import numpy import cupy from cupy import _core from cupy._math import sumprod from cupy._math import ufunc sin = ufunc.create_math_ufunc( 'sin', 1, 'cupy_sin', '''Elementwise sine function. .. seealso:: :data:`numpy.sin` ''') cos = ufunc.create_math_ufunc( 'cos', 1, 'cupy_cos', '''Elementwise cosine function. .. seealso:: :data:`numpy.cos` ''') tan = ufunc.create_math_ufunc( 'tan', 1, 'cupy_tan', '''Elementwise tangent function. .. seealso:: :data:`numpy.tan` ''') arcsin = ufunc.create_math_ufunc( 'asin', 1, 'cupy_arcsin', '''Elementwise inverse-sine function (a.k.a. arcsine function). .. seealso:: :data:`numpy.arcsin` ''') arccos = ufunc.create_math_ufunc( 'acos', 1, 'cupy_arccos', '''Elementwise inverse-cosine function (a.k.a. arccosine function). .. seealso:: :data:`numpy.arccos` ''') arctan = ufunc.create_math_ufunc( 'atan', 1, 'cupy_arctan', '''Elementwise inverse-tangent function (a.k.a. arctangent function). .. seealso:: :data:`numpy.arctan` ''') hypot = ufunc.create_math_ufunc( 'hypot', 2, 'cupy_hypot', '''Computes the hypoteneous of orthogonal vectors of given length. This is equivalent to ``sqrt(x1 **2 + x2 ** 2)``, while this function is more efficient. .. seealso:: :data:`numpy.hypot` ''') arctan2 = ufunc.create_math_ufunc( 'atan2', 2, 'cupy_arctan2', '''Elementwise inverse-tangent of the ratio of two arrays. .. seealso:: :data:`numpy.arctan2` ''') deg2rad = _core.create_ufunc( 'cupy_deg2rad', ('e->e', 'f->f', 'd->d'), 'out0 = in0 * (out0_type)(M_PI / 180)', doc='''Converts angles from degrees to radians elementwise. .. seealso:: :data:`numpy.deg2rad`, :data:`numpy.radians` ''') rad2deg = _core.create_ufunc( 'cupy_rad2deg', ('e->e', 'f->f', 'd->d'), 'out0 = in0 * (out0_type)(180 / M_PI)', doc='''Converts angles from radians to degrees elementwise. .. seealso:: :data:`numpy.rad2deg`, :data:`numpy.degrees` ''') def unwrap(p, discont=None, axis=-1, *, period=2*numpy.pi): r"""Unwrap by taking the complement of large deltas w.r.t. the period. This unwraps a signal `p` by changing elements which have an absolute difference from their predecessor of more than ``max(discont, period/2)`` to their `period`-complementary values. For the default case where `period` is :math:`2\pi` and is ``discont`` is :math:`\pi`, this unwraps a radian phase `p` such that adjacent differences are never greater than :math:`\pi` by adding :math:`2k\pi` for some integer :math:`k`. Args: p (cupy.ndarray): Input array. discont (float): Maximum discontinuity between values, default is ``period/2``. Values below ``period/2`` are treated as if they were ``period/2``. To have an effect different from the default, ``discont`` should be larger than ``period/2``. axis (int): Axis along which unwrap will operate, default is the last axis. period: float, optional Size of the range over which the input wraps. By default, it is :math:`2\pi`. Returns: cupy.ndarray: The result array. .. seealso:: :func:`numpy.unwrap` """ p = cupy.asarray(p) nd = p.ndim dd = sumprod.diff(p, axis=axis) if discont is None: discont = period/2 slice1 = [slice(None, None)]*nd # full slices slice1[axis] = slice(1, None) slice1 = tuple(slice1) dtype = numpy.result_type(dd.dtype, period) if numpy.issubdtype(dtype, numpy.integer): interval_high, rem = divmod(period, 2) boundary_ambiguous = rem == 0 else: interval_high = period / 2 boundary_ambiguous = True interval_low = -interval_high ddmod = cupy.mod(dd - interval_low, period) + interval_low if boundary_ambiguous: cupy.copyto(ddmod, interval_high, where=( ddmod == interval_low) & (dd > 0)) ph_correct = ddmod - dd cupy.copyto(ph_correct, 0, where=abs(dd) < discont) up = cupy.array(p, copy=True, dtype=dtype) up[slice1] = p[slice1] + cupy.cumsum(ph_correct, axis=axis) return up degrees = rad2deg radians = deg2rad