if D[x][y] == D[x][v] + D[v][y]:
|
| 151 |
+
dxvy = sigma_m[x][v] * sigma_m[v][y] / sigma_m[x][y]
|
| 152 |
+
if D[v][y] == D[v][x] + D[x][y]:
|
| 153 |
+
dvxy = sigma_m[v][x] * sigma[x][y] / sigma[v][y]
|
| 154 |
+
sigma_m_v[x][y] = sigma_m[x][y] * (1 - dxvy)
|
| 155 |
+
PB_m_v[x][y] = PB_m[x][y] - PB_m[x][y] * dxvy
|
| 156 |
+
if y != v:
|
| 157 |
+
PB_m_v[x][y] -= PB_m[x][v] * dxyv
|
| 158 |
+
if x != v:
|
| 159 |
+
PB_m_v[x][y] -= PB_m[v][y] * dvxy
|
| 160 |
+
sigma_m, sigma_m_v = sigma_m_v, sigma_m
|
| 161 |
+
PB_m, PB_m_v = PB_m_v, PB_m
|
| 162 |
+
|
| 163 |
+
# endpoints
|
| 164 |
+
v, c = len(G), len(group)
|
| 165 |
+
if not endpoints:
|
| 166 |
+
scale = 0
|
| 167 |
+
# if the graph is connected then subtract the endpoints from
|
| 168 |
+
# the count for all the nodes in the graph. else count how many
|
| 169 |
+
# nodes are connected to the group's nodes and subtract that.
|
| 170 |
+
if nx.is_directed(G):
|
| 171 |
+
if nx.is_strongly_connected(G):
|
| 172 |
+
scale = c * (2 * v - c - 1)
|
| 173 |
+
elif nx.is_connected(G):
|
| 174 |
+
scale = c * (2 * v - c - 1)
|
| 175 |
+
if scale == 0:
|
| 176 |
+
for group_node1 in group:
|
| 177 |
+
for node in D[group_node1]:
|
| 178 |
+
if node != group_node1:
|
| 179 |
+
if node in group:
|
| 180 |
+
scale += 1
|
| 181 |
+
else:
|
| 182 |
+
scale += 2
|
| 183 |
+
GBC_group -= scale
|
| 184 |
+
|
| 185 |
+
# normalized
|
| 186 |
+
if normalized:
|
| 187 |
+
scale = 1 / ((v - c) * (v - c - 1))
|
| 188 |
+
GBC_group *= scale
|
| 189 |
+
|
| 190 |
+
# If undirected than count only the undirected edges
|
| 191 |
+
elif not G.is_directed():
|
| 192 |
+
GBC_group /= 2
|
| 193 |
+
|
| 194 |
+
GBC.append(GBC_group)
|
| 195 |
+
if list_of_groups:
|
| 196 |
+
return GBC
|
| 197 |
+
return GBC[0]
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
def _group_preprocessing(G, set_v, weight):
|
| 201 |
+
sigma = {}
|
| 202 |
+
delta = {}
|
| 203 |
+
D = {}
|
| 204 |
+
betweenness = dict.fromkeys(G, 0)
|
| 205 |
+
for s in G:
|
| 206 |
+
if weight is None: # use BFS
|
| 207 |
+
S, P, sigma[s], D[s] = _single_source_shortest_path_basic(G, s)
|
| 208 |
+
else: # use Dijkstra's algorithm
|
| 209 |
+
S, P, sigma[s], D[s] = _single_source_dijkstra_path_basic(G, s, weight)
|
| 210 |
+
betweenness, delta[s] = _accumulate_endpoints(betweenness, S, P, sigma[s], s)
|
| 211 |
+
for i in delta[s]: # add the paths from s to i and rescale sigma
|
| 212 |
+
if s != i:
|
| 213 |
+
delta[s][i] += 1
|
| 214 |
+
if weight is not None:
|
| 215 |
+
sigma[s][i] = sigma[s][i] / 2
|
| 216 |
+
# building the path betweenness matrix only for nodes that appear in the group
|
| 217 |
+
PB = dict.fromkeys(G)
|
| 218 |
+
for group_node1 in set_v:
|
| 219 |
+
PB[group_node1] = dict.fromkeys(G, 0.0)
|
| 220 |
+
for group_node2 in set_v:
|
| 221 |
+
if group_node2 not in D[group_node1]:
|
| 222 |
+
continue
|
| 223 |
+
for node in G:
|
| 224 |
+
# if node is connected to the two group nodes than continue
|
| 225 |
+
if group_node2 in D[node] and group_node1 in D[node]:
|
| 226 |
+
if (
|
| 227 |
+
D[node][group_node2]
|
| 228 |
+
== D[node][group_node1] + D[group_node1][group_node2]
|
| 229 |
+
):
|
| 230 |
+
PB[group_node1][group_node2] += (
|
| 231 |
+
delta[node][group_node2]
|
| 232 |
+
* sigma[node][group_node1]
|
| 233 |
+
* sigma[group_node1][group_node2]
|
| 234 |
+
/ sigma[node][group_node2]
|
| 235 |
+
)
|
| 236 |
+
return PB, sigma, D
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 240 |
+
def prominent_group(
|
| 241 |
+
G, k, weight=None, C=None, endpoints=False, normalized=True, greedy=False
|
| 242 |
+
):
|
| 243 |
+
r"""Find the prominent group of size $k$ in graph $G$. The prominence of the
|
| 244 |
+
group is evaluated by the group betweenness centrality.
|
| 245 |
+
|
| 246 |
+
Group betweenness centrality of a group of nodes $C$ is the sum of the
|
| 247 |
+
fraction of all-pairs shortest paths that pass through any vertex in $C$
|
| 248 |
+
|
| 249 |
+
.. math::
|
| 250 |
+
|
| 251 |
+
c_B(v) =\sum_{s,t \in V} \frac{\sigma(s, t|v)}{\sigma(s, t)}
|
| 252 |
+
|
| 253 |
+
where $V$ is the set of nodes, $\sigma(s, t)$ is the number of
|
| 254 |
+
shortest $(s, t)$-paths, and $\sigma(s, t|C)$ is the number of
|
| 255 |
+
those paths passing through some node in group $C$. Note that
|
| 256 |
+
$(s, t)$ are not members of the group ($V-C$ is the set of nodes
|
| 257 |
+
in $V$ that are not in $C$).
|
| 258 |
+
|
| 259 |
+
Parameters
|
| 260 |
+
----------
|
| 261 |
+
G : graph
|
| 262 |
+
A NetworkX graph.
|
| 263 |
+
|
| 264 |
+
k : int
|
| 265 |
+
The number of nodes in the group.
|
| 266 |
+
|
| 267 |
+
normalized : bool, optional (default=True)
|
| 268 |
+
If True, group betweenness is normalized by ``1/((|V|-|C|)(|V|-|C|-1))``
|
| 269 |
+
where ``|V|`` is the number of nodes in G and ``|C|`` is the number of
|
| 270 |
+
nodes in C.
|
| 271 |
+
|
| 272 |
+
weight : None or string, optional (default=None)
|
| 273 |
+
If None, all edge weights are considered equal.
|
| 274 |
+
Otherwise holds the name of the edge attribute used as weight.
|
| 275 |
+
The weight of an edge is treated as the length or distance between the two sides.
|
| 276 |
+
|
| 277 |
+
endpoints : bool, optional (default=False)
|
| 278 |
+
If True include the endpoints in the shortest path counts.
|
| 279 |
+
|
| 280 |
+
C : list or set, optional (default=None)
|
| 281 |
+
list of nodes which won't be candidates of the prominent group.
|
| 282 |
+
|
| 283 |
+
greedy : bool, optional (default=False)
|
| 284 |
+
Using a naive greedy algorithm in order to find non-optimal prominent
|
| 285 |
+
group. For scale free networks the results are negligibly below the optimal
|
| 286 |
+
results.
|
| 287 |
+
|
| 288 |
+
Raises
|
| 289 |
+
------
|
| 290 |
+
NodeNotFound
|
| 291 |
+
If node(s) in C are not present in G.
|
| 292 |
+
|
| 293 |
+
Returns
|
| 294 |
+
-------
|
| 295 |
+
max_GBC : float
|
| 296 |
+
The group betweenness centrality of the prominent group.
|
| 297 |
+
|
| 298 |
+
max_group : list
|
| 299 |
+
The list of nodes in the prominent group.
|
| 300 |
+
|
| 301 |
+
See Also
|
| 302 |
+
--------
|
| 303 |
+
betweenness_centrality, group_betweenness_centrality
|
| 304 |
+
|
| 305 |
+
Notes
|
| 306 |
+
-----
|
| 307 |
+
Group betweenness centrality is described in [1]_ and its importance discussed in [3]_.
|
| 308 |
+
The algorithm is described in [2]_ and is based on techniques mentioned in [4]_.
|
| 309 |
+
|
| 310 |
+
The number of nodes in the group must be a maximum of ``n - 2`` where ``n``
|
| 311 |
+
is the total number of nodes in the graph.
|
| 312 |
+
|
| 313 |
+
For weighted graphs the edge weights must be greater than zero.
|
| 314 |
+
Zero edge weights can produce an infinite number of equal length
|
| 315 |
+
paths between pairs of nodes.
|
| 316 |
+
|
| 317 |
+
The total number of paths between source and target is counted
|
| 318 |
+
differently for directed and undirected graphs. Directed paths
|
| 319 |
+
between "u" and "v" are counted as two possible paths (one each
|
| 320 |
+
direction) while undirected paths between "u" and "v" are counted
|
| 321 |
+
as one path. Said another way, the sum in the expression above is
|
| 322 |
+
over all ``s != t`` for directed graphs and for ``s < t`` for undirected graphs.
|
| 323 |
+
|
| 324 |
+
References
|
| 325 |
+
----------
|
| 326 |
+
.. [1] M G Everett and S P Borgatti:
|
| 327 |
+
The Centrality of Groups and Classes.
|
| 328 |
+
Journal of Mathematical Sociology. 23(3): 181-201. 1999.
|
| 329 |
+
http://www.analytictech.com/borgatti/group_centrality.htm
|
| 330 |
+
.. [2] Rami Puzis, Yuval Elovici, and Shlomi Dolev:
|
| 331 |
+
"Finding the Most Prominent Group in Complex Networks"
|
| 332 |
+
AI communications 20(4): 287-296, 2007.
|
| 333 |
+
https://www.researchgate.net/profile/Rami_Puzis2/publication/220308855
|
| 334 |
+
.. [3] Sourav Medya et. al.:
|
| 335 |
+
Group Centrality Maximization via Network Design.
|
| 336 |
+
SIAM International Conference on Data Mining, SDM 2018, 126–134.
|
| 337 |
+
https://sites.cs.ucsb.edu/~arlei/pubs/sdm18.pdf
|
| 338 |
+
.. [4] Rami Puzis, Yuval Elovici, and Shlomi Dolev.
|
| 339 |
+
"Fast algorithm for successive computation of group betweenness centrality."
|
| 340 |
+
https://journals.aps.org/pre/pdf/10.1103/PhysRevE.76.056709
|
| 341 |
+
"""
|
| 342 |
+
import numpy as np
|
| 343 |
+
import pandas as pd
|
| 344 |
+
|
| 345 |
+
if C is not None:
|
| 346 |
+
C = set(C)
|
| 347 |
+
if C - G.nodes: # element(s) of C not in G
|
| 348 |
+
raise nx.NodeNotFound(f"The node(s) {C - G.nodes} are in C but not in G.")
|
| 349 |
+
nodes = list(G.nodes - C)
|
| 350 |
+
else:
|
| 351 |
+
nodes = list(G.nodes)
|
| 352 |
+
DF_tree = nx.Graph()
|
| 353 |
+
DF_tree.__networkx_cache__ = None # Disable caching
|
| 354 |
+
PB, sigma, D = _group_preprocessing(G, nodes, weight)
|
| 355 |
+
betweenness = pd.DataFrame.from_dict(PB)
|
| 356 |
+
if C is not None:
|
| 357 |
+
for node in C:
|
| 358 |
+
# remove from the betweenness all the nodes not part of the group
|
| 359 |
+
betweenness.drop(index=node, inplace=True)
|
| 360 |
+
betweenness.drop(columns=node, inplace=True)
|
| 361 |
+
CL = [node for _, node in sorted(zip(np.diag(betweenness), nodes), reverse=True)]
|
| 362 |
+
max_GBC = 0
|
| 363 |
+
max_group = []
|
| 364 |
+
DF_tree.add_node(
|
| 365 |
+
1,
|
| 366 |
+
CL=CL,
|
| 367 |
+
betweenness=betweenness,
|
| 368 |
+
GBC=0,
|
| 369 |
+
GM=[],
|
| 370 |
+
sigma=sigma,
|
| 371 |
+
cont=dict(zip(nodes, np.diag(betweenness))),
|
| 372 |
+
)
|
| 373 |
+
|
| 374 |
+
# the algorithm
|
| 375 |
+
DF_tree.nodes[1]["heu"] = 0
|
| 376 |
+
for i in range(k):
|
| 377 |
+
DF_tree.nodes[1]["heu"] += DF_tree.nodes[1]["cont"][DF_tree.nodes[1]["CL"][i]]
|
| 378 |
+
max_GBC, DF_tree, max_group = _dfbnb(
|
| 379 |
+
G, k, DF_tree, max_GBC, 1, D, max_group, nodes, greedy
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
v = len(G)
|
| 383 |
+
if not endpoints:
|
| 384 |
+
scale = 0
|
| 385 |
+
# if the graph is connected then subtract the endpoints from
|
| 386 |
+
# the count for all the nodes in the graph. else count how many
|
| 387 |
+
# nodes are connected to the group's nodes and subtract that.
|
| 388 |
+
if nx.is_directed(G):
|
| 389 |
+
if nx.is_strongly_connected(G):
|
| 390 |
+
scale = k * (2 * v - k - 1)
|
| 391 |
+
elif nx.is_connected(G):
|
| 392 |
+
scale = k * (2 * v - k - 1)
|
| 393 |
+
if scale == 0:
|
| 394 |
+
for group_node1 in max_group:
|
| 395 |
+
for node in D[group_node1]:
|
| 396 |
+
if node != group_node1:
|
| 397 |
+
if node in max_group:
|
| 398 |
+
scale += 1
|
| 399 |
+
else:
|
| 400 |
+
scale += 2
|
| 401 |
+
max_GBC -= scale
|
| 402 |
+
|
| 403 |
+
# normalized
|
| 404 |
+
if normalized:
|
| 405 |
+
scale = 1 / ((v - k) * (v - k - 1))
|
| 406 |
+
max_GBC *= scale
|
| 407 |
+
|
| 408 |
+
# If undirected then count only the undirected edges
|
| 409 |
+
elif not G.is_directed():
|
| 410 |
+
max_GBC /= 2
|
| 411 |
+
max_GBC = float("%.2f" % max_GBC)
|
| 412 |
+
return max_GBC, max_group
|
| 413 |
+
|
| 414 |
+
|
| 415 |
+
def _dfbnb(G, k, DF_tree, max_GBC, root, D, max_group, nodes, greedy):
|
| 416 |
+
# stopping condition - if we found a group of size k and with higher GBC then prune
|
| 417 |
+
if len(DF_tree.nodes[root]["GM"]) == k and DF_tree.nodes[root]["GBC"] > max_GBC:
|
| 418 |
+
return DF_tree.nodes[root]["GBC"], DF_tree, DF_tree.nodes[root]["GM"]
|
| 419 |
+
# stopping condition - if the size of group members equal to k or there are less than
|
| 420 |
+
# k - |GM| in the candidate list or the heuristic function plus the GBC is below the
|
| 421 |
+
# maximal GBC found then prune
|
| 422 |
+
if (
|
| 423 |
+
len(DF_tree.nodes[root]["GM"]) == k
|
| 424 |
+
or len(DF_tree.nodes[root]["CL"]) <= k - len(DF_tree.nodes[root]["GM"])
|
| 425 |
+
or DF_tree.nodes[root]["GBC"] + DF_tree.nodes[root]["heu"] <= max_GBC
|
| 426 |
+
):
|
| 427 |
+
return max_GBC, DF_tree, max_group
|
| 428 |
+
|
| 429 |
+
# finding the heuristic of both children
|
| 430 |
+
node_p, node_m, DF_tree = _heuristic(k, root, DF_tree, D, nodes, greedy)
|
| 431 |
+
|
| 432 |
+
# finding the child with the bigger heuristic + GBC and expand
|
| 433 |
+
# that node first if greedy then only expand the plus node
|
| 434 |
+
if greedy:
|
| 435 |
+
max_GBC, DF_tree, max_group = _dfbnb(
|
| 436 |
+
G, k, DF_tree, max_GBC, node_p, D, max_group, nodes, greedy
|
| 437 |
+
)
|
| 438 |
+
|
| 439 |
+
elif (
|
| 440 |
+
DF_tree.nodes[node_p]["GBC"] + DF_tree.nodes[node_p]["heu"]
|
| 441 |
+
> DF_tree.nodes[node_m]["GBC"] + DF_tree.nodes[node_m]["heu"]
|
| 442 |
+
):
|
| 443 |
+
max_GBC, DF_tree, max_group = _dfbnb(
|
| 444 |
+
G, k, DF_tree, max_GBC, node_p, D, max_group, nodes, greedy
|
| 445 |
+
)
|
| 446 |
+
max_GBC, DF_tree, max_group = _dfbnb(
|
| 447 |
+
G, k, DF_tree, max_GBC, node_m, D, max_group, nodes, greedy
|
| 448 |
+
)
|
| 449 |
+
else:
|
| 450 |
+
max_GBC, DF_tree, max_group = _dfbnb(
|
| 451 |
+
G, k, DF_tree, max_GBC, node_m, D, max_group, nodes, greedy
|
| 452 |
+
)
|
| 453 |
+
max_GBC, DF_tree, max_group = _dfbnb(
|
| 454 |
+
G, k, DF_tree, max_GBC, node_p, D, max_group, nodes, greedy
|
| 455 |
+
)
|
| 456 |
+
return max_GBC, DF_tree, max_group
|
| 457 |
+
|
| 458 |
+
|
| 459 |
+
def _heuristic(k, root, DF_tree, D, nodes, greedy):
|
| 460 |
+
import numpy as np
|
| 461 |
+
|
| 462 |
+
# This helper function add two nodes to DF_tree - one left son and the
|
| 463 |
+
# other right son, finds their heuristic, CL, GBC, and GM
|
| 464 |
+
node_p = DF_tree.number_of_nodes() + 1
|
| 465 |
+
node_m = DF_tree.number_of_nodes() + 2
|
| 466 |
+
added_node = DF_tree.nodes[root]["CL"][0]
|
| 467 |
+
|
| 468 |
+
# adding the plus node
|
| 469 |
+
DF_tree.add_nodes_from([(node_p, deepcopy(DF_tree.nodes[root]))])
|
| 470 |
+
DF_tree.nodes[node_p]["GM"].append(added_node)
|
| 471 |
+
DF_tree.nodes[node_p]["GBC"] += DF_tree.nodes[node_p]["cont"][added_node]
|
| 472 |
+
root_node = DF_tree.nodes[root]
|
| 473 |
+
for x in nodes:
|
| 474 |
+
for y in nodes:
|
| 475 |
+
dxvy = 0
|
| 476 |
+
dxyv = 0
|
| 477 |
+
dvxy = 0
|
| 478 |
+
if not (
|
| 479 |
+
root_node["sigma"][x][y] == 0
|
| 480 |
+
or root_node["sigma"][x][added_node] == 0
|
| 481 |
+
or root_node["sigma"][added_node][y] == 0
|
| 482 |
+
):
|
| 483 |
+
if D[x][added_node] == D[x][y] + D[y][added_node]:
|
| 484 |
+
dxyv = (
|
| 485 |
+
root_node["sigma"][x][y]
|
| 486 |
+
* root_node["sigma"][y][added_node]
|
| 487 |
+
/ root_node["sigma"][x][added_node]
|
| 488 |
+
)
|
| 489 |
+
if D[x][y] == D[x][added_node] + D[added_node][y]:
|
| 490 |
+
dxvy = (
|
| 491 |
+
root_node["sigma"][x][added_node]
|
| 492 |
+
* root_node["sigma"][added_node][y]
|
| 493 |
+
/ root_node["sigma"][x][y]
|
| 494 |
+
)
|
| 495 |
+
if D[added_node][y] == D[added_node][x] + D[x][y]:
|
| 496 |
+
dvxy = (
|
| 497 |
+
root_node["sigma"][added_node][x]
|
| 498 |
+
* root_node["sigma"][x][y]
|
| 499 |
+
/ root_node["sigma"][added_node][y]
|
| 500 |
+
)
|
| 501 |
+
DF_tree.nodes[node_p]["sigma"][x][y] = root_node["sigma"][x][y] * (1 - dxvy)
|
| 502 |
+
DF_tree.nodes[node_p]["betweenness"].loc[y, x] = (
|
| 503 |
+
root_node["betweenness"][x][y] - root_node["betweenness"][x][y] * dxvy
|
| 504 |
+
)
|
| 505 |
+
if y != added_node:
|
| 506 |
+
DF_tree.nodes[node_p]["betweenness"].loc[y, x] -= (
|
| 507 |
+
root_node["betweenness"][x][added_node] * dxyv
|
| 508 |
+
)
|
| 509 |
+
if x != added_node:
|
| 510 |
+
DF_tree.nodes[node_p]["betweenness"].loc[y, x] -= (
|
| 511 |
+
root_node["betweenness"][added_node][y] * dvxy
|
| 512 |
+
)
|
| 513 |
+
|
| 514 |
+
DF_tree.nodes[node_p]["CL"] = [
|
| 515 |
+
node
|
| 516 |
+
for _, node in sorted(
|
| 517 |
+
zip(np.diag(DF_tree.nodes[node_p]["betweenness"]), nodes), reverse=True
|
| 518 |
+
)
|
| 519 |
+
if node not in DF_tree.nodes[node_p]["GM"]
|
| 520 |
+
]
|
| 521 |
+
DF_tree.nodes[node_p]["cont"] = dict(
|
| 522 |
+
zip(nodes, np.diag(DF_tree.nodes[node_p]["betweenness"]))
|
| 523 |
+
)
|
| 524 |
+
DF_tree.nodes[node_p]["heu"] = 0
|
| 525 |
+
for i in range(k - len(DF_tree.nodes[node_p]["GM"])):
|
| 526 |
+
DF_tree.nodes[node_p]["heu"] += DF_tree.nodes[node_p]["cont"][
|
| 527 |
+
DF_tree.nodes[node_p]["CL"][i]
|
| 528 |
+
]
|
| 529 |
+
|
| 530 |
+
# adding the minus node - don't insert the first node in the CL to GM
|
| 531 |
+
# Insert minus node only if isn't greedy type algorithm
|
| 532 |
+
if not greedy:
|
| 533 |
+
DF_tree.add_nodes_from([(node_m, deepcopy(DF_tree.nodes[root]))])
|
| 534 |
+
DF_tree.nodes[node_m]["CL"].pop(0)
|
| 535 |
+
DF_tree.nodes[node_m]["cont"].pop(added_node)
|
| 536 |
+
DF_tree.nodes[node_m]["heu"] = 0
|
| 537 |
+
for i in range(k - len(DF_tree.nodes[node_m]["GM"])):
|
| 538 |
+
DF_tree.nodes[node_m]["heu"] += DF_tree.nodes[node_m]["cont"][
|
| 539 |
+
DF_tree.nodes[node_m]["CL"][i]
|
| 540 |
+
]
|
| 541 |
+
else:
|
| 542 |
+
node_m = None
|
| 543 |
+
|
| 544 |
+
return node_p, node_m, DF_tree
|
| 545 |
+
|
| 546 |
+
|
| 547 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 548 |
+
def group_closeness_centrality(G, S, weight=None):
|
| 549 |
+
r"""Compute the group closeness centrality for a group of nodes.
|
| 550 |
+
|
| 551 |
+
Group closeness centrality of a group of nodes $S$ is a measure
|
| 552 |
+
of how close the group is to the other nodes in the graph.
|
| 553 |
+
|
| 554 |
+
.. math::
|
| 555 |
+
|
| 556 |
+
c_{close}(S) = \frac{|V-S|}{\sum_{v \in V-S} d_{S, v}}
|
| 557 |
+
|
| 558 |
+
d_{S, v} = min_{u \in S} (d_{u, v})
|
| 559 |
+
|
| 560 |
+
where $V$ is the set of nodes, $d_{S, v}$ is the distance of
|
| 561 |
+
the group $S$ from $v$ defined as above. ($V-S$ is the set of nodes
|
| 562 |
+
in $V$ that are not in $S$).
|
| 563 |
+
|
| 564 |
+
Parameters
|
| 565 |
+
----------
|
| 566 |
+
G : graph
|
| 567 |
+
A NetworkX graph.
|
| 568 |
+
|
| 569 |
+
S : list or set
|
| 570 |
+
S is a group of nodes which belong to G, for which group closeness
|
| 571 |
+
centrality is to be calculated.
|
| 572 |
+
|
| 573 |
+
weight : None or string, optional (default=None)
|
| 574 |
+
If None, all edge weights are considered equal.
|
| 575 |
+
Otherwise holds the name of the edge attribute used as weight.
|
| 576 |
+
The weight of an edge is treated as the length or distance between the two sides.
|
| 577 |
+
|
| 578 |
+
Raises
|
| 579 |
+
------
|
| 580 |
+
NodeNotFound
|
| 581 |
+
If node(s) in S are not present in G.
|
| 582 |
+
|
| 583 |
+
Returns
|
| 584 |
+
-------
|
| 585 |
+
closeness : float
|
| 586 |
+
Group closeness centrality of the group S.
|
| 587 |
+
|
| 588 |
+
See Also
|
| 589 |
+
--------
|
| 590 |
+
closeness_centrality
|
| 591 |
+
|
| 592 |
+
Notes
|
| 593 |
+
-----
|
| 594 |
+
The measure was introduced in [1]_.
|
| 595 |
+
The formula implemented here is described in [2]_.
|
| 596 |
+
|
| 597 |
+
Higher values of closeness indicate greater centrality.
|
| 598 |
+
|
| 599 |
+
It is assumed that 1 / 0 is 0 (required in the case of directed graphs,
|
| 600 |
+
or when a shortest path length is 0).
|
| 601 |
+
|
| 602 |
+
The number of nodes in the group must be a maximum of n - 1 where `n`
|
| 603 |
+
is the total number of nodes in the graph.
|
| 604 |
+
|
| 605 |
+
For directed graphs, the incoming distance is utilized here. To use the
|
| 606 |
+
outward distance, act on `G.reverse()`.
|
| 607 |
+
|
| 608 |
+
For weighted graphs the edge weights must be greater than zero.
|
| 609 |
+
Zero edge weights can produce an infinite number of equal length
|
| 610 |
+
paths between pairs of nodes.
|
| 611 |
+
|
| 612 |
+
References
|
| 613 |
+
----------
|
| 614 |
+
.. [1] M G Everett and S P Borgatti:
|
| 615 |
+
The Centrality of Groups and Classes.
|
| 616 |
+
Journal of Mathematical Sociology. 23(3): 181-201. 1999.
|
| 617 |
+
http://www.analytictech.com/borgatti/group_centrality.htm
|
| 618 |
+
.. [2] J. Zhao et. al.:
|
| 619 |
+
Measuring and Maximizing Group Closeness Centrality over
|
| 620 |
+
Disk Resident Graphs.
|
| 621 |
+
WWWConference Proceedings, 2014. 689-694.
|
| 622 |
+
https://doi.org/10.1145/2567948.2579356
|
| 623 |
+
"""
|
| 624 |
+
if G.is_directed():
|
| 625 |
+
G = G.reverse() # reverse view
|
| 626 |
+
closeness = 0 # initialize to 0
|
| 627 |
+
V = set(G) # set of nodes in G
|
| 628 |
+
S = set(S) # set of nodes in group S
|
| 629 |
+
V_S = V - S # set of nodes in V but not S
|
| 630 |
+
shortest_path_lengths = nx.multi_source_dijkstra_path_length(G, S, weight=weight)
|
| 631 |
+
# accumulation
|
| 632 |
+
for v in V_S:
|
| 633 |
+
try:
|
| 634 |
+
closeness += shortest_path_lengths[v]
|
| 635 |
+
except KeyError: # no path exists
|
| 636 |
+
closeness += 0
|
| 637 |
+
try:
|
| 638 |
+
closeness = len(V_S) / closeness
|
| 639 |
+
except ZeroDivisionError: # 1 / 0 assumed as 0
|
| 640 |
+
closeness = 0
|
| 641 |
+
return closeness
|
| 642 |
+
|
| 643 |
+
|
| 644 |
+
@nx._dispatchable
|
| 645 |
+
def group_degree_centrality(G, S):
|
| 646 |
+
"""Compute the group degree centrality for a group of nodes.
