import numpy import cupy from cupy import _core _blackman_kernel = _core.ElementwiseKernel( "float32 alpha", "float64 out", """ out = 0.42 - 0.5 * cos(i * alpha) + 0.08 * cos(2 * alpha * i); """, name="cupy_blackman") _bartlett_kernel = _core.ElementwiseKernel( "float32 alpha", "T arr", """ if (i < alpha) arr = i / alpha; else arr = 2.0 - i / alpha; """, name="cupy_bartlett") def bartlett(M): """Returns the Bartlett window. The Bartlett window is defined as .. math:: w(n) = \\frac{2}{M-1} \\left( \\frac{M-1}{2} - \\left|n - \\frac{M-1}{2}\\right| \\right) Args: M (int): Number of points in the output window. If zero or less, an empty array is returned. Returns: ~cupy.ndarray: Output ndarray. .. seealso:: :func:`numpy.bartlett` """ if M == 1: return cupy.ones(1, dtype=cupy.float64) if M <= 0: return cupy.array([]) alpha = (M - 1) / 2.0 out = cupy.empty(M, dtype=cupy.float64) return _bartlett_kernel(alpha, out) def blackman(M): """Returns the Blackman window. The Blackman window is defined as .. math:: w(n) = 0.42 - 0.5 \\cos\\left(\\frac{2\\pi{n}}{M-1}\\right) + 0.08 \\cos\\left(\\frac{4\\pi{n}}{M-1}\\right) \\qquad 0 \\leq n \\leq M-1 Args: M (:class:`~int`): Number of points in the output window. If zero or less, an empty array is returned. Returns: ~cupy.ndarray: Output ndarray. .. seealso:: :func:`numpy.blackman` """ if M == 1: return cupy.ones(1, dtype=cupy.float64) if M <= 0: return cupy.array([]) alpha = numpy.pi * 2 / (M - 1) out = cupy.empty(M, dtype=cupy.float64) return _blackman_kernel(alpha, out) _hamming_kernel = _core.ElementwiseKernel( "float32 alpha", "float64 out", """ out = 0.54 - 0.46 * cos(i * alpha); """, name="cupy_hamming") def hamming(M): """Returns the Hamming window. The Hamming window is defined as .. math:: w(n) = 0.54 - 0.46\\cos\\left(\\frac{2\\pi{n}}{M-1}\\right) \\qquad 0 \\leq n \\leq M-1 Args: M (:class:`~int`): Number of points in the output window. If zero or less, an empty array is returned. Returns: ~cupy.ndarray: Output ndarray. .. seealso:: :func:`numpy.hamming` """ if M == 1: return cupy.ones(1, dtype=cupy.float64) if M <= 0: return cupy.array([]) alpha = numpy.pi * 2 / (M - 1) out = cupy.empty(M, dtype=cupy.float64) return _hamming_kernel(alpha, out) _hanning_kernel = _core.ElementwiseKernel( "float32 alpha", "float64 out", """ out = 0.5 - 0.5 * cos(i * alpha); """, name="cupy_hanning") def hanning(M): """Returns the Hanning window. The Hanning window is defined as .. math:: w(n) = 0.5 - 0.5\\cos\\left(\\frac{2\\pi{n}}{M-1}\\right) \\qquad 0 \\leq n \\leq M-1 Args: M (:class:`~int`): Number of points in the output window. If zero or less, an empty array is returned. Returns: ~cupy.ndarray: Output ndarray. .. seealso:: :func:`numpy.hanning` """ if M == 1: return cupy.ones(1, dtype=cupy.float64) if M <= 0: return cupy.array([]) alpha = numpy.pi * 2 / (M - 1) out = cupy.empty(M, dtype=cupy.float64) return _hanning_kernel(alpha, out) _kaiser_kernel = _core.ElementwiseKernel( "float32 beta, float32 alpha", "T arr", """ float temp = (i - alpha) / alpha; arr = cyl_bessel_i0(beta * sqrt(1 - (temp * temp))); arr /= cyl_bessel_i0(beta); """, name="cupy_kaiser") def kaiser(M, beta): """Return the Kaiser window. The Kaiser window is a taper formed by using a Bessel function. .. math:: w(n) = I_0\\left( \\beta \\sqrt{1-\\frac{4n^2}{(M-1)^2}} \\right)/I_0(\\beta) with .. math:: \\quad -\\frac{M-1}{2} \\leq n \\leq \\frac{M-1}{2} where :math:`I_0` is the modified zeroth-order Bessel function. Args: M (int): Number of points in the output window. If zero or less, an empty array is returned. beta (float): Shape parameter for window Returns: ~cupy.ndarray: The window, with the maximum value normalized to one (the value one appears only if the number of samples is odd). .. seealso:: :func:`numpy.kaiser` """ if M == 1: return cupy.array([1.]) if M <= 0: return cupy.array([]) alpha = (M - 1) / 2.0 out = cupy.empty(M, dtype=cupy.float64) return _kaiser_kernel(beta, alpha, out)