File size: 5,759 Bytes
c87d79d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_FUZZY_H
#define EIGEN_FUZZY_H
namespace Eigen {
namespace internal
{
template<typename Derived, typename OtherDerived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
struct isApprox_selector
{
EIGEN_DEVICE_FUNC
static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar& prec)
{
typename internal::nested_eval<Derived,2>::type nested(x);
typename internal::nested_eval<OtherDerived,2>::type otherNested(y);
return (nested - otherNested).cwiseAbs2().sum() <= prec * prec * numext::mini(nested.cwiseAbs2().sum(), otherNested.cwiseAbs2().sum());
}
};
template<typename Derived, typename OtherDerived>
struct isApprox_selector<Derived, OtherDerived, true>
{
EIGEN_DEVICE_FUNC
static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar&)
{
return x.matrix() == y.matrix();
}
};
template<typename Derived, typename OtherDerived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
struct isMuchSmallerThan_object_selector
{
EIGEN_DEVICE_FUNC
static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar& prec)
{
return x.cwiseAbs2().sum() <= numext::abs2(prec) * y.cwiseAbs2().sum();
}
};
template<typename Derived, typename OtherDerived>
struct isMuchSmallerThan_object_selector<Derived, OtherDerived, true>
{
EIGEN_DEVICE_FUNC
static bool run(const Derived& x, const OtherDerived&, const typename Derived::RealScalar&)
{
return x.matrix() == Derived::Zero(x.rows(), x.cols()).matrix();
}
};
template<typename Derived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
struct isMuchSmallerThan_scalar_selector
{
EIGEN_DEVICE_FUNC
static bool run(const Derived& x, const typename Derived::RealScalar& y, const typename Derived::RealScalar& prec)
{
return x.cwiseAbs2().sum() <= numext::abs2(prec * y);
}
};
template<typename Derived>
struct isMuchSmallerThan_scalar_selector<Derived, true>
{
EIGEN_DEVICE_FUNC
static bool run(const Derived& x, const typename Derived::RealScalar&, const typename Derived::RealScalar&)
{
return x.matrix() == Derived::Zero(x.rows(), x.cols()).matrix();
}
};
} // end namespace internal
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \note The fuzzy compares are done multiplicatively. Two vectors \f$ v \f$ and \f$ w \f$
* are considered to be approximately equal within precision \f$ p \f$ if
* \f[ \Vert v - w \Vert \leqslant p\,\min(\Vert v\Vert, \Vert w\Vert). \f]
* For matrices, the comparison is done using the Hilbert-Schmidt norm (aka Frobenius norm
* L2 norm).
*
* \note Because of the multiplicativeness of this comparison, one can't use this function
* to check whether \c *this is approximately equal to the zero matrix or vector.
* Indeed, \c isApprox(zero) returns false unless \c *this itself is exactly the zero matrix
* or vector. If you want to test whether \c *this is zero, use internal::isMuchSmallerThan(const
* RealScalar&, RealScalar) instead.
*
* \sa internal::isMuchSmallerThan(const RealScalar&, RealScalar) const
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_DEVICE_FUNC bool DenseBase<Derived>::isApprox(
const DenseBase<OtherDerived>& other,
const RealScalar& prec
) const
{
return internal::isApprox_selector<Derived, OtherDerived>::run(derived(), other.derived(), prec);
}
/** \returns \c true if the norm of \c *this is much smaller than \a other,
* within the precision determined by \a prec.
*
* \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is
* considered to be much smaller than \f$ x \f$ within precision \f$ p \f$ if
* \f[ \Vert v \Vert \leqslant p\,\vert x\vert. \f]
*
* For matrices, the comparison is done using the Hilbert-Schmidt norm. For this reason,
* the value of the reference scalar \a other should come from the Hilbert-Schmidt norm
* of a reference matrix of same dimensions.
*
* \sa isApprox(), isMuchSmallerThan(const DenseBase<OtherDerived>&, RealScalar) const
*/
template<typename Derived>
EIGEN_DEVICE_FUNC bool DenseBase<Derived>::isMuchSmallerThan(
const typename NumTraits<Scalar>::Real& other,
const RealScalar& prec
) const
{
return internal::isMuchSmallerThan_scalar_selector<Derived>::run(derived(), other, prec);
}
/** \returns \c true if the norm of \c *this is much smaller than the norm of \a other,
* within the precision determined by \a prec.
*
* \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is
* considered to be much smaller than a vector \f$ w \f$ within precision \f$ p \f$ if
* \f[ \Vert v \Vert \leqslant p\,\Vert w\Vert. \f]
* For matrices, the comparison is done using the Hilbert-Schmidt norm.
*
* \sa isApprox(), isMuchSmallerThan(const RealScalar&, RealScalar) const
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_DEVICE_FUNC bool DenseBase<Derived>::isMuchSmallerThan(
const DenseBase<OtherDerived>& other,
const RealScalar& prec
) const
{
return internal::isMuchSmallerThan_object_selector<Derived, OtherDerived>::run(derived(), other.derived(), prec);
}
} // end namespace Eigen
#endif // EIGEN_FUZZY_H
|