|
| 647 |
+
|
| 648 |
+
Group degree centrality of a group of nodes $S$ is the fraction
|
| 649 |
+
of non-group members connected to group members.
|
| 650 |
+
|
| 651 |
+
Parameters
|
| 652 |
+
----------
|
| 653 |
+
G : graph
|
| 654 |
+
A NetworkX graph.
|
| 655 |
+
|
| 656 |
+
S : list or set
|
| 657 |
+
S is a group of nodes which belong to G, for which group degree
|
| 658 |
+
centrality is to be calculated.
|
| 659 |
+
|
| 660 |
+
Raises
|
| 661 |
+
------
|
| 662 |
+
NetworkXError
|
| 663 |
+
If node(s) in S are not in G.
|
| 664 |
+
|
| 665 |
+
Returns
|
| 666 |
+
-------
|
| 667 |
+
centrality : float
|
| 668 |
+
Group degree centrality of the group S.
|
| 669 |
+
|
| 670 |
+
See Also
|
| 671 |
+
--------
|
| 672 |
+
degree_centrality
|
| 673 |
+
group_in_degree_centrality
|
| 674 |
+
group_out_degree_centrality
|
| 675 |
+
|
| 676 |
+
Notes
|
| 677 |
+
-----
|
| 678 |
+
The measure was introduced in [1]_.
|
| 679 |
+
|
| 680 |
+
The number of nodes in the group must be a maximum of n - 1 where `n`
|
| 681 |
+
is the total number of nodes in the graph.
|
| 682 |
+
|
| 683 |
+
References
|
| 684 |
+
----------
|
| 685 |
+
.. [1] M G Everett and S P Borgatti:
|
| 686 |
+
The Centrality of Groups and Classes.
|
| 687 |
+
Journal of Mathematical Sociology. 23(3): 181-201. 1999.
|
| 688 |
+
http://www.analytictech.com/borgatti/group_centrality.htm
|
| 689 |
+
"""
|
| 690 |
+
centrality = len(set().union(*[set(G.neighbors(i)) for i in S]) - set(S))
|
| 691 |
+
centrality /= len(G.nodes()) - len(S)
|
| 692 |
+
return centrality
|
| 693 |
+
|
| 694 |
+
|
| 695 |
+
@not_implemented_for("undirected")
|
| 696 |
+
@nx._dispatchable
|
| 697 |
+
def group_in_degree_centrality(G, S):
|
| 698 |
+
"""Compute the group in-degree centrality for a group of nodes.
|
| 699 |
+
|
| 700 |
+
Group in-degree centrality of a group of nodes $S$ is the fraction
|
| 701 |
+
of non-group members connected to group members by incoming edges.
|
| 702 |
+
|
| 703 |
+
Parameters
|
| 704 |
+
----------
|
| 705 |
+
G : graph
|
| 706 |
+
A NetworkX graph.
|
| 707 |
+
|
| 708 |
+
S : list or set
|
| 709 |
+
S is a group of nodes which belong to G, for which group in-degree
|
| 710 |
+
centrality is to be calculated.
|
| 711 |
+
|
| 712 |
+
Returns
|
| 713 |
+
-------
|
| 714 |
+
centrality : float
|
| 715 |
+
Group in-degree centrality of the group S.
|
| 716 |
+
|
| 717 |
+
Raises
|
| 718 |
+
------
|
| 719 |
+
NetworkXNotImplemented
|
| 720 |
+
If G is undirected.
|
| 721 |
+
|
| 722 |
+
NodeNotFound
|
| 723 |
+
If node(s) in S are not in G.
|
| 724 |
+
|
| 725 |
+
See Also
|
| 726 |
+
--------
|
| 727 |
+
degree_centrality
|
| 728 |
+
group_degree_centrality
|
| 729 |
+
group_out_degree_centrality
|
| 730 |
+
|
| 731 |
+
Notes
|
| 732 |
+
-----
|
| 733 |
+
The number of nodes in the group must be a maximum of n - 1 where `n`
|
| 734 |
+
is the total number of nodes in the graph.
|
| 735 |
+
|
| 736 |
+
`G.neighbors(i)` gives nodes with an outward edge from i, in a DiGraph,
|
| 737 |
+
so for group in-degree centrality, the reverse graph is used.
|
| 738 |
+
"""
|
| 739 |
+
return group_degree_centrality(G.reverse(), S)
|
| 740 |
+
|
| 741 |
+
|
| 742 |
+
@not_implemented_for("undirected")
|
| 743 |
+
@nx._dispatchable
|
| 744 |
+
def group_out_degree_centrality(G, S):
|
| 745 |
+
"""Compute the group out-degree centrality for a group of nodes.
|
| 746 |
+
|
| 747 |
+
Group out-degree centrality of a group of nodes $S$ is the fraction
|
| 748 |
+
of non-group members connected to group members by outgoing edges.
|
| 749 |
+
|
| 750 |
+
Parameters
|
| 751 |
+
----------
|
| 752 |
+
G : graph
|
| 753 |
+
A NetworkX graph.
|
| 754 |
+
|
| 755 |
+
S : list or set
|
| 756 |
+
S is a group of nodes which belong to G, for which group in-degree
|
| 757 |
+
centrality is to be calculated.
|
| 758 |
+
|
| 759 |
+
Returns
|
| 760 |
+
-------
|
| 761 |
+
centrality : float
|
| 762 |
+
Group out-degree centrality of the group S.
|
| 763 |
+
|
| 764 |
+
Raises
|
| 765 |
+
------
|
| 766 |
+
NetworkXNotImplemented
|
| 767 |
+
If G is undirected.
|
| 768 |
+
|
| 769 |
+
NodeNotFound
|
| 770 |
+
If node(s) in S are not in G.
|
| 771 |
+
|
| 772 |
+
See Also
|
| 773 |
+
--------
|
| 774 |
+
degree_centrality
|
| 775 |
+
group_degree_centrality
|
| 776 |
+
group_in_degree_centrality
|
| 777 |
+
|
| 778 |
+
Notes
|
| 779 |
+
-----
|
| 780 |
+
The number of nodes in the group must be a maximum of n - 1 where `n`
|
| 781 |
+
is the total number of nodes in the graph.
|
| 782 |
+
|
| 783 |
+
`G.neighbors(i)` gives nodes with an outward edge from i, in a DiGraph,
|
| 784 |
+
so for group out-degree centrality, the graph itself is used.
|
| 785 |
+
"""
|
| 786 |
+
return group_degree_centrality(G, S)
|
parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/harmonic.py
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Functions for computing the harmonic centrality of a graph."""
|
| 2 |
+
from functools import partial
|
| 3 |
+
|
| 4 |
+
import networkx as nx
|
| 5 |
+
|
| 6 |
+
__all__ = ["harmonic_centrality"]
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
@nx._dispatchable(edge_attrs="distance")
|
| 10 |
+
def harmonic_centrality(G, nbunch=None, distance=None, sources=None):
|
| 11 |
+
r"""Compute harmonic centrality for nodes.
|
| 12 |
+
|
| 13 |
+
Harmonic centrality [1]_ of a node `u` is the sum of the reciprocal
|
| 14 |
+
of the shortest path distances from all other nodes to `u`
|
| 15 |
+
|
| 16 |
+
.. math::
|
| 17 |
+
|
| 18 |
+
C(u) = \sum_{v \neq u} \frac{1}{d(v, u)}
|
| 19 |
+
|
| 20 |
+
where `d(v, u)` is the shortest-path distance between `v` and `u`.
|
| 21 |
+
|
| 22 |
+
If `sources` is given as an argument, the returned harmonic centrality
|
| 23 |
+
values are calculated as the sum of the reciprocals of the shortest
|
| 24 |
+
path distances from the nodes specified in `sources` to `u` instead
|
| 25 |
+
of from all nodes to `u`.
|
| 26 |
+
|
| 27 |
+
Notice that higher values indicate higher centrality.
|
| 28 |
+
|
| 29 |
+
Parameters
|
| 30 |
+
----------
|
| 31 |
+
G : graph
|
| 32 |
+
A NetworkX graph
|
| 33 |
+
|
| 34 |
+
nbunch : container (default: all nodes in G)
|
| 35 |
+
Container of nodes for which harmonic centrality values are calculated.
|
| 36 |
+
|
| 37 |
+
sources : container (default: all nodes in G)
|
| 38 |
+
Container of nodes `v` over which reciprocal distances are computed.
|
| 39 |
+
Nodes not in `G` are silently ignored.
|
| 40 |
+
|
| 41 |
+
distance : edge attribute key, optional (default=None)
|
| 42 |
+
Use the specified edge attribute as the edge distance in shortest
|
| 43 |
+
path calculations. If `None`, then each edge will have distance equal to 1.
|
| 44 |
+
|
| 45 |
+
Returns
|
| 46 |
+
-------
|
| 47 |
+
nodes : dictionary
|
| 48 |
+
Dictionary of nodes with harmonic centrality as the value.
|
| 49 |
+
|
| 50 |
+
See Also
|
| 51 |
+
--------
|
| 52 |
+
betweenness_centrality, load_centrality, eigenvector_centrality,
|
| 53 |
+
degree_centrality, closeness_centrality
|
| 54 |
+
|
| 55 |
+
Notes
|
| 56 |
+
-----
|
| 57 |
+
If the 'distance' keyword is set to an edge attribute key then the
|
| 58 |
+
shortest-path length will be computed using Dijkstra's algorithm with
|
| 59 |
+
that edge attribute as the edge weight.
|
| 60 |
+
|
| 61 |
+
References
|
| 62 |
+
----------
|
| 63 |
+
.. [1] Boldi, Paolo, and Sebastiano Vigna. "Axioms for centrality."
|
| 64 |
+
Internet Mathematics 10.3-4 (2014): 222-262.
|
| 65 |
+
"""
|
| 66 |
+
|
| 67 |
+
nbunch = set(G.nbunch_iter(nbunch)) if nbunch is not None else set(G.nodes)
|
| 68 |
+
sources = set(G.nbunch_iter(sources)) if sources is not None else G.nodes
|
| 69 |
+
|
| 70 |
+
spl = partial(nx.shortest_path_length, G, weight=distance)
|
| 71 |
+
centrality = {u: 0 for u in nbunch}
|
| 72 |
+
for v in sources:
|
| 73 |
+
dist = spl(v)
|
| 74 |
+
for u in nbunch.intersection(dist):
|
| 75 |
+
d = dist[u]
|
| 76 |
+
if d == 0: # handle u == v and edges with 0 weight
|
| 77 |
+
continue
|
| 78 |
+
centrality[u] += 1 / d
|
| 79 |
+
|
| 80 |
+
return centrality
|
parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/katz.py
ADDED
|
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Katz centrality."""
|
| 2 |
+
import math
|
| 3 |
+
|
| 4 |
+
import networkx as nx
|
| 5 |
+
from networkx.utils import not_implemented_for
|
| 6 |
+
|
| 7 |
+
__all__ = ["katz_centrality", "katz_centrality_numpy"]
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
@not_implemented_for("multigraph")
|
| 11 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 12 |
+
def katz_centrality(
|
| 13 |
+
G,
|
| 14 |
+
alpha=0.1,
|
| 15 |
+
beta=1.0,
|
| 16 |
+
max_iter=1000,
|
| 17 |
+
tol=1.0e-6,
|
| 18 |
+
nstart=None,
|
| 19 |
+
normalized=True,
|
| 20 |
+
weight=None,
|
| 21 |
+
):
|
| 22 |
+
r"""Compute the Katz centrality for the nodes of the graph G.
|
| 23 |
+
|
| 24 |
+
Katz centrality computes the centrality for a node based on the centrality
|
| 25 |
+
of its neighbors. It is a generalization of the eigenvector centrality. The
|
| 26 |
+
Katz centrality for node $i$ is
|
| 27 |
+
|
| 28 |
+
.. math::
|
| 29 |
+
|
| 30 |
+
x_i = \alpha \sum_{j} A_{ij} x_j + \beta,
|
| 31 |
+
|
| 32 |
+
where $A$ is the adjacency matrix of graph G with eigenvalues $\lambda$.
|
| 33 |
+
|
| 34 |
+
The parameter $\beta$ controls the initial centrality and
|
| 35 |
+
|
| 36 |
+
.. math::
|
| 37 |
+
|
| 38 |
+
\alpha < \frac{1}{\lambda_{\max}}.
|
| 39 |
+
|
| 40 |
+
Katz centrality computes the relative influence of a node within a
|
| 41 |
+
network by measuring the number of the immediate neighbors (first
|
| 42 |
+
degree nodes) and also all other nodes in the network that connect
|
| 43 |
+
to the node under consideration through these immediate neighbors.
|
| 44 |
+
|
| 45 |
+
Extra weight can be provided to immediate neighbors through the
|
| 46 |
+
parameter $\beta$. Connections made with distant neighbors
|
| 47 |
+
are, however, penalized by an attenuation factor $\alpha$ which
|
| 48 |
+
should be strictly less than the inverse largest eigenvalue of the
|
| 49 |
+
adjacency matrix in order for the Katz centrality to be computed
|
| 50 |
+
correctly. More information is provided in [1]_.
|
| 51 |
+
|
| 52 |
+
Parameters
|
| 53 |
+
----------
|
| 54 |
+
G : graph
|
| 55 |
+
A NetworkX graph.
|
| 56 |
+
|
| 57 |
+
alpha : float, optional (default=0.1)
|
| 58 |
+
Attenuation factor
|
| 59 |
+
|
| 60 |
+
beta : scalar or dictionary, optional (default=1.0)
|
| 61 |
+
Weight attributed to the immediate neighborhood. If not a scalar, the
|
| 62 |
+
dictionary must have a value for every node.
|
| 63 |
+
|
| 64 |
+
max_iter : integer, optional (default=1000)
|
| 65 |
+
Maximum number of iterations in power method.
|
| 66 |
+
|
| 67 |
+
tol : float, optional (default=1.0e-6)
|
| 68 |
+
Error tolerance used to check convergence in power method iteration.
|
| 69 |
+
|
| 70 |
+
nstart : dictionary, optional
|
| 71 |
+
Starting value of Katz iteration for each node.
|
| 72 |
+
|
| 73 |
+
normalized : bool, optional (default=True)
|
| 74 |
+
If True normalize the resulting values.
|
| 75 |
+
|
| 76 |
+
weight : None or string, optional (default=None)
|
| 77 |
+
If None, all edge weights are considered equal.
|
| 78 |
+
Otherwise holds the name of the edge attribute used as weight.
|
| 79 |
+
In this measure the weight is interpreted as the connection strength.
|
| 80 |
+
|
| 81 |
+
Returns
|
| 82 |
+
-------
|
| 83 |
+
nodes : dictionary
|
| 84 |
+
Dictionary of nodes with Katz centrality as the value.
|
| 85 |
+
|
| 86 |
+
Raises
|
| 87 |
+
------
|
| 88 |
+
NetworkXError
|
| 89 |
+
If the parameter `beta` is not a scalar but lacks a value for at least
|
| 90 |
+
one node
|
| 91 |
+
|
| 92 |
+
PowerIterationFailedConvergence
|
| 93 |
+
If the algorithm fails to converge to the specified tolerance
|
| 94 |
+
within the specified number of iterations of the power iteration
|
| 95 |
+
method.
|
| 96 |
+
|
| 97 |
+
Examples
|
| 98 |
+
--------
|
| 99 |
+
>>> import math
|
| 100 |
+
>>> G = nx.path_graph(4)
|
| 101 |
+
>>> phi = (1 + math.sqrt(5)) / 2.0 # largest eigenvalue of adj matrix
|
| 102 |
+
>>> centrality = nx.katz_centrality(G, 1 / phi - 0.01)
|
| 103 |
+
>>> for n, c in sorted(centrality.items()):
|
| 104 |
+
... print(f"{n} {c:.2f}")
|
| 105 |
+
0 0.37
|
| 106 |
+
1 0.60
|
| 107 |
+
2 0.60
|
| 108 |
+
3 0.37
|
| 109 |
+
|
| 110 |
+
See Also
|
| 111 |
+
--------
|
| 112 |
+
katz_centrality_numpy
|
| 113 |
+
eigenvector_centrality
|
| 114 |
+
eigenvector_centrality_numpy
|
| 115 |
+
:func:`~networkx.algorithms.link_analysis.pagerank_alg.pagerank`
|
| 116 |
+
:func:`~networkx.algorithms.link_analysis.hits_alg.hits`
|
| 117 |
+
|
| 118 |
+
Notes
|
| 119 |
+
-----
|
| 120 |
+
Katz centrality was introduced by [2]_.
|
| 121 |
+
|
| 122 |
+
This algorithm it uses the power method to find the eigenvector
|
| 123 |
+
corresponding to the largest eigenvalue of the adjacency matrix of ``G``.
|
| 124 |
+
The parameter ``alpha`` should be strictly less than the inverse of largest
|
| 125 |
+
eigenvalue of the adjacency matrix for the algorithm to converge.
|
| 126 |
+
You can use ``max(nx.adjacency_spectrum(G))`` to get $\lambda_{\max}$ the largest
|
| 127 |
+
eigenvalue of the adjacency matrix.
|
| 128 |
+
The iteration will stop after ``max_iter`` iterations or an error tolerance of
|
| 129 |
+
``number_of_nodes(G) * tol`` has been reached.
|
| 130 |
+
|
| 131 |
+
For strongly connected graphs, as $\alpha \to 1/\lambda_{\max}$, and $\beta > 0$,
|
| 132 |
+
Katz centrality approaches the results for eigenvector centrality.
|
| 133 |
+
|
| 134 |
+
For directed graphs this finds "left" eigenvectors which corresponds
|
| 135 |
+
to the in-edges in the graph. For out-edges Katz centrality,
|
| 136 |
+
first reverse the graph with ``G.reverse()``.
|
| 137 |
+
|
| 138 |
+
References
|
| 139 |
+
----------
|
| 140 |
+
.. [1] Mark E. J. Newman:
|
| 141 |
+
Networks: An Introduction.
|
| 142 |
+
Oxford University Press, USA, 2010, p. 720.
|
| 143 |
+
.. [2] Leo Katz:
|
| 144 |
+
A New Status Index Derived from Sociometric Index.
|
| 145 |
+
Psychometrika 18(1):39–43, 1953
|
| 146 |
+
https://link.springer.com/content/pdf/10.1007/BF02289026.pdf
|
| 147 |
+
"""
|
| 148 |
+
if len(G) == 0:
|
| 149 |
+
return {}
|
| 150 |
+
|
| 151 |
+
nnodes = G.number_of_nodes()
|
| 152 |
+
|
| 153 |
+
if nstart is None:
|
| 154 |
+
# choose starting vector with entries of 0
|
| 155 |
+
x = {n: 0 for n in G}
|
| 156 |
+
else:
|
| 157 |
+
x = nstart
|
| 158 |
+
|
| 159 |
+
try:
|
| 160 |
+
b = dict.fromkeys(G, float(beta))
|
| 161 |
+
except (TypeError, ValueError, AttributeError) as err:
|
| 162 |
+
b = beta
|
| 163 |
+
if set(beta) != set(G):
|
| 164 |
+
raise nx.NetworkXError(
|
| 165 |
+
"beta dictionary must have a value for every node"
|
| 166 |
+
) from err
|
| 167 |
+
|
| 168 |
+
# make up to max_iter iterations
|
| 169 |
+
for _ in range(max_iter):
|
| 170 |
+
xlast = x
|
| 171 |
+
x = dict.fromkeys(xlast, 0)
|
| 172 |
+
# do the multiplication y^T = Alpha * x^T A + Beta
|
| 173 |
+
for n in x:
|
| 174 |
+
for nbr in G[n]:
|
| 175 |
+
x[nbr] += xlast[n] * G[n][nbr].get(weight, 1)
|
| 176 |
+
for n in x:
|
| 177 |
+
x[n] = alpha * x[n] + b[n]
|
| 178 |
+
|
| 179 |
+
# check convergence
|
| 180 |
+
error = sum(abs(x[n] - xlast[n]) for n in x)
|
| 181 |
+
if error < nnodes * tol:
|
| 182 |
+
if normalized:
|
| 183 |
+
# normalize vector
|
| 184 |
+
try:
|
| 185 |
+
s = 1.0 / math.hypot(*x.values())
|
| 186 |
+
except ZeroDivisionError:
|
| 187 |
+
s = 1.0
|
| 188 |
+
else:
|
| 189 |
+
s = 1
|
| 190 |
+
for n in x:
|
| 191 |
+
x[n] *= s
|
| 192 |
+
return x
|
| 193 |
+
raise nx.PowerIterationFailedConvergence(max_iter)
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
@not_implemented_for("multigraph")
|
| 197 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 198 |
+
def katz_centrality_numpy(G, alpha=0.1, beta=1.0, normalized=True, weight=None):
|
| 199 |
+
r"""Compute the Katz centrality for the graph G.
|
| 200 |
+
|
| 201 |
+
Katz centrality computes the centrality for a node based on the centrality
|
| 202 |
+
of its neighbors. It is a generalization of the eigenvector centrality. The
|
| 203 |
+
Katz centrality for node $i$ is
|
| 204 |
+
|
| 205 |
+
.. math::
|
| 206 |
+
|
| 207 |
+
x_i = \alpha \sum_{j} A_{ij} x_j + \beta,
|
| 208 |
+
|
| 209 |
+
where $A$ is the adjacency matrix of graph G with eigenvalues $\lambda$.
|
| 210 |
+
|
| 211 |
+
The parameter $\beta$ controls the initial centrality and
|
| 212 |
+
|
| 213 |
+
.. math::
|
| 214 |
+
|
| 215 |
+
\alpha < \frac{1}{\lambda_{\max}}.
|
| 216 |
+
|
| 217 |
+
Katz centrality computes the relative influence of a node within a
|
| 218 |
+
network by measuring the number of the immediate neighbors (first
|
| 219 |
+
degree nodes) and also all other nodes in the network that connect
|
| 220 |
+
to the node under consideration through these immediate neighbors.
|
| 221 |
+
|
| 222 |
+
Extra weight can be provided to immediate neighbors through the
|
| 223 |
+
parameter $\beta$. Connections made with distant neighbors
|
| 224 |
+
are, however, penalized by an attenuation factor $\alpha$ which
|
| 225 |
+
should be strictly less than the inverse largest eigenvalue of the
|
| 226 |
+
adjacency matrix in order for the Katz centrality to be computed
|
| 227 |
+
correctly. More information is provided in [1]_.
|
| 228 |
+
|
| 229 |
+
Parameters
|
| 230 |
+
----------
|
| 231 |
+
G : graph
|
| 232 |
+
A NetworkX graph
|
| 233 |
+
|
| 234 |
+
alpha : float
|
| 235 |
+
Attenuation factor
|
| 236 |
+
|
| 237 |
+
beta : scalar or dictionary, optional (default=1.0)
|
| 238 |
+
Weight attributed to the immediate neighborhood. If not a scalar the
|
| 239 |
+
dictionary must have an value for every node.
|
| 240 |
+
|
| 241 |
+
normalized : bool
|
| 242 |
+
If True normalize the resulting values.
|
| 243 |
+
|
| 244 |
+
weight : None or string, optional
|
| 245 |
+
If None, all edge weights are considered equal.
|
| 246 |
+
Otherwise holds the name of the edge attribute used as weight.
|
| 247 |
+
In this measure the weight is interpreted as the connection strength.
|
| 248 |
+
|
| 249 |
+
Returns
|
| 250 |
+
-------
|
| 251 |
+
nodes : dictionary
|
| 252 |
+
Dictionary of nodes with Katz centrality as the value.
|
| 253 |
+
|
| 254 |
+
Raises
|
| 255 |
+
------
|
| 256 |
+
NetworkXError
|
| 257 |
+
If the parameter `beta` is not a scalar but lacks a value for at least
|
| 258 |
+
one node
|
| 259 |
+
|
| 260 |
+
Examples
|
| 261 |
+
--------
|
| 262 |
+
>>> import math
|
| 263 |
+
>>> G = nx.path_graph(4)
|
| 264 |
+
>>> phi = (1 + math.sqrt(5)) / 2.0 # largest eigenvalue of adj matrix
|
| 265 |
+
>>> centrality = nx.katz_centrality_numpy(G, 1 / phi)
|
| 266 |
+
>>> for n, c in sorted(centrality.items()):
|
| 267 |
+
... print(f"{n} {c:.2f}")
|
| 268 |
+
0 0.37
|
| 269 |
+
1 0.60
|
| 270 |
+
2 0.60
|
| 271 |
+
3 0.37
|
| 272 |
+
|
| 273 |
+
See Also
|
| 274 |
+
--------
|
| 275 |
+
katz_centrality
|
| 276 |
+
eigenvector_centrality_numpy
|
| 277 |
+
eigenvector_centrality
|
| 278 |
+
:func:`~networkx.algorithms.link_analysis.pagerank_alg.pagerank`
|
| 279 |
+
:func:`~networkx.algorithms.link_analysis.hits_alg.hits`
|
| 280 |
+
|
| 281 |
+
Notes
|
| 282 |
+
-----
|
| 283 |
+
Katz centrality was introduced by [2]_.
|
| 284 |
+
|
| 285 |
+
This algorithm uses a direct linear solver to solve the above equation.
|
| 286 |
+
The parameter ``alpha`` should be strictly less than the inverse of largest
|
| 287 |
+
eigenvalue of the adjacency matrix for there to be a solution.
|
| 288 |
+
You can use ``max(nx.adjacency_spectrum(G))`` to get $\lambda_{\max}$ the largest
|
| 289 |
+
eigenvalue of the adjacency matrix.
|
| 290 |
+
|
| 291 |
+
For strongly connected graphs, as $\alpha \to 1/\lambda_{\max}$, and $\beta > 0$,
|
| 292 |
+
Katz centrality approaches the results for eigenvector centrality.
|
| 293 |
+
|
| 294 |
+
For directed graphs this finds "left" eigenvectors which corresponds
|
| 295 |
+
to the in-edges in the graph. For out-edges Katz centrality,
|
| 296 |
+
first reverse the graph with ``G.reverse()``.
|
| 297 |
+
|
| 298 |
+
References
|
| 299 |
+
----------
|
| 300 |
+
.. [1] Mark E. J. Newman:
|
| 301 |
+
Networks: An Introduction.
|
| 302 |
+
Oxford University Press, USA, 2010, p. 173.
|
| 303 |
+
.. [2] Leo Katz:
|
| 304 |
+
A New Status Index Derived from Sociometric Index.
|
| 305 |
+
Psychometrika 18(1):39–43, 1953
|
| 306 |
+
https://link.springer.com/content/pdf/10.1007/BF02289026.pdf
|
| 307 |
+
"""
|
| 308 |
+
import numpy as np
|
| 309 |
+
|
| 310 |
+
if len(G) == 0:
|
| 311 |
+
return {}
|
| 312 |
+
try:
|
| 313 |
+
nodelist = beta.keys()
|
| 314 |
+
if set(nodelist) != set(G):
|
| 315 |
+
raise nx.NetworkXError("beta dictionary must have a value for every node")
|
| 316 |
+
b = np.array(list(beta.values()), dtype=float)
|
| 317 |
+
except AttributeError:
|
| 318 |
+
nodelist = list(G)
|
| 319 |
+
try:
|
| 320 |
+
b = np.ones((len(nodelist), 1)) * beta
|
| 321 |
+
except (TypeError, ValueError, AttributeError) as err:
|
| 322 |
+
raise nx.NetworkXError("beta must be a number") from err
|
| 323 |
+
|
| 324 |
+
A = nx.adjacency_matrix(G, nodelist=nodelist, weight=weight).todense().T
|
| 325 |
+
n = A.shape[0]
|
| 326 |
+
centrality = np.linalg.solve(np.eye(n, n) - (alpha * A), b).squeeze()
|
| 327 |
+
|
| 328 |
+
# Normalize: rely on truediv to cast to float, then tolist to make Python numbers
|
| 329 |
+
norm = np.sign(sum(centrality)) * np.linalg.norm(centrality) if normalized else 1
|
| 330 |
+
return dict(zip(nodelist, (centrality / norm).tolist()))
|
parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/laplacian.py
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Laplacian centrality measures.
|
| 3 |
+
"""
|
| 4 |
+
import networkx as nx
|
| 5 |
+
|
| 6 |
+
__all__ = ["laplacian_centrality"]
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 10 |
+
def laplacian_centrality(
|
| 11 |
+
G, normalized=True, nodelist=None, weight="weight", walk_type=None, alpha=0.95
|
| 12 |
+
):
|
| 13 |
+
r"""Compute the Laplacian centrality for nodes in the graph `G`.
