File size: 20,726 Bytes
fe2b563 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 |
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_HOMOGENEOUS_H
#define EIGEN_HOMOGENEOUS_H
namespace Eigen {
/** \geometry_module \ingroup Geometry_Module
*
* \class Homogeneous
*
* \brief Expression of one (or a set of) homogeneous vector(s)
*
* \param MatrixType the type of the object in which we are making homogeneous
*
* This class represents an expression of one (or a set of) homogeneous vector(s).
* It is the return type of MatrixBase::homogeneous() and most of the time
* this is the only way it is used.
*
* \sa MatrixBase::homogeneous()
*/
namespace internal {
template<typename MatrixType,int Direction>
struct traits<Homogeneous<MatrixType,Direction> >
: traits<MatrixType>
{
typedef typename traits<MatrixType>::StorageKind StorageKind;
typedef typename ref_selector<MatrixType>::type MatrixTypeNested;
typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
enum {
RowsPlusOne = (MatrixType::RowsAtCompileTime != Dynamic) ?
int(MatrixType::RowsAtCompileTime) + 1 : Dynamic,
ColsPlusOne = (MatrixType::ColsAtCompileTime != Dynamic) ?
int(MatrixType::ColsAtCompileTime) + 1 : Dynamic,
RowsAtCompileTime = Direction==Vertical ? RowsPlusOne : MatrixType::RowsAtCompileTime,
ColsAtCompileTime = Direction==Horizontal ? ColsPlusOne : MatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = RowsAtCompileTime,
MaxColsAtCompileTime = ColsAtCompileTime,
TmpFlags = _MatrixTypeNested::Flags & HereditaryBits,
Flags = ColsAtCompileTime==1 ? (TmpFlags & ~RowMajorBit)
: RowsAtCompileTime==1 ? (TmpFlags | RowMajorBit)
: TmpFlags
};
};
template<typename MatrixType,typename Lhs> struct homogeneous_left_product_impl;
template<typename MatrixType,typename Rhs> struct homogeneous_right_product_impl;
} // end namespace internal
template<typename MatrixType,int _Direction> class Homogeneous
: public MatrixBase<Homogeneous<MatrixType,_Direction> >, internal::no_assignment_operator
{
public:
typedef MatrixType NestedExpression;
enum { Direction = _Direction };
typedef MatrixBase<Homogeneous> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Homogeneous)
EIGEN_DEVICE_FUNC explicit inline Homogeneous(const MatrixType& matrix)
: m_matrix(matrix)
{}
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
inline Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows() + (int(Direction)==Vertical ? 1 : 0); }
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
inline Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols() + (int(Direction)==Horizontal ? 1 : 0); }
EIGEN_DEVICE_FUNC const NestedExpression& nestedExpression() const { return m_matrix; }
template<typename Rhs>
EIGEN_DEVICE_FUNC inline const Product<Homogeneous,Rhs>
operator* (const MatrixBase<Rhs>& rhs) const
{
eigen_assert(int(Direction)==Horizontal);
return Product<Homogeneous,Rhs>(*this,rhs.derived());
}
template<typename Lhs> friend
EIGEN_DEVICE_FUNC inline const Product<Lhs,Homogeneous>
operator* (const MatrixBase<Lhs>& lhs, const Homogeneous& rhs)
{
eigen_assert(int(Direction)==Vertical);
return Product<Lhs,Homogeneous>(lhs.derived(),rhs);
}
template<typename Scalar, int Dim, int Mode, int Options> friend
EIGEN_DEVICE_FUNC inline const Product<Transform<Scalar,Dim,Mode,Options>, Homogeneous >
operator* (const Transform<Scalar,Dim,Mode,Options>& lhs, const Homogeneous& rhs)
{
eigen_assert(int(Direction)==Vertical);
return Product<Transform<Scalar,Dim,Mode,Options>, Homogeneous>(lhs,rhs);
}
template<typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::result_of<Func(Scalar,Scalar)>::type
redux(const Func& func) const
{
return func(m_matrix.redux(func), Scalar(1));
}
protected:
typename MatrixType::Nested m_matrix;
};
/** \geometry_module \ingroup Geometry_Module
*
* \returns a vector expression that is one longer than the vector argument, with the value 1 symbolically appended as the last coefficient.
*
* This can be used to convert affine coordinates to homogeneous coordinates.
