Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +8 -0
- openflamingo/lib/python3.10/site-packages/scipy/fft/_pocketfft/pypocketfft.cpython-310-x86_64-linux-gnu.so +3 -0
- openflamingo/lib/python3.10/site-packages/scipy/linalg/_cythonized_array_utils.cpython-310-x86_64-linux-gnu.so +3 -0
- openflamingo/lib/python3.10/site-packages/scipy/linalg/_decomp_update.cpython-310-x86_64-linux-gnu.so +3 -0
- openflamingo/lib/python3.10/site-packages/scipy/linalg/_matfuncs_expm.cpython-310-x86_64-linux-gnu.so +3 -0
- openflamingo/lib/python3.10/site-packages/scipy/linalg/_solve_toeplitz.cpython-310-x86_64-linux-gnu.so +3 -0
- openflamingo/lib/python3.10/site-packages/scipy/linalg/cython_blas.cpython-310-x86_64-linux-gnu.so +3 -0
- openflamingo/lib/python3.10/site-packages/scipy/linalg/tests/data/gendare_20170120_data.npz +3 -0
- openflamingo/lib/python3.10/site-packages/scipy/spatial/_ckdtree.cpython-310-x86_64-linux-gnu.so +3 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/_ellip_harm.py +214 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/_lambertw.py +149 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/_spfun_stats.py +106 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/_test_internal.pyi +9 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/_ufuncs.pyi +526 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/_ufuncs_cxx.pyx +181 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/_ufuncs_defs.h +185 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/cython_special.pyx +0 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/tests/__pycache__/test_boxcox.cpython-310.pyc +0 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/tests/__pycache__/test_cdft_asymptotic.cpython-310.pyc +0 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/tests/__pycache__/test_faddeeva.cpython-310.pyc +0 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/tests/__pycache__/test_log_softmax.cpython-310.pyc +0 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/tests/__pycache__/test_logit.cpython-310.pyc +0 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/tests/__pycache__/test_logsumexp.cpython-310.pyc +0 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/tests/__pycache__/test_sici.cpython-310.pyc +0 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/tests/__pycache__/test_spfun_stats.cpython-310.pyc +0 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/tests/__pycache__/test_support_alternative_backends.cpython-310.pyc +0 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/tests/__pycache__/test_wright_bessel.cpython-310.pyc +0 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/tests/__pycache__/test_wrightomega.cpython-310.pyc +0 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_basic.py +0 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_bdtr.py +112 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_boxcox.py +106 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_cdflib.py +527 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_cdft_asymptotic.py +49 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_cython_special.py +363 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_data.py +725 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_dd.py +46 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_digamma.py +45 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_ellip_harm.py +278 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_erfinv.py +89 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_exponential_integrals.py +118 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_faddeeva.py +85 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_gamma.py +12 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_gammainc.py +136 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_hypergeometric.py +140 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_kolmogorov.py +495 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_lambertw.py +109 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_loggamma.py +70 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_logsumexp.py +207 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_mpmath.py +2272 -0
- openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_nan_inputs.py +64 -0
.gitattributes
CHANGED
|
@@ -786,3 +786,11 @@ phi4/lib/python3.10/site-packages/numpy/_core/lib/libnpymath.a filter=lfs diff=l
|
|
| 786 |
phi4/lib/python3.10/site-packages/numpy/_core/__pycache__/fromnumeric.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
|
| 787 |
openflamingo/lib/python3.10/site-packages/scipy/io/matlab/_streams.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
| 788 |
openflamingo/lib/python3.10/site-packages/scipy/io/matlab/_mio5_utils.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 786 |
phi4/lib/python3.10/site-packages/numpy/_core/__pycache__/fromnumeric.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
|
| 787 |
openflamingo/lib/python3.10/site-packages/scipy/io/matlab/_streams.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
| 788 |
openflamingo/lib/python3.10/site-packages/scipy/io/matlab/_mio5_utils.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
| 789 |
+
phi4/lib/python3.10/site-packages/numpy/random/bit_generator.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
| 790 |
+
openflamingo/lib/python3.10/site-packages/scipy/linalg/_decomp_update.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
| 791 |
+
openflamingo/lib/python3.10/site-packages/scipy/linalg/_cythonized_array_utils.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
| 792 |
+
openflamingo/lib/python3.10/site-packages/scipy/linalg/cython_blas.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
| 793 |
+
openflamingo/lib/python3.10/site-packages/scipy/linalg/_solve_toeplitz.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
| 794 |
+
openflamingo/lib/python3.10/site-packages/scipy/spatial/_ckdtree.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
| 795 |
+
openflamingo/lib/python3.10/site-packages/scipy/fft/_pocketfft/pypocketfft.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
| 796 |
+
openflamingo/lib/python3.10/site-packages/scipy/linalg/_matfuncs_expm.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
openflamingo/lib/python3.10/site-packages/scipy/fft/_pocketfft/pypocketfft.cpython-310-x86_64-linux-gnu.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c39ee117a6cbc87241a50a1b1b7047fa515577945ba129a92c814fc412ee07a0
|
| 3 |
+
size 1201320
|
openflamingo/lib/python3.10/site-packages/scipy/linalg/_cythonized_array_utils.cpython-310-x86_64-linux-gnu.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e10940ad4a98bb79181b57eb89e4d5276eed0f3bd2a265cd3ec44cab53574076
|
| 3 |
+
size 633088
|
openflamingo/lib/python3.10/site-packages/scipy/linalg/_decomp_update.cpython-310-x86_64-linux-gnu.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a0e5736df7906bb83eeda658132fa48dc14e5bccb14a75bc36d9fd3e31c80095
|
| 3 |
+
size 372704
|
openflamingo/lib/python3.10/site-packages/scipy/linalg/_matfuncs_expm.cpython-310-x86_64-linux-gnu.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8ec6a3bda2516baea6b3fa92a36206684d7d58385879c6d7173dcd717866c619
|
| 3 |
+
size 525696
|
openflamingo/lib/python3.10/site-packages/scipy/linalg/_solve_toeplitz.cpython-310-x86_64-linux-gnu.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d1a4ff5e2e26f8b33cb6c9b2c4eb9e537b2bef411bd914a024f9751fe33a3063
|
| 3 |
+
size 300152
|
openflamingo/lib/python3.10/site-packages/scipy/linalg/cython_blas.cpython-310-x86_64-linux-gnu.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ec86a3f8443905debab4b9fc6a858e7b587767473297b3f855a8f3249f0b8cf4
|
| 3 |
+
size 348849
|
openflamingo/lib/python3.10/site-packages/scipy/linalg/tests/data/gendare_20170120_data.npz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a3dfab451d9d5c20243e0ed85cd8b6c9657669fb9a0f83b5be165585783d55b5
|
| 3 |
+
size 2164
|
openflamingo/lib/python3.10/site-packages/scipy/spatial/_ckdtree.cpython-310-x86_64-linux-gnu.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1031461363c3772a9a32030693341b112093ff989eab6e3d04213d6873c235d9
|
| 3 |
+
size 1027824
|
openflamingo/lib/python3.10/site-packages/scipy/special/_ellip_harm.py
ADDED
|
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
|
| 3 |
+
from ._ufuncs import _ellip_harm
|
| 4 |
+
from ._ellip_harm_2 import _ellipsoid, _ellipsoid_norm
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def ellip_harm(h2, k2, n, p, s, signm=1, signn=1):
|
| 8 |
+
r"""
|
| 9 |
+
Ellipsoidal harmonic functions E^p_n(l)
|
| 10 |
+
|
| 11 |
+
These are also known as Lame functions of the first kind, and are
|
| 12 |
+
solutions to the Lame equation:
|
| 13 |
+
|
| 14 |
+
.. math:: (s^2 - h^2)(s^2 - k^2)E''(s)
|
| 15 |
+
+ s(2s^2 - h^2 - k^2)E'(s) + (a - q s^2)E(s) = 0
|
| 16 |
+
|
| 17 |
+
where :math:`q = (n+1)n` and :math:`a` is the eigenvalue (not
|
| 18 |
+
returned) corresponding to the solutions.
|
| 19 |
+
|
| 20 |
+
Parameters
|
| 21 |
+
----------
|
| 22 |
+
h2 : float
|
| 23 |
+
``h**2``
|
| 24 |
+
k2 : float
|
| 25 |
+
``k**2``; should be larger than ``h**2``
|
| 26 |
+
n : int
|
| 27 |
+
Degree
|
| 28 |
+
s : float
|
| 29 |
+
Coordinate
|
| 30 |
+
p : int
|
| 31 |
+
Order, can range between [1,2n+1]
|
| 32 |
+
signm : {1, -1}, optional
|
| 33 |
+
Sign of prefactor of functions. Can be +/-1. See Notes.
|
| 34 |
+
signn : {1, -1}, optional
|
| 35 |
+
Sign of prefactor of functions. Can be +/-1. See Notes.
|
| 36 |
+
|
| 37 |
+
Returns
|
| 38 |
+
-------
|
| 39 |
+
E : float
|
| 40 |
+
the harmonic :math:`E^p_n(s)`
|
| 41 |
+
|
| 42 |
+
See Also
|
| 43 |
+
--------
|
| 44 |
+
ellip_harm_2, ellip_normal
|
| 45 |
+
|
| 46 |
+
Notes
|
| 47 |
+
-----
|
| 48 |
+
The geometric interpretation of the ellipsoidal functions is
|
| 49 |
+
explained in [2]_, [3]_, [4]_. The `signm` and `signn` arguments control the
|
| 50 |
+
sign of prefactors for functions according to their type::
|
| 51 |
+
|
| 52 |
+
K : +1
|
| 53 |
+
L : signm
|
| 54 |
+
M : signn
|
| 55 |
+
N : signm*signn
|
| 56 |
+
|
| 57 |
+
.. versionadded:: 0.15.0
|
| 58 |
+
|
| 59 |
+
References
|
| 60 |
+
----------
|
| 61 |
+
.. [1] Digital Library of Mathematical Functions 29.12
|
| 62 |
+
https://dlmf.nist.gov/29.12
|
| 63 |
+
.. [2] Bardhan and Knepley, "Computational science and
|
| 64 |
+
re-discovery: open-source implementations of
|
| 65 |
+
ellipsoidal harmonics for problems in potential theory",
|
| 66 |
+
Comput. Sci. Disc. 5, 014006 (2012)
|
| 67 |
+
:doi:`10.1088/1749-4699/5/1/014006`.
|
| 68 |
+
.. [3] David J.and Dechambre P, "Computation of Ellipsoidal
|
| 69 |
+
Gravity Field Harmonics for small solar system bodies"
|
| 70 |
+
pp. 30-36, 2000
|
| 71 |
+
.. [4] George Dassios, "Ellipsoidal Harmonics: Theory and Applications"
|
| 72 |
+
pp. 418, 2012
|
| 73 |
+
|
| 74 |
+
Examples
|
| 75 |
+
--------
|
| 76 |
+
>>> from scipy.special import ellip_harm
|
| 77 |
+
>>> w = ellip_harm(5,8,1,1,2.5)
|
| 78 |
+
>>> w
|
| 79 |
+
2.5
|
| 80 |
+
|
| 81 |
+
Check that the functions indeed are solutions to the Lame equation:
|
| 82 |
+
|
| 83 |
+
>>> import numpy as np
|
| 84 |
+
>>> from scipy.interpolate import UnivariateSpline
|
| 85 |
+
>>> def eigenvalue(f, df, ddf):
|
| 86 |
+
... r = (((s**2 - h**2) * (s**2 - k**2) * ddf
|
| 87 |
+
... + s * (2*s**2 - h**2 - k**2) * df
|
| 88 |
+
... - n * (n + 1)*s**2*f) / f)
|
| 89 |
+
... return -r.mean(), r.std()
|
| 90 |
+
>>> s = np.linspace(0.1, 10, 200)
|
| 91 |
+
>>> k, h, n, p = 8.0, 2.2, 3, 2
|
| 92 |
+
>>> E = ellip_harm(h**2, k**2, n, p, s)
|
| 93 |
+
>>> E_spl = UnivariateSpline(s, E)
|
| 94 |
+
>>> a, a_err = eigenvalue(E_spl(s), E_spl(s,1), E_spl(s,2))
|
| 95 |
+
>>> a, a_err
|
| 96 |
+
(583.44366156701483, 6.4580890640310646e-11)
|
| 97 |
+
|
| 98 |
+
""" # noqa: E501
|
| 99 |
+
return _ellip_harm(h2, k2, n, p, s, signm, signn)
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
_ellip_harm_2_vec = np.vectorize(_ellipsoid, otypes='d')
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def ellip_harm_2(h2, k2, n, p, s):
|
| 106 |
+
r"""
|
| 107 |
+
Ellipsoidal harmonic functions F^p_n(l)
|
| 108 |
+
|
| 109 |
+
These are also known as Lame functions of the second kind, and are
|
| 110 |
+
solutions to the Lame equation:
|
| 111 |
+
|
| 112 |
+
.. math:: (s^2 - h^2)(s^2 - k^2)F''(s)
|
| 113 |
+
+ s(2s^2 - h^2 - k^2)F'(s) + (a - q s^2)F(s) = 0
|
| 114 |
+
|
| 115 |
+
where :math:`q = (n+1)n` and :math:`a` is the eigenvalue (not
|
| 116 |
+
returned) corresponding to the solutions.
|
| 117 |
+
|
| 118 |
+
Parameters
|
| 119 |
+
----------
|
| 120 |
+
h2 : float
|
| 121 |
+
``h**2``
|
| 122 |
+
k2 : float
|
| 123 |
+
``k**2``; should be larger than ``h**2``
|
| 124 |
+
n : int
|
| 125 |
+
Degree.
|
| 126 |
+
p : int
|
| 127 |
+
Order, can range between [1,2n+1].
|
| 128 |
+
s : float
|
| 129 |
+
Coordinate
|
| 130 |
+
|
| 131 |
+
Returns
|
| 132 |
+
-------
|
| 133 |
+
F : float
|
| 134 |
+
The harmonic :math:`F^p_n(s)`
|
| 135 |
+
|
| 136 |
+
See Also
|
| 137 |
+
--------
|
| 138 |
+
ellip_harm, ellip_normal
|
| 139 |
+
|
| 140 |
+
Notes
|
| 141 |
+
-----
|
| 142 |
+
Lame functions of the second kind are related to the functions of the first kind:
|
| 143 |
+
|
| 144 |
+
.. math::
|
| 145 |
+
|
| 146 |
+
F^p_n(s)=(2n + 1)E^p_n(s)\int_{0}^{1/s}
|
| 147 |
+
\frac{du}{(E^p_n(1/u))^2\sqrt{(1-u^2k^2)(1-u^2h^2)}}
|
| 148 |
+
|
| 149 |
+
.. versionadded:: 0.15.0
|
| 150 |
+
|
| 151 |
+
Examples
|
| 152 |
+
--------
|
| 153 |
+
>>> from scipy.special import ellip_harm_2
|
| 154 |
+
>>> w = ellip_harm_2(5,8,2,1,10)
|
| 155 |
+
>>> w
|
| 156 |
+
0.00108056853382
|
| 157 |
+
|
| 158 |
+
"""
|
| 159 |
+
with np.errstate(all='ignore'):
|
| 160 |
+
return _ellip_harm_2_vec(h2, k2, n, p, s)
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
def _ellip_normal_vec(h2, k2, n, p):
|
| 164 |
+
return _ellipsoid_norm(h2, k2, n, p)
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
_ellip_normal_vec = np.vectorize(_ellip_normal_vec, otypes='d')
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
def ellip_normal(h2, k2, n, p):
|
| 171 |
+
r"""
|
| 172 |
+
Ellipsoidal harmonic normalization constants gamma^p_n
|
| 173 |
+
|
| 174 |
+
The normalization constant is defined as
|
| 175 |
+
|
| 176 |
+
.. math::
|
| 177 |
+
|
| 178 |
+
\gamma^p_n=8\int_{0}^{h}dx\int_{h}^{k}dy
|
| 179 |
+
\frac{(y^2-x^2)(E^p_n(y)E^p_n(x))^2}{\sqrt((k^2-y^2)(y^2-h^2)(h^2-x^2)(k^2-x^2)}
|
| 180 |
+
|
| 181 |
+
Parameters
|
| 182 |
+
----------
|
| 183 |
+
h2 : float
|
| 184 |
+
``h**2``
|
| 185 |
+
k2 : float
|
| 186 |
+
``k**2``; should be larger than ``h**2``
|
| 187 |
+
n : int
|
| 188 |
+
Degree.
|
| 189 |
+
p : int
|
| 190 |
+
Order, can range between [1,2n+1].
|
| 191 |
+
|
| 192 |
+
Returns
|
| 193 |
+
-------
|
| 194 |
+
gamma : float
|
| 195 |
+
The normalization constant :math:`\gamma^p_n`
|
| 196 |
+
|
| 197 |
+
See Also
|
| 198 |
+
--------
|
| 199 |
+
ellip_harm, ellip_harm_2
|
| 200 |
+
|
| 201 |
+
Notes
|
| 202 |
+
-----
|
| 203 |
+
.. versionadded:: 0.15.0
|
| 204 |
+
|
| 205 |
+
Examples
|
| 206 |
+
--------
|
| 207 |
+
>>> from scipy.special import ellip_normal
|
| 208 |
+
>>> w = ellip_normal(5,8,3,7)
|
| 209 |
+
>>> w
|
| 210 |
+
1723.38796997
|
| 211 |
+
|
| 212 |
+
"""
|
| 213 |
+
with np.errstate(all='ignore'):
|
| 214 |
+
return _ellip_normal_vec(h2, k2, n, p)
|
openflamingo/lib/python3.10/site-packages/scipy/special/_lambertw.py
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from ._ufuncs import _lambertw
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def lambertw(z, k=0, tol=1e-8):
|
| 7 |
+
r"""
|
| 8 |
+
lambertw(z, k=0, tol=1e-8)
|
| 9 |
+
|
| 10 |
+
Lambert W function.
|
| 11 |
+
|
| 12 |
+
The Lambert W function `W(z)` is defined as the inverse function
|
| 13 |
+
of ``w * exp(w)``. In other words, the value of ``W(z)`` is
|
| 14 |
+
such that ``z = W(z) * exp(W(z))`` for any complex number
|
| 15 |
+
``z``.
|
| 16 |
+
|
| 17 |
+
The Lambert W function is a multivalued function with infinitely
|
| 18 |
+
many branches. Each branch gives a separate solution of the
|
| 19 |
+
equation ``z = w exp(w)``. Here, the branches are indexed by the
|
| 20 |
+
integer `k`.
|
| 21 |
+
|
| 22 |
+
Parameters
|
| 23 |
+
----------
|
| 24 |
+
z : array_like
|
| 25 |
+
Input argument.
|
| 26 |
+
k : int, optional
|
| 27 |
+
Branch index.
|
| 28 |
+
tol : float, optional
|
| 29 |
+
Evaluation tolerance.
|
| 30 |
+
|
| 31 |
+
Returns
|
| 32 |
+
-------
|
| 33 |
+
w : array
|
| 34 |
+
`w` will have the same shape as `z`.
|
| 35 |
+
|
| 36 |
+
See Also
|
| 37 |
+
--------
|
| 38 |
+
wrightomega : the Wright Omega function
|
| 39 |
+
|
| 40 |
+
Notes
|
| 41 |
+
-----
|
| 42 |
+
All branches are supported by `lambertw`:
|
| 43 |
+
|
| 44 |
+
* ``lambertw(z)`` gives the principal solution (branch 0)
|
| 45 |
+
* ``lambertw(z, k)`` gives the solution on branch `k`
|
| 46 |
+
|
| 47 |
+
The Lambert W function has two partially real branches: the
|
| 48 |
+
principal branch (`k = 0`) is real for real ``z > -1/e``, and the
|
| 49 |
+
``k = -1`` branch is real for ``-1/e < z < 0``. All branches except
|
| 50 |
+
``k = 0`` have a logarithmic singularity at ``z = 0``.
|
| 51 |
+
|
| 52 |
+
**Possible issues**
|
| 53 |
+
|
| 54 |
+
The evaluation can become inaccurate very close to the branch point
|
| 55 |
+
at ``-1/e``. In some corner cases, `lambertw` might currently
|
| 56 |
+
fail to converge, or can end up on the wrong branch.
|
| 57 |
+
|
| 58 |
+
**Algorithm**
|
| 59 |
+
|
| 60 |
+
Halley's iteration is used to invert ``w * exp(w)``, using a first-order
|
| 61 |
+
asymptotic approximation (O(log(w)) or `O(w)`) as the initial estimate.
|
| 62 |
+
|
| 63 |
+
The definition, implementation and choice of branches is based on [2]_.
|
| 64 |
+
|
| 65 |
+
References
|
| 66 |
+
----------
|
| 67 |
+
.. [1] https://en.wikipedia.org/wiki/Lambert_W_function
|
| 68 |
+
.. [2] Corless et al, "On the Lambert W function", Adv. Comp. Math. 5
|
| 69 |
+
(1996) 329-359.
|
| 70 |
+
https://cs.uwaterloo.ca/research/tr/1993/03/W.pdf
|
| 71 |
+
|
| 72 |
+
Examples
|
| 73 |
+
--------
|
| 74 |
+
The Lambert W function is the inverse of ``w exp(w)``:
|
| 75 |
+
|
| 76 |
+
>>> import numpy as np
|
| 77 |
+
>>> from scipy.special import lambertw
|
| 78 |
+
>>> w = lambertw(1)
|
| 79 |
+
>>> w
|
| 80 |
+
(0.56714329040978384+0j)
|
| 81 |
+
>>> w * np.exp(w)
|
| 82 |
+
(1.0+0j)
|
| 83 |
+
|
| 84 |
+
Any branch gives a valid inverse:
|
| 85 |
+
|
| 86 |
+
>>> w = lambertw(1, k=3)
|
| 87 |
+
>>> w
|
| 88 |
+
(-2.8535817554090377+17.113535539412148j)
|
| 89 |
+
>>> w*np.exp(w)
|
| 90 |
+
(1.0000000000000002+1.609823385706477e-15j)
|
| 91 |
+
|
| 92 |
+
**Applications to equation-solving**
|
| 93 |
+
|
| 94 |
+
The Lambert W function may be used to solve various kinds of
|
| 95 |
+
equations. We give two examples here.
|
| 96 |
+
|
| 97 |
+
First, the function can be used to solve implicit equations of the
|
| 98 |
+
form
|
| 99 |
+
|
| 100 |
+
:math:`x = a + b e^{c x}`
|
| 101 |
+
|
| 102 |
+
for :math:`x`. We assume :math:`c` is not zero. After a little
|
| 103 |
+
algebra, the equation may be written
|
| 104 |
+
|
| 105 |
+
:math:`z e^z = -b c e^{a c}`
|
| 106 |
+
|
| 107 |
+
where :math:`z = c (a - x)`. :math:`z` may then be expressed using
|
| 108 |
+
the Lambert W function
|
| 109 |
+
|
| 110 |
+
:math:`z = W(-b c e^{a c})`
|
| 111 |
+
|
| 112 |
+
giving
|
| 113 |
+
|
| 114 |
+
:math:`x = a - W(-b c e^{a c})/c`
|
| 115 |
+
|
| 116 |
+
For example,
|
| 117 |
+
|
| 118 |
+
>>> a = 3
|
| 119 |
+
>>> b = 2
|
| 120 |
+
>>> c = -0.5
|
| 121 |
+
|
| 122 |
+
The solution to :math:`x = a + b e^{c x}` is:
|
| 123 |
+
|
| 124 |
+
>>> x = a - lambertw(-b*c*np.exp(a*c))/c
|
| 125 |
+
>>> x
|
| 126 |
+
(3.3707498368978794+0j)
|
| 127 |
+
|
| 128 |
+
Verify that it solves the equation:
|
| 129 |
+
|
| 130 |
+
>>> a + b*np.exp(c*x)
|
| 131 |
+
(3.37074983689788+0j)
|
| 132 |
+
|
| 133 |
+
The Lambert W function may also be used find the value of the infinite
|
| 134 |
+
power tower :math:`z^{z^{z^{\ldots}}}`:
|
| 135 |
+
|
| 136 |
+
>>> def tower(z, n):
|
| 137 |
+
... if n == 0:
|
| 138 |
+
... return z
|
| 139 |
+
... return z ** tower(z, n-1)
|
| 140 |
+
...
|
| 141 |
+
>>> tower(0.5, 100)
|
| 142 |
+
0.641185744504986
|
| 143 |
+
>>> -lambertw(-np.log(0.5)) / np.log(0.5)
|
| 144 |
+
(0.64118574450498589+0j)
|
| 145 |
+
"""
|
| 146 |
+
# TODO: special expert should inspect this
|
| 147 |
+
# interception; better place to do it?
|
| 148 |
+
k = np.asarray(k, dtype=np.dtype("long"))
|
| 149 |
+
return _lambertw(z, k, tol)
|
openflamingo/lib/python3.10/site-packages/scipy/special/_spfun_stats.py
ADDED
|
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Last Change: Sat Mar 21 02:00 PM 2009 J
|
| 2 |
+
|
| 3 |
+
# Copyright (c) 2001, 2002 Enthought, Inc.
|
| 4 |
+
#
|
| 5 |
+
# All rights reserved.
|
| 6 |
+
#
|
| 7 |
+
# Redistribution and use in source and binary forms, with or without
|
| 8 |
+
# modification, are permitted provided that the following conditions are met:
|
| 9 |
+
#
|
| 10 |
+
# a. Redistributions of source code must retain the above copyright notice,
|
| 11 |
+
# this list of conditions and the following disclaimer.
|
| 12 |
+
# b. Redistributions in binary form must reproduce the above copyright
|
| 13 |
+
# notice, this list of conditions and the following disclaimer in the
|
| 14 |
+
# documentation and/or other materials provided with the distribution.
|
| 15 |
+
# c. Neither the name of the Enthought nor the names of its contributors
|
| 16 |
+
# may be used to endorse or promote products derived from this software
|
| 17 |
+
# without specific prior written permission.
|
| 18 |
+
#
|
| 19 |
+
#
|
| 20 |
+
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
| 21 |
+
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
| 22 |
+
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
| 23 |
+
# ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR
|
| 24 |
+
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
| 25 |
+
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
| 26 |
+
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
| 27 |
+
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
| 28 |
+
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
| 29 |
+
# OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
|
| 30 |
+
# DAMAGE.
|
| 31 |
+
|
| 32 |
+
"""Some more special functions which may be useful for multivariate statistical
|
| 33 |
+
analysis."""
|
| 34 |
+
|
| 35 |
+
import numpy as np
|
| 36 |
+
from scipy.special import gammaln as loggam
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
__all__ = ['multigammaln']
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def multigammaln(a, d):
|
| 43 |
+
r"""Returns the log of multivariate gamma, also sometimes called the
|
| 44 |
+
generalized gamma.
|
| 45 |
+
|
| 46 |
+
Parameters
|
| 47 |
+
----------
|
| 48 |
+
a : ndarray
|
| 49 |
+
The multivariate gamma is computed for each item of `a`.
|
| 50 |
+
d : int
|
| 51 |
+
The dimension of the space of integration.
|
| 52 |
+
|
| 53 |
+
Returns
|
| 54 |
+
-------
|
| 55 |
+
res : ndarray
|
| 56 |
+
The values of the log multivariate gamma at the given points `a`.
|
| 57 |
+
|
| 58 |
+
Notes
|
| 59 |
+
-----
|
| 60 |
+
The formal definition of the multivariate gamma of dimension d for a real
|
| 61 |
+
`a` is
|
| 62 |
+
|
| 63 |
+
.. math::
|
| 64 |
+
|
| 65 |
+
\Gamma_d(a) = \int_{A>0} e^{-tr(A)} |A|^{a - (d+1)/2} dA
|
| 66 |
+
|
| 67 |
+
with the condition :math:`a > (d-1)/2`, and :math:`A > 0` being the set of
|
| 68 |
+
all the positive definite matrices of dimension `d`. Note that `a` is a
|
| 69 |
+
scalar: the integrand only is multivariate, the argument is not (the
|
| 70 |
+
function is defined over a subset of the real set).
|
| 71 |
+
|
| 72 |
+
This can be proven to be equal to the much friendlier equation
|
| 73 |
+
|
| 74 |
+
.. math::
|
| 75 |
+
|
| 76 |
+
\Gamma_d(a) = \pi^{d(d-1)/4} \prod_{i=1}^{d} \Gamma(a - (i-1)/2).
|
| 77 |
+
|
| 78 |
+
References
|
| 79 |
+
----------
|
| 80 |
+
R. J. Muirhead, Aspects of multivariate statistical theory (Wiley Series in
|
| 81 |
+
probability and mathematical statistics).
|
| 82 |
+
|
| 83 |
+
Examples
|
| 84 |
+
--------
|
| 85 |
+
>>> import numpy as np
|
| 86 |
+
>>> from scipy.special import multigammaln, gammaln
|
| 87 |
+
>>> a = 23.5
|
| 88 |
+
>>> d = 10
|
| 89 |
+
>>> multigammaln(a, d)
|
| 90 |
+
454.1488605074416
|
| 91 |
+
|
| 92 |
+
Verify that the result agrees with the logarithm of the equation
|
| 93 |
+
shown above:
|
| 94 |
+
|
| 95 |
+
>>> d*(d-1)/4*np.log(np.pi) + gammaln(a - 0.5*np.arange(0, d)).sum()
|
| 96 |
+
454.1488605074416
|
| 97 |
+
"""
|
| 98 |
+
a = np.asarray(a)
|
| 99 |
+
if not np.isscalar(d) or (np.floor(d) != d):
|
| 100 |
+
raise ValueError("d should be a positive integer (dimension)")
|
| 101 |
+
if np.any(a <= 0.5 * (d - 1)):
|
| 102 |
+
raise ValueError(f"condition a ({a:f}) > 0.5 * (d-1) ({0.5 * (d-1):f}) not met")
|
| 103 |
+
|
| 104 |
+
res = (d * (d-1) * 0.25) * np.log(np.pi)
|
| 105 |
+
res += np.sum(loggam([(a - (j - 1.)/2) for j in range(1, d+1)]), axis=0)
|
| 106 |
+
return res
|
openflamingo/lib/python3.10/site-packages/scipy/special/_test_internal.pyi
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
|
| 3 |
+
def have_fenv() -> bool: ...
|
| 4 |
+
def random_double(size: int) -> np.float64: ...
|
| 5 |
+
def test_add_round(size: int, mode: str): ...
|
| 6 |
+
|
| 7 |
+
def _dd_exp(xhi: float, xlo: float) -> tuple[float, float]: ...
|
| 8 |
+
def _dd_log(xhi: float, xlo: float) -> tuple[float, float]: ...
|
| 9 |
+
def _dd_expm1(xhi: float, xlo: float) -> tuple[float, float]: ...
|
openflamingo/lib/python3.10/site-packages/scipy/special/_ufuncs.pyi
ADDED
|
@@ -0,0 +1,526 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# This file is automatically generated by _generate_pyx.py.
|
| 2 |
+
# Do not edit manually!
|
| 3 |
+
|
| 4 |
+
from typing import Any, Dict
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
|
| 8 |
+
__all__ = [
|
| 9 |
+
'geterr',
|
| 10 |
+
'seterr',
|
| 11 |
+
'errstate',
|
| 12 |
+
'agm',
|
| 13 |
+
'airy',
|
| 14 |
+
'airye',
|
| 15 |
+
'bdtr',
|
| 16 |
+
'bdtrc',
|
| 17 |
+
'bdtri',
|
| 18 |
+
'bdtrik',
|
| 19 |
+
'bdtrin',
|
| 20 |
+
'bei',
|
| 21 |
+
'beip',
|
| 22 |
+
'ber',
|
| 23 |
+
'berp',
|
| 24 |
+
'besselpoly',
|
| 25 |
+
'beta',
|
| 26 |
+
'betainc',
|
| 27 |
+
'betaincc',
|
| 28 |
+
'betainccinv',
|
| 29 |
+
'betaincinv',
|
| 30 |
+
'betaln',
|
| 31 |
+
'binom',
|
| 32 |
+
'boxcox',
|
| 33 |
+
'boxcox1p',
|
| 34 |
+
'btdtr',
|
| 35 |
+
'btdtri',
|
| 36 |
+
'btdtria',
|
| 37 |
+
'btdtrib',
|
| 38 |
+
'cbrt',
|
| 39 |
+
'chdtr',
|
| 40 |
+
'chdtrc',
|
| 41 |
+
'chdtri',
|
| 42 |
+
'chdtriv',
|
| 43 |
+
'chndtr',
|
| 44 |
+
'chndtridf',
|
| 45 |
+
'chndtrinc',
|
| 46 |
+
'chndtrix',
|
| 47 |
+
'cosdg',
|
| 48 |
+
'cosm1',
|
| 49 |
+
'cotdg',
|
| 50 |
+
'dawsn',
|
| 51 |
+
'ellipe',
|
| 52 |
+
'ellipeinc',
|
| 53 |
+
'ellipj',
|
| 54 |
+
'ellipk',
|
| 55 |
+
'ellipkinc',
|
| 56 |
+
'ellipkm1',
|
| 57 |
+
'elliprc',
|
| 58 |
+
'elliprd',
|
| 59 |
+
'elliprf',
|
| 60 |
+
'elliprg',
|
| 61 |
+
'elliprj',
|
| 62 |
+
'entr',
|
| 63 |
+
'erf',
|
| 64 |
+
'erfc',
|
| 65 |
+
'erfcinv',
|
| 66 |
+
'erfcx',
|
| 67 |
+
'erfi',
|
| 68 |
+
'erfinv',
|
| 69 |
+
'eval_chebyc',
|
| 70 |
+
'eval_chebys',
|
| 71 |
+
'eval_chebyt',
|
| 72 |
+
'eval_chebyu',
|
| 73 |
+
'eval_gegenbauer',
|
| 74 |
+
'eval_genlaguerre',
|
| 75 |
+
'eval_hermite',
|
| 76 |
+
'eval_hermitenorm',
|
| 77 |
+
'eval_jacobi',
|
| 78 |
+
'eval_laguerre',
|
| 79 |
+
'eval_legendre',
|
| 80 |
+
'eval_sh_chebyt',
|
| 81 |
+
'eval_sh_chebyu',
|
| 82 |
+
'eval_sh_jacobi',
|
| 83 |
+
'eval_sh_legendre',
|
| 84 |
+
'exp1',
|
| 85 |
+
'exp10',
|
| 86 |
+
'exp2',
|
| 87 |
+
'expi',
|
| 88 |
+
'expit',
|
| 89 |
+
'expm1',
|
| 90 |
+
'expn',
|
| 91 |
+
'exprel',
|
| 92 |
+
'fdtr',
|
| 93 |
+
'fdtrc',
|
| 94 |
+
'fdtri',
|
| 95 |
+
'fdtridfd',
|
| 96 |
+
'fresnel',
|
| 97 |
+
'gamma',
|
| 98 |
+
'gammainc',
|
| 99 |
+
'gammaincc',
|
| 100 |
+
'gammainccinv',
|
| 101 |
+
'gammaincinv',
|
| 102 |
+
'gammaln',
|
| 103 |
+
'gammasgn',
|
| 104 |
+
'gdtr',
|
| 105 |
+
'gdtrc',
|
| 106 |
+
'gdtria',
|
| 107 |
+
'gdtrib',
|
| 108 |
+
'gdtrix',
|
| 109 |
+
'hankel1',
|
| 110 |
+
'hankel1e',
|
| 111 |
+
'hankel2',
|
| 112 |
+
'hankel2e',
|
| 113 |
+
'huber',
|
| 114 |
+
'hyp0f1',
|
| 115 |
+
'hyp1f1',
|
| 116 |
+
'hyp2f1',
|
| 117 |
+
'hyperu',
|
| 118 |
+
'i0',
|
| 119 |
+
'i0e',
|
| 120 |
+
'i1',
|
| 121 |
+
'i1e',
|
| 122 |
+
'inv_boxcox',
|
| 123 |
+
'inv_boxcox1p',
|
| 124 |
+
'it2i0k0',
|
| 125 |
+
'it2j0y0',
|
| 126 |
+
'it2struve0',
|
| 127 |
+
'itairy',
|
| 128 |
+
'iti0k0',
|
| 129 |
+
'itj0y0',
|
| 130 |
+
'itmodstruve0',
|
| 131 |
+
'itstruve0',
|
| 132 |
+
'iv',
|
| 133 |
+
'ive',
|
| 134 |
+
'j0',
|
| 135 |
+
'j1',
|
| 136 |
+
'jn',
|
| 137 |
+
'jv',
|
| 138 |
+
'jve',
|
| 139 |
+
'k0',
|
| 140 |
+
'k0e',
|
| 141 |
+
'k1',
|
| 142 |
+
'k1e',
|
| 143 |
+
'kei',
|
| 144 |
+
'keip',
|
| 145 |
+
'kelvin',
|
| 146 |
+
'ker',
|
| 147 |
+
'kerp',
|
| 148 |
+
'kl_div',
|
| 149 |
+
'kn',
|
| 150 |
+
'kolmogi',
|
| 151 |
+
'kolmogorov',
|
| 152 |
+
'kv',
|
| 153 |
+
'kve',
|
| 154 |
+
'log1p',
|
| 155 |
+
'log_expit',
|
| 156 |
+
'log_ndtr',
|
| 157 |
+
'loggamma',
|
| 158 |
+
'logit',
|
| 159 |
+
'lpmv',
|
| 160 |
+
'mathieu_a',
|
| 161 |
+
'mathieu_b',
|
| 162 |
+
'mathieu_cem',
|
| 163 |
+
'mathieu_modcem1',
|
| 164 |
+
'mathieu_modcem2',
|
| 165 |
+
'mathieu_modsem1',
|
| 166 |
+
'mathieu_modsem2',
|
| 167 |
+
'mathieu_sem',
|
| 168 |
+
'modfresnelm',
|
| 169 |
+
'modfresnelp',
|
| 170 |
+
'modstruve',
|
| 171 |
+
'nbdtr',
|
| 172 |
+
'nbdtrc',
|
| 173 |
+
'nbdtri',
|
| 174 |
+
'nbdtrik',
|
| 175 |
+
'nbdtrin',
|
| 176 |
+
'ncfdtr',
|
| 177 |
+
'ncfdtri',
|
| 178 |
+
'ncfdtridfd',
|
| 179 |
+
'ncfdtridfn',
|
| 180 |
+
'ncfdtrinc',
|
| 181 |
+
'nctdtr',
|
| 182 |
+
'nctdtridf',
|
| 183 |
+
'nctdtrinc',
|
| 184 |
+
'nctdtrit',
|
| 185 |
+
'ndtr',
|
| 186 |
+
'ndtri',
|
| 187 |
+
'ndtri_exp',
|
| 188 |
+
'nrdtrimn',
|
| 189 |
+
'nrdtrisd',
|
| 190 |
+
'obl_ang1',
|
| 191 |
+
'obl_ang1_cv',
|
| 192 |
+
'obl_cv',
|
| 193 |
+
'obl_rad1',
|
| 194 |
+
'obl_rad1_cv',
|
| 195 |
+
'obl_rad2',
|
| 196 |
+
'obl_rad2_cv',
|
| 197 |
+
'owens_t',
|
| 198 |
+
'pbdv',
|
| 199 |
+
'pbvv',
|
| 200 |
+
'pbwa',
|
| 201 |
+
'pdtr',
|
| 202 |
+
'pdtrc',
|
| 203 |
+
'pdtri',
|
| 204 |
+
'pdtrik',
|
| 205 |
+
'poch',
|
| 206 |
+
'powm1',
|
| 207 |
+
'pro_ang1',
|
| 208 |
+
'pro_ang1_cv',
|
| 209 |
+
'pro_cv',
|
| 210 |
+
'pro_rad1',
|
| 211 |
+
'pro_rad1_cv',
|
| 212 |
+
'pro_rad2',
|
| 213 |
+
'pro_rad2_cv',
|
| 214 |
+
'pseudo_huber',
|
| 215 |
+
'psi',
|
| 216 |
+
'radian',
|
| 217 |
+
'rel_entr',
|
| 218 |
+
'rgamma',
|
| 219 |
+
'round',
|
| 220 |
+
'shichi',
|
| 221 |
+
'sici',
|
| 222 |
+
'sindg',
|
| 223 |
+
'smirnov',
|
| 224 |
+
'smirnovi',
|
| 225 |
+
'spence',
|
| 226 |
+
'sph_harm',
|
| 227 |
+
'stdtr',
|
| 228 |
+
'stdtridf',
|
| 229 |
+
'stdtrit',
|
| 230 |
+
'struve',
|
| 231 |
+
'tandg',
|
| 232 |
+
'tklmbda',
|
| 233 |
+
'voigt_profile',
|
| 234 |
+
'wofz',
|
| 235 |
+
'wright_bessel',
|
| 236 |
+
'wrightomega',
|
| 237 |
+
'xlog1py',
|
| 238 |
+
'xlogy',
|
| 239 |
+
'y0',
|
| 240 |
+
'y1',
|
| 241 |
+
'yn',
|
| 242 |
+
'yv',
|
| 243 |
+
'yve',
|
| 244 |
+
'zetac'
|
| 245 |
+
]
|
| 246 |
+
|
| 247 |
+
def geterr() -> Dict[str, str]: ...
|
| 248 |
+
def seterr(**kwargs: str) -> Dict[str, str]: ...
|
| 249 |
+
|
| 250 |
+
class errstate:
|
| 251 |
+
def __init__(self, **kargs: str) -> None: ...
|
| 252 |
+
def __enter__(self) -> None: ...
|
| 253 |
+
def __exit__(
|
| 254 |
+
self,
|
| 255 |
+
exc_type: Any, # Unused
|
| 256 |
+
exc_value: Any, # Unused
|
| 257 |
+
traceback: Any, # Unused
|
| 258 |
+
) -> None: ...
|
| 259 |
+
|
| 260 |
+
_cosine_cdf: np.ufunc
|
| 261 |
+
_cosine_invcdf: np.ufunc
|
| 262 |
+
_cospi: np.ufunc
|
| 263 |
+
_ellip_harm: np.ufunc
|
| 264 |
+
_factorial: np.ufunc
|
| 265 |
+
_igam_fac: np.ufunc
|
| 266 |
+
_kolmogc: np.ufunc
|
| 267 |
+
_kolmogci: np.ufunc
|
| 268 |
+
_kolmogp: np.ufunc
|
| 269 |
+
_lambertw: np.ufunc
|
| 270 |
+
_lanczos_sum_expg_scaled: np.ufunc
|
| 271 |
+
_lgam1p: np.ufunc
|
| 272 |
+
_log1pmx: np.ufunc
|
| 273 |
+
_riemann_zeta: np.ufunc
|
| 274 |
+
_scaled_exp1: np.ufunc
|
| 275 |
+
_sf_error_test_function: np.ufunc
|
| 276 |
+
_sinpi: np.ufunc
|
| 277 |
+
_smirnovc: np.ufunc
|
| 278 |
+
_smirnovci: np.ufunc
|
| 279 |
+
_smirnovp: np.ufunc
|
| 280 |
+
_spherical_in: np.ufunc
|
| 281 |
+
_spherical_in_d: np.ufunc
|
| 282 |
+
_spherical_jn: np.ufunc
|
| 283 |
+
_spherical_jn_d: np.ufunc
|
| 284 |
+
_spherical_kn: np.ufunc
|
| 285 |
+
_spherical_kn_d: np.ufunc
|
| 286 |
+
_spherical_yn: np.ufunc
|
| 287 |
+
_spherical_yn_d: np.ufunc
|
| 288 |
+
_stirling2_inexact: np.ufunc
|
| 289 |
+
_struve_asymp_large_z: np.ufunc
|
| 290 |
+
_struve_bessel_series: np.ufunc
|
| 291 |
+
_struve_power_series: np.ufunc
|
| 292 |
+
_zeta: np.ufunc
|
| 293 |
+
agm: np.ufunc
|
| 294 |
+
airy: np.ufunc
|
| 295 |
+
airye: np.ufunc
|
| 296 |
+
bdtr: np.ufunc
|
| 297 |
+
bdtrc: np.ufunc
|
| 298 |
+
bdtri: np.ufunc
|
| 299 |
+
bdtrik: np.ufunc
|
| 300 |
+
bdtrin: np.ufunc
|
| 301 |
+
bei: np.ufunc
|
| 302 |
+
beip: np.ufunc
|
| 303 |
+
ber: np.ufunc
|
| 304 |
+
berp: np.ufunc
|
| 305 |
+
besselpoly: np.ufunc
|
| 306 |
+
beta: np.ufunc
|
| 307 |
+
betainc: np.ufunc
|
| 308 |
+
betaincc: np.ufunc
|
| 309 |
+
betainccinv: np.ufunc
|
| 310 |
+
betaincinv: np.ufunc
|
| 311 |
+
betaln: np.ufunc
|
| 312 |
+
binom: np.ufunc
|
| 313 |
+
boxcox1p: np.ufunc
|
| 314 |
+
boxcox: np.ufunc
|
| 315 |
+
btdtr: np.ufunc
|
| 316 |
+
btdtri: np.ufunc
|
| 317 |
+
btdtria: np.ufunc
|
| 318 |
+
btdtrib: np.ufunc
|
| 319 |
+
cbrt: np.ufunc
|
| 320 |
+
chdtr: np.ufunc
|
| 321 |
+
chdtrc: np.ufunc
|
| 322 |
+
chdtri: np.ufunc
|
| 323 |
+
chdtriv: np.ufunc
|
| 324 |
+
chndtr: np.ufunc
|
| 325 |
+
chndtridf: np.ufunc
|
| 326 |
+
chndtrinc: np.ufunc
|
| 327 |
+
chndtrix: np.ufunc
|
| 328 |
+
cosdg: np.ufunc
|
| 329 |
+
cosm1: np.ufunc
|
| 330 |
+
cotdg: np.ufunc
|
| 331 |
+
dawsn: np.ufunc
|
| 332 |
+
ellipe: np.ufunc
|
| 333 |
+
ellipeinc: np.ufunc
|
| 334 |
+
ellipj: np.ufunc
|
| 335 |
+
ellipk: np.ufunc
|
| 336 |
+
ellipkinc: np.ufunc
|
| 337 |
+
ellipkm1: np.ufunc
|
| 338 |
+
elliprc: np.ufunc
|
| 339 |
+
elliprd: np.ufunc
|
| 340 |
+
elliprf: np.ufunc
|
| 341 |
+
elliprg: np.ufunc
|
| 342 |
+
elliprj: np.ufunc
|
| 343 |
+
entr: np.ufunc
|
| 344 |
+
erf: np.ufunc
|
| 345 |
+
erfc: np.ufunc
|
| 346 |
+
erfcinv: np.ufunc
|
| 347 |
+
erfcx: np.ufunc
|
| 348 |
+
erfi: np.ufunc
|
| 349 |
+
erfinv: np.ufunc
|
| 350 |
+
eval_chebyc: np.ufunc
|
| 351 |
+
eval_chebys: np.ufunc
|
| 352 |
+
eval_chebyt: np.ufunc
|
| 353 |
+
eval_chebyu: np.ufunc
|
| 354 |
+
eval_gegenbauer: np.ufunc
|
| 355 |
+
eval_genlaguerre: np.ufunc
|
| 356 |
+
eval_hermite: np.ufunc
|
| 357 |
+
eval_hermitenorm: np.ufunc
|
| 358 |
+
eval_jacobi: np.ufunc
|
| 359 |
+
eval_laguerre: np.ufunc
|
| 360 |
+
eval_legendre: np.ufunc
|
| 361 |
+
eval_sh_chebyt: np.ufunc
|
| 362 |
+
eval_sh_chebyu: np.ufunc
|
| 363 |
+
eval_sh_jacobi: np.ufunc
|
| 364 |
+
eval_sh_legendre: np.ufunc
|
| 365 |
+
exp10: np.ufunc
|
| 366 |
+
exp1: np.ufunc
|
| 367 |
+
exp2: np.ufunc
|
| 368 |
+
expi: np.ufunc
|
| 369 |
+
expit: np.ufunc
|
| 370 |
+
expm1: np.ufunc
|
| 371 |
+
expn: np.ufunc
|
| 372 |
+
exprel: np.ufunc
|
| 373 |
+
fdtr: np.ufunc
|
| 374 |
+
fdtrc: np.ufunc
|
| 375 |
+
fdtri: np.ufunc
|
| 376 |
+
fdtridfd: np.ufunc
|
| 377 |
+
fresnel: np.ufunc
|
| 378 |
+
gamma: np.ufunc
|
| 379 |
+
gammainc: np.ufunc
|
| 380 |
+
gammaincc: np.ufunc
|
| 381 |
+
gammainccinv: np.ufunc
|
| 382 |
+
gammaincinv: np.ufunc
|
| 383 |
+
gammaln: np.ufunc
|
| 384 |
+
gammasgn: np.ufunc
|
| 385 |
+
gdtr: np.ufunc
|
| 386 |
+
gdtrc: np.ufunc
|
| 387 |
+
gdtria: np.ufunc
|
| 388 |
+
gdtrib: np.ufunc
|
| 389 |
+
gdtrix: np.ufunc
|
| 390 |
+
hankel1: np.ufunc
|
| 391 |
+
hankel1e: np.ufunc
|
| 392 |
+
hankel2: np.ufunc
|
| 393 |
+
hankel2e: np.ufunc
|
| 394 |
+
huber: np.ufunc
|
| 395 |
+
hyp0f1: np.ufunc
|
| 396 |
+
hyp1f1: np.ufunc
|
| 397 |
+
hyp2f1: np.ufunc
|
| 398 |
+
hyperu: np.ufunc
|
| 399 |
+
i0: np.ufunc
|
| 400 |
+
i0e: np.ufunc
|
| 401 |
+
i1: np.ufunc
|
| 402 |
+
i1e: np.ufunc
|
| 403 |
+
inv_boxcox1p: np.ufunc
|
| 404 |
+
inv_boxcox: np.ufunc
|
| 405 |
+
it2i0k0: np.ufunc
|
| 406 |
+
it2j0y0: np.ufunc
|
| 407 |
+
it2struve0: np.ufunc
|
| 408 |
+
itairy: np.ufunc
|
| 409 |
+
iti0k0: np.ufunc
|
| 410 |
+
itj0y0: np.ufunc
|
| 411 |
+
itmodstruve0: np.ufunc
|
| 412 |
+
itstruve0: np.ufunc
|
| 413 |
+
iv: np.ufunc
|
| 414 |
+
ive: np.ufunc
|
| 415 |
+
j0: np.ufunc
|
| 416 |
+
j1: np.ufunc
|
| 417 |
+
jn: np.ufunc
|
| 418 |
+
jv: np.ufunc
|
| 419 |
+
jve: np.ufunc
|
| 420 |
+
k0: np.ufunc
|
| 421 |
+
k0e: np.ufunc
|
| 422 |
+
k1: np.ufunc
|
| 423 |
+
k1e: np.ufunc
|
| 424 |
+
kei: np.ufunc
|
| 425 |
+
keip: np.ufunc
|
| 426 |
+
kelvin: np.ufunc
|
| 427 |
+
ker: np.ufunc
|
| 428 |
+
kerp: np.ufunc
|
| 429 |
+
kl_div: np.ufunc
|
| 430 |
+
kn: np.ufunc
|
| 431 |
+
kolmogi: np.ufunc
|
| 432 |
+
kolmogorov: np.ufunc
|
| 433 |
+
kv: np.ufunc
|
| 434 |
+
kve: np.ufunc
|
| 435 |
+
log1p: np.ufunc
|
| 436 |
+
log_expit: np.ufunc
|
| 437 |
+
log_ndtr: np.ufunc
|
| 438 |
+
loggamma: np.ufunc
|
| 439 |
+
logit: np.ufunc
|
| 440 |
+
lpmv: np.ufunc
|
| 441 |
+
mathieu_a: np.ufunc
|
| 442 |
+
mathieu_b: np.ufunc
|
| 443 |
+
mathieu_cem: np.ufunc
|
| 444 |
+
mathieu_modcem1: np.ufunc
|
| 445 |
+
mathieu_modcem2: np.ufunc
|
| 446 |
+
mathieu_modsem1: np.ufunc
|
| 447 |
+
mathieu_modsem2: np.ufunc
|
| 448 |
+
mathieu_sem: np.ufunc
|
| 449 |
+
modfresnelm: np.ufunc
|
| 450 |
+
modfresnelp: np.ufunc
|
| 451 |
+
modstruve: np.ufunc
|
| 452 |
+
nbdtr: np.ufunc
|
| 453 |
+
nbdtrc: np.ufunc
|
| 454 |
+
nbdtri: np.ufunc
|
| 455 |
+
nbdtrik: np.ufunc
|
| 456 |
+
nbdtrin: np.ufunc
|
| 457 |
+
ncfdtr: np.ufunc
|
| 458 |
+
ncfdtri: np.ufunc
|
| 459 |
+
ncfdtridfd: np.ufunc
|
| 460 |
+
ncfdtridfn: np.ufunc
|
| 461 |
+
ncfdtrinc: np.ufunc
|
| 462 |
+
nctdtr: np.ufunc
|
| 463 |
+
nctdtridf: np.ufunc
|
| 464 |
+
nctdtrinc: np.ufunc
|
| 465 |
+
nctdtrit: np.ufunc
|
| 466 |
+
ndtr: np.ufunc
|
| 467 |
+
ndtri: np.ufunc
|
| 468 |
+
ndtri_exp: np.ufunc
|
| 469 |
+
nrdtrimn: np.ufunc
|
| 470 |
+
nrdtrisd: np.ufunc
|
| 471 |
+
obl_ang1: np.ufunc
|
| 472 |
+
obl_ang1_cv: np.ufunc
|
| 473 |
+
obl_cv: np.ufunc
|
| 474 |
+
obl_rad1: np.ufunc
|
| 475 |
+
obl_rad1_cv: np.ufunc
|
| 476 |
+
obl_rad2: np.ufunc
|
| 477 |
+
obl_rad2_cv: np.ufunc
|
| 478 |
+
owens_t: np.ufunc
|
| 479 |
+
pbdv: np.ufunc
|
| 480 |
+
pbvv: np.ufunc
|
| 481 |
+
pbwa: np.ufunc
|
| 482 |
+
pdtr: np.ufunc
|
| 483 |
+
pdtrc: np.ufunc
|
| 484 |
+
pdtri: np.ufunc
|
| 485 |
+
pdtrik: np.ufunc
|
| 486 |
+
poch: np.ufunc
|
| 487 |
+
powm1: np.ufunc
|
| 488 |
+
pro_ang1: np.ufunc
|
| 489 |
+
pro_ang1_cv: np.ufunc
|
| 490 |
+
pro_cv: np.ufunc
|
| 491 |
+
pro_rad1: np.ufunc
|
| 492 |
+
pro_rad1_cv: np.ufunc
|
| 493 |
+
pro_rad2: np.ufunc
|
| 494 |
+
pro_rad2_cv: np.ufunc
|
| 495 |
+
pseudo_huber: np.ufunc
|
| 496 |
+
psi: np.ufunc
|
| 497 |
+
radian: np.ufunc
|
| 498 |
+
rel_entr: np.ufunc
|
| 499 |
+
rgamma: np.ufunc
|
| 500 |
+
round: np.ufunc
|
| 501 |
+
shichi: np.ufunc
|
| 502 |
+
sici: np.ufunc
|
| 503 |
+
sindg: np.ufunc
|
| 504 |
+
smirnov: np.ufunc
|
| 505 |
+
smirnovi: np.ufunc
|
| 506 |
+
spence: np.ufunc
|
| 507 |
+
sph_harm: np.ufunc
|
| 508 |
+
stdtr: np.ufunc
|
| 509 |
+
stdtridf: np.ufunc
|
| 510 |
+
stdtrit: np.ufunc
|
| 511 |
+
struve: np.ufunc
|
| 512 |
+
tandg: np.ufunc
|
| 513 |
+
tklmbda: np.ufunc
|
| 514 |
+
voigt_profile: np.ufunc
|
| 515 |
+
wofz: np.ufunc
|
| 516 |
+
wright_bessel: np.ufunc
|
| 517 |
+
wrightomega: np.ufunc
|
| 518 |
+
xlog1py: np.ufunc
|
| 519 |
+
xlogy: np.ufunc
|
| 520 |
+
y0: np.ufunc
|
| 521 |
+
y1: np.ufunc
|
| 522 |
+
yn: np.ufunc
|
| 523 |
+
yv: np.ufunc
|
| 524 |
+
yve: np.ufunc
|
| 525 |
+
zetac: np.ufunc
|
| 526 |
+
|
openflamingo/lib/python3.10/site-packages/scipy/special/_ufuncs_cxx.pyx
ADDED
|
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# This file is automatically generated by _generate_pyx.py.