|
| 14 |
+
|
| 15 |
+
The Laplacian Centrality of a node ``i`` is measured by the drop in the
|
| 16 |
+
Laplacian Energy after deleting node ``i`` from the graph. The Laplacian Energy
|
| 17 |
+
is the sum of the squared eigenvalues of a graph's Laplacian matrix.
|
| 18 |
+
|
| 19 |
+
.. math::
|
| 20 |
+
|
| 21 |
+
C_L(u_i,G) = \frac{(\Delta E)_i}{E_L (G)} = \frac{E_L (G)-E_L (G_i)}{E_L (G)}
|
| 22 |
+
|
| 23 |
+
E_L (G) = \sum_{i=0}^n \lambda_i^2
|
| 24 |
+
|
| 25 |
+
Where $E_L (G)$ is the Laplacian energy of graph `G`,
|
| 26 |
+
E_L (G_i) is the Laplacian energy of graph `G` after deleting node ``i``
|
| 27 |
+
and $\lambda_i$ are the eigenvalues of `G`'s Laplacian matrix.
|
| 28 |
+
This formula shows the normalized value. Without normalization,
|
| 29 |
+
the numerator on the right side is returned.
|
| 30 |
+
|
| 31 |
+
Parameters
|
| 32 |
+
----------
|
| 33 |
+
G : graph
|
| 34 |
+
A networkx graph
|
| 35 |
+
|
| 36 |
+
normalized : bool (default = True)
|
| 37 |
+
If True the centrality score is scaled so the sum over all nodes is 1.
|
| 38 |
+
If False the centrality score for each node is the drop in Laplacian
|
| 39 |
+
energy when that node is removed.
|
| 40 |
+
|
| 41 |
+
nodelist : list, optional (default = None)
|
| 42 |
+
The rows and columns are ordered according to the nodes in nodelist.
|
| 43 |
+
If nodelist is None, then the ordering is produced by G.nodes().
|
| 44 |
+
|
| 45 |
+
weight: string or None, optional (default=`weight`)
|
| 46 |
+
Optional parameter `weight` to compute the Laplacian matrix.
|
| 47 |
+
The edge data key used to compute each value in the matrix.
|
| 48 |
+
If None, then each edge has weight 1.
|
| 49 |
+
|
| 50 |
+
walk_type : string or None, optional (default=None)
|
| 51 |
+
Optional parameter `walk_type` used when calling
|
| 52 |
+
:func:`directed_laplacian_matrix <networkx.directed_laplacian_matrix>`.
|
| 53 |
+
One of ``"random"``, ``"lazy"``, or ``"pagerank"``. If ``walk_type=None``
|
| 54 |
+
(the default), then a value is selected according to the properties of `G`:
|
| 55 |
+
- ``walk_type="random"`` if `G` is strongly connected and aperiodic
|
| 56 |
+
- ``walk_type="lazy"`` if `G` is strongly connected but not aperiodic
|
| 57 |
+
- ``walk_type="pagerank"`` for all other cases.
|
| 58 |
+
|
| 59 |
+
alpha : real (default = 0.95)
|
| 60 |
+
Optional parameter `alpha` used when calling
|
| 61 |
+
:func:`directed_laplacian_matrix <networkx.directed_laplacian_matrix>`.
|
| 62 |
+
(1 - alpha) is the teleportation probability used with pagerank.
|
| 63 |
+
|
| 64 |
+
Returns
|
| 65 |
+
-------
|
| 66 |
+
nodes : dictionary
|
| 67 |
+
Dictionary of nodes with Laplacian centrality as the value.
|
| 68 |
+
|
| 69 |
+
Examples
|
| 70 |
+
--------
|
| 71 |
+
>>> G = nx.Graph()
|
| 72 |
+
>>> edges = [(0, 1, 4), (0, 2, 2), (2, 1, 1), (1, 3, 2), (1, 4, 2), (4, 5, 1)]
|
| 73 |
+
>>> G.add_weighted_edges_from(edges)
|
| 74 |
+
>>> sorted((v, f"{c:0.2f}") for v, c in laplacian_centrality(G).items())
|
| 75 |
+
[(0, '0.70'), (1, '0.90'), (2, '0.28'), (3, '0.22'), (4, '0.26'), (5, '0.04')]
|
| 76 |
+
|
| 77 |
+
Notes
|
| 78 |
+
-----
|
| 79 |
+
The algorithm is implemented based on [1]_ with an extension to directed graphs
|
| 80 |
+
using the ``directed_laplacian_matrix`` function.
|
| 81 |
+
|
| 82 |
+
Raises
|
| 83 |
+
------
|
| 84 |
+
NetworkXPointlessConcept
|
| 85 |
+
If the graph `G` is the null graph.
|
| 86 |
+
ZeroDivisionError
|
| 87 |
+
If the graph `G` has no edges (is empty) and normalization is requested.
|
| 88 |
+
|
| 89 |
+
References
|
| 90 |
+
----------
|
| 91 |
+
.. [1] Qi, X., Fuller, E., Wu, Q., Wu, Y., and Zhang, C.-Q. (2012).
|
| 92 |
+
Laplacian centrality: A new centrality measure for weighted networks.
|
| 93 |
+
Information Sciences, 194:240-253.
|
| 94 |
+
https://math.wvu.edu/~cqzhang/Publication-files/my-paper/INS-2012-Laplacian-W.pdf
|
| 95 |
+
|
| 96 |
+
See Also
|
| 97 |
+
--------
|
| 98 |
+
:func:`~networkx.linalg.laplacianmatrix.directed_laplacian_matrix`
|
| 99 |
+
:func:`~networkx.linalg.laplacianmatrix.laplacian_matrix`
|
| 100 |
+
"""
|
| 101 |
+
import numpy as np
|
| 102 |
+
import scipy as sp
|
| 103 |
+
|
| 104 |
+
if len(G) == 0:
|
| 105 |
+
raise nx.NetworkXPointlessConcept("null graph has no centrality defined")
|
| 106 |
+
if G.size(weight=weight) == 0:
|
| 107 |
+
if normalized:
|
| 108 |
+
raise ZeroDivisionError("graph with no edges has zero full energy")
|
| 109 |
+
return {n: 0 for n in G}
|
| 110 |
+
|
| 111 |
+
if nodelist is not None:
|
| 112 |
+
nodeset = set(G.nbunch_iter(nodelist))
|
| 113 |
+
if len(nodeset) != len(nodelist):
|
| 114 |
+
raise nx.NetworkXError("nodelist has duplicate nodes or nodes not in G")
|
| 115 |
+
nodes = nodelist + [n for n in G if n not in nodeset]
|
| 116 |
+
else:
|
| 117 |
+
nodelist = nodes = list(G)
|
| 118 |
+
|
| 119 |
+
if G.is_directed():
|
| 120 |
+
lap_matrix = nx.directed_laplacian_matrix(G, nodes, weight, walk_type, alpha)
|
| 121 |
+
else:
|
| 122 |
+
lap_matrix = nx.laplacian_matrix(G, nodes, weight).toarray()
|
| 123 |
+
|
| 124 |
+
full_energy = np.power(sp.linalg.eigh(lap_matrix, eigvals_only=True), 2).sum()
|
| 125 |
+
|
| 126 |
+
# calculate laplacian centrality
|
| 127 |
+
laplace_centralities_dict = {}
|
| 128 |
+
for i, node in enumerate(nodelist):
|
| 129 |
+
# remove row and col i from lap_matrix
|
| 130 |
+
all_but_i = list(np.arange(lap_matrix.shape[0]))
|
| 131 |
+
all_but_i.remove(i)
|
| 132 |
+
A_2 = lap_matrix[all_but_i, :][:, all_but_i]
|
| 133 |
+
|
| 134 |
+
# Adjust diagonal for removed row
|
| 135 |
+
new_diag = lap_matrix.diagonal() - abs(lap_matrix[:, i])
|
| 136 |
+
np.fill_diagonal(A_2, new_diag[all_but_i])
|
| 137 |
+
|
| 138 |
+
if len(all_but_i) > 0: # catches degenerate case of single node
|
| 139 |
+
new_energy = np.power(sp.linalg.eigh(A_2, eigvals_only=True), 2).sum()
|
| 140 |
+
else:
|
| 141 |
+
new_energy = 0.0
|
| 142 |
+
|
| 143 |
+
lapl_cent = full_energy - new_energy
|
| 144 |
+
if normalized:
|
| 145 |
+
lapl_cent = lapl_cent / full_energy
|
| 146 |
+
|
| 147 |
+
laplace_centralities_dict[node] = float(lapl_cent)
|
| 148 |
+
|
| 149 |
+
return laplace_centralities_dict
|
parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/load.py
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Load centrality."""
|
| 2 |
+
from operator import itemgetter
|
| 3 |
+
|
| 4 |
+
import networkx as nx
|
| 5 |
+
|
| 6 |
+
__all__ = ["load_centrality", "edge_load_centrality"]
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 10 |
+
def newman_betweenness_centrality(G, v=None, cutoff=None, normalized=True, weight=None):
|
| 11 |
+
"""Compute load centrality for nodes.
|
| 12 |
+
|
| 13 |
+
The load centrality of a node is the fraction of all shortest
|
| 14 |
+
paths that pass through that node.
|
| 15 |
+
|
| 16 |
+
Parameters
|
| 17 |
+
----------
|
| 18 |
+
G : graph
|
| 19 |
+
A networkx graph.
|
| 20 |
+
|
| 21 |
+
normalized : bool, optional (default=True)
|
| 22 |
+
If True the betweenness values are normalized by b=b/(n-1)(n-2) where
|
| 23 |
+
n is the number of nodes in G.
|
| 24 |
+
|
| 25 |
+
weight : None or string, optional (default=None)
|
| 26 |
+
If None, edge weights are ignored.
|
| 27 |
+
Otherwise holds the name of the edge attribute used as weight.
|
| 28 |
+
The weight of an edge is treated as the length or distance between the two sides.
|
| 29 |
+
|
| 30 |
+
cutoff : bool, optional (default=None)
|
| 31 |
+
If specified, only consider paths of length <= cutoff.
|
| 32 |
+
|
| 33 |
+
Returns
|
| 34 |
+
-------
|
| 35 |
+
nodes : dictionary
|
| 36 |
+
Dictionary of nodes with centrality as the value.
|
| 37 |
+
|
| 38 |
+
See Also
|
| 39 |
+
--------
|
| 40 |
+
betweenness_centrality
|
| 41 |
+
|
| 42 |
+
Notes
|
| 43 |
+
-----
|
| 44 |
+
Load centrality is slightly different than betweenness. It was originally
|
| 45 |
+
introduced by [2]_. For this load algorithm see [1]_.
|
| 46 |
+
|
| 47 |
+
References
|
| 48 |
+
----------
|
| 49 |
+
.. [1] Mark E. J. Newman:
|
| 50 |
+
Scientific collaboration networks. II.
|
| 51 |
+
Shortest paths, weighted networks, and centrality.
|
| 52 |
+
Physical Review E 64, 016132, 2001.
|
| 53 |
+
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.64.016132
|
| 54 |
+
.. [2] Kwang-Il Goh, Byungnam Kahng and Doochul Kim
|
| 55 |
+
Universal behavior of Load Distribution in Scale-Free Networks.
|
| 56 |
+
Physical Review Letters 87(27):1–4, 2001.
|
| 57 |
+
https://doi.org/10.1103/PhysRevLett.87.278701
|
| 58 |
+
"""
|
| 59 |
+
if v is not None: # only one node
|
| 60 |
+
betweenness = 0.0
|
| 61 |
+
for source in G:
|
| 62 |
+
ubetween = _node_betweenness(G, source, cutoff, False, weight)
|
| 63 |
+
betweenness += ubetween[v] if v in ubetween else 0
|
| 64 |
+
if normalized:
|
| 65 |
+
order = G.order()
|
| 66 |
+
if order <= 2:
|
| 67 |
+
return betweenness # no normalization b=0 for all nodes
|
| 68 |
+
betweenness *= 1.0 / ((order - 1) * (order - 2))
|
| 69 |
+
else:
|
| 70 |
+
betweenness = {}.fromkeys(G, 0.0)
|
| 71 |
+
for source in betweenness:
|
| 72 |
+
ubetween = _node_betweenness(G, source, cutoff, False, weight)
|
| 73 |
+
for vk in ubetween:
|
| 74 |
+
betweenness[vk] += ubetween[vk]
|
| 75 |
+
if normalized:
|
| 76 |
+
order = G.order()
|
| 77 |
+
if order <= 2:
|
| 78 |
+
return betweenness # no normalization b=0 for all nodes
|
| 79 |
+
scale = 1.0 / ((order - 1) * (order - 2))
|
| 80 |
+
for v in betweenness:
|
| 81 |
+
betweenness[v] *= scale
|
| 82 |
+
return betweenness # all nodes
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def _node_betweenness(G, source, cutoff=False, normalized=True, weight=None):
|
| 86 |
+
"""Node betweenness_centrality helper:
|
| 87 |
+
|
| 88 |
+
See betweenness_centrality for what you probably want.
|
| 89 |
+
This actually computes "load" and not betweenness.
|
| 90 |
+
See https://networkx.lanl.gov/ticket/103
|
| 91 |
+
|
| 92 |
+
This calculates the load of each node for paths from a single source.
|
| 93 |
+
(The fraction of number of shortests paths from source that go
|
| 94 |
+
through each node.)
|
| 95 |
+
|
| 96 |
+
To get the load for a node you need to do all-pairs shortest paths.
|
| 97 |
+
|
| 98 |
+
If weight is not None then use Dijkstra for finding shortest paths.
|
| 99 |
+
"""
|
| 100 |
+
# get the predecessor and path length data
|
| 101 |
+
if weight is None:
|
| 102 |
+
(pred, length) = nx.predecessor(G, source, cutoff=cutoff, return_seen=True)
|
| 103 |
+
else:
|
| 104 |
+
(pred, length) = nx.dijkstra_predecessor_and_distance(G, source, cutoff, weight)
|
| 105 |
+
|
| 106 |
+
# order the nodes by path length
|
| 107 |
+
onodes = [(l, vert) for (vert, l) in length.items()]
|
| 108 |
+
onodes.sort()
|
| 109 |
+
onodes[:] = [vert for (l, vert) in onodes if l > 0]
|
| 110 |
+
|
| 111 |
+
# initialize betweenness
|
| 112 |
+
between = {}.fromkeys(length, 1.0)
|
| 113 |
+
|
| 114 |
+
while onodes:
|
| 115 |
+
v = onodes.pop()
|
| 116 |
+
if v in pred:
|
| 117 |
+
num_paths = len(pred[v]) # Discount betweenness if more than
|
| 118 |
+
for x in pred[v]: # one shortest path.
|
| 119 |
+
if x == source: # stop if hit source because all remaining v
|
| 120 |
+
break # also have pred[v]==[source]
|
| 121 |
+
between[x] += between[v] / num_paths
|
| 122 |
+
# remove source
|
| 123 |
+
for v in between:
|
| 124 |
+
between[v] -= 1
|
| 125 |
+
# rescale to be between 0 and 1
|
| 126 |
+
if normalized:
|
| 127 |
+
l = len(between)
|
| 128 |
+
if l > 2:
|
| 129 |
+
# scale by 1/the number of possible paths
|
| 130 |
+
scale = 1 / ((l - 1) * (l - 2))
|
| 131 |
+
for v in between:
|
| 132 |
+
between[v] *= scale
|
| 133 |
+
return between
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
load_centrality = newman_betweenness_centrality
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
@nx._dispatchable
|
| 140 |
+
def edge_load_centrality(G, cutoff=False):
|
| 141 |
+
"""Compute edge load.
|
| 142 |
+
|
| 143 |
+
WARNING: This concept of edge load has not been analysed
|
| 144 |
+
or discussed outside of NetworkX that we know of.
|
| 145 |
+
It is based loosely on load_centrality in the sense that
|
| 146 |
+
it counts the number of shortest paths which cross each edge.
|
| 147 |
+
This function is for demonstration and testing purposes.
|
| 148 |
+
|
| 149 |
+
Parameters
|
| 150 |
+
----------
|
| 151 |
+
G : graph
|
| 152 |
+
A networkx graph
|
| 153 |
+
|
| 154 |
+
cutoff : bool, optional (default=False)
|
| 155 |
+
If specified, only consider paths of length <= cutoff.
|
| 156 |
+
|
| 157 |
+
Returns
|
| 158 |
+
-------
|
| 159 |
+
A dict keyed by edge 2-tuple to the number of shortest paths
|
| 160 |
+
which use that edge. Where more than one path is shortest
|
| 161 |
+
the count is divided equally among paths.
|
| 162 |
+
"""
|
| 163 |
+
betweenness = {}
|
| 164 |
+
for u, v in G.edges():
|
| 165 |
+
betweenness[(u, v)] = 0.0
|
| 166 |
+
betweenness[(v, u)] = 0.0
|
| 167 |
+
|
| 168 |
+
for source in G:
|
| 169 |
+
ubetween = _edge_betweenness(G, source, cutoff=cutoff)
|
| 170 |
+
for e, ubetweenv in ubetween.items():
|
| 171 |
+
betweenness[e] += ubetweenv # cumulative total
|
| 172 |
+
return betweenness
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
def _edge_betweenness(G, source, nodes=None, cutoff=False):
|
| 176 |
+
"""Edge betweenness helper."""
|
| 177 |
+
# get the predecessor data
|
| 178 |
+
(pred, length) = nx.predecessor(G, source, cutoff=cutoff, return_seen=True)
|
| 179 |
+
# order the nodes by path length
|
| 180 |
+
onodes = [n for n, d in sorted(length.items(), key=itemgetter(1))]
|
| 181 |
+
# initialize betweenness, doesn't account for any edge weights
|
| 182 |
+
between = {}
|
| 183 |
+
for u, v in G.edges(nodes):
|
| 184 |
+
between[(u, v)] = 1.0
|
| 185 |
+
between[(v, u)] = 1.0
|
| 186 |
+
|
| 187 |
+
while onodes: # work through all paths
|
| 188 |
+
v = onodes.pop()
|
| 189 |
+
if v in pred:
|
| 190 |
+
# Discount betweenness if more than one shortest path.
|
| 191 |
+
num_paths = len(pred[v])
|
| 192 |
+
for w in pred[v]:
|
| 193 |
+
if w in pred:
|
| 194 |
+
# Discount betweenness, mult path
|
| 195 |
+
num_paths = len(pred[w])
|
| 196 |
+
for x in pred[w]:
|
| 197 |
+
between[(w, x)] += between[(v, w)] / num_paths
|
| 198 |
+
between[(x, w)] += between[(w, v)] / num_paths
|
| 199 |
+
return between
|
parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/percolation.py
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Percolation centrality measures."""
|
| 2 |
+
|
| 3 |
+
import networkx as nx
|
| 4 |
+
from networkx.algorithms.centrality.betweenness import (
|
| 5 |
+
_single_source_dijkstra_path_basic as dijkstra,
|
| 6 |
+
)
|
| 7 |
+
from networkx.algorithms.centrality.betweenness import (
|
| 8 |
+
_single_source_shortest_path_basic as shortest_path,
|
| 9 |
+
)
|
| 10 |
+
|
| 11 |
+
__all__ = ["percolation_centrality"]
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
@nx._dispatchable(node_attrs="attribute", edge_attrs="weight")
|
| 15 |
+
def percolation_centrality(G, attribute="percolation", states=None, weight=None):
|
| 16 |
+
r"""Compute the percolation centrality for nodes.
|
| 17 |
+
|
| 18 |
+
Percolation centrality of a node $v$, at a given time, is defined
|
| 19 |
+
as the proportion of ‘percolated paths’ that go through that node.
|
| 20 |
+
|
| 21 |
+
This measure quantifies relative impact of nodes based on their
|
| 22 |
+
topological connectivity, as well as their percolation states.
|
| 23 |
+
|
| 24 |
+
Percolation states of nodes are used to depict network percolation
|
| 25 |
+
scenarios (such as during infection transmission in a social network
|
| 26 |
+
of individuals, spreading of computer viruses on computer networks, or
|
| 27 |
+
transmission of disease over a network of towns) over time. In this
|
| 28 |
+
measure usually the percolation state is expressed as a decimal
|
| 29 |
+
between 0.0 and 1.0.
|
| 30 |
+
|
| 31 |
+
When all nodes are in the same percolated state this measure is
|
| 32 |
+
equivalent to betweenness centrality.
|
| 33 |
+
|
| 34 |
+
Parameters
|
| 35 |
+
----------
|
| 36 |
+
G : graph
|
| 37 |
+
A NetworkX graph.
|
| 38 |
+
|
| 39 |
+
attribute : None or string, optional (default='percolation')
|
| 40 |
+
Name of the node attribute to use for percolation state, used
|
| 41 |
+
if `states` is None. If a node does not set the attribute the
|
| 42 |
+
state of that node will be set to the default value of 1.
|
| 43 |
+
If all nodes do not have the attribute all nodes will be set to
|
| 44 |
+
1 and the centrality measure will be equivalent to betweenness centrality.
|
| 45 |
+
|
| 46 |
+
states : None or dict, optional (default=None)
|
| 47 |
+
Specify percolation states for the nodes, nodes as keys states
|
| 48 |
+
as values.
|
| 49 |
+
|
| 50 |
+
weight : None or string, optional (default=None)
|
| 51 |
+
If None, all edge weights are considered equal.
|
| 52 |
+
Otherwise holds the name of the edge attribute used as weight.
|
| 53 |
+
The weight of an edge is treated as the length or distance between the two sides.
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
Returns
|
| 57 |
+
-------
|
| 58 |
+
nodes : dictionary
|
| 59 |
+
Dictionary of nodes with percolation centrality as the value.
|
| 60 |
+
|
| 61 |
+
See Also
|
| 62 |
+
--------
|
| 63 |
+
betweenness_centrality
|
| 64 |
+
|
| 65 |
+
Notes
|
| 66 |
+
-----
|
| 67 |
+
The algorithm is from Mahendra Piraveenan, Mikhail Prokopenko, and
|
| 68 |
+
Liaquat Hossain [1]_
|
| 69 |
+
Pair dependencies are calculated and accumulated using [2]_
|
| 70 |
+
|
| 71 |
+
For weighted graphs the edge weights must be greater than zero.
|
| 72 |
+
Zero edge weights can produce an infinite number of equal length
|
| 73 |
+
paths between pairs of nodes.
|
| 74 |
+
|
| 75 |
+
References
|
| 76 |
+
----------
|
| 77 |
+
.. [1] Mahendra Piraveenan, Mikhail Prokopenko, Liaquat Hossain
|
| 78 |
+
Percolation Centrality: Quantifying Graph-Theoretic Impact of Nodes
|
| 79 |
+
during Percolation in Networks
|
| 80 |
+
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0053095
|
| 81 |
+
.. [2] Ulrik Brandes:
|
| 82 |
+
A Faster Algorithm for Betweenness Centrality.
|
| 83 |
+
Journal of Mathematical Sociology 25(2):163-177, 2001.
|
| 84 |
+
https://doi.org/10.1080/0022250X.2001.9990249
|
| 85 |
+
"""
|
| 86 |
+
percolation = dict.fromkeys(G, 0.0) # b[v]=0 for v in G
|
| 87 |
+
|
| 88 |
+
nodes = G
|
| 89 |
+
|
| 90 |
+
if states is None:
|
| 91 |
+
states = nx.get_node_attributes(nodes, attribute, default=1)
|
| 92 |
+
|
| 93 |
+
# sum of all percolation states
|
| 94 |
+
p_sigma_x_t = 0.0
|
| 95 |
+
for v in states.values():
|
| 96 |
+
p_sigma_x_t += v
|
| 97 |
+
|
| 98 |
+
for s in nodes:
|
| 99 |
+
# single source shortest paths
|
| 100 |
+
if weight is None: # use BFS
|
| 101 |
+
S, P, sigma, _ = shortest_path(G, s)
|
| 102 |
+
else: # use Dijkstra's algorithm
|
| 103 |
+
S, P, sigma, _ = dijkstra(G, s, weight)
|
| 104 |
+
# accumulation
|
| 105 |
+
percolation = _accumulate_percolation(
|
| 106 |
+
percolation, S, P, sigma, s, states, p_sigma_x_t
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
n = len(G)
|
| 110 |
+
|
| 111 |
+
for v in percolation:
|
| 112 |
+
percolation[v] *= 1 / (n - 2)
|
| 113 |
+
|
| 114 |
+
return percolation
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def _accumulate_percolation(percolation, S, P, sigma, s, states, p_sigma_x_t):
|
| 118 |
+
delta = dict.fromkeys(S, 0)
|
| 119 |
+
while S:
|
| 120 |
+
w = S.pop()
|
| 121 |
+
coeff = (1 + delta[w]) / sigma[w]
|
| 122 |
+
for v in P[w]:
|
| 123 |
+
delta[v] += sigma[v] * coeff
|
| 124 |
+
if w != s:
|
| 125 |
+
# percolation weight
|
| 126 |
+
pw_s_w = states[s] / (p_sigma_x_t - states[w])
|
| 127 |
+
percolation[w] += delta[w] * pw_s_w
|
| 128 |
+
return percolation
|
parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/reaching.py
ADDED
|
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Functions for computing reaching centrality of a node or a graph."""
|
| 2 |
+
|
| 3 |
+
import networkx as nx
|
| 4 |
+
from networkx.utils import pairwise
|
| 5 |
+
|
| 6 |
+
__all__ = ["global_reaching_centrality", "local_reaching_centrality"]
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def _average_weight(G, path, weight=None):
|
| 10 |
+
"""Returns the average weight of an edge in a weighted path.
|
| 11 |
+
|
| 12 |
+
Parameters
|
| 13 |
+
----------
|
| 14 |
+
G : graph
|
| 15 |
+
A networkx graph.
|
| 16 |
+
|
| 17 |
+
path: list
|
| 18 |
+
A list of vertices that define the path.
|
| 19 |
+
|
| 20 |
+
weight : None or string, optional (default=None)
|
| 21 |
+
If None, edge weights are ignored. Then the average weight of an edge
|
| 22 |
+
is assumed to be the multiplicative inverse of the length of the path.
|
| 23 |
+
Otherwise holds the name of the edge attribute used as weight.
|
| 24 |
+
"""
|
| 25 |
+
path_length = len(path) - 1
|
| 26 |
+
if path_length <= 0:
|
| 27 |
+
return 0
|
| 28 |
+
if weight is None:
|
| 29 |
+
return 1 / path_length
|
| 30 |
+
total_weight = sum(G.edges[i, j][weight] for i, j in pairwise(path))
|
| 31 |
+
return total_weight / path_length
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 35 |
+
def global_reaching_centrality(G, weight=None, normalized=True):
|
| 36 |
+
"""Returns the global reaching centrality of a directed graph.
|
| 37 |
+
|
| 38 |
+
The *global reaching centrality* of a weighted directed graph is the
|
| 39 |
+
average over all nodes of the difference between the local reaching
|
| 40 |
+
centrality of the node and the greatest local reaching centrality of
|
| 41 |
+
any node in the graph [1]_. For more information on the local
|
| 42 |
+
reaching centrality, see :func:`local_reaching_centrality`.
|
| 43 |
+
Informally, the local reaching centrality is the proportion of the
|
| 44 |
+
graph that is reachable from the neighbors of the node.
|
| 45 |
+
|
| 46 |
+
Parameters
|
| 47 |
+
----------
|
| 48 |
+
G : DiGraph
|
| 49 |
+
A networkx DiGraph.
|
| 50 |
+
|
| 51 |
+
weight : None or string, optional (default=None)
|
| 52 |
+
Attribute to use for edge weights. If ``None``, each edge weight
|
| 53 |
+
is assumed to be one. A higher weight implies a stronger
|
| 54 |
+
connection between nodes and a *shorter* path length.
|
| 55 |
+
|
| 56 |
+
normalized : bool, optional (default=True)
|
| 57 |
+
Whether to normalize the edge weights by the total sum of edge
|
| 58 |
+
weights.
|
| 59 |
+
|
| 60 |
+
Returns
|
| 61 |
+
-------
|
| 62 |
+
h : float
|
| 63 |
+
The global reaching centrality of the graph.
