#!/usr/bin/env python # encoding: utf-8 """ Author(s): Matthew Loper See LICENCE.txt for licensing and contact information. """ __all__ = ['inv', 'svd', 'det', 'slogdet', 'pinv', 'lstsq', 'norm'] import numpy as np import scipy.sparse as sp from .ch import Ch, depends_on from .ch_ops import NanDivide from .ch_ops import asarray as ch_asarray from .ch_ops import sqrt as ch_sqrt from .ch_ops import sum as ch_sum from .reordering import concatenate as ch_concatenate from .ch_random import randn as ch_random_randn from .utils import row, col try: asarray = ch_asarray import inspect exec(''.join(inspect.getsourcelines(np.linalg.tensorinv)[0])) __all__.append('tensorinv') except: pass def norm(x, ord=None, axis=None): if ord is not None or axis is not None: raise NotImplementedError("'ord' and 'axis' should be None for now.") return ch_sqrt(ch_sum(x**2)) # This version works but derivatives are too slow b/c of nested loop in Svd implementation. # def lstsq(a, b): # u, s, v = Svd(a) # x = (v.T / s).dot(u.T.dot(b)) # residuals = NotImplementedError # ch_sum((a.dot(x) - b)**2, axis=0) # rank = NotImplementedError # s = NotImplementedError # return x, residuals, rank, s def lstsq(a, b, rcond=-1): if rcond != -1: raise Exception('non-default rcond not yet implemented') x = Ch(lambda a, b : pinv(a).dot(b)) x.a = a x.b = b residuals = ch_sum( (x.a.dot(x) - x.b) **2 , axis=0) rank = NotImplementedError s = NotImplementedError return x, residuals, rank, s def Svd(x, full_matrices=0, compute_uv=1): if full_matrices != 0: raise Exception('full_matrices must be 0') if compute_uv != 1: raise Exception('compute_uv must be 1') need_transpose = x.shape[0] < x.shape[1] if need_transpose: x = x.T svd_d = SvdD(x=x) svd_v = SvdV(x=x, svd_d=svd_d) svd_u = SvdU(x=x, svd_d=svd_d, svd_v=svd_v) if need_transpose: return svd_v, svd_d, svd_u.T else: return svd_u, svd_d, svd_v.T class Pinv(Ch): dterms = 'mtx' def on_changed(self, which): mtx = self.mtx if mtx.shape[1] > mtx.shape[0]: result = mtx.T.dot(Inv(mtx.dot(mtx.T))) else: result = Inv(mtx.T.dot(mtx)).dot(mtx.T) self._result = result def compute_r(self): return self._result.r def compute_dr_wrt(self, wrt): if wrt is self.mtx: return self._result.dr_wrt(self.mtx) # Couldn't make the SVD version of pinv work yet... # # class Pinv(Ch): # dterms = 'mtx' # # def on_changed(self, which): # u, s, v = Svd(self.mtx) # result = (v.T * (NanDivide(1.,row(s)))).dot(u.T) # self.add_dterm('_result', result) # # def compute_r(self): # return self._result.r # # def compute_dr_wrt(self, wrt): # if wrt is self._result: # return 1 class LogAbsDet(Ch): dterms = 'x' def on_changed(self, which): self.sign, self.slogdet = np.linalg.slogdet(self.x.r) def compute_r(self): return self.slogdet def compute_dr_wrt(self, wrt): if wrt is self.x: return row(np.linalg.inv(self.x.r).T) class SignLogAbsDet(Ch): dterms = 'logabsdet', def compute_r(self): _ = self.logabsdet.r return self.logabsdet.sign def compute_dr_wrt(self, wrt): return None class Det(Ch): dterms = 'x' def compute_r(self): return np.linalg.det(self.x.r) def