|
| 2 |
+
# Do not edit manually!
|
| 3 |
+
|
| 4 |
+
from libc.math cimport NAN
|
| 5 |
+
|
| 6 |
+
include "_ufuncs_extra_code_common.pxi"
|
| 7 |
+
|
| 8 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 9 |
+
cdef double complex _func_ccospi "ccospi"(double complex) noexcept nogil
|
| 10 |
+
cdef void *_export_ccospi = <void*>_func_ccospi
|
| 11 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 12 |
+
cdef double complex _func_lambertw_scalar "lambertw_scalar"(double complex, long, double) noexcept nogil
|
| 13 |
+
cdef void *_export_lambertw_scalar = <void*>_func_lambertw_scalar
|
| 14 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 15 |
+
cdef double complex _func_csinpi "csinpi"(double complex) noexcept nogil
|
| 16 |
+
cdef void *_export_csinpi = <void*>_func_csinpi
|
| 17 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 18 |
+
cdef double _func__stirling2_inexact "_stirling2_inexact"(double, double) noexcept nogil
|
| 19 |
+
cdef void *_export__stirling2_inexact = <void*>_func__stirling2_inexact
|
| 20 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 21 |
+
cdef float _func_ibeta_float "ibeta_float"(float, float, float) noexcept nogil
|
| 22 |
+
cdef void *_export_ibeta_float = <void*>_func_ibeta_float
|
| 23 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 24 |
+
cdef double _func_ibeta_double "ibeta_double"(double, double, double) noexcept nogil
|
| 25 |
+
cdef void *_export_ibeta_double = <void*>_func_ibeta_double
|
| 26 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 27 |
+
cdef float _func_ibetac_float "ibetac_float"(float, float, float) noexcept nogil
|
| 28 |
+
cdef void *_export_ibetac_float = <void*>_func_ibetac_float
|
| 29 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 30 |
+
cdef double _func_ibetac_double "ibetac_double"(double, double, double) noexcept nogil
|
| 31 |
+
cdef void *_export_ibetac_double = <void*>_func_ibetac_double
|
| 32 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 33 |
+
cdef float _func_ibetac_inv_float "ibetac_inv_float"(float, float, float) noexcept nogil
|
| 34 |
+
cdef void *_export_ibetac_inv_float = <void*>_func_ibetac_inv_float
|
| 35 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 36 |
+
cdef double _func_ibetac_inv_double "ibetac_inv_double"(double, double, double) noexcept nogil
|
| 37 |
+
cdef void *_export_ibetac_inv_double = <void*>_func_ibetac_inv_double
|
| 38 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 39 |
+
cdef float _func_ibeta_inv_float "ibeta_inv_float"(float, float, float) noexcept nogil
|
| 40 |
+
cdef void *_export_ibeta_inv_float = <void*>_func_ibeta_inv_float
|
| 41 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 42 |
+
cdef double _func_ibeta_inv_double "ibeta_inv_double"(double, double, double) noexcept nogil
|
| 43 |
+
cdef void *_export_ibeta_inv_double = <void*>_func_ibeta_inv_double
|
| 44 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 45 |
+
cdef double _func_binom "binom"(double, double) noexcept nogil
|
| 46 |
+
cdef void *_export_binom = <void*>_func_binom
|
| 47 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 48 |
+
cdef double _func_faddeeva_dawsn "faddeeva_dawsn"(double) noexcept nogil
|
| 49 |
+
cdef void *_export_faddeeva_dawsn = <void*>_func_faddeeva_dawsn
|
| 50 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 51 |
+
cdef double complex _func_faddeeva_dawsn_complex "faddeeva_dawsn_complex"(double complex) noexcept nogil
|
| 52 |
+
cdef void *_export_faddeeva_dawsn_complex = <void*>_func_faddeeva_dawsn_complex
|
| 53 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 54 |
+
cdef double _func_fellint_RC "fellint_RC"(double, double) noexcept nogil
|
| 55 |
+
cdef void *_export_fellint_RC = <void*>_func_fellint_RC
|
| 56 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 57 |
+
cdef double complex _func_cellint_RC "cellint_RC"(double complex, double complex) noexcept nogil
|
| 58 |
+
cdef void *_export_cellint_RC = <void*>_func_cellint_RC
|
| 59 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 60 |
+
cdef double _func_fellint_RD "fellint_RD"(double, double, double) noexcept nogil
|
| 61 |
+
cdef void *_export_fellint_RD = <void*>_func_fellint_RD
|
| 62 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 63 |
+
cdef double complex _func_cellint_RD "cellint_RD"(double complex, double complex, double complex) noexcept nogil
|
| 64 |
+
cdef void *_export_cellint_RD = <void*>_func_cellint_RD
|
| 65 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 66 |
+
cdef double _func_fellint_RF "fellint_RF"(double, double, double) noexcept nogil
|
| 67 |
+
cdef void *_export_fellint_RF = <void*>_func_fellint_RF
|
| 68 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 69 |
+
cdef double complex _func_cellint_RF "cellint_RF"(double complex, double complex, double complex) noexcept nogil
|
| 70 |
+
cdef void *_export_cellint_RF = <void*>_func_cellint_RF
|
| 71 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 72 |
+
cdef double _func_fellint_RG "fellint_RG"(double, double, double) noexcept nogil
|
| 73 |
+
cdef void *_export_fellint_RG = <void*>_func_fellint_RG
|
| 74 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 75 |
+
cdef double complex _func_cellint_RG "cellint_RG"(double complex, double complex, double complex) noexcept nogil
|
| 76 |
+
cdef void *_export_cellint_RG = <void*>_func_cellint_RG
|
| 77 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 78 |
+
cdef double _func_fellint_RJ "fellint_RJ"(double, double, double, double) noexcept nogil
|
| 79 |
+
cdef void *_export_fellint_RJ = <void*>_func_fellint_RJ
|
| 80 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 81 |
+
cdef double complex _func_cellint_RJ "cellint_RJ"(double complex, double complex, double complex, double complex) noexcept nogil
|
| 82 |
+
cdef void *_export_cellint_RJ = <void*>_func_cellint_RJ
|
| 83 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 84 |
+
cdef double complex _func_faddeeva_erf "faddeeva_erf"(double complex) noexcept nogil
|
| 85 |
+
cdef void *_export_faddeeva_erf = <void*>_func_faddeeva_erf
|
| 86 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 87 |
+
cdef double complex _func_faddeeva_erfc_complex "faddeeva_erfc_complex"(double complex) noexcept nogil
|
| 88 |
+
cdef void *_export_faddeeva_erfc_complex = <void*>_func_faddeeva_erfc_complex
|
| 89 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 90 |
+
cdef double _func_faddeeva_erfcx "faddeeva_erfcx"(double) noexcept nogil
|
| 91 |
+
cdef void *_export_faddeeva_erfcx = <void*>_func_faddeeva_erfcx
|
| 92 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 93 |
+
cdef double complex _func_faddeeva_erfcx_complex "faddeeva_erfcx_complex"(double complex) noexcept nogil
|
| 94 |
+
cdef void *_export_faddeeva_erfcx_complex = <void*>_func_faddeeva_erfcx_complex
|
| 95 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 96 |
+
cdef double _func_faddeeva_erfi "faddeeva_erfi"(double) noexcept nogil
|
| 97 |
+
cdef void *_export_faddeeva_erfi = <void*>_func_faddeeva_erfi
|
| 98 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 99 |
+
cdef double complex _func_faddeeva_erfi_complex "faddeeva_erfi_complex"(double complex) noexcept nogil
|
| 100 |
+
cdef void *_export_faddeeva_erfi_complex = <void*>_func_faddeeva_erfi_complex
|
| 101 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 102 |
+
cdef float _func_erfinv_float "erfinv_float"(float) noexcept nogil
|
| 103 |
+
cdef void *_export_erfinv_float = <void*>_func_erfinv_float
|
| 104 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 105 |
+
cdef double _func_erfinv_double "erfinv_double"(double) noexcept nogil
|
| 106 |
+
cdef void *_export_erfinv_double = <void*>_func_erfinv_double
|
| 107 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 108 |
+
cdef double _func_expit "expit"(double) noexcept nogil
|
| 109 |
+
cdef void *_export_expit = <void*>_func_expit
|
| 110 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 111 |
+
cdef float _func_expitf "expitf"(float) noexcept nogil
|
| 112 |
+
cdef void *_export_expitf = <void*>_func_expitf
|
| 113 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 114 |
+
cdef long double _func_expitl "expitl"(long double) noexcept nogil
|
| 115 |
+
cdef void *_export_expitl = <void*>_func_expitl
|
| 116 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 117 |
+
cdef double complex _func_cgamma "cgamma"(double complex) noexcept nogil
|
| 118 |
+
cdef void *_export_cgamma = <void*>_func_cgamma
|
| 119 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 120 |
+
cdef double _func_hyp1f1_double "hyp1f1_double"(double, double, double) noexcept nogil
|
| 121 |
+
cdef void *_export_hyp1f1_double = <void*>_func_hyp1f1_double
|
| 122 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 123 |
+
cdef double _func_log_expit "log_expit"(double) noexcept nogil
|
| 124 |
+
cdef void *_export_log_expit = <void*>_func_log_expit
|
| 125 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 126 |
+
cdef float _func_log_expitf "log_expitf"(float) noexcept nogil
|
| 127 |
+
cdef void *_export_log_expitf = <void*>_func_log_expitf
|
| 128 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 129 |
+
cdef long double _func_log_expitl "log_expitl"(long double) noexcept nogil
|
| 130 |
+
cdef void *_export_log_expitl = <void*>_func_log_expitl
|
| 131 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 132 |
+
cdef double _func_faddeeva_log_ndtr "faddeeva_log_ndtr"(double) noexcept nogil
|
| 133 |
+
cdef void *_export_faddeeva_log_ndtr = <void*>_func_faddeeva_log_ndtr
|
| 134 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 135 |
+
cdef double complex _func_faddeeva_log_ndtr_complex "faddeeva_log_ndtr_complex"(double complex) noexcept nogil
|
| 136 |
+
cdef void *_export_faddeeva_log_ndtr_complex = <void*>_func_faddeeva_log_ndtr_complex
|
| 137 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 138 |
+
cdef double _func_loggamma_real "loggamma_real"(double) noexcept nogil
|
| 139 |
+
cdef void *_export_loggamma_real = <void*>_func_loggamma_real
|
| 140 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 141 |
+
cdef double complex _func_loggamma "loggamma"(double complex) noexcept nogil
|
| 142 |
+
cdef void *_export_loggamma = <void*>_func_loggamma
|
| 143 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 144 |
+
cdef double _func_logit "logit"(double) noexcept nogil
|
| 145 |
+
cdef void *_export_logit = <void*>_func_logit
|
| 146 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 147 |
+
cdef float _func_logitf "logitf"(float) noexcept nogil
|
| 148 |
+
cdef void *_export_logitf = <void*>_func_logitf
|
| 149 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 150 |
+
cdef long double _func_logitl "logitl"(long double) noexcept nogil
|
| 151 |
+
cdef void *_export_logitl = <void*>_func_logitl
|
| 152 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 153 |
+
cdef double complex _func_faddeeva_ndtr "faddeeva_ndtr"(double complex) noexcept nogil
|
| 154 |
+
cdef void *_export_faddeeva_ndtr = <void*>_func_faddeeva_ndtr
|
| 155 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 156 |
+
cdef float _func_powm1_float "powm1_float"(float, float) noexcept nogil
|
| 157 |
+
cdef void *_export_powm1_float = <void*>_func_powm1_float
|
| 158 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 159 |
+
cdef double _func_powm1_double "powm1_double"(double, double) noexcept nogil
|
| 160 |
+
cdef void *_export_powm1_double = <void*>_func_powm1_double
|
| 161 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 162 |
+
cdef double complex _func_cdigamma "cdigamma"(double complex) noexcept nogil
|
| 163 |
+
cdef void *_export_cdigamma = <void*>_func_cdigamma
|
| 164 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 165 |
+
cdef double _func_digamma "digamma"(double) noexcept nogil
|
| 166 |
+
cdef void *_export_digamma = <void*>_func_digamma
|
| 167 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 168 |
+
cdef double complex _func_crgamma "crgamma"(double complex) noexcept nogil
|
| 169 |
+
cdef void *_export_crgamma = <void*>_func_crgamma
|
| 170 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 171 |
+
cdef double _func_faddeeva_voigt_profile "faddeeva_voigt_profile"(double, double, double) noexcept nogil
|
| 172 |
+
cdef void *_export_faddeeva_voigt_profile = <void*>_func_faddeeva_voigt_profile
|
| 173 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 174 |
+
cdef double complex _func_faddeeva_w "faddeeva_w"(double complex) noexcept nogil
|
| 175 |
+
cdef void *_export_faddeeva_w = <void*>_func_faddeeva_w
|
| 176 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 177 |
+
cdef double complex _func_wrightomega "wrightomega"(double complex) noexcept nogil
|
| 178 |
+
cdef void *_export_wrightomega = <void*>_func_wrightomega
|
| 179 |
+
cdef extern from r"_ufuncs_cxx_defs.h":
|
| 180 |
+
cdef double _func_wrightomega_real "wrightomega_real"(double) noexcept nogil
|
| 181 |
+
cdef void *_export_wrightomega_real = <void*>_func_wrightomega_real
|
openflamingo/lib/python3.10/site-packages/scipy/special/_ufuncs_defs.h
ADDED
|
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#ifndef UFUNCS_PROTO_H
|
| 2 |
+
#define UFUNCS_PROTO_H 1
|
| 3 |
+
#include "_cosine.h"
|
| 4 |
+
npy_double cosine_cdf(npy_double);
|
| 5 |
+
npy_double cosine_invcdf(npy_double);
|
| 6 |
+
#include "cephes.h"
|
| 7 |
+
npy_double cospi(npy_double);
|
| 8 |
+
npy_double igam_fac(npy_double, npy_double);
|
| 9 |
+
npy_double kolmogc(npy_double);
|
| 10 |
+
npy_double kolmogci(npy_double);
|
| 11 |
+
npy_double kolmogp(npy_double);
|
| 12 |
+
npy_double lanczos_sum_expg_scaled(npy_double);
|
| 13 |
+
npy_double lgam1p(npy_double);
|
| 14 |
+
npy_double log1pmx(npy_double);
|
| 15 |
+
npy_double riemann_zeta(npy_double);
|
| 16 |
+
#include "scaled_exp1.h"
|
| 17 |
+
npy_double scaled_exp1(npy_double);
|
| 18 |
+
npy_double sinpi(npy_double);
|
| 19 |
+
npy_double smirnovc(npy_int, npy_double);
|
| 20 |
+
npy_double smirnovci(npy_int, npy_double);
|
| 21 |
+
npy_double smirnovp(npy_int, npy_double);
|
| 22 |
+
npy_double struve_asymp_large_z(npy_double, npy_double, npy_int, npy_double *);
|
| 23 |
+
npy_double struve_bessel_series(npy_double, npy_double, npy_int, npy_double *);
|
| 24 |
+
npy_double struve_power_series(npy_double, npy_double, npy_int, npy_double *);
|
| 25 |
+
npy_double zeta(npy_double, npy_double);
|
| 26 |
+
#include "amos_wrappers.h"
|
| 27 |
+
npy_int airy_wrap(npy_double, npy_double *, npy_double *, npy_double *, npy_double *);
|
| 28 |
+
npy_int cairy_wrap(npy_cdouble, npy_cdouble *, npy_cdouble *, npy_cdouble *, npy_cdouble *);
|
| 29 |
+
npy_int cairy_wrap_e(npy_cdouble, npy_cdouble *, npy_cdouble *, npy_cdouble *, npy_cdouble *);
|
| 30 |
+
npy_int cairy_wrap_e_real(npy_double, npy_double *, npy_double *, npy_double *, npy_double *);
|
| 31 |
+
npy_double bdtr(npy_double, npy_int, npy_double);
|
| 32 |
+
npy_double bdtrc(npy_double, npy_int, npy_double);
|
| 33 |
+
npy_double bdtri(npy_double, npy_int, npy_double);
|
| 34 |
+
#include "specfun_wrappers.h"
|
| 35 |
+
npy_double bei_wrap(npy_double);
|
| 36 |
+
npy_double beip_wrap(npy_double);
|
| 37 |
+
npy_double ber_wrap(npy_double);
|
| 38 |
+
npy_double berp_wrap(npy_double);
|
| 39 |
+
npy_double besselpoly(npy_double, npy_double, npy_double);
|
| 40 |
+
npy_double beta(npy_double, npy_double);
|
| 41 |
+
npy_double lbeta(npy_double, npy_double);
|
| 42 |
+
npy_double btdtr(npy_double, npy_double, npy_double);
|
| 43 |
+
npy_double incbi(npy_double, npy_double, npy_double);
|
| 44 |
+
npy_double cbrt(npy_double);
|
| 45 |
+
npy_double chdtr(npy_double, npy_double);
|
| 46 |
+
npy_double chdtrc(npy_double, npy_double);
|
| 47 |
+
npy_double chdtri(npy_double, npy_double);
|
| 48 |
+
npy_double cosdg(npy_double);
|
| 49 |
+
npy_double cosm1(npy_double);
|
| 50 |
+
npy_double cotdg(npy_double);
|
| 51 |
+
npy_double ellpe(npy_double);
|
| 52 |
+
npy_double ellie(npy_double, npy_double);
|
| 53 |
+
npy_int ellpj(npy_double, npy_double, npy_double *, npy_double *, npy_double *, npy_double *);
|
| 54 |
+
npy_double ellik(npy_double, npy_double);
|
| 55 |
+
npy_double ellpk(npy_double);
|
| 56 |
+
npy_double erf(npy_double);
|
| 57 |
+
npy_double erfc(npy_double);
|
| 58 |
+
npy_double erfcinv(npy_double);
|
| 59 |
+
npy_cdouble cexp1_wrap(npy_cdouble);
|
| 60 |
+
npy_double exp1_wrap(npy_double);
|
| 61 |
+
npy_double exp10(npy_double);
|
| 62 |
+
npy_double exp2(npy_double);
|
| 63 |
+
npy_cdouble cexpi_wrap(npy_cdouble);
|
| 64 |
+
npy_double expi_wrap(npy_double);
|
| 65 |
+
npy_double expm1(npy_double);
|
| 66 |
+
npy_double expn(npy_int, npy_double);
|
| 67 |
+
npy_double fdtr(npy_double, npy_double, npy_double);
|
| 68 |
+
npy_double fdtrc(npy_double, npy_double, npy_double);
|
| 69 |
+
npy_double fdtri(npy_double, npy_double, npy_double);
|
| 70 |
+
npy_int fresnl(npy_double, npy_double *, npy_double *);
|
| 71 |
+
npy_int cfresnl_wrap(npy_cdouble, npy_cdouble *, npy_cdouble *);
|
| 72 |
+
npy_double Gamma(npy_double);
|
| 73 |
+
npy_double igam(npy_double, npy_double);
|
| 74 |
+
npy_double igamc(npy_double, npy_double);
|
| 75 |
+
npy_double igamci(npy_double, npy_double);
|
| 76 |
+
npy_double igami(npy_double, npy_double);
|
| 77 |
+
npy_double lgam(npy_double);
|
| 78 |
+
npy_double gammasgn(npy_double);
|
| 79 |
+
npy_double gdtr(npy_double, npy_double, npy_double);
|
| 80 |
+
npy_double gdtrc(npy_double, npy_double, npy_double);
|
| 81 |
+
npy_cdouble cbesh_wrap1(npy_double, npy_cdouble);
|
| 82 |
+
npy_cdouble cbesh_wrap1_e(npy_double, npy_cdouble);
|
| 83 |
+
npy_cdouble cbesh_wrap2(npy_double, npy_cdouble);
|
| 84 |
+
npy_cdouble cbesh_wrap2_e(npy_double, npy_cdouble);
|
| 85 |
+
npy_cdouble chyp1f1_wrap(npy_double, npy_double, npy_cdouble);
|
| 86 |
+
npy_double hyp2f1(npy_double, npy_double, npy_double, npy_double);
|
| 87 |
+
npy_double i0(npy_double);
|
| 88 |
+
npy_double i0e(npy_double);
|
| 89 |
+
npy_double i1(npy_double);
|
| 90 |
+
npy_double i1e(npy_double);
|
| 91 |
+
npy_int it2i0k0_wrap(npy_double, npy_double *, npy_double *);
|
| 92 |
+
npy_int it2j0y0_wrap(npy_double, npy_double *, npy_double *);
|
| 93 |
+
npy_double it2struve0_wrap(npy_double);
|
| 94 |
+
npy_int itairy_wrap(npy_double, npy_double *, npy_double *, npy_double *, npy_double *);
|
| 95 |
+
npy_int it1i0k0_wrap(npy_double, npy_double *, npy_double *);
|
| 96 |
+
npy_int it1j0y0_wrap(npy_double, npy_double *, npy_double *);
|
| 97 |
+
npy_double itmodstruve0_wrap(npy_double);
|
| 98 |
+
npy_double itstruve0_wrap(npy_double);
|
| 99 |
+
npy_cdouble cbesi_wrap(npy_double, npy_cdouble);
|
| 100 |
+
npy_double iv(npy_double, npy_double);
|
| 101 |
+
npy_cdouble cbesi_wrap_e(npy_double, npy_cdouble);
|
| 102 |
+
npy_double cbesi_wrap_e_real(npy_double, npy_double);
|
| 103 |
+
npy_double j0(npy_double);
|
| 104 |
+
npy_double j1(npy_double);
|
| 105 |
+
npy_cdouble cbesj_wrap(npy_double, npy_cdouble);
|
| 106 |
+
npy_double cbesj_wrap_real(npy_double, npy_double);
|
| 107 |
+
npy_cdouble cbesj_wrap_e(npy_double, npy_cdouble);
|
| 108 |
+
npy_double cbesj_wrap_e_real(npy_double, npy_double);
|
| 109 |
+
npy_double k0(npy_double);
|
| 110 |
+
npy_double k0e(npy_double);
|
| 111 |
+
npy_double k1(npy_double);
|
| 112 |
+
npy_double k1e(npy_double);
|
| 113 |
+
npy_double kei_wrap(npy_double);
|
| 114 |
+
npy_double keip_wrap(npy_double);
|
| 115 |
+
npy_int kelvin_wrap(npy_double, npy_cdouble *, npy_cdouble *, npy_cdouble *, npy_cdouble *);
|
| 116 |
+
npy_double ker_wrap(npy_double);
|
| 117 |
+
npy_double kerp_wrap(npy_double);
|
| 118 |
+
npy_double cbesk_wrap_real_int(npy_int, npy_double);
|
| 119 |
+
npy_double kolmogi(npy_double);
|
| 120 |
+
npy_double kolmogorov(npy_double);
|
| 121 |
+
npy_cdouble cbesk_wrap(npy_double, npy_cdouble);
|
| 122 |
+
npy_double cbesk_wrap_real(npy_double, npy_double);
|
| 123 |
+
npy_cdouble cbesk_wrap_e(npy_double, npy_cdouble);
|
| 124 |
+
npy_double cbesk_wrap_e_real(npy_double, npy_double);
|
| 125 |
+
npy_double log1p(npy_double);
|
| 126 |
+
npy_double pmv_wrap(npy_double, npy_double, npy_double);
|
| 127 |
+
npy_double cem_cva_wrap(npy_double, npy_double);
|
| 128 |
+
npy_double sem_cva_wrap(npy_double, npy_double);
|
| 129 |
+
npy_int cem_wrap(npy_double, npy_double, npy_double, npy_double *, npy_double *);
|
| 130 |
+
npy_int mcm1_wrap(npy_double, npy_double, npy_double, npy_double *, npy_double *);
|
| 131 |
+
npy_int mcm2_wrap(npy_double, npy_double, npy_double, npy_double *, npy_double *);
|
| 132 |
+
npy_int msm1_wrap(npy_double, npy_double, npy_double, npy_double *, npy_double *);
|
| 133 |
+
npy_int msm2_wrap(npy_double, npy_double, npy_double, npy_double *, npy_double *);
|
| 134 |
+
npy_int sem_wrap(npy_double, npy_double, npy_double, npy_double *, npy_double *);
|
| 135 |
+
npy_int modified_fresnel_minus_wrap(npy_double, npy_cdouble *, npy_cdouble *);
|
| 136 |
+
npy_int modified_fresnel_plus_wrap(npy_double, npy_cdouble *, npy_cdouble *);
|
| 137 |
+
npy_double struve_l(npy_double, npy_double);
|
| 138 |
+
npy_double nbdtr(npy_int, npy_int, npy_double);
|
| 139 |
+
npy_double nbdtrc(npy_int, npy_int, npy_double);
|
| 140 |
+
npy_double nbdtri(npy_int, npy_int, npy_double);
|
| 141 |
+
npy_double ndtr(npy_double);
|
| 142 |
+
npy_double ndtri(npy_double);
|
| 143 |
+
npy_double oblate_aswfa_nocv_wrap(npy_double, npy_double, npy_double, npy_double, npy_double *);
|
| 144 |
+
npy_int oblate_aswfa_wrap(npy_double, npy_double, npy_double, npy_double, npy_double, npy_double *, npy_double *);
|
| 145 |
+
npy_double oblate_segv_wrap(npy_double, npy_double, npy_double);
|
| 146 |
+
npy_double oblate_radial1_nocv_wrap(npy_double, npy_double, npy_double, npy_double, npy_double *);
|
| 147 |
+
npy_int oblate_radial1_wrap(npy_double, npy_double, npy_double, npy_double, npy_double, npy_double *, npy_double *);
|
| 148 |
+
npy_double oblate_radial2_nocv_wrap(npy_double, npy_double, npy_double, npy_double, npy_double *);
|
| 149 |
+
npy_int oblate_radial2_wrap(npy_double, npy_double, npy_double, npy_double, npy_double, npy_double *, npy_double *);
|
| 150 |
+
npy_double owens_t(npy_double, npy_double);
|
| 151 |
+
npy_int pbdv_wrap(npy_double, npy_double, npy_double *, npy_double *);
|
| 152 |
+
npy_int pbvv_wrap(npy_double, npy_double, npy_double *, npy_double *);
|
| 153 |
+
npy_int pbwa_wrap(npy_double, npy_double, npy_double *, npy_double *);
|
| 154 |
+
npy_double pdtr(npy_double, npy_double);
|
| 155 |
+
npy_double pdtrc(npy_double, npy_double);
|
| 156 |
+
npy_double pdtri(npy_int, npy_double);
|
| 157 |
+
npy_double poch(npy_double, npy_double);
|
| 158 |
+
npy_double prolate_aswfa_nocv_wrap(npy_double, npy_double, npy_double, npy_double, npy_double *);
|
| 159 |
+
npy_int prolate_aswfa_wrap(npy_double, npy_double, npy_double, npy_double, npy_double, npy_double *, npy_double *);
|
| 160 |
+
npy_double prolate_segv_wrap(npy_double, npy_double, npy_double);
|
| 161 |
+
npy_double prolate_radial1_nocv_wrap(npy_double, npy_double, npy_double, npy_double, npy_double *);
|
| 162 |
+
npy_int prolate_radial1_wrap(npy_double, npy_double, npy_double, npy_double, npy_double, npy_double *, npy_double *);
|
| 163 |
+
npy_double prolate_radial2_nocv_wrap(npy_double, npy_double, npy_double, npy_double, npy_double *);
|
| 164 |
+
npy_int prolate_radial2_wrap(npy_double, npy_double, npy_double, npy_double, npy_double, npy_double *, npy_double *);
|
| 165 |
+
npy_double radian(npy_double, npy_double, npy_double);
|
| 166 |
+
npy_double rgamma(npy_double);
|
| 167 |
+
npy_double round(npy_double);
|
| 168 |
+
npy_int shichi(npy_double, npy_double *, npy_double *);
|
| 169 |
+
npy_int sici(npy_double, npy_double *, npy_double *);
|
| 170 |
+
npy_double sindg(npy_double);
|
| 171 |
+
npy_double smirnov(npy_int, npy_double);
|
| 172 |
+
npy_double smirnovi(npy_int, npy_double);
|
| 173 |
+
npy_double spence(npy_double);
|
| 174 |
+
npy_double struve_h(npy_double, npy_double);
|
| 175 |
+
npy_double tandg(npy_double);
|
| 176 |
+
npy_double tukeylambdacdf(npy_double, npy_double);
|
| 177 |
+
npy_double y0(npy_double);
|
| 178 |
+
npy_double y1(npy_double);
|
| 179 |
+
npy_double yn(npy_int, npy_double);
|
| 180 |
+
npy_cdouble cbesy_wrap(npy_double, npy_cdouble);
|
| 181 |
+
npy_double cbesy_wrap_real(npy_double, npy_double);
|
| 182 |
+
npy_cdouble cbesy_wrap_e(npy_double, npy_cdouble);
|
| 183 |
+
npy_double cbesy_wrap_e_real(npy_double, npy_double);
|
| 184 |
+
npy_double zetac(npy_double);
|
| 185 |
+
#endif
|
openflamingo/lib/python3.10/site-packages/scipy/special/cython_special.pyx
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
openflamingo/lib/python3.10/site-packages/scipy/special/tests/__pycache__/test_boxcox.cpython-310.pyc
ADDED
|
Binary file (2.74 kB). View file
|
|
|
openflamingo/lib/python3.10/site-packages/scipy/special/tests/__pycache__/test_cdft_asymptotic.cpython-310.pyc
ADDED
|
Binary file (1.33 kB). View file
|
|
|
openflamingo/lib/python3.10/site-packages/scipy/special/tests/__pycache__/test_faddeeva.cpython-310.pyc
ADDED
|
Binary file (2.84 kB). View file
|
|
|
openflamingo/lib/python3.10/site-packages/scipy/special/tests/__pycache__/test_log_softmax.cpython-310.pyc
ADDED
|
Binary file (2.79 kB). View file
|
|
|
openflamingo/lib/python3.10/site-packages/scipy/special/tests/__pycache__/test_logit.cpython-310.pyc
ADDED
|
Binary file (4.57 kB). View file
|
|
|
openflamingo/lib/python3.10/site-packages/scipy/special/tests/__pycache__/test_logsumexp.cpython-310.pyc
ADDED
|
Binary file (5.01 kB). View file
|
|
|
openflamingo/lib/python3.10/site-packages/scipy/special/tests/__pycache__/test_sici.cpython-310.pyc
ADDED
|
Binary file (1.32 kB). View file
|
|
|
openflamingo/lib/python3.10/site-packages/scipy/special/tests/__pycache__/test_spfun_stats.cpython-310.pyc
ADDED
|
Binary file (2.01 kB). View file
|
|
|
openflamingo/lib/python3.10/site-packages/scipy/special/tests/__pycache__/test_support_alternative_backends.cpython-310.pyc
ADDED
|
Binary file (2.56 kB). View file
|
|
|
openflamingo/lib/python3.10/site-packages/scipy/special/tests/__pycache__/test_wright_bessel.cpython-310.pyc
ADDED
|
Binary file (3.36 kB). View file
|
|
|
openflamingo/lib/python3.10/site-packages/scipy/special/tests/__pycache__/test_wrightomega.cpython-310.pyc
ADDED
|
Binary file (3.2 kB). View file
|
|
|
openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_basic.py
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_bdtr.py
ADDED
|
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import scipy.special as sc
|
| 3 |
+
import pytest
|
| 4 |
+
from numpy.testing import assert_allclose, assert_array_equal, suppress_warnings
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class TestBdtr:
|
| 8 |
+
def test(self):
|
| 9 |
+
val = sc.bdtr(0, 1, 0.5)
|
| 10 |
+
assert_allclose(val, 0.5)
|
| 11 |
+
|
| 12 |
+
def test_sum_is_one(self):
|
| 13 |
+
val = sc.bdtr([0, 1, 2], 2, 0.5)
|
| 14 |
+
assert_array_equal(val, [0.25, 0.75, 1.0])
|
| 15 |
+
|
| 16 |
+
def test_rounding(self):
|
| 17 |
+
double_val = sc.bdtr([0.1, 1.1, 2.1], 2, 0.5)
|
| 18 |
+
int_val = sc.bdtr([0, 1, 2], 2, 0.5)
|
| 19 |
+
assert_array_equal(double_val, int_val)
|
| 20 |
+
|
| 21 |
+
@pytest.mark.parametrize('k, n, p', [
|
| 22 |
+
(np.inf, 2, 0.5),
|
| 23 |
+
(1.0, np.inf, 0.5),
|
| 24 |
+
(1.0, 2, np.inf)
|
| 25 |
+
])
|
| 26 |
+
def test_inf(self, k, n, p):
|
| 27 |
+
with suppress_warnings() as sup:
|
| 28 |
+
sup.filter(DeprecationWarning)
|
| 29 |
+
val = sc.bdtr(k, n, p)
|
| 30 |
+
assert np.isnan(val)
|
| 31 |
+
|
| 32 |
+
def test_domain(self):
|
| 33 |
+
val = sc.bdtr(-1.1, 1, 0.5)
|
| 34 |
+
assert np.isnan(val)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class TestBdtrc:
|
| 38 |
+
def test_value(self):
|
| 39 |
+
val = sc.bdtrc(0, 1, 0.5)
|
| 40 |
+
assert_allclose(val, 0.5)
|
| 41 |
+
|
| 42 |
+
def test_sum_is_one(self):
|
| 43 |
+
val = sc.bdtrc([0, 1, 2], 2, 0.5)
|
| 44 |
+
assert_array_equal(val, [0.75, 0.25, 0.0])
|
| 45 |
+
|
| 46 |
+
def test_rounding(self):
|
| 47 |
+
double_val = sc.bdtrc([0.1, 1.1, 2.1], 2, 0.5)
|
| 48 |
+
int_val = sc.bdtrc([0, 1, 2], 2, 0.5)
|
| 49 |
+
assert_array_equal(double_val, int_val)
|
| 50 |
+
|
| 51 |
+
@pytest.mark.parametrize('k, n, p', [
|
| 52 |
+
(np.inf, 2, 0.5),
|
| 53 |
+
(1.0, np.inf, 0.5),
|
| 54 |
+
(1.0, 2, np.inf)
|
| 55 |
+
])
|
| 56 |
+
def test_inf(self, k, n, p):
|
| 57 |
+
with suppress_warnings() as sup:
|
| 58 |
+
sup.filter(DeprecationWarning)
|
| 59 |
+
val = sc.bdtrc(k, n, p)
|
| 60 |
+
assert np.isnan(val)
|
| 61 |
+
|
| 62 |
+
def test_domain(self):
|
| 63 |
+
val = sc.bdtrc(-1.1, 1, 0.5)
|
| 64 |
+
val2 = sc.bdtrc(2.1, 1, 0.5)
|
| 65 |
+
assert np.isnan(val2)
|
| 66 |
+
assert_allclose(val, 1.0)
|
| 67 |
+
|
| 68 |
+
def test_bdtr_bdtrc_sum_to_one(self):
|
| 69 |
+
bdtr_vals = sc.bdtr([0, 1, 2], 2, 0.5)
|
| 70 |
+
bdtrc_vals = sc.bdtrc([0, 1, 2], 2, 0.5)
|
| 71 |
+
vals = bdtr_vals + bdtrc_vals
|
| 72 |
+
assert_allclose(vals, [1.0, 1.0, 1.0])
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
class TestBdtri:
|
| 76 |
+
def test_value(self):
|
| 77 |
+
val = sc.bdtri(0, 1, 0.5)
|
| 78 |
+
assert_allclose(val, 0.5)
|
| 79 |
+
|
| 80 |
+
def test_sum_is_one(self):
|
| 81 |
+
val = sc.bdtri([0, 1], 2, 0.5)
|
| 82 |
+
actual = np.asarray([1 - 1/np.sqrt(2), 1/np.sqrt(2)])
|
| 83 |
+
assert_allclose(val, actual)
|
| 84 |
+
|
| 85 |
+
def test_rounding(self):
|
| 86 |
+
double_val = sc.bdtri([0.1, 1.1], 2, 0.5)
|
| 87 |
+
int_val = sc.bdtri([0, 1], 2, 0.5)
|
| 88 |
+
assert_allclose(double_val, int_val)
|
| 89 |
+
|
| 90 |
+
@pytest.mark.parametrize('k, n, p', [
|
| 91 |
+
(np.inf, 2, 0.5),
|
| 92 |
+
(1.0, np.inf, 0.5),
|
| 93 |
+
(1.0, 2, np.inf)
|
| 94 |
+
])
|
| 95 |
+
def test_inf(self, k, n, p):
|
| 96 |
+
with suppress_warnings() as sup:
|
| 97 |
+
sup.filter(DeprecationWarning)
|
| 98 |
+
val = sc.bdtri(k, n, p)
|
| 99 |
+
assert np.isnan(val)
|
| 100 |
+
|
| 101 |
+
@pytest.mark.parametrize('k, n, p', [
|
| 102 |
+
(-1.1, 1, 0.5),
|
| 103 |
+
(2.1, 1, 0.5)
|
| 104 |
+
])
|
| 105 |
+
def test_domain(self, k, n, p):
|
| 106 |
+
val = sc.bdtri(k, n, p)
|
| 107 |
+
assert np.isnan(val)
|
| 108 |
+
|
| 109 |
+
def test_bdtr_bdtri_roundtrip(self):
|
| 110 |
+
bdtr_vals = sc.bdtr([0, 1, 2], 2, 0.5)
|
| 111 |
+
roundtrip_vals = sc.bdtri([0, 1, 2], 2, bdtr_vals)
|
| 112 |
+
assert_allclose(roundtrip_vals, [0.5, 0.5, np.nan])
|
openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_boxcox.py
ADDED
|
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
from numpy.testing import assert_equal, assert_almost_equal, assert_allclose
|
| 3 |
+
from scipy.special import boxcox, boxcox1p, inv_boxcox, inv_boxcox1p
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
# There are more tests of boxcox and boxcox1p in test_mpmath.py.
|
| 7 |
+
|
| 8 |
+
def test_boxcox_basic():
|
| 9 |
+
x = np.array([0.5, 1, 2, 4])
|
| 10 |
+
|
| 11 |
+
# lambda = 0 => y = log(x)
|
| 12 |
+
y = boxcox(x, 0)
|
| 13 |
+
assert_almost_equal(y, np.log(x))
|
| 14 |
+
|
| 15 |
+
# lambda = 1 => y = x - 1
|
| 16 |
+
y = boxcox(x, 1)
|
| 17 |
+
assert_almost_equal(y, x - 1)
|
| 18 |
+
|
| 19 |
+
# lambda = 2 => y = 0.5*(x**2 - 1)
|
| 20 |
+
y = boxcox(x, 2)
|
| 21 |
+
assert_almost_equal(y, 0.5*(x**2 - 1))
|
| 22 |
+
|
| 23 |
+
# x = 0 and lambda > 0 => y = -1 / lambda
|
| 24 |
+
lam = np.array([0.5, 1, 2])
|
| 25 |
+
y = boxcox(0, lam)
|
| 26 |
+
assert_almost_equal(y, -1.0 / lam)
|
| 27 |
+
|
| 28 |
+
def test_boxcox_underflow():
|
| 29 |
+
x = 1 + 1e-15
|
| 30 |
+
lmbda = 1e-306
|
| 31 |
+
y = boxcox(x, lmbda)
|
| 32 |
+
assert_allclose(y, np.log(x), rtol=1e-14)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def test_boxcox_nonfinite():
|
| 36 |
+
# x < 0 => y = nan
|
| 37 |
+
x = np.array([-1, -1, -0.5])
|
| 38 |
+
y = boxcox(x, [0.5, 2.0, -1.5])
|
| 39 |
+
assert_equal(y, np.array([np.nan, np.nan, np.nan]))
|
| 40 |
+
|
| 41 |
+
# x = 0 and lambda <= 0 => y = -inf
|
| 42 |
+
x = 0
|
| 43 |
+
y = boxcox(x, [-2.5, 0])
|
| 44 |
+
assert_equal(y, np.array([-np.inf, -np.inf]))
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def test_boxcox1p_basic():
|
| 48 |
+
x = np.array([-0.25, -1e-20, 0, 1e-20, 0.25, 1, 3])
|
| 49 |
+
|
| 50 |
+
# lambda = 0 => y = log(1+x)
|
| 51 |
+
y = boxcox1p(x, 0)
|
| 52 |
+
assert_almost_equal(y, np.log1p(x))
|
| 53 |
+
|
| 54 |
+
# lambda = 1 => y = x
|
| 55 |
+
y = boxcox1p(x, 1)
|
| 56 |
+
assert_almost_equal(y, x)
|
| 57 |
+
|
| 58 |
+
# lambda = 2 => y = 0.5*((1+x)**2 - 1) = 0.5*x*(2 + x)
|
| 59 |
+
y = boxcox1p(x, 2)
|
| 60 |
+
assert_almost_equal(y, 0.5*x*(2 + x))
|
| 61 |
+
|
| 62 |
+
# x = -1 and lambda > 0 => y = -1 / lambda
|
| 63 |
+
lam = np.array([0.5, 1, 2])
|
| 64 |
+
y = boxcox1p(-1, lam)
|
| 65 |
+
assert_almost_equal(y, -1.0 / lam)
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def test_boxcox1p_underflow():
|
| 69 |
+
x = np.array([1e-15, 1e-306])
|
| 70 |
+
lmbda = np.array([1e-306, 1e-18])
|
| 71 |
+
y = boxcox1p(x, lmbda)
|
| 72 |
+
assert_allclose(y, np.log1p(x), rtol=1e-14)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def test_boxcox1p_nonfinite():
|
| 76 |
+
# x < -1 => y = nan
|
| 77 |
+
x = np.array([-2, -2, -1.5])
|
| 78 |
+
y = boxcox1p(x, [0.5, 2.0, -1.5])
|
| 79 |
+
assert_equal(y, np.array([np.nan, np.nan, np.nan]))
|
| 80 |
+
|
| 81 |
+
# x = -1 and lambda <= 0 => y = -inf
|
| 82 |
+
x = -1
|
| 83 |
+
y = boxcox1p(x, [-2.5, 0])
|
| 84 |
+
assert_equal(y, np.array([-np.inf, -np.inf]))
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def test_inv_boxcox():
|
| 88 |
+
x = np.array([0., 1., 2.])
|
| 89 |
+
lam = np.array([0., 1., 2.])
|
| 90 |
+
y = boxcox(x, lam)
|
| 91 |
+
x2 = inv_boxcox(y, lam)
|
| 92 |
+
assert_almost_equal(x, x2)
|
| 93 |
+
|
| 94 |
+
x = np.array([0., 1., 2.])
|
| 95 |
+
lam = np.array([0., 1., 2.])
|
| 96 |
+
y = boxcox1p(x, lam)
|
| 97 |
+
x2 = inv_boxcox1p(y, lam)
|
| 98 |
+
assert_almost_equal(x, x2)
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def test_inv_boxcox1p_underflow():
|
| 102 |
+
x = 1e-15
|
| 103 |
+
lam = 1e-306
|
| 104 |
+
y = inv_boxcox1p(x, lam)
|
| 105 |
+
assert_allclose(y, x, rtol=1e-14)
|
| 106 |
+
|
openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_cdflib.py
ADDED
|
@@ -0,0 +1,527 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Test cdflib functions versus mpmath, if available.
|
| 3 |
+
|
| 4 |
+
The following functions still need tests:
|
| 5 |
+
|
| 6 |
+
- ncfdtr
|
| 7 |
+
- ncfdtri
|
| 8 |
+
- ncfdtridfn
|
| 9 |
+
- ncfdtridfd
|
| 10 |
+
- ncfdtrinc
|
| 11 |
+
- nbdtrik
|
| 12 |
+
- nbdtrin
|
| 13 |
+
- pdtrik
|
| 14 |
+
- nctdtr
|
| 15 |
+
- nctdtrit
|
| 16 |
+
- nctdtridf
|
| 17 |
+
- nctdtrinc
|
| 18 |
+
|
| 19 |
+
"""
|
| 20 |
+
import itertools
|
| 21 |
+
|
| 22 |
+
import numpy as np
|
| 23 |
+
from numpy.testing import assert_equal, assert_allclose
|
| 24 |
+
import pytest
|
| 25 |
+
|
| 26 |
+
import scipy.special as sp
|
| 27 |
+
from scipy.special._testutils import (
|
| 28 |
+
MissingModule, check_version, FuncData)
|
| 29 |
+
from scipy.special._mptestutils import (
|
| 30 |
+
Arg, IntArg, get_args, mpf2float, assert_mpmath_equal)
|
| 31 |
+
|
| 32 |
+
try:
|
| 33 |
+
import mpmath
|
| 34 |
+
except ImportError:
|
| 35 |
+
mpmath = MissingModule('mpmath')
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class ProbArg:
|
| 39 |
+
"""Generate a set of probabilities on [0, 1]."""
|
| 40 |
+
|
| 41 |
+
def __init__(self):
|
| 42 |
+
# Include the endpoints for compatibility with Arg et. al.
|
| 43 |
+
self.a = 0
|
| 44 |
+
self.b = 1
|
| 45 |
+
|
| 46 |
+
def values(self, n):
|
| 47 |
+
"""Return an array containing approximately n numbers."""
|
| 48 |
+
m = max(1, n//3)
|
| 49 |
+
v1 = np.logspace(-30, np.log10(0.3), m)
|
| 50 |
+
v2 = np.linspace(0.3, 0.7, m + 1, endpoint=False)[1:]
|
| 51 |
+
v3 = 1 - np.logspace(np.log10(0.3), -15, m)
|
| 52 |
+
v = np.r_[v1, v2, v3]
|
| 53 |
+
return np.unique(v)
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class EndpointFilter:
|
| 57 |
+
def __init__(self, a, b, rtol, atol):
|
| 58 |
+
self.a = a
|
| 59 |
+
self.b = b
|
| 60 |
+
self.rtol = rtol
|
| 61 |
+
self.atol = atol
|
| 62 |
+
|
| 63 |
+
def __call__(self, x):
|
| 64 |
+
mask1 = np.abs(x - self.a) < self.rtol*np.abs(self.a) + self.atol
|
| 65 |
+
mask2 = np.abs(x - self.b) < self.rtol*np.abs(self.b) + self.atol
|
| 66 |
+
return np.where(mask1 | mask2, False, True)
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
class _CDFData:
|
| 70 |
+
def __init__(self, spfunc, mpfunc, index, argspec, spfunc_first=True,
|
| 71 |
+
dps=20, n=5000, rtol=None, atol=None,
|
| 72 |
+
endpt_rtol=None, endpt_atol=None):
|
| 73 |
+
self.spfunc = spfunc
|
| 74 |
+
self.mpfunc = mpfunc
|
| 75 |
+
self.index = index
|
| 76 |
+
self.argspec = argspec
|
| 77 |
+
self.spfunc_first = spfunc_first
|
| 78 |
+
self.dps = dps
|
| 79 |
+
self.n = n
|
| 80 |
+
self.rtol = rtol
|
| 81 |
+
self.atol = atol
|
| 82 |
+
|
| 83 |
+
if not isinstance(argspec, list):
|
| 84 |
+
self.endpt_rtol = None
|
| 85 |
+
self.endpt_atol = None
|
| 86 |
+
elif endpt_rtol is not None or endpt_atol is not None:
|
| 87 |
+
if isinstance(endpt_rtol, list):
|
| 88 |
+
self.endpt_rtol = endpt_rtol
|
| 89 |
+
else:
|
| 90 |
+
self.endpt_rtol = [endpt_rtol]*len(self.argspec)
|
| 91 |
+
if isinstance(endpt_atol, list):
|
| 92 |
+
self.endpt_atol = endpt_atol
|
| 93 |
+
else:
|
| 94 |
+
self.endpt_atol = [endpt_atol]*len(self.argspec)
|
| 95 |
+
else:
|
| 96 |
+
self.endpt_rtol = None
|
| 97 |
+
self.endpt_atol = None
|
| 98 |
+
|
| 99 |
+
def idmap(self, *args):
|
| 100 |
+
if self.spfunc_first:
|
| 101 |
+
res = self.spfunc(*args)
|
| 102 |
+
if np.isnan(res):
|
| 103 |
+
return np.nan
|
| 104 |
+
args = list(args)
|
| 105 |
+
args[self.index] = res
|
| 106 |
+
with mpmath.workdps(self.dps):
|
| 107 |
+
res = self.mpfunc(*tuple(args))
|
| 108 |
+
# Imaginary parts are spurious
|
| 109 |
+
res = mpf2float(res.real)
|
| 110 |
+
else:
|
| 111 |
+
with mpmath.workdps(self.dps):
|
| 112 |
+
res = self.mpfunc(*args)
|
| 113 |
+
res = mpf2float(res.real)
|
| 114 |
+
args = list(args)
|
| 115 |
+
args[self.index] = res
|
| 116 |
+
res = self.spfunc(*tuple(args))
|
| 117 |
+
return res
|
| 118 |
+
|
| 119 |
+
def get_param_filter(self):
|
| 120 |
+
if self.endpt_rtol is None and self.endpt_atol is None:
|
| 121 |
+
return None
|
| 122 |
+
|
| 123 |
+
filters = []
|
| 124 |
+
for rtol, atol, spec in zip(self.endpt_rtol, self.endpt_atol, self.argspec):
|
| 125 |
+
if rtol is None and atol is None:
|
| 126 |
+
filters.append(None)
|
| 127 |
+
continue
|
| 128 |
+
elif rtol is None:
|
| 129 |
+
rtol = 0.0
|
| 130 |
+
elif atol is None:
|
| 131 |
+
atol = 0.0
|
| 132 |
+
|
| 133 |
+
filters.append(EndpointFilter(spec.a, spec.b, rtol, atol))
|
| 134 |
+
return filters
|
| 135 |
+
|
| 136 |
+
def check(self):
|
| 137 |
+
# Generate values for the arguments
|
| 138 |
+
args = get_args(self.argspec, self.n)
|
| 139 |
+
param_filter = self.get_param_filter()
|
| 140 |
+
param_columns = tuple(range(args.shape[1]))
|
| 141 |
+
result_columns = args.shape[1]
|
| 142 |
+
args = np.hstack((args, args[:, self.index].reshape(args.shape[0], 1)))
|
| 143 |
+
FuncData(self.idmap, args,
|
| 144 |
+
param_columns=param_columns, result_columns=result_columns,
|
| 145 |
+
rtol=self.rtol, atol=self.atol, vectorized=False,
|
| 146 |
+
param_filter=param_filter).check()
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def _assert_inverts(*a, **kw):
|
| 150 |
+
d = _CDFData(*a, **kw)
|
| 151 |
+
d.check()
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
def _binomial_cdf(k, n, p):
|
| 155 |
+
k, n, p = mpmath.mpf(k), mpmath.mpf(n), mpmath.mpf(p)
|
| 156 |
+
if k <= 0:
|
| 157 |
+
return mpmath.mpf(0)
|
| 158 |
+
elif k >= n:
|
| 159 |
+
return mpmath.mpf(1)
|
| 160 |
+
|
| 161 |
+
onemp = mpmath.fsub(1, p, exact=True)
|
| 162 |
+
return mpmath.betainc(n - k, k + 1, x2=onemp, regularized=True)
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
def _f_cdf(dfn, dfd, x):
|
| 166 |
+
if x < 0:
|
| 167 |
+
return mpmath.mpf(0)
|
| 168 |
+
dfn, dfd, x = mpmath.mpf(dfn), mpmath.mpf(dfd), mpmath.mpf(x)
|
| 169 |
+
ub = dfn*x/(dfn*x + dfd)
|
| 170 |
+
res = mpmath.betainc(dfn/2, dfd/2, x2=ub, regularized=True)
|
| 171 |
+
return res
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
def _student_t_cdf(df, t, dps=None):
|
| 175 |
+
if dps is None:
|
| 176 |
+
dps = mpmath.mp.dps
|
| 177 |
+
with mpmath.workdps(dps):
|
| 178 |
+
df, t = mpmath.mpf(df), mpmath.mpf(t)
|
| 179 |
+
fac = mpmath.hyp2f1(0.5, 0.5*(df + 1), 1.5, -t**2/df)
|
| 180 |
+
fac *= t*mpmath.gamma(0.5*(df + 1))
|
| 181 |
+
fac /= mpmath.sqrt(mpmath.pi*df)*mpmath.gamma(0.5*df)
|
| 182 |
+
return 0.5 + fac
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
def _noncentral_chi_pdf(t, df, nc):
|
| 186 |
+
res = mpmath.besseli(df/2 - 1, mpmath.sqrt(nc*t))
|
| 187 |
+
res *= mpmath.exp(-(t + nc)/2)*(t/nc)**(df/4 - 1/2)/2
|
| 188 |
+
return res
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
def _noncentral_chi_cdf(x, df, nc, dps=None):
|
| 192 |
+
if dps is None:
|
| 193 |
+
dps = mpmath.mp.dps
|
| 194 |
+
x, df, nc = mpmath.mpf(x), mpmath.mpf(df), mpmath.mpf(nc)
|
| 195 |
+
with mpmath.workdps(dps):
|
| 196 |
+
res = mpmath.quad(lambda t: _noncentral_chi_pdf(t, df, nc), [0, x])
|
| 197 |
+
return res
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
def _tukey_lmbda_quantile(p, lmbda):
|
| 201 |
+
# For lmbda != 0
|
| 202 |
+
return (p**lmbda - (1 - p)**lmbda)/lmbda
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
@pytest.mark.slow
|
| 206 |
+
@check_version(mpmath, '0.19')
|
| 207 |
+
class TestCDFlib:
|
| 208 |
+
|
| 209 |
+
@pytest.mark.xfail(run=False)
|
| 210 |
+
def test_bdtrik(self):
|
| 211 |
+
_assert_inverts(
|
| 212 |
+
sp.bdtrik,
|
| 213 |
+
_binomial_cdf,
|
| 214 |
+
0, [ProbArg(), IntArg(1, 1000), ProbArg()],
|
| 215 |
+
rtol=1e-4)
|
| 216 |
+
|
| 217 |
+
def test_bdtrin(self):
|
| 218 |
+
_assert_inverts(
|
| 219 |
+
sp.bdtrin,
|
| 220 |
+
_binomial_cdf,
|
| 221 |
+
1, [IntArg(1, 1000), ProbArg(), ProbArg()],
|
| 222 |
+
rtol=1e-4, endpt_atol=[None, None, 1e-6])
|
| 223 |
+
|
| 224 |
+
def test_btdtria(self):
|
| 225 |
+
_assert_inverts(
|
| 226 |
+
sp.btdtria,
|
| 227 |
+
lambda a, b, x: mpmath.betainc(a, b, x2=x, regularized=True),
|
| 228 |
+
0, [ProbArg(), Arg(0, 1e2, inclusive_a=False),
|
| 229 |
+
Arg(0, 1, inclusive_a=False, inclusive_b=False)],
|
| 230 |
+
rtol=1e-6)
|
| 231 |
+
|
| 232 |
+
def test_btdtrib(self):
|
| 233 |
+
# Use small values of a or mpmath doesn't converge
|
| 234 |
+
_assert_inverts(
|
| 235 |
+
sp.btdtrib,
|
| 236 |
+
lambda a, b, x: mpmath.betainc(a, b, x2=x, regularized=True),
|
| 237 |
+
1,
|
| 238 |
+
[Arg(0, 1e2, inclusive_a=False), ProbArg(),
|
| 239 |
+
Arg(0, 1, inclusive_a=False, inclusive_b=False)],
|
| 240 |
+
rtol=1e-7,
|
| 241 |
+
endpt_atol=[None, 1e-18, 1e-15])
|
| 242 |
+
|
| 243 |
+
@pytest.mark.xfail(run=False)
|
| 244 |
+
def test_fdtridfd(self):
|
| 245 |
+
_assert_inverts(
|
| 246 |
+
sp.fdtridfd,
|
| 247 |
+
_f_cdf,
|
| 248 |
+
1,
|
| 249 |
+
[IntArg(1, 100), ProbArg(), Arg(0, 100, inclusive_a=False)],
|
| 250 |
+
rtol=1e-7)
|
| 251 |
+
|
| 252 |
+
def test_gdtria(self):
|
| 253 |
+
_assert_inverts(
|
| 254 |
+
sp.gdtria,
|
| 255 |
+
lambda a, b, x: mpmath.gammainc(b, b=a*x, regularized=True),
|
| 256 |
+
0,
|
| 257 |
+
[ProbArg(), Arg(0, 1e3, inclusive_a=False),
|
| 258 |
+
Arg(0, 1e4, inclusive_a=False)],
|
| 259 |
+
rtol=1e-7,
|
| 260 |
+
endpt_atol=[None, 1e-7, 1e-10])
|
| 261 |
+
|
| 262 |
+
def test_gdtrib(self):
|
| 263 |
+
# Use small values of a and x or mpmath doesn't converge
|
| 264 |
+
_assert_inverts(
|
| 265 |
+
sp.gdtrib,
|
| 266 |
+
lambda a, b, x: mpmath.gammainc(b, b=a*x, regularized=True),
|
| 267 |
+
1,
|
| 268 |
+
[Arg(0, 1e2, inclusive_a=False), ProbArg(),
|
| 269 |
+
Arg(0, 1e3, inclusive_a=False)],
|
| 270 |
+
rtol=1e-5)
|
| 271 |
+
|
| 272 |
+
def test_gdtrix(self):
|
| 273 |
+
_assert_inverts(
|
| 274 |
+
sp.gdtrix,
|
| 275 |
+
lambda a, b, x: mpmath.gammainc(b, b=a*x, regularized=True),
|
| 276 |
+
2,
|
| 277 |
+
[Arg(0, 1e3, inclusive_a=False), Arg(0, 1e3, inclusive_a=False),
|
| 278 |
+
ProbArg()],
|
| 279 |
+
rtol=1e-7,
|
| 280 |
+
endpt_atol=[None, 1e-7, 1e-10])
|
| 281 |
+
|
| 282 |
+
# Overall nrdtrimn and nrdtrisd are not performing well with infeasible/edge
|
| 283 |
+
# combinations of sigma and x, hence restricted the domains to still use the
|
| 284 |
+
# testing machinery, also see gh-20069
|
| 285 |
+
|
| 286 |
+
# nrdtrimn signature: p, sd, x
|
| 287 |
+
# nrdtrisd signature: mn, p, x
|
| 288 |
+
def test_nrdtrimn(self):
|
| 289 |
+
_assert_inverts(
|
| 290 |
+
sp.nrdtrimn,
|
| 291 |
+
lambda x, y, z: mpmath.ncdf(z, x, y),
|
| 292 |
+
0,
|
| 293 |
+
[ProbArg(), # CDF value p
|
| 294 |
+
Arg(0.1, np.inf, inclusive_a=False, inclusive_b=False), # sigma
|
| 295 |
+
Arg(-1e10, 1e10)], # x
|
| 296 |
+
rtol=1e-5)
|
| 297 |
+
|
| 298 |
+
def test_nrdtrisd(self):
|
| 299 |
+
_assert_inverts(
|
| 300 |
+
sp.nrdtrisd,
|
| 301 |
+
lambda x, y, z: mpmath.ncdf(z, x, y),
|
| 302 |
+
1,
|
| 303 |
+
[Arg(-np.inf, 10, inclusive_a=False, inclusive_b=False), # mn
|
| 304 |
+
ProbArg(), # CDF value p
|
| 305 |
+
Arg(10, 1e100)], # x
|
| 306 |
+
rtol=1e-5)
|
| 307 |
+
|
| 308 |
+
def test_stdtr(self):