|
| 64 |
+
|
| 65 |
+
Examples
|
| 66 |
+
--------
|
| 67 |
+
>>> G = nx.DiGraph()
|
| 68 |
+
>>> G.add_edge(1, 2)
|
| 69 |
+
>>> G.add_edge(1, 3)
|
| 70 |
+
>>> nx.global_reaching_centrality(G)
|
| 71 |
+
1.0
|
| 72 |
+
>>> G.add_edge(3, 2)
|
| 73 |
+
>>> nx.global_reaching_centrality(G)
|
| 74 |
+
0.75
|
| 75 |
+
|
| 76 |
+
See also
|
| 77 |
+
--------
|
| 78 |
+
local_reaching_centrality
|
| 79 |
+
|
| 80 |
+
References
|
| 81 |
+
----------
|
| 82 |
+
.. [1] Mones, Enys, Lilla Vicsek, and Tamás Vicsek.
|
| 83 |
+
"Hierarchy Measure for Complex Networks."
|
| 84 |
+
*PLoS ONE* 7.3 (2012): e33799.
|
| 85 |
+
https://doi.org/10.1371/journal.pone.0033799
|
| 86 |
+
"""
|
| 87 |
+
if nx.is_negatively_weighted(G, weight=weight):
|
| 88 |
+
raise nx.NetworkXError("edge weights must be positive")
|
| 89 |
+
total_weight = G.size(weight=weight)
|
| 90 |
+
if total_weight <= 0:
|
| 91 |
+
raise nx.NetworkXError("Size of G must be positive")
|
| 92 |
+
|
| 93 |
+
# If provided, weights must be interpreted as connection strength
|
| 94 |
+
# (so higher weights are more likely to be chosen). However, the
|
| 95 |
+
# shortest path algorithms in NetworkX assume the provided "weight"
|
| 96 |
+
# is actually a distance (so edges with higher weight are less
|
| 97 |
+
# likely to be chosen). Therefore we need to invert the weights when
|
| 98 |
+
# computing shortest paths.
|
| 99 |
+
#
|
| 100 |
+
# If weight is None, we leave it as-is so that the shortest path
|
| 101 |
+
# algorithm can use a faster, unweighted algorithm.
|
| 102 |
+
if weight is not None:
|
| 103 |
+
|
| 104 |
+
def as_distance(u, v, d):
|
| 105 |
+
return total_weight / d.get(weight, 1)
|
| 106 |
+
|
| 107 |
+
shortest_paths = nx.shortest_path(G, weight=as_distance)
|
| 108 |
+
else:
|
| 109 |
+
shortest_paths = nx.shortest_path(G)
|
| 110 |
+
|
| 111 |
+
centrality = local_reaching_centrality
|
| 112 |
+
# TODO This can be trivially parallelized.
|
| 113 |
+
lrc = [
|
| 114 |
+
centrality(G, node, paths=paths, weight=weight, normalized=normalized)
|
| 115 |
+
for node, paths in shortest_paths.items()
|
| 116 |
+
]
|
| 117 |
+
|
| 118 |
+
max_lrc = max(lrc)
|
| 119 |
+
return sum(max_lrc - c for c in lrc) / (len(G) - 1)
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 123 |
+
def local_reaching_centrality(G, v, paths=None, weight=None, normalized=True):
|
| 124 |
+
"""Returns the local reaching centrality of a node in a directed
|
| 125 |
+
graph.
|
| 126 |
+
|
| 127 |
+
The *local reaching centrality* of a node in a directed graph is the
|
| 128 |
+
proportion of other nodes reachable from that node [1]_.
|
| 129 |
+
|
| 130 |
+
Parameters
|
| 131 |
+
----------
|
| 132 |
+
G : DiGraph
|
| 133 |
+
A NetworkX DiGraph.
|
| 134 |
+
|
| 135 |
+
v : node
|
| 136 |
+
A node in the directed graph `G`.
|
| 137 |
+
|
| 138 |
+
paths : dictionary (default=None)
|
| 139 |
+
If this is not `None` it must be a dictionary representation
|
| 140 |
+
of single-source shortest paths, as computed by, for example,
|
| 141 |
+
:func:`networkx.shortest_path` with source node `v`. Use this
|
| 142 |
+
keyword argument if you intend to invoke this function many
|
| 143 |
+
times but don't want the paths to be recomputed each time.
|
| 144 |
+
|
| 145 |
+
weight : None or string, optional (default=None)
|
| 146 |
+
Attribute to use for edge weights. If `None`, each edge weight
|
| 147 |
+
is assumed to be one. A higher weight implies a stronger
|
| 148 |
+
connection between nodes and a *shorter* path length.
|
| 149 |
+
|
| 150 |
+
normalized : bool, optional (default=True)
|
| 151 |
+
Whether to normalize the edge weights by the total sum of edge
|
| 152 |
+
weights.
|
| 153 |
+
|
| 154 |
+
Returns
|
| 155 |
+
-------
|
| 156 |
+
h : float
|
| 157 |
+
The local reaching centrality of the node ``v`` in the graph
|
| 158 |
+
``G``.
|
| 159 |
+
|
| 160 |
+
Examples
|
| 161 |
+
--------
|
| 162 |
+
>>> G = nx.DiGraph()
|
| 163 |
+
>>> G.add_edges_from([(1, 2), (1, 3)])
|
| 164 |
+
>>> nx.local_reaching_centrality(G, 3)
|
| 165 |
+
0.0
|
| 166 |
+
>>> G.add_edge(3, 2)
|
| 167 |
+
>>> nx.local_reaching_centrality(G, 3)
|
| 168 |
+
0.5
|
| 169 |
+
|
| 170 |
+
See also
|
| 171 |
+
--------
|
| 172 |
+
global_reaching_centrality
|
| 173 |
+
|
| 174 |
+
References
|
| 175 |
+
----------
|
| 176 |
+
.. [1] Mones, Enys, Lilla Vicsek, and Tamás Vicsek.
|
| 177 |
+
"Hierarchy Measure for Complex Networks."
|
| 178 |
+
*PLoS ONE* 7.3 (2012): e33799.
|
| 179 |
+
https://doi.org/10.1371/journal.pone.0033799
|
| 180 |
+
"""
|
| 181 |
+
if paths is None:
|
| 182 |
+
if nx.is_negatively_weighted(G, weight=weight):
|
| 183 |
+
raise nx.NetworkXError("edge weights must be positive")
|
| 184 |
+
total_weight = G.size(weight=weight)
|
| 185 |
+
if total_weight <= 0:
|
| 186 |
+
raise nx.NetworkXError("Size of G must be positive")
|
| 187 |
+
if weight is not None:
|
| 188 |
+
# Interpret weights as lengths.
|
| 189 |
+
def as_distance(u, v, d):
|
| 190 |
+
return total_weight / d.get(weight, 1)
|
| 191 |
+
|
| 192 |
+
paths = nx.shortest_path(G, source=v, weight=as_distance)
|
| 193 |
+
else:
|
| 194 |
+
paths = nx.shortest_path(G, source=v)
|
| 195 |
+
# If the graph is unweighted, simply return the proportion of nodes
|
| 196 |
+
# reachable from the source node ``v``.
|
| 197 |
+
if weight is None and G.is_directed():
|
| 198 |
+
return (len(paths) - 1) / (len(G) - 1)
|
| 199 |
+
if normalized and weight is not None:
|
| 200 |
+
norm = G.size(weight=weight) / G.size()
|
| 201 |
+
else:
|
| 202 |
+
norm = 1
|
| 203 |
+
# TODO This can be trivially parallelized.
|
| 204 |
+
avgw = (_average_weight(G, path, weight=weight) for path in paths.values())
|
| 205 |
+
sum_avg_weight = sum(avgw) / norm
|
| 206 |
+
return sum_avg_weight / (len(G) - 1)
|
parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/second_order.py
ADDED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Copyright (c) 2015 – Thomson Licensing, SAS
|
| 2 |
+
|
| 3 |
+
Redistribution and use in source and binary forms, with or without
|
| 4 |
+
modification, are permitted (subject to the limitations in the
|
| 5 |
+
disclaimer below) provided that the following conditions are met:
|
| 6 |
+
|
| 7 |
+
* Redistributions of source code must retain the above copyright
|
| 8 |
+
notice, this list of conditions and the following disclaimer.
|
| 9 |
+
|
| 10 |
+
* Redistributions in binary form must reproduce the above copyright
|
| 11 |
+
notice, this list of conditions and the following disclaimer in the
|
| 12 |
+
documentation and/or other materials provided with the distribution.
|
| 13 |
+
|
| 14 |
+
* Neither the name of Thomson Licensing, or Technicolor, nor the names
|
| 15 |
+
of its contributors may be used to endorse or promote products derived
|
| 16 |
+
from this software without specific prior written permission.
|
| 17 |
+
|
| 18 |
+
NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE
|
| 19 |
+
GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT
|
| 20 |
+
HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
|
| 21 |
+
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
| 22 |
+
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
| 23 |
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
| 24 |
+
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
| 25 |
+
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
| 26 |
+
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
| 27 |
+
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
| 28 |
+
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
|
| 29 |
+
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
|
| 30 |
+
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| 31 |
+
"""
|
| 32 |
+
|
| 33 |
+
import networkx as nx
|
| 34 |
+
from networkx.utils import not_implemented_for
|
| 35 |
+
|
| 36 |
+
# Authors: Erwan Le Merrer (erwan.lemerrer@technicolor.com)
|
| 37 |
+
|
| 38 |
+
__all__ = ["second_order_centrality"]
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
@not_implemented_for("directed")
|
| 42 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 43 |
+
def second_order_centrality(G, weight="weight"):
|
| 44 |
+
"""Compute the second order centrality for nodes of G.
|
| 45 |
+
|
| 46 |
+
The second order centrality of a given node is the standard deviation of
|
| 47 |
+
the return times to that node of a perpetual random walk on G:
|
| 48 |
+
|
| 49 |
+
Parameters
|
| 50 |
+
----------
|
| 51 |
+
G : graph
|
| 52 |
+
A NetworkX connected and undirected graph.
|
| 53 |
+
|
| 54 |
+
weight : string or None, optional (default="weight")
|
| 55 |
+
The name of an edge attribute that holds the numerical value
|
| 56 |
+
used as a weight. If None then each edge has weight 1.
|
| 57 |
+
|
| 58 |
+
Returns
|
| 59 |
+
-------
|
| 60 |
+
nodes : dictionary
|
| 61 |
+
Dictionary keyed by node with second order centrality as the value.
|
| 62 |
+
|
| 63 |
+
Examples
|
| 64 |
+
--------
|
| 65 |
+
>>> G = nx.star_graph(10)
|
| 66 |
+
>>> soc = nx.second_order_centrality(G)
|
| 67 |
+
>>> print(sorted(soc.items(), key=lambda x: x[1])[0][0]) # pick first id
|
| 68 |
+
0
|
| 69 |
+
|
| 70 |
+
Raises
|
| 71 |
+
------
|
| 72 |
+
NetworkXException
|
| 73 |
+
If the graph G is empty, non connected or has negative weights.
|
| 74 |
+
|
| 75 |
+
See Also
|
| 76 |
+
--------
|
| 77 |
+
betweenness_centrality
|
| 78 |
+
|
| 79 |
+
Notes
|
| 80 |
+
-----
|
| 81 |
+
Lower values of second order centrality indicate higher centrality.
|
| 82 |
+
|
| 83 |
+
The algorithm is from Kermarrec, Le Merrer, Sericola and Trédan [1]_.
|
| 84 |
+
|
| 85 |
+
This code implements the analytical version of the algorithm, i.e.,
|
| 86 |
+
there is no simulation of a random walk process involved. The random walk
|
| 87 |
+
is here unbiased (corresponding to eq 6 of the paper [1]_), thus the
|
| 88 |
+
centrality values are the standard deviations for random walk return times
|
| 89 |
+
on the transformed input graph G (equal in-degree at each nodes by adding
|
| 90 |
+
self-loops).
|
| 91 |
+
|
| 92 |
+
Complexity of this implementation, made to run locally on a single machine,
|
| 93 |
+
is O(n^3), with n the size of G, which makes it viable only for small
|
| 94 |
+
graphs.
|
| 95 |
+
|
| 96 |
+
References
|
| 97 |
+
----------
|
| 98 |
+
.. [1] Anne-Marie Kermarrec, Erwan Le Merrer, Bruno Sericola, Gilles Trédan
|
| 99 |
+
"Second order centrality: Distributed assessment of nodes criticity in
|
| 100 |
+
complex networks", Elsevier Computer Communications 34(5):619-628, 2011.
|
| 101 |
+
"""
|
| 102 |
+
import numpy as np
|
| 103 |
+
|
| 104 |
+
n = len(G)
|
| 105 |
+
|
| 106 |
+
if n == 0:
|
| 107 |
+
raise nx.NetworkXException("Empty graph.")
|
| 108 |
+
if not nx.is_connected(G):
|
| 109 |
+
raise nx.NetworkXException("Non connected graph.")
|
| 110 |
+
if any(d.get(weight, 0) < 0 for u, v, d in G.edges(data=True)):
|
| 111 |
+
raise nx.NetworkXException("Graph has negative edge weights.")
|
| 112 |
+
|
| 113 |
+
# balancing G for Metropolis-Hastings random walks
|
| 114 |
+
G = nx.DiGraph(G)
|
| 115 |
+
in_deg = dict(G.in_degree(weight=weight))
|
| 116 |
+
d_max = max(in_deg.values())
|
| 117 |
+
for i, deg in in_deg.items():
|
| 118 |
+
if deg < d_max:
|
| 119 |
+
G.add_edge(i, i, weight=d_max - deg)
|
| 120 |
+
|
| 121 |
+
P = nx.to_numpy_array(G)
|
| 122 |
+
P /= P.sum(axis=1)[:, np.newaxis] # to transition probability matrix
|
| 123 |
+
|
| 124 |
+
def _Qj(P, j):
|
| 125 |
+
P = P.copy()
|
| 126 |
+
P[:, j] = 0
|
| 127 |
+
return P
|
| 128 |
+
|
| 129 |
+
M = np.empty([n, n])
|
| 130 |
+
|
| 131 |
+
for i in range(n):
|
| 132 |
+
M[:, i] = np.linalg.solve(
|
| 133 |
+
np.identity(n) - _Qj(P, i), np.ones([n, 1])[:, 0]
|
| 134 |
+
) # eq 3
|
| 135 |
+
|
| 136 |
+
return dict(
|
| 137 |
+
zip(
|
| 138 |
+
G.nodes,
|
| 139 |
+
(float(np.sqrt(2 * np.sum(M[:, i]) - n * (n + 1))) for i in range(n)),
|
| 140 |
+
)
|
| 141 |
+
) # eq 6
|
parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/subgraph_alg.py
ADDED
|
@@ -0,0 +1,339 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Subraph centrality and communicability betweenness.
|
| 3 |
+
"""
|
| 4 |
+
import networkx as nx
|
| 5 |
+
from networkx.utils import not_implemented_for
|
| 6 |
+
|
| 7 |
+
__all__ = [
|
| 8 |
+
"subgraph_centrality_exp",
|
| 9 |
+
"subgraph_centrality",
|
| 10 |
+
"communicability_betweenness_centrality",
|
| 11 |
+
"estrada_index",
|
| 12 |
+
]
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
@not_implemented_for("directed")
|
| 16 |
+
@not_implemented_for("multigraph")
|
| 17 |
+
@nx._dispatchable
|
| 18 |
+
def subgraph_centrality_exp(G):
|
| 19 |
+
r"""Returns the subgraph centrality for each node of G.
|
| 20 |
+
|
| 21 |
+
Subgraph centrality of a node `n` is the sum of weighted closed
|
| 22 |
+
walks of all lengths starting and ending at node `n`. The weights
|
| 23 |
+
decrease with path length. Each closed walk is associated with a
|
| 24 |
+
connected subgraph ([1]_).
|
| 25 |
+
|
| 26 |
+
Parameters
|
| 27 |
+
----------
|
| 28 |
+
G: graph
|
| 29 |
+
|
| 30 |
+
Returns
|
| 31 |
+
-------
|
| 32 |
+
nodes:dictionary
|
| 33 |
+
Dictionary of nodes with subgraph centrality as the value.
|
| 34 |
+
|
| 35 |
+
Raises
|
| 36 |
+
------
|
| 37 |
+
NetworkXError
|
| 38 |
+
If the graph is not undirected and simple.
|
| 39 |
+
|
| 40 |
+
See Also
|
| 41 |
+
--------
|
| 42 |
+
subgraph_centrality:
|
| 43 |
+
Alternative algorithm of the subgraph centrality for each node of G.
|
| 44 |
+
|
| 45 |
+
Notes
|
| 46 |
+
-----
|
| 47 |
+
This version of the algorithm exponentiates the adjacency matrix.
|
| 48 |
+
|
| 49 |
+
The subgraph centrality of a node `u` in G can be found using
|
| 50 |
+
the matrix exponential of the adjacency matrix of G [1]_,
|
| 51 |
+
|
| 52 |
+
.. math::
|
| 53 |
+
|
| 54 |
+
SC(u)=(e^A)_{uu} .
|
| 55 |
+
|
| 56 |
+
References
|
| 57 |
+
----------
|
| 58 |
+
.. [1] Ernesto Estrada, Juan A. Rodriguez-Velazquez,
|
| 59 |
+
"Subgraph centrality in complex networks",
|
| 60 |
+
Physical Review E 71, 056103 (2005).
|
| 61 |
+
https://arxiv.org/abs/cond-mat/0504730
|
| 62 |
+
|
| 63 |
+
Examples
|
| 64 |
+
--------
|
| 65 |
+
(Example from [1]_)
|
| 66 |
+
>>> G = nx.Graph(
|
| 67 |
+
... [
|
| 68 |
+
... (1, 2),
|
| 69 |
+
... (1, 5),
|
| 70 |
+
... (1, 8),
|
| 71 |
+
... (2, 3),
|
| 72 |
+
... (2, 8),
|
| 73 |
+
... (3, 4),
|
| 74 |
+
... (3, 6),
|
| 75 |
+
... (4, 5),
|
| 76 |
+
... (4, 7),
|
| 77 |
+
... (5, 6),
|
| 78 |
+
... (6, 7),
|
| 79 |
+
... (7, 8),
|
| 80 |
+
... ]
|
| 81 |
+
... )
|
| 82 |
+
>>> sc = nx.subgraph_centrality_exp(G)
|
| 83 |
+
>>> print([f"{node} {sc[node]:0.2f}" for node in sorted(sc)])
|
| 84 |
+
['1 3.90', '2 3.90', '3 3.64', '4 3.71', '5 3.64', '6 3.71', '7 3.64', '8 3.90']
|
| 85 |
+
"""
|
| 86 |
+
# alternative implementation that calculates the matrix exponential
|
| 87 |
+
import scipy as sp
|
| 88 |
+
|
| 89 |
+
nodelist = list(G) # ordering of nodes in matrix
|
| 90 |
+
A = nx.to_numpy_array(G, nodelist)
|
| 91 |
+
# convert to 0-1 matrix
|
| 92 |
+
A[A != 0.0] = 1
|
| 93 |
+
expA = sp.linalg.expm(A)
|
| 94 |
+
# convert diagonal to dictionary keyed by node
|
| 95 |
+
sc = dict(zip(nodelist, map(float, expA.diagonal())))
|
| 96 |
+
return sc
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
@not_implemented_for("directed")
|
| 100 |
+
@not_implemented_for("multigraph")
|
| 101 |
+
@nx._dispatchable
|
| 102 |
+
def subgraph_centrality(G):
|
| 103 |
+
r"""Returns subgraph centrality for each node in G.
|
| 104 |
+
|
| 105 |
+
Subgraph centrality of a node `n` is the sum of weighted closed
|
| 106 |
+
walks of all lengths starting and ending at node `n`. The weights
|
| 107 |
+
decrease with path length. Each closed walk is associated with a
|
| 108 |
+
connected subgraph ([1]_).
|
| 109 |
+
|
| 110 |
+
Parameters
|
| 111 |
+
----------
|
| 112 |
+
G: graph
|
| 113 |
+
|
| 114 |
+
Returns
|
| 115 |
+
-------
|
| 116 |
+
nodes : dictionary
|
| 117 |
+
Dictionary of nodes with subgraph centrality as the value.
|
| 118 |
+
|
| 119 |
+
Raises
|
| 120 |
+
------
|
| 121 |
+
NetworkXError
|
| 122 |
+
If the graph is not undirected and simple.
|
| 123 |
+
|
| 124 |
+
See Also
|
| 125 |
+
--------
|
| 126 |
+
subgraph_centrality_exp:
|
| 127 |
+
Alternative algorithm of the subgraph centrality for each node of G.
|
| 128 |
+
|
| 129 |
+
Notes
|
| 130 |
+
-----
|
| 131 |
+
This version of the algorithm computes eigenvalues and eigenvectors
|
| 132 |
+
of the adjacency matrix.
|
| 133 |
+
|
| 134 |
+
Subgraph centrality of a node `u` in G can be found using
|
| 135 |
+
a spectral decomposition of the adjacency matrix [1]_,
|
| 136 |
+
|
| 137 |
+
.. math::
|
| 138 |
+
|
| 139 |
+
SC(u)=\sum_{j=1}^{N}(v_{j}^{u})^2 e^{\lambda_{j}},
|
| 140 |
+
|
| 141 |
+
where `v_j` is an eigenvector of the adjacency matrix `A` of G
|
| 142 |
+
corresponding to the eigenvalue `\lambda_j`.
|
| 143 |
+
|
| 144 |
+
Examples
|
| 145 |
+
--------
|
| 146 |
+
(Example from [1]_)
|
| 147 |
+
>>> G = nx.Graph(
|
| 148 |
+
... [
|
| 149 |
+
... (1, 2),
|
| 150 |
+
... (1, 5),
|
| 151 |
+
... (1, 8),
|
| 152 |
+
... (2, 3),
|
| 153 |
+
... (2, 8),
|
| 154 |
+
... (3, 4),
|
| 155 |
+
... (3, 6),
|
| 156 |
+
... (4, 5),
|
| 157 |
+
... (4, 7),
|
| 158 |
+
... (5, 6),
|
| 159 |
+
... (6, 7),
|
| 160 |
+
... (7, 8),
|
| 161 |
+
... ]
|
| 162 |
+
... )
|
| 163 |
+
>>> sc = nx.subgraph_centrality(G)
|
| 164 |
+
>>> print([f"{node} {sc[node]:0.2f}" for node in sorted(sc)])
|
| 165 |
+
['1 3.90', '2 3.90', '3 3.64', '4 3.71', '5 3.64', '6 3.71', '7 3.64', '8 3.90']
|
| 166 |
+
|
| 167 |
+
References
|
| 168 |
+
----------
|
| 169 |
+
.. [1] Ernesto Estrada, Juan A. Rodriguez-Velazquez,
|
| 170 |
+
"Subgraph centrality in complex networks",
|
| 171 |
+
Physical Review E 71, 056103 (2005).
|
| 172 |
+
https://arxiv.org/abs/cond-mat/0504730
|
| 173 |
+
|
| 174 |
+
"""
|
| 175 |
+
import numpy as np
|
| 176 |
+
|
| 177 |
+
nodelist = list(G) # ordering of nodes in matrix
|
| 178 |
+
A = nx.to_numpy_array(G, nodelist)
|
| 179 |
+
# convert to 0-1 matrix
|
| 180 |
+
A[np.nonzero(A)] = 1
|
| 181 |
+
w, v = np.linalg.eigh(A)
|
| 182 |
+
vsquare = np.array(v) ** 2
|
| 183 |
+
expw = np.exp(w)
|
| 184 |
+
xg = vsquare @ expw
|
| 185 |
+
# convert vector dictionary keyed by node
|
| 186 |
+
sc = dict(zip(nodelist, map(float, xg)))
|
| 187 |
+
return sc
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
@not_implemented_for("directed")
|
| 191 |
+
@not_implemented_for("multigraph")
|
| 192 |
+
@nx._dispatchable
|
| 193 |
+
def communicability_betweenness_centrality(G):
|
| 194 |
+
r"""Returns subgraph communicability for all pairs of nodes in G.
|
| 195 |
+
|
| 196 |
+
Communicability betweenness measure makes use of the number of walks
|
| 197 |
+
connecting every pair of nodes as the basis of a betweenness centrality
|
| 198 |
+
measure.
|
| 199 |
+
|
| 200 |
+
Parameters
|
| 201 |
+
----------
|
| 202 |
+
G: graph
|
| 203 |
+
|
| 204 |
+
Returns
|
| 205 |
+
-------
|
| 206 |
+
nodes : dictionary
|
| 207 |
+
Dictionary of nodes with communicability betweenness as the value.
|
| 208 |
+
|
| 209 |
+
Raises
|
| 210 |
+
------
|
| 211 |
+
NetworkXError
|
| 212 |
+
If the graph is not undirected and simple.
|
| 213 |
+
|
| 214 |
+
Notes
|
| 215 |
+
-----
|
| 216 |
+
Let `G=(V,E)` be a simple undirected graph with `n` nodes and `m` edges,
|
| 217 |
+
and `A` denote the adjacency matrix of `G`.
|
| 218 |
+
|
| 219 |
+
Let `G(r)=(V,E(r))` be the graph resulting from
|
| 220 |
+
removing all edges connected to node `r` but not the node itself.
|
| 221 |
+
|
| 222 |
+
The adjacency matrix for `G(r)` is `A+E(r)`, where `E(r)` has nonzeros
|
| 223 |
+
only in row and column `r`.
|
| 224 |
+
|
| 225 |
+
The subraph betweenness of a node `r` is [1]_
|
| 226 |
+
|
| 227 |
+
.. math::
|
| 228 |
+
|
| 229 |
+
\omega_{r} = \frac{1}{C}\sum_{p}\sum_{q}\frac{G_{prq}}{G_{pq}},
|
| 230 |
+
p\neq q, q\neq r,
|
| 231 |
+
|
| 232 |
+
where
|
| 233 |
+
`G_{prq}=(e^{A}_{pq} - (e^{A+E(r)})_{pq}` is the number of walks
|
| 234 |
+
involving node r,
|
| 235 |
+
`G_{pq}=(e^{A})_{pq}` is the number of closed walks starting
|
| 236 |
+
at node `p` and ending at node `q`,
|
| 237 |
+
and `C=(n-1)^{2}-(n-1)` is a normalization factor equal to the
|
| 238 |
+
number of terms in the sum.
|
| 239 |
+
|
| 240 |
+
The resulting `\omega_{r}` takes values between zero and one.
|
| 241 |
+
The lower bound cannot be attained for a connected
|
| 242 |
+
graph, and the upper bound is attained in the star graph.
|
| 243 |
+
|
| 244 |
+
References
|
| 245 |
+
----------
|
| 246 |
+
.. [1] Ernesto Estrada, Desmond J. Higham, Naomichi Hatano,
|
| 247 |
+
"Communicability Betweenness in Complex Networks"
|
| 248 |
+
Physica A 388 (2009) 764-774.
|
| 249 |
+
https://arxiv.org/abs/0905.4102
|
| 250 |
+
|
| 251 |
+
Examples
|
| 252 |
+
--------
|
| 253 |
+
>>> G = nx.Graph([(0, 1), (1, 2), (1, 5), (5, 4), (2, 4), (2, 3), (4, 3), (3, 6)])
|
| 254 |
+
>>> cbc = nx.communicability_betweenness_centrality(G)
|
| 255 |
+
>>> print([f"{node} {cbc[node]:0.2f}" for node in sorted(cbc)])
|
| 256 |
+
['0 0.03', '1 0.45', '2 0.51', '3 0.45', '4 0.40', '5 0.19', '6 0.03']
|
| 257 |
+
"""
|
| 258 |
+
import numpy as np
|
| 259 |
+
import scipy as sp
|
| 260 |
+
|
| 261 |
+
nodelist = list(G) # ordering of nodes in matrix
|
| 262 |
+
n = len(nodelist)
|
| 263 |
+
A = nx.to_numpy_array(G, nodelist)
|
| 264 |
+
# convert to 0-1 matrix
|
| 265 |
+
A[np.nonzero(A)] = 1
|
| 266 |
+
expA = sp.linalg.expm(A)
|
| 267 |
+
mapping = dict(zip(nodelist, range(n)))
|
| 268 |
+
cbc = {}
|
| 269 |
+
for v in G:
|
| 270 |
+
# remove row and col of node v
|
| 271 |
+
i = mapping[v]
|
| 272 |
+
row = A[i, :].copy()
|
| 273 |
+
col = A[:, i].copy()
|
| 274 |
+
A[i, :] = 0
|
| 275 |
+
A[:, i] = 0
|
| 276 |
+
B = (expA - sp.linalg.expm(A)) / expA
|
| 277 |
+
# sum with row/col of node v and diag set to zero
|
| 278 |
+
B[i, :] = 0
|
| 279 |
+
B[:, i] = 0
|
| 280 |
+
B -= np.diag(np.diag(B))
|
| 281 |
+
cbc[v] = float(B.sum())
|
| 282 |
+
# put row and col back
|
| 283 |
+
A[i, :] = row
|
| 284 |
+
A[:, i] = col
|
| 285 |
+
# rescale when more than two nodes
|
| 286 |
+
order = len(cbc)
|
| 287 |
+
if order > 2:
|
| 288 |
+
scale = 1.0 / ((order - 1.0) ** 2 - (order - 1.0))
|
| 289 |
+
cbc = {node: value * scale for node, value in cbc.items()}
|
| 290 |
+
return cbc
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
@nx._dispatchable
|
| 294 |
+
def estrada_index(G):
|
| 295 |
+
r"""Returns the Estrada index of a the graph G.