compute_dr_wrt(self, wrt): if wrt is self.x: return row(self.r * np.linalg.inv(self.x.r).T) class Inv(Ch): dterms = 'a' def compute_r(self): return np.linalg.inv(self.a.r) def compute_dr_wrt(self, wrt): if wrt is not self.a: return None Ainv = self.r if Ainv.ndim <= 2: return -np.kron(Ainv, Ainv.T) else: Ainv = np.reshape(Ainv, (-1, Ainv.shape[-2], Ainv.shape[-1])) AinvT = np.rollaxis(Ainv, -1, -2) AinvT = np.reshape(AinvT, (-1, AinvT.shape[-2], AinvT.shape[-1])) result = np.dstack([-np.kron(Ainv[i], AinvT[i]).T for i in range(Ainv.shape[0])]).T result = sp.block_diag(result) return result class SvdD(Ch): dterms = 'x' @depends_on('x') def UDV(self): result = np.linalg.svd(self.x.r, full_matrices=False) result = [result[0], result[1], result[2].T] result[1][np.abs(result[1]) < np.spacing(1)] = 0. return result def compute_r(self): return self.UDV[1] def compute_dr_wrt(self, wrt): if wrt is not self.x: return u, d, v = self.UDV shp = self.x.r.shape u = u[:shp[0], :shp[1]] v = v[:shp[1], :d.size] result = np.einsum('ik,jk->kij', u, v) result = result.reshape((result.shape[0], -1)) return result class SvdV(Ch): terms = 'svd_d' dterms = 'x' def compute_r(self): return self.svd_d.UDV[2] def compute_dr_wrt(self, wrt): if wrt is not self.x: return U,_D,V = self.svd_d.UDV shp = self.svd_d.x.r.shape mxsz = max(shp[0], shp[1]) #mnsz = min(shp[0], shp[1]) D = np.zeros(mxsz) D[:_D.size] = _D omega = np.zeros((shp[0], shp[1], shp[1], shp[1])) M = shp[0] N = shp[1] assert(M >= N) for i in range(shp[0]): for j in range(shp[1]): for k in range(N): for l in range(k+1, N): mtx = np.array([ [D[l],D[k]], [D[k],D[l]]]) rhs = np.array([U[i,k]*V[j,l], -U[i,l]*V[j,k]]) result = np.linalg.solve(mtx, rhs) omega[i,j,k,l] = result[1] omega[i,j,l,k] = -result[1] #print 'v size is %s' % (str(V.shape),) #print 'v omega size is %s' % (str(omega.shape),) assert(V.shape[1] == omega.shape[2]) return np.einsum('ak,ijkl->alij', -V, omega).reshape((self.r.size, wrt.r.size)) class SvdU(Ch): dterms = 'x' terms = 'svd_d', 'svd_v' def compute_r(self): return self.svd_d.UDV[0] def compute_dr_wrt(self, wrt): if wrt is self.x: # return ( # self.svd_d.x.dot(self.svd_v) # / # self.svd_d.reshape((1,-1)) # ).dr_wrt(self.svd_d.x) return ( NanDivide( self.svd_d.x.dot(self.svd_v), self.svd_d.reshape((1,-1))) ).dr_wrt(self.svd_d.x) inv = Inv svd = Svd det = Det pinv = Pinv def slogdet(*args): n = len(args) if n == 1: r2 = LogAbsDet(x=args[0]) r1 = SignLogAbsDet(r2) return r1, r2 else: r2 = [LogAbsDet(x=arg) for arg in args] r1 = [SignLogAbsDet(r) for r in r2] r2 = ch_concatenate(r2) return r1, r2 def main(): tmp = ch_random_randn(100).reshape((10,10)) print('chumpy version: ' + str(slogdet(tmp)[1].r)) print('old version:' + str(np.linalg.slogdet(tmp.r)[1])) eps = 1e-10 diff = np.random.rand(100) * eps diff_reshaped = diff.reshape((10,10)) print(np.linalg.slogdet(tmp.r+diff_reshaped)[1] - np.linalg.slogdet(tmp.r)[1]) print(slogdet(tmp)[1].dr_wrt(tmp).dot(diff)) print(np.linalg.slogdet(tmp.r)[0]) print(slogdet(tmp)[0]) if __name__ == '__main__': main()