|
| 309 |
+
# Ideally the left endpoint for Arg() should be 0.
|
| 310 |
+
assert_mpmath_equal(
|
| 311 |
+
sp.stdtr,
|
| 312 |
+
_student_t_cdf,
|
| 313 |
+
[IntArg(1, 100), Arg(1e-10, np.inf)], rtol=1e-7)
|
| 314 |
+
|
| 315 |
+
@pytest.mark.xfail(run=False)
|
| 316 |
+
def test_stdtridf(self):
|
| 317 |
+
_assert_inverts(
|
| 318 |
+
sp.stdtridf,
|
| 319 |
+
_student_t_cdf,
|
| 320 |
+
0, [ProbArg(), Arg()], rtol=1e-7)
|
| 321 |
+
|
| 322 |
+
def test_stdtrit(self):
|
| 323 |
+
_assert_inverts(
|
| 324 |
+
sp.stdtrit,
|
| 325 |
+
_student_t_cdf,
|
| 326 |
+
1, [IntArg(1, 100), ProbArg()], rtol=1e-7,
|
| 327 |
+
endpt_atol=[None, 1e-10])
|
| 328 |
+
|
| 329 |
+
def test_chdtriv(self):
|
| 330 |
+
_assert_inverts(
|
| 331 |
+
sp.chdtriv,
|
| 332 |
+
lambda v, x: mpmath.gammainc(v/2, b=x/2, regularized=True),
|
| 333 |
+
0, [ProbArg(), IntArg(1, 100)], rtol=1e-4)
|
| 334 |
+
|
| 335 |
+
@pytest.mark.xfail(run=False)
|
| 336 |
+
def test_chndtridf(self):
|
| 337 |
+
# Use a larger atol since mpmath is doing numerical integration
|
| 338 |
+
_assert_inverts(
|
| 339 |
+
sp.chndtridf,
|
| 340 |
+
_noncentral_chi_cdf,
|
| 341 |
+
1, [Arg(0, 100, inclusive_a=False), ProbArg(),
|
| 342 |
+
Arg(0, 100, inclusive_a=False)],
|
| 343 |
+
n=1000, rtol=1e-4, atol=1e-15)
|
| 344 |
+
|
| 345 |
+
@pytest.mark.xfail(run=False)
|
| 346 |
+
def test_chndtrinc(self):
|
| 347 |
+
# Use a larger atol since mpmath is doing numerical integration
|
| 348 |
+
_assert_inverts(
|
| 349 |
+
sp.chndtrinc,
|
| 350 |
+
_noncentral_chi_cdf,
|
| 351 |
+
2, [Arg(0, 100, inclusive_a=False), IntArg(1, 100), ProbArg()],
|
| 352 |
+
n=1000, rtol=1e-4, atol=1e-15)
|
| 353 |
+
|
| 354 |
+
def test_chndtrix(self):
|
| 355 |
+
# Use a larger atol since mpmath is doing numerical integration
|
| 356 |
+
_assert_inverts(
|
| 357 |
+
sp.chndtrix,
|
| 358 |
+
_noncentral_chi_cdf,
|
| 359 |
+
0, [ProbArg(), IntArg(1, 100), Arg(0, 100, inclusive_a=False)],
|
| 360 |
+
n=1000, rtol=1e-4, atol=1e-15,
|
| 361 |
+
endpt_atol=[1e-6, None, None])
|
| 362 |
+
|
| 363 |
+
def test_tklmbda_zero_shape(self):
|
| 364 |
+
# When lmbda = 0 the CDF has a simple closed form
|
| 365 |
+
one = mpmath.mpf(1)
|
| 366 |
+
assert_mpmath_equal(
|
| 367 |
+
lambda x: sp.tklmbda(x, 0),
|
| 368 |
+
lambda x: one/(mpmath.exp(-x) + one),
|
| 369 |
+
[Arg()], rtol=1e-7)
|
| 370 |
+
|
| 371 |
+
def test_tklmbda_neg_shape(self):
|
| 372 |
+
_assert_inverts(
|
| 373 |
+
sp.tklmbda,
|
| 374 |
+
_tukey_lmbda_quantile,
|
| 375 |
+
0, [ProbArg(), Arg(-25, 0, inclusive_b=False)],
|
| 376 |
+
spfunc_first=False, rtol=1e-5,
|
| 377 |
+
endpt_atol=[1e-9, 1e-5])
|
| 378 |
+
|
| 379 |
+
@pytest.mark.xfail(run=False)
|
| 380 |
+
def test_tklmbda_pos_shape(self):
|
| 381 |
+
_assert_inverts(
|
| 382 |
+
sp.tklmbda,
|
| 383 |
+
_tukey_lmbda_quantile,
|
| 384 |
+
0, [ProbArg(), Arg(0, 100, inclusive_a=False)],
|
| 385 |
+
spfunc_first=False, rtol=1e-5)
|
| 386 |
+
|
| 387 |
+
# The values of lmdba are chosen so that 1/lmbda is exact.
|
| 388 |
+
@pytest.mark.parametrize('lmbda', [0.5, 1.0, 8.0])
|
| 389 |
+
def test_tklmbda_lmbda1(self, lmbda):
|
| 390 |
+
bound = 1/lmbda
|
| 391 |
+
assert_equal(sp.tklmbda([-bound, bound], lmbda), [0.0, 1.0])
|
| 392 |
+
|
| 393 |
+
|
| 394 |
+
funcs = [
|
| 395 |
+
("btdtria", 3),
|
| 396 |
+
("btdtrib", 3),
|
| 397 |
+
("bdtrik", 3),
|
| 398 |
+
("bdtrin", 3),
|
| 399 |
+
("chdtriv", 2),
|
| 400 |
+
("chndtr", 3),
|
| 401 |
+
("chndtrix", 3),
|
| 402 |
+
("chndtridf", 3),
|
| 403 |
+
("chndtrinc", 3),
|
| 404 |
+
("fdtridfd", 3),
|
| 405 |
+
("ncfdtr", 4),
|
| 406 |
+
("ncfdtri", 4),
|
| 407 |
+
("ncfdtridfn", 4),
|
| 408 |
+
("ncfdtridfd", 4),
|
| 409 |
+
("ncfdtrinc", 4),
|
| 410 |
+
("gdtrix", 3),
|
| 411 |
+
("gdtrib", 3),
|
| 412 |
+
("gdtria", 3),
|
| 413 |
+
("nbdtrik", 3),
|
| 414 |
+
("nbdtrin", 3),
|
| 415 |
+
("nrdtrimn", 3),
|
| 416 |
+
("nrdtrisd", 3),
|
| 417 |
+
("pdtrik", 2),
|
| 418 |
+
("stdtr", 2),
|
| 419 |
+
("stdtrit", 2),
|
| 420 |
+
("stdtridf", 2),
|
| 421 |
+
("nctdtr", 3),
|
| 422 |
+
("nctdtrit", 3),
|
| 423 |
+
("nctdtridf", 3),
|
| 424 |
+
("nctdtrinc", 3),
|
| 425 |
+
("tklmbda", 2),
|
| 426 |
+
]
|
| 427 |
+
|
| 428 |
+
|
| 429 |
+
@pytest.mark.parametrize('func,numargs', funcs, ids=[x[0] for x in funcs])
|
| 430 |
+
def test_nonfinite(func, numargs):
|
| 431 |
+
|
| 432 |
+
rng = np.random.default_rng(1701299355559735)
|
| 433 |
+
func = getattr(sp, func)
|
| 434 |
+
args_choices = [(float(x), np.nan, np.inf, -np.inf) for x in rng.random(numargs)]
|
| 435 |
+
|
| 436 |
+
for args in itertools.product(*args_choices):
|
| 437 |
+
res = func(*args)
|
| 438 |
+
|
| 439 |
+
if any(np.isnan(x) for x in args):
|
| 440 |
+
# Nan inputs should result to nan output
|
| 441 |
+
assert_equal(res, np.nan)
|
| 442 |
+
else:
|
| 443 |
+
# All other inputs should return something (but not
|
| 444 |
+
# raise exceptions or cause hangs)
|
| 445 |
+
pass
|
| 446 |
+
|
| 447 |
+
|
| 448 |
+
def test_chndtrix_gh2158():
|
| 449 |
+
# test that gh-2158 is resolved; previously this blew up
|
| 450 |
+
res = sp.chndtrix(0.999999, 2, np.arange(20.)+1e-6)
|
| 451 |
+
|
| 452 |
+
# Generated in R
|
| 453 |
+
# options(digits=16)
|
| 454 |
+
# ncp <- seq(0, 19) + 1e-6
|
| 455 |
+
# print(qchisq(0.999999, df = 2, ncp = ncp))
|
| 456 |
+
res_exp = [27.63103493142305, 35.25728589950540, 39.97396073236288,
|
| 457 |
+
43.88033702110538, 47.35206403482798, 50.54112500166103,
|
| 458 |
+
53.52720257322766, 56.35830042867810, 59.06600769498512,
|
| 459 |
+
61.67243118946381, 64.19376191277179, 66.64228141346548,
|
| 460 |
+
69.02756927200180, 71.35726934749408, 73.63759723904816,
|
| 461 |
+
75.87368842650227, 78.06984431185720, 80.22971052389806,
|
| 462 |
+
82.35640899964173, 84.45263768373256]
|
| 463 |
+
assert_allclose(res, res_exp)
|
| 464 |
+
|
| 465 |
+
@pytest.mark.xfail_on_32bit("32bit fails due to algorithm threshold")
|
| 466 |
+
def test_nctdtr_gh19896():
|
| 467 |
+
# test that gh-19896 is resolved.
|
| 468 |
+
# Compared to SciPy 1.11 results from Fortran code.
|
| 469 |
+
dfarr = [0.98, 9.8, 98, 980]
|
| 470 |
+
pnoncarr = [-3.8, 0.38, 3.8, 38]
|
| 471 |
+
tarr = [0.0015, 0.15, 1.5, 15]
|
| 472 |
+
resarr = [0.9999276519560749, 0.9999276519560749, 0.9999908831755221,
|
| 473 |
+
0.9999990265452424, 0.3524153312279712, 0.39749697267251416,
|
| 474 |
+
0.7168629634895805, 0.9656246449259646, 7.234804392512006e-05,
|
| 475 |
+
7.234804392512006e-05, 0.03538804607509127, 0.795482701508521,
|
| 476 |
+
0.0, 0.0, 0.0,
|
| 477 |
+
0.011927908523093889, 0.9999276519560749, 0.9999276519560749,
|
| 478 |
+
0.9999997441133123, 1.0, 0.3525155979118013,
|
| 479 |
+
0.4076312014048369, 0.8476794017035086, 0.9999999297116268,
|
| 480 |
+
7.234804392512006e-05, 7.234804392512006e-05, 0.013477443099785824,
|
| 481 |
+
0.9998501512331494, 0.0, 0.0,
|
| 482 |
+
0.0, 6.561112613212572e-07, 0.9999276519560749,
|
| 483 |
+
0.9999276519560749, 0.9999999313496014, 1.0,
|
| 484 |
+
0.3525281784865706, 0.40890253001898014, 0.8664672830017024,
|
| 485 |
+
1.0, 7.234804392512006e-05, 7.234804392512006e-05,
|
| 486 |
+
0.010990889489704836, 1.0, 0.0,
|
| 487 |
+
0.0, 0.0, 0.0,
|
| 488 |
+
0.9999276519560749, 0.9999276519560749, 0.9999999418789304,
|
| 489 |
+
1.0, 0.35252945487817355, 0.40903153246690993,
|
| 490 |
+
0.8684247068528264, 1.0, 7.234804392512006e-05,
|
| 491 |
+
7.234804392512006e-05, 0.01075068918582911, 1.0,
|
| 492 |
+
0.0, 0.0, 0.0, 0.0]
|
| 493 |
+
actarr = []
|
| 494 |
+
for df, p, t in itertools.product(dfarr, pnoncarr, tarr):
|
| 495 |
+
actarr += [sp.nctdtr(df, p, t)]
|
| 496 |
+
# The rtol is kept high on purpose to make it pass on 32bit systems
|
| 497 |
+
assert_allclose(actarr, resarr, rtol=1e-6, atol=0.0)
|
| 498 |
+
|
| 499 |
+
|
| 500 |
+
def test_nctdtrinc_gh19896():
|
| 501 |
+
# test that gh-19896 is resolved.
|
| 502 |
+
# Compared to SciPy 1.11 results from Fortran code.
|
| 503 |
+
dfarr = [0.001, 0.98, 9.8, 98, 980, 10000, 98, 9.8, 0.98, 0.001]
|
| 504 |
+
parr = [0.001, 0.1, 0.3, 0.8, 0.999, 0.001, 0.1, 0.3, 0.8, 0.999]
|
| 505 |
+
tarr = [0.0015, 0.15, 1.5, 15, 300, 0.0015, 0.15, 1.5, 15, 300]
|
| 506 |
+
desired = [3.090232306168629, 1.406141304556198, 2.014225177124157,
|
| 507 |
+
13.727067118283456, 278.9765683871208, 3.090232306168629,
|
| 508 |
+
1.4312427877936222, 2.014225177124157, 3.712743137978295,
|
| 509 |
+
-3.086951096691082]
|
| 510 |
+
actual = sp.nctdtrinc(dfarr, parr, tarr)
|
| 511 |
+
assert_allclose(actual, desired, rtol=5e-12, atol=0.0)
|
| 512 |
+
|
| 513 |
+
|
| 514 |
+
def test_stdtr_stdtrit_neg_inf():
|
| 515 |
+
# -inf was treated as +inf and values from the normal were returned
|
| 516 |
+
assert np.all(np.isnan(sp.stdtr(-np.inf, [-np.inf, -1.0, 0.0, 1.0, np.inf])))
|
| 517 |
+
assert np.all(np.isnan(sp.stdtrit(-np.inf, [0.0, 0.25, 0.5, 0.75, 1.0])))
|
| 518 |
+
|
| 519 |
+
|
| 520 |
+
def test_bdtrik_nbdtrik_inf():
|
| 521 |
+
y = np.array(
|
| 522 |
+
[np.nan,-np.inf,-10.0, -1.0, 0.0, .00001, .5, 0.9999, 1.0, 10.0, np.inf])
|
| 523 |
+
y = y[:,None]
|
| 524 |
+
p = np.atleast_2d(
|
| 525 |
+
[np.nan, -np.inf, -10.0, -1.0, 0.0, .00001, .5, 1.0, np.inf])
|
| 526 |
+
assert np.all(np.isnan(sp.bdtrik(y, np.inf, p)))
|
| 527 |
+
assert np.all(np.isnan(sp.nbdtrik(y, np.inf, p)))
|
openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_cdft_asymptotic.py
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# gh-14777 regression tests
|
| 2 |
+
# Test stdtr and stdtrit with infinite df and large values of df
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
from numpy.testing import assert_allclose, assert_equal
|
| 6 |
+
from scipy.special import stdtr, stdtrit, ndtr, ndtri
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def test_stdtr_vs_R_large_df():
|
| 10 |
+
df = [1e10, 1e12, 1e120, np.inf]
|
| 11 |
+
t = 1.
|
| 12 |
+
res = stdtr(df, t)
|
| 13 |
+
# R Code:
|
| 14 |
+
# options(digits=20)
|
| 15 |
+
# pt(1., c(1e10, 1e12, 1e120, Inf))
|
| 16 |
+
res_R = [0.84134474605644460343,
|
| 17 |
+
0.84134474606842180044,
|
| 18 |
+
0.84134474606854281475,
|
| 19 |
+
0.84134474606854292578]
|
| 20 |
+
assert_allclose(res, res_R, rtol=2e-15)
|
| 21 |
+
# last value should also agree with ndtr
|
| 22 |
+
assert_equal(res[3], ndtr(1.))
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def test_stdtrit_vs_R_large_df():
|
| 26 |
+
df = [1e10, 1e12, 1e120, np.inf]
|
| 27 |
+
p = 0.1
|
| 28 |
+
res = stdtrit(df, p)
|
| 29 |
+
# R Code:
|
| 30 |
+
# options(digits=20)
|
| 31 |
+
# qt(0.1, c(1e10, 1e12, 1e120, Inf))
|
| 32 |
+
res_R = [-1.2815515656292593150,
|
| 33 |
+
-1.2815515655454472466,
|
| 34 |
+
-1.2815515655446008125,
|
| 35 |
+
-1.2815515655446008125]
|
| 36 |
+
assert_allclose(res, res_R, rtol=1e-14, atol=1e-15)
|
| 37 |
+
# last value should also agree with ndtri
|
| 38 |
+
assert_equal(res[3], ndtri(0.1))
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def test_stdtr_stdtri_invalid():
|
| 42 |
+
# a mix of large and inf df with t/p equal to nan
|
| 43 |
+
df = [1e10, 1e12, 1e120, np.inf]
|
| 44 |
+
x = np.nan
|
| 45 |
+
res1 = stdtr(df, x)
|
| 46 |
+
res2 = stdtrit(df, x)
|
| 47 |
+
res_ex = 4*[np.nan]
|
| 48 |
+
assert_equal(res1, res_ex)
|
| 49 |
+
assert_equal(res2, res_ex)
|
openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_cython_special.py
ADDED
|
@@ -0,0 +1,363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
from typing import Callable
|
| 3 |
+
|
| 4 |
+
import pytest
|
| 5 |
+
from itertools import product
|
| 6 |
+
from numpy.testing import assert_allclose, suppress_warnings
|
| 7 |
+
from scipy import special
|
| 8 |
+
from scipy.special import cython_special
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
bint_points = [True, False]
|
| 12 |
+
int_points = [-10, -1, 1, 10]
|
| 13 |
+
real_points = [-10.0, -1.0, 1.0, 10.0]
|
| 14 |
+
complex_points = [complex(*tup) for tup in product(real_points, repeat=2)]
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
CYTHON_SIGNATURE_MAP = {
|
| 18 |
+
'b': 'bint',
|
| 19 |
+
'f': 'float',
|
| 20 |
+
'd': 'double',
|
| 21 |
+
'g': 'long double',
|
| 22 |
+
'F': 'float complex',
|
| 23 |
+
'D': 'double complex',
|
| 24 |
+
'G': 'long double complex',
|
| 25 |
+
'i': 'int',
|
| 26 |
+
'l': 'long'
|
| 27 |
+
}
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
TEST_POINTS = {
|
| 31 |
+
'b': bint_points,
|
| 32 |
+
'f': real_points,
|
| 33 |
+
'd': real_points,
|
| 34 |
+
'g': real_points,
|
| 35 |
+
'F': complex_points,
|
| 36 |
+
'D': complex_points,
|
| 37 |
+
'G': complex_points,
|
| 38 |
+
'i': int_points,
|
| 39 |
+
'l': int_points,
|
| 40 |
+
}
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
PARAMS: list[tuple[Callable, Callable, tuple[str, ...], str | None]] = [
|
| 44 |
+
(special.agm, cython_special.agm, ('dd',), None),
|
| 45 |
+
(special.airy, cython_special._airy_pywrap, ('d', 'D'), None),
|
| 46 |
+
(special.airye, cython_special._airye_pywrap, ('d', 'D'), None),
|
| 47 |
+
(special.bdtr, cython_special.bdtr, ('dld', 'ddd'), None),
|
| 48 |
+
(special.bdtrc, cython_special.bdtrc, ('dld', 'ddd'), None),
|
| 49 |
+
(special.bdtri, cython_special.bdtri, ('dld', 'ddd'), None),
|
| 50 |
+
(special.bdtrik, cython_special.bdtrik, ('ddd',), None),
|
| 51 |
+
(special.bdtrin, cython_special.bdtrin, ('ddd',), None),
|
| 52 |
+
(special.bei, cython_special.bei, ('d',), None),
|
| 53 |
+
(special.beip, cython_special.beip, ('d',), None),
|
| 54 |
+
(special.ber, cython_special.ber, ('d',), None),
|
| 55 |
+
(special.berp, cython_special.berp, ('d',), None),
|
| 56 |
+
(special.besselpoly, cython_special.besselpoly, ('ddd',), None),
|
| 57 |
+
(special.beta, cython_special.beta, ('dd',), None),
|
| 58 |
+
(special.betainc, cython_special.betainc, ('ddd',), None),
|
| 59 |
+
(special.betaincc, cython_special.betaincc, ('ddd',), None),
|
| 60 |
+
(special.betaincinv, cython_special.betaincinv, ('ddd',), None),
|
| 61 |
+
(special.betainccinv, cython_special.betainccinv, ('ddd',), None),
|
| 62 |
+
(special.betaln, cython_special.betaln, ('dd',), None),
|
| 63 |
+
(special.binom, cython_special.binom, ('dd',), None),
|
| 64 |
+
(special.boxcox, cython_special.boxcox, ('dd',), None),
|
| 65 |
+
(special.boxcox1p, cython_special.boxcox1p, ('dd',), None),
|
| 66 |
+
(special.btdtr, cython_special.btdtr, ('ddd',), None),
|
| 67 |
+
(special.btdtri, cython_special.btdtri, ('ddd',), None),
|
| 68 |
+
(special.btdtria, cython_special.btdtria, ('ddd',), None),
|
| 69 |
+
(special.btdtrib, cython_special.btdtrib, ('ddd',), None),
|
| 70 |
+
(special.cbrt, cython_special.cbrt, ('d',), None),
|
| 71 |
+
(special.chdtr, cython_special.chdtr, ('dd',), None),
|
| 72 |
+
(special.chdtrc, cython_special.chdtrc, ('dd',), None),
|
| 73 |
+
(special.chdtri, cython_special.chdtri, ('dd',), None),
|
| 74 |
+
(special.chdtriv, cython_special.chdtriv, ('dd',), None),
|
| 75 |
+
(special.chndtr, cython_special.chndtr, ('ddd',), None),
|
| 76 |
+
(special.chndtridf, cython_special.chndtridf, ('ddd',), None),
|
| 77 |
+
(special.chndtrinc, cython_special.chndtrinc, ('ddd',), None),
|
| 78 |
+
(special.chndtrix, cython_special.chndtrix, ('ddd',), None),
|
| 79 |
+
(special.cosdg, cython_special.cosdg, ('d',), None),
|
| 80 |
+
(special.cosm1, cython_special.cosm1, ('d',), None),
|
| 81 |
+
(special.cotdg, cython_special.cotdg, ('d',), None),
|
| 82 |
+
(special.dawsn, cython_special.dawsn, ('d', 'D'), None),
|
| 83 |
+
(special.ellipe, cython_special.ellipe, ('d',), None),
|
| 84 |
+
(special.ellipeinc, cython_special.ellipeinc, ('dd',), None),
|
| 85 |
+
(special.ellipj, cython_special._ellipj_pywrap, ('dd',), None),
|
| 86 |
+
(special.ellipkinc, cython_special.ellipkinc, ('dd',), None),
|
| 87 |
+
(special.ellipkm1, cython_special.ellipkm1, ('d',), None),
|
| 88 |
+
(special.ellipk, cython_special.ellipk, ('d',), None),
|
| 89 |
+
(special.elliprc, cython_special.elliprc, ('dd', 'DD'), None),
|
| 90 |
+
(special.elliprd, cython_special.elliprd, ('ddd', 'DDD'), None),
|
| 91 |
+
(special.elliprf, cython_special.elliprf, ('ddd', 'DDD'), None),
|
| 92 |
+
(special.elliprg, cython_special.elliprg, ('ddd', 'DDD'), None),
|
| 93 |
+
(special.elliprj, cython_special.elliprj, ('dddd', 'DDDD'), None),
|
| 94 |
+
(special.entr, cython_special.entr, ('d',), None),
|
| 95 |
+
(special.erf, cython_special.erf, ('d', 'D'), None),
|
| 96 |
+
(special.erfc, cython_special.erfc, ('d', 'D'), None),
|
| 97 |
+
(special.erfcx, cython_special.erfcx, ('d', 'D'), None),
|
| 98 |
+
(special.erfi, cython_special.erfi, ('d', 'D'), None),
|
| 99 |
+
(special.erfinv, cython_special.erfinv, ('d',), None),
|
| 100 |
+
(special.erfcinv, cython_special.erfcinv, ('d',), None),
|
| 101 |
+
(special.eval_chebyc, cython_special.eval_chebyc, ('dd', 'dD', 'ld'), None),
|
| 102 |
+
(special.eval_chebys, cython_special.eval_chebys, ('dd', 'dD', 'ld'),
|
| 103 |
+
'd and l differ for negative int'),
|
| 104 |
+
(special.eval_chebyt, cython_special.eval_chebyt, ('dd', 'dD', 'ld'),
|
| 105 |
+
'd and l differ for negative int'),
|
| 106 |
+
(special.eval_chebyu, cython_special.eval_chebyu, ('dd', 'dD', 'ld'),
|
| 107 |
+
'd and l differ for negative int'),
|
| 108 |
+
(special.eval_gegenbauer, cython_special.eval_gegenbauer, ('ddd', 'ddD', 'ldd'),
|
| 109 |
+
'd and l differ for negative int'),
|
| 110 |
+
(special.eval_genlaguerre, cython_special.eval_genlaguerre, ('ddd', 'ddD', 'ldd'),
|
| 111 |
+
'd and l differ for negative int'),
|
| 112 |
+
(special.eval_hermite, cython_special.eval_hermite, ('ld',), None),
|
| 113 |
+
(special.eval_hermitenorm, cython_special.eval_hermitenorm, ('ld',), None),
|
| 114 |
+
(special.eval_jacobi, cython_special.eval_jacobi, ('dddd', 'dddD', 'lddd'),
|
| 115 |
+
'd and l differ for negative int'),
|
| 116 |
+
(special.eval_laguerre, cython_special.eval_laguerre, ('dd', 'dD', 'ld'),
|
| 117 |
+
'd and l differ for negative int'),
|
| 118 |
+
(special.eval_legendre, cython_special.eval_legendre, ('dd', 'dD', 'ld'), None),
|
| 119 |
+
(special.eval_sh_chebyt, cython_special.eval_sh_chebyt, ('dd', 'dD', 'ld'), None),
|
| 120 |
+
(special.eval_sh_chebyu, cython_special.eval_sh_chebyu, ('dd', 'dD', 'ld'),
|
| 121 |
+
'd and l differ for negative int'),
|
| 122 |
+
(special.eval_sh_jacobi, cython_special.eval_sh_jacobi, ('dddd', 'dddD', 'lddd'),
|
| 123 |
+
'd and l differ for negative int'),
|
| 124 |
+
(special.eval_sh_legendre, cython_special.eval_sh_legendre, ('dd', 'dD', 'ld'),
|
| 125 |
+
None),
|
| 126 |
+
(special.exp1, cython_special.exp1, ('d', 'D'), None),
|
| 127 |
+
(special.exp10, cython_special.exp10, ('d',), None),
|
| 128 |
+
(special.exp2, cython_special.exp2, ('d',), None),
|
| 129 |
+
(special.expi, cython_special.expi, ('d', 'D'), None),
|
| 130 |
+
(special.expit, cython_special.expit, ('f', 'd', 'g'), None),
|
| 131 |
+
(special.expm1, cython_special.expm1, ('d', 'D'), None),
|
| 132 |
+
(special.expn, cython_special.expn, ('ld', 'dd'), None),
|
| 133 |
+
(special.exprel, cython_special.exprel, ('d',), None),
|
| 134 |
+
(special.fdtr, cython_special.fdtr, ('ddd',), None),
|
| 135 |
+
(special.fdtrc, cython_special.fdtrc, ('ddd',), None),
|
| 136 |
+
(special.fdtri, cython_special.fdtri, ('ddd',), None),
|
| 137 |
+
(special.fdtridfd, cython_special.fdtridfd, ('ddd',), None),
|
| 138 |
+
(special.fresnel, cython_special._fresnel_pywrap, ('d', 'D'), None),
|
| 139 |
+
(special.gamma, cython_special.gamma, ('d', 'D'), None),
|
| 140 |
+
(special.gammainc, cython_special.gammainc, ('dd',), None),
|
| 141 |
+
(special.gammaincc, cython_special.gammaincc, ('dd',), None),
|
| 142 |
+
(special.gammainccinv, cython_special.gammainccinv, ('dd',), None),
|
| 143 |
+
(special.gammaincinv, cython_special.gammaincinv, ('dd',), None),
|
| 144 |
+
(special.gammaln, cython_special.gammaln, ('d',), None),
|
| 145 |
+
(special.gammasgn, cython_special.gammasgn, ('d',), None),
|
| 146 |
+
(special.gdtr, cython_special.gdtr, ('ddd',), None),
|
| 147 |
+
(special.gdtrc, cython_special.gdtrc, ('ddd',), None),
|
| 148 |
+
(special.gdtria, cython_special.gdtria, ('ddd',), None),
|
| 149 |
+
(special.gdtrib, cython_special.gdtrib, ('ddd',), None),
|
| 150 |
+
(special.gdtrix, cython_special.gdtrix, ('ddd',), None),
|
| 151 |
+
(special.hankel1, cython_special.hankel1, ('dD',), None),
|
| 152 |
+
(special.hankel1e, cython_special.hankel1e, ('dD',), None),
|
| 153 |
+
(special.hankel2, cython_special.hankel2, ('dD',), None),
|
| 154 |
+
(special.hankel2e, cython_special.hankel2e, ('dD',), None),
|
| 155 |
+
(special.huber, cython_special.huber, ('dd',), None),
|
| 156 |
+
(special.hyp0f1, cython_special.hyp0f1, ('dd', 'dD'), None),
|
| 157 |
+
(special.hyp1f1, cython_special.hyp1f1, ('ddd', 'ddD'), None),
|
| 158 |
+
(special.hyp2f1, cython_special.hyp2f1, ('dddd', 'dddD'), None),
|
| 159 |
+
(special.hyperu, cython_special.hyperu, ('ddd',), None),
|
| 160 |
+
(special.i0, cython_special.i0, ('d',), None),
|
| 161 |
+
(special.i0e, cython_special.i0e, ('d',), None),
|
| 162 |
+
(special.i1, cython_special.i1, ('d',), None),
|
| 163 |
+
(special.i1e, cython_special.i1e, ('d',), None),
|
| 164 |
+
(special.inv_boxcox, cython_special.inv_boxcox, ('dd',), None),
|
| 165 |
+
(special.inv_boxcox1p, cython_special.inv_boxcox1p, ('dd',), None),
|
| 166 |
+
(special.it2i0k0, cython_special._it2i0k0_pywrap, ('d',), None),
|
| 167 |
+
(special.it2j0y0, cython_special._it2j0y0_pywrap, ('d',), None),
|
| 168 |
+
(special.it2struve0, cython_special.it2struve0, ('d',), None),
|
| 169 |
+
(special.itairy, cython_special._itairy_pywrap, ('d',), None),
|
| 170 |
+
(special.iti0k0, cython_special._iti0k0_pywrap, ('d',), None),
|
| 171 |
+
(special.itj0y0, cython_special._itj0y0_pywrap, ('d',), None),
|
| 172 |
+
(special.itmodstruve0, cython_special.itmodstruve0, ('d',), None),
|
| 173 |
+
(special.itstruve0, cython_special.itstruve0, ('d',), None),
|
| 174 |
+
(special.iv, cython_special.iv, ('dd', 'dD'), None),
|
| 175 |
+
(special.ive, cython_special.ive, ('dd', 'dD'), None),
|
| 176 |
+
(special.j0, cython_special.j0, ('d',), None),
|
| 177 |
+
(special.j1, cython_special.j1, ('d',), None),
|
| 178 |
+
(special.jv, cython_special.jv, ('dd', 'dD'), None),
|
| 179 |
+
(special.jve, cython_special.jve, ('dd', 'dD'), None),
|
| 180 |
+
(special.k0, cython_special.k0, ('d',), None),
|
| 181 |
+
(special.k0e, cython_special.k0e, ('d',), None),
|
| 182 |
+
(special.k1, cython_special.k1, ('d',), None),
|
| 183 |
+
(special.k1e, cython_special.k1e, ('d',), None),
|
| 184 |
+
(special.kei, cython_special.kei, ('d',), None),
|
| 185 |
+
(special.keip, cython_special.keip, ('d',), None),
|
| 186 |
+
(special.kelvin, cython_special._kelvin_pywrap, ('d',), None),
|
| 187 |
+
(special.ker, cython_special.ker, ('d',), None),
|
| 188 |
+
(special.kerp, cython_special.kerp, ('d',), None),
|
| 189 |
+
(special.kl_div, cython_special.kl_div, ('dd',), None),
|
| 190 |
+
(special.kn, cython_special.kn, ('ld', 'dd'), None),
|
| 191 |
+
(special.kolmogi, cython_special.kolmogi, ('d',), None),
|
| 192 |
+
(special.kolmogorov, cython_special.kolmogorov, ('d',), None),
|
| 193 |
+
(special.kv, cython_special.kv, ('dd', 'dD'), None),
|
| 194 |
+
(special.kve, cython_special.kve, ('dd', 'dD'), None),
|
| 195 |
+
(special.log1p, cython_special.log1p, ('d', 'D'), None),
|
| 196 |
+
(special.log_expit, cython_special.log_expit, ('f', 'd', 'g'), None),
|
| 197 |
+
(special.log_ndtr, cython_special.log_ndtr, ('d', 'D'), None),
|
| 198 |
+
(special.ndtri_exp, cython_special.ndtri_exp, ('d',), None),
|
| 199 |
+
(special.loggamma, cython_special.loggamma, ('D',), None),
|
| 200 |
+
(special.logit, cython_special.logit, ('f', 'd', 'g'), None),
|
| 201 |
+
(special.lpmv, cython_special.lpmv, ('ddd',), None),
|
| 202 |
+
(special.mathieu_a, cython_special.mathieu_a, ('dd',), None),
|
| 203 |
+
(special.mathieu_b, cython_special.mathieu_b, ('dd',), None),
|
| 204 |
+
(special.mathieu_cem, cython_special._mathieu_cem_pywrap, ('ddd',), None),
|
| 205 |
+
(special.mathieu_modcem1, cython_special._mathieu_modcem1_pywrap, ('ddd',), None),
|
| 206 |
+
(special.mathieu_modcem2, cython_special._mathieu_modcem2_pywrap, ('ddd',), None),
|
| 207 |
+
(special.mathieu_modsem1, cython_special._mathieu_modsem1_pywrap, ('ddd',), None),
|
| 208 |
+
(special.mathieu_modsem2, cython_special._mathieu_modsem2_pywrap, ('ddd',), None),
|
| 209 |
+
(special.mathieu_sem, cython_special._mathieu_sem_pywrap, ('ddd',), None),
|
| 210 |
+
(special.modfresnelm, cython_special._modfresnelm_pywrap, ('d',), None),
|
| 211 |
+
(special.modfresnelp, cython_special._modfresnelp_pywrap, ('d',), None),
|
| 212 |
+
(special.modstruve, cython_special.modstruve, ('dd',), None),
|
| 213 |
+
(special.nbdtr, cython_special.nbdtr, ('lld', 'ddd'), None),
|
| 214 |
+
(special.nbdtrc, cython_special.nbdtrc, ('lld', 'ddd'), None),
|
| 215 |
+
(special.nbdtri, cython_special.nbdtri, ('lld', 'ddd'), None),
|
| 216 |
+
(special.nbdtrik, cython_special.nbdtrik, ('ddd',), None),
|
| 217 |
+
(special.nbdtrin, cython_special.nbdtrin, ('ddd',), None),
|
| 218 |
+
(special.ncfdtr, cython_special.ncfdtr, ('dddd',), None),
|
| 219 |
+
(special.ncfdtri, cython_special.ncfdtri, ('dddd',), None),
|
| 220 |
+
(special.ncfdtridfd, cython_special.ncfdtridfd, ('dddd',), None),
|
| 221 |
+
(special.ncfdtridfn, cython_special.ncfdtridfn, ('dddd',), None),
|
| 222 |
+
(special.ncfdtrinc, cython_special.ncfdtrinc, ('dddd',), None),
|
| 223 |
+
(special.nctdtr, cython_special.nctdtr, ('ddd',), None),
|
| 224 |
+
(special.nctdtridf, cython_special.nctdtridf, ('ddd',), None),
|
| 225 |
+
(special.nctdtrinc, cython_special.nctdtrinc, ('ddd',), None),
|
| 226 |
+
(special.nctdtrit, cython_special.nctdtrit, ('ddd',), None),
|
| 227 |
+
(special.ndtr, cython_special.ndtr, ('d', 'D'), None),
|
| 228 |
+
(special.ndtri, cython_special.ndtri, ('d',), None),
|
| 229 |
+
(special.nrdtrimn, cython_special.nrdtrimn, ('ddd',), None),
|
| 230 |
+
(special.nrdtrisd, cython_special.nrdtrisd, ('ddd',), None),
|
| 231 |
+
(special.obl_ang1, cython_special._obl_ang1_pywrap, ('dddd',), None),
|
| 232 |
+
(special.obl_ang1_cv, cython_special._obl_ang1_cv_pywrap, ('ddddd',), None),
|
| 233 |
+
(special.obl_cv, cython_special.obl_cv, ('ddd',), None),
|
| 234 |
+
(special.obl_rad1, cython_special._obl_rad1_pywrap, ('dddd',), "see gh-6211"),
|
| 235 |
+
(special.obl_rad1_cv, cython_special._obl_rad1_cv_pywrap, ('ddddd',),
|
| 236 |
+
"see gh-6211"),
|
| 237 |
+
(special.obl_rad2, cython_special._obl_rad2_pywrap, ('dddd',), "see gh-6211"),
|
| 238 |
+
(special.obl_rad2_cv, cython_special._obl_rad2_cv_pywrap, ('ddddd',),
|
| 239 |
+
"see gh-6211"),
|
| 240 |
+
(special.pbdv, cython_special._pbdv_pywrap, ('dd',), None),
|
| 241 |
+
(special.pbvv, cython_special._pbvv_pywrap, ('dd',), None),
|
| 242 |
+
(special.pbwa, cython_special._pbwa_pywrap, ('dd',), None),
|
| 243 |
+
(special.pdtr, cython_special.pdtr, ('dd', 'dd'), None),
|
| 244 |
+
(special.pdtrc, cython_special.pdtrc, ('dd', 'dd'), None),
|
| 245 |
+
(special.pdtri, cython_special.pdtri, ('ld', 'dd'), None),
|
| 246 |
+
(special.pdtrik, cython_special.pdtrik, ('dd',), None),
|
| 247 |
+
(special.poch, cython_special.poch, ('dd',), None),
|
| 248 |
+
(special.powm1, cython_special.powm1, ('dd',), None),
|
| 249 |
+
(special.pro_ang1, cython_special._pro_ang1_pywrap, ('dddd',), None),
|
| 250 |
+
(special.pro_ang1_cv, cython_special._pro_ang1_cv_pywrap, ('ddddd',), None),
|
| 251 |
+
(special.pro_cv, cython_special.pro_cv, ('ddd',), None),
|
| 252 |
+
(special.pro_rad1, cython_special._pro_rad1_pywrap, ('dddd',), "see gh-6211"),
|
| 253 |
+
(special.pro_rad1_cv, cython_special._pro_rad1_cv_pywrap, ('ddddd',),
|
| 254 |
+
"see gh-6211"),
|
| 255 |
+
(special.pro_rad2, cython_special._pro_rad2_pywrap, ('dddd',), "see gh-6211"),
|
| 256 |
+
(special.pro_rad2_cv, cython_special._pro_rad2_cv_pywrap, ('ddddd',),
|
| 257 |
+
"see gh-6211"),
|
| 258 |
+
(special.pseudo_huber, cython_special.pseudo_huber, ('dd',), None),
|
| 259 |
+
(special.psi, cython_special.psi, ('d', 'D'), None),
|
| 260 |
+
(special.radian, cython_special.radian, ('ddd',), None),
|
| 261 |
+
(special.rel_entr, cython_special.rel_entr, ('dd',), None),
|
| 262 |
+
(special.rgamma, cython_special.rgamma, ('d', 'D'), None),
|
| 263 |
+
(special.round, cython_special.round, ('d',), None),
|
| 264 |
+
(special.spherical_jn, cython_special.spherical_jn, ('ld', 'ldb', 'lD', 'lDb'),
|
| 265 |
+
None),
|
| 266 |
+
(special.spherical_yn, cython_special.spherical_yn, ('ld', 'ldb', 'lD', 'lDb'),
|
| 267 |
+
None),
|
| 268 |
+
(special.spherical_in, cython_special.spherical_in, ('ld', 'ldb', 'lD', 'lDb'),
|
| 269 |
+
None),
|
| 270 |
+
(special.spherical_kn, cython_special.spherical_kn, ('ld', 'ldb', 'lD', 'lDb'),
|
| 271 |
+
None),
|
| 272 |
+
(special.shichi, cython_special._shichi_pywrap, ('d', 'D'), None),
|
| 273 |
+
(special.sici, cython_special._sici_pywrap, ('d', 'D'), None),
|
| 274 |
+
(special.sindg, cython_special.sindg, ('d',), None),
|
| 275 |
+
(special.smirnov, cython_special.smirnov, ('ld', 'dd'), None),
|
| 276 |
+
(special.smirnovi, cython_special.smirnovi, ('ld', 'dd'), None),
|
| 277 |
+
(special.spence, cython_special.spence, ('d', 'D'), None),
|
| 278 |
+
(special.sph_harm, cython_special.sph_harm, ('lldd', 'dddd'), None),
|
| 279 |
+
(special.stdtr, cython_special.stdtr, ('dd',), None),
|
| 280 |
+
(special.stdtridf, cython_special.stdtridf, ('dd',), None),
|
| 281 |
+
(special.stdtrit, cython_special.stdtrit, ('dd',), None),
|
| 282 |
+
(special.struve, cython_special.struve, ('dd',), None),
|
| 283 |
+
(special.tandg, cython_special.tandg, ('d',), None),
|
| 284 |
+
(special.tklmbda, cython_special.tklmbda, ('dd',), None),
|
| 285 |
+
(special.voigt_profile, cython_special.voigt_profile, ('ddd',), None),
|
| 286 |
+
(special.wofz, cython_special.wofz, ('D',), None),
|
| 287 |
+
(special.wright_bessel, cython_special.wright_bessel, ('ddd',), None),
|
| 288 |
+
(special.wrightomega, cython_special.wrightomega, ('D',), None),
|
| 289 |
+
(special.xlog1py, cython_special.xlog1py, ('dd', 'DD'), None),
|
| 290 |
+
(special.xlogy, cython_special.xlogy, ('dd', 'DD'), None),
|
| 291 |
+
(special.y0, cython_special.y0, ('d',), None),
|
| 292 |
+
(special.y1, cython_special.y1, ('d',), None),
|
| 293 |
+
(special.yn, cython_special.yn, ('ld', 'dd'), None),
|
| 294 |
+
(special.yv, cython_special.yv, ('dd', 'dD'), None),
|
| 295 |
+
(special.yve, cython_special.yve, ('dd', 'dD'), None),
|
| 296 |
+
(special.zetac, cython_special.zetac, ('d',), None),
|
| 297 |
+
(special.owens_t, cython_special.owens_t, ('dd',), None)
|
| 298 |
+
]
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
IDS = [x[0].__name__ for x in PARAMS]
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
def _generate_test_points(typecodes):
|
| 305 |
+
axes = tuple(TEST_POINTS[x] for x in typecodes)
|
| 306 |
+
pts = list(product(*axes))
|
| 307 |
+
return pts
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
def test_cython_api_completeness():
|
| 311 |
+
# Check that everything is tested
|
| 312 |
+
for name in dir(cython_special):
|
| 313 |
+
func = getattr(cython_special, name)
|
| 314 |
+
if callable(func) and not name.startswith('_'):
|
| 315 |
+
for _, cyfun, _, _ in PARAMS:
|
| 316 |
+
if cyfun is func:
|
| 317 |
+
break
|
| 318 |
+
else:
|
| 319 |
+
raise RuntimeError(f"{name} missing from tests!")
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
@pytest.mark.parametrize("param", PARAMS, ids=IDS)
|
| 323 |
+
def test_cython_api(param):
|
| 324 |
+
pyfunc, cyfunc, specializations, knownfailure = param
|
| 325 |
+
if knownfailure:
|
| 326 |
+
pytest.xfail(reason=knownfailure)
|
| 327 |
+
|
| 328 |
+
# Check which parameters are expected to be fused types
|
| 329 |
+
max_params = max(len(spec) for spec in specializations)
|
| 330 |
+
values = [set() for _ in range(max_params)]
|
| 331 |
+
for typecodes in specializations:
|
| 332 |
+
for j, v in enumerate(typecodes):
|
| 333 |
+
values[j].add(v)
|
| 334 |
+
seen = set()
|
| 335 |
+
is_fused_code = [False] * len(values)
|
| 336 |
+
for j, v in enumerate(values):
|
| 337 |
+
vv = tuple(sorted(v))
|
| 338 |
+
if vv in seen:
|
| 339 |
+
continue
|
| 340 |
+
is_fused_code[j] = (len(v) > 1)
|
| 341 |
+
seen.add(vv)
|
| 342 |
+
|
| 343 |
+
# Check results
|
| 344 |
+
for typecodes in specializations:
|
| 345 |
+
# Pick the correct specialized function
|
| 346 |
+
signature = [CYTHON_SIGNATURE_MAP[code]
|
| 347 |
+
for j, code in enumerate(typecodes)
|
| 348 |
+
if is_fused_code[j]]
|
| 349 |
+
|
| 350 |
+
if signature:
|
| 351 |
+
cy_spec_func = cyfunc[tuple(signature)]
|
| 352 |
+
else:
|
| 353 |
+
signature = None
|
| 354 |
+
cy_spec_func = cyfunc
|
| 355 |
+
|
| 356 |
+
# Test it
|
| 357 |
+
pts = _generate_test_points(typecodes)
|
| 358 |
+
for pt in pts:
|
| 359 |
+
with suppress_warnings() as sup:
|
| 360 |
+
sup.filter(DeprecationWarning)
|
| 361 |
+
pyval = pyfunc(*pt)
|
| 362 |
+
cyval = cy_spec_func(*pt)
|
| 363 |
+
assert_allclose(cyval, pyval, err_msg=f"{pt} {typecodes} {signature}")
|
openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_data.py
ADDED
|
@@ -0,0 +1,725 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import importlib.resources
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
from numpy.testing import suppress_warnings
|
| 5 |
+
import pytest
|
| 6 |
+
|
| 7 |
+
from scipy.special import (
|
| 8 |
+
lpn, lpmn, lpmv, lqn, lqmn, sph_harm, eval_legendre, eval_hermite,
|
| 9 |
+
eval_laguerre, eval_genlaguerre, binom, cbrt, expm1, log1p, zeta,
|
| 10 |
+
jn, jv, jvp, yn, yv, yvp, iv, ivp, kn, kv, kvp,
|
| 11 |
+
gamma, gammaln, gammainc, gammaincc, gammaincinv, gammainccinv, digamma,
|
| 12 |
+
beta, betainc, betaincinv, poch,
|
| 13 |
+
ellipe, ellipeinc, ellipk, ellipkm1, ellipkinc,
|
| 14 |
+
elliprc, elliprd, elliprf, elliprg, elliprj,
|
| 15 |
+
erf, erfc, erfinv, erfcinv, exp1, expi, expn,
|
| 16 |
+
bdtrik, btdtr, btdtri, btdtria, btdtrib, chndtr, gdtr, gdtrc, gdtrix, gdtrib,
|
| 17 |
+
nbdtrik, pdtrik, owens_t,
|
| 18 |
+
mathieu_a, mathieu_b, mathieu_cem, mathieu_sem, mathieu_modcem1,
|
| 19 |
+
mathieu_modsem1, mathieu_modcem2, mathieu_modsem2,
|
| 20 |
+
ellip_harm, ellip_harm_2, spherical_jn, spherical_yn, wright_bessel
|
| 21 |
+
)
|
| 22 |
+
from scipy.integrate import IntegrationWarning
|
| 23 |
+
|
| 24 |
+
from scipy.special._testutils import FuncData
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# The npz files are generated, and hence may live in the build dir. We can only
|
| 28 |
+
# access them through `importlib.resources`, not an explicit path from `__file__`
|
| 29 |
+
_datadir = importlib.resources.files('scipy.special.tests.data')
|
| 30 |
+
|
| 31 |
+
_boost_npz = _datadir.joinpath('boost.npz')
|
| 32 |
+
with importlib.resources.as_file(_boost_npz) as f:
|
| 33 |
+
DATASETS_BOOST = np.load(f)
|
| 34 |
+
|
| 35 |
+
_gsl_npz = _datadir.joinpath('gsl.npz')
|
| 36 |
+
with importlib.resources.as_file(_gsl_npz) as f:
|
| 37 |
+
DATASETS_GSL = np.load(f)
|
| 38 |
+
|
| 39 |
+
_local_npz = _datadir.joinpath('local.npz')
|
| 40 |
+
with importlib.resources.as_file(_local_npz) as f:
|
| 41 |
+
DATASETS_LOCAL = np.load(f)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def data(func, dataname, *a, **kw):
|
| 45 |
+
kw.setdefault('dataname', dataname)
|
| 46 |
+
return FuncData(func, DATASETS_BOOST[dataname], *a, **kw)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def data_gsl(func, dataname, *a, **kw):
|
| 50 |
+
kw.setdefault('dataname', dataname)
|
| 51 |
+
return FuncData(func, DATASETS_GSL[dataname], *a, **kw)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def data_local(func, dataname, *a, **kw):
|
| 55 |
+
kw.setdefault('dataname', dataname)
|
| 56 |
+
return FuncData(func, DATASETS_LOCAL[dataname], *a, **kw)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def ellipk_(k):
|
| 60 |
+
return ellipk(k*k)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def ellipkinc_(f, k):
|
| 64 |
+
return ellipkinc(f, k*k)
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def ellipe_(k):
|
| 68 |
+
return ellipe(k*k)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def ellipeinc_(f, k):
|
| 72 |
+
return ellipeinc(f, k*k)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def zeta_(x):
|
| 76 |
+
return zeta(x, 1.)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def assoc_legendre_p_boost_(nu, mu, x):
|
| 80 |
+
# the boost test data is for integer orders only
|
| 81 |
+
return lpmv(mu, nu.astype(int), x)
|
| 82 |
+
|
| 83 |
+
def legendre_p_via_assoc_(nu, x):
|
| 84 |
+
return lpmv(0, nu, x)
|
| 85 |
+
|
| 86 |
+
def lpn_(n, x):
|
| 87 |
+
return lpn(n.astype('l'), x)[0][-1]
|
| 88 |
+
|
| 89 |
+
def lqn_(n, x):
|
| 90 |
+
return lqn(n.astype('l'), x)[0][-1]
|
| 91 |
+
|
| 92 |
+
def legendre_p_via_lpmn(n, x):
|
| 93 |
+
return lpmn(0, n, x)[0][0,-1]
|
| 94 |
+
|
| 95 |
+
def legendre_q_via_lqmn(n, x):
|
| 96 |
+
return lqmn(0, n, x)[0][0,-1]
|
| 97 |
+
|
| 98 |
+
def mathieu_ce_rad(m, q, x):
|
| 99 |
+
return mathieu_cem(m, q, x*180/np.pi)[0]
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def mathieu_se_rad(m, q, x):
|
| 103 |
+
return mathieu_sem(m, q, x*180/np.pi)[0]
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def mathieu_mc1_scaled(m, q, x):