|
| 296 |
+
|
| 297 |
+
The Estrada Index is a topological index of folding or 3D "compactness" ([1]_).
|
| 298 |
+
|
| 299 |
+
Parameters
|
| 300 |
+
----------
|
| 301 |
+
G: graph
|
| 302 |
+
|
| 303 |
+
Returns
|
| 304 |
+
-------
|
| 305 |
+
estrada index: float
|
| 306 |
+
|
| 307 |
+
Raises
|
| 308 |
+
------
|
| 309 |
+
NetworkXError
|
| 310 |
+
If the graph is not undirected and simple.
|
| 311 |
+
|
| 312 |
+
Notes
|
| 313 |
+
-----
|
| 314 |
+
Let `G=(V,E)` be a simple undirected graph with `n` nodes and let
|
| 315 |
+
`\lambda_{1}\leq\lambda_{2}\leq\cdots\lambda_{n}`
|
| 316 |
+
be a non-increasing ordering of the eigenvalues of its adjacency
|
| 317 |
+
matrix `A`. The Estrada index is ([1]_, [2]_)
|
| 318 |
+
|
| 319 |
+
.. math::
|
| 320 |
+
EE(G)=\sum_{j=1}^n e^{\lambda _j}.
|
| 321 |
+
|
| 322 |
+
References
|
| 323 |
+
----------
|
| 324 |
+
.. [1] E. Estrada, "Characterization of 3D molecular structure",
|
| 325 |
+
Chem. Phys. Lett. 319, 713 (2000).
|
| 326 |
+
https://doi.org/10.1016/S0009-2614(00)00158-5
|
| 327 |
+
.. [2] José Antonio de la Peñaa, Ivan Gutman, Juan Rada,
|
| 328 |
+
"Estimating the Estrada index",
|
| 329 |
+
Linear Algebra and its Applications. 427, 1 (2007).
|
| 330 |
+
https://doi.org/10.1016/j.laa.2007.06.020
|
| 331 |
+
|
| 332 |
+
Examples
|
| 333 |
+
--------
|
| 334 |
+
>>> G = nx.Graph([(0, 1), (1, 2), (1, 5), (5, 4), (2, 4), (2, 3), (4, 3), (3, 6)])
|
| 335 |
+
>>> ei = nx.estrada_index(G)
|
| 336 |
+
>>> print(f"{ei:0.5}")
|
| 337 |
+
20.55
|
| 338 |
+
"""
|
| 339 |
+
return sum(subgraph_centrality(G).values())
|
parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/tests/__init__.py
ADDED
|
File without changes
|
parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/tests/__pycache__/test_percolation_centrality.cpython-310.pyc
ADDED
|
Binary file (2.74 kB). View file
|
|
|
parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/tests/test_betweenness_centrality.py
ADDED
|
@@ -0,0 +1,780 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pytest
|
| 2 |
+
|
| 3 |
+
import networkx as nx
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def weighted_G():
|
| 7 |
+
G = nx.Graph()
|
| 8 |
+
G.add_edge(0, 1, weight=3)
|
| 9 |
+
G.add_edge(0, 2, weight=2)
|
| 10 |
+
G.add_edge(0, 3, weight=6)
|
| 11 |
+
G.add_edge(0, 4, weight=4)
|
| 12 |
+
G.add_edge(1, 3, weight=5)
|
| 13 |
+
G.add_edge(1, 5, weight=5)
|
| 14 |
+
G.add_edge(2, 4, weight=1)
|
| 15 |
+
G.add_edge(3, 4, weight=2)
|
| 16 |
+
G.add_edge(3, 5, weight=1)
|
| 17 |
+
G.add_edge(4, 5, weight=4)
|
| 18 |
+
return G
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class TestBetweennessCentrality:
|
| 22 |
+
def test_K5(self):
|
| 23 |
+
"""Betweenness centrality: K5"""
|
| 24 |
+
G = nx.complete_graph(5)
|
| 25 |
+
b = nx.betweenness_centrality(G, weight=None, normalized=False)
|
| 26 |
+
b_answer = {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0}
|
| 27 |
+
for n in sorted(G):
|
| 28 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 29 |
+
|
| 30 |
+
def test_K5_endpoints(self):
|
| 31 |
+
"""Betweenness centrality: K5 endpoints"""
|
| 32 |
+
G = nx.complete_graph(5)
|
| 33 |
+
b = nx.betweenness_centrality(G, weight=None, normalized=False, endpoints=True)
|
| 34 |
+
b_answer = {0: 4.0, 1: 4.0, 2: 4.0, 3: 4.0, 4: 4.0}
|
| 35 |
+
for n in sorted(G):
|
| 36 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 37 |
+
# normalized = True case
|
| 38 |
+
b = nx.betweenness_centrality(G, weight=None, normalized=True, endpoints=True)
|
| 39 |
+
b_answer = {0: 0.4, 1: 0.4, 2: 0.4, 3: 0.4, 4: 0.4}
|
| 40 |
+
for n in sorted(G):
|
| 41 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 42 |
+
|
| 43 |
+
def test_P3_normalized(self):
|
| 44 |
+
"""Betweenness centrality: P3 normalized"""
|
| 45 |
+
G = nx.path_graph(3)
|
| 46 |
+
b = nx.betweenness_centrality(G, weight=None, normalized=True)
|
| 47 |
+
b_answer = {0: 0.0, 1: 1.0, 2: 0.0}
|
| 48 |
+
for n in sorted(G):
|
| 49 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 50 |
+
|
| 51 |
+
def test_P3(self):
|
| 52 |
+
"""Betweenness centrality: P3"""
|
| 53 |
+
G = nx.path_graph(3)
|
| 54 |
+
b_answer = {0: 0.0, 1: 1.0, 2: 0.0}
|
| 55 |
+
b = nx.betweenness_centrality(G, weight=None, normalized=False)
|
| 56 |
+
for n in sorted(G):
|
| 57 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 58 |
+
|
| 59 |
+
def test_sample_from_P3(self):
|
| 60 |
+
"""Betweenness centrality: P3 sample"""
|
| 61 |
+
G = nx.path_graph(3)
|
| 62 |
+
b_answer = {0: 0.0, 1: 1.0, 2: 0.0}
|
| 63 |
+
b = nx.betweenness_centrality(G, k=3, weight=None, normalized=False, seed=1)
|
| 64 |
+
for n in sorted(G):
|
| 65 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 66 |
+
b = nx.betweenness_centrality(G, k=2, weight=None, normalized=False, seed=1)
|
| 67 |
+
# python versions give different results with same seed
|
| 68 |
+
b_approx1 = {0: 0.0, 1: 1.5, 2: 0.0}
|
| 69 |
+
b_approx2 = {0: 0.0, 1: 0.75, 2: 0.0}
|
| 70 |
+
for n in sorted(G):
|
| 71 |
+
assert b[n] in (b_approx1[n], b_approx2[n])
|
| 72 |
+
|
| 73 |
+
def test_P3_endpoints(self):
|
| 74 |
+
"""Betweenness centrality: P3 endpoints"""
|
| 75 |
+
G = nx.path_graph(3)
|
| 76 |
+
b_answer = {0: 2.0, 1: 3.0, 2: 2.0}
|
| 77 |
+
b = nx.betweenness_centrality(G, weight=None, normalized=False, endpoints=True)
|
| 78 |
+
for n in sorted(G):
|
| 79 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 80 |
+
# normalized = True case
|
| 81 |
+
b_answer = {0: 2 / 3, 1: 1.0, 2: 2 / 3}
|
| 82 |
+
b = nx.betweenness_centrality(G, weight=None, normalized=True, endpoints=True)
|
| 83 |
+
for n in sorted(G):
|
| 84 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 85 |
+
|
| 86 |
+
def test_krackhardt_kite_graph(self):
|
| 87 |
+
"""Betweenness centrality: Krackhardt kite graph"""
|
| 88 |
+
G = nx.krackhardt_kite_graph()
|
| 89 |
+
b_answer = {
|
| 90 |
+
0: 1.667,
|
| 91 |
+
1: 1.667,
|
| 92 |
+
2: 0.000,
|
| 93 |
+
3: 7.333,
|
| 94 |
+
4: 0.000,
|
| 95 |
+
5: 16.667,
|
| 96 |
+
6: 16.667,
|
| 97 |
+
7: 28.000,
|
| 98 |
+
8: 16.000,
|
| 99 |
+
9: 0.000,
|
| 100 |
+
}
|
| 101 |
+
for b in b_answer:
|
| 102 |
+
b_answer[b] /= 2
|
| 103 |
+
b = nx.betweenness_centrality(G, weight=None, normalized=False)
|
| 104 |
+
for n in sorted(G):
|
| 105 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-3)
|
| 106 |
+
|
| 107 |
+
def test_krackhardt_kite_graph_normalized(self):
|
| 108 |
+
"""Betweenness centrality: Krackhardt kite graph normalized"""
|
| 109 |
+
G = nx.krackhardt_kite_graph()
|
| 110 |
+
b_answer = {
|
| 111 |
+
0: 0.023,
|
| 112 |
+
1: 0.023,
|
| 113 |
+
2: 0.000,
|
| 114 |
+
3: 0.102,
|
| 115 |
+
4: 0.000,
|
| 116 |
+
5: 0.231,
|
| 117 |
+
6: 0.231,
|
| 118 |
+
7: 0.389,
|
| 119 |
+
8: 0.222,
|
| 120 |
+
9: 0.000,
|
| 121 |
+
}
|
| 122 |
+
b = nx.betweenness_centrality(G, weight=None, normalized=True)
|
| 123 |
+
for n in sorted(G):
|
| 124 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-3)
|
| 125 |
+
|
| 126 |
+
def test_florentine_families_graph(self):
|
| 127 |
+
"""Betweenness centrality: Florentine families graph"""
|
| 128 |
+
G = nx.florentine_families_graph()
|
| 129 |
+
b_answer = {
|
| 130 |
+
"Acciaiuoli": 0.000,
|
| 131 |
+
"Albizzi": 0.212,
|
| 132 |
+
"Barbadori": 0.093,
|
| 133 |
+
"Bischeri": 0.104,
|
| 134 |
+
"Castellani": 0.055,
|
| 135 |
+
"Ginori": 0.000,
|
| 136 |
+
"Guadagni": 0.255,
|
| 137 |
+
"Lamberteschi": 0.000,
|
| 138 |
+
"Medici": 0.522,
|
| 139 |
+
"Pazzi": 0.000,
|
| 140 |
+
"Peruzzi": 0.022,
|
| 141 |
+
"Ridolfi": 0.114,
|
| 142 |
+
"Salviati": 0.143,
|
| 143 |
+
"Strozzi": 0.103,
|
| 144 |
+
"Tornabuoni": 0.092,
|
| 145 |
+
}
|
| 146 |
+
|
| 147 |
+
b = nx.betweenness_centrality(G, weight=None, normalized=True)
|
| 148 |
+
for n in sorted(G):
|
| 149 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-3)
|
| 150 |
+
|
| 151 |
+
def test_les_miserables_graph(self):
|
| 152 |
+
"""Betweenness centrality: Les Miserables graph"""
|
| 153 |
+
G = nx.les_miserables_graph()
|
| 154 |
+
b_answer = {
|
| 155 |
+
"Napoleon": 0.000,
|
| 156 |
+
"Myriel": 0.177,
|
| 157 |
+
"MlleBaptistine": 0.000,
|
| 158 |
+
"MmeMagloire": 0.000,
|
| 159 |
+
"CountessDeLo": 0.000,
|
| 160 |
+
"Geborand": 0.000,
|
| 161 |
+
"Champtercier": 0.000,
|
| 162 |
+
"Cravatte": 0.000,
|
| 163 |
+
"Count": 0.000,
|
| 164 |
+
"OldMan": 0.000,
|
| 165 |
+
"Valjean": 0.570,
|
| 166 |
+
"Labarre": 0.000,
|
| 167 |
+
"Marguerite": 0.000,
|
| 168 |
+
"MmeDeR": 0.000,
|
| 169 |
+
"Isabeau": 0.000,
|
| 170 |
+
"Gervais": 0.000,
|
| 171 |
+
"Listolier": 0.000,
|
| 172 |
+
"Tholomyes": 0.041,
|
| 173 |
+
"Fameuil": 0.000,
|
| 174 |
+
"Blacheville": 0.000,
|
| 175 |
+
"Favourite": 0.000,
|
| 176 |
+
"Dahlia": 0.000,
|
| 177 |
+
"Zephine": 0.000,
|
| 178 |
+
"Fantine": 0.130,
|
| 179 |
+
"MmeThenardier": 0.029,
|
| 180 |
+
"Thenardier": 0.075,
|
| 181 |
+
"Cosette": 0.024,
|
| 182 |
+
"Javert": 0.054,
|
| 183 |
+
"Fauchelevent": 0.026,
|
| 184 |
+
"Bamatabois": 0.008,
|
| 185 |
+
"Perpetue": 0.000,
|
| 186 |
+
"Simplice": 0.009,
|
| 187 |
+
"Scaufflaire": 0.000,
|
| 188 |
+
"Woman1": 0.000,
|
| 189 |
+
"Judge": 0.000,
|
| 190 |
+
"Champmathieu": 0.000,
|
| 191 |
+
"Brevet": 0.000,
|
| 192 |
+
"Chenildieu": 0.000,
|
| 193 |
+
"Cochepaille": 0.000,
|
| 194 |
+
"Pontmercy": 0.007,
|
| 195 |
+
"Boulatruelle": 0.000,
|
| 196 |
+
"Eponine": 0.011,
|
| 197 |
+
"Anzelma": 0.000,
|
| 198 |
+
"Woman2": 0.000,
|
| 199 |
+
"MotherInnocent": 0.000,
|
| 200 |
+
"Gribier": 0.000,
|
| 201 |
+
"MmeBurgon": 0.026,
|
| 202 |
+
"Jondrette": 0.000,
|
| 203 |
+
"Gavroche": 0.165,
|
| 204 |
+
"Gillenormand": 0.020,
|
| 205 |
+
"Magnon": 0.000,
|
| 206 |
+
"MlleGillenormand": 0.048,
|
| 207 |
+
"MmePontmercy": 0.000,
|
| 208 |
+
"MlleVaubois": 0.000,
|
| 209 |
+
"LtGillenormand": 0.000,
|
| 210 |
+
"Marius": 0.132,
|
| 211 |
+
"BaronessT": 0.000,
|
| 212 |
+
"Mabeuf": 0.028,
|
| 213 |
+
"Enjolras": 0.043,
|
| 214 |
+
"Combeferre": 0.001,
|
| 215 |
+
"Prouvaire": 0.000,
|
| 216 |
+
"Feuilly": 0.001,
|
| 217 |
+
"Courfeyrac": 0.005,
|
| 218 |
+
"Bahorel": 0.002,
|
| 219 |
+
"Bossuet": 0.031,
|
| 220 |
+
"Joly": 0.002,
|
| 221 |
+
"Grantaire": 0.000,
|
| 222 |
+
"MotherPlutarch": 0.000,
|
| 223 |
+
"Gueulemer": 0.005,
|
| 224 |
+
"Babet": 0.005,
|
| 225 |
+
"Claquesous": 0.005,
|
| 226 |
+
"Montparnasse": 0.004,
|
| 227 |
+
"Toussaint": 0.000,
|
| 228 |
+
"Child1": 0.000,
|
| 229 |
+
"Child2": 0.000,
|
| 230 |
+
"Brujon": 0.000,
|
| 231 |
+
"MmeHucheloup": 0.000,
|
| 232 |
+
}
|
| 233 |
+
|
| 234 |
+
b = nx.betweenness_centrality(G, weight=None, normalized=True)
|
| 235 |
+
for n in sorted(G):
|
| 236 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-3)
|
| 237 |
+
|
| 238 |
+
def test_ladder_graph(self):
|
| 239 |
+
"""Betweenness centrality: Ladder graph"""
|
| 240 |
+
G = nx.Graph() # ladder_graph(3)
|
| 241 |
+
G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3), (2, 4), (4, 5), (3, 5)])
|
| 242 |
+
b_answer = {0: 1.667, 1: 1.667, 2: 6.667, 3: 6.667, 4: 1.667, 5: 1.667}
|
| 243 |
+
for b in b_answer:
|
| 244 |
+
b_answer[b] /= 2
|
| 245 |
+
b = nx.betweenness_centrality(G, weight=None, normalized=False)
|
| 246 |
+
for n in sorted(G):
|
| 247 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-3)
|
| 248 |
+
|
| 249 |
+
def test_disconnected_path(self):
|
| 250 |
+
"""Betweenness centrality: disconnected path"""
|
| 251 |
+
G = nx.Graph()
|
| 252 |
+
nx.add_path(G, [0, 1, 2])
|
| 253 |
+
nx.add_path(G, [3, 4, 5, 6])
|
| 254 |
+
b_answer = {0: 0, 1: 1, 2: 0, 3: 0, 4: 2, 5: 2, 6: 0}
|
| 255 |
+
b = nx.betweenness_centrality(G, weight=None, normalized=False)
|
| 256 |
+
for n in sorted(G):
|
| 257 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 258 |
+
|
| 259 |
+
def test_disconnected_path_endpoints(self):
|
| 260 |
+
"""Betweenness centrality: disconnected path endpoints"""
|
| 261 |
+
G = nx.Graph()
|
| 262 |
+
nx.add_path(G, [0, 1, 2])
|
| 263 |
+
nx.add_path(G, [3, 4, 5, 6])
|
| 264 |
+
b_answer = {0: 2, 1: 3, 2: 2, 3: 3, 4: 5, 5: 5, 6: 3}
|
| 265 |
+
b = nx.betweenness_centrality(G, weight=None, normalized=False, endpoints=True)
|
| 266 |
+
for n in sorted(G):
|
| 267 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 268 |
+
# normalized = True case
|
| 269 |
+
b = nx.betweenness_centrality(G, weight=None, normalized=True, endpoints=True)
|
| 270 |
+
for n in sorted(G):
|
| 271 |
+
assert b[n] == pytest.approx(b_answer[n] / 21, abs=1e-7)
|
| 272 |
+
|
| 273 |
+
def test_directed_path(self):
|
| 274 |
+
"""Betweenness centrality: directed path"""
|
| 275 |
+
G = nx.DiGraph()
|
| 276 |
+
nx.add_path(G, [0, 1, 2])
|
| 277 |
+
b = nx.betweenness_centrality(G, weight=None, normalized=False)
|
| 278 |
+
b_answer = {0: 0.0, 1: 1.0, 2: 0.0}
|
| 279 |
+
for n in sorted(G):
|
| 280 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 281 |
+
|
| 282 |
+
def test_directed_path_normalized(self):
|
| 283 |
+
"""Betweenness centrality: directed path normalized"""
|
| 284 |
+
G = nx.DiGraph()
|
| 285 |
+
nx.add_path(G, [0, 1, 2])
|
| 286 |
+
b = nx.betweenness_centrality(G, weight=None, normalized=True)
|
| 287 |
+
b_answer = {0: 0.0, 1: 0.5, 2: 0.0}
|
| 288 |
+
for n in sorted(G):
|
| 289 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
class TestWeightedBetweennessCentrality:
|
| 293 |
+
def test_K5(self):
|
| 294 |
+
"""Weighted betweenness centrality: K5"""
|
| 295 |
+
G = nx.complete_graph(5)
|
| 296 |
+
b = nx.betweenness_centrality(G, weight="weight", normalized=False)
|
| 297 |
+
b_answer = {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0}
|
| 298 |
+
for n in sorted(G):
|
| 299 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 300 |
+
|
| 301 |
+
def test_P3_normalized(self):
|
| 302 |
+
"""Weighted betweenness centrality: P3 normalized"""
|
| 303 |
+
G = nx.path_graph(3)
|
| 304 |
+
b = nx.betweenness_centrality(G, weight="weight", normalized=True)
|
| 305 |
+
b_answer = {0: 0.0, 1: 1.0, 2: 0.0}
|
| 306 |
+
for n in sorted(G):
|
| 307 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 308 |
+
|
| 309 |
+
def test_P3(self):
|
| 310 |
+
"""Weighted betweenness centrality: P3"""
|
| 311 |
+
G = nx.path_graph(3)
|
| 312 |
+
b_answer = {0: 0.0, 1: 1.0, 2: 0.0}
|
| 313 |
+
b = nx.betweenness_centrality(G, weight="weight", normalized=False)
|
| 314 |
+
for n in sorted(G):
|
| 315 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 316 |
+
|
| 317 |
+
def test_krackhardt_kite_graph(self):
|
| 318 |
+
"""Weighted betweenness centrality: Krackhardt kite graph"""
|
| 319 |
+
G = nx.krackhardt_kite_graph()
|
| 320 |
+
b_answer = {
|
| 321 |
+
0: 1.667,
|
| 322 |
+
1: 1.667,
|
| 323 |
+
2: 0.000,
|
| 324 |
+
3: 7.333,
|
| 325 |
+
4: 0.000,
|
| 326 |
+
5: 16.667,
|
| 327 |
+
6: 16.667,
|
| 328 |
+
7: 28.000,
|
| 329 |
+
8: 16.000,
|
| 330 |
+
9: 0.000,
|
| 331 |
+
}
|
| 332 |
+
for b in b_answer:
|
| 333 |
+
b_answer[b] /= 2
|
| 334 |
+
|
| 335 |
+
b = nx.betweenness_centrality(G, weight="weight", normalized=False)
|
| 336 |
+
|
| 337 |
+
for n in sorted(G):
|
| 338 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-3)
|
| 339 |
+
|
| 340 |
+
def test_krackhardt_kite_graph_normalized(self):
|
| 341 |
+
"""Weighted betweenness centrality:
|
| 342 |
+
Krackhardt kite graph normalized
|
| 343 |
+
"""
|
| 344 |
+
G = nx.krackhardt_kite_graph()
|
| 345 |
+
b_answer = {
|
| 346 |
+
0: 0.023,
|
| 347 |
+
1: 0.023,
|
| 348 |
+
2: 0.000,
|
| 349 |
+
3: 0.102,
|
| 350 |
+
4: 0.000,
|
| 351 |
+
5: 0.231,
|
| 352 |
+
6: 0.231,
|
| 353 |
+
7: 0.389,
|
| 354 |
+
8: 0.222,
|
| 355 |
+
9: 0.000,
|
| 356 |
+
}
|
| 357 |
+
b = nx.betweenness_centrality(G, weight="weight", normalized=True)
|
| 358 |
+
|
| 359 |
+
for n in sorted(G):
|
| 360 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-3)
|
| 361 |
+
|
| 362 |
+
def test_florentine_families_graph(self):
|
| 363 |
+
"""Weighted betweenness centrality:
|
| 364 |
+
Florentine families graph"""
|
| 365 |
+
G = nx.florentine_families_graph()
|
| 366 |
+
b_answer = {
|
| 367 |
+
"Acciaiuoli": 0.000,
|
| 368 |
+
"Albizzi": 0.212,
|
| 369 |
+
"Barbadori": 0.093,
|
| 370 |
+
"Bischeri": 0.104,
|
| 371 |
+
"Castellani": 0.055,
|
| 372 |
+
"Ginori": 0.000,
|
| 373 |
+
"Guadagni": 0.255,
|
| 374 |
+
"Lamberteschi": 0.000,
|
| 375 |
+
"Medici": 0.522,
|
| 376 |
+
"Pazzi": 0.000,
|
| 377 |
+
"Peruzzi": 0.022,
|
| 378 |
+
"Ridolfi": 0.114,
|
| 379 |
+
"Salviati": 0.143,
|
| 380 |
+
"Strozzi": 0.103,
|
| 381 |
+
"Tornabuoni": 0.092,
|
| 382 |
+
}
|
| 383 |
+
|
| 384 |
+
b = nx.betweenness_centrality(G, weight="weight", normalized=True)
|
| 385 |
+
for n in sorted(G):
|
| 386 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-3)
|
| 387 |
+
|
| 388 |
+
def test_les_miserables_graph(self):
|
| 389 |
+
"""Weighted betweenness centrality: Les Miserables graph"""
|
| 390 |
+
G = nx.les_miserables_graph()
|
| 391 |
+
b_answer = {
|
| 392 |
+
"Napoleon": 0.000,
|
| 393 |
+
"Myriel": 0.177,
|
| 394 |
+
"MlleBaptistine": 0.000,
|
| 395 |
+
"MmeMagloire": 0.000,
|
| 396 |
+
"CountessDeLo": 0.000,
|
| 397 |
+
"Geborand": 0.000,
|
| 398 |
+
"Champtercier": 0.000,
|
| 399 |
+
"Cravatte": 0.000,
|
| 400 |
+
"Count": 0.000,
|
| 401 |
+
"OldMan": 0.000,
|
| 402 |
+
"Valjean": 0.454,
|
| 403 |
+
"Labarre": 0.000,
|
| 404 |
+
"Marguerite": 0.009,
|
| 405 |
+
"MmeDeR": 0.000,
|
| 406 |
+
"Isabeau": 0.000,
|
| 407 |
+
"Gervais": 0.000,
|
| 408 |
+
"Listolier": 0.000,
|
| 409 |
+
"Tholomyes": 0.066,
|
| 410 |
+
"Fameuil": 0.000,
|
| 411 |
+
"Blacheville": 0.000,
|
| 412 |
+
"Favourite": 0.000,
|
| 413 |
+
"Dahlia": 0.000,
|
| 414 |
+
"Zephine": 0.000,
|
| 415 |
+
"Fantine": 0.114,
|
| 416 |
+
"MmeThenardier": 0.046,
|
| 417 |
+
"Thenardier": 0.129,
|
| 418 |
+
"Cosette": 0.075,
|
| 419 |
+
"Javert": 0.193,
|
| 420 |
+