*
* \only_for_vectors
*
* Example: \include MatrixBase_homogeneous.cpp
* Output: \verbinclude MatrixBase_homogeneous.out
*
* \sa VectorwiseOp::homogeneous(), class Homogeneous
*/
template<typename Derived>
EIGEN_DEVICE_FUNC inline typename MatrixBase<Derived>::HomogeneousReturnType
MatrixBase<Derived>::homogeneous() const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
return HomogeneousReturnType(derived());
}
/** \geometry_module \ingroup Geometry_Module
*
* \returns an expression where the value 1 is symbolically appended as the final coefficient to each column (or row) of the matrix.
*
* This can be used to convert affine coordinates to homogeneous coordinates.
*
* Example: \include VectorwiseOp_homogeneous.cpp
* Output: \verbinclude VectorwiseOp_homogeneous.out
*
* \sa MatrixBase::homogeneous(), class Homogeneous */
template<typename ExpressionType, int Direction>
EIGEN_DEVICE_FUNC inline Homogeneous<ExpressionType,Direction>
VectorwiseOp<ExpressionType,Direction>::homogeneous() const
{
return HomogeneousReturnType(_expression());
}
/** \geometry_module \ingroup Geometry_Module
*
* \brief homogeneous normalization
*
* \returns a vector expression of the N-1 first coefficients of \c *this divided by that last coefficient.
*
* This can be used to convert homogeneous coordinates to affine coordinates.
*
* It is essentially a shortcut for:
* \code
this->head(this->size()-1)/this->coeff(this->size()-1);
\endcode
*
* Example: \include MatrixBase_hnormalized.cpp
* Output: \verbinclude MatrixBase_hnormalized.out
*
* \sa VectorwiseOp::hnormalized() */
template<typename Derived>
EIGEN_DEVICE_FUNC inline const typename MatrixBase<Derived>::HNormalizedReturnType
MatrixBase<Derived>::hnormalized() const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
return ConstStartMinusOne(derived(),0,0,
ColsAtCompileTime==1?size()-1:1,
ColsAtCompileTime==1?1:size()-1) / coeff(size()-1);
}
/** \geometry_module \ingroup Geometry_Module
*
* \brief column or row-wise homogeneous normalization
*
* \returns an expression of the first N-1 coefficients of each column (or row) of \c *this divided by the last coefficient of each column (or row).
*
* This can be used to convert homogeneous coordinates to affine coordinates.
*
* It is conceptually equivalent to calling MatrixBase::hnormalized() to each column (or row) of \c *this.
*
* Example: \include DirectionWise_hnormalized.cpp
* Output: \verbinclude DirectionWise_hnormalized.out
*
* \sa MatrixBase::hnormalized() */
template<typename ExpressionType, int Direction>
EIGEN_DEVICE_FUNC inline const typename VectorwiseOp<ExpressionType,Direction>::HNormalizedReturnType
VectorwiseOp<ExpressionType,Direction>::hnormalized() const
{
return HNormalized_Block(_expression(),0,0,
Direction==Vertical ? _expression().rows()-1 : _expression().rows(),
Direction==Horizontal ? _expression().cols()-1 : _expression().cols()).cwiseQuotient(
Replicate<HNormalized_Factors,
Direction==Vertical ? HNormalized_SizeMinusOne : 1,
Direction==Horizontal ? HNormalized_SizeMinusOne : 1>
(HNormalized_Factors(_expression(),
Direction==Vertical ? _expression().rows()-1:0,
Direction==Horizontal ? _expression().cols()-1:0,
Direction==Vertical ? 1 : _expression().rows(),
Direction==Horizontal ? 1 : _expression().cols()),
Direction==Vertical ? _expression().rows()-1 : 1,
Direction==Horizontal ? _expression().cols()-1 : 1));
}
namespace internal {
template<typename MatrixOrTransformType>
struct take_matrix_for_product
{
typedef MatrixOrTransformType type;
EIGEN_DEVICE_FUNC static const type& run(const type &x) { return x; }
};
template<typename Scalar, int Dim, int Mode,int Options>
struct take_matrix_for_product<Transform<Scalar, Dim, Mode, Options> >
{
typedef Transform<Scalar, Dim, Mode, Options> TransformType;