|
| 107 |
+
# GSL follows a different normalization.
|
| 108 |
+
# We follow Abramowitz & Stegun, they apparently something else.
|
| 109 |
+
return mathieu_modcem1(m, q, x)[0] * np.sqrt(np.pi/2)
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def mathieu_ms1_scaled(m, q, x):
|
| 113 |
+
return mathieu_modsem1(m, q, x)[0] * np.sqrt(np.pi/2)
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
def mathieu_mc2_scaled(m, q, x):
|
| 117 |
+
return mathieu_modcem2(m, q, x)[0] * np.sqrt(np.pi/2)
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def mathieu_ms2_scaled(m, q, x):
|
| 121 |
+
return mathieu_modsem2(m, q, x)[0] * np.sqrt(np.pi/2)
|
| 122 |
+
|
| 123 |
+
def eval_legendre_ld(n, x):
|
| 124 |
+
return eval_legendre(n.astype('l'), x)
|
| 125 |
+
|
| 126 |
+
def eval_legendre_dd(n, x):
|
| 127 |
+
return eval_legendre(n.astype('d'), x)
|
| 128 |
+
|
| 129 |
+
def eval_hermite_ld(n, x):
|
| 130 |
+
return eval_hermite(n.astype('l'), x)
|
| 131 |
+
|
| 132 |
+
def eval_laguerre_ld(n, x):
|
| 133 |
+
return eval_laguerre(n.astype('l'), x)
|
| 134 |
+
|
| 135 |
+
def eval_laguerre_dd(n, x):
|
| 136 |
+
return eval_laguerre(n.astype('d'), x)
|
| 137 |
+
|
| 138 |
+
def eval_genlaguerre_ldd(n, a, x):
|
| 139 |
+
return eval_genlaguerre(n.astype('l'), a, x)
|
| 140 |
+
|
| 141 |
+
def eval_genlaguerre_ddd(n, a, x):
|
| 142 |
+
return eval_genlaguerre(n.astype('d'), a, x)
|
| 143 |
+
|
| 144 |
+
def bdtrik_comp(y, n, p):
|
| 145 |
+
return bdtrik(1-y, n, p)
|
| 146 |
+
|
| 147 |
+
def btdtri_comp(a, b, p):
|
| 148 |
+
return btdtri(a, b, 1-p)
|
| 149 |
+
|
| 150 |
+
def btdtria_comp(p, b, x):
|
| 151 |
+
return btdtria(1-p, b, x)
|
| 152 |
+
|
| 153 |
+
def btdtrib_comp(a, p, x):
|
| 154 |
+
return btdtrib(a, 1-p, x)
|
| 155 |
+
|
| 156 |
+
def gdtr_(p, x):
|
| 157 |
+
return gdtr(1.0, p, x)
|
| 158 |
+
|
| 159 |
+
def gdtrc_(p, x):
|
| 160 |
+
return gdtrc(1.0, p, x)
|
| 161 |
+
|
| 162 |
+
def gdtrix_(b, p):
|
| 163 |
+
return gdtrix(1.0, b, p)
|
| 164 |
+
|
| 165 |
+
def gdtrix_comp(b, p):
|
| 166 |
+
return gdtrix(1.0, b, 1-p)
|
| 167 |
+
|
| 168 |
+
def gdtrib_(p, x):
|
| 169 |
+
return gdtrib(1.0, p, x)
|
| 170 |
+
|
| 171 |
+
def gdtrib_comp(p, x):
|
| 172 |
+
return gdtrib(1.0, 1-p, x)
|
| 173 |
+
|
| 174 |
+
def nbdtrik_comp(y, n, p):
|
| 175 |
+
return nbdtrik(1-y, n, p)
|
| 176 |
+
|
| 177 |
+
def pdtrik_comp(p, m):
|
| 178 |
+
return pdtrik(1-p, m)
|
| 179 |
+
|
| 180 |
+
def poch_(z, m):
|
| 181 |
+
return 1.0 / poch(z, m)
|
| 182 |
+
|
| 183 |
+
def poch_minus(z, m):
|
| 184 |
+
return 1.0 / poch(z, -m)
|
| 185 |
+
|
| 186 |
+
def spherical_jn_(n, x):
|
| 187 |
+
return spherical_jn(n.astype('l'), x)
|
| 188 |
+
|
| 189 |
+
def spherical_yn_(n, x):
|
| 190 |
+
return spherical_yn(n.astype('l'), x)
|
| 191 |
+
|
| 192 |
+
def sph_harm_(m, n, theta, phi):
|
| 193 |
+
y = sph_harm(m, n, theta, phi)
|
| 194 |
+
return (y.real, y.imag)
|
| 195 |
+
|
| 196 |
+
def cexpm1(x, y):
|
| 197 |
+
z = expm1(x + 1j*y)
|
| 198 |
+
return z.real, z.imag
|
| 199 |
+
|
| 200 |
+
def clog1p(x, y):
|
| 201 |
+
z = log1p(x + 1j*y)
|
| 202 |
+
return z.real, z.imag
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
BOOST_TESTS = [
|
| 206 |
+
data(assoc_legendre_p_boost_, 'assoc_legendre_p_ipp-assoc_legendre_p',
|
| 207 |
+
(0,1,2), 3, rtol=1e-11),
|
| 208 |
+
|
| 209 |
+
data(legendre_p_via_assoc_, 'legendre_p_ipp-legendre_p',
|
| 210 |
+
(0,1), 2, rtol=1e-11),
|
| 211 |
+
data(legendre_p_via_assoc_, 'legendre_p_large_ipp-legendre_p_large',
|
| 212 |
+
(0,1), 2, rtol=9.6e-14),
|
| 213 |
+
data(legendre_p_via_lpmn, 'legendre_p_ipp-legendre_p',
|
| 214 |
+
(0,1), 2, rtol=5e-14, vectorized=False),
|
| 215 |
+
data(legendre_p_via_lpmn, 'legendre_p_large_ipp-legendre_p_large',
|
| 216 |
+
(0,1), 2, rtol=9.6e-14, vectorized=False),
|
| 217 |
+
data(lpn_, 'legendre_p_ipp-legendre_p',
|
| 218 |
+
(0,1), 2, rtol=5e-14, vectorized=False),
|
| 219 |
+
data(lpn_, 'legendre_p_large_ipp-legendre_p_large',
|
| 220 |
+
(0,1), 2, rtol=3e-13, vectorized=False),
|
| 221 |
+
data(eval_legendre_ld, 'legendre_p_ipp-legendre_p',
|
| 222 |
+
(0,1), 2, rtol=6e-14),
|
| 223 |
+
data(eval_legendre_ld, 'legendre_p_large_ipp-legendre_p_large',
|
| 224 |
+
(0,1), 2, rtol=2e-13),
|
| 225 |
+
data(eval_legendre_dd, 'legendre_p_ipp-legendre_p',
|
| 226 |
+
(0,1), 2, rtol=2e-14),
|
| 227 |
+
data(eval_legendre_dd, 'legendre_p_large_ipp-legendre_p_large',
|
| 228 |
+
(0,1), 2, rtol=2e-13),
|
| 229 |
+
|
| 230 |
+
data(lqn_, 'legendre_p_ipp-legendre_p',
|
| 231 |
+
(0,1), 3, rtol=2e-14, vectorized=False),
|
| 232 |
+
data(lqn_, 'legendre_p_large_ipp-legendre_p_large',
|
| 233 |
+
(0,1), 3, rtol=2e-12, vectorized=False),
|
| 234 |
+
data(legendre_q_via_lqmn, 'legendre_p_ipp-legendre_p',
|
| 235 |
+
(0,1), 3, rtol=2e-14, vectorized=False),
|
| 236 |
+
data(legendre_q_via_lqmn, 'legendre_p_large_ipp-legendre_p_large',
|
| 237 |
+
(0,1), 3, rtol=2e-12, vectorized=False),
|
| 238 |
+
|
| 239 |
+
data(beta, 'beta_exp_data_ipp-beta_exp_data',
|
| 240 |
+
(0,1), 2, rtol=1e-13),
|
| 241 |
+
data(beta, 'beta_exp_data_ipp-beta_exp_data',
|
| 242 |
+
(0,1), 2, rtol=1e-13),
|
| 243 |
+
data(beta, 'beta_med_data_ipp-beta_med_data',
|
| 244 |
+
(0,1), 2, rtol=5e-13),
|
| 245 |
+
|
| 246 |
+
data(betainc, 'ibeta_small_data_ipp-ibeta_small_data',
|
| 247 |
+
(0,1,2), 5, rtol=6e-15),
|
| 248 |
+
data(betainc, 'ibeta_data_ipp-ibeta_data',
|
| 249 |
+
(0,1,2), 5, rtol=5e-13),
|
| 250 |
+
data(betainc, 'ibeta_int_data_ipp-ibeta_int_data',
|
| 251 |
+
(0,1,2), 5, rtol=2e-14),
|
| 252 |
+
data(betainc, 'ibeta_large_data_ipp-ibeta_large_data',
|
| 253 |
+
(0,1,2), 5, rtol=4e-10),
|
| 254 |
+
|
| 255 |
+
data(betaincinv, 'ibeta_inv_data_ipp-ibeta_inv_data',
|
| 256 |
+
(0,1,2), 3, rtol=1e-5),
|
| 257 |
+
|
| 258 |
+
data(btdtr, 'ibeta_small_data_ipp-ibeta_small_data',
|
| 259 |
+
(0,1,2), 5, rtol=6e-15),
|
| 260 |
+
data(btdtr, 'ibeta_data_ipp-ibeta_data',
|
| 261 |
+
(0,1,2), 5, rtol=4e-13),
|
| 262 |
+
data(btdtr, 'ibeta_int_data_ipp-ibeta_int_data',
|
| 263 |
+
(0,1,2), 5, rtol=2e-14),
|
| 264 |
+
data(btdtr, 'ibeta_large_data_ipp-ibeta_large_data',
|
| 265 |
+
(0,1,2), 5, rtol=4e-10),
|
| 266 |
+
|
| 267 |
+
data(btdtri, 'ibeta_inv_data_ipp-ibeta_inv_data',
|
| 268 |
+
(0,1,2), 3, rtol=1e-5),
|
| 269 |
+
data(btdtri_comp, 'ibeta_inv_data_ipp-ibeta_inv_data',
|
| 270 |
+
(0,1,2), 4, rtol=8e-7),
|
| 271 |
+
|
| 272 |
+
data(btdtria, 'ibeta_inva_data_ipp-ibeta_inva_data',
|
| 273 |
+
(2,0,1), 3, rtol=5e-9),
|
| 274 |
+
data(btdtria_comp, 'ibeta_inva_data_ipp-ibeta_inva_data',
|
| 275 |
+
(2,0,1), 4, rtol=5e-9),
|
| 276 |
+
|
| 277 |
+
data(btdtrib, 'ibeta_inva_data_ipp-ibeta_inva_data',
|
| 278 |
+
(0,2,1), 5, rtol=5e-9),
|
| 279 |
+
data(btdtrib_comp, 'ibeta_inva_data_ipp-ibeta_inva_data',
|
| 280 |
+
(0,2,1), 6, rtol=5e-9),
|
| 281 |
+
|
| 282 |
+
data(binom, 'binomial_data_ipp-binomial_data',
|
| 283 |
+
(0,1), 2, rtol=1e-13),
|
| 284 |
+
data(binom, 'binomial_large_data_ipp-binomial_large_data',
|
| 285 |
+
(0,1), 2, rtol=5e-13),
|
| 286 |
+
|
| 287 |
+
data(bdtrik, 'binomial_quantile_ipp-binomial_quantile_data',
|
| 288 |
+
(2,0,1), 3, rtol=5e-9),
|
| 289 |
+
data(bdtrik_comp, 'binomial_quantile_ipp-binomial_quantile_data',
|
| 290 |
+
(2,0,1), 4, rtol=5e-9),
|
| 291 |
+
|
| 292 |
+
data(nbdtrik, 'negative_binomial_quantile_ipp-negative_binomial_quantile_data',
|
| 293 |
+
(2,0,1), 3, rtol=4e-9),
|
| 294 |
+
data(nbdtrik_comp,
|
| 295 |
+
'negative_binomial_quantile_ipp-negative_binomial_quantile_data',
|
| 296 |
+
(2,0,1), 4, rtol=4e-9),
|
| 297 |
+
|
| 298 |
+
data(pdtrik, 'poisson_quantile_ipp-poisson_quantile_data',
|
| 299 |
+
(1,0), 2, rtol=3e-9),
|
| 300 |
+
data(pdtrik_comp, 'poisson_quantile_ipp-poisson_quantile_data',
|
| 301 |
+
(1,0), 3, rtol=4e-9),
|
| 302 |
+
|
| 303 |
+
data(cbrt, 'cbrt_data_ipp-cbrt_data', 1, 0),
|
| 304 |
+
|
| 305 |
+
data(digamma, 'digamma_data_ipp-digamma_data', 0, 1),
|
| 306 |
+
data(digamma, 'digamma_data_ipp-digamma_data', 0j, 1),
|
| 307 |
+
data(digamma, 'digamma_neg_data_ipp-digamma_neg_data', 0, 1, rtol=2e-13),
|
| 308 |
+
data(digamma, 'digamma_neg_data_ipp-digamma_neg_data', 0j, 1, rtol=1e-13),
|
| 309 |
+
data(digamma, 'digamma_root_data_ipp-digamma_root_data', 0, 1, rtol=1e-15),
|
| 310 |
+
data(digamma, 'digamma_root_data_ipp-digamma_root_data', 0j, 1, rtol=1e-15),
|
| 311 |
+
data(digamma, 'digamma_small_data_ipp-digamma_small_data', 0, 1, rtol=1e-15),
|
| 312 |
+
data(digamma, 'digamma_small_data_ipp-digamma_small_data', 0j, 1, rtol=1e-14),
|
| 313 |
+
|
| 314 |
+
data(ellipk_, 'ellint_k_data_ipp-ellint_k_data', 0, 1),
|
| 315 |
+
data(ellipkinc_, 'ellint_f_data_ipp-ellint_f_data', (0,1), 2, rtol=1e-14),
|
| 316 |
+
data(ellipe_, 'ellint_e_data_ipp-ellint_e_data', 0, 1),
|
| 317 |
+
data(ellipeinc_, 'ellint_e2_data_ipp-ellint_e2_data', (0,1), 2, rtol=1e-14),
|
| 318 |
+
|
| 319 |
+
data(erf, 'erf_data_ipp-erf_data', 0, 1),
|
| 320 |
+
data(erf, 'erf_data_ipp-erf_data', 0j, 1, rtol=1e-13),
|
| 321 |
+
data(erfc, 'erf_data_ipp-erf_data', 0, 2, rtol=6e-15),
|
| 322 |
+
data(erf, 'erf_large_data_ipp-erf_large_data', 0, 1),
|
| 323 |
+
data(erf, 'erf_large_data_ipp-erf_large_data', 0j, 1),
|
| 324 |
+
data(erfc, 'erf_large_data_ipp-erf_large_data', 0, 2, rtol=4e-14),
|
| 325 |
+
data(erf, 'erf_small_data_ipp-erf_small_data', 0, 1),
|
| 326 |
+
data(erf, 'erf_small_data_ipp-erf_small_data', 0j, 1, rtol=1e-13),
|
| 327 |
+
data(erfc, 'erf_small_data_ipp-erf_small_data', 0, 2),
|
| 328 |
+
|
| 329 |
+
data(erfinv, 'erf_inv_data_ipp-erf_inv_data', 0, 1),
|
| 330 |
+
data(erfcinv, 'erfc_inv_data_ipp-erfc_inv_data', 0, 1),
|
| 331 |
+
data(erfcinv, 'erfc_inv_big_data_ipp-erfc_inv_big_data', 0, 1,
|
| 332 |
+
param_filter=(lambda s: s > 0)),
|
| 333 |
+
|
| 334 |
+
data(exp1, 'expint_1_data_ipp-expint_1_data', 1, 2, rtol=1e-13),
|
| 335 |
+
data(exp1, 'expint_1_data_ipp-expint_1_data', 1j, 2, rtol=5e-9),
|
| 336 |
+
data(expi, 'expinti_data_ipp-expinti_data', 0, 1, rtol=1e-13),
|
| 337 |
+
data(expi, 'expinti_data_double_ipp-expinti_data_double', 0, 1, rtol=1e-13),
|
| 338 |
+
data(expi, 'expinti_data_long_ipp-expinti_data_long', 0, 1),
|
| 339 |
+
|
| 340 |
+
data(expn, 'expint_small_data_ipp-expint_small_data', (0,1), 2),
|
| 341 |
+
data(expn, 'expint_data_ipp-expint_data', (0,1), 2, rtol=1e-14),
|
| 342 |
+
|
| 343 |
+
data(gamma, 'test_gamma_data_ipp-near_0', 0, 1),
|
| 344 |
+
data(gamma, 'test_gamma_data_ipp-near_1', 0, 1),
|
| 345 |
+
data(gamma, 'test_gamma_data_ipp-near_2', 0, 1),
|
| 346 |
+
data(gamma, 'test_gamma_data_ipp-near_m10', 0, 1),
|
| 347 |
+
data(gamma, 'test_gamma_data_ipp-near_m55', 0, 1, rtol=7e-12),
|
| 348 |
+
data(gamma, 'test_gamma_data_ipp-factorials', 0, 1, rtol=4e-14),
|
| 349 |
+
data(gamma, 'test_gamma_data_ipp-near_0', 0j, 1, rtol=2e-9),
|
| 350 |
+
data(gamma, 'test_gamma_data_ipp-near_1', 0j, 1, rtol=2e-9),
|
| 351 |
+
data(gamma, 'test_gamma_data_ipp-near_2', 0j, 1, rtol=2e-9),
|
| 352 |
+
data(gamma, 'test_gamma_data_ipp-near_m10', 0j, 1, rtol=2e-9),
|
| 353 |
+
data(gamma, 'test_gamma_data_ipp-near_m55', 0j, 1, rtol=2e-9),
|
| 354 |
+
data(gamma, 'test_gamma_data_ipp-factorials', 0j, 1, rtol=2e-13),
|
| 355 |
+
data(gammaln, 'test_gamma_data_ipp-near_0', 0, 2, rtol=5e-11),
|
| 356 |
+
data(gammaln, 'test_gamma_data_ipp-near_1', 0, 2, rtol=5e-11),
|
| 357 |
+
data(gammaln, 'test_gamma_data_ipp-near_2', 0, 2, rtol=2e-10),
|
| 358 |
+
data(gammaln, 'test_gamma_data_ipp-near_m10', 0, 2, rtol=5e-11),
|
| 359 |
+
data(gammaln, 'test_gamma_data_ipp-near_m55', 0, 2, rtol=5e-11),
|
| 360 |
+
data(gammaln, 'test_gamma_data_ipp-factorials', 0, 2),
|
| 361 |
+
|
| 362 |
+
data(gammainc, 'igamma_small_data_ipp-igamma_small_data', (0,1), 5, rtol=5e-15),
|
| 363 |
+
data(gammainc, 'igamma_med_data_ipp-igamma_med_data', (0,1), 5, rtol=2e-13),
|
| 364 |
+
data(gammainc, 'igamma_int_data_ipp-igamma_int_data', (0,1), 5, rtol=2e-13),
|
| 365 |
+
data(gammainc, 'igamma_big_data_ipp-igamma_big_data', (0,1), 5, rtol=1e-12),
|
| 366 |
+
|
| 367 |
+
data(gdtr_, 'igamma_small_data_ipp-igamma_small_data', (0,1), 5, rtol=1e-13),
|
| 368 |
+
data(gdtr_, 'igamma_med_data_ipp-igamma_med_data', (0,1), 5, rtol=2e-13),
|
| 369 |
+
data(gdtr_, 'igamma_int_data_ipp-igamma_int_data', (0,1), 5, rtol=2e-13),
|
| 370 |
+
data(gdtr_, 'igamma_big_data_ipp-igamma_big_data', (0,1), 5, rtol=2e-9),
|
| 371 |
+
|
| 372 |
+
data(gammaincc, 'igamma_small_data_ipp-igamma_small_data',
|
| 373 |
+
(0,1), 3, rtol=1e-13),
|
| 374 |
+
data(gammaincc, 'igamma_med_data_ipp-igamma_med_data',
|
| 375 |
+
(0,1), 3, rtol=2e-13),
|
| 376 |
+
data(gammaincc, 'igamma_int_data_ipp-igamma_int_data',
|
| 377 |
+
(0,1), 3, rtol=4e-14),
|
| 378 |
+
data(gammaincc, 'igamma_big_data_ipp-igamma_big_data',
|
| 379 |
+
(0,1), 3, rtol=1e-11),
|
| 380 |
+
|
| 381 |
+
data(gdtrc_, 'igamma_small_data_ipp-igamma_small_data', (0,1), 3, rtol=1e-13),
|
| 382 |
+
data(gdtrc_, 'igamma_med_data_ipp-igamma_med_data', (0,1), 3, rtol=2e-13),
|
| 383 |
+
data(gdtrc_, 'igamma_int_data_ipp-igamma_int_data', (0,1), 3, rtol=4e-14),
|
| 384 |
+
data(gdtrc_, 'igamma_big_data_ipp-igamma_big_data', (0,1), 3, rtol=1e-11),
|
| 385 |
+
|
| 386 |
+
data(gdtrib_, 'igamma_inva_data_ipp-igamma_inva_data', (1,0), 2, rtol=5e-9),
|
| 387 |
+
data(gdtrib_comp, 'igamma_inva_data_ipp-igamma_inva_data', (1,0), 3, rtol=5e-9),
|
| 388 |
+
|
| 389 |
+
data(poch_, 'tgamma_delta_ratio_data_ipp-tgamma_delta_ratio_data',
|
| 390 |
+
(0,1), 2, rtol=2e-13),
|
| 391 |
+
data(poch_, 'tgamma_delta_ratio_int_ipp-tgamma_delta_ratio_int',
|
| 392 |
+
(0,1), 2,),
|
| 393 |
+
data(poch_, 'tgamma_delta_ratio_int2_ipp-tgamma_delta_ratio_int2',
|
| 394 |
+
(0,1), 2,),
|
| 395 |
+
data(poch_minus, 'tgamma_delta_ratio_data_ipp-tgamma_delta_ratio_data',
|
| 396 |
+
(0,1), 3, rtol=2e-13),
|
| 397 |
+
data(poch_minus, 'tgamma_delta_ratio_int_ipp-tgamma_delta_ratio_int',
|
| 398 |
+
(0,1), 3),
|
| 399 |
+
data(poch_minus, 'tgamma_delta_ratio_int2_ipp-tgamma_delta_ratio_int2',
|
| 400 |
+
(0,1), 3),
|
| 401 |
+
|
| 402 |
+
data(eval_hermite_ld, 'hermite_ipp-hermite',
|
| 403 |
+
(0,1), 2, rtol=2e-14),
|
| 404 |
+
|
| 405 |
+
data(eval_laguerre_ld, 'laguerre2_ipp-laguerre2',
|
| 406 |
+
(0,1), 2, rtol=7e-12),
|
| 407 |
+
data(eval_laguerre_dd, 'laguerre2_ipp-laguerre2',
|
| 408 |
+
(0,1), 2, knownfailure='hyp2f1 insufficiently accurate.'),
|
| 409 |
+
data(eval_genlaguerre_ldd, 'laguerre3_ipp-laguerre3',
|
| 410 |
+
(0,1,2), 3, rtol=2e-13),
|
| 411 |
+
data(eval_genlaguerre_ddd, 'laguerre3_ipp-laguerre3',
|
| 412 |
+
(0,1,2), 3, knownfailure='hyp2f1 insufficiently accurate.'),
|
| 413 |
+
|
| 414 |
+
data(log1p, 'log1p_expm1_data_ipp-log1p_expm1_data', 0, 1),
|
| 415 |
+
data(expm1, 'log1p_expm1_data_ipp-log1p_expm1_data', 0, 2),
|
| 416 |
+
|
| 417 |
+
data(iv, 'bessel_i_data_ipp-bessel_i_data',
|
| 418 |
+
(0,1), 2, rtol=1e-12),
|
| 419 |
+
data(iv, 'bessel_i_data_ipp-bessel_i_data',
|
| 420 |
+
(0,1j), 2, rtol=2e-10, atol=1e-306),
|
| 421 |
+
data(iv, 'bessel_i_int_data_ipp-bessel_i_int_data',
|
| 422 |
+
(0,1), 2, rtol=1e-9),
|
| 423 |
+
data(iv, 'bessel_i_int_data_ipp-bessel_i_int_data',
|
| 424 |
+
(0,1j), 2, rtol=2e-10),
|
| 425 |
+
|
| 426 |
+
data(ivp, 'bessel_i_prime_int_data_ipp-bessel_i_prime_int_data',
|
| 427 |
+
(0,1), 2, rtol=1.2e-13),
|
| 428 |
+
data(ivp, 'bessel_i_prime_int_data_ipp-bessel_i_prime_int_data',
|
| 429 |
+
(0,1j), 2, rtol=1.2e-13, atol=1e-300),
|
| 430 |
+
|
| 431 |
+
data(jn, 'bessel_j_int_data_ipp-bessel_j_int_data', (0,1), 2, rtol=1e-12),
|
| 432 |
+
data(jn, 'bessel_j_int_data_ipp-bessel_j_int_data', (0,1j), 2, rtol=1e-12),
|
| 433 |
+
data(jn, 'bessel_j_large_data_ipp-bessel_j_large_data', (0,1), 2, rtol=6e-11),
|
| 434 |
+
data(jn, 'bessel_j_large_data_ipp-bessel_j_large_data', (0,1j), 2, rtol=6e-11),
|
| 435 |
+
|
| 436 |
+
data(jv, 'bessel_j_int_data_ipp-bessel_j_int_data', (0,1), 2, rtol=1e-12),
|
| 437 |
+
data(jv, 'bessel_j_int_data_ipp-bessel_j_int_data', (0,1j), 2, rtol=1e-12),
|
| 438 |
+
data(jv, 'bessel_j_data_ipp-bessel_j_data', (0,1), 2, rtol=1e-12),
|
| 439 |
+
data(jv, 'bessel_j_data_ipp-bessel_j_data', (0,1j), 2, rtol=1e-12),
|
| 440 |
+
|
| 441 |
+
data(jvp, 'bessel_j_prime_int_data_ipp-bessel_j_prime_int_data',
|
| 442 |
+
(0,1), 2, rtol=1e-13),
|
| 443 |
+
data(jvp, 'bessel_j_prime_int_data_ipp-bessel_j_prime_int_data',
|
| 444 |
+
(0,1j), 2, rtol=1e-13),
|
| 445 |
+
data(jvp, 'bessel_j_prime_large_data_ipp-bessel_j_prime_large_data',
|
| 446 |
+
(0,1), 2, rtol=1e-11),
|
| 447 |
+
data(jvp, 'bessel_j_prime_large_data_ipp-bessel_j_prime_large_data',
|
| 448 |
+
(0,1j), 2, rtol=2e-11),
|
| 449 |
+
|
| 450 |
+
data(kn, 'bessel_k_int_data_ipp-bessel_k_int_data', (0,1), 2, rtol=1e-12),
|
| 451 |
+
|
| 452 |
+
data(kv, 'bessel_k_int_data_ipp-bessel_k_int_data', (0,1), 2, rtol=1e-12),
|
| 453 |
+
data(kv, 'bessel_k_int_data_ipp-bessel_k_int_data', (0,1j), 2, rtol=1e-12),
|
| 454 |
+
data(kv, 'bessel_k_data_ipp-bessel_k_data', (0,1), 2, rtol=1e-12),
|
| 455 |
+
data(kv, 'bessel_k_data_ipp-bessel_k_data', (0,1j), 2, rtol=1e-12),
|
| 456 |
+
|
| 457 |
+
data(kvp, 'bessel_k_prime_int_data_ipp-bessel_k_prime_int_data',
|
| 458 |
+
(0,1), 2, rtol=3e-14),
|
| 459 |
+
data(kvp, 'bessel_k_prime_int_data_ipp-bessel_k_prime_int_data',
|
| 460 |
+
(0,1j), 2, rtol=3e-14),
|
| 461 |
+
data(kvp, 'bessel_k_prime_data_ipp-bessel_k_prime_data', (0,1), 2, rtol=7e-14),
|
| 462 |
+
data(kvp, 'bessel_k_prime_data_ipp-bessel_k_prime_data', (0,1j), 2, rtol=7e-14),
|
| 463 |
+
|
| 464 |
+
data(yn, 'bessel_y01_data_ipp-bessel_y01_data', (0,1), 2, rtol=1e-12),
|
| 465 |
+
data(yn, 'bessel_yn_data_ipp-bessel_yn_data', (0,1), 2, rtol=1e-12),
|
| 466 |
+
|
| 467 |
+
data(yv, 'bessel_yn_data_ipp-bessel_yn_data', (0,1), 2, rtol=1e-12),
|
| 468 |
+
data(yv, 'bessel_yn_data_ipp-bessel_yn_data', (0,1j), 2, rtol=1e-12),
|
| 469 |
+
data(yv, 'bessel_yv_data_ipp-bessel_yv_data', (0,1), 2, rtol=1e-10),
|
| 470 |
+
data(yv, 'bessel_yv_data_ipp-bessel_yv_data', (0,1j), 2, rtol=1e-10),
|
| 471 |
+
|
| 472 |
+
data(yvp, 'bessel_yv_prime_data_ipp-bessel_yv_prime_data',
|
| 473 |
+
(0, 1), 2, rtol=4e-9),
|
| 474 |
+
data(yvp, 'bessel_yv_prime_data_ipp-bessel_yv_prime_data',
|
| 475 |
+
(0, 1j), 2, rtol=4e-9),
|
| 476 |
+
|
| 477 |
+
data(zeta_, 'zeta_data_ipp-zeta_data', 0, 1,
|
| 478 |
+
param_filter=(lambda s: s > 1)),
|
| 479 |
+
data(zeta_, 'zeta_neg_data_ipp-zeta_neg_data', 0, 1,
|
| 480 |
+
param_filter=(lambda s: s > 1)),
|
| 481 |
+
data(zeta_, 'zeta_1_up_data_ipp-zeta_1_up_data', 0, 1,
|
| 482 |
+
param_filter=(lambda s: s > 1)),
|
| 483 |
+
data(zeta_, 'zeta_1_below_data_ipp-zeta_1_below_data', 0, 1,
|
| 484 |
+
param_filter=(lambda s: s > 1)),
|
| 485 |
+
|
| 486 |
+
data(gammaincinv, 'gamma_inv_small_data_ipp-gamma_inv_small_data',
|
| 487 |
+
(0,1), 2, rtol=1e-11),
|
| 488 |
+
data(gammaincinv, 'gamma_inv_data_ipp-gamma_inv_data',
|
| 489 |
+
(0,1), 2, rtol=1e-14),
|
| 490 |
+
data(gammaincinv, 'gamma_inv_big_data_ipp-gamma_inv_big_data',
|
| 491 |
+
(0,1), 2, rtol=1e-11),
|
| 492 |
+
|
| 493 |
+
data(gammainccinv, 'gamma_inv_small_data_ipp-gamma_inv_small_data',
|
| 494 |
+
(0,1), 3, rtol=1e-12),
|
| 495 |
+
data(gammainccinv, 'gamma_inv_data_ipp-gamma_inv_data',
|
| 496 |
+
(0,1), 3, rtol=1e-14),
|
| 497 |
+
data(gammainccinv, 'gamma_inv_big_data_ipp-gamma_inv_big_data',
|
| 498 |
+
(0,1), 3, rtol=1e-14),
|
| 499 |
+
|
| 500 |
+
data(gdtrix_, 'gamma_inv_small_data_ipp-gamma_inv_small_data',
|
| 501 |
+
(0,1), 2, rtol=3e-13, knownfailure='gdtrix unflow some points'),
|
| 502 |
+
data(gdtrix_, 'gamma_inv_data_ipp-gamma_inv_data',
|
| 503 |
+
(0,1), 2, rtol=3e-15),
|
| 504 |
+
data(gdtrix_, 'gamma_inv_big_data_ipp-gamma_inv_big_data',
|
| 505 |
+
(0,1), 2),
|
| 506 |
+
data(gdtrix_comp, 'gamma_inv_small_data_ipp-gamma_inv_small_data',
|
| 507 |
+
(0,1), 2, knownfailure='gdtrix bad some points'),
|
| 508 |
+
data(gdtrix_comp, 'gamma_inv_data_ipp-gamma_inv_data',
|
| 509 |
+
(0,1), 3, rtol=6e-15),
|
| 510 |
+
data(gdtrix_comp, 'gamma_inv_big_data_ipp-gamma_inv_big_data',
|
| 511 |
+
(0,1), 3),
|
| 512 |
+
|
| 513 |
+
data(chndtr, 'nccs_ipp-nccs',
|
| 514 |
+
(2,0,1), 3, rtol=3e-5),
|
| 515 |
+
data(chndtr, 'nccs_big_ipp-nccs_big',
|
| 516 |
+
(2,0,1), 3, rtol=5e-4, knownfailure='chndtr inaccurate some points'),
|
| 517 |
+
|
| 518 |
+
data(sph_harm_, 'spherical_harmonic_ipp-spherical_harmonic',
|
| 519 |
+
(1,0,3,2), (4,5), rtol=5e-11,
|
| 520 |
+
param_filter=(lambda p: np.ones(p.shape, '?'),
|
| 521 |
+
lambda p: np.ones(p.shape, '?'),
|
| 522 |
+
lambda p: np.logical_and(p < 2*np.pi, p >= 0),
|
| 523 |
+
lambda p: np.logical_and(p < np.pi, p >= 0))),
|
| 524 |
+
|
| 525 |
+
data(spherical_jn_, 'sph_bessel_data_ipp-sph_bessel_data',
|
| 526 |
+
(0,1), 2, rtol=1e-13),
|
| 527 |
+
data(spherical_yn_, 'sph_neumann_data_ipp-sph_neumann_data',
|
| 528 |
+
(0,1), 2, rtol=8e-15),
|
| 529 |
+
|
| 530 |
+
data(owens_t, 'owens_t_ipp-owens_t',
|
| 531 |
+
(0, 1), 2, rtol=5e-14),
|
| 532 |
+
data(owens_t, 'owens_t_large_data_ipp-owens_t_large_data',
|
| 533 |
+
(0, 1), 2, rtol=8e-12),
|
| 534 |
+
|
| 535 |
+
# -- test data exists in boost but is not used in scipy --
|
| 536 |
+
|
| 537 |
+
# ibeta_derivative_data_ipp/ibeta_derivative_data.txt
|
| 538 |
+
# ibeta_derivative_int_data_ipp/ibeta_derivative_int_data.txt
|
| 539 |
+
# ibeta_derivative_large_data_ipp/ibeta_derivative_large_data.txt
|
| 540 |
+
# ibeta_derivative_small_data_ipp/ibeta_derivative_small_data.txt
|
| 541 |
+
|
| 542 |
+
# bessel_y01_prime_data_ipp/bessel_y01_prime_data.txt
|
| 543 |
+
# bessel_yn_prime_data_ipp/bessel_yn_prime_data.txt
|
| 544 |
+
# sph_bessel_prime_data_ipp/sph_bessel_prime_data.txt
|
| 545 |
+
# sph_neumann_prime_data_ipp/sph_neumann_prime_data.txt
|
| 546 |
+
|
| 547 |
+
# ellint_d2_data_ipp/ellint_d2_data.txt
|
| 548 |
+
# ellint_d_data_ipp/ellint_d_data.txt
|
| 549 |
+
# ellint_pi2_data_ipp/ellint_pi2_data.txt
|
| 550 |
+
# ellint_pi3_data_ipp/ellint_pi3_data.txt
|
| 551 |
+
# ellint_pi3_large_data_ipp/ellint_pi3_large_data.txt
|
| 552 |
+
data(elliprc, 'ellint_rc_data_ipp-ellint_rc_data', (0, 1), 2,
|
| 553 |
+
rtol=5e-16),
|
| 554 |
+
data(elliprd, 'ellint_rd_data_ipp-ellint_rd_data', (0, 1, 2), 3,
|
| 555 |
+
rtol=5e-16),
|
| 556 |
+
data(elliprd, 'ellint_rd_0xy_ipp-ellint_rd_0xy', (0, 1, 2), 3,
|
| 557 |
+
rtol=5e-16),
|
| 558 |
+
data(elliprd, 'ellint_rd_0yy_ipp-ellint_rd_0yy', (0, 1, 2), 3,
|
| 559 |
+
rtol=5e-16),
|
| 560 |
+
data(elliprd, 'ellint_rd_xxx_ipp-ellint_rd_xxx', (0, 1, 2), 3,
|
| 561 |
+
rtol=5e-16),
|
| 562 |
+
# Some of the following rtol for elliprd may be larger than 5e-16 to
|
| 563 |
+
# work around some hard cases in the Boost test where we get slightly
|
| 564 |
+
# larger error than the ideal bound when the x (==y) input is close to
|
| 565 |
+
# zero.
|
| 566 |
+
# Also the accuracy on 32-bit builds with g++ may suffer from excess
|
| 567 |
+
# loss of precision; see GCC bugzilla 323
|
| 568 |
+
# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=323
|
| 569 |
+
data(elliprd, 'ellint_rd_xxz_ipp-ellint_rd_xxz', (0, 1, 2), 3,
|
| 570 |
+
rtol=6.5e-16),
|
| 571 |
+
data(elliprd, 'ellint_rd_xyy_ipp-ellint_rd_xyy', (0, 1, 2), 3,
|
| 572 |
+
rtol=6e-16),
|
| 573 |
+
data(elliprf, 'ellint_rf_data_ipp-ellint_rf_data', (0, 1, 2), 3,
|
| 574 |
+
rtol=5e-16),
|
| 575 |
+
data(elliprf, 'ellint_rf_xxx_ipp-ellint_rf_xxx', (0, 1, 2), 3,
|
| 576 |
+
rtol=5e-16),
|
| 577 |
+
data(elliprf, 'ellint_rf_xyy_ipp-ellint_rf_xyy', (0, 1, 2), 3,
|
| 578 |
+
rtol=5e-16),
|
| 579 |
+
data(elliprf, 'ellint_rf_xy0_ipp-ellint_rf_xy0', (0, 1, 2), 3,
|
| 580 |
+
rtol=5e-16),
|
| 581 |
+
data(elliprf, 'ellint_rf_0yy_ipp-ellint_rf_0yy', (0, 1, 2), 3,
|
| 582 |
+
rtol=5e-16),
|
| 583 |
+
# The accuracy of R_G is primarily limited by R_D that is used
|
| 584 |
+
# internally. It is generally worse than R_D. Notice that we increased
|
| 585 |
+
# the rtol for R_G here. The cases with duplicate arguments are
|
| 586 |
+
# slightly less likely to be unbalanced (at least two arguments are
|
| 587 |
+
# already balanced) so the error bound is slightly better. Again,
|
| 588 |
+
# precision with g++ 32-bit is even worse.
|
| 589 |
+
data(elliprg, 'ellint_rg_ipp-ellint_rg', (0, 1, 2), 3,
|
| 590 |
+
rtol=8.0e-16),
|
| 591 |
+
data(elliprg, 'ellint_rg_xxx_ipp-ellint_rg_xxx', (0, 1, 2), 3,
|
| 592 |
+
rtol=6e-16),
|
| 593 |
+
data(elliprg, 'ellint_rg_xyy_ipp-ellint_rg_xyy', (0, 1, 2), 3,
|
| 594 |
+
rtol=7.5e-16),
|
| 595 |
+
data(elliprg, 'ellint_rg_xy0_ipp-ellint_rg_xy0', (0, 1, 2), 3,
|
| 596 |
+
rtol=5e-16),
|
| 597 |
+
data(elliprg, 'ellint_rg_00x_ipp-ellint_rg_00x', (0, 1, 2), 3,
|
| 598 |
+
rtol=5e-16),
|
| 599 |
+
data(elliprj, 'ellint_rj_data_ipp-ellint_rj_data', (0, 1, 2, 3), 4,
|
| 600 |
+
rtol=5e-16, atol=1e-25,
|
| 601 |
+
param_filter=(lambda s: s <= 5e-26,)),
|
| 602 |
+
# ellint_rc_data_ipp/ellint_rc_data.txt
|
| 603 |
+
# ellint_rd_0xy_ipp/ellint_rd_0xy.txt
|
| 604 |
+
# ellint_rd_0yy_ipp/ellint_rd_0yy.txt
|
| 605 |
+
# ellint_rd_data_ipp/ellint_rd_data.txt
|
| 606 |
+
# ellint_rd_xxx_ipp/ellint_rd_xxx.txt
|
| 607 |
+
# ellint_rd_xxz_ipp/ellint_rd_xxz.txt
|
| 608 |
+
# ellint_rd_xyy_ipp/ellint_rd_xyy.txt
|
| 609 |
+
# ellint_rf_0yy_ipp/ellint_rf_0yy.txt
|
| 610 |
+
# ellint_rf_data_ipp/ellint_rf_data.txt
|
| 611 |
+
# ellint_rf_xxx_ipp/ellint_rf_xxx.txt
|
| 612 |
+
# ellint_rf_xy0_ipp/ellint_rf_xy0.txt
|
| 613 |
+
# ellint_rf_xyy_ipp/ellint_rf_xyy.txt
|
| 614 |
+
# ellint_rg_00x_ipp/ellint_rg_00x.txt
|
| 615 |
+
# ellint_rg_ipp/ellint_rg.txt
|
| 616 |
+
# ellint_rg_xxx_ipp/ellint_rg_xxx.txt
|
| 617 |
+
# ellint_rg_xy0_ipp/ellint_rg_xy0.txt
|
| 618 |
+
# ellint_rg_xyy_ipp/ellint_rg_xyy.txt
|
| 619 |
+
# ellint_rj_data_ipp/ellint_rj_data.txt
|
| 620 |
+
# ellint_rj_e2_ipp/ellint_rj_e2.txt
|
| 621 |
+
# ellint_rj_e3_ipp/ellint_rj_e3.txt
|
| 622 |
+
# ellint_rj_e4_ipp/ellint_rj_e4.txt
|
| 623 |
+
# ellint_rj_zp_ipp/ellint_rj_zp.txt
|
| 624 |
+
|
| 625 |
+
# jacobi_elliptic_ipp/jacobi_elliptic.txt
|
| 626 |
+
# jacobi_elliptic_small_ipp/jacobi_elliptic_small.txt
|
| 627 |
+
# jacobi_large_phi_ipp/jacobi_large_phi.txt
|
| 628 |
+
# jacobi_near_1_ipp/jacobi_near_1.txt
|
| 629 |
+
# jacobi_zeta_big_phi_ipp/jacobi_zeta_big_phi.txt
|
| 630 |
+
# jacobi_zeta_data_ipp/jacobi_zeta_data.txt
|
| 631 |
+
|
| 632 |
+
# heuman_lambda_data_ipp/heuman_lambda_data.txt
|
| 633 |
+
|
| 634 |
+
# hypergeometric_0F2_ipp/hypergeometric_0F2.txt
|
| 635 |
+
# hypergeometric_1F1_big_ipp/hypergeometric_1F1_big.txt
|
| 636 |
+
# hypergeometric_1F1_ipp/hypergeometric_1F1.txt
|
| 637 |
+
# hypergeometric_1F1_small_random_ipp/hypergeometric_1F1_small_random.txt
|
| 638 |
+
# hypergeometric_1F2_ipp/hypergeometric_1F2.txt
|
| 639 |
+
# hypergeometric_1f1_large_regularized_ipp/hypergeometric_1f1_large_regularized.txt # noqa: E501
|
| 640 |
+
# hypergeometric_1f1_log_large_unsolved_ipp/hypergeometric_1f1_log_large_unsolved.txt # noqa: E501
|
| 641 |
+
# hypergeometric_2F0_half_ipp/hypergeometric_2F0_half.txt
|
| 642 |
+
# hypergeometric_2F0_integer_a2_ipp/hypergeometric_2F0_integer_a2.txt
|
| 643 |
+
# hypergeometric_2F0_ipp/hypergeometric_2F0.txt
|
| 644 |
+
# hypergeometric_2F0_large_z_ipp/hypergeometric_2F0_large_z.txt
|
| 645 |
+
# hypergeometric_2F1_ipp/hypergeometric_2F1.txt
|
| 646 |
+
# hypergeometric_2F2_ipp/hypergeometric_2F2.txt
|
| 647 |
+
|
| 648 |
+
# ncbeta_big_ipp/ncbeta_big.txt
|
| 649 |
+
# nct_small_delta_ipp/nct_small_delta.txt
|
| 650 |
+
# nct_asym_ipp/nct_asym.txt
|
| 651 |
+
# ncbeta_ipp/ncbeta.txt
|
| 652 |
+
|
| 653 |
+
# powm1_data_ipp/powm1_big_data.txt
|
| 654 |
+
# powm1_sqrtp1m1_test_hpp/sqrtp1m1_data.txt
|
| 655 |
+
|
| 656 |
+
# sinc_data_ipp/sinc_data.txt
|
| 657 |
+
|
| 658 |
+
# test_gamma_data_ipp/gammap1m1_data.txt
|
| 659 |
+
# tgamma_ratio_data_ipp/tgamma_ratio_data.txt
|
| 660 |
+
|
| 661 |
+
# trig_data_ipp/trig_data.txt
|
| 662 |
+
# trig_data2_ipp/trig_data2.txt
|
| 663 |
+
]
|
| 664 |
+
|
| 665 |
+
|
| 666 |
+
@pytest.mark.parametrize('test', BOOST_TESTS, ids=repr)
|
| 667 |
+
def test_boost(test):
|
| 668 |
+
# Filter deprecation warnings of any deprecated functions.
|
| 669 |
+
if test.func in [btdtr, btdtri, btdtri_comp]:
|
| 670 |
+
with pytest.deprecated_call():
|
| 671 |
+
_test_factory(test)
|
| 672 |
+
else:
|
| 673 |
+
_test_factory(test)
|
| 674 |
+
|
| 675 |
+
|
| 676 |
+
GSL_TESTS = [
|
| 677 |
+
data_gsl(mathieu_a, 'mathieu_ab', (0, 1), 2, rtol=1e-13, atol=1e-13),
|
| 678 |
+
data_gsl(mathieu_b, 'mathieu_ab', (0, 1), 3, rtol=1e-13, atol=1e-13),
|
| 679 |
+
|
| 680 |
+
# Also the GSL output has limited accuracy...
|
| 681 |
+
data_gsl(mathieu_ce_rad, 'mathieu_ce_se', (0, 1, 2), 3, rtol=1e-7, atol=1e-13),
|
| 682 |
+
data_gsl(mathieu_se_rad, 'mathieu_ce_se', (0, 1, 2), 4, rtol=1e-7, atol=1e-13),
|
| 683 |
+
|
| 684 |
+
data_gsl(mathieu_mc1_scaled, 'mathieu_mc_ms',
|
| 685 |
+
(0, 1, 2), 3, rtol=1e-7, atol=1e-13),
|
| 686 |
+
data_gsl(mathieu_ms1_scaled, 'mathieu_mc_ms',
|
| 687 |
+
(0, 1, 2), 4, rtol=1e-7, atol=1e-13),
|
| 688 |
+
|
| 689 |
+
data_gsl(mathieu_mc2_scaled, 'mathieu_mc_ms',
|
| 690 |
+
(0, 1, 2), 5, rtol=1e-7, atol=1e-13),
|
| 691 |
+
data_gsl(mathieu_ms2_scaled, 'mathieu_mc_ms',
|
| 692 |
+
(0, 1, 2), 6, rtol=1e-7, atol=1e-13),
|
| 693 |
+
]
|
| 694 |
+
|
| 695 |
+
|
| 696 |
+
@pytest.mark.parametrize('test', GSL_TESTS, ids=repr)
|
| 697 |
+
def test_gsl(test):
|
| 698 |
+
_test_factory(test)
|
| 699 |
+
|
| 700 |
+
|
| 701 |
+
LOCAL_TESTS = [
|
| 702 |
+
data_local(ellipkinc, 'ellipkinc_neg_m', (0, 1), 2),
|
| 703 |
+
data_local(ellipkm1, 'ellipkm1', 0, 1),
|
| 704 |
+
data_local(ellipeinc, 'ellipeinc_neg_m', (0, 1), 2),
|
| 705 |
+
data_local(clog1p, 'log1p_expm1_complex', (0,1), (2,3), rtol=1e-14),
|
| 706 |
+
data_local(cexpm1, 'log1p_expm1_complex', (0,1), (4,5), rtol=1e-14),
|
| 707 |
+
data_local(gammainc, 'gammainc', (0, 1), 2, rtol=1e-12),
|
| 708 |
+
data_local(gammaincc, 'gammaincc', (0, 1), 2, rtol=1e-11),
|
| 709 |
+
data_local(ellip_harm_2, 'ellip',(0, 1, 2, 3, 4), 6, rtol=1e-10, atol=1e-13),
|
| 710 |
+
data_local(ellip_harm, 'ellip',(0, 1, 2, 3, 4), 5, rtol=1e-10, atol=1e-13),
|
| 711 |
+
data_local(wright_bessel, 'wright_bessel', (0, 1, 2), 3, rtol=1e-11),
|
| 712 |
+
]
|
| 713 |
+
|
| 714 |
+
|
| 715 |
+
@pytest.mark.parametrize('test', LOCAL_TESTS, ids=repr)
|
| 716 |
+
def test_local(test):
|
| 717 |
+
_test_factory(test)
|
| 718 |
+
|
| 719 |
+
|
| 720 |
+
def _test_factory(test, dtype=np.float64):
|
| 721 |
+
"""Boost test"""
|
| 722 |
+
with suppress_warnings() as sup:
|
| 723 |
+
sup.filter(IntegrationWarning, "The occurrence of roundoff error is detected")
|
| 724 |
+
with np.errstate(all='ignore'):
|
| 725 |
+
test.check(dtype=dtype)
|
openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_dd.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Tests for a few of the "double-double" C functions defined in cephes/dd_*.
|
| 2 |
+
|
| 3 |
+
import pytest
|
| 4 |
+
from numpy.testing import assert_allclose
|
| 5 |
+
from scipy.special._test_internal import _dd_exp, _dd_log, _dd_expm1
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# Each tuple in test_data contains:
|
| 9 |
+
# (dd_func, xhi, xlo, expected_yhi, expected_ylo)
|
| 10 |
+
# The expected values were computed with mpmath, e.g.
|
| 11 |
+
#
|
| 12 |
+
# import mpmath
|
| 13 |
+
# mpmath.mp.dps = 100
|
| 14 |
+
# xhi = 10.0
|
| 15 |
+
# xlo = 0.0
|
| 16 |
+
# x = mpmath.mpf(xhi) + mpmath.mpf(xlo)
|
| 17 |
+
# y = mpmath.log(x)
|
| 18 |
+
# expected_yhi = float(y)
|
| 19 |
+
# expected_ylo = float(y - expected_yhi)
|
| 20 |
+
#
|
| 21 |
+
test_data = [
|
| 22 |
+
(_dd_exp, -0.3333333333333333, -1.850371707708594e-17,
|
| 23 |
+
0.7165313105737893, -2.0286948382455594e-17),
|
| 24 |
+
(_dd_exp, 0.0, 0.0, 1.0, 0.0),
|
| 25 |
+
(_dd_exp, 10.0, 0.0, 22026.465794806718, -1.3780134700517372e-12),
|
| 26 |
+
(_dd_log, 0.03125, 0.0, -3.4657359027997265, -4.930038229799327e-18),
|
| 27 |
+
(_dd_log, 10.0, 0.0, 2.302585092994046, -2.1707562233822494e-16),
|
| 28 |
+
(_dd_expm1, -1.25, 0.0, -0.7134952031398099, -4.7031321153650186e-17),
|
| 29 |
+
(_dd_expm1, -0.484375, 0.0, -0.3839178722093218, 7.609376052156984e-18),
|
| 30 |
+
(_dd_expm1, -0.25, 0.0, -0.22119921692859512, -1.0231869534531498e-17),
|
| 31 |
+
(_dd_expm1, -0.0625, 0.0, -0.06058693718652421, -7.077887227488846e-19),
|
| 32 |
+
(_dd_expm1, 0.0, 0.0, 0.0, 0.0),
|
| 33 |
+
(_dd_expm1, 0.0625, 3.5e-18, 0.06449445891785943, 1.4323095758164254e-18),
|
| 34 |
+
(_dd_expm1, 0.25, 0.0, 0.2840254166877415, -2.133257464457841e-17),
|
| 35 |
+
(_dd_expm1, 0.498046875, 0.0, 0.645504254608231, -9.198435524984236e-18),
|
| 36 |
+
(_dd_expm1, 1.25, 0.0, 2.4903429574618414, -4.604261945372796e-17)
|
| 37 |
+
]
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
@pytest.mark.parametrize('dd_func, xhi, xlo, expected_yhi, expected_ylo',
|
| 41 |
+
test_data)
|
| 42 |
+
def test_dd(dd_func, xhi, xlo, expected_yhi, expected_ylo):
|
| 43 |
+
yhi, ylo = dd_func(xhi, xlo)
|
| 44 |
+
assert yhi == expected_yhi, (f"high double ({yhi}) does not equal the "
|
| 45 |
+
f"expected value {expected_yhi}")
|
| 46 |
+
assert_allclose(ylo, expected_ylo, rtol=5e-15)
|
openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_digamma.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
from numpy import pi, log, sqrt
|
| 3 |
+
from numpy.testing import assert_, assert_equal
|
| 4 |
+
|
| 5 |
+
from scipy.special._testutils import FuncData
|
| 6 |
+
import scipy.special as sc
|
| 7 |
+
|
| 8 |
+
# Euler-Mascheroni constant
|
| 9 |
+
euler = 0.57721566490153286
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def test_consistency():
|
| 13 |
+
# Make sure the implementation of digamma for real arguments
|
| 14 |
+
# agrees with the implementation of digamma for complex arguments.
|
| 15 |
+
|
| 16 |
+
# It's all poles after -1e16
|
| 17 |
+
x = np.r_[-np.logspace(15, -30, 200), np.logspace(-30, 300, 200)]
|
| 18 |
+
dataset = np.vstack((x + 0j, sc.digamma(x))).T
|
| 19 |
+
FuncData(sc.digamma, dataset, 0, 1, rtol=5e-14, nan_ok=True).check()
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def test_special_values():
|
| 23 |
+
# Test special values from Gauss's digamma theorem. See
|
| 24 |
+
#
|
| 25 |
+
# https://en.wikipedia.org/wiki/Digamma_function
|
| 26 |
+
|
| 27 |
+
dataset = [
|
| 28 |
+
(1, -euler),
|
| 29 |
+
(0.5, -2*log(2) - euler),
|
| 30 |
+
(1/3, -pi/(2*sqrt(3)) - 3*log(3)/2 - euler),
|
| 31 |
+
(1/4, -pi/2 - 3*log(2) - euler),
|
| 32 |
+
(1/6, -pi*sqrt(3)/2 - 2*log(2) - 3*log(3)/2 - euler),
|
| 33 |
+
(1/8,
|
| 34 |
+
-pi/2 - 4*log(2) - (pi + log(2 + sqrt(2)) - log(2 - sqrt(2)))/sqrt(2) - euler)
|
| 35 |
+
]
|
| 36 |
+
|
| 37 |
+
dataset = np.asarray(dataset)
|
| 38 |
+
FuncData(sc.digamma, dataset, 0, 1, rtol=1e-14).check()
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def test_nonfinite():
|
| 42 |
+
pts = [0.0, -0.0, np.inf]
|
| 43 |
+
std = [-np.inf, np.inf, np.inf]
|
| 44 |
+
assert_equal(sc.digamma(pts), std)
|
| 45 |
+
assert_(all(np.isnan(sc.digamma([-np.inf, -1]))))