"Fauchelevent": 0.026,
|
| 421 |
+
"Bamatabois": 0.080,
|
| 422 |
+
"Perpetue": 0.000,
|
| 423 |
+
"Simplice": 0.001,
|
| 424 |
+
"Scaufflaire": 0.000,
|
| 425 |
+
"Woman1": 0.000,
|
| 426 |
+
"Judge": 0.000,
|
| 427 |
+
"Champmathieu": 0.000,
|
| 428 |
+
"Brevet": 0.000,
|
| 429 |
+
"Chenildieu": 0.000,
|
| 430 |
+
"Cochepaille": 0.000,
|
| 431 |
+
"Pontmercy": 0.023,
|
| 432 |
+
"Boulatruelle": 0.000,
|
| 433 |
+
"Eponine": 0.023,
|
| 434 |
+
"Anzelma": 0.000,
|
| 435 |
+
"Woman2": 0.000,
|
| 436 |
+
"MotherInnocent": 0.000,
|
| 437 |
+
"Gribier": 0.000,
|
| 438 |
+
"MmeBurgon": 0.026,
|
| 439 |
+
"Jondrette": 0.000,
|
| 440 |
+
"Gavroche": 0.285,
|
| 441 |
+
"Gillenormand": 0.024,
|
| 442 |
+
"Magnon": 0.005,
|
| 443 |
+
"MlleGillenormand": 0.036,
|
| 444 |
+
"MmePontmercy": 0.005,
|
| 445 |
+
"MlleVaubois": 0.000,
|
| 446 |
+
"LtGillenormand": 0.015,
|
| 447 |
+
"Marius": 0.072,
|
| 448 |
+
"BaronessT": 0.004,
|
| 449 |
+
"Mabeuf": 0.089,
|
| 450 |
+
"Enjolras": 0.003,
|
| 451 |
+
"Combeferre": 0.000,
|
| 452 |
+
"Prouvaire": 0.000,
|
| 453 |
+
"Feuilly": 0.004,
|
| 454 |
+
"Courfeyrac": 0.001,
|
| 455 |
+
"Bahorel": 0.007,
|
| 456 |
+
"Bossuet": 0.028,
|
| 457 |
+
"Joly": 0.000,
|
| 458 |
+
"Grantaire": 0.036,
|
| 459 |
+
"MotherPlutarch": 0.000,
|
| 460 |
+
"Gueulemer": 0.025,
|
| 461 |
+
"Babet": 0.015,
|
| 462 |
+
"Claquesous": 0.042,
|
| 463 |
+
"Montparnasse": 0.050,
|
| 464 |
+
"Toussaint": 0.011,
|
| 465 |
+
"Child1": 0.000,
|
| 466 |
+
"Child2": 0.000,
|
| 467 |
+
"Brujon": 0.002,
|
| 468 |
+
"MmeHucheloup": 0.034,
|
| 469 |
+
}
|
| 470 |
+
|
| 471 |
+
b = nx.betweenness_centrality(G, weight="weight", normalized=True)
|
| 472 |
+
for n in sorted(G):
|
| 473 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-3)
|
| 474 |
+
|
| 475 |
+
def test_ladder_graph(self):
|
| 476 |
+
"""Weighted betweenness centrality: Ladder graph"""
|
| 477 |
+
G = nx.Graph() # ladder_graph(3)
|
| 478 |
+
G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3), (2, 4), (4, 5), (3, 5)])
|
| 479 |
+
b_answer = {0: 1.667, 1: 1.667, 2: 6.667, 3: 6.667, 4: 1.667, 5: 1.667}
|
| 480 |
+
for b in b_answer:
|
| 481 |
+
b_answer[b] /= 2
|
| 482 |
+
b = nx.betweenness_centrality(G, weight="weight", normalized=False)
|
| 483 |
+
for n in sorted(G):
|
| 484 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-3)
|
| 485 |
+
|
| 486 |
+
def test_G(self):
|
| 487 |
+
"""Weighted betweenness centrality: G"""
|
| 488 |
+
G = weighted_G()
|
| 489 |
+
b_answer = {0: 2.0, 1: 0.0, 2: 4.0, 3: 3.0, 4: 4.0, 5: 0.0}
|
| 490 |
+
b = nx.betweenness_centrality(G, weight="weight", normalized=False)
|
| 491 |
+
for n in sorted(G):
|
| 492 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 493 |
+
|
| 494 |
+
def test_G2(self):
|
| 495 |
+
"""Weighted betweenness centrality: G2"""
|
| 496 |
+
G = nx.DiGraph()
|
| 497 |
+
G.add_weighted_edges_from(
|
| 498 |
+
[
|
| 499 |
+
("s", "u", 10),
|
| 500 |
+
("s", "x", 5),
|
| 501 |
+
("u", "v", 1),
|
| 502 |
+
("u", "x", 2),
|
| 503 |
+
("v", "y", 1),
|
| 504 |
+
("x", "u", 3),
|
| 505 |
+
("x", "v", 5),
|
| 506 |
+
("x", "y", 2),
|
| 507 |
+
("y", "s", 7),
|
| 508 |
+
("y", "v", 6),
|
| 509 |
+
]
|
| 510 |
+
)
|
| 511 |
+
|
| 512 |
+
b_answer = {"y": 5.0, "x": 5.0, "s": 4.0, "u": 2.0, "v": 2.0}
|
| 513 |
+
|
| 514 |
+
b = nx.betweenness_centrality(G, weight="weight", normalized=False)
|
| 515 |
+
for n in sorted(G):
|
| 516 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 517 |
+
|
| 518 |
+
def test_G3(self):
|
| 519 |
+
"""Weighted betweenness centrality: G3"""
|
| 520 |
+
G = nx.MultiGraph(weighted_G())
|
| 521 |
+
es = list(G.edges(data=True))[::2] # duplicate every other edge
|
| 522 |
+
G.add_edges_from(es)
|
| 523 |
+
b_answer = {0: 2.0, 1: 0.0, 2: 4.0, 3: 3.0, 4: 4.0, 5: 0.0}
|
| 524 |
+
b = nx.betweenness_centrality(G, weight="weight", normalized=False)
|
| 525 |
+
for n in sorted(G):
|
| 526 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 527 |
+
|
| 528 |
+
def test_G4(self):
|
| 529 |
+
"""Weighted betweenness centrality: G4"""
|
| 530 |
+
G = nx.MultiDiGraph()
|
| 531 |
+
G.add_weighted_edges_from(
|
| 532 |
+
[
|
| 533 |
+
("s", "u", 10),
|
| 534 |
+
("s", "x", 5),
|
| 535 |
+
("s", "x", 6),
|
| 536 |
+
("u", "v", 1),
|
| 537 |
+
("u", "x", 2),
|
| 538 |
+
("v", "y", 1),
|
| 539 |
+
("v", "y", 1),
|
| 540 |
+
("x", "u", 3),
|
| 541 |
+
("x", "v", 5),
|
| 542 |
+
("x", "y", 2),
|
| 543 |
+
("x", "y", 3),
|
| 544 |
+
("y", "s", 7),
|
| 545 |
+
("y", "v", 6),
|
| 546 |
+
("y", "v", 6),
|
| 547 |
+
]
|
| 548 |
+
)
|
| 549 |
+
|
| 550 |
+
b_answer = {"y": 5.0, "x": 5.0, "s": 4.0, "u": 2.0, "v": 2.0}
|
| 551 |
+
|
| 552 |
+
b = nx.betweenness_centrality(G, weight="weight", normalized=False)
|
| 553 |
+
for n in sorted(G):
|
| 554 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 555 |
+
|
| 556 |
+
|
| 557 |
+
class TestEdgeBetweennessCentrality:
|
| 558 |
+
def test_K5(self):
|
| 559 |
+
"""Edge betweenness centrality: K5"""
|
| 560 |
+
G = nx.complete_graph(5)
|
| 561 |
+
b = nx.edge_betweenness_centrality(G, weight=None, normalized=False)
|
| 562 |
+
b_answer = dict.fromkeys(G.edges(), 1)
|
| 563 |
+
for n in sorted(G.edges()):
|
| 564 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 565 |
+
|
| 566 |
+
def test_normalized_K5(self):
|
| 567 |
+
"""Edge betweenness centrality: K5"""
|
| 568 |
+
G = nx.complete_graph(5)
|
| 569 |
+
b = nx.edge_betweenness_centrality(G, weight=None, normalized=True)
|
| 570 |
+
b_answer = dict.fromkeys(G.edges(), 1 / 10)
|
| 571 |
+
for n in sorted(G.edges()):
|
| 572 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 573 |
+
|
| 574 |
+
def test_C4(self):
|
| 575 |
+
"""Edge betweenness centrality: C4"""
|
| 576 |
+
G = nx.cycle_graph(4)
|
| 577 |
+
b = nx.edge_betweenness_centrality(G, weight=None, normalized=True)
|
| 578 |
+
b_answer = {(0, 1): 2, (0, 3): 2, (1, 2): 2, (2, 3): 2}
|
| 579 |
+
for n in sorted(G.edges()):
|
| 580 |
+
assert b[n] == pytest.approx(b_answer[n] / 6, abs=1e-7)
|
| 581 |
+
|
| 582 |
+
def test_P4(self):
|
| 583 |
+
"""Edge betweenness centrality: P4"""
|
| 584 |
+
G = nx.path_graph(4)
|
| 585 |
+
b = nx.edge_betweenness_centrality(G, weight=None, normalized=False)
|
| 586 |
+
b_answer = {(0, 1): 3, (1, 2): 4, (2, 3): 3}
|
| 587 |
+
for n in sorted(G.edges()):
|
| 588 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 589 |
+
|
| 590 |
+
def test_normalized_P4(self):
|
| 591 |
+
"""Edge betweenness centrality: P4"""
|
| 592 |
+
G = nx.path_graph(4)
|
| 593 |
+
b = nx.edge_betweenness_centrality(G, weight=None, normalized=True)
|
| 594 |
+
b_answer = {(0, 1): 3, (1, 2): 4, (2, 3): 3}
|
| 595 |
+
for n in sorted(G.edges()):
|
| 596 |
+
assert b[n] == pytest.approx(b_answer[n] / 6, abs=1e-7)
|
| 597 |
+
|
| 598 |
+
def test_balanced_tree(self):
|
| 599 |
+
"""Edge betweenness centrality: balanced tree"""
|
| 600 |
+
G = nx.balanced_tree(r=2, h=2)
|
| 601 |
+
b = nx.edge_betweenness_centrality(G, weight=None, normalized=False)
|
| 602 |
+
b_answer = {(0, 1): 12, (0, 2): 12, (1, 3): 6, (1, 4): 6, (2, 5): 6, (2, 6): 6}
|
| 603 |
+
for n in sorted(G.edges()):
|
| 604 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 605 |
+
|
| 606 |
+
|
| 607 |
+
class TestWeightedEdgeBetweennessCentrality:
|
| 608 |
+
def test_K5(self):
|
| 609 |
+
"""Edge betweenness centrality: K5"""
|
| 610 |
+
G = nx.complete_graph(5)
|
| 611 |
+
b = nx.edge_betweenness_centrality(G, weight="weight", normalized=False)
|
| 612 |
+
b_answer = dict.fromkeys(G.edges(), 1)
|
| 613 |
+
for n in sorted(G.edges()):
|
| 614 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 615 |
+
|
| 616 |
+
def test_C4(self):
|
| 617 |
+
"""Edge betweenness centrality: C4"""
|
| 618 |
+
G = nx.cycle_graph(4)
|
| 619 |
+
b = nx.edge_betweenness_centrality(G, weight="weight", normalized=False)
|
| 620 |
+
b_answer = {(0, 1): 2, (0, 3): 2, (1, 2): 2, (2, 3): 2}
|
| 621 |
+
for n in sorted(G.edges()):
|
| 622 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 623 |
+
|
| 624 |
+
def test_P4(self):
|
| 625 |
+
"""Edge betweenness centrality: P4"""
|
| 626 |
+
G = nx.path_graph(4)
|
| 627 |
+
b = nx.edge_betweenness_centrality(G, weight="weight", normalized=False)
|
| 628 |
+
b_answer = {(0, 1): 3, (1, 2): 4, (2, 3): 3}
|
| 629 |
+
for n in sorted(G.edges()):
|
| 630 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 631 |
+
|
| 632 |
+
def test_balanced_tree(self):
|
| 633 |
+
"""Edge betweenness centrality: balanced tree"""
|
| 634 |
+
G = nx.balanced_tree(r=2, h=2)
|
| 635 |
+
b = nx.edge_betweenness_centrality(G, weight="weight", normalized=False)
|
| 636 |
+
b_answer = {(0, 1): 12, (0, 2): 12, (1, 3): 6, (1, 4): 6, (2, 5): 6, (2, 6): 6}
|
| 637 |
+
for n in sorted(G.edges()):
|
| 638 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 639 |
+
|
| 640 |
+
def test_weighted_graph(self):
|
| 641 |
+
"""Edge betweenness centrality: weighted"""
|
| 642 |
+
eList = [
|
| 643 |
+
(0, 1, 5),
|
| 644 |
+
(0, 2, 4),
|
| 645 |
+
(0, 3, 3),
|
| 646 |
+
(0, 4, 2),
|
| 647 |
+
(1, 2, 4),
|
| 648 |
+
(1, 3, 1),
|
| 649 |
+
(1, 4, 3),
|
| 650 |
+
(2, 4, 5),
|
| 651 |
+
(3, 4, 4),
|
| 652 |
+
]
|
| 653 |
+
G = nx.Graph()
|
| 654 |
+
G.add_weighted_edges_from(eList)
|
| 655 |
+
b = nx.edge_betweenness_centrality(G, weight="weight", normalized=False)
|
| 656 |
+
b_answer = {
|
| 657 |
+
(0, 1): 0.0,
|
| 658 |
+
(0, 2): 1.0,
|
| 659 |
+
(0, 3): 2.0,
|
| 660 |
+
(0, 4): 1.0,
|
| 661 |
+
(1, 2): 2.0,
|
| 662 |
+
(1, 3): 3.5,
|
| 663 |
+
(1, 4): 1.5,
|
| 664 |
+
(2, 4): 1.0,
|
| 665 |
+
(3, 4): 0.5,
|
| 666 |
+
}
|
| 667 |
+
for n in sorted(G.edges()):
|
| 668 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 669 |
+
|
| 670 |
+
def test_normalized_weighted_graph(self):
|
| 671 |
+
"""Edge betweenness centrality: normalized weighted"""
|
| 672 |
+
eList = [
|
| 673 |
+
(0, 1, 5),
|
| 674 |
+
(0, 2, 4),
|
| 675 |
+
(0, 3, 3),
|
| 676 |
+
(0, 4, 2),
|
| 677 |
+
(1, 2, 4),
|
| 678 |
+
(1, 3, 1),
|
| 679 |
+
(1, 4, 3),
|
| 680 |
+
(2, 4, 5),
|
| 681 |
+
(3, 4, 4),
|
| 682 |
+
]
|
| 683 |
+
G = nx.Graph()
|
| 684 |
+
G.add_weighted_edges_from(eList)
|
| 685 |
+
b = nx.edge_betweenness_centrality(G, weight="weight", normalized=True)
|
| 686 |
+
b_answer = {
|
| 687 |
+
(0, 1): 0.0,
|
| 688 |
+
(0, 2): 1.0,
|
| 689 |
+
(0, 3): 2.0,
|
| 690 |
+
(0, 4): 1.0,
|
| 691 |
+
(1, 2): 2.0,
|
| 692 |
+
(1, 3): 3.5,
|
| 693 |
+
(1, 4): 1.5,
|
| 694 |
+
(2, 4): 1.0,
|
| 695 |
+
(3, 4): 0.5,
|
| 696 |
+
}
|
| 697 |
+
norm = len(G) * (len(G) - 1) / 2
|
| 698 |
+
for n in sorted(G.edges()):
|
| 699 |
+
assert b[n] == pytest.approx(b_answer[n] / norm, abs=1e-7)
|
| 700 |
+
|
| 701 |
+
def test_weighted_multigraph(self):
|
| 702 |
+
"""Edge betweenness centrality: weighted multigraph"""
|
| 703 |
+
eList = [
|
| 704 |
+
(0, 1, 5),
|
| 705 |
+
(0, 1, 4),
|
| 706 |
+
(0, 2, 4),
|
| 707 |
+
(0, 3, 3),
|
| 708 |
+
(0, 3, 3),
|
| 709 |
+
(0, 4, 2),
|
| 710 |
+
(1, 2, 4),
|
| 711 |
+
(1, 3, 1),
|
| 712 |
+
(1, 3, 2),
|
| 713 |
+
(1, 4, 3),
|
| 714 |
+
(1, 4, 4),
|
| 715 |
+
(2, 4, 5),
|
| 716 |
+
(3, 4, 4),
|
| 717 |
+
(3, 4, 4),
|
| 718 |
+
]
|
| 719 |
+
G = nx.MultiGraph()
|
| 720 |
+
G.add_weighted_edges_from(eList)
|
| 721 |
+
b = nx.edge_betweenness_centrality(G, weight="weight", normalized=False)
|
| 722 |
+
b_answer = {
|
| 723 |
+
(0, 1, 0): 0.0,
|
| 724 |
+
(0, 1, 1): 0.5,
|
| 725 |
+
(0, 2, 0): 1.0,
|
| 726 |
+
(0, 3, 0): 0.75,
|
| 727 |
+
(0, 3, 1): 0.75,
|
| 728 |
+
(0, 4, 0): 1.0,
|
| 729 |
+
(1, 2, 0): 2.0,
|
| 730 |
+
(1, 3, 0): 3.0,
|
| 731 |
+
(1, 3, 1): 0.0,
|
| 732 |
+
(1, 4, 0): 1.5,
|
| 733 |
+
(1, 4, 1): 0.0,
|
| 734 |
+
(2, 4, 0): 1.0,
|
| 735 |
+
(3, 4, 0): 0.25,
|
| 736 |
+
(3, 4, 1): 0.25,
|
| 737 |
+
}
|
| 738 |
+
for n in sorted(G.edges(keys=True)):
|
| 739 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 740 |
+
|
| 741 |
+
def test_normalized_weighted_multigraph(self):
|
| 742 |
+
"""Edge betweenness centrality: normalized weighted multigraph"""
|
| 743 |
+
eList = [
|
| 744 |
+
(0, 1, 5),
|
| 745 |
+
(0, 1, 4),
|
| 746 |
+
(0, 2, 4),
|
| 747 |
+
(0, 3, 3),
|
| 748 |
+
(0, 3, 3),
|
| 749 |
+
(0, 4, 2),
|
| 750 |
+
(1, 2, 4),
|
| 751 |
+
(1, 3, 1),
|
| 752 |
+
(1, 3, 2),
|
| 753 |
+
(1, 4, 3),
|
| 754 |
+
(1, 4, 4),
|
| 755 |
+
(2, 4, 5),
|
| 756 |
+
(3, 4, 4),
|
| 757 |
+
(3, 4, 4),
|
| 758 |
+
]
|
| 759 |
+
G = nx.MultiGraph()
|
| 760 |
+
G.add_weighted_edges_from(eList)
|
| 761 |
+
b = nx.edge_betweenness_centrality(G, weight="weight", normalized=True)
|
| 762 |
+
b_answer = {
|
| 763 |
+
(0, 1, 0): 0.0,
|
| 764 |
+
(0, 1, 1): 0.5,
|
| 765 |
+
(0, 2, 0): 1.0,
|
| 766 |
+
(0, 3, 0): 0.75,
|
| 767 |
+
(0, 3, 1): 0.75,
|
| 768 |
+
(0, 4, 0): 1.0,
|
| 769 |
+
(1, 2, 0): 2.0,
|
| 770 |
+
(1, 3, 0): 3.0,
|
| 771 |
+
(1, 3, 1): 0.0,
|
| 772 |
+
(1, 4, 0): 1.5,
|
| 773 |
+
(1, 4, 1): 0.0,
|
| 774 |
+
(2, 4, 0): 1.0,
|
| 775 |
+
(3, 4, 0): 0.25,
|
| 776 |
+
(3, 4, 1): 0.25,
|
| 777 |
+
}
|
| 778 |
+
norm = len(G) * (len(G) - 1) / 2
|
| 779 |
+
for n in sorted(G.edges(keys=True)):
|
| 780 |
+
assert b[n] == pytest.approx(b_answer[n] / norm, abs=1e-7)
|
parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/tests/test_betweenness_centrality_subset.py
ADDED
|
@@ -0,0 +1,340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pytest
|
| 2 |
+
|
| 3 |
+
import networkx as nx
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class TestSubsetBetweennessCentrality:
|
| 7 |
+
def test_K5(self):
|
| 8 |
+
"""Betweenness Centrality Subset: K5"""
|
| 9 |
+
G = nx.complete_graph(5)
|
| 10 |
+
b = nx.betweenness_centrality_subset(
|
| 11 |
+
G, sources=[0], targets=[1, 3], weight=None
|
| 12 |
+
)
|
| 13 |
+
b_answer = {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0}
|
| 14 |
+
for n in sorted(G):
|
| 15 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 16 |
+
|
| 17 |
+
def test_P5_directed(self):
|
| 18 |
+
"""Betweenness Centrality Subset: P5 directed"""
|
| 19 |
+
G = nx.DiGraph()
|
| 20 |
+
nx.add_path(G, range(5))
|
| 21 |
+
b_answer = {0: 0, 1: 1, 2: 1, 3: 0, 4: 0, 5: 0}
|
| 22 |
+
b = nx.betweenness_centrality_subset(G, sources=[0], targets=[3], weight=None)
|
| 23 |
+
for n in sorted(G):
|
| 24 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 25 |
+
|
| 26 |
+
def test_P5(self):
|
| 27 |
+
"""Betweenness Centrality Subset: P5"""
|
| 28 |
+
G = nx.Graph()
|
| 29 |
+
nx.add_path(G, range(5))
|
| 30 |
+
b_answer = {0: 0, 1: 0.5, 2: 0.5, 3: 0, 4: 0, 5: 0}
|
| 31 |
+
b = nx.betweenness_centrality_subset(G, sources=[0], targets=[3], weight=None)
|
| 32 |
+
for n in sorted(G):
|
| 33 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 34 |
+
|
| 35 |
+
def test_P5_multiple_target(self):
|
| 36 |
+
"""Betweenness Centrality Subset: P5 multiple target"""
|
| 37 |
+
G = nx.Graph()
|
| 38 |
+
nx.add_path(G, range(5))
|
| 39 |
+
b_answer = {0: 0, 1: 1, 2: 1, 3: 0.5, 4: 0, 5: 0}
|
| 40 |
+
b = nx.betweenness_centrality_subset(
|
| 41 |
+
G, sources=[0], targets=[3, 4], weight=None
|
| 42 |
+
)
|
| 43 |
+
for n in sorted(G):
|
| 44 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 45 |
+
|
| 46 |
+
def test_box(self):
|
| 47 |
+
"""Betweenness Centrality Subset: box"""
|
| 48 |
+
G = nx.Graph()
|
| 49 |
+
G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)])
|
| 50 |
+
b_answer = {0: 0, 1: 0.25, 2: 0.25, 3: 0}
|
| 51 |
+
b = nx.betweenness_centrality_subset(G, sources=[0], targets=[3], weight=None)
|
| 52 |
+
for n in sorted(G):
|
| 53 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 54 |
+
|
| 55 |
+
def test_box_and_path(self):
|
| 56 |
+
"""Betweenness Centrality Subset: box and path"""
|
| 57 |
+
G = nx.Graph()
|
| 58 |
+
G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3), (3, 4), (4, 5)])
|
| 59 |
+
b_answer = {0: 0, 1: 0.5, 2: 0.5, 3: 0.5, 4: 0, 5: 0}
|
| 60 |
+
b = nx.betweenness_centrality_subset(
|
| 61 |
+
G, sources=[0], targets=[3, 4], weight=None
|
| 62 |
+
)
|
| 63 |
+
for n in sorted(G):
|
| 64 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 65 |
+
|
| 66 |
+
def test_box_and_path2(self):
|
| 67 |
+
"""Betweenness Centrality Subset: box and path multiple target"""
|
| 68 |
+
G = nx.Graph()
|
| 69 |
+
G.add_edges_from([(0, 1), (1, 2), (2, 3), (1, 20), (20, 3), (3, 4)])
|
| 70 |
+
b_answer = {0: 0, 1: 1.0, 2: 0.5, 20: 0.5, 3: 0.5, 4: 0}
|
| 71 |
+
b = nx.betweenness_centrality_subset(
|
| 72 |
+
G, sources=[0], targets=[3, 4], weight=None
|
| 73 |
+
)
|
| 74 |
+
for n in sorted(G):
|
| 75 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 76 |
+
|
| 77 |
+
def test_diamond_multi_path(self):
|
| 78 |
+
"""Betweenness Centrality Subset: Diamond Multi Path"""
|
| 79 |
+
G = nx.Graph()
|
| 80 |
+
G.add_edges_from(
|
| 81 |
+
[
|
| 82 |
+
(1, 2),
|
| 83 |
+
(1, 3),
|
| 84 |
+
(1, 4),
|
| 85 |
+
(1, 5),
|
| 86 |
+
(1, 10),
|
| 87 |
+
(10, 11),
|
| 88 |
+
(11, 12),
|
| 89 |
+
(12, 9),
|
| 90 |
+
(2, 6),
|
| 91 |
+
(3, 6),
|
| 92 |
+
(4, 6),
|
| 93 |
+
(5, 7),
|
| 94 |
+
(7, 8),
|
| 95 |
+
(6, 8),
|
| 96 |
+
(8, 9),
|
| 97 |
+
]
|
| 98 |
+
)
|
| 99 |
+
b = nx.betweenness_centrality_subset(G, sources=[1], targets=[9], weight=None)
|
| 100 |
+
|
| 101 |
+
expected_b = {
|
| 102 |
+
1: 0,
|
| 103 |
+
2: 1.0 / 10,
|
| 104 |
+
3: 1.0 / 10,
|
| 105 |
+
4: 1.0 / 10,
|
| 106 |
+
5: 1.0 / 10,
|
| 107 |
+
6: 3.0 / 10,
|
| 108 |
+
7: 1.0 / 10,
|
| 109 |
+
8: 4.0 / 10,
|
| 110 |
+
9: 0,
|
| 111 |
+
10: 1.0 / 10,
|
| 112 |
+
11: 1.0 / 10,
|
| 113 |
+
12: 1.0 / 10,
|
| 114 |
+
}
|
| 115 |
+
|
| 116 |
+
for n in sorted(G):
|
| 117 |
+
assert b[n] == pytest.approx(expected_b[n], abs=1e-7)
|
| 118 |
+
|
| 119 |
+
def test_normalized_p2(self):
|
| 120 |
+
"""
|
| 121 |
+
Betweenness Centrality Subset: Normalized P2
|
| 122 |
+
if n <= 2: no normalization, betweenness centrality should be 0 for all nodes.