typedef typename internal::add_const<typename TransformType::ConstAffinePart>::type type;
EIGEN_DEVICE_FUNC static type run (const TransformType& x) { return x.affine(); }
};
template<typename Scalar, int Dim, int Options>
struct take_matrix_for_product<Transform<Scalar, Dim, Projective, Options> >
{
typedef Transform<Scalar, Dim, Projective, Options> TransformType;
typedef typename TransformType::MatrixType type;
EIGEN_DEVICE_FUNC static const type& run (const TransformType& x) { return x.matrix(); }
};
template<typename MatrixType,typename Lhs>
struct traits<homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs> >
{
typedef typename take_matrix_for_product<Lhs>::type LhsMatrixType;
typedef typename remove_all<MatrixType>::type MatrixTypeCleaned;
typedef typename remove_all<LhsMatrixType>::type LhsMatrixTypeCleaned;
typedef typename make_proper_matrix_type<
typename traits<MatrixTypeCleaned>::Scalar,
LhsMatrixTypeCleaned::RowsAtCompileTime,
MatrixTypeCleaned::ColsAtCompileTime,
MatrixTypeCleaned::PlainObject::Options,
LhsMatrixTypeCleaned::MaxRowsAtCompileTime,
MatrixTypeCleaned::MaxColsAtCompileTime>::type ReturnType;
};
template<typename MatrixType,typename Lhs>
struct homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs>
: public ReturnByValue<homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs> >
{
typedef typename traits<homogeneous_left_product_impl>::LhsMatrixType LhsMatrixType;
typedef typename remove_all<LhsMatrixType>::type LhsMatrixTypeCleaned;
typedef typename remove_all<typename LhsMatrixTypeCleaned::Nested>::type LhsMatrixTypeNested;
EIGEN_DEVICE_FUNC homogeneous_left_product_impl(const Lhs& lhs, const MatrixType& rhs)
: m_lhs(take_matrix_for_product<Lhs>::run(lhs)),
m_rhs(rhs)
{}
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
inline Index rows() const EIGEN_NOEXCEPT { return m_lhs.rows(); }
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
inline Index cols() const EIGEN_NOEXCEPT { return m_rhs.cols(); }
template<typename Dest> EIGEN_DEVICE_FUNC void evalTo(Dest& dst) const
{
// FIXME investigate how to allow lazy evaluation of this product when possible
dst = Block<const LhsMatrixTypeNested,
LhsMatrixTypeNested::RowsAtCompileTime,
LhsMatrixTypeNested::ColsAtCompileTime==Dynamic?Dynamic:LhsMatrixTypeNested::ColsAtCompileTime-1>
(m_lhs,0,0,m_lhs.rows(),m_lhs.cols()-1) * m_rhs;
dst += m_lhs.col(m_lhs.cols()-1).rowwise()
.template replicate<MatrixType::ColsAtCompileTime>(m_rhs.cols());
}
typename LhsMatrixTypeCleaned::Nested m_lhs;
typename MatrixType::Nested m_rhs;
};
template<typename MatrixType,typename Rhs>
struct traits<homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs> >
{
typedef typename make_proper_matrix_type<typename traits<MatrixType>::Scalar,
MatrixType::RowsAtCompileTime,
Rhs::ColsAtCompileTime,
MatrixType::PlainObject::Options,
MatrixType::MaxRowsAtCompileTime,
Rhs::MaxColsAtCompileTime>::type ReturnType;
};
template<typename MatrixType,typename Rhs>
struct homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs>
: public ReturnByValue<homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs> >
{
typedef typename remove_all<typename Rhs::Nested>::type RhsNested;
EIGEN_DEVICE_FUNC homogeneous_right_product_impl(const MatrixType& lhs, const Rhs& rhs)
: m_lhs(lhs), m_rhs(rhs)
{}
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index rows() const EIGEN_NOEXCEPT { return m_lhs.rows(); }
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index cols() const EIGEN_NOEXCEPT { return m_rhs.cols(); }
template<typename Dest> EIGEN_DEVICE_FUNC void evalTo(Dest& dst) const
{
// FIXME investigate how to allow lazy evaluation of this product when possible
dst = m_lhs * Block<const RhsNested,
RhsNested::RowsAtCompileTime==Dynamic?Dynamic:RhsNested::RowsAtCompileTime-1,