|
openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_ellip_harm.py
ADDED
|
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#
|
| 2 |
+
# Tests for the Ellipsoidal Harmonic Function,
|
| 3 |
+
# Distributed under the same license as SciPy itself.
|
| 4 |
+
#
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
from numpy.testing import (assert_equal, assert_almost_equal, assert_allclose,
|
| 8 |
+
assert_, suppress_warnings)
|
| 9 |
+
from scipy.special._testutils import assert_func_equal
|
| 10 |
+
from scipy.special import ellip_harm, ellip_harm_2, ellip_normal
|
| 11 |
+
from scipy.integrate import IntegrationWarning
|
| 12 |
+
from numpy import sqrt, pi
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def test_ellip_potential():
|
| 16 |
+
def change_coefficient(lambda1, mu, nu, h2, k2):
|
| 17 |
+
x = sqrt(lambda1**2*mu**2*nu**2/(h2*k2))
|
| 18 |
+
y = sqrt((lambda1**2 - h2)*(mu**2 - h2)*(h2 - nu**2)/(h2*(k2 - h2)))
|
| 19 |
+
z = sqrt((lambda1**2 - k2)*(k2 - mu**2)*(k2 - nu**2)/(k2*(k2 - h2)))
|
| 20 |
+
return x, y, z
|
| 21 |
+
|
| 22 |
+
def solid_int_ellip(lambda1, mu, nu, n, p, h2, k2):
|
| 23 |
+
return (ellip_harm(h2, k2, n, p, lambda1)*ellip_harm(h2, k2, n, p, mu)
|
| 24 |
+
* ellip_harm(h2, k2, n, p, nu))
|
| 25 |
+
|
| 26 |
+
def solid_int_ellip2(lambda1, mu, nu, n, p, h2, k2):
|
| 27 |
+
return (ellip_harm_2(h2, k2, n, p, lambda1)
|
| 28 |
+
* ellip_harm(h2, k2, n, p, mu)*ellip_harm(h2, k2, n, p, nu))
|
| 29 |
+
|
| 30 |
+
def summation(lambda1, mu1, nu1, lambda2, mu2, nu2, h2, k2):
|
| 31 |
+
tol = 1e-8
|
| 32 |
+
sum1 = 0
|
| 33 |
+
for n in range(20):
|
| 34 |
+
xsum = 0
|
| 35 |
+
for p in range(1, 2*n+2):
|
| 36 |
+
xsum += (4*pi*(solid_int_ellip(lambda2, mu2, nu2, n, p, h2, k2)
|
| 37 |
+
* solid_int_ellip2(lambda1, mu1, nu1, n, p, h2, k2)) /
|
| 38 |
+
(ellip_normal(h2, k2, n, p)*(2*n + 1)))
|
| 39 |
+
if abs(xsum) < 0.1*tol*abs(sum1):
|
| 40 |
+
break
|
| 41 |
+
sum1 += xsum
|
| 42 |
+
return sum1, xsum
|
| 43 |
+
|
| 44 |
+
def potential(lambda1, mu1, nu1, lambda2, mu2, nu2, h2, k2):
|
| 45 |
+
x1, y1, z1 = change_coefficient(lambda1, mu1, nu1, h2, k2)
|
| 46 |
+
x2, y2, z2 = change_coefficient(lambda2, mu2, nu2, h2, k2)
|
| 47 |
+
res = sqrt((x2 - x1)**2 + (y2 - y1)**2 + (z2 - z1)**2)
|
| 48 |
+
return 1/res
|
| 49 |
+
|
| 50 |
+
pts = [
|
| 51 |
+
(120, sqrt(19), 2, 41, sqrt(17), 2, 15, 25),
|
| 52 |
+
(120, sqrt(16), 3.2, 21, sqrt(11), 2.9, 11, 20),
|
| 53 |
+
]
|
| 54 |
+
|
| 55 |
+
with suppress_warnings() as sup:
|
| 56 |
+
sup.filter(IntegrationWarning, "The occurrence of roundoff error")
|
| 57 |
+
sup.filter(IntegrationWarning, "The maximum number of subdivisions")
|
| 58 |
+
|
| 59 |
+
for p in pts:
|
| 60 |
+
err_msg = repr(p)
|
| 61 |
+
exact = potential(*p)
|
| 62 |
+
result, last_term = summation(*p)
|
| 63 |
+
assert_allclose(exact, result, atol=0, rtol=1e-8, err_msg=err_msg)
|
| 64 |
+
assert_(abs(result - exact) < 10*abs(last_term), err_msg)
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def test_ellip_norm():
|
| 68 |
+
|
| 69 |
+
def G01(h2, k2):
|
| 70 |
+
return 4*pi
|
| 71 |
+
|
| 72 |
+
def G11(h2, k2):
|
| 73 |
+
return 4*pi*h2*k2/3
|
| 74 |
+
|
| 75 |
+
def G12(h2, k2):
|
| 76 |
+
return 4*pi*h2*(k2 - h2)/3
|
| 77 |
+
|
| 78 |
+
def G13(h2, k2):
|
| 79 |
+
return 4*pi*k2*(k2 - h2)/3
|
| 80 |
+
|
| 81 |
+
def G22(h2, k2):
|
| 82 |
+
res = (2*(h2**4 + k2**4) - 4*h2*k2*(h2**2 + k2**2) + 6*h2**2*k2**2 +
|
| 83 |
+
sqrt(h2**2 + k2**2 - h2*k2)*(-2*(h2**3 + k2**3) + 3*h2*k2*(h2 + k2)))
|
| 84 |
+
return 16*pi/405*res
|
| 85 |
+
|
| 86 |
+
def G21(h2, k2):
|
| 87 |
+
res = (2*(h2**4 + k2**4) - 4*h2*k2*(h2**2 + k2**2) + 6*h2**2*k2**2
|
| 88 |
+
+ sqrt(h2**2 + k2**2 - h2*k2)*(2*(h2**3 + k2**3) - 3*h2*k2*(h2 + k2)))
|
| 89 |
+
return 16*pi/405*res
|
| 90 |
+
|
| 91 |
+
def G23(h2, k2):
|
| 92 |
+
return 4*pi*h2**2*k2*(k2 - h2)/15
|
| 93 |
+
|
| 94 |
+
def G24(h2, k2):
|
| 95 |
+
return 4*pi*h2*k2**2*(k2 - h2)/15
|
| 96 |
+
|
| 97 |
+
def G25(h2, k2):
|
| 98 |
+
return 4*pi*h2*k2*(k2 - h2)**2/15
|
| 99 |
+
|
| 100 |
+
def G32(h2, k2):
|
| 101 |
+
res = (16*(h2**4 + k2**4) - 36*h2*k2*(h2**2 + k2**2) + 46*h2**2*k2**2
|
| 102 |
+
+ sqrt(4*(h2**2 + k2**2) - 7*h2*k2)*(-8*(h2**3 + k2**3) +
|
| 103 |
+
11*h2*k2*(h2 + k2)))
|
| 104 |
+
return 16*pi/13125*k2*h2*res
|
| 105 |
+
|
| 106 |
+
def G31(h2, k2):
|
| 107 |
+
res = (16*(h2**4 + k2**4) - 36*h2*k2*(h2**2 + k2**2) + 46*h2**2*k2**2
|
| 108 |
+
+ sqrt(4*(h2**2 + k2**2) - 7*h2*k2)*(8*(h2**3 + k2**3) -
|
| 109 |
+
11*h2*k2*(h2 + k2)))
|
| 110 |
+
return 16*pi/13125*h2*k2*res
|
| 111 |
+
|
| 112 |
+
def G34(h2, k2):
|
| 113 |
+
res = (6*h2**4 + 16*k2**4 - 12*h2**3*k2 - 28*h2*k2**3 + 34*h2**2*k2**2
|
| 114 |
+
+ sqrt(h2**2 + 4*k2**2 - h2*k2)*(-6*h2**3 - 8*k2**3 + 9*h2**2*k2 +
|
| 115 |
+
13*h2*k2**2))
|
| 116 |
+
return 16*pi/13125*h2*(k2 - h2)*res
|
| 117 |
+
|
| 118 |
+
def G33(h2, k2):
|
| 119 |
+
res = (6*h2**4 + 16*k2**4 - 12*h2**3*k2 - 28*h2*k2**3 + 34*h2**2*k2**2
|
| 120 |
+
+ sqrt(h2**2 + 4*k2**2 - h2*k2)*(6*h2**3 + 8*k2**3 - 9*h2**2*k2 -
|
| 121 |
+
13*h2*k2**2))
|
| 122 |
+
return 16*pi/13125*h2*(k2 - h2)*res
|
| 123 |
+
|
| 124 |
+
def G36(h2, k2):
|
| 125 |
+
res = (16*h2**4 + 6*k2**4 - 28*h2**3*k2 - 12*h2*k2**3 + 34*h2**2*k2**2
|
| 126 |
+
+ sqrt(4*h2**2 + k2**2 - h2*k2)*(-8*h2**3 - 6*k2**3 + 13*h2**2*k2 +
|
| 127 |
+
9*h2*k2**2))
|
| 128 |
+
return 16*pi/13125*k2*(k2 - h2)*res
|
| 129 |
+
|
| 130 |
+
def G35(h2, k2):
|
| 131 |
+
res = (16*h2**4 + 6*k2**4 - 28*h2**3*k2 - 12*h2*k2**3 + 34*h2**2*k2**2
|
| 132 |
+
+ sqrt(4*h2**2 + k2**2 - h2*k2)*(8*h2**3 + 6*k2**3 - 13*h2**2*k2 -
|
| 133 |
+
9*h2*k2**2))
|
| 134 |
+
return 16*pi/13125*k2*(k2 - h2)*res
|
| 135 |
+
|
| 136 |
+
def G37(h2, k2):
|
| 137 |
+
return 4*pi*h2**2*k2**2*(k2 - h2)**2/105
|
| 138 |
+
|
| 139 |
+
known_funcs = {(0, 1): G01, (1, 1): G11, (1, 2): G12, (1, 3): G13,
|
| 140 |
+
(2, 1): G21, (2, 2): G22, (2, 3): G23, (2, 4): G24,
|
| 141 |
+
(2, 5): G25, (3, 1): G31, (3, 2): G32, (3, 3): G33,
|
| 142 |
+
(3, 4): G34, (3, 5): G35, (3, 6): G36, (3, 7): G37}
|
| 143 |
+
|
| 144 |
+
def _ellip_norm(n, p, h2, k2):
|
| 145 |
+
func = known_funcs[n, p]
|
| 146 |
+
return func(h2, k2)
|
| 147 |
+
_ellip_norm = np.vectorize(_ellip_norm)
|
| 148 |
+
|
| 149 |
+
def ellip_normal_known(h2, k2, n, p):
|
| 150 |
+
return _ellip_norm(n, p, h2, k2)
|
| 151 |
+
|
| 152 |
+
# generate both large and small h2 < k2 pairs
|
| 153 |
+
np.random.seed(1234)
|
| 154 |
+
h2 = np.random.pareto(0.5, size=1)
|
| 155 |
+
k2 = h2 * (1 + np.random.pareto(0.5, size=h2.size))
|
| 156 |
+
|
| 157 |
+
points = []
|
| 158 |
+
for n in range(4):
|
| 159 |
+
for p in range(1, 2*n+2):
|
| 160 |
+
points.append((h2, k2, np.full(h2.size, n), np.full(h2.size, p)))
|
| 161 |
+
points = np.array(points)
|
| 162 |
+
with suppress_warnings() as sup:
|
| 163 |
+
sup.filter(IntegrationWarning, "The occurrence of roundoff error")
|
| 164 |
+
assert_func_equal(ellip_normal, ellip_normal_known, points, rtol=1e-12)
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
def test_ellip_harm_2():
|
| 168 |
+
|
| 169 |
+
def I1(h2, k2, s):
|
| 170 |
+
res = (ellip_harm_2(h2, k2, 1, 1, s)/(3 * ellip_harm(h2, k2, 1, 1, s))
|
| 171 |
+
+ ellip_harm_2(h2, k2, 1, 2, s)/(3 * ellip_harm(h2, k2, 1, 2, s)) +
|
| 172 |
+
ellip_harm_2(h2, k2, 1, 3, s)/(3 * ellip_harm(h2, k2, 1, 3, s)))
|
| 173 |
+
return res
|
| 174 |
+
|
| 175 |
+
with suppress_warnings() as sup:
|
| 176 |
+
sup.filter(IntegrationWarning, "The occurrence of roundoff error")
|
| 177 |
+
assert_almost_equal(I1(5, 8, 10), 1/(10*sqrt((100-5)*(100-8))))
|
| 178 |
+
|
| 179 |
+
# Values produced by code from arXiv:1204.0267
|
| 180 |
+
assert_almost_equal(ellip_harm_2(5, 8, 2, 1, 10), 0.00108056853382)
|
| 181 |
+
assert_almost_equal(ellip_harm_2(5, 8, 2, 2, 10), 0.00105820513809)
|
| 182 |
+
assert_almost_equal(ellip_harm_2(5, 8, 2, 3, 10), 0.00106058384743)
|
| 183 |
+
assert_almost_equal(ellip_harm_2(5, 8, 2, 4, 10), 0.00106774492306)
|
| 184 |
+
assert_almost_equal(ellip_harm_2(5, 8, 2, 5, 10), 0.00107976356454)
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
def test_ellip_harm():
|
| 188 |
+
|
| 189 |
+
def E01(h2, k2, s):
|
| 190 |
+
return 1
|
| 191 |
+
|
| 192 |
+
def E11(h2, k2, s):
|
| 193 |
+
return s
|
| 194 |
+
|
| 195 |
+
def E12(h2, k2, s):
|
| 196 |
+
return sqrt(abs(s*s - h2))
|
| 197 |
+
|
| 198 |
+
def E13(h2, k2, s):
|
| 199 |
+
return sqrt(abs(s*s - k2))
|
| 200 |
+
|
| 201 |
+
def E21(h2, k2, s):
|
| 202 |
+
return s*s - 1/3*((h2 + k2) + sqrt(abs((h2 + k2)*(h2 + k2)-3*h2*k2)))
|
| 203 |
+
|
| 204 |
+
def E22(h2, k2, s):
|
| 205 |
+
return s*s - 1/3*((h2 + k2) - sqrt(abs((h2 + k2)*(h2 + k2)-3*h2*k2)))
|
| 206 |
+
|
| 207 |
+
def E23(h2, k2, s):
|
| 208 |
+
return s * sqrt(abs(s*s - h2))
|
| 209 |
+
|
| 210 |
+
def E24(h2, k2, s):
|
| 211 |
+
return s * sqrt(abs(s*s - k2))
|
| 212 |
+
|
| 213 |
+
def E25(h2, k2, s):
|
| 214 |
+
return sqrt(abs((s*s - h2)*(s*s - k2)))
|
| 215 |
+
|
| 216 |
+
def E31(h2, k2, s):
|
| 217 |
+
return s*s*s - (s/5)*(2*(h2 + k2) + sqrt(4*(h2 + k2)*(h2 + k2) -
|
| 218 |
+
15*h2*k2))
|
| 219 |
+
|
| 220 |
+
def E32(h2, k2, s):
|
| 221 |
+
return s*s*s - (s/5)*(2*(h2 + k2) - sqrt(4*(h2 + k2)*(h2 + k2) -
|
| 222 |
+
15*h2*k2))
|
| 223 |
+
|
| 224 |
+
def E33(h2, k2, s):
|
| 225 |
+
return sqrt(abs(s*s - h2))*(s*s - 1/5*((h2 + 2*k2) + sqrt(abs((h2 +
|
| 226 |
+
2*k2)*(h2 + 2*k2) - 5*h2*k2))))
|
| 227 |
+
|
| 228 |
+
def E34(h2, k2, s):
|
| 229 |
+
return sqrt(abs(s*s - h2))*(s*s - 1/5*((h2 + 2*k2) - sqrt(abs((h2 +
|
| 230 |
+
2*k2)*(h2 + 2*k2) - 5*h2*k2))))
|
| 231 |
+
|
| 232 |
+
def E35(h2, k2, s):
|
| 233 |
+
return sqrt(abs(s*s - k2))*(s*s - 1/5*((2*h2 + k2) + sqrt(abs((2*h2
|
| 234 |
+
+ k2)*(2*h2 + k2) - 5*h2*k2))))
|
| 235 |
+
|
| 236 |
+
def E36(h2, k2, s):
|
| 237 |
+
return sqrt(abs(s*s - k2))*(s*s - 1/5*((2*h2 + k2) - sqrt(abs((2*h2
|
| 238 |
+
+ k2)*(2*h2 + k2) - 5*h2*k2))))
|
| 239 |
+
|
| 240 |
+
def E37(h2, k2, s):
|
| 241 |
+
return s * sqrt(abs((s*s - h2)*(s*s - k2)))
|
| 242 |
+
|
| 243 |
+
assert_equal(ellip_harm(5, 8, 1, 2, 2.5, 1, 1),
|
| 244 |
+
ellip_harm(5, 8, 1, 2, 2.5))
|
| 245 |
+
|
| 246 |
+
known_funcs = {(0, 1): E01, (1, 1): E11, (1, 2): E12, (1, 3): E13,
|
| 247 |
+
(2, 1): E21, (2, 2): E22, (2, 3): E23, (2, 4): E24,
|
| 248 |
+
(2, 5): E25, (3, 1): E31, (3, 2): E32, (3, 3): E33,
|
| 249 |
+
(3, 4): E34, (3, 5): E35, (3, 6): E36, (3, 7): E37}
|
| 250 |
+
|
| 251 |
+
point_ref = []
|
| 252 |
+
|
| 253 |
+
def ellip_harm_known(h2, k2, n, p, s):
|
| 254 |
+
for i in range(h2.size):
|
| 255 |
+
func = known_funcs[(int(n[i]), int(p[i]))]
|
| 256 |
+
point_ref.append(func(h2[i], k2[i], s[i]))
|
| 257 |
+
return point_ref
|
| 258 |
+
|
| 259 |
+
np.random.seed(1234)
|
| 260 |
+
h2 = np.random.pareto(0.5, size=30)
|
| 261 |
+
k2 = h2*(1 + np.random.pareto(0.5, size=h2.size))
|
| 262 |
+
s = np.random.pareto(0.5, size=h2.size)
|
| 263 |
+
points = []
|
| 264 |
+
for i in range(h2.size):
|
| 265 |
+
for n in range(4):
|
| 266 |
+
for p in range(1, 2*n+2):
|
| 267 |
+
points.append((h2[i], k2[i], n, p, s[i]))
|
| 268 |
+
points = np.array(points)
|
| 269 |
+
assert_func_equal(ellip_harm, ellip_harm_known, points, rtol=1e-12)
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
def test_ellip_harm_invalid_p():
|
| 273 |
+
# Regression test. This should return nan.
|
| 274 |
+
n = 4
|
| 275 |
+
# Make p > 2*n + 1.
|
| 276 |
+
p = 2*n + 2
|
| 277 |
+
result = ellip_harm(0.5, 2.0, n, p, 0.2)
|
| 278 |
+
assert np.isnan(result)
|
openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_erfinv.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
from numpy.testing import assert_allclose, assert_equal
|
| 3 |
+
import pytest
|
| 4 |
+
|
| 5 |
+
import scipy.special as sc
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class TestInverseErrorFunction:
|
| 9 |
+
def test_compliment(self):
|
| 10 |
+
# Test erfcinv(1 - x) == erfinv(x)
|
| 11 |
+
x = np.linspace(-1, 1, 101)
|
| 12 |
+
assert_allclose(sc.erfcinv(1 - x), sc.erfinv(x), rtol=0, atol=1e-15)
|
| 13 |
+
|
| 14 |
+
def test_literal_values(self):
|
| 15 |
+
# The expected values were calculated with mpmath:
|
| 16 |
+
#
|
| 17 |
+
# import mpmath
|
| 18 |
+
# mpmath.mp.dps = 200
|
| 19 |
+
# for y in [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]:
|
| 20 |
+
# x = mpmath.erfinv(y)
|
| 21 |
+
# print(x)
|
| 22 |
+
#
|
| 23 |
+
y = np.array([0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
|
| 24 |
+
actual = sc.erfinv(y)
|
| 25 |
+
expected = [
|
| 26 |
+
0.0,
|
| 27 |
+
0.08885599049425769,
|
| 28 |
+
0.1791434546212917,
|
| 29 |
+
0.2724627147267543,
|
| 30 |
+
0.37080715859355795,
|
| 31 |
+
0.4769362762044699,
|
| 32 |
+
0.5951160814499948,
|
| 33 |
+
0.7328690779592167,
|
| 34 |
+
0.9061938024368233,
|
| 35 |
+
1.1630871536766743,
|
| 36 |
+
]
|
| 37 |
+
assert_allclose(actual, expected, rtol=0, atol=1e-15)
|
| 38 |
+
|
| 39 |
+
@pytest.mark.parametrize(
|
| 40 |
+
'f, x, y',
|
| 41 |
+
[
|
| 42 |
+
(sc.erfinv, -1, -np.inf),
|
| 43 |
+
(sc.erfinv, 0, 0),
|
| 44 |
+
(sc.erfinv, 1, np.inf),
|
| 45 |
+
(sc.erfinv, -100, np.nan),
|
| 46 |
+
(sc.erfinv, 100, np.nan),
|
| 47 |
+
(sc.erfcinv, 0, np.inf),
|
| 48 |
+
(sc.erfcinv, 1, -0.0),
|
| 49 |
+
(sc.erfcinv, 2, -np.inf),
|
| 50 |
+
(sc.erfcinv, -100, np.nan),
|
| 51 |
+
(sc.erfcinv, 100, np.nan),
|
| 52 |
+
],
|
| 53 |
+
ids=[
|
| 54 |
+
'erfinv at lower bound',
|
| 55 |
+
'erfinv at midpoint',
|
| 56 |
+
'erfinv at upper bound',
|
| 57 |
+
'erfinv below lower bound',
|
| 58 |
+
'erfinv above upper bound',
|
| 59 |
+
'erfcinv at lower bound',
|
| 60 |
+
'erfcinv at midpoint',
|
| 61 |
+
'erfcinv at upper bound',
|
| 62 |
+
'erfcinv below lower bound',
|
| 63 |
+
'erfcinv above upper bound',
|
| 64 |
+
]
|
| 65 |
+
)
|
| 66 |
+
def test_domain_bounds(self, f, x, y):
|
| 67 |
+
assert_equal(f(x), y)
|
| 68 |
+
|
| 69 |
+
def test_erfinv_asympt(self):
|
| 70 |
+
# regression test for gh-12758: erfinv(x) loses precision at small x
|
| 71 |
+
# expected values precomputed with mpmath:
|
| 72 |
+
# >>> mpmath.mp.dps = 100
|
| 73 |
+
# >>> expected = [float(mpmath.erfinv(t)) for t in x]
|
| 74 |
+
x = np.array([1e-20, 1e-15, 1e-14, 1e-10, 1e-8, 0.9e-7, 1.1e-7, 1e-6])
|
| 75 |
+
expected = np.array([8.86226925452758e-21,
|
| 76 |
+
8.862269254527581e-16,
|
| 77 |
+
8.86226925452758e-15,
|
| 78 |
+
8.862269254527581e-11,
|
| 79 |
+
8.86226925452758e-09,
|
| 80 |
+
7.97604232907484e-08,
|
| 81 |
+
9.74849617998037e-08,
|
| 82 |
+
8.8622692545299e-07])
|
| 83 |
+
assert_allclose(sc.erfinv(x), expected,
|
| 84 |
+
rtol=1e-15)
|
| 85 |
+
|
| 86 |
+
# also test the roundtrip consistency
|
| 87 |
+
assert_allclose(sc.erf(sc.erfinv(x)),
|
| 88 |
+
x,
|
| 89 |
+
rtol=5e-15)
|
openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_exponential_integrals.py
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pytest
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
from numpy.testing import assert_allclose
|
| 5 |
+
import scipy.special as sc
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class TestExp1:
|
| 9 |
+
|
| 10 |
+
def test_branch_cut(self):
|
| 11 |
+
assert np.isnan(sc.exp1(-1))
|
| 12 |
+
assert sc.exp1(complex(-1, 0)).imag == (
|
| 13 |
+
-sc.exp1(complex(-1, -0.0)).imag
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
assert_allclose(
|
| 17 |
+
sc.exp1(complex(-1, 0)),
|
| 18 |
+
sc.exp1(-1 + 1e-20j),
|
| 19 |
+
atol=0,
|
| 20 |
+
rtol=1e-15
|
| 21 |
+
)
|
| 22 |
+
assert_allclose(
|
| 23 |
+
sc.exp1(complex(-1, -0.0)),
|
| 24 |
+
sc.exp1(-1 - 1e-20j),
|
| 25 |
+
atol=0,
|
| 26 |
+
rtol=1e-15
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
def test_834(self):
|
| 30 |
+
# Regression test for #834
|
| 31 |
+
a = sc.exp1(-complex(19.9999990))
|
| 32 |
+
b = sc.exp1(-complex(19.9999991))
|
| 33 |
+
assert_allclose(a.imag, b.imag, atol=0, rtol=1e-15)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class TestScaledExp1:
|
| 37 |
+
|
| 38 |
+
@pytest.mark.parametrize('x, expected', [(0, 0), (np.inf, 1)])
|
| 39 |
+
def test_limits(self, x, expected):
|
| 40 |
+
y = sc._ufuncs._scaled_exp1(x)
|
| 41 |
+
assert y == expected
|
| 42 |
+
|
| 43 |
+
# The expected values were computed with mpmath, e.g.:
|
| 44 |
+
#
|
| 45 |
+
# from mpmath import mp
|
| 46 |
+
# mp.dps = 80
|
| 47 |
+
# x = 1e-25
|
| 48 |
+
# print(float(x*mp.exp(x)*np.expint(1, x)))
|
| 49 |
+
#
|
| 50 |
+
# prints 5.698741165994961e-24
|
| 51 |
+
#
|
| 52 |
+
# The method used to compute _scaled_exp1 changes at x=1
|
| 53 |
+
# and x=1250, so values at those inputs, and values just
|
| 54 |
+
# above and below them, are included in the test data.
|
| 55 |
+
@pytest.mark.parametrize('x, expected',
|
| 56 |
+
[(1e-25, 5.698741165994961e-24),
|
| 57 |
+
(0.1, 0.20146425447084518),
|
| 58 |
+
(0.9995, 0.5962509885831002),
|
| 59 |
+
(1.0, 0.5963473623231941),
|
| 60 |
+
(1.0005, 0.5964436833238044),
|
| 61 |
+
(2.5, 0.7588145912149602),
|
| 62 |
+
(10.0, 0.9156333393978808),
|
| 63 |
+
(100.0, 0.9901942286733019),
|
| 64 |
+
(500.0, 0.9980079523802055),
|
| 65 |
+
(1000.0, 0.9990019940238807),
|
| 66 |
+
(1249.5, 0.9992009578306811),
|
| 67 |
+
(1250.0, 0.9992012769377913),
|
| 68 |
+
(1250.25, 0.9992014363957858),
|
| 69 |
+
(2000.0, 0.9995004992514963),
|
| 70 |
+
(1e4, 0.9999000199940024),
|
| 71 |
+
(1e10, 0.9999999999),
|
| 72 |
+
(1e15, 0.999999999999999),
|
| 73 |
+
])
|
| 74 |
+
def test_scaled_exp1(self, x, expected):
|
| 75 |
+
y = sc._ufuncs._scaled_exp1(x)
|
| 76 |
+
assert_allclose(y, expected, rtol=2e-15)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
class TestExpi:
|
| 80 |
+
|
| 81 |
+
@pytest.mark.parametrize('result', [
|
| 82 |
+
sc.expi(complex(-1, 0)),
|
| 83 |
+
sc.expi(complex(-1, -0.0)),
|
| 84 |
+
sc.expi(-1)
|
| 85 |
+
])
|
| 86 |
+
def test_branch_cut(self, result):
|
| 87 |
+
desired = -0.21938393439552027368 # Computed using Mpmath
|
| 88 |
+
assert_allclose(result, desired, atol=0, rtol=1e-14)
|
| 89 |
+
|
| 90 |
+
def test_near_branch_cut(self):
|
| 91 |
+
lim_from_above = sc.expi(-1 + 1e-20j)
|
| 92 |
+
lim_from_below = sc.expi(-1 - 1e-20j)
|
| 93 |
+
assert_allclose(
|
| 94 |
+
lim_from_above.real,
|
| 95 |
+
lim_from_below.real,
|
| 96 |
+
atol=0,
|
| 97 |
+
rtol=1e-15
|
| 98 |
+
)
|
| 99 |
+
assert_allclose(
|
| 100 |
+
lim_from_above.imag,
|
| 101 |
+
-lim_from_below.imag,
|
| 102 |
+
atol=0,
|
| 103 |
+
rtol=1e-15
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
def test_continuity_on_positive_real_axis(self):
|
| 107 |
+
assert_allclose(
|
| 108 |
+
sc.expi(complex(1, 0)),
|
| 109 |
+
sc.expi(complex(1, -0.0)),
|
| 110 |
+
atol=0,
|
| 111 |
+
rtol=1e-15
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
class TestExpn:
|
| 116 |
+
|
| 117 |
+
def test_out_of_domain(self):
|
| 118 |
+
assert all(np.isnan([sc.expn(-1, 1.0), sc.expn(1, -1.0)]))
|
openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_faddeeva.py
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pytest
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
from numpy.testing import assert_allclose
|
| 5 |
+
import scipy.special as sc
|
| 6 |
+
from scipy.special._testutils import FuncData
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class TestVoigtProfile:
|
| 10 |
+
|
| 11 |
+
@pytest.mark.parametrize('x, sigma, gamma', [
|
| 12 |
+
(np.nan, 1, 1),
|
| 13 |
+
(0, np.nan, 1),
|
| 14 |
+
(0, 1, np.nan),
|
| 15 |
+
(1, np.nan, 0),
|
| 16 |
+
(np.nan, 1, 0),
|
| 17 |
+
(1, 0, np.nan),
|
| 18 |
+
(np.nan, 0, 1),
|
| 19 |
+
(np.nan, 0, 0)
|
| 20 |
+
])
|
| 21 |
+
def test_nan(self, x, sigma, gamma):
|
| 22 |
+
assert np.isnan(sc.voigt_profile(x, sigma, gamma))
|
| 23 |
+
|
| 24 |
+
@pytest.mark.parametrize('x, desired', [
|
| 25 |
+
(-np.inf, 0),
|
| 26 |
+
(np.inf, 0)
|
| 27 |
+
])
|
| 28 |
+
def test_inf(self, x, desired):
|
| 29 |
+
assert sc.voigt_profile(x, 1, 1) == desired
|
| 30 |
+
|
| 31 |
+
def test_against_mathematica(self):
|
| 32 |
+
# Results obtained from Mathematica by computing
|
| 33 |
+
#
|
| 34 |
+
# PDF[VoigtDistribution[gamma, sigma], x]
|
| 35 |
+
#
|
| 36 |
+
points = np.array([
|
| 37 |
+
[-7.89, 45.06, 6.66, 0.0077921073660388806401],
|
| 38 |
+
[-0.05, 7.98, 24.13, 0.012068223646769913478],
|
| 39 |
+
[-13.98, 16.83, 42.37, 0.0062442236362132357833],
|
| 40 |
+
[-12.66, 0.21, 6.32, 0.010052516161087379402],
|
| 41 |
+
[11.34, 4.25, 21.96, 0.0113698923627278917805],
|
| 42 |
+
[-11.56, 20.40, 30.53, 0.0076332760432097464987],
|
| 43 |
+
[-9.17, 25.61, 8.32, 0.011646345779083005429],
|
| 44 |
+
[16.59, 18.05, 2.50, 0.013637768837526809181],
|
| 45 |
+
[9.11, 2.12, 39.33, 0.0076644040807277677585],
|
| 46 |
+
[-43.33, 0.30, 45.68, 0.0036680463875330150996]
|
| 47 |
+
])
|
| 48 |
+
FuncData(
|
| 49 |
+
sc.voigt_profile,
|
| 50 |
+
points,
|
| 51 |
+
(0, 1, 2),
|
| 52 |
+
3,
|
| 53 |
+
atol=0,
|
| 54 |
+
rtol=1e-15
|
| 55 |
+
).check()
|
| 56 |
+
|
| 57 |
+
def test_symmetry(self):
|
| 58 |
+
x = np.linspace(0, 10, 20)
|
| 59 |
+
assert_allclose(
|
| 60 |
+
sc.voigt_profile(x, 1, 1),
|
| 61 |
+
sc.voigt_profile(-x, 1, 1),
|
| 62 |
+
rtol=1e-15,
|
| 63 |
+
atol=0
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
@pytest.mark.parametrize('x, sigma, gamma, desired', [
|
| 67 |
+
(0, 0, 0, np.inf),
|
| 68 |
+
(1, 0, 0, 0)
|
| 69 |
+
])
|
| 70 |
+
def test_corner_cases(self, x, sigma, gamma, desired):
|
| 71 |
+
assert sc.voigt_profile(x, sigma, gamma) == desired
|
| 72 |
+
|
| 73 |
+
@pytest.mark.parametrize('sigma1, gamma1, sigma2, gamma2', [
|
| 74 |
+
(0, 1, 1e-16, 1),
|
| 75 |
+
(1, 0, 1, 1e-16),
|
| 76 |
+
(0, 0, 1e-16, 1e-16)
|
| 77 |
+
])
|
| 78 |
+
def test_continuity(self, sigma1, gamma1, sigma2, gamma2):
|
| 79 |
+
x = np.linspace(1, 10, 20)
|
| 80 |
+
assert_allclose(
|
| 81 |
+
sc.voigt_profile(x, sigma1, gamma1),
|
| 82 |
+
sc.voigt_profile(x, sigma2, gamma2),
|
| 83 |
+
rtol=1e-16,
|
| 84 |
+
atol=1e-16
|
| 85 |
+
)
|
openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_gamma.py
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import scipy.special as sc
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class TestRgamma:
|
| 6 |
+
|
| 7 |
+
def test_gh_11315(self):
|
| 8 |
+
assert sc.rgamma(-35) == 0
|
| 9 |
+
|
| 10 |
+
def test_rgamma_zeros(self):
|
| 11 |
+
x = np.array([0, -10, -100, -1000, -10000])
|
| 12 |
+
assert np.all(sc.rgamma(x) == 0)
|
openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_gammainc.py
ADDED
|
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pytest
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
from numpy.testing import assert_allclose, assert_array_equal
|
| 5 |
+
|
| 6 |
+
import scipy.special as sc
|
| 7 |
+
from scipy.special._testutils import FuncData
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
INVALID_POINTS = [
|
| 11 |
+
(1, -1),
|
| 12 |
+
(0, 0),
|
| 13 |
+
(-1, 1),
|
| 14 |
+
(np.nan, 1),
|
| 15 |
+
(1, np.nan)
|
| 16 |
+
]
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class TestGammainc:
|
| 20 |
+
|
| 21 |
+
@pytest.mark.parametrize('a, x', INVALID_POINTS)
|
| 22 |
+
def test_domain(self, a, x):
|
| 23 |
+
assert np.isnan(sc.gammainc(a, x))
|
| 24 |
+
|
| 25 |
+
def test_a_eq_0_x_gt_0(self):
|
| 26 |
+
assert sc.gammainc(0, 1) == 1
|
| 27 |
+
|
| 28 |
+
@pytest.mark.parametrize('a, x, desired', [
|
| 29 |
+
(np.inf, 1, 0),
|
| 30 |
+
(np.inf, 0, 0),
|
| 31 |
+
(np.inf, np.inf, np.nan),
|
| 32 |
+
(1, np.inf, 1)
|
| 33 |
+
])
|
| 34 |
+
def test_infinite_arguments(self, a, x, desired):
|
| 35 |
+
result = sc.gammainc(a, x)
|
| 36 |
+
if np.isnan(desired):
|
| 37 |
+
assert np.isnan(result)
|
| 38 |
+
else:
|
| 39 |
+
assert result == desired
|
| 40 |
+
|
| 41 |
+
def test_infinite_limits(self):
|
| 42 |
+
# Test that large arguments converge to the hard-coded limits
|
| 43 |
+
# at infinity.
|
| 44 |
+
assert_allclose(
|
| 45 |
+
sc.gammainc(1000, 100),
|
| 46 |
+
sc.gammainc(np.inf, 100),
|
| 47 |
+
atol=1e-200, # Use `atol` since the function converges to 0.
|
| 48 |
+
rtol=0
|
| 49 |
+
)
|
| 50 |
+
assert sc.gammainc(100, 1000) == sc.gammainc(100, np.inf)
|
| 51 |
+
|
| 52 |
+
def test_x_zero(self):
|
| 53 |
+
a = np.arange(1, 10)
|
| 54 |
+
assert_array_equal(sc.gammainc(a, 0), 0)
|
| 55 |
+
|
| 56 |
+
def test_limit_check(self):
|
| 57 |
+
result = sc.gammainc(1e-10, 1)
|
| 58 |
+
limit = sc.gammainc(0, 1)
|
| 59 |
+
assert np.isclose(result, limit)
|
| 60 |
+
|
| 61 |
+
def gammainc_line(self, x):
|
| 62 |
+
# The line a = x where a simpler asymptotic expansion (analog
|
| 63 |
+
# of DLMF 8.12.15) is available.
|
| 64 |
+
c = np.array([-1/3, -1/540, 25/6048, 101/155520,
|
| 65 |
+
-3184811/3695155200, -2745493/8151736420])
|
| 66 |
+
res = 0
|
| 67 |
+
xfac = 1
|
| 68 |
+
for ck in c:
|
| 69 |
+
res -= ck*xfac
|
| 70 |
+
xfac /= x
|
| 71 |
+
res /= np.sqrt(2*np.pi*x)
|
| 72 |
+
res += 0.5
|
| 73 |
+
return res
|
| 74 |
+
|
| 75 |
+
def test_line(self):
|
| 76 |
+
x = np.logspace(np.log10(25), 300, 500)
|
| 77 |
+
a = x
|
| 78 |
+
dataset = np.vstack((a, x, self.gammainc_line(x))).T
|
| 79 |
+
FuncData(sc.gammainc, dataset, (0, 1), 2, rtol=1e-11).check()
|
| 80 |
+
|
| 81 |
+
def test_roundtrip(self):
|
| 82 |
+
a = np.logspace(-5, 10, 100)
|
| 83 |
+
x = np.logspace(-5, 10, 100)
|
| 84 |
+
|
| 85 |
+
y = sc.gammaincinv(a, sc.gammainc(a, x))
|
| 86 |
+
assert_allclose(x, y, rtol=1e-10)
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
class TestGammaincc:
|
| 90 |
+
|
| 91 |
+
@pytest.mark.parametrize('a, x', INVALID_POINTS)
|
| 92 |
+
def test_domain(self, a, x):
|
| 93 |
+
assert np.isnan(sc.gammaincc(a, x))
|
| 94 |
+
|
| 95 |
+
def test_a_eq_0_x_gt_0(self):
|
| 96 |
+
assert sc.gammaincc(0, 1) == 0
|
| 97 |
+
|
| 98 |
+
@pytest.mark.parametrize('a, x, desired', [
|
| 99 |
+
(np.inf, 1, 1),
|
| 100 |
+
(np.inf, 0, 1),
|
| 101 |
+
(np.inf, np.inf, np.nan),
|
| 102 |
+
(1, np.inf, 0)
|
| 103 |
+
])
|
| 104 |
+
def test_infinite_arguments(self, a, x, desired):
|
| 105 |
+
result = sc.gammaincc(a, x)
|
| 106 |
+
if np.isnan(desired):
|
| 107 |
+
assert np.isnan(result)
|
| 108 |
+
else:
|
| 109 |
+
assert result == desired
|
| 110 |
+
|
| 111 |
+
def test_infinite_limits(self):
|
| 112 |
+
# Test that large arguments converge to the hard-coded limits
|
| 113 |
+
# at infinity.
|
| 114 |
+
assert sc.gammaincc(1000, 100) == sc.gammaincc(np.inf, 100)
|
| 115 |
+
assert_allclose(
|
| 116 |
+
sc.gammaincc(100, 1000),
|
| 117 |
+
sc.gammaincc(100, np.inf),
|
| 118 |
+
atol=1e-200, # Use `atol` since the function converges to 0.
|
| 119 |
+
rtol=0
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
def test_limit_check(self):
|
| 123 |
+
result = sc.gammaincc(1e-10,1)
|
| 124 |
+
limit = sc.gammaincc(0,1)
|
| 125 |
+
assert np.isclose(result, limit)
|
| 126 |
+
|
| 127 |
+
def test_x_zero(self):
|
| 128 |
+
a = np.arange(1, 10)
|
| 129 |
+
assert_array_equal(sc.gammaincc(a, 0), 1)
|
| 130 |
+
|
| 131 |
+
def test_roundtrip(self):
|
| 132 |
+
a = np.logspace(-5, 10, 100)
|
| 133 |
+
x = np.logspace(-5, 10, 100)
|
| 134 |
+
|
| 135 |
+
y = sc.gammainccinv(a, sc.gammaincc(a, x))
|
| 136 |
+
assert_allclose(x, y, rtol=1e-14)
|
openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_hypergeometric.py
ADDED
|
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pytest
|
| 2 |
+
import numpy as np
|
| 3 |
+
from numpy.testing import assert_allclose, assert_equal
|
| 4 |
+
import scipy.special as sc
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class TestHyperu:
|
| 8 |
+
|
| 9 |
+
def test_negative_x(self):
|
| 10 |
+
a, b, x = np.meshgrid(
|
| 11 |
+
[-1, -0.5, 0, 0.5, 1],
|
| 12 |
+
[-1, -0.5, 0, 0.5, 1],
|
| 13 |
+
np.linspace(-100, -1, 10),
|
| 14 |
+
)
|
| 15 |
+
assert np.all(np.isnan(sc.hyperu(a, b, x)))
|
| 16 |
+
|
| 17 |
+
def test_special_cases(self):
|
| 18 |
+
assert sc.hyperu(0, 1, 1) == 1.0
|
| 19 |
+
|
| 20 |
+
@pytest.mark.parametrize('a', [0.5, 1, np.nan])
|
| 21 |
+
@pytest.mark.parametrize('b', [1, 2, np.nan])
|
| 22 |
+
@pytest.mark.parametrize('x', [0.25, 3, np.nan])
|
| 23 |
+
def test_nan_inputs(self, a, b, x):
|
| 24 |
+
assert np.isnan(sc.hyperu(a, b, x)) == np.any(np.isnan([a, b, x]))
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class TestHyp1f1:
|
| 28 |
+
|
| 29 |
+
@pytest.mark.parametrize('a, b, x', [
|
| 30 |
+
(np.nan, 1, 1),
|
| 31 |
+
(1, np.nan, 1),
|
| 32 |
+
(1, 1, np.nan)
|
| 33 |
+
])
|
| 34 |
+
def test_nan_inputs(self, a, b, x):
|
| 35 |
+
assert np.isnan(sc.hyp1f1(a, b, x))
|
| 36 |
+
|
| 37 |
+
def test_poles(self):
|
| 38 |
+
assert_equal(sc.hyp1f1(1, [0, -1, -2, -3, -4], 0.5), np.inf)
|
| 39 |
+
|
| 40 |
+
@pytest.mark.parametrize('a, b, x, result', [
|
| 41 |
+
(-1, 1, 0.5, 0.5),
|
| 42 |
+
(1, 1, 0.5, 1.6487212707001281468),
|
| 43 |
+
(2, 1, 0.5, 2.4730819060501922203),
|
| 44 |
+
(1, 2, 0.5, 1.2974425414002562937),
|
| 45 |
+
(-10, 1, 0.5, -0.38937441413785204475)
|
| 46 |
+
])
|
| 47 |
+
def test_special_cases(self, a, b, x, result):
|
| 48 |
+
# Hit all the special case branches at the beginning of the
|
| 49 |
+
# function. Desired answers computed using Mpmath.
|
| 50 |
+
assert_allclose(sc.hyp1f1(a, b, x), result, atol=0, rtol=1e-15)
|
| 51 |
+
|
| 52 |
+
@pytest.mark.parametrize('a, b, x, result', [
|
| 53 |
+
(1, 1, 0.44, 1.5527072185113360455),
|
| 54 |
+
(-1, 1, 0.44, 0.55999999999999999778),
|
| 55 |
+
(100, 100, 0.89, 2.4351296512898745592),
|
| 56 |
+
(-100, 100, 0.89, 0.40739062490768104667),
|
| 57 |
+
(1.5, 100, 59.99, 3.8073513625965598107),
|
| 58 |
+
(-1.5, 100, 59.99, 0.25099240047125826943)
|
| 59 |
+
])
|
| 60 |
+
def test_geometric_convergence(self, a, b, x, result):
|
| 61 |
+
# Test the region where we are relying on the ratio of
|
| 62 |
+
#
|
| 63 |
+
# (|a| + 1) * |x| / |b|
|
| 64 |
+
#
|
| 65 |
+
# being small. Desired answers computed using Mpmath
|
| 66 |
+
assert_allclose(sc.hyp1f1(a, b, x), result, atol=0, rtol=1e-15)
|
| 67 |
+
|
| 68 |
+
@pytest.mark.parametrize('a, b, x, result', [
|
| 69 |
+
(-1, 1, 1.5, -0.5),
|
| 70 |
+
(-10, 1, 1.5, 0.41801777430943080357),
|
| 71 |
+
(-25, 1, 1.5, 0.25114491646037839809),
|
| 72 |
+
(-50, 1, 1.5, -0.25683643975194756115),
|
| 73 |
+
(-80, 1, 1.5, -0.24554329325751503601),
|
| 74 |
+
(-150, 1, 1.5, -0.173364795515420454496),
|
| 75 |
+
])
|
| 76 |
+
def test_a_negative_integer(self, a, b, x, result):
|
| 77 |
+
# Desired answers computed using Mpmath.
|
| 78 |
+
assert_allclose(sc.hyp1f1(a, b, x), result, atol=0, rtol=2e-14)
|
| 79 |
+
|
| 80 |
+
@pytest.mark.parametrize('a, b, x, expected', [
|
| 81 |
+
(0.01, 150, -4, 0.99973683897677527773), # gh-3492
|
| 82 |
+
(1, 5, 0.01, 1.0020033381011970966), # gh-3593
|
| 83 |
+
(50, 100, 0.01, 1.0050126452421463411), # gh-3593
|
| 84 |
+
(1, 0.3, -1e3, -7.011932249442947651455e-04), # gh-14149
|
| 85 |
+
(1, 0.3, -1e4, -7.001190321418937164734e-05), # gh-14149
|
| 86 |
+
(9, 8.5, -350, -5.224090831922378361082e-20), # gh-17120
|
| 87 |
+
(9, 8.5, -355, -4.595407159813368193322e-20), # gh-17120
|
| 88 |
+
(75, -123.5, 15, 3.425753920814889017493e+06),
|
| 89 |
+
])
|
| 90 |
+
def test_assorted_cases(self, a, b, x, expected):
|
| 91 |
+
# Expected values were computed with mpmath.hyp1f1(a, b, x).
|
| 92 |
+
assert_allclose(sc.hyp1f1(a, b, x), expected, atol=0, rtol=1e-14)
|
| 93 |
+
|
| 94 |
+
def test_a_neg_int_and_b_equal_x(self):
|
| 95 |
+
# This is a case where the Boost wrapper will call hypergeometric_pFq
|
| 96 |
+
# instead of hypergeometric_1F1. When we use a version of Boost in
|
| 97 |
+
# which https://github.com/boostorg/math/issues/833 is fixed, this
|
| 98 |
+
# test case can probably be moved into test_assorted_cases.
|
| 99 |
+
# The expected value was computed with mpmath.hyp1f1(a, b, x).
|
| 100 |
+
a = -10.0
|
| 101 |
+
b = 2.5
|
| 102 |
+
x = 2.5
|
| 103 |
+
expected = 0.0365323664364104338721
|
| 104 |
+
computed = sc.hyp1f1(a, b, x)
|
| 105 |
+
assert_allclose(computed, expected, atol=0, rtol=1e-13)
|
| 106 |
+
|
| 107 |
+
@pytest.mark.parametrize('a, b, x, desired', [
|
| 108 |
+
(-1, -2, 2, 2),
|
| 109 |
+
(-1, -4, 10, 3.5),
|
| 110 |
+
(-2, -2, 1, 2.5)
|
| 111 |
+
])
|
| 112 |
+
def test_gh_11099(self, a, b, x, desired):
|
| 113 |
+
# All desired results computed using Mpmath
|
| 114 |
+
assert sc.hyp1f1(a, b, x) == desired
|
| 115 |
+
|
| 116 |
+
@pytest.mark.parametrize('a', [-3, -2])
|
| 117 |
+
def test_x_zero_a_and_b_neg_ints_and_a_ge_b(self, a):
|
| 118 |
+
assert sc.hyp1f1(a, -3, 0) == 1
|
| 119 |
+
|
| 120 |
+
# The "legacy edge cases" mentioned in the comments in the following
|
| 121 |
+
# tests refers to the behavior of hyp1f1(a, b, x) when b is a nonpositive
|
| 122 |
+
# integer. In some subcases, the behavior of SciPy does not match that
|
| 123 |
+
# of Boost (1.81+), mpmath and Mathematica (via Wolfram Alpha online).
|
| 124 |
+
# If the handling of these edges cases is changed to agree with those
|
| 125 |
+
# libraries, these test will have to be updated.
|
| 126 |
+
|
| 127 |
+
@pytest.mark.parametrize('b', [0, -1, -5])
|
| 128 |
+
def test_legacy_case1(self, b):
|
| 129 |
+
# Test results of hyp1f1(0, n, x) for n <= 0.
|
| 130 |
+
# This is a legacy edge case.
|
| 131 |
+
# Boost (versions greater than 1.80), Mathematica (via Wolfram Alpha
|
| 132 |
+
# online) and mpmath all return 1 in this case, but SciPy's hyp1f1
|
| 133 |
+
# returns inf.
|
| 134 |
+
assert_equal(sc.hyp1f1(0, b, [-1.5, 0, 1.5]), [np.inf, np.inf, np.inf])
|
| 135 |
+
|
| 136 |
+
def test_legacy_case2(self):
|
| 137 |
+
# This is a legacy edge case.
|
| 138 |
+
# In software such as boost (1.81+), mpmath and Mathematica,
|
| 139 |
+
# the value is 1.
|
| 140 |
+
assert sc.hyp1f1(-4, -3, 0) == np.inf
|
openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_kolmogorov.py
ADDED
|
@@ -0,0 +1,495 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import itertools
|
| 2 |
+
import sys
|
| 3 |
+
import pytest
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
from numpy.testing import assert_
|
| 7 |
+
from scipy.special._testutils import FuncData
|
| 8 |
+
|
| 9 |
+
from scipy.special import kolmogorov, kolmogi, smirnov, smirnovi
|
| 10 |
+
from scipy.special._ufuncs import (_kolmogc, _kolmogci, _kolmogp,
|
| 11 |
+
_smirnovc, _smirnovci, _smirnovp)
|
| 12 |
+
|
| 13 |
+
_rtol = 1e-10
|
| 14 |
+
|
| 15 |
+
class TestSmirnov:
|
| 16 |
+
def test_nan(self):
|
| 17 |
+
assert_(np.isnan(smirnov(1, np.nan)))
|
| 18 |
+
|
| 19 |
+
def test_basic(self):
|
| 20 |
+
dataset = [(1, 0.1, 0.9),
|
| 21 |
+
(1, 0.875, 0.125),
|
| 22 |
+
(2, 0.875, 0.125 * 0.125),
|
| 23 |
+
(3, 0.875, 0.125 * 0.125 * 0.125)]
|
| 24 |
+
|
| 25 |
+
dataset = np.asarray(dataset)
|
| 26 |
+
FuncData(
|
| 27 |
+
smirnov, dataset, (0, 1), 2, rtol=_rtol
|
| 28 |
+
).check(dtypes=[int, float, float])
|
| 29 |
+
dataset[:, -1] = 1 - dataset[:, -1]
|
| 30 |
+
FuncData(
|
| 31 |
+
_smirnovc, dataset, (0, 1), 2, rtol=_rtol
|
| 32 |
+
).check(dtypes=[int, float, float])
|
| 33 |
+
|
| 34 |
+
def test_x_equals_0(self):
|
| 35 |
+
dataset = [(n, 0, 1) for n in itertools.chain(range(2, 20), range(1010, 1020))]
|
| 36 |
+
dataset = np.asarray(dataset)
|
| 37 |
+
FuncData(
|
| 38 |
+
smirnov, dataset, (0, 1), 2, rtol=_rtol
|
| 39 |
+
).check(dtypes=[int, float, float])
|
| 40 |
+
dataset[:, -1] = 1 - dataset[:, -1]
|
| 41 |
+
FuncData(
|
| 42 |
+
_smirnovc, dataset, (0, 1), 2, rtol=_rtol
|
| 43 |
+
).check(dtypes=[int, float, float])
|
| 44 |
+
|
| 45 |
+
def test_x_equals_1(self):
|
| 46 |
+
dataset = [(n, 1, 0) for n in itertools.chain(range(2, 20), range(1010, 1020))]
|
| 47 |
+
dataset = np.asarray(dataset)
|
| 48 |
+
FuncData(
|
| 49 |
+
smirnov, dataset, (0, 1), 2, rtol=_rtol
|
| 50 |
+
).check(dtypes=[int, float, float])
|
| 51 |
+
dataset[:, -1] = 1 - dataset[:, -1]
|
| 52 |
+
FuncData(
|
| 53 |
+
_smirnovc, dataset, (0, 1), 2, rtol=_rtol
|
| 54 |
+
).check(dtypes=[int, float, float])
|
| 55 |
+
|
| 56 |
+
def test_x_equals_0point5(self):
|
| 57 |
+
dataset = [(1, 0.5, 0.5),
|
| 58 |
+
(2, 0.5, 0.25),
|
| 59 |
+
(3, 0.5, 0.166666666667),
|
| 60 |
+
(4, 0.5, 0.09375),
|
| 61 |
+
(5, 0.5, 0.056),
|
| 62 |
+
(6, 0.5, 0.0327932098765),
|
| 63 |
+
(7, 0.5, 0.0191958707681),
|
| 64 |
+
(8, 0.5, 0.0112953186035),
|
| 65 |
+
(9, 0.5, 0.00661933257355),
|
| 66 |
+
(10, 0.5, 0.003888705)]
|
| 67 |
+
|
| 68 |
+
dataset = np.asarray(dataset)
|
| 69 |
+
FuncData(
|
| 70 |
+
smirnov, dataset, (0, 1), 2, rtol=_rtol
|
| 71 |
+
).check(dtypes=[int, float, float])
|
| 72 |
+
dataset[:, -1] = 1 - dataset[:, -1]
|
| 73 |
+
FuncData(
|
| 74 |
+
_smirnovc, dataset, (0, 1), 2, rtol=_rtol
|
| 75 |
+
).check(dtypes=[int, float, float])
|
| 76 |
+
|
| 77 |
+
def test_n_equals_1(self):
|
| 78 |
+
x = np.linspace(0, 1, 101, endpoint=True)
|
| 79 |
+
dataset = np.column_stack([[1]*len(x), x, 1-x])
|
| 80 |
+
FuncData(
|
| 81 |
+
smirnov, dataset, (0, 1), 2, rtol=_rtol
|
| 82 |
+
).check(dtypes=[int, float, float])
|
| 83 |
+
dataset[:, -1] = 1 - dataset[:, -1]
|
| 84 |
+
FuncData(
|
| 85 |
+
_smirnovc, dataset, (0, 1), 2, rtol=_rtol
|
| 86 |
+
).check(dtypes=[int, float, float])
|
| 87 |
+
|
| 88 |
+
def test_n_equals_2(self):
|
| 89 |
+
x = np.linspace(0.5, 1, 101, endpoint=True)
|
| 90 |
+
p = np.power(1-x, 2)
|
| 91 |
+
n = np.array([2] * len(x))
|
| 92 |
+
dataset = np.column_stack([n, x, p])
|
| 93 |
+
FuncData(
|
| 94 |
+
smirnov, dataset, (0, 1), 2, rtol=_rtol
|
| 95 |
+
).check(dtypes=[int, float, float])
|
| 96 |
+
dataset[:, -1] = 1 - dataset[:, -1]
|
| 97 |
+
FuncData(
|
| 98 |
+
_smirnovc, dataset, (0, 1), 2, rtol=_rtol
|
| 99 |
+
).check(dtypes=[int, float, float])
|
| 100 |
+
|
| 101 |
+
def test_n_equals_3(self):
|
| 102 |
+
x = np.linspace(0.7, 1, 31, endpoint=True)
|
| 103 |
+
p = np.power(1-x, 3)
|
| 104 |
+
n = np.array([3] * len(x))
|
| 105 |
+
dataset = np.column_stack([n, x, p])
|
| 106 |
+
FuncData(
|
| 107 |
+
smirnov, dataset, (0, 1), 2, rtol=_rtol
|
| 108 |
+
).check(dtypes=[int, float, float])
|
| 109 |
+
dataset[:, -1] = 1 - dataset[:, -1]
|
| 110 |
+
FuncData(
|
| 111 |
+
_smirnovc, dataset, (0, 1), 2, rtol=_rtol
|
| 112 |
+
).check(dtypes=[int, float, float])
|
| 113 |
+
|
| 114 |
+
def test_n_large(self):
|
| 115 |
+
# test for large values of n
|
| 116 |
+
# Probabilities should go down as n goes up
|
| 117 |
+
x = 0.4
|
| 118 |
+
pvals = np.array([smirnov(n, x) for n in range(400, 1100, 20)])
|
| 119 |
+
dfs = np.diff(pvals)
|
| 120 |
+
assert_(np.all(dfs <= 0), msg='Not all diffs negative %s' % dfs)
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
class TestSmirnovi:
|
| 124 |
+
def test_nan(self):
|
| 125 |
+
assert_(np.isnan(smirnovi(1, np.nan)))
|
| 126 |
+
|
| 127 |
+
def test_basic(self):
|
| 128 |
+
dataset = [(1, 0.4, 0.6),
|
| 129 |
+
(1, 0.6, 0.4),
|
| 130 |
+
(1, 0.99, 0.01),
|
| 131 |
+
(1, 0.01, 0.99),
|
| 132 |
+
(2, 0.125 * 0.125, 0.875),
|
| 133 |
+
(3, 0.125 * 0.125 * 0.125, 0.875),
|
| 134 |
+
(10, 1.0 / 16 ** 10, 1 - 1.0 / 16)]
|
| 135 |
+
|
| 136 |
+
dataset = np.asarray(dataset)
|
| 137 |
+
FuncData(
|
| 138 |
+
smirnovi, dataset, (0, 1), 2, rtol=_rtol
|
| 139 |
+
).check(dtypes=[int, float, float])
|
| 140 |
+
dataset[:, 1] = 1 - dataset[:, 1]
|
| 141 |
+
FuncData(
|
| 142 |
+
_smirnovci, dataset, (0, 1), 2, rtol=_rtol
|
| 143 |
+
).check(dtypes=[int, float, float])
|
| 144 |
+
|
| 145 |
+
def test_x_equals_0(self):
|
| 146 |
+
dataset = [(n, 0, 1) for n in itertools.chain(range(2, 20), range(1010, 1020))]
|
| 147 |
+
dataset = np.asarray(dataset)
|
| 148 |
+
FuncData(
|
| 149 |
+
smirnovi, dataset, (0, 1), 2, rtol=_rtol
|
| 150 |
+
).check(dtypes=[int, float, float])
|
| 151 |
+
dataset[:, 1] = 1 - dataset[:, 1]
|
| 152 |
+
FuncData(
|
| 153 |
+
_smirnovci, dataset, (0, 1), 2, rtol=_rtol
|
| 154 |
+
).check(dtypes=[int, float, float])
|
| 155 |
+
|
| 156 |
+
def test_x_equals_1(self):
|
| 157 |
+
dataset = [(n, 1, 0) for n in itertools.chain(range(2, 20), range(1010, 1020))]
|
| 158 |
+
dataset = np.asarray(dataset)
|
| 159 |
+
FuncData(
|
| 160 |
+
smirnovi, dataset, (0, 1), 2, rtol=_rtol
|
| 161 |
+
).check(dtypes=[int, float, float])
|
| 162 |
+
dataset[:, 1] = 1 - dataset[:, 1]
|
| 163 |
+
FuncData(
|
| 164 |
+
_smirnovci, dataset, (0, 1), 2, rtol=_rtol
|
| 165 |
+
).check(dtypes=[int, float, float])
|
| 166 |
+
|
| 167 |
+
def test_n_equals_1(self):
|
| 168 |
+
pp = np.linspace(0, 1, 101, endpoint=True)
|
| 169 |
+
# dataset = np.array([(1, p, 1-p) for p in pp])
|
| 170 |
+
dataset = np.column_stack([[1]*len(pp), pp, 1-pp])
|
| 171 |
+
FuncData(
|
| 172 |
+
smirnovi, dataset, (0, 1), 2, rtol=_rtol
|
| 173 |
+
).check(dtypes=[int, float, float])
|
| 174 |
+
dataset[:, 1] = 1 - dataset[:, 1]
|
| 175 |
+
FuncData(
|
| 176 |
+
_smirnovci, dataset, (0, 1), 2, rtol=_rtol
|
| 177 |
+
).check(dtypes=[int, float, float])
|
| 178 |
+
|
| 179 |
+
def test_n_equals_2(self):
|
| 180 |
+
x = np.linspace(0.5, 1, 101, endpoint=True)
|
| 181 |
+
p = np.power(1-x, 2)
|
| 182 |
+
n = np.array([2] * len(x))
|
| 183 |
+
dataset = np.column_stack([n, p, x])
|
| 184 |
+
FuncData(
|
| 185 |
+
smirnovi, dataset, (0, 1), 2, rtol=_rtol
|
| 186 |
+
).check(dtypes=[int, float, float])
|
| 187 |
+
dataset[:, 1] = 1 - dataset[:, 1]
|
| 188 |
+
FuncData(
|
| 189 |
+
_smirnovci, dataset, (0, 1), 2, rtol=_rtol
|
| 190 |
+
).check(dtypes=[int, float, float])
|
| 191 |
+
|
| 192 |
+
def test_n_equals_3(self):
|
| 193 |
+
x = np.linspace(0.7, 1, 31, endpoint=True)
|
| 194 |
+
p = np.power(1-x, 3)
|
| 195 |
+
n = np.array([3] * len(x))
|
| 196 |
+
dataset = np.column_stack([n, p, x])
|
| 197 |
+
FuncData(
|
| 198 |
+
smirnovi, dataset, (0, 1), 2, rtol=_rtol
|
| 199 |
+
).check(dtypes=[int, float, float])
|
| 200 |
+
dataset[:, 1] = 1 - dataset[:, 1]
|
| 201 |
+
FuncData(
|
| 202 |
+
_smirnovci, dataset, (0, 1), 2, rtol=_rtol
|
| 203 |
+
).check(dtypes=[int, float, float])
|
| 204 |
+
|
| 205 |
+
def test_round_trip(self):
|
| 206 |
+
def _sm_smi(n, p):
|
| 207 |
+
return smirnov(n, smirnovi(n, p))
|
| 208 |
+
|
| 209 |
+
def _smc_smci(n, p):
|
| 210 |
+
return _smirnovc(n, _smirnovci(n, p))
|
| 211 |
+
|
| 212 |
+
dataset = [(1, 0.4, 0.4),
|
| 213 |
+
(1, 0.6, 0.6),
|
| 214 |
+
(2, 0.875, 0.875),
|
| 215 |
+
(3, 0.875, 0.875),
|
| 216 |
+
(3, 0.125, 0.125),
|
| 217 |
+
(10, 0.999, 0.999),
|
| 218 |
+
(10, 0.0001, 0.0001)]
|
| 219 |
+
|
| 220 |
+
dataset = np.asarray(dataset)
|
| 221 |
+
FuncData(
|
| 222 |
+
_sm_smi, dataset, (0, 1), 2, rtol=_rtol
|
| 223 |
+
).check(dtypes=[int, float, float])
|
| 224 |
+
FuncData(
|
| 225 |
+
_smc_smci, dataset, (0, 1), 2, rtol=_rtol
|
| 226 |
+
).check(dtypes=[int, float, float])
|
| 227 |
+
|
| 228 |
+
def test_x_equals_0point5(self):
|
| 229 |
+
dataset = [(1, 0.5, 0.5),
|
| 230 |
+
(2, 0.5, 0.366025403784),
|
| 231 |
+
(2, 0.25, 0.5),
|
| 232 |
+
(3, 0.5, 0.297156508177),
|
| 233 |
+
(4, 0.5, 0.255520481121),
|
| 234 |
+
(5, 0.5, 0.234559536069),
|
| 235 |
+
(6, 0.5, 0.21715965898),
|
| 236 |
+
(7, 0.5, 0.202722580034),
|
| 237 |
+
(8, 0.5, 0.190621765256),
|
| 238 |
+
(9, 0.5, 0.180363501362),
|
| 239 |
+
(10, 0.5, 0.17157867006)]
|
| 240 |
+
|
| 241 |
+
dataset = np.asarray(dataset)
|
| 242 |
+
FuncData(
|
| 243 |
+
smirnovi, dataset, (0, 1), 2, rtol=_rtol
|
| 244 |
+
).check(dtypes=[int, float, float])
|
| 245 |
+
dataset[:, 1] = 1 - dataset[:, 1]
|
| 246 |
+
FuncData(
|
| 247 |
+
_smirnovci, dataset, (0, 1), 2, rtol=_rtol
|
| 248 |
+
).check(dtypes=[int, float, float])
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
class TestSmirnovp:
|
| 252 |
+
def test_nan(self):
|
| 253 |
+
assert_(np.isnan(_smirnovp(1, np.nan)))
|
| 254 |
+
|
| 255 |
+
def test_basic(self):
|
| 256 |
+
# Check derivative at endpoints
|
| 257 |
+
n1_10 = np.arange(1, 10)
|
| 258 |
+
dataset0 = np.column_stack([n1_10,
|
| 259 |
+
np.full_like(n1_10, 0),
|
| 260 |
+
np.full_like(n1_10, -1)])
|
| 261 |
+
FuncData(
|
| 262 |
+
_smirnovp, dataset0, (0, 1), 2, rtol=_rtol
|
| 263 |
+
).check(dtypes=[int, float, float])
|
| 264 |
+
|
| 265 |
+
n2_10 = np.arange(2, 10)
|
| 266 |
+
dataset1 = np.column_stack([n2_10,
|
| 267 |
+
np.full_like(n2_10, 1.0),
|
| 268 |
+
np.full_like(n2_10, 0)])
|
| 269 |
+
FuncData(
|
| 270 |
+
_smirnovp, dataset1, (0, 1), 2, rtol=_rtol
|
| 271 |
+
).check(dtypes=[int, float, float])
|
| 272 |
+
|
| 273 |
+
def test_oneminusoneovern(self):
|
| 274 |
+
# Check derivative at x=1-1/n
|
| 275 |
+
n = np.arange(1, 20)
|
| 276 |
+
x = 1.0/n
|
| 277 |
+
xm1 = 1-1.0/n
|
| 278 |
+
pp1 = -n * x**(n-1)
|
| 279 |
+
pp1 -= (1-np.sign(n-2)**2) * 0.5 # n=2, x=0.5, 1-1/n = 0.5, need to adjust
|
| 280 |
+
dataset1 = np.column_stack([n, xm1, pp1])
|
| 281 |
+
FuncData(
|
| 282 |
+
_smirnovp, dataset1, (0, 1), 2, rtol=_rtol
|
| 283 |
+
).check(dtypes=[int, float, float])
|
| 284 |
+
|
| 285 |
+
def test_oneovertwon(self):
|
| 286 |
+
# Check derivative at x=1/2n (Discontinuous at x=1/n, so check at x=1/2n)
|
| 287 |
+
n = np.arange(1, 20)
|
| 288 |
+
x = 1.0/2/n
|
| 289 |
+
pp = -(n*x+1) * (1+x)**(n-2)
|
| 290 |
+
dataset0 = np.column_stack([n, x, pp])
|
| 291 |
+
FuncData(
|
| 292 |
+
_smirnovp, dataset0, (0, 1), 2, rtol=_rtol
|
| 293 |
+
).check(dtypes=[int, float, float])
|
| 294 |
+
|
| 295 |
+
def test_oneovern(self):
|
| 296 |
+
# Check derivative at x=1/n
|
| 297 |
+
# (Discontinuous at x=1/n, hard to tell if x==1/n, only use n=power of 2)
|
| 298 |
+
n = 2**np.arange(1, 10)
|
| 299 |
+
x = 1.0/n
|
| 300 |
+
pp = -(n*x+1) * (1+x)**(n-2) + 0.5
|
| 301 |
+
dataset0 = np.column_stack([n, x, pp])
|
| 302 |
+
FuncData(
|
| 303 |
+
_smirnovp, dataset0, (0, 1), 2, rtol=_rtol
|
| 304 |
+
).check(dtypes=[int, float, float])
|
| 305 |
+
|
| 306 |
+
@pytest.mark.xfail(sys.maxsize <= 2**32,
|
| 307 |
+
reason="requires 64-bit platform")
|
| 308 |
+
def test_oneovernclose(self):
|
| 309 |
+
# Check derivative at x=1/n
|
| 310 |
+
# (Discontinuous at x=1/n, test on either side: x=1/n +/- 2epsilon)
|
| 311 |
+
n = np.arange(3, 20)
|
| 312 |
+
|
| 313 |
+
x = 1.0/n - 2*np.finfo(float).eps
|
| 314 |
+
pp = -(n*x+1) * (1+x)**(n-2)
|
| 315 |
+
dataset0 = np.column_stack([n, x, pp])
|
| 316 |
+
FuncData(
|
| 317 |
+
_smirnovp, dataset0, (0, 1), 2, rtol=_rtol
|
| 318 |
+
).check(dtypes=[int, float, float])
|
| 319 |
+
|
| 320 |
+
x = 1.0/n + 2*np.finfo(float).eps
|
| 321 |
+
pp = -(n*x+1) * (1+x)**(n-2) + 1
|
| 322 |
+
dataset1 = np.column_stack([n, x, pp])
|
| 323 |
+
FuncData(
|
| 324 |
+
_smirnovp, dataset1, (0, 1), 2, rtol=_rtol
|
| 325 |
+
).check(dtypes=[int, float, float])
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
class TestKolmogorov:
|
| 329 |
+
def test_nan(self):
|
| 330 |
+
assert_(np.isnan(kolmogorov(np.nan)))
|
| 331 |
+
|
| 332 |
+
def test_basic(self):
|
| 333 |
+
dataset = [(0, 1.0),
|
| 334 |
+
(0.5, 0.96394524366487511),
|
| 335 |
+
(0.8275735551899077, 0.5000000000000000),
|
| 336 |
+
(1, 0.26999967167735456),
|
| 337 |
+
(2, 0.00067092525577969533)]
|
| 338 |
+
|
| 339 |
+
dataset = np.asarray(dataset)
|
| 340 |
+
FuncData(kolmogorov, dataset, (0,), 1, rtol=_rtol).check()
|
| 341 |
+
|
| 342 |
+
def test_linspace(self):
|
| 343 |
+
x = np.linspace(0, 2.0, 21)
|
| 344 |
+
dataset = [1.0000000000000000, 1.0000000000000000, 0.9999999999994950,
|
| 345 |
+
0.9999906941986655, 0.9971923267772983, 0.9639452436648751,
|
| 346 |
+
0.8642827790506042, 0.7112351950296890, 0.5441424115741981,
|
| 347 |
+
0.3927307079406543, 0.2699996716773546, 0.1777181926064012,
|
| 348 |
+
0.1122496666707249, 0.0680922218447664, 0.0396818795381144,
|
| 349 |
+
0.0222179626165251, 0.0119520432391966, 0.0061774306344441,
|
| 350 |
+
0.0030676213475797, 0.0014636048371873, 0.0006709252557797]
|
| 351 |
+
|
| 352 |
+
dataset_c = [0.0000000000000000, 6.609305242245699e-53, 5.050407338670114e-13,
|
| 353 |
+
9.305801334566668e-06, 0.0028076732227017, 0.0360547563351249,
|
| 354 |
+
0.1357172209493958, 0.2887648049703110, 0.4558575884258019,
|
| 355 |
+
0.6072692920593457, 0.7300003283226455, 0.8222818073935988,
|
| 356 |
+
0.8877503333292751, 0.9319077781552336, 0.9603181204618857,
|
| 357 |
+
0.9777820373834749, 0.9880479567608034, 0.9938225693655559,
|
| 358 |
+
0.9969323786524203, 0.9985363951628127, 0.9993290747442203]
|
| 359 |
+
|
| 360 |
+
dataset = np.column_stack([x, dataset])
|
| 361 |
+
FuncData(kolmogorov, dataset, (0,), 1, rtol=_rtol).check()
|
| 362 |
+
dataset_c = np.column_stack([x, dataset_c])
|
| 363 |
+
FuncData(_kolmogc, dataset_c, (0,), 1, rtol=_rtol).check()
|
| 364 |
+
|
| 365 |
+
def test_linspacei(self):
|
| 366 |
+
p = np.linspace(0, 1.0, 21, endpoint=True)
|
| 367 |
+
dataset = [np.inf, 1.3580986393225507, 1.2238478702170823,
|
| 368 |
+
1.1379465424937751, 1.0727491749396481, 1.0191847202536859,
|
| 369 |
+
0.9730633753323726, 0.9320695842357622, 0.8947644549851197,
|
| 370 |
+
0.8601710725555463, 0.8275735551899077, 0.7964065373291559,
|
| 371 |
+
0.7661855555617682, 0.7364542888171910, 0.7067326523068980,
|
| 372 |
+
0.6764476915028201, 0.6448126061663567, 0.6105590999244391,
|
| 373 |
+
0.5711732651063401, 0.5196103791686224, 0.0000000000000000]
|
| 374 |
+
|
| 375 |
+
dataset_c = [0.0000000000000000, 0.5196103791686225, 0.5711732651063401,
|
| 376 |
+
0.6105590999244391, 0.6448126061663567, 0.6764476915028201,
|
| 377 |
+
0.7067326523068980, 0.7364542888171910, 0.7661855555617682,
|
| 378 |
+
0.7964065373291559, 0.8275735551899077, 0.8601710725555463,
|
| 379 |
+
0.8947644549851196, 0.9320695842357622, 0.9730633753323727,
|
| 380 |
+
1.0191847202536859, 1.0727491749396481, 1.1379465424937754,
|
| 381 |
+
1.2238478702170825, 1.3580986393225509, np.inf]
|
| 382 |
+
|
| 383 |
+
dataset = np.column_stack([p[1:], dataset[1:]])
|
| 384 |
+
FuncData(kolmogi, dataset, (0,), 1, rtol=_rtol).check()
|
| 385 |
+
dataset_c = np.column_stack([p[:-1], dataset_c[:-1]])
|
| 386 |
+
FuncData(_kolmogci, dataset_c, (0,), 1, rtol=_rtol).check()
|
| 387 |
+
|
| 388 |
+
def test_smallx(self):
|
| 389 |
+
epsilon = 0.1 ** np.arange(1, 14)
|
| 390 |
+
x = np.array([0.571173265106, 0.441027698518, 0.374219690278, 0.331392659217,
|
| 391 |
+
0.300820537459, 0.277539353999, 0.259023494805, 0.243829561254,
|
| 392 |
+
0.231063086389, 0.220135543236, 0.210641372041, 0.202290283658,
|
| 393 |
+
0.19487060742])
|
| 394 |
+
|
| 395 |
+
dataset = np.column_stack([x, 1-epsilon])
|
| 396 |
+
FuncData(kolmogorov, dataset, (0,), 1, rtol=_rtol).check()
|
| 397 |
+
|
| 398 |
+
def test_round_trip(self):
|
| 399 |
+
def _ki_k(_x):
|
| 400 |
+
return kolmogi(kolmogorov(_x))
|
| 401 |
+
|
| 402 |
+
def _kci_kc(_x):
|
| 403 |
+
return _kolmogci(_kolmogc(_x))
|
| 404 |
+
|
| 405 |
+
x = np.linspace(0.0, 2.0, 21, endpoint=True)