|
| 123 |
+
"""
|
| 124 |
+
G = nx.Graph()
|
| 125 |
+
nx.add_path(G, range(2))
|
| 126 |
+
b_answer = {0: 0, 1: 0.0}
|
| 127 |
+
b = nx.betweenness_centrality_subset(
|
| 128 |
+
G, sources=[0], targets=[1], normalized=True, weight=None
|
| 129 |
+
)
|
| 130 |
+
for n in sorted(G):
|
| 131 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 132 |
+
|
| 133 |
+
def test_normalized_P5_directed(self):
|
| 134 |
+
"""Betweenness Centrality Subset: Normalized Directed P5"""
|
| 135 |
+
G = nx.DiGraph()
|
| 136 |
+
nx.add_path(G, range(5))
|
| 137 |
+
b_answer = {0: 0, 1: 1.0 / 12.0, 2: 1.0 / 12.0, 3: 0, 4: 0, 5: 0}
|
| 138 |
+
b = nx.betweenness_centrality_subset(
|
| 139 |
+
G, sources=[0], targets=[3], normalized=True, weight=None
|
| 140 |
+
)
|
| 141 |
+
for n in sorted(G):
|
| 142 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 143 |
+
|
| 144 |
+
def test_weighted_graph(self):
|
| 145 |
+
"""Betweenness Centrality Subset: Weighted Graph"""
|
| 146 |
+
G = nx.DiGraph()
|
| 147 |
+
G.add_edge(0, 1, weight=3)
|
| 148 |
+
G.add_edge(0, 2, weight=2)
|
| 149 |
+
G.add_edge(0, 3, weight=6)
|
| 150 |
+
G.add_edge(0, 4, weight=4)
|
| 151 |
+
G.add_edge(1, 3, weight=5)
|
| 152 |
+
G.add_edge(1, 5, weight=5)
|
| 153 |
+
G.add_edge(2, 4, weight=1)
|
| 154 |
+
G.add_edge(3, 4, weight=2)
|
| 155 |
+
G.add_edge(3, 5, weight=1)
|
| 156 |
+
G.add_edge(4, 5, weight=4)
|
| 157 |
+
b_answer = {0: 0.0, 1: 0.0, 2: 0.5, 3: 0.5, 4: 0.5, 5: 0.0}
|
| 158 |
+
b = nx.betweenness_centrality_subset(
|
| 159 |
+
G, sources=[0], targets=[5], normalized=False, weight="weight"
|
| 160 |
+
)
|
| 161 |
+
for n in sorted(G):
|
| 162 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
class TestEdgeSubsetBetweennessCentrality:
|
| 166 |
+
def test_K5(self):
|
| 167 |
+
"""Edge betweenness subset centrality: K5"""
|
| 168 |
+
G = nx.complete_graph(5)
|
| 169 |
+
b = nx.edge_betweenness_centrality_subset(
|
| 170 |
+
G, sources=[0], targets=[1, 3], weight=None
|
| 171 |
+
)
|
| 172 |
+
b_answer = dict.fromkeys(G.edges(), 0)
|
| 173 |
+
b_answer[(0, 3)] = b_answer[(0, 1)] = 0.5
|
| 174 |
+
for n in sorted(G.edges()):
|
| 175 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 176 |
+
|
| 177 |
+
def test_P5_directed(self):
|
| 178 |
+
"""Edge betweenness subset centrality: P5 directed"""
|
| 179 |
+
G = nx.DiGraph()
|
| 180 |
+
nx.add_path(G, range(5))
|
| 181 |
+
b_answer = dict.fromkeys(G.edges(), 0)
|
| 182 |
+
b_answer[(0, 1)] = b_answer[(1, 2)] = b_answer[(2, 3)] = 1
|
| 183 |
+
b = nx.edge_betweenness_centrality_subset(
|
| 184 |
+
G, sources=[0], targets=[3], weight=None
|
| 185 |
+
)
|
| 186 |
+
for n in sorted(G.edges()):
|
| 187 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 188 |
+
|
| 189 |
+
def test_P5(self):
|
| 190 |
+
"""Edge betweenness subset centrality: P5"""
|
| 191 |
+
G = nx.Graph()
|
| 192 |
+
nx.add_path(G, range(5))
|
| 193 |
+
b_answer = dict.fromkeys(G.edges(), 0)
|
| 194 |
+
b_answer[(0, 1)] = b_answer[(1, 2)] = b_answer[(2, 3)] = 0.5
|
| 195 |
+
b = nx.edge_betweenness_centrality_subset(
|
| 196 |
+
G, sources=[0], targets=[3], weight=None
|
| 197 |
+
)
|
| 198 |
+
for n in sorted(G.edges()):
|
| 199 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 200 |
+
|
| 201 |
+
def test_P5_multiple_target(self):
|
| 202 |
+
"""Edge betweenness subset centrality: P5 multiple target"""
|
| 203 |
+
G = nx.Graph()
|
| 204 |
+
nx.add_path(G, range(5))
|
| 205 |
+
b_answer = dict.fromkeys(G.edges(), 0)
|
| 206 |
+
b_answer[(0, 1)] = b_answer[(1, 2)] = b_answer[(2, 3)] = 1
|
| 207 |
+
b_answer[(3, 4)] = 0.5
|
| 208 |
+
b = nx.edge_betweenness_centrality_subset(
|
| 209 |
+
G, sources=[0], targets=[3, 4], weight=None
|
| 210 |
+
)
|
| 211 |
+
for n in sorted(G.edges()):
|
| 212 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 213 |
+
|
| 214 |
+
def test_box(self):
|
| 215 |
+
"""Edge betweenness subset centrality: box"""
|
| 216 |
+
G = nx.Graph()
|
| 217 |
+
G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)])
|
| 218 |
+
b_answer = dict.fromkeys(G.edges(), 0)
|
| 219 |
+
b_answer[(0, 1)] = b_answer[(0, 2)] = 0.25
|
| 220 |
+
b_answer[(1, 3)] = b_answer[(2, 3)] = 0.25
|
| 221 |
+
b = nx.edge_betweenness_centrality_subset(
|
| 222 |
+
G, sources=[0], targets=[3], weight=None
|
| 223 |
+
)
|
| 224 |
+
for n in sorted(G.edges()):
|
| 225 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 226 |
+
|
| 227 |
+
def test_box_and_path(self):
|
| 228 |
+
"""Edge betweenness subset centrality: box and path"""
|
| 229 |
+
G = nx.Graph()
|
| 230 |
+
G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3), (3, 4), (4, 5)])
|
| 231 |
+
b_answer = dict.fromkeys(G.edges(), 0)
|
| 232 |
+
b_answer[(0, 1)] = b_answer[(0, 2)] = 0.5
|
| 233 |
+
b_answer[(1, 3)] = b_answer[(2, 3)] = 0.5
|
| 234 |
+
b_answer[(3, 4)] = 0.5
|
| 235 |
+
b = nx.edge_betweenness_centrality_subset(
|
| 236 |
+
G, sources=[0], targets=[3, 4], weight=None
|
| 237 |
+
)
|
| 238 |
+
for n in sorted(G.edges()):
|
| 239 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 240 |
+
|
| 241 |
+
def test_box_and_path2(self):
|
| 242 |
+
"""Edge betweenness subset centrality: box and path multiple target"""
|
| 243 |
+
G = nx.Graph()
|
| 244 |
+
G.add_edges_from([(0, 1), (1, 2), (2, 3), (1, 20), (20, 3), (3, 4)])
|
| 245 |
+
b_answer = dict.fromkeys(G.edges(), 0)
|
| 246 |
+
b_answer[(0, 1)] = 1.0
|
| 247 |
+
b_answer[(1, 20)] = b_answer[(3, 20)] = 0.5
|
| 248 |
+
b_answer[(1, 2)] = b_answer[(2, 3)] = 0.5
|
| 249 |
+
b_answer[(3, 4)] = 0.5
|
| 250 |
+
b = nx.edge_betweenness_centrality_subset(
|
| 251 |
+
G, sources=[0], targets=[3, 4], weight=None
|
| 252 |
+
)
|
| 253 |
+
for n in sorted(G.edges()):
|
| 254 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 255 |
+
|
| 256 |
+
def test_diamond_multi_path(self):
|
| 257 |
+
"""Edge betweenness subset centrality: Diamond Multi Path"""
|
| 258 |
+
G = nx.Graph()
|
| 259 |
+
G.add_edges_from(
|
| 260 |
+
[
|
| 261 |
+
(1, 2),
|
| 262 |
+
(1, 3),
|
| 263 |
+
(1, 4),
|
| 264 |
+
(1, 5),
|
| 265 |
+
(1, 10),
|
| 266 |
+
(10, 11),
|
| 267 |
+
(11, 12),
|
| 268 |
+
(12, 9),
|
| 269 |
+
(2, 6),
|
| 270 |
+
(3, 6),
|
| 271 |
+
(4, 6),
|
| 272 |
+
(5, 7),
|
| 273 |
+
(7, 8),
|
| 274 |
+
(6, 8),
|
| 275 |
+
(8, 9),
|
| 276 |
+
]
|
| 277 |
+
)
|
| 278 |
+
b_answer = dict.fromkeys(G.edges(), 0)
|
| 279 |
+
b_answer[(8, 9)] = 0.4
|
| 280 |
+
b_answer[(6, 8)] = b_answer[(7, 8)] = 0.2
|
| 281 |
+
b_answer[(2, 6)] = b_answer[(3, 6)] = b_answer[(4, 6)] = 0.2 / 3.0
|
| 282 |
+
b_answer[(1, 2)] = b_answer[(1, 3)] = b_answer[(1, 4)] = 0.2 / 3.0
|
| 283 |
+
b_answer[(5, 7)] = 0.2
|
| 284 |
+
b_answer[(1, 5)] = 0.2
|
| 285 |
+
b_answer[(9, 12)] = 0.1
|
| 286 |
+
b_answer[(11, 12)] = b_answer[(10, 11)] = b_answer[(1, 10)] = 0.1
|
| 287 |
+
b = nx.edge_betweenness_centrality_subset(
|
| 288 |
+
G, sources=[1], targets=[9], weight=None
|
| 289 |
+
)
|
| 290 |
+
for n in G.edges():
|
| 291 |
+
sort_n = tuple(sorted(n))
|
| 292 |
+
assert b[n] == pytest.approx(b_answer[sort_n], abs=1e-7)
|
| 293 |
+
|
| 294 |
+
def test_normalized_p1(self):
|
| 295 |
+
"""
|
| 296 |
+
Edge betweenness subset centrality: P1
|
| 297 |
+
if n <= 1: no normalization b=0 for all nodes
|
| 298 |
+
"""
|
| 299 |
+
G = nx.Graph()
|
| 300 |
+
nx.add_path(G, range(1))
|
| 301 |
+
b_answer = dict.fromkeys(G.edges(), 0)
|
| 302 |
+
b = nx.edge_betweenness_centrality_subset(
|
| 303 |
+
G, sources=[0], targets=[0], normalized=True, weight=None
|
| 304 |
+
)
|
| 305 |
+
for n in G.edges():
|
| 306 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 307 |
+
|
| 308 |
+
def test_normalized_P5_directed(self):
|
| 309 |
+
"""Edge betweenness subset centrality: Normalized Directed P5"""
|
| 310 |
+
G = nx.DiGraph()
|
| 311 |
+
nx.add_path(G, range(5))
|
| 312 |
+
b_answer = dict.fromkeys(G.edges(), 0)
|
| 313 |
+
b_answer[(0, 1)] = b_answer[(1, 2)] = b_answer[(2, 3)] = 0.05
|
| 314 |
+
b = nx.edge_betweenness_centrality_subset(
|
| 315 |
+
G, sources=[0], targets=[3], normalized=True, weight=None
|
| 316 |
+
)
|
| 317 |
+
for n in G.edges():
|
| 318 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 319 |
+
|
| 320 |
+
def test_weighted_graph(self):
|
| 321 |
+
"""Edge betweenness subset centrality: Weighted Graph"""
|
| 322 |
+
G = nx.DiGraph()
|
| 323 |
+
G.add_edge(0, 1, weight=3)
|
| 324 |
+
G.add_edge(0, 2, weight=2)
|
| 325 |
+
G.add_edge(0, 3, weight=6)
|
| 326 |
+
G.add_edge(0, 4, weight=4)
|
| 327 |
+
G.add_edge(1, 3, weight=5)
|
| 328 |
+
G.add_edge(1, 5, weight=5)
|
| 329 |
+
G.add_edge(2, 4, weight=1)
|
| 330 |
+
G.add_edge(3, 4, weight=2)
|
| 331 |
+
G.add_edge(3, 5, weight=1)
|
| 332 |
+
G.add_edge(4, 5, weight=4)
|
| 333 |
+
b_answer = dict.fromkeys(G.edges(), 0)
|
| 334 |
+
b_answer[(0, 2)] = b_answer[(2, 4)] = b_answer[(4, 5)] = 0.5
|
| 335 |
+
b_answer[(0, 3)] = b_answer[(3, 5)] = 0.5
|
| 336 |
+
b = nx.edge_betweenness_centrality_subset(
|
| 337 |
+
G, sources=[0], targets=[5], normalized=False, weight="weight"
|
| 338 |
+
)
|
| 339 |
+
for n in G.edges():
|
| 340 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/tests/test_closeness_centrality.py
ADDED
|
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Tests for closeness centrality.
|
| 3 |
+
"""
|
| 4 |
+
import pytest
|
| 5 |
+
|
| 6 |
+
import networkx as nx
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class TestClosenessCentrality:
|
| 10 |
+
@classmethod
|
| 11 |
+
def setup_class(cls):
|
| 12 |
+
cls.K = nx.krackhardt_kite_graph()
|
| 13 |
+
cls.P3 = nx.path_graph(3)
|
| 14 |
+
cls.P4 = nx.path_graph(4)
|
| 15 |
+
cls.K5 = nx.complete_graph(5)
|
| 16 |
+
|
| 17 |
+
cls.C4 = nx.cycle_graph(4)
|
| 18 |
+
cls.T = nx.balanced_tree(r=2, h=2)
|
| 19 |
+
cls.Gb = nx.Graph()
|
| 20 |
+
cls.Gb.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3), (2, 4), (4, 5), (3, 5)])
|
| 21 |
+
|
| 22 |
+
F = nx.florentine_families_graph()
|
| 23 |
+
cls.F = F
|
| 24 |
+
|
| 25 |
+
cls.LM = nx.les_miserables_graph()
|
| 26 |
+
|
| 27 |
+
# Create random undirected, unweighted graph for testing incremental version
|
| 28 |
+
cls.undirected_G = nx.fast_gnp_random_graph(n=100, p=0.6, seed=123)
|
| 29 |
+
cls.undirected_G_cc = nx.closeness_centrality(cls.undirected_G)
|
| 30 |
+
|
| 31 |
+
def test_wf_improved(self):
|
| 32 |
+
G = nx.union(self.P4, nx.path_graph([4, 5, 6]))
|
| 33 |
+
c = nx.closeness_centrality(G)
|
| 34 |
+
cwf = nx.closeness_centrality(G, wf_improved=False)
|
| 35 |
+
res = {0: 0.25, 1: 0.375, 2: 0.375, 3: 0.25, 4: 0.222, 5: 0.333, 6: 0.222}
|
| 36 |
+
wf_res = {0: 0.5, 1: 0.75, 2: 0.75, 3: 0.5, 4: 0.667, 5: 1.0, 6: 0.667}
|
| 37 |
+
for n in G:
|
| 38 |
+
assert c[n] == pytest.approx(res[n], abs=1e-3)
|
| 39 |
+
assert cwf[n] == pytest.approx(wf_res[n], abs=1e-3)
|
| 40 |
+
|
| 41 |
+
def test_digraph(self):
|
| 42 |
+
G = nx.path_graph(3, create_using=nx.DiGraph())
|
| 43 |
+
c = nx.closeness_centrality(G)
|
| 44 |
+
cr = nx.closeness_centrality(G.reverse())
|
| 45 |
+
d = {0: 0.0, 1: 0.500, 2: 0.667}
|
| 46 |
+
dr = {0: 0.667, 1: 0.500, 2: 0.0}
|
| 47 |
+
for n in sorted(self.P3):
|
| 48 |
+
assert c[n] == pytest.approx(d[n], abs=1e-3)
|
| 49 |
+
assert cr[n] == pytest.approx(dr[n], abs=1e-3)
|
| 50 |
+
|
| 51 |
+
def test_k5_closeness(self):
|
| 52 |
+
c = nx.closeness_centrality(self.K5)
|
| 53 |
+
d = {0: 1.000, 1: 1.000, 2: 1.000, 3: 1.000, 4: 1.000}
|
| 54 |
+
for n in sorted(self.K5):
|
| 55 |
+
assert c[n] == pytest.approx(d[n], abs=1e-3)
|
| 56 |
+
|
| 57 |
+
def test_p3_closeness(self):
|
| 58 |
+
c = nx.closeness_centrality(self.P3)
|
| 59 |
+
d = {0: 0.667, 1: 1.000, 2: 0.667}
|
| 60 |
+
for n in sorted(self.P3):
|
| 61 |
+
assert c[n] == pytest.approx(d[n], abs=1e-3)
|
| 62 |
+
|
| 63 |
+
def test_krackhardt_closeness(self):
|
| 64 |
+
c = nx.closeness_centrality(self.K)
|
| 65 |
+
d = {
|
| 66 |
+
0: 0.529,
|
| 67 |
+
1: 0.529,
|
| 68 |
+
2: 0.500,
|
| 69 |
+
3: 0.600,
|
| 70 |
+
4: 0.500,
|
| 71 |
+
5: 0.643,
|
| 72 |
+
6: 0.643,
|
| 73 |
+
7: 0.600,
|
| 74 |
+
8: 0.429,
|
| 75 |
+
9: 0.310,
|
| 76 |
+
}
|
| 77 |
+
for n in sorted(self.K):
|
| 78 |
+
assert c[n] == pytest.approx(d[n], abs=1e-3)
|
| 79 |
+
|
| 80 |
+
def test_florentine_families_closeness(self):
|
| 81 |
+
c = nx.closeness_centrality(self.F)
|
| 82 |
+
d = {
|
| 83 |
+
"Acciaiuoli": 0.368,
|
| 84 |
+
"Albizzi": 0.483,
|
| 85 |
+
"Barbadori": 0.4375,
|
| 86 |
+
"Bischeri": 0.400,
|
| 87 |
+
"Castellani": 0.389,
|
| 88 |
+
"Ginori": 0.333,
|
| 89 |
+
"Guadagni": 0.467,
|
| 90 |
+
"Lamberteschi": 0.326,
|
| 91 |
+
"Medici": 0.560,
|
| 92 |
+
"Pazzi": 0.286,
|
| 93 |
+
"Peruzzi": 0.368,
|
| 94 |
+
"Ridolfi": 0.500,
|
| 95 |
+
"Salviati": 0.389,
|
| 96 |
+
"Strozzi": 0.4375,
|
| 97 |
+
"Tornabuoni": 0.483,
|
| 98 |
+
}
|
| 99 |
+
for n in sorted(self.F):
|
| 100 |
+
assert c[n] == pytest.approx(d[n], abs=1e-3)
|
| 101 |
+
|
| 102 |
+
def test_les_miserables_closeness(self):
|
| 103 |
+
c = nx.closeness_centrality(self.LM)
|
| 104 |
+
d = {
|
| 105 |
+
"Napoleon": 0.302,
|
| 106 |
+
"Myriel": 0.429,
|
| 107 |
+
"MlleBaptistine": 0.413,
|
| 108 |
+
"MmeMagloire": 0.413,
|
| 109 |
+
"CountessDeLo": 0.302,
|
| 110 |
+
"Geborand": 0.302,
|
| 111 |
+
"Champtercier": 0.302,
|
| 112 |
+
"Cravatte": 0.302,
|
| 113 |
+
"Count": 0.302,
|
| 114 |
+
"OldMan": 0.302,
|
| 115 |
+
"Valjean": 0.644,
|
| 116 |
+
"Labarre": 0.394,
|
| 117 |
+
"Marguerite": 0.413,
|
| 118 |
+
"MmeDeR": 0.394,
|
| 119 |
+
"Isabeau": 0.394,
|
| 120 |
+
"Gervais": 0.394,
|
| 121 |
+
"Listolier": 0.341,
|
| 122 |
+
"Tholomyes": 0.392,
|
| 123 |
+
"Fameuil": 0.341,
|
| 124 |
+
"Blacheville": 0.341,
|
| 125 |
+
"Favourite": 0.341,
|
| 126 |
+
"Dahlia": 0.341,
|
| 127 |
+
"Zephine": 0.341,
|
| 128 |
+
"Fantine": 0.461,
|
| 129 |
+
"MmeThenardier": 0.461,
|
| 130 |
+
"Thenardier": 0.517,
|
| 131 |
+
"Cosette": 0.478,
|
| 132 |
+
"Javert": 0.517,
|
| 133 |
+
"Fauchelevent": 0.402,
|
| 134 |
+
"Bamatabois": 0.427,
|
| 135 |
+
"Perpetue": 0.318,
|
| 136 |
+
"Simplice": 0.418,
|
| 137 |
+
"Scaufflaire": 0.394,
|
| 138 |
+
"Woman1": 0.396,
|
| 139 |
+
"Judge": 0.404,
|
| 140 |
+
"Champmathieu": 0.404,
|
| 141 |
+
"Brevet": 0.404,
|
| 142 |
+
"Chenildieu": 0.404,
|
| 143 |
+
"Cochepaille": 0.404,
|
| 144 |
+
"Pontmercy": 0.373,
|
| 145 |
+
"Boulatruelle": 0.342,
|
| 146 |
+
"Eponine": 0.396,
|
| 147 |
+
"Anzelma": 0.352,
|
| 148 |
+
"Woman2": 0.402,
|
| 149 |
+
"MotherInnocent": 0.398,
|
| 150 |
+
"Gribier": 0.288,
|
| 151 |
+
"MmeBurgon": 0.344,
|
| 152 |
+
"Jondrette": 0.257,
|
| 153 |
+
"Gavroche": 0.514,
|
| 154 |
+
"Gillenormand": 0.442,
|
| 155 |
+
"Magnon": 0.335,
|
| 156 |
+
"MlleGillenormand": 0.442,
|
| 157 |
+
"MmePontmercy": 0.315,
|
| 158 |
+
"MlleVaubois": 0.308,
|
| 159 |
+
"LtGillenormand": 0.365,
|
| 160 |
+
"Marius": 0.531,
|
| 161 |
+
"BaronessT": 0.352,
|
| 162 |
+
"Mabeuf": 0.396,
|
| 163 |
+
"Enjolras": 0.481,
|
| 164 |
+
"Combeferre": 0.392,
|
| 165 |
+
"Prouvaire": 0.357,
|
| 166 |
+
"Feuilly": 0.392,
|
| 167 |
+
"Courfeyrac": 0.400,
|
| 168 |
+
"Bahorel": 0.394,
|
| 169 |
+
"Bossuet": 0.475,
|
| 170 |
+
"Joly": 0.394,
|
| 171 |
+
"Grantaire": 0.358,
|
| 172 |
+
"MotherPlutarch": 0.285,
|
| 173 |
+
"Gueulemer": 0.463,
|
| 174 |
+
"Babet": 0.463,
|
| 175 |
+
"Claquesous": 0.452,
|
| 176 |
+
"Montparnasse": 0.458,
|
| 177 |
+
"Toussaint": 0.402,
|
| 178 |
+
"Child1": 0.342,
|
| 179 |
+
"Child2": 0.342,
|
| 180 |
+
"Brujon": 0.380,
|
| 181 |
+
"MmeHucheloup": 0.353,
|
| 182 |
+
}
|
| 183 |
+
for n in sorted(self.LM):
|
| 184 |
+
assert c[n] == pytest.approx(d[n], abs=1e-3)
|
| 185 |
+
|
| 186 |
+
def test_weighted_closeness(self):
|
| 187 |
+
edges = [
|
| 188 |
+
("s", "u", 10),
|
| 189 |
+
("s", "x", 5),
|
| 190 |
+
("u", "v", 1),
|
| 191 |
+
("u", "x", 2),
|
| 192 |
+
("v", "y", 1),
|
| 193 |
+
("x", "u", 3),
|
| 194 |
+
("x", "v", 5),
|
| 195 |
+
("x", "y", 2),
|
| 196 |
+
("y", "s", 7),
|
| 197 |
+
("y", "v", 6),
|
| 198 |
+
]
|
| 199 |
+
XG = nx.Graph()
|
| 200 |
+
XG.add_weighted_edges_from(edges)
|
| 201 |
+
c = nx.closeness_centrality(XG, distance="weight")
|
| 202 |
+
d = {"y": 0.200, "x": 0.286, "s": 0.138, "u": 0.235, "v": 0.200}
|
| 203 |
+
for n in sorted(XG):
|
| 204 |
+
assert c[n] == pytest.approx(d[n], abs=1e-3)