|
| 406 |
+
# Exclude 0.1, 0.2. 0.2 almost makes succeeds, but 0.1 has no chance.
|
| 407 |
+
x02 = x[(x == 0) | (x > 0.21)]
|
| 408 |
+
dataset02 = np.column_stack([x02, x02])
|
| 409 |
+
FuncData(_ki_k, dataset02, (0,), 1, rtol=_rtol).check()
|
| 410 |
+
|
| 411 |
+
dataset = np.column_stack([x, x])
|
| 412 |
+
FuncData(_kci_kc, dataset, (0,), 1, rtol=_rtol).check()
|
| 413 |
+
|
| 414 |
+
|
| 415 |
+
class TestKolmogi:
|
| 416 |
+
def test_nan(self):
|
| 417 |
+
assert_(np.isnan(kolmogi(np.nan)))
|
| 418 |
+
|
| 419 |
+
def test_basic(self):
|
| 420 |
+
dataset = [(1.0, 0),
|
| 421 |
+
(0.96394524366487511, 0.5),
|
| 422 |
+
(0.9, 0.571173265106),
|
| 423 |
+
(0.5000000000000000, 0.8275735551899077),
|
| 424 |
+
(0.26999967167735456, 1),
|
| 425 |
+
(0.00067092525577969533, 2)]
|
| 426 |
+
|
| 427 |
+
dataset = np.asarray(dataset)
|
| 428 |
+
FuncData(kolmogi, dataset, (0,), 1, rtol=_rtol).check()
|
| 429 |
+
|
| 430 |
+
def test_smallpcdf(self):
|
| 431 |
+
epsilon = 0.5 ** np.arange(1, 55, 3)
|
| 432 |
+
# kolmogi(1-p) == _kolmogci(p) if 1-(1-p) == p, but not necessarily otherwise
|
| 433 |
+
# Use epsilon s.t. 1-(1-epsilon)) == epsilon,
|
| 434 |
+
# so can use same x-array for both results
|
| 435 |
+
|
| 436 |
+
x = np.array([0.8275735551899077, 0.5345255069097583, 0.4320114038786941,
|
| 437 |
+
0.3736868442620478, 0.3345161714909591, 0.3057833329315859,
|
| 438 |
+
0.2835052890528936, 0.2655578150208676, 0.2506869966107999,
|
| 439 |
+
0.2380971058736669, 0.2272549289962079, 0.2177876361600040,
|
| 440 |
+
0.2094254686862041, 0.2019676748836232, 0.1952612948137504,
|
| 441 |
+
0.1891874239646641, 0.1836520225050326, 0.1785795904846466])
|
| 442 |
+
|
| 443 |
+
dataset = np.column_stack([1-epsilon, x])
|
| 444 |
+
FuncData(kolmogi, dataset, (0,), 1, rtol=_rtol).check()
|
| 445 |
+
|
| 446 |
+
dataset = np.column_stack([epsilon, x])
|
| 447 |
+
FuncData(_kolmogci, dataset, (0,), 1, rtol=_rtol).check()
|
| 448 |
+
|
| 449 |
+
def test_smallpsf(self):
|
| 450 |
+
epsilon = 0.5 ** np.arange(1, 55, 3)
|
| 451 |
+
# kolmogi(p) == _kolmogci(1-p) if 1-(1-p) == p, but not necessarily otherwise
|
| 452 |
+
# Use epsilon s.t. 1-(1-epsilon)) == epsilon,
|
| 453 |
+
# so can use same x-array for both results
|
| 454 |
+
|
| 455 |
+
x = np.array([0.8275735551899077, 1.3163786275161036, 1.6651092133663343,
|
| 456 |
+
1.9525136345289607, 2.2027324540033235, 2.4272929437460848,
|
| 457 |
+
2.6327688477341593, 2.8233300509220260, 3.0018183401530627,
|
| 458 |
+
3.1702735084088891, 3.3302184446307912, 3.4828258153113318,
|
| 459 |
+
3.6290214150152051, 3.7695513262825959, 3.9050272690877326,
|
| 460 |
+
4.0359582187082550, 4.1627730557884890, 4.2858371743264527])
|
| 461 |
+
|
| 462 |
+
dataset = np.column_stack([epsilon, x])
|
| 463 |
+
FuncData(kolmogi, dataset, (0,), 1, rtol=_rtol).check()
|
| 464 |
+
|
| 465 |
+
dataset = np.column_stack([1-epsilon, x])
|
| 466 |
+
FuncData(_kolmogci, dataset, (0,), 1, rtol=_rtol).check()
|
| 467 |
+
|
| 468 |
+
def test_round_trip(self):
|
| 469 |
+
def _k_ki(_p):
|
| 470 |
+
return kolmogorov(kolmogi(_p))
|
| 471 |
+
|
| 472 |
+
p = np.linspace(0.1, 1.0, 10, endpoint=True)
|
| 473 |
+
dataset = np.column_stack([p, p])
|
| 474 |
+
FuncData(_k_ki, dataset, (0,), 1, rtol=_rtol).check()
|
| 475 |
+
|
| 476 |
+
|
| 477 |
+
class TestKolmogp:
|
| 478 |
+
def test_nan(self):
|
| 479 |
+
assert_(np.isnan(_kolmogp(np.nan)))
|
| 480 |
+
|
| 481 |
+
def test_basic(self):
|
| 482 |
+
dataset = [(0.000000, -0.0),
|
| 483 |
+
(0.200000, -1.532420541338916e-10),
|
| 484 |
+
(0.400000, -0.1012254419260496),
|
| 485 |
+
(0.600000, -1.324123244249925),
|
| 486 |
+
(0.800000, -1.627024345636592),
|
| 487 |
+
(1.000000, -1.071948558356941),
|
| 488 |
+
(1.200000, -0.538512430720529),
|
| 489 |
+
(1.400000, -0.2222133182429472),
|
| 490 |
+
(1.600000, -0.07649302775520538),
|
| 491 |
+
(1.800000, -0.02208687346347873),
|
| 492 |
+
(2.000000, -0.005367402045629683)]
|
| 493 |
+
|
| 494 |
+
dataset = np.asarray(dataset)
|
| 495 |
+
FuncData(_kolmogp, dataset, (0,), 1, rtol=_rtol).check()
|
openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_lambertw.py
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#
|
| 2 |
+
# Tests for the lambertw function,
|
| 3 |
+
# Adapted from the MPMath tests [1] by Yosef Meller, mellerf@netvision.net.il
|
| 4 |
+
# Distributed under the same license as SciPy itself.
|
| 5 |
+
#
|
| 6 |
+
# [1] mpmath source code, Subversion revision 992
|
| 7 |
+
# http://code.google.com/p/mpmath/source/browse/trunk/mpmath/tests/test_functions2.py?spec=svn994&r=992
|
| 8 |
+
|
| 9 |
+
import pytest
|
| 10 |
+
import numpy as np
|
| 11 |
+
from numpy.testing import assert_, assert_equal, assert_array_almost_equal
|
| 12 |
+
from scipy.special import lambertw
|
| 13 |
+
from numpy import nan, inf, pi, e, isnan, log, r_, array, complex128
|
| 14 |
+
|
| 15 |
+
from scipy.special._testutils import FuncData
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def test_values():
|
| 19 |
+
assert_(isnan(lambertw(nan)))
|
| 20 |
+
assert_equal(lambertw(inf,1).real, inf)
|
| 21 |
+
assert_equal(lambertw(inf,1).imag, 2*pi)
|
| 22 |
+
assert_equal(lambertw(-inf,1).real, inf)
|
| 23 |
+
assert_equal(lambertw(-inf,1).imag, 3*pi)
|
| 24 |
+
|
| 25 |
+
assert_equal(lambertw(1.), lambertw(1., 0))
|
| 26 |
+
|
| 27 |
+
data = [
|
| 28 |
+
(0,0, 0),
|
| 29 |
+
(0+0j,0, 0),
|
| 30 |
+
(inf,0, inf),
|
| 31 |
+
(0,-1, -inf),
|
| 32 |
+
(0,1, -inf),
|
| 33 |
+
(0,3, -inf),
|
| 34 |
+
(e,0, 1),
|
| 35 |
+
(1,0, 0.567143290409783873),
|
| 36 |
+
(-pi/2,0, 1j*pi/2),
|
| 37 |
+
(-log(2)/2,0, -log(2)),
|
| 38 |
+
(0.25,0, 0.203888354702240164),
|
| 39 |
+
(-0.25,0, -0.357402956181388903),
|
| 40 |
+
(-1./10000,0, -0.000100010001500266719),
|
| 41 |
+
(-0.25,-1, -2.15329236411034965),
|
| 42 |
+
(0.25,-1, -3.00899800997004620-4.07652978899159763j),
|
| 43 |
+
(-0.25,-1, -2.15329236411034965),
|
| 44 |
+
(0.25,1, -3.00899800997004620+4.07652978899159763j),
|
| 45 |
+
(-0.25,1, -3.48973228422959210+7.41405453009603664j),
|
| 46 |
+
(-4,0, 0.67881197132094523+1.91195078174339937j),
|
| 47 |
+
(-4,1, -0.66743107129800988+7.76827456802783084j),
|
| 48 |
+
(-4,-1, 0.67881197132094523-1.91195078174339937j),
|
| 49 |
+
(1000,0, 5.24960285240159623),
|
| 50 |
+
(1000,1, 4.91492239981054535+5.44652615979447070j),
|
| 51 |
+
(1000,-1, 4.91492239981054535-5.44652615979447070j),
|
| 52 |
+
(1000,5, 3.5010625305312892+29.9614548941181328j),
|
| 53 |
+
(3+4j,0, 1.281561806123775878+0.533095222020971071j),
|
| 54 |
+
(-0.4+0.4j,0, -0.10396515323290657+0.61899273315171632j),
|
| 55 |
+
(3+4j,1, -0.11691092896595324+5.61888039871282334j),
|
| 56 |
+
(3+4j,-1, 0.25856740686699742-3.85211668616143559j),
|
| 57 |
+
(-0.5,-1, -0.794023632344689368-0.770111750510379110j),
|
| 58 |
+
(-1./10000,1, -11.82350837248724344+6.80546081842002101j),
|
| 59 |
+
(-1./10000,-1, -11.6671145325663544),
|
| 60 |
+
(-1./10000,-2, -11.82350837248724344-6.80546081842002101j),
|
| 61 |
+
(-1./100000,4, -14.9186890769540539+26.1856750178782046j),
|
| 62 |
+
(-1./100000,5, -15.0931437726379218666+32.5525721210262290086j),
|
| 63 |
+
((2+1j)/10,0, 0.173704503762911669+0.071781336752835511j),
|
| 64 |
+
((2+1j)/10,1, -3.21746028349820063+4.56175438896292539j),
|
| 65 |
+
((2+1j)/10,-1, -3.03781405002993088-3.53946629633505737j),
|
| 66 |
+
((2+1j)/10,4, -4.6878509692773249+23.8313630697683291j),
|
| 67 |
+
(-(2+1j)/10,0, -0.226933772515757933-0.164986470020154580j),
|
| 68 |
+
(-(2+1j)/10,1, -2.43569517046110001+0.76974067544756289j),
|
| 69 |
+
(-(2+1j)/10,-1, -3.54858738151989450-6.91627921869943589j),
|
| 70 |
+
(-(2+1j)/10,4, -4.5500846928118151+20.6672982215434637j),
|
| 71 |
+
(pi,0, 1.073658194796149172092178407024821347547745350410314531),
|
| 72 |
+
|
| 73 |
+
# Former bug in generated branch,
|
| 74 |
+
(-0.5+0.002j,0, -0.78917138132659918344 + 0.76743539379990327749j),
|
| 75 |
+
(-0.5-0.002j,0, -0.78917138132659918344 - 0.76743539379990327749j),
|
| 76 |
+
(-0.448+0.4j,0, -0.11855133765652382241 + 0.66570534313583423116j),
|
| 77 |
+
(-0.448-0.4j,0, -0.11855133765652382241 - 0.66570534313583423116j),
|
| 78 |
+
]
|
| 79 |
+
data = array(data, dtype=complex128)
|
| 80 |
+
|
| 81 |
+
def w(x, y):
|
| 82 |
+
return lambertw(x, y.real.astype(int))
|
| 83 |
+
with np.errstate(all='ignore'):
|
| 84 |
+
FuncData(w, data, (0,1), 2, rtol=1e-10, atol=1e-13).check()
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def test_ufunc():
|
| 88 |
+
assert_array_almost_equal(
|
| 89 |
+
lambertw(r_[0., e, 1.]), r_[0., 1., 0.567143290409783873])
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def test_lambertw_ufunc_loop_selection():
|
| 93 |
+
# see https://github.com/scipy/scipy/issues/4895
|
| 94 |
+
dt = np.dtype(np.complex128)
|
| 95 |
+
assert_equal(lambertw(0, 0, 0).dtype, dt)
|
| 96 |
+
assert_equal(lambertw([0], 0, 0).dtype, dt)
|
| 97 |
+
assert_equal(lambertw(0, [0], 0).dtype, dt)
|
| 98 |
+
assert_equal(lambertw(0, 0, [0]).dtype, dt)
|
| 99 |
+
assert_equal(lambertw([0], [0], [0]).dtype, dt)
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
@pytest.mark.parametrize('z', [1e-316, -2e-320j, -5e-318+1e-320j])
|
| 103 |
+
def test_lambertw_subnormal_k0(z):
|
| 104 |
+
# Verify that subnormal inputs are handled correctly on
|
| 105 |
+
# the branch k=0 (regression test for gh-16291).
|
| 106 |
+
w = lambertw(z)
|
| 107 |
+
# For values this small, we can be sure that numerically,
|
| 108 |
+
# lambertw(z) is z.
|
| 109 |
+
assert w == z
|
openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_loggamma.py
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
from numpy.testing import assert_allclose, assert_
|
| 3 |
+
|
| 4 |
+
from scipy.special._testutils import FuncData
|
| 5 |
+
from scipy.special import gamma, gammaln, loggamma
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def test_identities1():
|
| 9 |
+
# test the identity exp(loggamma(z)) = gamma(z)
|
| 10 |
+
x = np.array([-99.5, -9.5, -0.5, 0.5, 9.5, 99.5])
|
| 11 |
+
y = x.copy()
|
| 12 |
+
x, y = np.meshgrid(x, y)
|
| 13 |
+
z = (x + 1J*y).flatten()
|
| 14 |
+
dataset = np.vstack((z, gamma(z))).T
|
| 15 |
+
|
| 16 |
+
def f(z):
|
| 17 |
+
return np.exp(loggamma(z))
|
| 18 |
+
|
| 19 |
+
FuncData(f, dataset, 0, 1, rtol=1e-14, atol=1e-14).check()
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def test_identities2():
|
| 23 |
+
# test the identity loggamma(z + 1) = log(z) + loggamma(z)
|
| 24 |
+
x = np.array([-99.5, -9.5, -0.5, 0.5, 9.5, 99.5])
|
| 25 |
+
y = x.copy()
|
| 26 |
+
x, y = np.meshgrid(x, y)
|
| 27 |
+
z = (x + 1J*y).flatten()
|
| 28 |
+
dataset = np.vstack((z, np.log(z) + loggamma(z))).T
|
| 29 |
+
|
| 30 |
+
def f(z):
|
| 31 |
+
return loggamma(z + 1)
|
| 32 |
+
|
| 33 |
+
FuncData(f, dataset, 0, 1, rtol=1e-14, atol=1e-14).check()
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def test_complex_dispatch_realpart():
|
| 37 |
+
# Test that the real parts of loggamma and gammaln agree on the
|
| 38 |
+
# real axis.
|
| 39 |
+
x = np.r_[-np.logspace(10, -10), np.logspace(-10, 10)] + 0.5
|
| 40 |
+
|
| 41 |
+
dataset = np.vstack((x, gammaln(x))).T
|
| 42 |
+
|
| 43 |
+
def f(z):
|
| 44 |
+
z = np.array(z, dtype='complex128')
|
| 45 |
+
return loggamma(z).real
|
| 46 |
+
|
| 47 |
+
FuncData(f, dataset, 0, 1, rtol=1e-14, atol=1e-14).check()
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def test_real_dispatch():
|
| 51 |
+
x = np.logspace(-10, 10) + 0.5
|
| 52 |
+
dataset = np.vstack((x, gammaln(x))).T
|
| 53 |
+
|
| 54 |
+
FuncData(loggamma, dataset, 0, 1, rtol=1e-14, atol=1e-14).check()
|
| 55 |
+
assert_(loggamma(0) == np.inf)
|
| 56 |
+
assert_(np.isnan(loggamma(-1)))
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def test_gh_6536():
|
| 60 |
+
z = loggamma(complex(-3.4, +0.0))
|
| 61 |
+
zbar = loggamma(complex(-3.4, -0.0))
|
| 62 |
+
assert_allclose(z, zbar.conjugate(), rtol=1e-15, atol=0)
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def test_branch_cut():
|
| 66 |
+
# Make sure negative zero is treated correctly
|
| 67 |
+
x = -np.logspace(300, -30, 100)
|
| 68 |
+
z = np.asarray([complex(x0, 0.0) for x0 in x])
|
| 69 |
+
zbar = np.asarray([complex(x0, -0.0) for x0 in x])
|
| 70 |
+
assert_allclose(z, zbar.conjugate(), rtol=1e-15, atol=0)
|
openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_logsumexp.py
ADDED
|
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
from numpy.testing import (assert_almost_equal, assert_equal, assert_allclose,
|
| 3 |
+
assert_array_almost_equal, assert_)
|
| 4 |
+
|
| 5 |
+
from scipy.special import logsumexp, softmax
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def test_logsumexp():
|
| 9 |
+
# Test whether logsumexp() function correctly handles large inputs.
|
| 10 |
+
a = np.arange(200)
|
| 11 |
+
desired = np.log(np.sum(np.exp(a)))
|
| 12 |
+
assert_almost_equal(logsumexp(a), desired)
|
| 13 |
+
|
| 14 |
+
# Now test with large numbers
|
| 15 |
+
b = [1000, 1000]
|
| 16 |
+
desired = 1000.0 + np.log(2.0)
|
| 17 |
+
assert_almost_equal(logsumexp(b), desired)
|
| 18 |
+
|
| 19 |
+
n = 1000
|
| 20 |
+
b = np.full(n, 10000, dtype='float64')
|
| 21 |
+
desired = 10000.0 + np.log(n)
|
| 22 |
+
assert_almost_equal(logsumexp(b), desired)
|
| 23 |
+
|
| 24 |
+
x = np.array([1e-40] * 1000000)
|
| 25 |
+
logx = np.log(x)
|
| 26 |
+
|
| 27 |
+
X = np.vstack([x, x])
|
| 28 |
+
logX = np.vstack([logx, logx])
|
| 29 |
+
assert_array_almost_equal(np.exp(logsumexp(logX)), X.sum())
|
| 30 |
+
assert_array_almost_equal(np.exp(logsumexp(logX, axis=0)), X.sum(axis=0))
|
| 31 |
+
assert_array_almost_equal(np.exp(logsumexp(logX, axis=1)), X.sum(axis=1))
|
| 32 |
+
|
| 33 |
+
# Handling special values properly
|
| 34 |
+
assert_equal(logsumexp(np.inf), np.inf)
|
| 35 |
+
assert_equal(logsumexp(-np.inf), -np.inf)
|
| 36 |
+
assert_equal(logsumexp(np.nan), np.nan)
|
| 37 |
+
assert_equal(logsumexp([-np.inf, -np.inf]), -np.inf)
|
| 38 |
+
|
| 39 |
+
# Handling an array with different magnitudes on the axes
|
| 40 |
+
assert_array_almost_equal(logsumexp([[1e10, 1e-10],
|
| 41 |
+
[-1e10, -np.inf]], axis=-1),
|
| 42 |
+
[1e10, -1e10])
|
| 43 |
+
|
| 44 |
+
# Test keeping dimensions
|
| 45 |
+
assert_array_almost_equal(logsumexp([[1e10, 1e-10],
|
| 46 |
+
[-1e10, -np.inf]],
|
| 47 |
+
axis=-1,
|
| 48 |
+
keepdims=True),
|
| 49 |
+
[[1e10], [-1e10]])
|
| 50 |
+
|
| 51 |
+
# Test multiple axes
|
| 52 |
+
assert_array_almost_equal(logsumexp([[1e10, 1e-10],
|
| 53 |
+
[-1e10, -np.inf]],
|
| 54 |
+
axis=(-1,-2)),
|
| 55 |
+
1e10)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def test_logsumexp_b():
|
| 59 |
+
a = np.arange(200)
|
| 60 |
+
b = np.arange(200, 0, -1)
|
| 61 |
+
desired = np.log(np.sum(b*np.exp(a)))
|
| 62 |
+
assert_almost_equal(logsumexp(a, b=b), desired)
|
| 63 |
+
|
| 64 |
+
a = [1000, 1000]
|
| 65 |
+
b = [1.2, 1.2]
|
| 66 |
+
desired = 1000 + np.log(2 * 1.2)
|
| 67 |
+
assert_almost_equal(logsumexp(a, b=b), desired)
|
| 68 |
+
|
| 69 |
+
x = np.array([1e-40] * 100000)
|
| 70 |
+
b = np.linspace(1, 1000, 100000)
|
| 71 |
+
logx = np.log(x)
|
| 72 |
+
|
| 73 |
+
X = np.vstack((x, x))
|
| 74 |
+
logX = np.vstack((logx, logx))
|
| 75 |
+
B = np.vstack((b, b))
|
| 76 |
+
assert_array_almost_equal(np.exp(logsumexp(logX, b=B)), (B * X).sum())
|
| 77 |
+
assert_array_almost_equal(np.exp(logsumexp(logX, b=B, axis=0)),
|
| 78 |
+
(B * X).sum(axis=0))
|
| 79 |
+
assert_array_almost_equal(np.exp(logsumexp(logX, b=B, axis=1)),
|
| 80 |
+
(B * X).sum(axis=1))
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def test_logsumexp_sign():
|
| 84 |
+
a = [1,1,1]
|
| 85 |
+
b = [1,-1,-1]
|
| 86 |
+
|
| 87 |
+
r, s = logsumexp(a, b=b, return_sign=True)
|
| 88 |
+
assert_almost_equal(r,1)
|
| 89 |
+
assert_equal(s,-1)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def test_logsumexp_sign_zero():
|
| 93 |
+
a = [1,1]
|
| 94 |
+
b = [1,-1]
|
| 95 |
+
|
| 96 |
+
r, s = logsumexp(a, b=b, return_sign=True)
|
| 97 |
+
assert_(not np.isfinite(r))
|
| 98 |
+
assert_(not np.isnan(r))
|
| 99 |
+
assert_(r < 0)
|
| 100 |
+
assert_equal(s,0)
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def test_logsumexp_sign_shape():
|
| 104 |
+
a = np.ones((1,2,3,4))
|
| 105 |
+
b = np.ones_like(a)
|
| 106 |
+
|
| 107 |
+
r, s = logsumexp(a, axis=2, b=b, return_sign=True)
|
| 108 |
+
|
| 109 |
+
assert_equal(r.shape, s.shape)
|
| 110 |
+
assert_equal(r.shape, (1,2,4))
|
| 111 |
+
|
| 112 |
+
r, s = logsumexp(a, axis=(1,3), b=b, return_sign=True)
|
| 113 |
+
|
| 114 |
+
assert_equal(r.shape, s.shape)
|
| 115 |
+
assert_equal(r.shape, (1,3))
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def test_logsumexp_complex_sign():
|
| 119 |
+
a = np.array([1 + 1j, 2 - 1j, -2 + 3j])
|
| 120 |
+
|
| 121 |
+
r, s = logsumexp(a, return_sign=True)
|
| 122 |
+
|
| 123 |
+
expected_sumexp = np.exp(a).sum()
|
| 124 |
+
# This is the numpy>=2.0 convention for np.sign
|
| 125 |
+
expected_sign = expected_sumexp / abs(expected_sumexp)
|
| 126 |
+
|
| 127 |
+
assert_allclose(s, expected_sign)
|
| 128 |
+
assert_allclose(s * np.exp(r), expected_sumexp)
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def test_logsumexp_shape():
|
| 132 |
+
a = np.ones((1, 2, 3, 4))
|
| 133 |
+
b = np.ones_like(a)
|
| 134 |
+
|
| 135 |
+
r = logsumexp(a, axis=2, b=b)
|
| 136 |
+
assert_equal(r.shape, (1, 2, 4))
|
| 137 |
+
|
| 138 |
+
r = logsumexp(a, axis=(1, 3), b=b)
|
| 139 |
+
assert_equal(r.shape, (1, 3))
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
def test_logsumexp_b_zero():
|
| 143 |
+
a = [1,10000]
|
| 144 |
+
b = [1,0]
|
| 145 |
+
|
| 146 |
+
assert_almost_equal(logsumexp(a, b=b), 1)
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def test_logsumexp_b_shape():
|
| 150 |
+
a = np.zeros((4,1,2,1))
|
| 151 |
+
b = np.ones((3,1,5))
|
| 152 |
+
|
| 153 |
+
logsumexp(a, b=b)
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
def test_softmax_fixtures():
|
| 157 |
+
assert_allclose(softmax([1000, 0, 0, 0]), np.array([1, 0, 0, 0]),
|
| 158 |
+
rtol=1e-13)
|
| 159 |
+
assert_allclose(softmax([1, 1]), np.array([.5, .5]), rtol=1e-13)
|
| 160 |
+
assert_allclose(softmax([0, 1]), np.array([1, np.e])/(1 + np.e),
|
| 161 |
+
rtol=1e-13)
|
| 162 |
+
|
| 163 |
+
# Expected value computed using mpmath (with mpmath.mp.dps = 200) and then
|
| 164 |
+
# converted to float.
|
| 165 |
+
x = np.arange(4)
|
| 166 |
+
expected = np.array([0.03205860328008499,
|
| 167 |
+
0.08714431874203256,
|
| 168 |
+
0.23688281808991013,
|
| 169 |
+
0.6439142598879722])
|
| 170 |
+
|
| 171 |
+
assert_allclose(softmax(x), expected, rtol=1e-13)
|
| 172 |
+
|
| 173 |
+
# Translation property. If all the values are changed by the same amount,
|
| 174 |
+
# the softmax result does not change.
|
| 175 |
+
assert_allclose(softmax(x + 100), expected, rtol=1e-13)
|
| 176 |
+
|
| 177 |
+
# When axis=None, softmax operates on the entire array, and preserves
|
| 178 |
+
# the shape.
|
| 179 |
+
assert_allclose(softmax(x.reshape(2, 2)), expected.reshape(2, 2),
|
| 180 |
+
rtol=1e-13)
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
def test_softmax_multi_axes():
|
| 184 |
+
assert_allclose(softmax([[1000, 0], [1000, 0]], axis=0),
|
| 185 |
+
np.array([[.5, .5], [.5, .5]]), rtol=1e-13)
|
| 186 |
+
assert_allclose(softmax([[1000, 0], [1000, 0]], axis=1),
|
| 187 |
+
np.array([[1, 0], [1, 0]]), rtol=1e-13)
|
| 188 |
+
|
| 189 |
+
# Expected value computed using mpmath (with mpmath.mp.dps = 200) and then
|
| 190 |
+
# converted to float.
|
| 191 |
+
x = np.array([[-25, 0, 25, 50],
|
| 192 |
+
[1, 325, 749, 750]])
|
| 193 |
+
expected = np.array([[2.678636961770877e-33,
|
| 194 |
+
1.9287498479371314e-22,
|
| 195 |
+
1.3887943864771144e-11,
|
| 196 |
+
0.999999999986112],
|
| 197 |
+
[0.0,
|
| 198 |
+
1.9444526359919372e-185,
|
| 199 |
+
0.2689414213699951,
|
| 200 |
+
0.7310585786300048]])
|
| 201 |
+
assert_allclose(softmax(x, axis=1), expected, rtol=1e-13)
|
| 202 |
+
assert_allclose(softmax(x.T, axis=0), expected.T, rtol=1e-13)
|
| 203 |
+
|
| 204 |
+
# 3-d input, with a tuple for the axis.
|
| 205 |
+
x3d = x.reshape(2, 2, 2)
|
| 206 |
+
assert_allclose(softmax(x3d, axis=(1, 2)), expected.reshape(2, 2, 2),
|
| 207 |
+
rtol=1e-13)
|
openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_mpmath.py
ADDED
|
@@ -0,0 +1,2272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Test SciPy functions versus mpmath, if available.
|
| 3 |
+
|
| 4 |
+
"""
|
| 5 |
+
import numpy as np
|
| 6 |
+
from numpy.testing import assert_, assert_allclose
|
| 7 |
+
from numpy import pi
|
| 8 |
+
import pytest
|
| 9 |
+
import itertools
|
| 10 |
+
|
| 11 |
+
from scipy._lib import _pep440
|
| 12 |
+
|
| 13 |
+
import scipy.special as sc
|
| 14 |
+
from scipy.special._testutils import (
|
| 15 |
+
MissingModule, check_version, FuncData,
|
| 16 |
+
assert_func_equal)
|
| 17 |
+
from scipy.special._mptestutils import (
|
| 18 |
+
Arg, FixedArg, ComplexArg, IntArg, assert_mpmath_equal,
|
| 19 |
+
nonfunctional_tooslow, trace_args, time_limited, exception_to_nan,
|
| 20 |
+
inf_to_nan)
|
| 21 |
+
from scipy.special._ufuncs import (
|
| 22 |
+
_sinpi, _cospi, _lgam1p, _lanczos_sum_expg_scaled, _log1pmx,
|
| 23 |
+
_igam_fac)
|
| 24 |
+
|
| 25 |
+
try:
|
| 26 |
+
import mpmath
|
| 27 |
+
except ImportError:
|
| 28 |
+
mpmath = MissingModule('mpmath')
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
# ------------------------------------------------------------------------------
|
| 32 |
+
# expi
|
| 33 |
+
# ------------------------------------------------------------------------------
|
| 34 |
+
|
| 35 |
+
@check_version(mpmath, '0.10')
|
| 36 |
+
def test_expi_complex():
|
| 37 |
+
dataset = []
|
| 38 |
+
for r in np.logspace(-99, 2, 10):
|
| 39 |
+
for p in np.linspace(0, 2*np.pi, 30):
|
| 40 |
+
z = r*np.exp(1j*p)
|
| 41 |
+
dataset.append((z, complex(mpmath.ei(z))))
|
| 42 |
+
dataset = np.array(dataset, dtype=np.cdouble)
|
| 43 |
+
|
| 44 |
+
FuncData(sc.expi, dataset, 0, 1).check()
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
# ------------------------------------------------------------------------------
|
| 48 |
+
# expn
|
| 49 |
+
# ------------------------------------------------------------------------------
|
| 50 |
+
|
| 51 |
+
@check_version(mpmath, '0.19')
|
| 52 |
+
def test_expn_large_n():
|
| 53 |
+
# Test the transition to the asymptotic regime of n.
|
| 54 |
+
dataset = []
|
| 55 |
+
for n in [50, 51]:
|
| 56 |
+
for x in np.logspace(0, 4, 200):
|
| 57 |
+
with mpmath.workdps(100):
|
| 58 |
+
dataset.append((n, x, float(mpmath.expint(n, x))))
|
| 59 |
+
dataset = np.asarray(dataset)
|
| 60 |
+
|
| 61 |
+
FuncData(sc.expn, dataset, (0, 1), 2, rtol=1e-13).check()
|
| 62 |
+
|
| 63 |
+
# ------------------------------------------------------------------------------
|
| 64 |
+
# hyp0f1
|
| 65 |
+
# ------------------------------------------------------------------------------
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
@check_version(mpmath, '0.19')
|
| 69 |
+
def test_hyp0f1_gh5764():
|
| 70 |
+
# Do a small and somewhat systematic test that runs quickly
|
| 71 |
+
dataset = []
|
| 72 |
+
axis = [-99.5, -9.5, -0.5, 0.5, 9.5, 99.5]
|
| 73 |
+
for v in axis:
|
| 74 |
+
for x in axis:
|
| 75 |
+
for y in axis:
|
| 76 |
+
z = x + 1j*y
|
| 77 |
+
# mpmath computes the answer correctly at dps ~ 17 but
|
| 78 |
+
# fails for 20 < dps < 120 (uses a different method);
|
| 79 |
+
# set the dps high enough that this isn't an issue
|
| 80 |
+
with mpmath.workdps(120):
|
| 81 |
+
res = complex(mpmath.hyp0f1(v, z))
|
| 82 |
+
dataset.append((v, z, res))
|
| 83 |
+
dataset = np.array(dataset)
|
| 84 |
+
|
| 85 |
+
FuncData(lambda v, z: sc.hyp0f1(v.real, z), dataset, (0, 1), 2,
|
| 86 |
+
rtol=1e-13).check()
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
@check_version(mpmath, '0.19')
|
| 90 |
+
def test_hyp0f1_gh_1609():
|
| 91 |
+
# this is a regression test for gh-1609
|
| 92 |
+
vv = np.linspace(150, 180, 21)
|
| 93 |
+
af = sc.hyp0f1(vv, 0.5)
|
| 94 |
+
mf = np.array([mpmath.hyp0f1(v, 0.5) for v in vv])
|
| 95 |
+
assert_allclose(af, mf.astype(float), rtol=1e-12)
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
# ------------------------------------------------------------------------------
|
| 99 |
+
# hyperu
|
| 100 |
+
# ------------------------------------------------------------------------------
|
| 101 |
+
|
| 102 |
+
@check_version(mpmath, '1.1.0')
|
| 103 |
+
def test_hyperu_around_0():
|
| 104 |
+
dataset = []
|
| 105 |
+
# DLMF 13.2.14-15 test points.
|
| 106 |
+
for n in np.arange(-5, 5):
|
| 107 |
+
for b in np.linspace(-5, 5, 20):
|
| 108 |
+
a = -n
|
| 109 |
+
dataset.append((a, b, 0, float(mpmath.hyperu(a, b, 0))))
|
| 110 |
+
a = -n + b - 1
|
| 111 |
+
dataset.append((a, b, 0, float(mpmath.hyperu(a, b, 0))))
|
| 112 |
+
# DLMF 13.2.16-22 test points.
|
| 113 |
+
for a in [-10.5, -1.5, -0.5, 0, 0.5, 1, 10]:
|
| 114 |
+
for b in [-1.0, -0.5, 0, 0.5, 1, 1.5, 2, 2.5]:
|
| 115 |
+
dataset.append((a, b, 0, float(mpmath.hyperu(a, b, 0))))
|
| 116 |
+
dataset = np.array(dataset)
|
| 117 |
+
|
| 118 |
+
FuncData(sc.hyperu, dataset, (0, 1, 2), 3, rtol=1e-15, atol=5e-13).check()
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
# ------------------------------------------------------------------------------
|
| 122 |
+
# hyp2f1
|
| 123 |
+
# ------------------------------------------------------------------------------
|
| 124 |
+
|
| 125 |
+
@check_version(mpmath, '1.0.0')
|
| 126 |
+
def test_hyp2f1_strange_points():
|
| 127 |
+
pts = [
|
| 128 |
+
(2, -1, -1, 0.7), # expected: 2.4
|
| 129 |
+
(2, -2, -2, 0.7), # expected: 3.87
|
| 130 |
+
]
|
| 131 |
+
pts += list(itertools.product([2, 1, -0.7, -1000], repeat=4))
|
| 132 |
+
pts = [
|
| 133 |
+
(a, b, c, x) for a, b, c, x in pts
|
| 134 |
+
if b == c and round(b) == b and b < 0 and b != -1000
|
| 135 |
+
]
|
| 136 |
+
kw = dict(eliminate=True)
|
| 137 |
+
dataset = [p + (float(mpmath.hyp2f1(*p, **kw)),) for p in pts]
|
| 138 |
+
dataset = np.array(dataset, dtype=np.float64)
|
| 139 |
+
|
| 140 |
+
FuncData(sc.hyp2f1, dataset, (0,1,2,3), 4, rtol=1e-10).check()
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
@check_version(mpmath, '0.13')
|
| 144 |
+
def test_hyp2f1_real_some_points():
|
| 145 |
+
pts = [
|
| 146 |
+
(1, 2, 3, 0),
|
| 147 |
+
(1./3, 2./3, 5./6, 27./32),
|
| 148 |
+
(1./4, 1./2, 3./4, 80./81),
|
| 149 |
+
(2,-2, -3, 3),
|
| 150 |
+
(2, -3, -2, 3),
|
| 151 |
+
(2, -1.5, -1.5, 3),
|
| 152 |
+
(1, 2, 3, 0),
|
| 153 |
+
(0.7235, -1, -5, 0.3),
|
| 154 |
+
(0.25, 1./3, 2, 0.999),
|
| 155 |
+
(0.25, 1./3, 2, -1),
|
| 156 |
+
(2, 3, 5, 0.99),
|
| 157 |
+
(3./2, -0.5, 3, 0.99),
|
| 158 |
+
(2, 2.5, -3.25, 0.999),
|
| 159 |
+
(-8, 18.016500331508873, 10.805295997850628, 0.90875647507000001),
|
| 160 |
+
(-10, 900, -10.5, 0.99),
|
| 161 |
+
(-10, 900, 10.5, 0.99),
|
| 162 |
+
(-1, 2, 1, 1.0),
|
| 163 |
+
(-1, 2, 1, -1.0),
|
| 164 |
+
(-3, 13, 5, 1.0),
|
| 165 |
+
(-3, 13, 5, -1.0),
|
| 166 |
+
(0.5, 1 - 270.5, 1.5, 0.999**2), # from issue 1561
|
| 167 |
+
]
|
| 168 |
+
dataset = [p + (float(mpmath.hyp2f1(*p)),) for p in pts]
|
| 169 |
+
dataset = np.array(dataset, dtype=np.float64)
|
| 170 |
+
|
| 171 |
+
with np.errstate(invalid='ignore'):
|
| 172 |
+
FuncData(sc.hyp2f1, dataset, (0,1,2,3), 4, rtol=1e-10).check()
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
@check_version(mpmath, '0.14')
|
| 176 |
+
def test_hyp2f1_some_points_2():
|
| 177 |
+
# Taken from mpmath unit tests -- this point failed for mpmath 0.13 but
|
| 178 |
+
# was fixed in their SVN since then
|
| 179 |
+
pts = [
|
| 180 |
+
(112, (51,10), (-9,10), -0.99999),
|
| 181 |
+
(10,-900,10.5,0.99),
|
| 182 |
+
(10,-900,-10.5,0.99),
|
| 183 |
+
]
|
| 184 |
+
|
| 185 |
+
def fev(x):
|
| 186 |
+
if isinstance(x, tuple):
|
| 187 |
+
return float(x[0]) / x[1]
|
| 188 |
+
else:
|
| 189 |
+
return x
|
| 190 |
+
|
| 191 |
+
dataset = [tuple(map(fev, p)) + (float(mpmath.hyp2f1(*p)),) for p in pts]
|
| 192 |
+
dataset = np.array(dataset, dtype=np.float64)
|
| 193 |
+
|
| 194 |
+
FuncData(sc.hyp2f1, dataset, (0,1,2,3), 4, rtol=1e-10).check()
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
@check_version(mpmath, '0.13')
|
| 198 |
+
def test_hyp2f1_real_some():
|
| 199 |
+
dataset = []
|
| 200 |
+
for a in [-10, -5, -1.8, 1.8, 5, 10]:
|
| 201 |
+
for b in [-2.5, -1, 1, 7.4]:
|
| 202 |
+
for c in [-9, -1.8, 5, 20.4]:
|
| 203 |
+
for z in [-10, -1.01, -0.99, 0, 0.6, 0.95, 1.5, 10]:
|
| 204 |
+
try:
|
| 205 |
+
v = float(mpmath.hyp2f1(a, b, c, z))
|
| 206 |
+
except Exception:
|
| 207 |
+
continue
|
| 208 |
+
dataset.append((a, b, c, z, v))
|
| 209 |
+
dataset = np.array(dataset, dtype=np.float64)
|
| 210 |
+
|
| 211 |
+
with np.errstate(invalid='ignore'):
|
| 212 |
+
FuncData(sc.hyp2f1, dataset, (0,1,2,3), 4, rtol=1e-9,
|
| 213 |
+
ignore_inf_sign=True).check()
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
@check_version(mpmath, '0.12')
|
| 217 |
+
@pytest.mark.slow
|
| 218 |
+
def test_hyp2f1_real_random():
|
| 219 |
+
npoints = 500
|
| 220 |
+
dataset = np.zeros((npoints, 5), np.float64)
|
| 221 |
+
|
| 222 |
+
np.random.seed(1234)
|
| 223 |
+
dataset[:, 0] = np.random.pareto(1.5, npoints)
|
| 224 |
+
dataset[:, 1] = np.random.pareto(1.5, npoints)
|
| 225 |
+
dataset[:, 2] = np.random.pareto(1.5, npoints)
|
| 226 |
+
dataset[:, 3] = 2*np.random.rand(npoints) - 1
|
| 227 |
+
|
| 228 |
+
dataset[:, 0] *= (-1)**np.random.randint(2, npoints)
|
| 229 |
+
dataset[:, 1] *= (-1)**np.random.randint(2, npoints)
|
| 230 |
+
dataset[:, 2] *= (-1)**np.random.randint(2, npoints)
|
| 231 |
+
|
| 232 |
+
for ds in dataset:
|
| 233 |
+
if mpmath.__version__ < '0.14':
|
| 234 |
+
# mpmath < 0.14 fails for c too much smaller than a, b
|
| 235 |
+
if abs(ds[:2]).max() > abs(ds[2]):
|
| 236 |
+
ds[2] = abs(ds[:2]).max()
|
| 237 |
+
ds[4] = float(mpmath.hyp2f1(*tuple(ds[:4])))
|
| 238 |
+
|
| 239 |
+
FuncData(sc.hyp2f1, dataset, (0, 1, 2, 3), 4, rtol=1e-9).check()
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
# ------------------------------------------------------------------------------
|
| 243 |
+
# erf (complex)
|
| 244 |
+
# ------------------------------------------------------------------------------
|
| 245 |
+
|
| 246 |
+
@check_version(mpmath, '0.14')
|
| 247 |
+
def test_erf_complex():
|
| 248 |
+
# need to increase mpmath precision for this test
|
| 249 |
+
old_dps, old_prec = mpmath.mp.dps, mpmath.mp.prec
|
| 250 |
+
try:
|
| 251 |
+
mpmath.mp.dps = 70
|
| 252 |
+
x1, y1 = np.meshgrid(np.linspace(-10, 1, 31), np.linspace(-10, 1, 11))
|
| 253 |
+
x2, y2 = np.meshgrid(np.logspace(-80, .8, 31), np.logspace(-80, .8, 11))
|
| 254 |
+
points = np.r_[x1.ravel(),x2.ravel()] + 1j*np.r_[y1.ravel(), y2.ravel()]
|
| 255 |
+
|
| 256 |
+
assert_func_equal(sc.erf, lambda x: complex(mpmath.erf(x)), points,
|
| 257 |
+
vectorized=False, rtol=1e-13)
|
| 258 |
+
assert_func_equal(sc.erfc, lambda x: complex(mpmath.erfc(x)), points,
|
| 259 |
+
vectorized=False, rtol=1e-13)
|
| 260 |
+
finally:
|
| 261 |
+
mpmath.mp.dps, mpmath.mp.prec = old_dps, old_prec
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
# ------------------------------------------------------------------------------
|
| 265 |
+
# lpmv
|
| 266 |
+
# ------------------------------------------------------------------------------
|
| 267 |
+
|
| 268 |
+
@check_version(mpmath, '0.15')
|
| 269 |
+
def test_lpmv():
|
| 270 |
+
pts = []
|
| 271 |
+
for x in [-0.99, -0.557, 1e-6, 0.132, 1]:
|
| 272 |
+
pts.extend([
|
| 273 |
+
(1, 1, x),
|
| 274 |
+
(1, -1, x),
|
| 275 |
+
(-1, 1, x),
|
| 276 |
+
(-1, -2, x),
|
| 277 |
+
(1, 1.7, x),
|
| 278 |
+
(1, -1.7, x),
|
| 279 |
+
(-1, 1.7, x),
|
| 280 |
+
(-1, -2.7, x),
|
| 281 |
+
(1, 10, x),
|
| 282 |
+
(1, 11, x),
|
| 283 |
+
(3, 8, x),
|
| 284 |
+
(5, 11, x),
|
| 285 |
+
(-3, 8, x),
|
| 286 |
+
(-5, 11, x),
|
| 287 |
+
(3, -8, x),
|
| 288 |
+
(5, -11, x),
|
| 289 |
+
(-3, -8, x),
|
| 290 |
+
(-5, -11, x),
|
| 291 |
+
(3, 8.3, x),
|
| 292 |
+
(5, 11.3, x),
|
| 293 |
+
(-3, 8.3, x),
|
| 294 |
+
(-5, 11.3, x),
|
| 295 |
+
(3, -8.3, x),
|
| 296 |
+
(5, -11.3, x),
|
| 297 |
+
(-3, -8.3, x),
|
| 298 |
+
(-5, -11.3, x),
|
| 299 |
+
])
|
| 300 |
+
|
| 301 |
+
def mplegenp(nu, mu, x):
|
| 302 |
+
if mu == int(mu) and x == 1:
|
| 303 |
+
# mpmath 0.17 gets this wrong
|
| 304 |
+
if mu == 0:
|
| 305 |
+
return 1
|
| 306 |
+
else:
|
| 307 |
+
return 0
|
| 308 |
+
return mpmath.legenp(nu, mu, x)
|
| 309 |
+
|
| 310 |
+
dataset = [p + (mplegenp(p[1], p[0], p[2]),) for p in pts]
|
| 311 |
+
dataset = np.array(dataset, dtype=np.float64)
|
| 312 |
+
|
| 313 |
+
def evf(mu, nu, x):
|
| 314 |
+
return sc.lpmv(mu.astype(int), nu, x)
|
| 315 |
+
|
| 316 |
+
with np.errstate(invalid='ignore'):
|
| 317 |
+
FuncData(evf, dataset, (0,1,2), 3, rtol=1e-10, atol=1e-14).check()
|
| 318 |
+
|
| 319 |
+
|
| 320 |
+
# ------------------------------------------------------------------------------
|
| 321 |
+
# beta
|
| 322 |
+
# ------------------------------------------------------------------------------
|
| 323 |
+
|
| 324 |
+
@check_version(mpmath, '0.15')
|
| 325 |
+
def test_beta():
|
| 326 |
+
np.random.seed(1234)
|
| 327 |
+
|
| 328 |
+
b = np.r_[np.logspace(-200, 200, 4),
|
| 329 |
+
np.logspace(-10, 10, 4),
|
| 330 |
+
np.logspace(-1, 1, 4),
|
| 331 |
+
np.arange(-10, 11, 1),
|
| 332 |
+
np.arange(-10, 11, 1) + 0.5,
|
| 333 |
+
-1, -2.3, -3, -100.3, -10003.4]
|
| 334 |
+
a = b
|
| 335 |
+
|
| 336 |
+
ab = np.array(np.broadcast_arrays(a[:,None], b[None,:])).reshape(2, -1).T
|
| 337 |
+
|
| 338 |
+
old_dps, old_prec = mpmath.mp.dps, mpmath.mp.prec
|
| 339 |
+
try:
|
| 340 |
+
mpmath.mp.dps = 400
|
| 341 |
+
|
| 342 |
+
assert_func_equal(sc.beta,
|
| 343 |
+
lambda a, b: float(mpmath.beta(a, b)),
|
| 344 |
+
ab,
|
| 345 |
+
vectorized=False,
|
| 346 |
+
rtol=1e-10,
|
| 347 |
+
ignore_inf_sign=True)
|
| 348 |
+
|
| 349 |
+
assert_func_equal(
|
| 350 |
+
sc.betaln,
|
| 351 |
+
lambda a, b: float(mpmath.log(abs(mpmath.beta(a, b)))),
|
| 352 |
+
ab,
|
| 353 |
+
vectorized=False,
|
| 354 |
+
rtol=1e-10)
|
| 355 |
+
finally:
|
| 356 |
+
mpmath.mp.dps, mpmath.mp.prec = old_dps, old_prec
|
| 357 |
+
|
| 358 |
+
|
| 359 |
+
# ------------------------------------------------------------------------------
|
| 360 |
+
# loggamma
|
| 361 |
+
# ------------------------------------------------------------------------------
|
| 362 |
+
|
| 363 |
+
LOGGAMMA_TAYLOR_RADIUS = 0.2
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
@check_version(mpmath, '0.19')
|
| 367 |
+
def test_loggamma_taylor_transition():
|
| 368 |
+
# Make sure there isn't a big jump in accuracy when we move from
|
| 369 |
+
# using the Taylor series to using the recurrence relation.
|
| 370 |
+
|
| 371 |
+
r = LOGGAMMA_TAYLOR_RADIUS + np.array([-0.1, -0.01, 0, 0.01, 0.1])
|
| 372 |
+
theta = np.linspace(0, 2*np.pi, 20)
|
| 373 |
+
r, theta = np.meshgrid(r, theta)
|
| 374 |
+
dz = r*np.exp(1j*theta)
|
| 375 |
+
z = np.r_[1 + dz, 2 + dz].flatten()
|
| 376 |
+
|
| 377 |
+
dataset = [(z0, complex(mpmath.loggamma(z0))) for z0 in z]
|
| 378 |
+
dataset = np.array(dataset)
|
| 379 |
+
|
| 380 |
+
FuncData(sc.loggamma, dataset, 0, 1, rtol=5e-14).check()
|
| 381 |
+
|
| 382 |
+
|
| 383 |
+
@check_version(mpmath, '0.19')
|
| 384 |
+
def test_loggamma_taylor():
|
| 385 |
+
# Test around the zeros at z = 1, 2.
|
| 386 |
+
|
| 387 |
+
r = np.logspace(-16, np.log10(LOGGAMMA_TAYLOR_RADIUS), 10)
|
| 388 |
+
theta = np.linspace(0, 2*np.pi, 20)
|
| 389 |
+
r, theta = np.meshgrid(r, theta)
|
| 390 |
+
dz = r*np.exp(1j*theta)
|
| 391 |
+
z = np.r_[1 + dz, 2 + dz].flatten()
|
| 392 |
+
|
| 393 |
+
dataset = [(z0, complex(mpmath.loggamma(z0))) for z0 in z]
|
| 394 |
+
dataset = np.array(dataset)
|
| 395 |
+
|
| 396 |
+
FuncData(sc.loggamma, dataset, 0, 1, rtol=5e-14).check()
|
| 397 |
+
|
| 398 |
+
|
| 399 |
+
# ------------------------------------------------------------------------------
|
| 400 |
+
# rgamma
|
| 401 |
+
# ------------------------------------------------------------------------------
|
| 402 |
+
|
| 403 |
+
@check_version(mpmath, '0.19')
|
| 404 |
+
@pytest.mark.slow
|
| 405 |
+
def test_rgamma_zeros():
|
| 406 |
+
# Test around the zeros at z = 0, -1, -2, ..., -169. (After -169 we
|
| 407 |
+
# get values that are out of floating point range even when we're
|
| 408 |
+
# within 0.1 of the zero.)
|
| 409 |
+
|
| 410 |
+
# Can't use too many points here or the test takes forever.
|
| 411 |
+
dx = np.r_[-np.logspace(-1, -13, 3), 0, np.logspace(-13, -1, 3)]
|
| 412 |
+
dy = dx.copy()
|
| 413 |
+
dx, dy = np.meshgrid(dx, dy)
|
| 414 |
+
dz = dx + 1j*dy
|
| 415 |
+
zeros = np.arange(0, -170, -1).reshape(1, 1, -1)
|
| 416 |
+
z = (zeros + np.dstack((dz,)*zeros.size)).flatten()
|
| 417 |
+
with mpmath.workdps(100):
|
| 418 |
+
dataset = [(z0, complex(mpmath.rgamma(z0))) for z0 in z]
|
| 419 |
+
|
| 420 |
+
dataset = np.array(dataset)
|
| 421 |
+
FuncData(sc.rgamma, dataset, 0, 1, rtol=1e-12).check()
|
| 422 |
+
|
| 423 |
+
|
| 424 |
+
# ------------------------------------------------------------------------------
|
| 425 |
+
# digamma
|
| 426 |
+
# ------------------------------------------------------------------------------
|
| 427 |
+
|
| 428 |
+
@check_version(mpmath, '0.19')
|
| 429 |
+
@pytest.mark.slow
|
| 430 |
+
def test_digamma_roots():
|
| 431 |
+
# Test the special-cased roots for digamma.
|
| 432 |
+
root = mpmath.findroot(mpmath.digamma, 1.5)
|
| 433 |
+
roots = [float(root)]
|
| 434 |
+
root = mpmath.findroot(mpmath.digamma, -0.5)
|
| 435 |
+
roots.append(float(root))
|
| 436 |
+
roots = np.array(roots)
|
| 437 |
+
|
| 438 |
+
# If we test beyond a radius of 0.24 mpmath will take forever.
|
| 439 |
+
dx = np.r_[-0.24, -np.logspace(-1, -15, 10), 0, np.logspace(-15, -1, 10), 0.24]
|
| 440 |
+
dy = dx.copy()
|
| 441 |
+
dx, dy = np.meshgrid(dx, dy)
|
| 442 |
+
dz = dx + 1j*dy
|
| 443 |
+
z = (roots + np.dstack((dz,)*roots.size)).flatten()
|
| 444 |
+
with mpmath.workdps(30):
|
| 445 |
+
dataset = [(z0, complex(mpmath.digamma(z0))) for z0 in z]
|
| 446 |
+
|
| 447 |
+
dataset = np.array(dataset)
|
| 448 |
+
FuncData(sc.digamma, dataset, 0, 1, rtol=1e-14).check()
|
| 449 |
+
|
| 450 |
+
|
| 451 |
+
@check_version(mpmath, '0.19')
|
| 452 |
+
def test_digamma_negreal():
|
| 453 |
+
# Test digamma around the negative real axis. Don't do this in
|
| 454 |
+
# TestSystematic because the points need some jiggering so that
|
| 455 |
+
# mpmath doesn't take forever.
|
| 456 |
+
|
| 457 |
+
digamma = exception_to_nan(mpmath.digamma)
|
| 458 |
+
|
| 459 |
+
x = -np.logspace(300, -30, 100)
|
| 460 |
+
y = np.r_[-np.logspace(0, -3, 5), 0, np.logspace(-3, 0, 5)]
|
| 461 |
+
x, y = np.meshgrid(x, y)
|
| 462 |
+
z = (x + 1j*y).flatten()
|
| 463 |
+
|
| 464 |
+
with mpmath.workdps(40):
|
| 465 |
+
dataset = [(z0, complex(digamma(z0))) for z0 in z]
|
| 466 |
+
dataset = np.asarray(dataset)
|
| 467 |
+
|
| 468 |
+
FuncData(sc.digamma, dataset, 0, 1, rtol=1e-13).check()
|
| 469 |
+
|
| 470 |
+
|
| 471 |
+
@check_version(mpmath, '0.19')
|
| 472 |
+
def test_digamma_boundary():
|
| 473 |
+
# Check that there isn't a jump in accuracy when we switch from
|
| 474 |
+
# using the asymptotic series to the reflection formula.
|
| 475 |
+
|
| 476 |
+
x = -np.logspace(300, -30, 100)
|
| 477 |
+
y = np.array([-6.1, -5.9, 5.9, 6.1])
|
| 478 |
+
x, y = np.meshgrid(x, y)
|
| 479 |
+
z = (x + 1j*y).flatten()
|
| 480 |
+
|
| 481 |
+
with mpmath.workdps(30):
|
| 482 |
+
dataset = [(z0, complex(mpmath.digamma(z0))) for z0 in z]
|
| 483 |
+
dataset = np.asarray(dataset)
|
| 484 |
+
|
| 485 |
+
FuncData(sc.digamma, dataset, 0, 1, rtol=1e-13).check()
|
| 486 |
+
|
| 487 |
+
|
| 488 |
+
# ------------------------------------------------------------------------------
|
| 489 |
+
# gammainc
|
| 490 |
+
# ------------------------------------------------------------------------------
|
| 491 |
+
|
| 492 |
+
@check_version(mpmath, '0.19')
|
| 493 |
+
@pytest.mark.slow
|
| 494 |
+
def test_gammainc_boundary():
|
| 495 |
+
# Test the transition to the asymptotic series.
|
| 496 |
+
small = 20
|
| 497 |
+
a = np.linspace(0.5*small, 2*small, 50)
|
| 498 |
+
x = a.copy()
|
| 499 |
+
a, x = np.meshgrid(a, x)
|
| 500 |
+
a, x = a.flatten(), x.flatten()
|
| 501 |
+
with mpmath.workdps(100):
|
| 502 |
+
dataset = [(a0, x0, float(mpmath.gammainc(a0, b=x0, regularized=True)))
|
| 503 |
+
for a0, x0 in zip(a, x)]
|
| 504 |
+
dataset = np.array(dataset)
|
| 505 |
+
|
| 506 |
+
FuncData(sc.gammainc, dataset, (0, 1), 2, rtol=1e-12).check()
|
| 507 |
+
|
| 508 |
+
|
| 509 |
+
# ------------------------------------------------------------------------------
|
| 510 |
+
# spence
|
| 511 |
+
# ------------------------------------------------------------------------------
|
| 512 |
+
|
| 513 |
+
@check_version(mpmath, '0.19')
|
| 514 |
+
@pytest.mark.slow
|
| 515 |
+
def test_spence_circle():
|
| 516 |
+
# The trickiest region for spence is around the circle |z - 1| = 1,
|
| 517 |
+
# so test that region carefully.
|
| 518 |
+
|
| 519 |
+
def spence(z):
|
| 520 |
+
return complex(mpmath.polylog(2, 1 - z))
|
| 521 |
+
|
| 522 |
+
r = np.linspace(0.5, 1.5)
|
| 523 |
+
theta = np.linspace(0, 2*pi)
|
| 524 |
+
z = (1 + np.outer(r, np.exp(1j*theta))).flatten()
|
| 525 |
+
dataset = np.asarray([(z0, spence(z0)) for z0 in z])
|
| 526 |
+
|
| 527 |
+
FuncData(sc.spence, dataset, 0, 1, rtol=1e-14).check()
|
| 528 |
+
|
| 529 |
+
|
| 530 |
+
# ------------------------------------------------------------------------------
|
| 531 |
+
# sinpi and cospi
|
| 532 |
+
# ------------------------------------------------------------------------------
|
| 533 |
+
|
| 534 |
+
@check_version(mpmath, '0.19')
|
| 535 |
+
def test_sinpi_zeros():
|
| 536 |
+
eps = np.finfo(float).eps
|
| 537 |
+
dx = np.r_[-np.logspace(0, -13, 3), 0, np.logspace(-13, 0, 3)]
|
| 538 |
+
dy = dx.copy()
|
| 539 |
+
dx, dy = np.meshgrid(dx, dy)
|
| 540 |
+
dz = dx + 1j*dy
|
| 541 |
+
zeros = np.arange(-100, 100, 1).reshape(1, 1, -1)
|
| 542 |
+
z = (zeros + np.dstack((dz,)*zeros.size)).flatten()
|
| 543 |
+
dataset = np.asarray([(z0, complex(mpmath.sinpi(z0)))
|
| 544 |
+
for z0 in z])
|
| 545 |
+
FuncData(_sinpi, dataset, 0, 1, rtol=2*eps).check()
|
| 546 |
+
|
| 547 |
+
|
| 548 |
+
@check_version(mpmath, '0.19')
|
| 549 |
+
def test_cospi_zeros():
|
| 550 |
+
eps = np.finfo(float).eps
|
| 551 |
+
dx = np.r_[-np.logspace(0, -13, 3), 0, np.logspace(-13, 0, 3)]
|
| 552 |
+
dy = dx.copy()
|
| 553 |
+
dx, dy = np.meshgrid(dx, dy)
|
| 554 |
+
dz = dx + 1j*dy
|
| 555 |
+
zeros = (np.arange(-100, 100, 1) + 0.5).reshape(1, 1, -1)
|
| 556 |
+
z = (zeros + np.dstack((dz,)*zeros.size)).flatten()
|
| 557 |
+
dataset = np.asarray([(z0, complex(mpmath.cospi(z0)))
|
| 558 |
+
for z0 in z])
|
| 559 |
+
|
| 560 |
+
FuncData(_cospi, dataset, 0, 1, rtol=2*eps).check()
|
| 561 |
+
|
| 562 |
+
|
| 563 |
+
# ------------------------------------------------------------------------------
|
| 564 |
+
# ellipj
|
| 565 |
+
# ------------------------------------------------------------------------------
|
| 566 |
+
|
| 567 |
+
@check_version(mpmath, '0.19')
|
| 568 |
+
def test_dn_quarter_period():
|
| 569 |
+
def dn(u, m):
|
| 570 |
+
return sc.ellipj(u, m)[2]
|
| 571 |
+
|
| 572 |
+
def mpmath_dn(u, m):
|
| 573 |
+
return float(mpmath.ellipfun("dn", u=u, m=m))
|
| 574 |
+
|
| 575 |
+
m = np.linspace(0, 1, 20)
|
| 576 |
+
du = np.r_[-np.logspace(-1, -15, 10), 0, np.logspace(-15, -1, 10)]
|
| 577 |
+
dataset = []
|
| 578 |
+
for m0 in m:
|
| 579 |
+
u0 = float(mpmath.ellipk(m0))
|
| 580 |
+
for du0 in du:
|
| 581 |
+
p = u0 + du0
|
| 582 |
+
dataset.append((p, m0, mpmath_dn(p, m0)))
|
| 583 |
+
dataset = np.asarray(dataset)
|
| 584 |
+
|
| 585 |
+
FuncData(dn, dataset, (0, 1), 2, rtol=1e-10).check()
|
| 586 |
+
|
| 587 |
+
|
| 588 |
+
# ------------------------------------------------------------------------------
|
| 589 |
+
# Wright Omega
|
| 590 |
+
# ------------------------------------------------------------------------------
|
| 591 |
+
|
| 592 |
+
def _mpmath_wrightomega(z, dps):
|
| 593 |
+
with mpmath.workdps(dps):
|
| 594 |
+
z = mpmath.mpc(z)
|
| 595 |
+
unwind = mpmath.ceil((z.imag - mpmath.pi)/(2*mpmath.pi))
|
| 596 |
+
res = mpmath.lambertw(mpmath.exp(z), unwind)
|
| 597 |
+
return res
|
| 598 |
+
|
| 599 |
+
|
| 600 |
+
@pytest.mark.slow
|
| 601 |
+
@check_version(mpmath, '0.19')
|
| 602 |
+
def test_wrightomega_branch():
|
| 603 |
+
x = -np.logspace(10, 0, 25)
|
| 604 |
+
picut_above = [np.nextafter(np.pi, np.inf)]
|
| 605 |
+
picut_below = [np.nextafter(np.pi, -np.inf)]
|
| 606 |
+
npicut_above = [np.nextafter(-np.pi, np.inf)]
|
| 607 |
+
npicut_below = [np.nextafter(-np.pi, -np.inf)]
|
| 608 |
+
for i in range(50):
|
| 609 |
+
picut_above.append(np.nextafter(picut_above[-1], np.inf))
|
| 610 |
+
picut_below.append(np.nextafter(picut_below[-1], -np.inf))
|
| 611 |
+
npicut_above.append(np.nextafter(npicut_above[-1], np.inf))
|
| 612 |
+
npicut_below.append(np.nextafter(npicut_below[-1], -np.inf))
|
| 613 |
+
y = np.hstack((picut_above, picut_below, npicut_above, npicut_below))
|
| 614 |
+
x, y = np.meshgrid(x, y)
|
| 615 |
+
z = (x + 1j*y).flatten()
|
| 616 |
+
|
| 617 |
+
dataset = np.asarray([(z0, complex(_mpmath_wrightomega(z0, 25)))
|
| 618 |
+
for z0 in z])
|
| 619 |
+
|
| 620 |
+
FuncData(sc.wrightomega, dataset, 0, 1, rtol=1e-8).check()
|
| 621 |
+
|
| 622 |
+
|
| 623 |
+
@pytest.mark.slow
|
| 624 |
+
@check_version(mpmath, '0.19')
|
| 625 |
+
def test_wrightomega_region1():
|
| 626 |
+
# This region gets less coverage in the TestSystematic test
|
| 627 |
+
x = np.linspace(-2, 1)
|
| 628 |
+
y = np.linspace(1, 2*np.pi)
|
| 629 |
+
x, y = np.meshgrid(x, y)
|
| 630 |
+
z = (x + 1j*y).flatten()
|
| 631 |
+
|
| 632 |
+
dataset = np.asarray([(z0, complex(_mpmath_wrightomega(z0, 25)))
|
| 633 |
+
for z0 in z])
|
| 634 |
+
|
| 635 |
+
FuncData(sc.wrightomega, dataset, 0, 1, rtol=1e-15).check()
|
| 636 |
+
|
| 637 |
+
|
| 638 |
+
@pytest.mark.slow
|
| 639 |
+
@check_version(mpmath, '0.19')
|
| 640 |
+
def test_wrightomega_region2():
|
| 641 |
+
# This region gets less coverage in the TestSystematic test
|
| 642 |
+
x = np.linspace(-2, 1)
|
| 643 |
+
y = np.linspace(-2*np.pi, -1)
|
| 644 |
+
x, y = np.meshgrid(x, y)
|
| 645 |
+
z = (x + 1j*y).flatten()
|
| 646 |
+
|
| 647 |
+
dataset = np.asarray([(z0, complex(_mpmath_wrightomega(z0, 25)))
|
| 648 |
+
for z0 in z])
|
| 649 |
+
|
| 650 |
+
FuncData(sc.wrightomega, dataset, 0, 1, rtol=1e-15).check()
|
| 651 |
+
|
| 652 |
+
|
| 653 |
+
# ------------------------------------------------------------------------------
|
| 654 |
+
# lambertw
|
| 655 |
+
# ------------------------------------------------------------------------------
|
| 656 |
+
|
| 657 |
+
@pytest.mark.slow
|
| 658 |
+
@check_version(mpmath, '0.19')
|
| 659 |
+
def test_lambertw_smallz():
|
| 660 |
+
x, y = np.linspace(-1, 1, 25), np.linspace(-1, 1, 25)
|
| 661 |
+
x, y = np.meshgrid(x, y)
|
| 662 |
+
z = (x + 1j*y).flatten()
|
| 663 |
+
|
| 664 |
+
dataset = np.asarray([(z0, complex(mpmath.lambertw(z0)))
|
| 665 |
+
for z0 in z])
|
| 666 |
+
|
| 667 |
+
FuncData(sc.lambertw, dataset, 0, 1, rtol=1e-13).check()
|
| 668 |
+
|
| 669 |
+
|
| 670 |
+
# ------------------------------------------------------------------------------
|
| 671 |
+
# Systematic tests
|
| 672 |
+
# ------------------------------------------------------------------------------
|
| 673 |
+
|
| 674 |
+
HYPERKW = dict(maxprec=200, maxterms=200)
|
| 675 |
+
|
| 676 |
+
|
| 677 |
+
@pytest.mark.slow
|
| 678 |
+
@check_version(mpmath, '0.17')
|
| 679 |
+
class TestSystematic:
|
| 680 |
+
|
| 681 |
+
def test_airyai(self):
|
| 682 |
+
# oscillating function, limit range
|
| 683 |
+
assert_mpmath_equal(lambda z: sc.airy(z)[0],
|
| 684 |
+
mpmath.airyai,
|
| 685 |
+
[Arg(-1e8, 1e8)],
|
| 686 |
+
rtol=1e-5)
|
| 687 |
+
assert_mpmath_equal(lambda z: sc.airy(z)[0],
|
| 688 |
+
mpmath.airyai,
|
| 689 |
+
[Arg(-1e3, 1e3)])
|
| 690 |
+
|
| 691 |
+
def test_airyai_complex(self):
|
| 692 |
+
assert_mpmath_equal(lambda z: sc.airy(z)[0],
|
| 693 |
+
mpmath.airyai,
|
| 694 |
+
[ComplexArg()])
|
| 695 |
+
|
| 696 |
+
def test_airyai_prime(self):
|
| 697 |
+
# oscillating function, limit range
|
| 698 |
+
assert_mpmath_equal(lambda z: sc.airy(z)[1], lambda z:
|
| 699 |
+
mpmath.airyai(z, derivative=1),
|
| 700 |
+
[Arg(-1e8, 1e8)],
|
| 701 |
+
rtol=1e-5)
|
| 702 |
+
assert_mpmath_equal(lambda z: sc.airy(z)[1], lambda z:
|
| 703 |
+
mpmath.airyai(z, derivative=1),
|
| 704 |
+
[Arg(-1e3, 1e3)])
|
| 705 |
+
|
| 706 |
+
def test_airyai_prime_complex(self):
|
| 707 |
+
assert_mpmath_equal(lambda z: sc.airy(z)[1], lambda z:
|
| 708 |
+
mpmath.airyai(z, derivative=1),
|
| 709 |
+
[ComplexArg()])
|
| 710 |
+
|
| 711 |
+
def test_airybi(self):
|
| 712 |
+
# oscillating function, limit range
|
| 713 |
+
assert_mpmath_equal(lambda z: sc.airy(z)[2], lambda z:
|
| 714 |
+
mpmath.airybi(z),
|
| 715 |
+
[Arg(-1e8, 1e8)],
|
| 716 |
+
rtol=1e-5)
|
| 717 |
+
assert_mpmath_equal(lambda z: sc.airy(z)[2], lambda z:
|
| 718 |
+
mpmath.airybi(z),
|
| 719 |
+
[Arg(-1e3, 1e3)])
|
| 720 |
+
|
| 721 |
+
def test_airybi_complex(self):
|
| 722 |
+
assert_mpmath_equal(lambda z: sc.airy(z)[2], lambda z:
|
| 723 |
+
mpmath.airybi(z),
|
| 724 |
+
[ComplexArg()])
|
| 725 |
+
|
| 726 |
+
def test_airybi_prime(self):
|
| 727 |
+
# oscillating function, limit range
|
| 728 |
+
assert_mpmath_equal(lambda z: sc.airy(z)[3], lambda z:
|
| 729 |
+
mpmath.airybi(z, derivative=1),
|
| 730 |
+
[Arg(-1e8, 1e8)],
|
| 731 |
+
rtol=1e-5)
|
| 732 |
+
assert_mpmath_equal(lambda z: sc.airy(z)[3], lambda z:
|
| 733 |
+
mpmath.airybi(z, derivative=1),
|
| 734 |
+
[Arg(-1e3, 1e3)])
|
| 735 |
+
|
| 736 |
+
def test_airybi_prime_complex(self):
|
| 737 |
+
assert_mpmath_equal(lambda z: sc.airy(z)[3], lambda z:
|
| 738 |
+
mpmath.airybi(z, derivative=1),
|
| 739 |
+
[ComplexArg()])
|
| 740 |
+
|
| 741 |
+
def test_bei(self):
|
| 742 |
+
assert_mpmath_equal(sc.bei,
|
| 743 |
+
exception_to_nan(lambda z: mpmath.bei(0, z, **HYPERKW)),
|
| 744 |
+
[Arg(-1e3, 1e3)])
|
| 745 |
+
|
| 746 |
+
def test_ber(self):
|
| 747 |
+
assert_mpmath_equal(sc.ber,
|
| 748 |
+
exception_to_nan(lambda z: mpmath.ber(0, z, **HYPERKW)),
|
| 749 |
+
[Arg(-1e3, 1e3)])
|
| 750 |
+
|
| 751 |
+
def test_bernoulli(self):
|
| 752 |
+
assert_mpmath_equal(lambda n: sc.bernoulli(int(n))[int(n)],
|
| 753 |
+
lambda n: float(mpmath.bernoulli(int(n))),
|
| 754 |
+
[IntArg(0, 13000)],
|
| 755 |
+
rtol=1e-9, n=13000)
|
| 756 |
+
|
| 757 |
+
def test_besseli(self):
|
| 758 |
+
assert_mpmath_equal(
|
| 759 |
+
sc.iv,
|
| 760 |
+
exception_to_nan(lambda v, z: mpmath.besseli(v, z, **HYPERKW)),
|
| 761 |
+
[Arg(-1e100, 1e100), Arg()],
|
| 762 |
+
atol=1e-270,
|
| 763 |
+
)
|
| 764 |
+
|
| 765 |
+
def test_besseli_complex(self):
|
| 766 |
+
assert_mpmath_equal(
|
| 767 |
+
lambda v, z: sc.iv(v.real, z),
|
| 768 |
+
exception_to_nan(lambda v, z: mpmath.besseli(v, z, **HYPERKW)),
|
| 769 |
+
[Arg(-1e100, 1e100), ComplexArg()],
|
| 770 |
+
)
|
| 771 |
+
|
| 772 |
+
def test_besselj(self):
|
| 773 |
+
assert_mpmath_equal(
|
| 774 |
+
sc.jv,
|
| 775 |
+
exception_to_nan(lambda v, z: mpmath.besselj(v, z, **HYPERKW)),
|
| 776 |
+
[Arg(-1e100, 1e100), Arg(-1e3, 1e3)],
|
| 777 |
+
ignore_inf_sign=True,
|
| 778 |
+
)
|
| 779 |
+
|
| 780 |
+
# loss of precision at large arguments due to oscillation
|
| 781 |
+
assert_mpmath_equal(
|
| 782 |
+
sc.jv,
|
| 783 |
+
exception_to_nan(lambda v, z: mpmath.besselj(v, z, **HYPERKW)),
|
| 784 |
+
[Arg(-1e100, 1e100), Arg(-1e8, 1e8)],
|
| 785 |
+
ignore_inf_sign=True,
|
| 786 |
+
rtol=1e-5,
|
| 787 |
+
)
|
| 788 |
+
|
| 789 |
+
def test_besselj_complex(self):
|
| 790 |
+
assert_mpmath_equal(
|
| 791 |
+
lambda v, z: sc.jv(v.real, z),
|
| 792 |
+
exception_to_nan(lambda v, z: mpmath.besselj(v, z, **HYPERKW)),
|
| 793 |
+
[Arg(), ComplexArg()]
|
| 794 |
+
)
|
| 795 |
+
|
| 796 |
+
def test_besselk(self):
|
| 797 |
+
assert_mpmath_equal(
|
| 798 |
+
sc.kv,
|
| 799 |
+
mpmath.besselk,
|
| 800 |
+
[Arg(-200, 200), Arg(0, np.inf)],
|
| 801 |
+
nan_ok=False,
|
| 802 |
+
rtol=1e-12,
|
| 803 |
+
)
|
| 804 |
+
|
| 805 |
+
def test_besselk_int(self):
|
| 806 |
+
assert_mpmath_equal(
|
| 807 |
+
sc.kn,
|
| 808 |
+
mpmath.besselk,
|
| 809 |
+
[IntArg(-200, 200), Arg(0, np.inf)],
|
| 810 |
+
nan_ok=False,
|
| 811 |
+
rtol=1e-12,
|
| 812 |
+
)
|
| 813 |
+
|
| 814 |
+
def test_besselk_complex(self):
|
| 815 |
+
assert_mpmath_equal(
|
| 816 |
+
lambda v, z: sc.kv(v.real, z),
|
| 817 |
+
exception_to_nan(lambda v, z: mpmath.besselk(v, z, **HYPERKW)),
|
| 818 |
+
[Arg(-1e100, 1e100), ComplexArg()],
|
| 819 |
+
)
|
| 820 |
+
|
| 821 |
+
def test_bessely(self):
|
| 822 |
+
def mpbessely(v, x):
|
| 823 |
+
r = float(mpmath.bessely(v, x, **HYPERKW))
|
| 824 |
+
if abs(r) > 1e305:
|
| 825 |
+
# overflowing to inf a bit earlier is OK
|
| 826 |
+
r = np.inf * np.sign(r)
|
| 827 |
+
if abs(r) == 0 and x == 0:
|
| 828 |
+
# invalid result from mpmath, point x=0 is a divergence
|
| 829 |
+
return np.nan
|
| 830 |
+
return r
|
| 831 |
+
assert_mpmath_equal(
|
| 832 |
+
sc.yv,
|
| 833 |
+
exception_to_nan(mpbessely),
|
| 834 |
+
[Arg(-1e100, 1e100), Arg(-1e8, 1e8)],
|
| 835 |
+
n=5000,
|
| 836 |
+
)
|
| 837 |
+
|
| 838 |
+
def test_bessely_complex(self):
|
| 839 |
+
def mpbessely(v, x):
|
| 840 |
+
r = complex(mpmath.bessely(v, x, **HYPERKW))
|
| 841 |
+
if abs(r) > 1e305:
|
| 842 |
+
# overflowing to inf a bit earlier is OK
|
| 843 |
+
with np.errstate(invalid='ignore'):
|
| 844 |
+
r = np.inf * np.sign(r)
|
| 845 |
+
return r
|
| 846 |
+
assert_mpmath_equal(
|
| 847 |
+
lambda v, z: sc.yv(v.real, z),
|
| 848 |
+
exception_to_nan(mpbessely),
|
| 849 |
+
[Arg(), ComplexArg()],
|
| 850 |
+
n=15000,
|
| 851 |
+
)
|
| 852 |
+
|
| 853 |
+
def test_bessely_int(self):
|
| 854 |
+
def mpbessely(v, x):
|
| 855 |
+
r = float(mpmath.bessely(v, x))
|
| 856 |
+
if abs(r) == 0 and x == 0:
|
| 857 |
+
# invalid result from mpmath, point x=0 is a divergence
|
| 858 |
+
return np.nan
|
| 859 |
+
return r
|
| 860 |
+
assert_mpmath_equal(
|
| 861 |
+
lambda v, z: sc.yn(int(v), z),
|
| 862 |
+
exception_to_nan(mpbessely),
|
| 863 |
+
[IntArg(-1000, 1000), Arg(-1e8, 1e8)],
|
| 864 |
+
)
|
| 865 |
+
|
| 866 |
+
def test_beta(self):
|
| 867 |
+
bad_points = []
|
| 868 |
+
|
| 869 |
+
def beta(a, b, nonzero=False):
|
| 870 |
+
if a < -1e12 or b < -1e12:
|
| 871 |
+
# Function is defined here only at integers, but due
|
| 872 |
+
# to loss of precision this is numerically
|
| 873 |
+
# ill-defined. Don't compare values here.
|
| 874 |
+
return np.nan
|
| 875 |
+
if (a < 0 or b < 0) and (abs(float(a + b)) % 1) == 0:
|
| 876 |
+
# close to a zero of the function: mpmath and scipy
|
| 877 |
+
# will not round here the same, so the test needs to be
|
| 878 |
+
# run with an absolute tolerance
|
| 879 |
+
if nonzero:
|
| 880 |
+
bad_points.append((float(a), float(b)))
|
| 881 |
+
return np.nan
|
| 882 |
+
return mpmath.beta(a, b)
|
| 883 |
+
|
| 884 |
+
assert_mpmath_equal(
|
| 885 |
+
sc.beta,
|
| 886 |
+
lambda a, b: beta(a, b, nonzero=True),
|
| 887 |
+
[Arg(), Arg()],
|
| 888 |
+
dps=400,
|
| 889 |
+
ignore_inf_sign=True,
|
| 890 |
+
)
|
| 891 |
+
|
| 892 |
+
assert_mpmath_equal(
|
| 893 |
+
sc.beta,
|
| 894 |
+
beta,
|
| 895 |
+
np.array(bad_points),
|
| 896 |
+
dps=400,
|
| 897 |
+
ignore_inf_sign=True,
|
| 898 |
+
atol=1e-11,
|
| 899 |
+
)
|
| 900 |
+
|
| 901 |
+
def test_betainc(self):
|
| 902 |
+
assert_mpmath_equal(
|
| 903 |
+
sc.betainc,
|
| 904 |
+
time_limited()(
|
| 905 |
+
exception_to_nan(
|
| 906 |
+
lambda a, b, x: mpmath.betainc(a, b, 0, x, regularized=True)
|
| 907 |
+
)
|
| 908 |
+
),
|
| 909 |
+
[Arg(), Arg(), Arg()],
|
| 910 |
+
)
|
| 911 |
+
|
| 912 |
+
def test_betaincc(self):
|
| 913 |
+
assert_mpmath_equal(
|
| 914 |
+
sc.betaincc,
|
| 915 |
+
time_limited()(
|
| 916 |
+
exception_to_nan(
|
| 917 |
+
lambda a, b, x: mpmath.betainc(a, b, x, 1, regularized=True)
|
| 918 |
+
)
|
| 919 |
+
),
|
| 920 |
+
[Arg(), Arg(), Arg()],
|
| 921 |
+
dps=400,
|
| 922 |
+
)
|
| 923 |
+
|
| 924 |
+
def test_binom(self):
|
| 925 |
+
bad_points = []
|
| 926 |
+
|
| 927 |
+
def binomial(n, k, nonzero=False):
|
| 928 |
+
if abs(k) > 1e8*(abs(n) + 1):
|
| 929 |
+
# The binomial is rapidly oscillating in this region,
|
| 930 |
+
# and the function is numerically ill-defined. Don't
|
| 931 |
+
# compare values here.
|
| 932 |
+
return np.nan
|
| 933 |
+
if n < k and abs(float(n-k) - np.round(float(n-k))) < 1e-15:
|
| 934 |
+
# close to a zero of the function: mpmath and scipy
|
| 935 |
+
# will not round here the same, so the test needs to be
|
| 936 |
+
# run with an absolute tolerance
|
| 937 |
+
if nonzero:
|
| 938 |
+
bad_points.append((float(n), float(k)))
|
| 939 |
+
return np.nan
|
| 940 |
+
return mpmath.binomial(n, k)
|
| 941 |
+
|
| 942 |
+
assert_mpmath_equal(
|
| 943 |
+
sc.binom,
|
| 944 |
+
lambda n, k: binomial(n, k, nonzero=True),
|
| 945 |
+
[Arg(), Arg()],
|
| 946 |
+
dps=400,
|
| 947 |
+
)
|
| 948 |
+
|
| 949 |
+
assert_mpmath_equal(
|
| 950 |
+
sc.binom,
|
| 951 |
+
binomial,
|
| 952 |
+
np.array(bad_points),
|
| 953 |
+
dps=400,
|
| 954 |
+
atol=1e-14,
|
| 955 |
+
)
|
| 956 |
+
|
| 957 |
+
def test_chebyt_int(self):
|
| 958 |
+
assert_mpmath_equal(
|
| 959 |
+
lambda n, x: sc.eval_chebyt(int(n), x),
|
| 960 |
+
exception_to_nan(lambda n, x: mpmath.chebyt(n, x, **HYPERKW)),
|
| 961 |
+
[IntArg(), Arg()],
|
| 962 |
+
dps=50,
|
| 963 |
+
)
|
| 964 |
+
|
| 965 |
+
@pytest.mark.xfail(run=False, reason="some cases in hyp2f1 not fully accurate")
|
| 966 |
+
def test_chebyt(self):
|
| 967 |
+
assert_mpmath_equal(
|
| 968 |
+
sc.eval_chebyt,
|
| 969 |
+
lambda n, x: time_limited()(
|
| 970 |
+
exception_to_nan(mpmath.chebyt)
|
| 971 |
+
)(n, x, **HYPERKW),
|
| 972 |
+
[Arg(-101, 101), Arg()],
|
| 973 |
+
n=10000,
|
| 974 |
+
)
|
| 975 |
+
|
| 976 |
+
def test_chebyu_int(self):
|
| 977 |
+
assert_mpmath_equal(
|
| 978 |
+
lambda n, x: sc.eval_chebyu(int(n), x),
|
| 979 |
+
exception_to_nan(lambda n, x: mpmath.chebyu(n, x, **HYPERKW)),
|
| 980 |
+
[IntArg(), Arg()],
|
| 981 |
+
dps=50,
|
| 982 |
+
)
|
| 983 |
+
|
| 984 |
+
@pytest.mark.xfail(run=False, reason="some cases in hyp2f1 not fully accurate")
|
| 985 |
+
def test_chebyu(self):
|
| 986 |
+
assert_mpmath_equal(
|
| 987 |
+
sc.eval_chebyu,
|
| 988 |
+
lambda n, x: time_limited()(
|
| 989 |
+
exception_to_nan(mpmath.chebyu)
|
| 990 |
+
)(n, x, **HYPERKW),
|
| 991 |
+
[Arg(-101, 101), Arg()],
|
| 992 |
+
)
|
| 993 |
+
|
| 994 |
+
def test_chi(self):
|
| 995 |
+
def chi(x):
|
| 996 |
+
return sc.shichi(x)[1]
|
| 997 |
+
assert_mpmath_equal(chi, mpmath.chi, [Arg()])
|
| 998 |
+
# check asymptotic series cross-over
|
| 999 |
+
assert_mpmath_equal(chi, mpmath.chi, [FixedArg([88 - 1e-9, 88, 88 + 1e-9])])
|
| 1000 |
+
|
| 1001 |
+
def test_chi_complex(self):
|
| 1002 |
+
def chi(z):
|
| 1003 |
+
return sc.shichi(z)[1]
|
| 1004 |
+
# chi oscillates as Im[z] -> +- inf, so limit range
|
| 1005 |
+
assert_mpmath_equal(
|
| 1006 |
+
chi,
|
| 1007 |
+
mpmath.chi,
|
| 1008 |
+
[ComplexArg(complex(-np.inf, -1e8), complex(np.inf, 1e8))],
|
| 1009 |
+
rtol=1e-12,
|
| 1010 |
+
)
|
| 1011 |
+
|
| 1012 |
+
def test_ci(self):
|
| 1013 |
+
def ci(x):
|
| 1014 |
+
return sc.sici(x)[1]
|
| 1015 |
+
# oscillating function: limit range
|
| 1016 |
+
assert_mpmath_equal(ci, mpmath.ci, [Arg(-1e8, 1e8)])
|
| 1017 |
+
|
| 1018 |
+
def test_ci_complex(self):
|
| 1019 |
+
def ci(z):
|
| 1020 |
+
return sc.sici(z)[1]
|
| 1021 |
+
# ci oscillates as Re[z] -> +- inf, so limit range
|
| 1022 |
+
assert_mpmath_equal(
|
| 1023 |
+
ci,
|
| 1024 |
+
mpmath.ci,
|
| 1025 |
+
[ComplexArg(complex(-1e8, -np.inf), complex(1e8, np.inf))],
|
| 1026 |
+
rtol=1e-8,
|
| 1027 |
+
)
|
| 1028 |
+
|
| 1029 |
+
def test_cospi(self):
|
| 1030 |
+
eps = np.finfo(float).eps
|
| 1031 |
+
assert_mpmath_equal(_cospi, mpmath.cospi, [Arg()], nan_ok=False, rtol=2*eps)
|
| 1032 |
+
|
| 1033 |
+
def test_cospi_complex(self):
|
| 1034 |
+
assert_mpmath_equal(
|
| 1035 |
+
_cospi,
|
| 1036 |
+
mpmath.cospi,
|
| 1037 |
+
[ComplexArg()],
|
| 1038 |
+
nan_ok=False,
|
| 1039 |
+
rtol=1e-13,
|
| 1040 |
+
)
|
| 1041 |
+
|
| 1042 |
+
def test_digamma(self):
|
| 1043 |
+
assert_mpmath_equal(
|
| 1044 |
+
sc.digamma,
|
| 1045 |
+
exception_to_nan(mpmath.digamma),
|
| 1046 |
+
[Arg()],
|
| 1047 |
+
rtol=1e-12,
|
| 1048 |
+
dps=50,
|
| 1049 |
+
)
|
| 1050 |
+
|
| 1051 |
+
def test_digamma_complex(self):
|
| 1052 |
+
# Test on a cut plane because mpmath will hang. See
|
| 1053 |
+
# test_digamma_negreal for tests on the negative real axis.
|
| 1054 |
+
def param_filter(z):
|
| 1055 |
+
return np.where((z.real < 0) & (np.abs(z.imag) < 1.12), False, True)
|
| 1056 |
+
|
| 1057 |
+
assert_mpmath_equal(
|
| 1058 |
+
sc.digamma,
|
| 1059 |
+
exception_to_nan(mpmath.digamma),
|
| 1060 |
+
[ComplexArg()],
|
| 1061 |
+
rtol=1e-13,
|
| 1062 |
+
dps=40,
|
| 1063 |
+
param_filter=param_filter
|
| 1064 |
+
)
|
| 1065 |
+
|
| 1066 |
+
def test_e1(self):
|
| 1067 |
+
assert_mpmath_equal(
|
| 1068 |
+
sc.exp1,
|
| 1069 |
+
mpmath.e1,
|
| 1070 |
+
[Arg()],
|
| 1071 |
+
rtol=1e-14,
|
| 1072 |
+
)
|
| 1073 |
+
|
| 1074 |
+
def test_e1_complex(self):
|
| 1075 |
+
# E_1 oscillates as Im[z] -> +- inf, so limit range
|
| 1076 |
+
assert_mpmath_equal(
|
| 1077 |
+
sc.exp1,
|
| 1078 |
+
mpmath.e1,
|
| 1079 |
+
[ComplexArg(complex(-np.inf, -1e8), complex(np.inf, 1e8))],
|
| 1080 |
+
rtol=1e-11,
|
| 1081 |
+
)
|
| 1082 |
+
|
| 1083 |
+
# Check cross-over region
|
| 1084 |
+
assert_mpmath_equal(
|
| 1085 |
+
sc.exp1,
|
| 1086 |
+
mpmath.e1,
|
| 1087 |
+
(np.linspace(-50, 50, 171)[:, None]
|
| 1088 |
+
+ np.r_[0, np.logspace(-3, 2, 61), -np.logspace(-3, 2, 11)]*1j).ravel(),
|
| 1089 |
+
rtol=1e-11,
|
| 1090 |
+
)
|
| 1091 |
+
assert_mpmath_equal(
|
| 1092 |
+
sc.exp1,
|
| 1093 |
+
mpmath.e1,
|
| 1094 |
+
(np.linspace(-50, -35, 10000) + 0j),
|
| 1095 |
+
rtol=1e-11,
|
| 1096 |
+
)
|
| 1097 |
+
|
| 1098 |
+
def test_exprel(self):
|
| 1099 |
+
assert_mpmath_equal(
|
| 1100 |
+
sc.exprel,
|
| 1101 |
+
lambda x: mpmath.expm1(x)/x if x != 0 else mpmath.mpf('1.0'),
|
| 1102 |
+
[Arg(a=-np.log(np.finfo(np.float64).max),
|
| 1103 |
+
b=np.log(np.finfo(np.float64).max))],
|
| 1104 |
+
)
|
| 1105 |
+
assert_mpmath_equal(
|
| 1106 |
+
sc.exprel,
|
| 1107 |
+
lambda x: mpmath.expm1(x)/x if x != 0 else mpmath.mpf('1.0'),
|
| 1108 |
+
np.array([1e-12, 1e-24, 0, 1e12, 1e24, np.inf]),
|
| 1109 |
+
rtol=1e-11,
|
| 1110 |
+
)
|
| 1111 |
+
assert_(np.isinf(sc.exprel(np.inf)))
|
| 1112 |
+
assert_(sc.exprel(-np.inf) == 0)
|
| 1113 |
+
|
| 1114 |
+
def test_expm1_complex(self):
|
| 1115 |
+
# Oscillates as a function of Im[z], so limit range to avoid loss of precision
|
| 1116 |
+
assert_mpmath_equal(
|
| 1117 |
+
sc.expm1,
|
| 1118 |
+
mpmath.expm1,
|
| 1119 |
+
[ComplexArg(complex(-np.inf, -1e7), complex(np.inf, 1e7))],
|
| 1120 |
+
)
|
| 1121 |
+
|
| 1122 |
+
def test_log1p_complex(self):
|
| 1123 |
+
assert_mpmath_equal(
|
| 1124 |
+
sc.log1p,
|
| 1125 |
+
lambda x: mpmath.log(x+1),
|
| 1126 |
+
[ComplexArg()],
|
| 1127 |
+
dps=60,
|
| 1128 |
+
)
|
| 1129 |
+
|
| 1130 |
+
def test_log1pmx(self):
|
| 1131 |
+
assert_mpmath_equal(
|
| 1132 |
+
_log1pmx,
|
| 1133 |
+
lambda x: mpmath.log(x + 1) - x,
|
| 1134 |
+
[Arg()],
|
| 1135 |
+
dps=60,
|
| 1136 |
+
rtol=1e-14,
|
| 1137 |
+
)
|
| 1138 |
+
|
| 1139 |
+
def test_ei(self):
|
| 1140 |
+
assert_mpmath_equal(sc.expi, mpmath.ei, [Arg()], rtol=1e-11)
|
| 1141 |
+
|
| 1142 |
+
def test_ei_complex(self):
|
| 1143 |
+
# Ei oscillates as Im[z] -> +- inf, so limit range
|
| 1144 |
+
assert_mpmath_equal(
|
| 1145 |
+
sc.expi,
|
| 1146 |
+
mpmath.ei,
|
| 1147 |
+
[ComplexArg(complex(-np.inf, -1e8), complex(np.inf, 1e8))],
|
| 1148 |
+
rtol=1e-9,
|
| 1149 |
+
)
|
| 1150 |
+
|
| 1151 |
+
def test_ellipe(self):
|
| 1152 |
+
assert_mpmath_equal(sc.ellipe, mpmath.ellipe, [Arg(b=1.0)])
|
| 1153 |
+
|
| 1154 |
+
def test_ellipeinc(self):
|
| 1155 |
+
assert_mpmath_equal(sc.ellipeinc, mpmath.ellipe, [Arg(-1e3, 1e3), Arg(b=1.0)])
|
| 1156 |
+
|
| 1157 |
+
def test_ellipeinc_largephi(self):
|
| 1158 |
+
assert_mpmath_equal(sc.ellipeinc, mpmath.ellipe, [Arg(), Arg()])
|
| 1159 |
+
|
| 1160 |
+
def test_ellipf(self):
|
| 1161 |
+
assert_mpmath_equal(sc.ellipkinc, mpmath.ellipf, [Arg(-1e3, 1e3), Arg()])
|
| 1162 |
+
|
| 1163 |
+
def test_ellipf_largephi(self):
|
| 1164 |
+
assert_mpmath_equal(sc.ellipkinc, mpmath.ellipf, [Arg(), Arg()])
|
| 1165 |
+
|
| 1166 |
+
def test_ellipk(self):
|
| 1167 |
+
assert_mpmath_equal(sc.ellipk, mpmath.ellipk, [Arg(b=1.0)])
|
| 1168 |
+
assert_mpmath_equal(
|
| 1169 |
+
sc.ellipkm1,
|
| 1170 |
+
lambda m: mpmath.ellipk(1 - m),
|
| 1171 |
+
[Arg(a=0.0)],
|
| 1172 |
+
dps=400,
|
| 1173 |
+
)
|
| 1174 |
+
|
| 1175 |
+
def test_ellipkinc(self):
|
| 1176 |
+
def ellipkinc(phi, m):
|
| 1177 |
+
return mpmath.ellippi(0, phi, m)
|
| 1178 |
+
assert_mpmath_equal(
|
| 1179 |
+
sc.ellipkinc,
|
| 1180 |
+
ellipkinc,
|
| 1181 |
+
[Arg(-1e3, 1e3), Arg(b=1.0)],
|
| 1182 |
+
ignore_inf_sign=True,
|
| 1183 |
+
)
|
| 1184 |
+
|
| 1185 |
+
def test_ellipkinc_largephi(self):
|
| 1186 |
+
def ellipkinc(phi, m):
|
| 1187 |
+
return mpmath.ellippi(0, phi, m)
|
| 1188 |
+
assert_mpmath_equal(
|
| 1189 |
+
sc.ellipkinc,
|
| 1190 |
+
ellipkinc,
|
| 1191 |
+
[Arg(), Arg(b=1.0)],
|
| 1192 |
+
ignore_inf_sign=True,
|
| 1193 |
+
)
|
| 1194 |
+
|
| 1195 |
+
def test_ellipfun_sn(self):
|
| 1196 |
+
def sn(u, m):
|
| 1197 |
+
# mpmath doesn't get the zero at u = 0--fix that
|
| 1198 |
+
if u == 0:
|
| 1199 |
+
return 0
|
| 1200 |
+
else:
|
| 1201 |
+
return mpmath.ellipfun("sn", u=u, m=m)
|
| 1202 |
+
|
| 1203 |
+
# Oscillating function --- limit range of first argument; the
|
| 1204 |
+
# loss of precision there is an expected numerical feature
|
| 1205 |
+
# rather than an actual bug
|
| 1206 |
+
assert_mpmath_equal(
|
| 1207 |
+
lambda u, m: sc.ellipj(u, m)[0],
|
| 1208 |
+
sn,
|
| 1209 |
+
[Arg(-1e6, 1e6), Arg(a=0, b=1)],
|
| 1210 |
+
rtol=1e-8,
|
| 1211 |
+
)
|
| 1212 |
+
|
| 1213 |
+
def test_ellipfun_cn(self):
|
| 1214 |
+
# see comment in ellipfun_sn
|
| 1215 |
+
assert_mpmath_equal(
|
| 1216 |
+
lambda u, m: sc.ellipj(u, m)[1],
|
| 1217 |
+
lambda u, m: mpmath.ellipfun("cn", u=u, m=m),
|
| 1218 |
+
[Arg(-1e6, 1e6), Arg(a=0, b=1)],
|
| 1219 |
+
rtol=1e-8,
|
| 1220 |
+
)
|
| 1221 |
+
|
| 1222 |
+
def test_ellipfun_dn(self):
|
| 1223 |
+
# see comment in ellipfun_sn
|
| 1224 |
+
assert_mpmath_equal(
|
| 1225 |
+
lambda u, m: sc.ellipj(u, m)[2],
|
| 1226 |
+
lambda u, m: mpmath.ellipfun("dn", u=u, m=m),
|
| 1227 |
+
[Arg(-1e6, 1e6), Arg(a=0, b=1)],
|
| 1228 |
+
rtol=1e-8,
|
| 1229 |
+
)
|
| 1230 |
+
|
| 1231 |
+
def test_erf(self):
|
| 1232 |
+
assert_mpmath_equal(sc.erf, lambda z: mpmath.erf(z), [Arg()])
|
| 1233 |
+
|
| 1234 |
+
def test_erf_complex(self):
|
| 1235 |
+
assert_mpmath_equal(sc.erf, lambda z: mpmath.erf(z), [ComplexArg()], n=200)
|
| 1236 |
+
|
| 1237 |
+
def test_erfc(self):
|
| 1238 |
+
assert_mpmath_equal(
|
| 1239 |
+
sc.erfc,
|
| 1240 |
+
exception_to_nan(lambda z: mpmath.erfc(z)),
|
| 1241 |
+
[Arg()],
|
| 1242 |
+
rtol=1e-13,
|
| 1243 |
+
)
|
| 1244 |
+
|
| 1245 |
+
def test_erfc_complex(self):
|
| 1246 |
+
assert_mpmath_equal(
|
| 1247 |
+
sc.erfc,
|
| 1248 |
+
exception_to_nan(lambda z: mpmath.erfc(z)),
|
| 1249 |
+
[ComplexArg()],
|
| 1250 |
+
n=200,
|
| 1251 |
+
)
|
| 1252 |
+
|
| 1253 |
+
def test_erfi(self):
|
| 1254 |
+
assert_mpmath_equal(sc.erfi, mpmath.erfi, [Arg()], n=200)
|
| 1255 |
+
|
| 1256 |
+
def test_erfi_complex(self):
|
| 1257 |
+
assert_mpmath_equal(sc.erfi, mpmath.erfi, [ComplexArg()], n=200)
|
| 1258 |
+
|
| 1259 |
+
def test_ndtr(self):
|
| 1260 |
+
assert_mpmath_equal(
|
| 1261 |
+
sc.ndtr,
|
| 1262 |
+
exception_to_nan(lambda z: mpmath.ncdf(z)),
|
| 1263 |
+
[Arg()],
|
| 1264 |
+
n=200,
|
| 1265 |
+
)
|
| 1266 |
+
|
| 1267 |
+
def test_ndtr_complex(self):
|
| 1268 |
+
assert_mpmath_equal(
|
| 1269 |
+
sc.ndtr,
|
| 1270 |
+
lambda z: mpmath.erfc(-z/np.sqrt(2.))/2.,
|
| 1271 |
+
[ComplexArg(a=complex(-10000, -10000), b=complex(10000, 10000))],
|
| 1272 |
+
n=400,
|
| 1273 |
+
)
|
| 1274 |
+
|
| 1275 |
+
def test_log_ndtr(self):
|
| 1276 |
+
assert_mpmath_equal(
|
| 1277 |
+
sc.log_ndtr,
|
| 1278 |
+
exception_to_nan(lambda z: mpmath.log(mpmath.ncdf(z))),
|
| 1279 |
+
[Arg()], n=600, dps=300, rtol=1e-13,
|
| 1280 |
+
)
|
| 1281 |
+
|
| 1282 |
+
def test_log_ndtr_complex(self):
|
| 1283 |
+
assert_mpmath_equal(
|
| 1284 |
+
sc.log_ndtr,
|
| 1285 |
+
exception_to_nan(lambda z: mpmath.log(mpmath.erfc(-z/np.sqrt(2.))/2.)),
|
| 1286 |
+
[ComplexArg(a=complex(-10000, -100), b=complex(10000, 100))],
|
| 1287 |
+
n=200, dps=300,
|
| 1288 |
+
)
|
| 1289 |
+
|
| 1290 |
+
def test_eulernum(self):
|
| 1291 |
+
assert_mpmath_equal(
|
| 1292 |
+
lambda n: sc.euler(n)[-1],
|
| 1293 |
+
mpmath.eulernum,
|
| 1294 |
+
[IntArg(1, 10000)],
|
| 1295 |
+
n=10000,
|
| 1296 |
+
)
|
| 1297 |
+
|
| 1298 |
+
def test_expint(self):
|
| 1299 |
+
assert_mpmath_equal(
|
| 1300 |
+
sc.expn,
|
| 1301 |
+
mpmath.expint,
|
| 1302 |
+
[IntArg(0, 200), Arg(0, np.inf)],
|
| 1303 |
+
rtol=1e-13,
|
| 1304 |
+
dps=160,
|
| 1305 |
+
)
|
| 1306 |
+
|
| 1307 |
+
def test_fresnels(self):
|
| 1308 |
+
def fresnels(x):
|
| 1309 |
+
return sc.fresnel(x)[0]
|
| 1310 |
+
assert_mpmath_equal(fresnels, mpmath.fresnels, [Arg()])
|
| 1311 |
+
|
| 1312 |
+
def test_fresnelc(self):
|
| 1313 |
+
def fresnelc(x):
|
| 1314 |
+
return sc.fresnel(x)[1]
|
| 1315 |
+
assert_mpmath_equal(fresnelc, mpmath.fresnelc, [Arg()])
|
| 1316 |
+
|
| 1317 |
+
def test_gamma(self):
|
| 1318 |
+
assert_mpmath_equal(sc.gamma, exception_to_nan(mpmath.gamma), [Arg()])
|
| 1319 |
+
|
| 1320 |
+
def test_gamma_complex(self):
|
| 1321 |
+
assert_mpmath_equal(
|
| 1322 |
+
sc.gamma,
|
| 1323 |
+
exception_to_nan(mpmath.gamma),
|
| 1324 |
+
[ComplexArg()],
|
| 1325 |
+
rtol=5e-13,
|
| 1326 |
+
)
|
| 1327 |
+
|
| 1328 |
+
def test_gammainc(self):
|
| 1329 |
+
# Larger arguments are tested in test_data.py:test_local
|
| 1330 |
+
assert_mpmath_equal(
|
| 1331 |
+
sc.gammainc,
|
| 1332 |
+
lambda z, b: mpmath.gammainc(z, b=b, regularized=True),
|
| 1333 |
+
[Arg(0, 1e4, inclusive_a=False), Arg(0, 1e4)],
|
| 1334 |
+
nan_ok=False,
|
| 1335 |
+
rtol=1e-11,
|
| 1336 |
+
)
|
| 1337 |
+
|
| 1338 |
+
def test_gammaincc(self):
|
| 1339 |
+
# Larger arguments are tested in test_data.py:test_local
|
| 1340 |
+
assert_mpmath_equal(
|
| 1341 |
+
sc.gammaincc,
|
| 1342 |
+
lambda z, a: mpmath.gammainc(z, a=a, regularized=True),
|
| 1343 |
+
[Arg(0, 1e4, inclusive_a=False), Arg(0, 1e4)],
|
| 1344 |
+
nan_ok=False,
|
| 1345 |
+
rtol=1e-11,
|
| 1346 |
+
)
|
| 1347 |
+
|
| 1348 |
+
def test_gammaln(self):