|
| 205 |
+
|
| 206 |
+
#
|
| 207 |
+
# Tests for incremental closeness centrality.
|
| 208 |
+
#
|
| 209 |
+
@staticmethod
|
| 210 |
+
def pick_add_edge(g):
|
| 211 |
+
u = nx.utils.arbitrary_element(g)
|
| 212 |
+
possible_nodes = set(g.nodes())
|
| 213 |
+
neighbors = list(g.neighbors(u)) + [u]
|
| 214 |
+
possible_nodes.difference_update(neighbors)
|
| 215 |
+
v = nx.utils.arbitrary_element(possible_nodes)
|
| 216 |
+
return (u, v)
|
| 217 |
+
|
| 218 |
+
@staticmethod
|
| 219 |
+
def pick_remove_edge(g):
|
| 220 |
+
u = nx.utils.arbitrary_element(g)
|
| 221 |
+
possible_nodes = list(g.neighbors(u))
|
| 222 |
+
v = nx.utils.arbitrary_element(possible_nodes)
|
| 223 |
+
return (u, v)
|
| 224 |
+
|
| 225 |
+
def test_directed_raises(self):
|
| 226 |
+
with pytest.raises(nx.NetworkXNotImplemented):
|
| 227 |
+
dir_G = nx.gn_graph(n=5)
|
| 228 |
+
prev_cc = None
|
| 229 |
+
edge = self.pick_add_edge(dir_G)
|
| 230 |
+
insert = True
|
| 231 |
+
nx.incremental_closeness_centrality(dir_G, edge, prev_cc, insert)
|
| 232 |
+
|
| 233 |
+
def test_wrong_size_prev_cc_raises(self):
|
| 234 |
+
with pytest.raises(nx.NetworkXError):
|
| 235 |
+
G = self.undirected_G.copy()
|
| 236 |
+
edge = self.pick_add_edge(G)
|
| 237 |
+
insert = True
|
| 238 |
+
prev_cc = self.undirected_G_cc.copy()
|
| 239 |
+
prev_cc.pop(0)
|
| 240 |
+
nx.incremental_closeness_centrality(G, edge, prev_cc, insert)
|
| 241 |
+
|
| 242 |
+
def test_wrong_nodes_prev_cc_raises(self):
|
| 243 |
+
with pytest.raises(nx.NetworkXError):
|
| 244 |
+
G = self.undirected_G.copy()
|
| 245 |
+
edge = self.pick_add_edge(G)
|
| 246 |
+
insert = True
|
| 247 |
+
prev_cc = self.undirected_G_cc.copy()
|
| 248 |
+
num_nodes = len(prev_cc)
|
| 249 |
+
prev_cc.pop(0)
|
| 250 |
+
prev_cc[num_nodes] = 0.5
|
| 251 |
+
nx.incremental_closeness_centrality(G, edge, prev_cc, insert)
|
| 252 |
+
|
| 253 |
+
def test_zero_centrality(self):
|
| 254 |
+
G = nx.path_graph(3)
|
| 255 |
+
prev_cc = nx.closeness_centrality(G)
|
| 256 |
+
edge = self.pick_remove_edge(G)
|
| 257 |
+
test_cc = nx.incremental_closeness_centrality(G, edge, prev_cc, insertion=False)
|
| 258 |
+
G.remove_edges_from([edge])
|
| 259 |
+
real_cc = nx.closeness_centrality(G)
|
| 260 |
+
shared_items = set(test_cc.items()) & set(real_cc.items())
|
| 261 |
+
assert len(shared_items) == len(real_cc)
|
| 262 |
+
assert 0 in test_cc.values()
|
| 263 |
+
|
| 264 |
+
def test_incremental(self):
|
| 265 |
+
# Check that incremental and regular give same output
|
| 266 |
+
G = self.undirected_G.copy()
|
| 267 |
+
prev_cc = None
|
| 268 |
+
for i in range(5):
|
| 269 |
+
if i % 2 == 0:
|
| 270 |
+
# Remove an edge
|
| 271 |
+
insert = False
|
| 272 |
+
edge = self.pick_remove_edge(G)
|
| 273 |
+
else:
|
| 274 |
+
# Add an edge
|
| 275 |
+
insert = True
|
| 276 |
+
edge = self.pick_add_edge(G)
|
| 277 |
+
|
| 278 |
+
# start = timeit.default_timer()
|
| 279 |
+
test_cc = nx.incremental_closeness_centrality(G, edge, prev_cc, insert)
|
| 280 |
+
# inc_elapsed = (timeit.default_timer() - start)
|
| 281 |
+
# print(f"incremental time: {inc_elapsed}")
|
| 282 |
+
|
| 283 |
+
if insert:
|
| 284 |
+
G.add_edges_from([edge])
|
| 285 |
+
else:
|
| 286 |
+
G.remove_edges_from([edge])
|
| 287 |
+
|
| 288 |
+
# start = timeit.default_timer()
|
| 289 |
+
real_cc = nx.closeness_centrality(G)
|
| 290 |
+
# reg_elapsed = (timeit.default_timer() - start)
|
| 291 |
+
# print(f"regular time: {reg_elapsed}")
|
| 292 |
+
# Example output:
|
| 293 |
+
# incremental time: 0.208
|
| 294 |
+
# regular time: 0.276
|
| 295 |
+
# incremental time: 0.00683
|
| 296 |
+
# regular time: 0.260
|
| 297 |
+
# incremental time: 0.0224
|
| 298 |
+
# regular time: 0.278
|
| 299 |
+
# incremental time: 0.00804
|
| 300 |
+
# regular time: 0.208
|
| 301 |
+
# incremental time: 0.00947
|
| 302 |
+
# regular time: 0.188
|
| 303 |
+
|
| 304 |
+
assert set(test_cc.items()) == set(real_cc.items())
|
| 305 |
+
|
| 306 |
+
prev_cc = test_cc
|
parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/tests/test_current_flow_betweenness_centrality.py
ADDED
|
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pytest
|
| 2 |
+
|
| 3 |
+
import networkx as nx
|
| 4 |
+
from networkx import approximate_current_flow_betweenness_centrality as approximate_cfbc
|
| 5 |
+
from networkx import edge_current_flow_betweenness_centrality as edge_current_flow
|
| 6 |
+
|
| 7 |
+
np = pytest.importorskip("numpy")
|
| 8 |
+
pytest.importorskip("scipy")
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class TestFlowBetweennessCentrality:
|
| 12 |
+
def test_K4_normalized(self):
|
| 13 |
+
"""Betweenness centrality: K4"""
|
| 14 |
+
G = nx.complete_graph(4)
|
| 15 |
+
b = nx.current_flow_betweenness_centrality(G, normalized=True)
|
| 16 |
+
b_answer = {0: 0.25, 1: 0.25, 2: 0.25, 3: 0.25}
|
| 17 |
+
for n in sorted(G):
|
| 18 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 19 |
+
G.add_edge(0, 1, weight=0.5, other=0.3)
|
| 20 |
+
b = nx.current_flow_betweenness_centrality(G, normalized=True, weight=None)
|
| 21 |
+
for n in sorted(G):
|
| 22 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 23 |
+
wb_answer = {0: 0.2222222, 1: 0.2222222, 2: 0.30555555, 3: 0.30555555}
|
| 24 |
+
b = nx.current_flow_betweenness_centrality(G, normalized=True, weight="weight")
|
| 25 |
+
for n in sorted(G):
|
| 26 |
+
assert b[n] == pytest.approx(wb_answer[n], abs=1e-7)
|
| 27 |
+
wb_answer = {0: 0.2051282, 1: 0.2051282, 2: 0.33974358, 3: 0.33974358}
|
| 28 |
+
b = nx.current_flow_betweenness_centrality(G, normalized=True, weight="other")
|
| 29 |
+
for n in sorted(G):
|
| 30 |
+
assert b[n] == pytest.approx(wb_answer[n], abs=1e-7)
|
| 31 |
+
|
| 32 |
+
def test_K4(self):
|
| 33 |
+
"""Betweenness centrality: K4"""
|
| 34 |
+
G = nx.complete_graph(4)
|
| 35 |
+
for solver in ["full", "lu", "cg"]:
|
| 36 |
+
b = nx.current_flow_betweenness_centrality(
|
| 37 |
+
G, normalized=False, solver=solver
|
| 38 |
+
)
|
| 39 |
+
b_answer = {0: 0.75, 1: 0.75, 2: 0.75, 3: 0.75}
|
| 40 |
+
for n in sorted(G):
|
| 41 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 42 |
+
|
| 43 |
+
def test_P4_normalized(self):
|
| 44 |
+
"""Betweenness centrality: P4 normalized"""
|
| 45 |
+
G = nx.path_graph(4)
|
| 46 |
+
b = nx.current_flow_betweenness_centrality(G, normalized=True)
|
| 47 |
+
b_answer = {0: 0, 1: 2.0 / 3, 2: 2.0 / 3, 3: 0}
|
| 48 |
+
for n in sorted(G):
|
| 49 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 50 |
+
|
| 51 |
+
def test_P4(self):
|
| 52 |
+
"""Betweenness centrality: P4"""
|
| 53 |
+
G = nx.path_graph(4)
|
| 54 |
+
b = nx.current_flow_betweenness_centrality(G, normalized=False)
|
| 55 |
+
b_answer = {0: 0, 1: 2, 2: 2, 3: 0}
|
| 56 |
+
for n in sorted(G):
|
| 57 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 58 |
+
|
| 59 |
+
def test_star(self):
|
| 60 |
+
"""Betweenness centrality: star"""
|
| 61 |
+
G = nx.Graph()
|
| 62 |
+
nx.add_star(G, ["a", "b", "c", "d"])
|
| 63 |
+
b = nx.current_flow_betweenness_centrality(G, normalized=True)
|
| 64 |
+
b_answer = {"a": 1.0, "b": 0.0, "c": 0.0, "d": 0.0}
|
| 65 |
+
for n in sorted(G):
|
| 66 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 67 |
+
|
| 68 |
+
def test_solvers2(self):
|
| 69 |
+
"""Betweenness centrality: alternate solvers"""
|
| 70 |
+
G = nx.complete_graph(4)
|
| 71 |
+
for solver in ["full", "lu", "cg"]:
|
| 72 |
+
b = nx.current_flow_betweenness_centrality(
|
| 73 |
+
G, normalized=False, solver=solver
|
| 74 |
+
)
|
| 75 |
+
b_answer = {0: 0.75, 1: 0.75, 2: 0.75, 3: 0.75}
|
| 76 |
+
for n in sorted(G):
|
| 77 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
class TestApproximateFlowBetweennessCentrality:
|
| 81 |
+
def test_K4_normalized(self):
|
| 82 |
+
"Approximate current-flow betweenness centrality: K4 normalized"
|
| 83 |
+
G = nx.complete_graph(4)
|
| 84 |
+
b = nx.current_flow_betweenness_centrality(G, normalized=True)
|
| 85 |
+
epsilon = 0.1
|
| 86 |
+
ba = approximate_cfbc(G, normalized=True, epsilon=0.5 * epsilon)
|
| 87 |
+
for n in sorted(G):
|
| 88 |
+
np.testing.assert_allclose(b[n], ba[n], atol=epsilon)
|
| 89 |
+
|
| 90 |
+
def test_K4(self):
|
| 91 |
+
"Approximate current-flow betweenness centrality: K4"
|
| 92 |
+
G = nx.complete_graph(4)
|
| 93 |
+
b = nx.current_flow_betweenness_centrality(G, normalized=False)
|
| 94 |
+
epsilon = 0.1
|
| 95 |
+
ba = approximate_cfbc(G, normalized=False, epsilon=0.5 * epsilon)
|
| 96 |
+
for n in sorted(G):
|
| 97 |
+
np.testing.assert_allclose(b[n], ba[n], atol=epsilon * len(G) ** 2)
|
| 98 |
+
|
| 99 |
+
def test_star(self):
|
| 100 |
+
"Approximate current-flow betweenness centrality: star"
|
| 101 |
+
G = nx.Graph()
|
| 102 |
+
nx.add_star(G, ["a", "b", "c", "d"])
|
| 103 |
+
b = nx.current_flow_betweenness_centrality(G, normalized=True)
|
| 104 |
+
epsilon = 0.1
|
| 105 |
+
ba = approximate_cfbc(G, normalized=True, epsilon=0.5 * epsilon)
|
| 106 |
+
for n in sorted(G):
|
| 107 |
+
np.testing.assert_allclose(b[n], ba[n], atol=epsilon)
|
| 108 |
+
|
| 109 |
+
def test_grid(self):
|
| 110 |
+
"Approximate current-flow betweenness centrality: 2d grid"
|
| 111 |
+
G = nx.grid_2d_graph(4, 4)
|
| 112 |
+
b = nx.current_flow_betweenness_centrality(G, normalized=True)
|
| 113 |
+
epsilon = 0.1
|
| 114 |
+
ba = approximate_cfbc(G, normalized=True, epsilon=0.5 * epsilon)
|
| 115 |
+
for n in sorted(G):
|
| 116 |
+
np.testing.assert_allclose(b[n], ba[n], atol=epsilon)
|
| 117 |
+
|
| 118 |
+
def test_seed(self):
|
| 119 |
+
G = nx.complete_graph(4)
|
| 120 |
+
b = approximate_cfbc(G, normalized=False, epsilon=0.05, seed=1)
|
| 121 |
+
b_answer = {0: 0.75, 1: 0.75, 2: 0.75, 3: 0.75}
|
| 122 |
+
for n in sorted(G):
|
| 123 |
+
np.testing.assert_allclose(b[n], b_answer[n], atol=0.1)
|
| 124 |
+
|
| 125 |
+
def test_solvers(self):
|
| 126 |
+
"Approximate current-flow betweenness centrality: solvers"
|
| 127 |
+
G = nx.complete_graph(4)
|
| 128 |
+
epsilon = 0.1
|
| 129 |
+
for solver in ["full", "lu", "cg"]:
|
| 130 |
+
b = approximate_cfbc(
|
| 131 |
+
G, normalized=False, solver=solver, epsilon=0.5 * epsilon
|
| 132 |
+
)
|
| 133 |
+
b_answer = {0: 0.75, 1: 0.75, 2: 0.75, 3: 0.75}
|
| 134 |
+
for n in sorted(G):
|
| 135 |
+
np.testing.assert_allclose(b[n], b_answer[n], atol=epsilon)
|
| 136 |
+
|
| 137 |
+
def test_lower_kmax(self):
|
| 138 |
+
G = nx.complete_graph(4)
|
| 139 |
+
with pytest.raises(nx.NetworkXError, match="Increase kmax or epsilon"):
|
| 140 |
+
nx.approximate_current_flow_betweenness_centrality(G, kmax=4)
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
class TestWeightedFlowBetweennessCentrality:
|
| 144 |
+
pass
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
class TestEdgeFlowBetweennessCentrality:
|
| 148 |
+
def test_K4(self):
|
| 149 |
+
"""Edge flow betweenness centrality: K4"""
|
| 150 |
+
G = nx.complete_graph(4)
|
| 151 |
+
b = edge_current_flow(G, normalized=True)
|
| 152 |
+
b_answer = dict.fromkeys(G.edges(), 0.25)
|
| 153 |
+
for (s, t), v1 in b_answer.items():
|
| 154 |
+
v2 = b.get((s, t), b.get((t, s)))
|
| 155 |
+
assert v1 == pytest.approx(v2, abs=1e-7)
|
| 156 |
+
|
| 157 |
+
def test_K4_normalized(self):
|
| 158 |
+
"""Edge flow betweenness centrality: K4"""
|
| 159 |
+
G = nx.complete_graph(4)
|
| 160 |
+
b = edge_current_flow(G, normalized=False)
|
| 161 |
+
b_answer = dict.fromkeys(G.edges(), 0.75)
|
| 162 |
+
for (s, t), v1 in b_answer.items():
|
| 163 |
+
v2 = b.get((s, t), b.get((t, s)))
|
| 164 |
+
assert v1 == pytest.approx(v2, abs=1e-7)
|
| 165 |
+
|
| 166 |
+
def test_C4(self):
|
| 167 |
+
"""Edge flow betweenness centrality: C4"""
|
| 168 |
+
G = nx.cycle_graph(4)
|
| 169 |
+
b = edge_current_flow(G, normalized=False)
|
| 170 |
+
b_answer = {(0, 1): 1.25, (0, 3): 1.25, (1, 2): 1.25, (2, 3): 1.25}
|
| 171 |
+
for (s, t), v1 in b_answer.items():
|
| 172 |
+
v2 = b.get((s, t), b.get((t, s)))
|
| 173 |
+
assert v1 == pytest.approx(v2, abs=1e-7)
|
| 174 |
+
|
| 175 |
+
def test_P4(self):
|
| 176 |
+
"""Edge betweenness centrality: P4"""
|
| 177 |
+
G = nx.path_graph(4)
|
| 178 |
+
b = edge_current_flow(G, normalized=False)
|
| 179 |
+
b_answer = {(0, 1): 1.5, (1, 2): 2.0, (2, 3): 1.5}
|
| 180 |
+
for (s, t), v1 in b_answer.items():
|
| 181 |
+
v2 = b.get((s, t), b.get((t, s)))
|
| 182 |
+
assert v1 == pytest.approx(v2, abs=1e-7)
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
@pytest.mark.parametrize(
|
| 186 |
+
"centrality_func",
|
| 187 |
+
(
|
| 188 |
+
nx.current_flow_betweenness_centrality,
|
| 189 |
+
nx.edge_current_flow_betweenness_centrality,
|
| 190 |
+
nx.approximate_current_flow_betweenness_centrality,
|
| 191 |
+
),
|
| 192 |
+
)
|
| 193 |
+
def test_unconnected_graphs_betweenness_centrality(centrality_func):
|
| 194 |
+
G = nx.Graph([(1, 2), (3, 4)])
|
| 195 |
+
G.add_node(5)
|
| 196 |
+
with pytest.raises(nx.NetworkXError, match="Graph not connected"):
|
| 197 |
+
centrality_func(G)
|
parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/tests/test_current_flow_betweenness_centrality_subset.py
ADDED
|
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pytest
|
| 2 |
+
|
| 3 |
+
pytest.importorskip("numpy")
|
| 4 |
+
pytest.importorskip("scipy")
|
| 5 |
+
|
| 6 |
+
import networkx as nx
|
| 7 |
+
from networkx import edge_current_flow_betweenness_centrality as edge_current_flow
|
| 8 |
+
from networkx import (
|
| 9 |
+
edge_current_flow_betweenness_centrality_subset as edge_current_flow_subset,
|
| 10 |
+
)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class TestFlowBetweennessCentrality:
|
| 14 |
+
def test_K4_normalized(self):
|
| 15 |
+
"""Betweenness centrality: K4"""
|
| 16 |
+
G = nx.complete_graph(4)
|
| 17 |
+
b = nx.current_flow_betweenness_centrality_subset(
|
| 18 |
+
G, list(G), list(G), normalized=True
|
| 19 |
+
)
|
| 20 |
+
b_answer = nx.current_flow_betweenness_centrality(G, normalized=True)
|
| 21 |
+
for n in sorted(G):
|
| 22 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 23 |
+
|
| 24 |
+
def test_K4(self):
|
| 25 |
+
"""Betweenness centrality: K4"""
|
| 26 |
+
G = nx.complete_graph(4)
|
| 27 |
+
b = nx.current_flow_betweenness_centrality_subset(
|
| 28 |
+
G, list(G), list(G), normalized=True
|
| 29 |
+
)
|
| 30 |
+
b_answer = nx.current_flow_betweenness_centrality(G, normalized=True)
|
| 31 |
+
for n in sorted(G):
|
| 32 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 33 |
+
# test weighted network
|
| 34 |
+
G.add_edge(0, 1, weight=0.5, other=0.3)
|
| 35 |
+
b = nx.current_flow_betweenness_centrality_subset(
|
| 36 |
+
G, list(G), list(G), normalized=True, weight=None
|
| 37 |
+
)
|
| 38 |
+
for n in sorted(G):
|
| 39 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 40 |
+
b = nx.current_flow_betweenness_centrality_subset(
|
| 41 |
+
G, list(G), list(G), normalized=True
|
| 42 |
+
)
|
| 43 |
+
b_answer = nx.current_flow_betweenness_centrality(G, normalized=True)
|
| 44 |
+
for n in sorted(G):
|
| 45 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 46 |
+
b = nx.current_flow_betweenness_centrality_subset(
|
| 47 |
+
G, list(G), list(G), normalized=True, weight="other"
|
| 48 |
+
)
|
| 49 |
+
b_answer = nx.current_flow_betweenness_centrality(
|
| 50 |
+
G, normalized=True, weight="other"
|
| 51 |
+
)
|
| 52 |
+
for n in sorted(G):
|
| 53 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 54 |
+
|
| 55 |
+
def test_P4_normalized(self):
|
| 56 |
+
"""Betweenness centrality: P4 normalized"""
|
| 57 |
+
G = nx.path_graph(4)
|
| 58 |
+
b = nx.current_flow_betweenness_centrality_subset(
|
| 59 |
+
G, list(G), list(G), normalized=True
|
| 60 |
+
)
|
| 61 |
+
b_answer = nx.current_flow_betweenness_centrality(G, normalized=True)
|
| 62 |
+
for n in sorted(G):
|
| 63 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 64 |
+
|
| 65 |
+
def test_P4(self):
|
| 66 |
+
"""Betweenness centrality: P4"""
|
| 67 |
+
G = nx.path_graph(4)
|
| 68 |
+
b = nx.current_flow_betweenness_centrality_subset(
|
| 69 |
+
G, list(G), list(G), normalized=True
|
| 70 |
+
)
|
| 71 |
+
b_answer = nx.current_flow_betweenness_centrality(G, normalized=True)
|
| 72 |
+
for n in sorted(G):
|
| 73 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 74 |
+
|
| 75 |
+
def test_star(self):
|
| 76 |
+
"""Betweenness centrality: star"""
|
| 77 |
+
G = nx.Graph()
|
| 78 |
+
nx.add_star(G, ["a", "b", "c", "d"])
|
| 79 |
+
b = nx.current_flow_betweenness_centrality_subset(
|
| 80 |
+
G, list(G), list(G), normalized=True
|
| 81 |
+
)
|
| 82 |
+
b_answer = nx.current_flow_betweenness_centrality(G, normalized=True)
|
| 83 |
+
for n in sorted(G):
|
| 84 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
# class TestWeightedFlowBetweennessCentrality():
|
| 88 |
+
# pass
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
class TestEdgeFlowBetweennessCentrality:
|
| 92 |
+
def test_K4_normalized(self):
|
| 93 |
+
"""Betweenness centrality: K4"""
|
| 94 |
+
G = nx.complete_graph(4)
|
| 95 |
+
b = edge_current_flow_subset(G, list(G), list(G), normalized=True)
|
| 96 |
+
b_answer = edge_current_flow(G, normalized=True)
|
| 97 |
+
for (s, t), v1 in b_answer.items():
|
| 98 |
+
v2 = b.get((s, t), b.get((t, s)))
|
| 99 |
+
assert v1 == pytest.approx(v2, abs=1e-7)
|
| 100 |
+
|
| 101 |
+
def test_K4(self):
|
| 102 |
+
"""Betweenness centrality: K4"""
|
| 103 |
+
G = nx.complete_graph(4)
|
| 104 |
+
b = edge_current_flow_subset(G, list(G), list(G), normalized=False)
|
| 105 |
+
b_answer = edge_current_flow(G, normalized=False)
|
| 106 |
+
for (s, t), v1 in b_answer.items():
|
| 107 |
+
v2 = b.get((s, t), b.get((t, s)))
|
| 108 |
+
assert v1 == pytest.approx(v2, abs=1e-7)
|
| 109 |
+
# test weighted network
|
| 110 |
+
G.add_edge(0, 1, weight=0.5, other=0.3)
|
| 111 |
+
b = edge_current_flow_subset(G, list(G), list(G), normalized=False, weight=None)
|
| 112 |
+
# weight is None => same as unweighted network
|
| 113 |
+
for (s, t), v1 in b_answer.items():
|
| 114 |
+
v2 = b.get((s, t), b.get((t, s)))
|
| 115 |
+
assert v1 == pytest.approx(v2, abs=1e-7)
|
| 116 |
+
|
| 117 |
+
b = edge_current_flow_subset(G, list(G), list(G), normalized=False)
|
| 118 |
+
b_answer = edge_current_flow(G, normalized=False)
|
| 119 |
+
for (s, t), v1 in b_answer.items():
|
| 120 |
+
v2 = b.get((s, t), b.get((t, s)))
|
| 121 |
+
assert v1 == pytest.approx(v2, abs=1e-7)
|
| 122 |
+
|
| 123 |
+
b = edge_current_flow_subset(
|
| 124 |
+
G, list(G), list(G), normalized=False, weight="other"
|
| 125 |
+
)
|
| 126 |
+
b_answer = edge_current_flow(G, normalized=False, weight="other")
|
| 127 |
+
for (s, t), v1 in b_answer.items():
|
| 128 |
+
v2 = b.get((s, t), b.get((t, s)))
|
| 129 |
+
assert v1 == pytest.approx(v2, abs=1e-7)
|
| 130 |
+
|
| 131 |
+
def test_C4(self):
|
| 132 |
+
"""Edge betweenness centrality: C4"""
|
| 133 |
+
G = nx.cycle_graph(4)
|
| 134 |
+
b = edge_current_flow_subset(G, list(G), list(G), normalized=True)
|
| 135 |
+
b_answer = edge_current_flow(G, normalized=True)
|
| 136 |
+
for (s, t), v1 in b_answer.items():
|
| 137 |
+
v2 = b.get((s, t), b.get((t, s)))
|
| 138 |
+
assert v1 == pytest.approx(v2, abs=1e-7)
|
| 139 |
+
|
| 140 |
+
def test_P4(self):
|
| 141 |
+
"""Edge betweenness centrality: P4"""
|
| 142 |
+
G = nx.path_graph(4)
|
| 143 |
+
b = edge_current_flow_subset(G, list(G), list(G), normalized=True)
|
| 144 |
+
b_answer = edge_current_flow(G, normalized=True)
|
| 145 |
+
for (s, t), v1 in b_answer.items():
|
| 146 |
+
v2 = b.get((s, t), b.get((t, s)))
|
| 147 |
+
assert v1 == pytest.approx(v2, abs=1e-7)
|
parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/tests/test_current_flow_closeness.py
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pytest
|
| 2 |
+
|
| 3 |
+
pytest.importorskip("numpy")
|
| 4 |
+
pytest.importorskip("scipy")
|
| 5 |
+
|
| 6 |
+
import networkx as nx
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class TestFlowClosenessCentrality:
|
| 10 |
+
def test_K4(self):
|
| 11 |
+
"""Closeness centrality: K4"""
|
| 12 |
+
G = nx.complete_graph(4)
|
| 13 |
+
b = nx.current_flow_closeness_centrality(G)
|
| 14 |
+
b_answer = {0: 2.0 / 3, 1: 2.0 / 3, 2: 2.0 / 3, 3: 2.0 / 3}
|
| 15 |
+
for n in sorted(G):
|
| 16 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 17 |
+
|
| 18 |
+
def test_P4(self):
|
| 19 |
+
"""Closeness centrality: P4"""
|
| 20 |
+
G = nx.path_graph(4)
|
| 21 |
+
b = nx.current_flow_closeness_centrality(G)
|
| 22 |
+
b_answer = {0: 1.0 / 6, 1: 1.0 / 4, 2: 1.0 / 4, 3: 1.0 / 6}
|
| 23 |
+
for n in sorted(G):
|
| 24 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 25 |
+
|
| 26 |
+
def test_star(self):
|
| 27 |
+
"""Closeness centrality: star"""
|
| 28 |
+
G = nx.Graph()
|
| 29 |
+
nx.add_star(G, ["a", "b", "c", "d"])
|
| 30 |
+
b = nx.current_flow_closeness_centrality(G)
|
| 31 |
+
b_answer = {"a": 1.0 / 3, "b": 0.6 / 3, "c": 0.6 / 3, "d": 0.6 / 3}
|
| 32 |
+
for n in sorted(G):
|
| 33 |
+
assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
|
| 34 |
+
|
| 35 |
+
def test_current_flow_closeness_centrality_not_connected(self):
|
| 36 |
+
G = nx.Graph()
|
| 37 |
+
G.add_nodes_from([1, 2, 3])
|
| 38 |
+
with pytest.raises(nx.NetworkXError):
|
| 39 |
+
nx.current_flow_closeness_centrality(G)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
class TestWeightedFlowClosenessCentrality:
|
| 43 |
+
pass
|
parrot/lib/python3.10/site-packages/networkx/algorithms/centrality/tests/test_degree_centrality.py
ADDED
|
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Unit tests for degree centrality.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import pytest
|
| 6 |
+
|
| 7 |
+
import networkx as nx
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class TestDegreeCentrality:
|
| 11 |
+
def setup_method(self):
|
| 12 |
+
self.K = nx.krackhardt_kite_graph()
|
| 13 |
+
self.P3 = nx.path_graph(3)
|
| 14 |
+
self.K5 = nx.complete_graph(5)
|
| 15 |
+
|
| 16 |
+
F = nx.Graph() # Florentine families
|
| 17 |
+
F.add_edge("Acciaiuoli", "Medici")
|
| 18 |
+
F.add_edge("Castellani", "Peruzzi")
|
| 19 |
+
F.add_edge("Castellani", "Strozzi")
|
| 20 |
+
F.add_edge("Castellani", "Barbadori")
|
| 21 |
+
F.add_edge("Medici", "Barbadori")
|
| 22 |
+
F.add_edge("Medici", "Ridolfi")
|
| 23 |
+
F.add_edge("Medici", "Tornabuoni")
|
| 24 |
+
F.add_edge("Medici", "Albizzi")
|
| 25 |
+
F.add_edge("Medici", "Salviati")
|
| 26 |
+
F.add_edge("Salviati", "Pazzi")
|
| 27 |
+
F.add_edge("Peruzzi", "Strozzi")
|
| 28 |
+
F.add_edge("Peruzzi", "Bischeri")
|
| 29 |
+
F.add_edge("Strozzi", "Ridolfi")
|
| 30 |
+
F.add_edge("Strozzi", "Bischeri")
|
| 31 |
+
F.add_edge("Ridolfi", "Tornabuoni")
|
| 32 |
+
F.add_edge("Tornabuoni", "Guadagni")
|
| 33 |
+
F.add_edge("Albizzi", "Ginori")
|
| 34 |
+
F.add_edge("Albizzi", "Guadagni")
|
| 35 |
+
F.add_edge("Bischeri", "Guadagni")
|
| 36 |
+
F.add_edge("Guadagni", "Lamberteschi")
|
| 37 |
+
self.F = F
|
| 38 |
+
|
| 39 |
+
G = nx.DiGraph()
|
| 40 |
+
G.add_edge(0, 5)
|
| 41 |
+
G.add_edge(1, 5)
|
| 42 |
+
G.add_edge(2, 5)
|
| 43 |
+
G.add_edge(3, 5)
|
| 44 |
+
G.add_edge(4, 5)
|
| 45 |
+
G.add_edge(5, 6)
|
| 46 |
+
G.add_edge(5, 7)
|
| 47 |
+
G.add_edge(5, 8)
|
| 48 |
+
self.G = G
|
| 49 |
+
|
| 50 |
+
def test_degree_centrality_1(self):
|
| 51 |
+
d = nx.degree_centrality(self.K5)
|
| 52 |
+
exact = dict(zip(range(5), [1] * 5))
|
| 53 |
+
for n, dc in d.items():
|
| 54 |
+
assert exact[n] == pytest.approx(dc, abs=1e-7)
|
| 55 |
+
|
| 56 |
+
def test_degree_centrality_2(self):
|
| 57 |
+
d = nx.degree_centrality(self.P3)
|
| 58 |
+
exact = {0: 0.5, 1: 1, 2: 0.5}
|
| 59 |
+
for n, dc in d.items():
|
| 60 |
+
assert exact[n] == pytest.approx(dc, abs=1e-7)
|
| 61 |
+
|
| 62 |
+
def test_degree_centrality_3(self):
|
| 63 |
+
d = nx.degree_centrality(self.K)
|
| 64 |
+
exact = {
|
| 65 |
+
0: 0.444,
|
| 66 |
+
1: 0.444,
|
| 67 |
+
2: 0.333,
|
| 68 |
+
3: 0.667,
|
| 69 |
+
4: 0.333,
|
| 70 |
+
5: 0.556,
|
| 71 |
+
6: 0.556,
|
| 72 |
+
7: 0.333,
|
| 73 |
+
8: 0.222,
|
| 74 |
+
9: 0.111,
|
| 75 |
+
}
|
| 76 |
+
for n, dc in d.items():
|
| 77 |
+
assert exact[n] == pytest.approx(float(f"{dc:.3f}"), abs=1e-7)
|
| 78 |
+
|
| 79 |
+
def test_degree_centrality_4(self):
|
| 80 |
+
d = nx.degree_centrality(self.F)
|
| 81 |
+
names = sorted(self.F.nodes())
|
| 82 |
+
dcs = [
|
| 83 |
+
0.071,
|
| 84 |
+
0.214,
|
| 85 |
+
0.143,
|
| 86 |
+
0.214,
|
| 87 |
+
0.214,
|
| 88 |
+
0.071,
|
| 89 |
+
0.286,
|
| 90 |
+
0.071,
|
| 91 |
+
0.429,
|
| 92 |
+
0.071,
|
| 93 |
+
0.214,
|
| 94 |
+
0.214,
|
| 95 |
+
0.143,
|
| 96 |
+
0.286,
|
| 97 |
+
0.214,
|
| 98 |
+
]
|
| 99 |
+
exact = dict(zip(names, dcs))
|
| 100 |
+
for n, dc in d.items():
|
| 101 |
+
assert exact[n] == pytest.approx(float(f"{dc:.3f}"), abs=1e-7)
|
| 102 |
+
|
| 103 |
+
def test_indegree_centrality(self):
|
| 104 |
+
d = nx.in_degree_centrality(self.G)
|
| 105 |
+
exact = {
|
| 106 |
+
0: 0.0,
|
| 107 |
+
1: 0.0,
|
| 108 |
+
2: 0.0,
|
| 109 |
+
3: 0.0,
|
| 110 |
+
4: 0.0,
|
| 111 |
+
5: 0.625,
|
| 112 |
+
6: 0.125,
|
| 113 |
+
7: 0.125,
|
| 114 |
+
8: 0.125,
|
| 115 |
+
}
|
| 116 |
+
for n, dc in d.items():
|
| 117 |
+
assert exact[n] == pytest.approx(dc, abs=1e-7)
|
| 118 |
+
|
| 119 |
+
def test_outdegree_centrality(self):
|
| 120 |
+
d = nx.out_degree_centrality(self.G)
|
| 121 |
+
exact = {
|
| 122 |
+
0: 0.125,
|
| 123 |
+
1: 0.125,
|
| 124 |
+
2: 0.125,
|
| 125 |
+
3: 0.125,
|
| 126 |
+
4: 0.125,
|
| 127 |
+
5: 0.375,
|
| 128 |
+
6: 0.0,
|
| 129 |
+
7: 0.0,
|
| 130 |
+
8: 0.0,
|
| 131 |
+
}
|
| 132 |
+
for n, dc in d.items():
|
| 133 |
+
assert exact[n] == pytest.approx(dc, abs=1e-7)
|
| 134 |
+
|
| 135 |
+
def test_small_graph_centrality(self):
|
| 136 |
+
G = nx.empty_graph(create_using=nx.DiGraph)
|
| 137 |
+
assert {} == nx.degree_centrality(G)
|
| 138 |
+
assert {} == nx.out_degree_centrality(G)
|
| 139 |
+
assert {} == nx.in_degree_centrality(G)
|
| 140 |
+
|
| 141 |
+
G = nx.empty_graph(1, create_using=nx.DiGraph)
|
| 142 |
+
assert {0: 1} == nx.degree_centrality(G)
|
| 143 |
+
assert {0: 1} == nx.out_degree_centrality(G)
|
| 144 |
+
assert {0: 1} == nx.in_degree_centrality(G)
|