|
| 1349 |
+
# The real part of loggamma is log(|gamma(z)|).
|
| 1350 |
+
def f(z):
|
| 1351 |
+
return mpmath.loggamma(z).real
|
| 1352 |
+
|
| 1353 |
+
assert_mpmath_equal(sc.gammaln, exception_to_nan(f), [Arg()])
|
| 1354 |
+
|
| 1355 |
+
@pytest.mark.xfail(run=False)
|
| 1356 |
+
def test_gegenbauer(self):
|
| 1357 |
+
assert_mpmath_equal(
|
| 1358 |
+
sc.eval_gegenbauer,
|
| 1359 |
+
exception_to_nan(mpmath.gegenbauer),
|
| 1360 |
+
[Arg(-1e3, 1e3), Arg(), Arg()],
|
| 1361 |
+
)
|
| 1362 |
+
|
| 1363 |
+
def test_gegenbauer_int(self):
|
| 1364 |
+
# Redefine functions to deal with numerical + mpmath issues
|
| 1365 |
+
def gegenbauer(n, a, x):
|
| 1366 |
+
# Avoid overflow at large `a` (mpmath would need an even larger
|
| 1367 |
+
# dps to handle this correctly, so just skip this region)
|
| 1368 |
+
if abs(a) > 1e100:
|
| 1369 |
+
return np.nan
|
| 1370 |
+
|
| 1371 |
+
# Deal with n=0, n=1 correctly; mpmath 0.17 doesn't do these
|
| 1372 |
+
# always correctly
|
| 1373 |
+
if n == 0:
|
| 1374 |
+
r = 1.0
|
| 1375 |
+
elif n == 1:
|
| 1376 |
+
r = 2*a*x
|
| 1377 |
+
else:
|
| 1378 |
+
r = mpmath.gegenbauer(n, a, x)
|
| 1379 |
+
|
| 1380 |
+
# Mpmath 0.17 gives wrong results (spurious zero) in some cases, so
|
| 1381 |
+
# compute the value by perturbing the result
|
| 1382 |
+
if float(r) == 0 and a < -1 and float(a) == int(float(a)):
|
| 1383 |
+
r = mpmath.gegenbauer(n, a + mpmath.mpf('1e-50'), x)
|
| 1384 |
+
if abs(r) < mpmath.mpf('1e-50'):
|
| 1385 |
+
r = mpmath.mpf('0.0')
|
| 1386 |
+
|
| 1387 |
+
# Differing overflow thresholds in scipy vs. mpmath
|
| 1388 |
+
if abs(r) > 1e270:
|
| 1389 |
+
return np.inf
|
| 1390 |
+
return r
|
| 1391 |
+
|
| 1392 |
+
def sc_gegenbauer(n, a, x):
|
| 1393 |
+
r = sc.eval_gegenbauer(int(n), a, x)
|
| 1394 |
+
# Differing overflow thresholds in scipy vs. mpmath
|
| 1395 |
+
if abs(r) > 1e270:
|
| 1396 |
+
return np.inf
|
| 1397 |
+
return r
|
| 1398 |
+
assert_mpmath_equal(
|
| 1399 |
+
sc_gegenbauer,
|
| 1400 |
+
exception_to_nan(gegenbauer),
|
| 1401 |
+
[IntArg(0, 100), Arg(-1e9, 1e9), Arg()],
|
| 1402 |
+
n=40000, dps=100, ignore_inf_sign=True, rtol=1e-6,
|
| 1403 |
+
)
|
| 1404 |
+
|
| 1405 |
+
# Check the small-x expansion
|
| 1406 |
+
assert_mpmath_equal(
|
| 1407 |
+
sc_gegenbauer,
|
| 1408 |
+
exception_to_nan(gegenbauer),
|
| 1409 |
+
[IntArg(0, 100), Arg(), FixedArg(np.logspace(-30, -4, 30))],
|
| 1410 |
+
dps=100, ignore_inf_sign=True,
|
| 1411 |
+
)
|
| 1412 |
+
|
| 1413 |
+
@pytest.mark.xfail(run=False)
|
| 1414 |
+
def test_gegenbauer_complex(self):
|
| 1415 |
+
assert_mpmath_equal(
|
| 1416 |
+
lambda n, a, x: sc.eval_gegenbauer(int(n), a.real, x),
|
| 1417 |
+
exception_to_nan(mpmath.gegenbauer),
|
| 1418 |
+
[IntArg(0, 100), Arg(), ComplexArg()],
|
| 1419 |
+
)
|
| 1420 |
+
|
| 1421 |
+
@nonfunctional_tooslow
|
| 1422 |
+
def test_gegenbauer_complex_general(self):
|
| 1423 |
+
assert_mpmath_equal(
|
| 1424 |
+
lambda n, a, x: sc.eval_gegenbauer(n.real, a.real, x),
|
| 1425 |
+
exception_to_nan(mpmath.gegenbauer),
|
| 1426 |
+
[Arg(-1e3, 1e3), Arg(), ComplexArg()],
|
| 1427 |
+
)
|
| 1428 |
+
|
| 1429 |
+
def test_hankel1(self):
|
| 1430 |
+
assert_mpmath_equal(
|
| 1431 |
+
sc.hankel1,
|
| 1432 |
+
exception_to_nan(lambda v, x: mpmath.hankel1(v, x, **HYPERKW)),
|
| 1433 |
+
[Arg(-1e20, 1e20), Arg()],
|
| 1434 |
+
)
|
| 1435 |
+
|
| 1436 |
+
def test_hankel2(self):
|
| 1437 |
+
assert_mpmath_equal(
|
| 1438 |
+
sc.hankel2,
|
| 1439 |
+
exception_to_nan(lambda v, x: mpmath.hankel2(v, x, **HYPERKW)),
|
| 1440 |
+
[Arg(-1e20, 1e20), Arg()],
|
| 1441 |
+
)
|
| 1442 |
+
|
| 1443 |
+
@pytest.mark.xfail(run=False, reason="issues at intermediately large orders")
|
| 1444 |
+
def test_hermite(self):
|
| 1445 |
+
assert_mpmath_equal(
|
| 1446 |
+
lambda n, x: sc.eval_hermite(int(n), x),
|
| 1447 |
+
exception_to_nan(mpmath.hermite),
|
| 1448 |
+
[IntArg(0, 10000), Arg()],
|
| 1449 |
+
)
|
| 1450 |
+
|
| 1451 |
+
# hurwitz: same as zeta
|
| 1452 |
+
|
| 1453 |
+
def test_hyp0f1(self):
|
| 1454 |
+
# mpmath reports no convergence unless maxterms is large enough
|
| 1455 |
+
KW = dict(maxprec=400, maxterms=1500)
|
| 1456 |
+
# n=500 (non-xslow default) fails for one bad point
|
| 1457 |
+
assert_mpmath_equal(
|
| 1458 |
+
sc.hyp0f1,
|
| 1459 |
+
lambda a, x: mpmath.hyp0f1(a, x, **KW),
|
| 1460 |
+
[Arg(-1e7, 1e7), Arg(0, 1e5)],
|
| 1461 |
+
n=5000,
|
| 1462 |
+
)
|
| 1463 |
+
# NB: The range of the second parameter ("z") is limited from below
|
| 1464 |
+
# because of an overflow in the intermediate calculations. The way
|
| 1465 |
+
# for fix it is to implement an asymptotic expansion for Bessel J
|
| 1466 |
+
# (similar to what is implemented for Bessel I here).
|
| 1467 |
+
|
| 1468 |
+
def test_hyp0f1_complex(self):
|
| 1469 |
+
assert_mpmath_equal(
|
| 1470 |
+
lambda a, z: sc.hyp0f1(a.real, z),
|
| 1471 |
+
exception_to_nan(lambda a, x: mpmath.hyp0f1(a, x, **HYPERKW)),
|
| 1472 |
+
[Arg(-10, 10), ComplexArg(complex(-120, -120), complex(120, 120))],
|
| 1473 |
+
)
|
| 1474 |
+
# NB: The range of the first parameter ("v") are limited by an overflow
|
| 1475 |
+
# in the intermediate calculations. Can be fixed by implementing an
|
| 1476 |
+
# asymptotic expansion for Bessel functions for large order.
|
| 1477 |
+
|
| 1478 |
+
def test_hyp1f1(self):
|
| 1479 |
+
def mpmath_hyp1f1(a, b, x):
|
| 1480 |
+
try:
|
| 1481 |
+
return mpmath.hyp1f1(a, b, x)
|
| 1482 |
+
except ZeroDivisionError:
|
| 1483 |
+
return np.inf
|
| 1484 |
+
|
| 1485 |
+
assert_mpmath_equal(
|
| 1486 |
+
sc.hyp1f1,
|
| 1487 |
+
mpmath_hyp1f1,
|
| 1488 |
+
[Arg(-50, 50), Arg(1, 50, inclusive_a=False), Arg(-50, 50)],
|
| 1489 |
+
n=500,
|
| 1490 |
+
nan_ok=False,
|
| 1491 |
+
)
|
| 1492 |
+
|
| 1493 |
+
@pytest.mark.xfail(run=False)
|
| 1494 |
+
def test_hyp1f1_complex(self):
|
| 1495 |
+
assert_mpmath_equal(
|
| 1496 |
+
inf_to_nan(lambda a, b, x: sc.hyp1f1(a.real, b.real, x)),
|
| 1497 |
+
exception_to_nan(lambda a, b, x: mpmath.hyp1f1(a, b, x, **HYPERKW)),
|
| 1498 |
+
[Arg(-1e3, 1e3), Arg(-1e3, 1e3), ComplexArg()],
|
| 1499 |
+
n=2000,
|
| 1500 |
+
)
|
| 1501 |
+
|
| 1502 |
+
@nonfunctional_tooslow
|
| 1503 |
+
def test_hyp2f1_complex(self):
|
| 1504 |
+
# SciPy's hyp2f1 seems to have performance and accuracy problems
|
| 1505 |
+
assert_mpmath_equal(
|
| 1506 |
+
lambda a, b, c, x: sc.hyp2f1(a.real, b.real, c.real, x),
|
| 1507 |
+
exception_to_nan(lambda a, b, c, x: mpmath.hyp2f1(a, b, c, x, **HYPERKW)),
|
| 1508 |
+
[Arg(-1e2, 1e2), Arg(-1e2, 1e2), Arg(-1e2, 1e2), ComplexArg()],
|
| 1509 |
+
n=10,
|
| 1510 |
+
)
|
| 1511 |
+
|
| 1512 |
+
@pytest.mark.xfail(run=False)
|
| 1513 |
+
def test_hyperu(self):
|
| 1514 |
+
assert_mpmath_equal(
|
| 1515 |
+
sc.hyperu,
|
| 1516 |
+
exception_to_nan(lambda a, b, x: mpmath.hyperu(a, b, x, **HYPERKW)),
|
| 1517 |
+
[Arg(), Arg(), Arg()],
|
| 1518 |
+
)
|
| 1519 |
+
|
| 1520 |
+
@pytest.mark.xfail_on_32bit("mpmath issue gh-342: "
|
| 1521 |
+
"unsupported operand mpz, long for pow")
|
| 1522 |
+
def test_igam_fac(self):
|
| 1523 |
+
def mp_igam_fac(a, x):
|
| 1524 |
+
return mpmath.power(x, a)*mpmath.exp(-x)/mpmath.gamma(a)
|
| 1525 |
+
|
| 1526 |
+
assert_mpmath_equal(
|
| 1527 |
+
_igam_fac,
|
| 1528 |
+
mp_igam_fac,
|
| 1529 |
+
[Arg(0, 1e14, inclusive_a=False), Arg(0, 1e14)],
|
| 1530 |
+
rtol=1e-10,
|
| 1531 |
+
)
|
| 1532 |
+
|
| 1533 |
+
def test_j0(self):
|
| 1534 |
+
# The Bessel function at large arguments is j0(x) ~ cos(x + phi)/sqrt(x)
|
| 1535 |
+
# and at large arguments the phase of the cosine loses precision.
|
| 1536 |
+
#
|
| 1537 |
+
# This is numerically expected behavior, so we compare only up to
|
| 1538 |
+
# 1e8 = 1e15 * 1e-7
|
| 1539 |
+
assert_mpmath_equal(sc.j0, mpmath.j0, [Arg(-1e3, 1e3)])
|
| 1540 |
+
assert_mpmath_equal(sc.j0, mpmath.j0, [Arg(-1e8, 1e8)], rtol=1e-5)
|
| 1541 |
+
|
| 1542 |
+
def test_j1(self):
|
| 1543 |
+
# See comment in test_j0
|
| 1544 |
+
assert_mpmath_equal(sc.j1, mpmath.j1, [Arg(-1e3, 1e3)])
|
| 1545 |
+
assert_mpmath_equal(sc.j1, mpmath.j1, [Arg(-1e8, 1e8)], rtol=1e-5)
|
| 1546 |
+
|
| 1547 |
+
@pytest.mark.xfail(run=False)
|
| 1548 |
+
def test_jacobi(self):
|
| 1549 |
+
assert_mpmath_equal(
|
| 1550 |
+
sc.eval_jacobi,
|
| 1551 |
+
exception_to_nan(lambda a, b, c, x: mpmath.jacobi(a, b, c, x, **HYPERKW)),
|
| 1552 |
+
[Arg(), Arg(), Arg(), Arg()],
|
| 1553 |
+
)
|
| 1554 |
+
assert_mpmath_equal(
|
| 1555 |
+
lambda n, b, c, x: sc.eval_jacobi(int(n), b, c, x),
|
| 1556 |
+
exception_to_nan(lambda a, b, c, x: mpmath.jacobi(a, b, c, x, **HYPERKW)),
|
| 1557 |
+
[IntArg(), Arg(), Arg(), Arg()],
|
| 1558 |
+
)
|
| 1559 |
+
|
| 1560 |
+
def test_jacobi_int(self):
|
| 1561 |
+
# Redefine functions to deal with numerical + mpmath issues
|
| 1562 |
+
def jacobi(n, a, b, x):
|
| 1563 |
+
# Mpmath does not handle n=0 case always correctly
|
| 1564 |
+
if n == 0:
|
| 1565 |
+
return 1.0
|
| 1566 |
+
return mpmath.jacobi(n, a, b, x)
|
| 1567 |
+
assert_mpmath_equal(
|
| 1568 |
+
lambda n, a, b, x: sc.eval_jacobi(int(n), a, b, x),
|
| 1569 |
+
lambda n, a, b, x: exception_to_nan(jacobi)(n, a, b, x, **HYPERKW),
|
| 1570 |
+
[IntArg(), Arg(), Arg(), Arg()],
|
| 1571 |
+
n=20000,
|
| 1572 |
+
dps=50,
|
| 1573 |
+
)
|
| 1574 |
+
|
| 1575 |
+
def test_kei(self):
|
| 1576 |
+
def kei(x):
|
| 1577 |
+
if x == 0:
|
| 1578 |
+
# work around mpmath issue at x=0
|
| 1579 |
+
return -pi/4
|
| 1580 |
+
return exception_to_nan(mpmath.kei)(0, x, **HYPERKW)
|
| 1581 |
+
assert_mpmath_equal(sc.kei, kei, [Arg(-1e30, 1e30)], n=1000)
|
| 1582 |
+
|
| 1583 |
+
def test_ker(self):
|
| 1584 |
+
assert_mpmath_equal(
|
| 1585 |
+
sc.ker,
|
| 1586 |
+
exception_to_nan(lambda x: mpmath.ker(0, x, **HYPERKW)),
|
| 1587 |
+
[Arg(-1e30, 1e30)],
|
| 1588 |
+
n=1000,
|
| 1589 |
+
)
|
| 1590 |
+
|
| 1591 |
+
@nonfunctional_tooslow
|
| 1592 |
+
def test_laguerre(self):
|
| 1593 |
+
assert_mpmath_equal(
|
| 1594 |
+
trace_args(sc.eval_laguerre),
|
| 1595 |
+
lambda n, x: exception_to_nan(mpmath.laguerre)(n, x, **HYPERKW),
|
| 1596 |
+
[Arg(), Arg()],
|
| 1597 |
+
)
|
| 1598 |
+
|
| 1599 |
+
def test_laguerre_int(self):
|
| 1600 |
+
assert_mpmath_equal(
|
| 1601 |
+
lambda n, x: sc.eval_laguerre(int(n), x),
|
| 1602 |
+
lambda n, x: exception_to_nan(mpmath.laguerre)(n, x, **HYPERKW),
|
| 1603 |
+
[IntArg(), Arg()],
|
| 1604 |
+
n=20000,
|
| 1605 |
+
)
|
| 1606 |
+
|
| 1607 |
+
@pytest.mark.xfail_on_32bit("see gh-3551 for bad points")
|
| 1608 |
+
def test_lambertw_real(self):
|
| 1609 |
+
assert_mpmath_equal(
|
| 1610 |
+
lambda x, k: sc.lambertw(x, int(k.real)),
|
| 1611 |
+
lambda x, k: mpmath.lambertw(x, int(k.real)),
|
| 1612 |
+
[ComplexArg(-np.inf, np.inf), IntArg(0, 10)],
|
| 1613 |
+
rtol=1e-13, nan_ok=False,
|
| 1614 |
+
)
|
| 1615 |
+
|
| 1616 |
+
def test_lanczos_sum_expg_scaled(self):
|
| 1617 |
+
maxgamma = 171.624376956302725
|
| 1618 |
+
e = np.exp(1)
|
| 1619 |
+
g = 6.024680040776729583740234375
|
| 1620 |
+
|
| 1621 |
+
def gamma(x):
|
| 1622 |
+
with np.errstate(over='ignore'):
|
| 1623 |
+
fac = ((x + g - 0.5)/e)**(x - 0.5)
|
| 1624 |
+
if fac != np.inf:
|
| 1625 |
+
res = fac*_lanczos_sum_expg_scaled(x)
|
| 1626 |
+
else:
|
| 1627 |
+
fac = ((x + g - 0.5)/e)**(0.5*(x - 0.5))
|
| 1628 |
+
res = fac*_lanczos_sum_expg_scaled(x)
|
| 1629 |
+
res *= fac
|
| 1630 |
+
return res
|
| 1631 |
+
|
| 1632 |
+
assert_mpmath_equal(
|
| 1633 |
+
gamma,
|
| 1634 |
+
mpmath.gamma,
|
| 1635 |
+
[Arg(0, maxgamma, inclusive_a=False)],
|
| 1636 |
+
rtol=1e-13,
|
| 1637 |
+
)
|
| 1638 |
+
|
| 1639 |
+
@nonfunctional_tooslow
|
| 1640 |
+
def test_legendre(self):
|
| 1641 |
+
assert_mpmath_equal(sc.eval_legendre, mpmath.legendre, [Arg(), Arg()])
|
| 1642 |
+
|
| 1643 |
+
def test_legendre_int(self):
|
| 1644 |
+
assert_mpmath_equal(
|
| 1645 |
+
lambda n, x: sc.eval_legendre(int(n), x),
|
| 1646 |
+
lambda n, x: exception_to_nan(mpmath.legendre)(n, x, **HYPERKW),
|
| 1647 |
+
[IntArg(), Arg()],
|
| 1648 |
+
n=20000,
|
| 1649 |
+
)
|
| 1650 |
+
|
| 1651 |
+
# Check the small-x expansion
|
| 1652 |
+
assert_mpmath_equal(
|
| 1653 |
+
lambda n, x: sc.eval_legendre(int(n), x),
|
| 1654 |
+
lambda n, x: exception_to_nan(mpmath.legendre)(n, x, **HYPERKW),
|
| 1655 |
+
[IntArg(), FixedArg(np.logspace(-30, -4, 20))],
|
| 1656 |
+
)
|
| 1657 |
+
|
| 1658 |
+
def test_legenp(self):
|
| 1659 |
+
def lpnm(n, m, z):
|
| 1660 |
+
try:
|
| 1661 |
+
v = sc.lpmn(m, n, z)[0][-1,-1]
|
| 1662 |
+
except ValueError:
|
| 1663 |
+
return np.nan
|
| 1664 |
+
if abs(v) > 1e306:
|
| 1665 |
+
# harmonize overflow to inf
|
| 1666 |
+
v = np.inf * np.sign(v.real)
|
| 1667 |
+
return v
|
| 1668 |
+
|
| 1669 |
+
def lpnm_2(n, m, z):
|
| 1670 |
+
v = sc.lpmv(m, n, z)
|
| 1671 |
+
if abs(v) > 1e306:
|
| 1672 |
+
# harmonize overflow to inf
|
| 1673 |
+
v = np.inf * np.sign(v.real)
|
| 1674 |
+
return v
|
| 1675 |
+
|
| 1676 |
+
def legenp(n, m, z):
|
| 1677 |
+
if (z == 1 or z == -1) and int(n) == n:
|
| 1678 |
+
# Special case (mpmath may give inf, we take the limit by
|
| 1679 |
+
# continuity)
|
| 1680 |
+
if m == 0:
|
| 1681 |
+
if n < 0:
|
| 1682 |
+
n = -n - 1
|
| 1683 |
+
return mpmath.power(mpmath.sign(z), n)
|
| 1684 |
+
else:
|
| 1685 |
+
return 0
|
| 1686 |
+
|
| 1687 |
+
if abs(z) < 1e-15:
|
| 1688 |
+
# mpmath has bad performance here
|
| 1689 |
+
return np.nan
|
| 1690 |
+
|
| 1691 |
+
typ = 2 if abs(z) < 1 else 3
|
| 1692 |
+
v = exception_to_nan(mpmath.legenp)(n, m, z, type=typ)
|
| 1693 |
+
|
| 1694 |
+
if abs(v) > 1e306:
|
| 1695 |
+
# harmonize overflow to inf
|
| 1696 |
+
v = mpmath.inf * mpmath.sign(v.real)
|
| 1697 |
+
|
| 1698 |
+
return v
|
| 1699 |
+
|
| 1700 |
+
assert_mpmath_equal(lpnm, legenp, [IntArg(-100, 100), IntArg(-100, 100), Arg()])
|
| 1701 |
+
|
| 1702 |
+
assert_mpmath_equal(
|
| 1703 |
+
lpnm_2,
|
| 1704 |
+
legenp,
|
| 1705 |
+
[IntArg(-100, 100), Arg(-100, 100), Arg(-1, 1)],
|
| 1706 |
+
atol=1e-10,
|
| 1707 |
+
)
|
| 1708 |
+
|
| 1709 |
+
def test_legenp_complex_2(self):
|
| 1710 |
+
def clpnm(n, m, z):
|
| 1711 |
+
try:
|
| 1712 |
+
return sc.clpmn(m.real, n.real, z, type=2)[0][-1,-1]
|
| 1713 |
+
except ValueError:
|
| 1714 |
+
return np.nan
|
| 1715 |
+
|
| 1716 |
+
def legenp(n, m, z):
|
| 1717 |
+
if abs(z) < 1e-15:
|
| 1718 |
+
# mpmath has bad performance here
|
| 1719 |
+
return np.nan
|
| 1720 |
+
return exception_to_nan(mpmath.legenp)(int(n.real), int(m.real), z, type=2)
|
| 1721 |
+
|
| 1722 |
+
# mpmath is quite slow here
|
| 1723 |
+
x = np.array([-2, -0.99, -0.5, 0, 1e-5, 0.5, 0.99, 20, 2e3])
|
| 1724 |
+
y = np.array([-1e3, -0.5, 0.5, 1.3])
|
| 1725 |
+
z = (x[:,None] + 1j*y[None,:]).ravel()
|
| 1726 |
+
|
| 1727 |
+
assert_mpmath_equal(
|
| 1728 |
+
clpnm,
|
| 1729 |
+
legenp,
|
| 1730 |
+
[FixedArg([-2, -1, 0, 1, 2, 10]),
|
| 1731 |
+
FixedArg([-2, -1, 0, 1, 2, 10]),
|
| 1732 |
+
FixedArg(z)],
|
| 1733 |
+
rtol=1e-6,
|
| 1734 |
+
n=500,
|
| 1735 |
+
)
|
| 1736 |
+
|
| 1737 |
+
def test_legenp_complex_3(self):
|
| 1738 |
+
def clpnm(n, m, z):
|
| 1739 |
+
try:
|
| 1740 |
+
return sc.clpmn(m.real, n.real, z, type=3)[0][-1,-1]
|
| 1741 |
+
except ValueError:
|
| 1742 |
+
return np.nan
|
| 1743 |
+
|
| 1744 |
+
def legenp(n, m, z):
|
| 1745 |
+
if abs(z) < 1e-15:
|
| 1746 |
+
# mpmath has bad performance here
|
| 1747 |
+
return np.nan
|
| 1748 |
+
return exception_to_nan(mpmath.legenp)(int(n.real), int(m.real), z, type=3)
|
| 1749 |
+
|
| 1750 |
+
# mpmath is quite slow here
|
| 1751 |
+
x = np.array([-2, -0.99, -0.5, 0, 1e-5, 0.5, 0.99, 20, 2e3])
|
| 1752 |
+
y = np.array([-1e3, -0.5, 0.5, 1.3])
|
| 1753 |
+
z = (x[:,None] + 1j*y[None,:]).ravel()
|
| 1754 |
+
|
| 1755 |
+
assert_mpmath_equal(
|
| 1756 |
+
clpnm,
|
| 1757 |
+
legenp,
|
| 1758 |
+
[FixedArg([-2, -1, 0, 1, 2, 10]),
|
| 1759 |
+
FixedArg([-2, -1, 0, 1, 2, 10]),
|
| 1760 |
+
FixedArg(z)],
|
| 1761 |
+
rtol=1e-6,
|
| 1762 |
+
n=500,
|
| 1763 |
+
)
|
| 1764 |
+
|
| 1765 |
+
@pytest.mark.xfail(run=False, reason="apparently picks wrong function at |z| > 1")
|
| 1766 |
+
def test_legenq(self):
|
| 1767 |
+
def lqnm(n, m, z):
|
| 1768 |
+
return sc.lqmn(m, n, z)[0][-1,-1]
|
| 1769 |
+
|
| 1770 |
+
def legenq(n, m, z):
|
| 1771 |
+
if abs(z) < 1e-15:
|
| 1772 |
+
# mpmath has bad performance here
|
| 1773 |
+
return np.nan
|
| 1774 |
+
return exception_to_nan(mpmath.legenq)(n, m, z, type=2)
|
| 1775 |
+
|
| 1776 |
+
assert_mpmath_equal(
|
| 1777 |
+
lqnm,
|
| 1778 |
+
legenq,
|
| 1779 |
+
[IntArg(0, 100), IntArg(0, 100), Arg()],
|
| 1780 |
+
)
|
| 1781 |
+
|
| 1782 |
+
@nonfunctional_tooslow
|
| 1783 |
+
def test_legenq_complex(self):
|
| 1784 |
+
def lqnm(n, m, z):
|
| 1785 |
+
return sc.lqmn(int(m.real), int(n.real), z)[0][-1,-1]
|
| 1786 |
+
|
| 1787 |
+
def legenq(n, m, z):
|
| 1788 |
+
if abs(z) < 1e-15:
|
| 1789 |
+
# mpmath has bad performance here
|
| 1790 |
+
return np.nan
|
| 1791 |
+
return exception_to_nan(mpmath.legenq)(int(n.real), int(m.real), z, type=2)
|
| 1792 |
+
|
| 1793 |
+
assert_mpmath_equal(
|
| 1794 |
+
lqnm,
|
| 1795 |
+
legenq,
|
| 1796 |
+
[IntArg(0, 100), IntArg(0, 100), ComplexArg()],
|
| 1797 |
+
n=100,
|
| 1798 |
+
)
|
| 1799 |
+
|
| 1800 |
+
def test_lgam1p(self):
|
| 1801 |
+
def param_filter(x):
|
| 1802 |
+
# Filter the poles
|
| 1803 |
+
return np.where((np.floor(x) == x) & (x <= 0), False, True)
|
| 1804 |
+
|
| 1805 |
+
def mp_lgam1p(z):
|
| 1806 |
+
# The real part of loggamma is log(|gamma(z)|)
|
| 1807 |
+
return mpmath.loggamma(1 + z).real
|
| 1808 |
+
|
| 1809 |
+
assert_mpmath_equal(
|
| 1810 |
+
_lgam1p,
|
| 1811 |
+
mp_lgam1p,
|
| 1812 |
+
[Arg()],
|
| 1813 |
+
rtol=1e-13,
|
| 1814 |
+
dps=100,
|
| 1815 |
+
param_filter=param_filter,
|
| 1816 |
+
)
|
| 1817 |
+
|
| 1818 |
+
def test_loggamma(self):
|
| 1819 |
+
def mpmath_loggamma(z):
|
| 1820 |
+
try:
|
| 1821 |
+
res = mpmath.loggamma(z)
|
| 1822 |
+
except ValueError:
|
| 1823 |
+
res = complex(np.nan, np.nan)
|
| 1824 |
+
return res
|
| 1825 |
+
|
| 1826 |
+
assert_mpmath_equal(
|
| 1827 |
+
sc.loggamma,
|
| 1828 |
+
mpmath_loggamma,
|
| 1829 |
+
[ComplexArg()],
|
| 1830 |
+
nan_ok=False,
|
| 1831 |
+
distinguish_nan_and_inf=False,
|
| 1832 |
+
rtol=5e-14,
|
| 1833 |
+
)
|
| 1834 |
+
|
| 1835 |
+
@pytest.mark.xfail(run=False)
|
| 1836 |
+
def test_pcfd(self):
|
| 1837 |
+
def pcfd(v, x):
|
| 1838 |
+
return sc.pbdv(v, x)[0]
|
| 1839 |
+
assert_mpmath_equal(
|
| 1840 |
+
pcfd,
|
| 1841 |
+
exception_to_nan(lambda v, x: mpmath.pcfd(v, x, **HYPERKW)),
|
| 1842 |
+
[Arg(), Arg()],
|
| 1843 |
+
)
|
| 1844 |
+
|
| 1845 |
+
@pytest.mark.xfail(run=False, reason="it's not the same as the mpmath function --- "
|
| 1846 |
+
"maybe different definition?")
|
| 1847 |
+
def test_pcfv(self):
|
| 1848 |
+
def pcfv(v, x):
|
| 1849 |
+
return sc.pbvv(v, x)[0]
|
| 1850 |
+
assert_mpmath_equal(
|
| 1851 |
+
pcfv,
|
| 1852 |
+
lambda v, x: time_limited()(exception_to_nan(mpmath.pcfv))(v, x, **HYPERKW),
|
| 1853 |
+
[Arg(), Arg()],
|
| 1854 |
+
n=1000,
|
| 1855 |
+
)
|
| 1856 |
+
|
| 1857 |
+
def test_pcfw(self):
|
| 1858 |
+
def pcfw(a, x):
|
| 1859 |
+
return sc.pbwa(a, x)[0]
|
| 1860 |
+
|
| 1861 |
+
def dpcfw(a, x):
|
| 1862 |
+
return sc.pbwa(a, x)[1]
|
| 1863 |
+
|
| 1864 |
+
def mpmath_dpcfw(a, x):
|
| 1865 |
+
return mpmath.diff(mpmath.pcfw, (a, x), (0, 1))
|
| 1866 |
+
|
| 1867 |
+
# The Zhang and Jin implementation only uses Taylor series and
|
| 1868 |
+
# is thus accurate in only a very small range.
|
| 1869 |
+
assert_mpmath_equal(
|
| 1870 |
+
pcfw,
|
| 1871 |
+
mpmath.pcfw,
|
| 1872 |
+
[Arg(-5, 5), Arg(-5, 5)],
|
| 1873 |
+
rtol=2e-8,
|
| 1874 |
+
n=100,
|
| 1875 |
+
)
|
| 1876 |
+
|
| 1877 |
+
assert_mpmath_equal(
|
| 1878 |
+
dpcfw,
|
| 1879 |
+
mpmath_dpcfw,
|
| 1880 |
+
[Arg(-5, 5), Arg(-5, 5)],
|
| 1881 |
+
rtol=2e-9,
|
| 1882 |
+
n=100,
|
| 1883 |
+
)
|
| 1884 |
+
|
| 1885 |
+
@pytest.mark.xfail(run=False,
|
| 1886 |
+
reason="issues at large arguments (atol OK, rtol not) "
|
| 1887 |
+
"and <eps-close to z=0")
|
| 1888 |
+
def test_polygamma(self):
|
| 1889 |
+
assert_mpmath_equal(
|
| 1890 |
+
sc.polygamma,
|
| 1891 |
+
time_limited()(exception_to_nan(mpmath.polygamma)),
|
| 1892 |
+
[IntArg(0, 1000), Arg()],
|
| 1893 |
+
)
|
| 1894 |
+
|
| 1895 |
+
def test_rgamma(self):
|
| 1896 |
+
assert_mpmath_equal(
|
| 1897 |
+
sc.rgamma,
|
| 1898 |
+
mpmath.rgamma,
|
| 1899 |
+
[Arg(-8000, np.inf)],
|
| 1900 |
+
n=5000,
|
| 1901 |
+
nan_ok=False,
|
| 1902 |
+
ignore_inf_sign=True,
|
| 1903 |
+
)
|
| 1904 |
+
|
| 1905 |
+
def test_rgamma_complex(self):
|
| 1906 |
+
assert_mpmath_equal(
|
| 1907 |
+
sc.rgamma,
|
| 1908 |
+
exception_to_nan(mpmath.rgamma),
|
| 1909 |
+
[ComplexArg()],
|
| 1910 |
+
rtol=5e-13,
|
| 1911 |
+
)
|
| 1912 |
+
|
| 1913 |
+
@pytest.mark.xfail(reason=("see gh-3551 for bad points on 32 bit "
|
| 1914 |
+
"systems and gh-8095 for another bad "
|
| 1915 |
+
"point"))
|
| 1916 |
+
def test_rf(self):
|
| 1917 |
+
if _pep440.parse(mpmath.__version__) >= _pep440.Version("1.0.0"):
|
| 1918 |
+
# no workarounds needed
|
| 1919 |
+
mppoch = mpmath.rf
|
| 1920 |
+
else:
|
| 1921 |
+
def mppoch(a, m):
|
| 1922 |
+
# deal with cases where the result in double precision
|
| 1923 |
+
# hits exactly a non-positive integer, but the
|
| 1924 |
+
# corresponding extended-precision mpf floats don't
|
| 1925 |
+
if float(a + m) == int(a + m) and float(a + m) <= 0:
|
| 1926 |
+
a = mpmath.mpf(a)
|
| 1927 |
+
m = int(a + m) - a
|
| 1928 |
+
return mpmath.rf(a, m)
|
| 1929 |
+
|
| 1930 |
+
assert_mpmath_equal(sc.poch, mppoch, [Arg(), Arg()], dps=400)
|
| 1931 |
+
|
| 1932 |
+
def test_sinpi(self):
|
| 1933 |
+
eps = np.finfo(float).eps
|
| 1934 |
+
assert_mpmath_equal(
|
| 1935 |
+
_sinpi,
|
| 1936 |
+
mpmath.sinpi,
|
| 1937 |
+
[Arg()],
|
| 1938 |
+
nan_ok=False,
|
| 1939 |
+
rtol=2*eps,
|
| 1940 |
+
)
|
| 1941 |
+
|
| 1942 |
+
def test_sinpi_complex(self):
|
| 1943 |
+
assert_mpmath_equal(
|
| 1944 |
+
_sinpi,
|
| 1945 |
+
mpmath.sinpi,
|
| 1946 |
+
[ComplexArg()],
|
| 1947 |
+
nan_ok=False,
|
| 1948 |
+
rtol=2e-14,
|
| 1949 |
+
)
|
| 1950 |
+
|
| 1951 |
+
def test_shi(self):
|
| 1952 |
+
def shi(x):
|
| 1953 |
+
return sc.shichi(x)[0]
|
| 1954 |
+
assert_mpmath_equal(shi, mpmath.shi, [Arg()])
|
| 1955 |
+
# check asymptotic series cross-over
|
| 1956 |
+
assert_mpmath_equal(shi, mpmath.shi, [FixedArg([88 - 1e-9, 88, 88 + 1e-9])])
|
| 1957 |
+
|
| 1958 |
+
def test_shi_complex(self):
|
| 1959 |
+
def shi(z):
|
| 1960 |
+
return sc.shichi(z)[0]
|
| 1961 |
+
# shi oscillates as Im[z] -> +- inf, so limit range
|
| 1962 |
+
assert_mpmath_equal(
|
| 1963 |
+
shi,
|
| 1964 |
+
mpmath.shi,
|
| 1965 |
+
[ComplexArg(complex(-np.inf, -1e8), complex(np.inf, 1e8))],
|
| 1966 |
+
rtol=1e-12,
|
| 1967 |
+
)
|
| 1968 |
+
|
| 1969 |
+
def test_si(self):
|
| 1970 |
+
def si(x):
|
| 1971 |
+
return sc.sici(x)[0]
|
| 1972 |
+
assert_mpmath_equal(si, mpmath.si, [Arg()])
|
| 1973 |
+
|
| 1974 |
+
def test_si_complex(self):
|
| 1975 |
+
def si(z):
|
| 1976 |
+
return sc.sici(z)[0]
|
| 1977 |
+
# si oscillates as Re[z] -> +- inf, so limit range
|
| 1978 |
+
assert_mpmath_equal(
|
| 1979 |
+
si,
|
| 1980 |
+
mpmath.si,
|
| 1981 |
+
[ComplexArg(complex(-1e8, -np.inf), complex(1e8, np.inf))],
|
| 1982 |
+
rtol=1e-12,
|
| 1983 |
+
)
|
| 1984 |
+
|
| 1985 |
+
def test_spence(self):
|
| 1986 |
+
# mpmath uses a different convention for the dilogarithm
|
| 1987 |
+
def dilog(x):
|
| 1988 |
+
return mpmath.polylog(2, 1 - x)
|
| 1989 |
+
# Spence has a branch cut on the negative real axis
|
| 1990 |
+
assert_mpmath_equal(
|
| 1991 |
+
sc.spence,
|
| 1992 |
+
exception_to_nan(dilog),
|
| 1993 |
+
[Arg(0, np.inf)],
|
| 1994 |
+
rtol=1e-14,
|
| 1995 |
+
)
|
| 1996 |
+
|
| 1997 |
+
def test_spence_complex(self):
|
| 1998 |
+
def dilog(z):
|
| 1999 |
+
return mpmath.polylog(2, 1 - z)
|
| 2000 |
+
assert_mpmath_equal(
|
| 2001 |
+
sc.spence,
|
| 2002 |
+
exception_to_nan(dilog),
|
| 2003 |
+
[ComplexArg()],
|
| 2004 |
+
rtol=1e-14,
|
| 2005 |
+
)
|
| 2006 |
+
|
| 2007 |
+
def test_spherharm(self):
|
| 2008 |
+
def spherharm(l, m, theta, phi):
|
| 2009 |
+
if m > l:
|
| 2010 |
+
return np.nan
|
| 2011 |
+
return sc.sph_harm(m, l, phi, theta)
|
| 2012 |
+
assert_mpmath_equal(
|
| 2013 |
+
spherharm,
|
| 2014 |
+
mpmath.spherharm,
|
| 2015 |
+
[IntArg(0, 100), IntArg(0, 100), Arg(a=0, b=pi), Arg(a=0, b=2*pi)],
|
| 2016 |
+
atol=1e-8,
|
| 2017 |
+
n=6000,
|
| 2018 |
+
dps=150,
|
| 2019 |
+
)
|
| 2020 |
+
|
| 2021 |
+
def test_struveh(self):
|
| 2022 |
+
assert_mpmath_equal(
|
| 2023 |
+
sc.struve,
|
| 2024 |
+
exception_to_nan(mpmath.struveh),
|
| 2025 |
+
[Arg(-1e4, 1e4), Arg(0, 1e4)],
|
| 2026 |
+
rtol=5e-10,
|
| 2027 |
+
)
|
| 2028 |
+
|
| 2029 |
+
def test_struvel(self):
|
| 2030 |
+
def mp_struvel(v, z):
|
| 2031 |
+
if v < 0 and z < -v and abs(v) > 1000:
|
| 2032 |
+
# larger DPS needed for correct results
|
| 2033 |
+
old_dps = mpmath.mp.dps
|
| 2034 |
+
try:
|
| 2035 |
+
mpmath.mp.dps = 300
|
| 2036 |
+
return mpmath.struvel(v, z)
|
| 2037 |
+
finally:
|
| 2038 |
+
mpmath.mp.dps = old_dps
|
| 2039 |
+
return mpmath.struvel(v, z)
|
| 2040 |
+
|
| 2041 |
+
assert_mpmath_equal(
|
| 2042 |
+
sc.modstruve,
|
| 2043 |
+
exception_to_nan(mp_struvel),
|
| 2044 |
+
[Arg(-1e4, 1e4), Arg(0, 1e4)],
|
| 2045 |
+
rtol=5e-10,
|
| 2046 |
+
ignore_inf_sign=True,
|
| 2047 |
+
)
|
| 2048 |
+
|
| 2049 |
+
def test_wrightomega_real(self):
|
| 2050 |
+
def mpmath_wrightomega_real(x):
|
| 2051 |
+
return mpmath.lambertw(mpmath.exp(x), mpmath.mpf('-0.5'))
|
| 2052 |
+
|
| 2053 |
+
# For x < -1000 the Wright Omega function is just 0 to double
|
| 2054 |
+
# precision, and for x > 1e21 it is just x to double
|
| 2055 |
+
# precision.
|
| 2056 |
+
assert_mpmath_equal(
|
| 2057 |
+
sc.wrightomega,
|
| 2058 |
+
mpmath_wrightomega_real,
|
| 2059 |
+
[Arg(-1000, 1e21)],
|
| 2060 |
+
rtol=5e-15,
|
| 2061 |
+
atol=0,
|
| 2062 |
+
nan_ok=False,
|
| 2063 |
+
)
|
| 2064 |
+
|
| 2065 |
+
def test_wrightomega(self):
|
| 2066 |
+
assert_mpmath_equal(
|
| 2067 |
+
sc.wrightomega,
|
| 2068 |
+
lambda z: _mpmath_wrightomega(z, 25),
|
| 2069 |
+
[ComplexArg()],
|
| 2070 |
+
rtol=1e-14,
|
| 2071 |
+
nan_ok=False,
|
| 2072 |
+
)
|
| 2073 |
+
|
| 2074 |
+
def test_hurwitz_zeta(self):
|
| 2075 |
+
assert_mpmath_equal(
|
| 2076 |
+
sc.zeta,
|
| 2077 |
+
exception_to_nan(mpmath.zeta),
|
| 2078 |
+
[Arg(a=1, b=1e10, inclusive_a=False), Arg(a=0, inclusive_a=False)],
|
| 2079 |
+
)
|
| 2080 |
+
|
| 2081 |
+
def test_riemann_zeta(self):
|
| 2082 |
+
assert_mpmath_equal(
|
| 2083 |
+
sc.zeta,
|
| 2084 |
+
lambda x: mpmath.zeta(x) if x != 1 else mpmath.inf,
|
| 2085 |
+
[Arg(-100, 100)],
|
| 2086 |
+
nan_ok=False,
|
| 2087 |
+
rtol=5e-13,
|
| 2088 |
+
)
|
| 2089 |
+
|
| 2090 |
+
def test_zetac(self):
|
| 2091 |
+
assert_mpmath_equal(
|
| 2092 |
+
sc.zetac,
|
| 2093 |
+
lambda x: mpmath.zeta(x) - 1 if x != 1 else mpmath.inf,
|
| 2094 |
+
[Arg(-100, 100)],
|
| 2095 |
+
nan_ok=False,
|
| 2096 |
+
dps=45,
|
| 2097 |
+
rtol=5e-13,
|
| 2098 |
+
)
|
| 2099 |
+
|
| 2100 |
+
def test_boxcox(self):
|
| 2101 |
+
|
| 2102 |
+
def mp_boxcox(x, lmbda):
|
| 2103 |
+
x = mpmath.mp.mpf(x)
|
| 2104 |
+
lmbda = mpmath.mp.mpf(lmbda)
|
| 2105 |
+
if lmbda == 0:
|
| 2106 |
+
return mpmath.mp.log(x)
|
| 2107 |
+
else:
|
| 2108 |
+
return mpmath.mp.powm1(x, lmbda) / lmbda
|
| 2109 |
+
|
| 2110 |
+
assert_mpmath_equal(
|
| 2111 |
+
sc.boxcox,
|
| 2112 |
+
exception_to_nan(mp_boxcox),
|
| 2113 |
+
[Arg(a=0, inclusive_a=False), Arg()],
|
| 2114 |
+
n=200,
|
| 2115 |
+
dps=60,
|
| 2116 |
+
rtol=1e-13,
|
| 2117 |
+
)
|
| 2118 |
+
|
| 2119 |
+
def test_boxcox1p(self):
|
| 2120 |
+
|
| 2121 |
+
def mp_boxcox1p(x, lmbda):
|
| 2122 |
+
x = mpmath.mp.mpf(x)
|
| 2123 |
+
lmbda = mpmath.mp.mpf(lmbda)
|
| 2124 |
+
one = mpmath.mp.mpf(1)
|
| 2125 |
+
if lmbda == 0:
|
| 2126 |
+
return mpmath.mp.log(one + x)
|
| 2127 |
+
else:
|
| 2128 |
+
return mpmath.mp.powm1(one + x, lmbda) / lmbda
|
| 2129 |
+
|
| 2130 |
+
assert_mpmath_equal(
|
| 2131 |
+
sc.boxcox1p,
|
| 2132 |
+
exception_to_nan(mp_boxcox1p),
|
| 2133 |
+
[Arg(a=-1, inclusive_a=False), Arg()],
|
| 2134 |
+
n=200,
|
| 2135 |
+
dps=60,
|
| 2136 |
+
rtol=1e-13,
|
| 2137 |
+
)
|
| 2138 |
+
|
| 2139 |
+
def test_spherical_jn(self):
|
| 2140 |
+
def mp_spherical_jn(n, z):
|
| 2141 |
+
arg = mpmath.mpmathify(z)
|
| 2142 |
+
out = (mpmath.besselj(n + mpmath.mpf(1)/2, arg) /
|
| 2143 |
+
mpmath.sqrt(2*arg/mpmath.pi))
|
| 2144 |
+
if arg.imag == 0:
|
| 2145 |
+
return out.real
|
| 2146 |
+
else:
|
| 2147 |
+
return out
|
| 2148 |
+
|
| 2149 |
+
assert_mpmath_equal(
|
| 2150 |
+
lambda n, z: sc.spherical_jn(int(n), z),
|
| 2151 |
+
exception_to_nan(mp_spherical_jn),
|
| 2152 |
+
[IntArg(0, 200), Arg(-1e8, 1e8)],
|
| 2153 |
+
dps=300,
|
| 2154 |
+
)
|
| 2155 |
+
|
| 2156 |
+
def test_spherical_jn_complex(self):
|
| 2157 |
+
def mp_spherical_jn(n, z):
|
| 2158 |
+
arg = mpmath.mpmathify(z)
|
| 2159 |
+
out = (mpmath.besselj(n + mpmath.mpf(1)/2, arg) /
|
| 2160 |
+
mpmath.sqrt(2*arg/mpmath.pi))
|
| 2161 |
+
if arg.imag == 0:
|
| 2162 |
+
return out.real
|
| 2163 |
+
else:
|
| 2164 |
+
return out
|
| 2165 |
+
|
| 2166 |
+
assert_mpmath_equal(
|
| 2167 |
+
lambda n, z: sc.spherical_jn(int(n.real), z),
|
| 2168 |
+
exception_to_nan(mp_spherical_jn),
|
| 2169 |
+
[IntArg(0, 200), ComplexArg()]
|
| 2170 |
+
)
|
| 2171 |
+
|
| 2172 |
+
def test_spherical_yn(self):
|
| 2173 |
+
def mp_spherical_yn(n, z):
|
| 2174 |
+
arg = mpmath.mpmathify(z)
|
| 2175 |
+
out = (mpmath.bessely(n + mpmath.mpf(1)/2, arg) /
|
| 2176 |
+
mpmath.sqrt(2*arg/mpmath.pi))
|
| 2177 |
+
if arg.imag == 0:
|
| 2178 |
+
return out.real
|
| 2179 |
+
else:
|
| 2180 |
+
return out
|
| 2181 |
+
|
| 2182 |
+
assert_mpmath_equal(
|
| 2183 |
+
lambda n, z: sc.spherical_yn(int(n), z),
|
| 2184 |
+
exception_to_nan(mp_spherical_yn),
|
| 2185 |
+
[IntArg(0, 200), Arg(-1e10, 1e10)],
|
| 2186 |
+
dps=100,
|
| 2187 |
+
)
|
| 2188 |
+
|
| 2189 |
+
def test_spherical_yn_complex(self):
|
| 2190 |
+
def mp_spherical_yn(n, z):
|
| 2191 |
+
arg = mpmath.mpmathify(z)
|
| 2192 |
+
out = (mpmath.bessely(n + mpmath.mpf(1)/2, arg) /
|
| 2193 |
+
mpmath.sqrt(2*arg/mpmath.pi))
|
| 2194 |
+
if arg.imag == 0:
|
| 2195 |
+
return out.real
|
| 2196 |
+
else:
|
| 2197 |
+
return out
|
| 2198 |
+
|
| 2199 |
+
assert_mpmath_equal(
|
| 2200 |
+
lambda n, z: sc.spherical_yn(int(n.real), z),
|
| 2201 |
+
exception_to_nan(mp_spherical_yn),
|
| 2202 |
+
[IntArg(0, 200), ComplexArg()],
|
| 2203 |
+
)
|
| 2204 |
+
|
| 2205 |
+
def test_spherical_in(self):
|
| 2206 |
+
def mp_spherical_in(n, z):
|
| 2207 |
+
arg = mpmath.mpmathify(z)
|
| 2208 |
+
out = (mpmath.besseli(n + mpmath.mpf(1)/2, arg) /
|
| 2209 |
+
mpmath.sqrt(2*arg/mpmath.pi))
|
| 2210 |
+
if arg.imag == 0:
|
| 2211 |
+
return out.real
|
| 2212 |
+
else:
|
| 2213 |
+
return out
|
| 2214 |
+
|
| 2215 |
+
assert_mpmath_equal(
|
| 2216 |
+
lambda n, z: sc.spherical_in(int(n), z),
|
| 2217 |
+
exception_to_nan(mp_spherical_in),
|
| 2218 |
+
[IntArg(0, 200), Arg()],
|
| 2219 |
+
dps=200,
|
| 2220 |
+
atol=10**(-278),
|
| 2221 |
+
)
|
| 2222 |
+
|
| 2223 |
+
def test_spherical_in_complex(self):
|
| 2224 |
+
def mp_spherical_in(n, z):
|
| 2225 |
+
arg = mpmath.mpmathify(z)
|
| 2226 |
+
out = (mpmath.besseli(n + mpmath.mpf(1)/2, arg) /
|
| 2227 |
+
mpmath.sqrt(2*arg/mpmath.pi))
|
| 2228 |
+
if arg.imag == 0:
|
| 2229 |
+
return out.real
|
| 2230 |
+
else:
|
| 2231 |
+
return out
|
| 2232 |
+
|
| 2233 |
+
assert_mpmath_equal(
|
| 2234 |
+
lambda n, z: sc.spherical_in(int(n.real), z),
|
| 2235 |
+
exception_to_nan(mp_spherical_in),
|
| 2236 |
+
[IntArg(0, 200), ComplexArg()],
|
| 2237 |
+
)
|
| 2238 |
+
|
| 2239 |
+
def test_spherical_kn(self):
|
| 2240 |
+
def mp_spherical_kn(n, z):
|
| 2241 |
+
out = (mpmath.besselk(n + mpmath.mpf(1)/2, z) *
|
| 2242 |
+
mpmath.sqrt(mpmath.pi/(2*mpmath.mpmathify(z))))
|
| 2243 |
+
if mpmath.mpmathify(z).imag == 0:
|
| 2244 |
+
return out.real
|
| 2245 |
+
else:
|
| 2246 |
+
return out
|
| 2247 |
+
|
| 2248 |
+
assert_mpmath_equal(
|
| 2249 |
+
lambda n, z: sc.spherical_kn(int(n), z),
|
| 2250 |
+
exception_to_nan(mp_spherical_kn),
|
| 2251 |
+
[IntArg(0, 150), Arg()],
|
| 2252 |
+
dps=100,
|
| 2253 |
+
)
|
| 2254 |
+
|
| 2255 |
+
@pytest.mark.xfail(run=False,
|
| 2256 |
+
reason="Accuracy issues near z = -1 inherited from kv.")
|
| 2257 |
+
def test_spherical_kn_complex(self):
|
| 2258 |
+
def mp_spherical_kn(n, z):
|
| 2259 |
+
arg = mpmath.mpmathify(z)
|
| 2260 |
+
out = (mpmath.besselk(n + mpmath.mpf(1)/2, arg) /
|
| 2261 |
+
mpmath.sqrt(2*arg/mpmath.pi))
|
| 2262 |
+
if arg.imag == 0:
|
| 2263 |
+
return out.real
|
| 2264 |
+
else:
|
| 2265 |
+
return out
|
| 2266 |
+
|
| 2267 |
+
assert_mpmath_equal(
|
| 2268 |
+
lambda n, z: sc.spherical_kn(int(n.real), z),
|
| 2269 |
+
exception_to_nan(mp_spherical_kn),
|
| 2270 |
+
[IntArg(0, 200), ComplexArg()],
|
| 2271 |
+
dps=200,
|
| 2272 |
+
)
|
openflamingo/lib/python3.10/site-packages/scipy/special/tests/test_nan_inputs.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Test how the ufuncs in special handle nan inputs.
|
| 2 |
+
|
| 3 |
+
"""
|
| 4 |
+
from typing import Callable
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
from numpy.testing import assert_array_equal, assert_, suppress_warnings
|
| 8 |
+
import pytest
|
| 9 |
+
import scipy.special as sc
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
KNOWNFAILURES: dict[str, Callable] = {}
|
| 13 |
+
|
| 14 |
+
POSTPROCESSING: dict[str, Callable] = {}
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def _get_ufuncs():
|
| 18 |
+
ufuncs = []
|
| 19 |
+
ufunc_names = []
|
| 20 |
+
for name in sorted(sc.__dict__):
|
| 21 |
+
obj = sc.__dict__[name]
|
| 22 |
+
if not isinstance(obj, np.ufunc):
|
| 23 |
+
continue
|
| 24 |
+
msg = KNOWNFAILURES.get(obj)
|
| 25 |
+
if msg is None:
|
| 26 |
+
ufuncs.append(obj)
|
| 27 |
+
ufunc_names.append(name)
|
| 28 |
+
else:
|
| 29 |
+
fail = pytest.mark.xfail(run=False, reason=msg)
|
| 30 |
+
ufuncs.append(pytest.param(obj, marks=fail))
|
| 31 |
+
ufunc_names.append(name)
|
| 32 |
+
return ufuncs, ufunc_names
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
UFUNCS, UFUNC_NAMES = _get_ufuncs()
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
@pytest.mark.parametrize("func", UFUNCS, ids=UFUNC_NAMES)
|
| 39 |
+
def test_nan_inputs(func):
|
| 40 |
+
args = (np.nan,)*func.nin
|
| 41 |
+
with suppress_warnings() as sup:
|
| 42 |
+
# Ignore warnings about unsafe casts from legacy wrappers
|
| 43 |
+
sup.filter(RuntimeWarning,
|
| 44 |
+
"floating point number truncated to an integer")
|
| 45 |
+
try:
|
| 46 |
+
with suppress_warnings() as sup:
|
| 47 |
+
sup.filter(DeprecationWarning)
|
| 48 |
+
res = func(*args)
|
| 49 |
+
except TypeError:
|
| 50 |
+
# One of the arguments doesn't take real inputs
|
| 51 |
+
return
|
| 52 |
+
if func in POSTPROCESSING:
|
| 53 |
+
res = POSTPROCESSING[func](*res)
|
| 54 |
+
|
| 55 |
+
msg = f"got {res} instead of nan"
|
| 56 |
+
assert_array_equal(np.isnan(res), True, err_msg=msg)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def test_legacy_cast():
|
| 60 |
+
with suppress_warnings() as sup:
|
| 61 |
+
sup.filter(RuntimeWarning,
|
| 62 |
+
"floating point number truncated to an integer")
|
| 63 |
+
res = sc.bdtrc(np.nan, 1, 0.5)
|
| 64 |
+
assert_(np.isnan(res))
|