RhsNested::ColsAtCompileTime>
(m_rhs,0,0,m_rhs.rows()-1,m_rhs.cols());
dst += m_rhs.row(m_rhs.rows()-1).colwise()
.template replicate<MatrixType::RowsAtCompileTime>(m_lhs.rows());
}
typename MatrixType::Nested m_lhs;
typename Rhs::Nested m_rhs;
};
template<typename ArgType,int Direction>
struct evaluator_traits<Homogeneous<ArgType,Direction> >
{
typedef typename storage_kind_to_evaluator_kind<typename ArgType::StorageKind>::Kind Kind;
typedef HomogeneousShape Shape;
};
template<> struct AssignmentKind<DenseShape,HomogeneousShape> { typedef Dense2Dense Kind; };
template<typename ArgType,int Direction>
struct unary_evaluator<Homogeneous<ArgType,Direction>, IndexBased>
: evaluator<typename Homogeneous<ArgType,Direction>::PlainObject >
{
typedef Homogeneous<ArgType,Direction> XprType;
typedef typename XprType::PlainObject PlainObject;
typedef evaluator<PlainObject> Base;
EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& op)
: Base(), m_temp(op)
{
::new (static_cast<Base*>(this)) Base(m_temp);
}
protected:
PlainObject m_temp;
};
// dense = homogeneous
template< typename DstXprType, typename ArgType, typename Scalar>
struct Assignment<DstXprType, Homogeneous<ArgType,Vertical>, internal::assign_op<Scalar,typename ArgType::Scalar>, Dense2Dense>
{
typedef Homogeneous<ArgType,Vertical> SrcXprType;
EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,typename ArgType::Scalar> &)
{
Index dstRows = src.rows();
Index dstCols = src.cols();
if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
dst.resize(dstRows, dstCols);
dst.template topRows<ArgType::RowsAtCompileTime>(src.nestedExpression().rows()) = src.nestedExpression();
dst.row(dst.rows()-1).setOnes();
}
};
// dense = homogeneous
template< typename DstXprType, typename ArgType, typename Scalar>
struct Assignment<DstXprType, Homogeneous<ArgType,Horizontal>, internal::assign_op<Scalar,typename ArgType::Scalar>, Dense2Dense>
{
typedef Homogeneous<ArgType,Horizontal> SrcXprType;
EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,typename ArgType::Scalar> &)
{
Index dstRows = src.rows();
Index dstCols = src.cols();
if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
dst.resize(dstRows, dstCols);
dst.template leftCols<ArgType::ColsAtCompileTime>(src.nestedExpression().cols()) = src.nestedExpression();
dst.col(dst.cols()-1).setOnes();
}
};
template<typename LhsArg, typename Rhs, int ProductTag>
struct generic_product_impl<Homogeneous<LhsArg,Horizontal>, Rhs, HomogeneousShape, DenseShape, ProductTag>
{
template<typename Dest>
EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const Homogeneous<LhsArg,Horizontal>& lhs, const Rhs& rhs)
{
homogeneous_right_product_impl<Homogeneous<LhsArg,Horizontal>, Rhs>(lhs.nestedExpression(), rhs).evalTo(dst);
}
};
template<typename Lhs,typename Rhs>
struct homogeneous_right_product_refactoring_helper
{
enum {
Dim = Lhs::ColsAtCompileTime,
Rows = Lhs::RowsAtCompileTime
};
typedef typename Rhs::template ConstNRowsBlockXpr<Dim>::Type LinearBlockConst;
typedef typename remove_const<LinearBlockConst>::type LinearBlock;
typedef typename Rhs::ConstRowXpr ConstantColumn;
typedef Replicate<const ConstantColumn,Rows,1> ConstantBlock;
typedef Product<Lhs,LinearBlock,LazyProduct> LinearProduct;
typedef CwiseBinaryOp<internal::scalar_sum_op<typename Lhs::Scalar,typename Rhs::Scalar>, const LinearProduct, const ConstantBlock> Xpr;
};
template<typename Lhs, typename Rhs, int ProductTag>
struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, HomogeneousShape, DenseShape>
: public evaluator<typename homogeneous_right_product_refactoring_helper<typename Lhs::NestedExpression,Rhs>::Xpr>
{
typedef Product<Lhs, Rhs, LazyProduct> XprType;
typedef homogeneous_right_product_refactoring_helper<typename Lhs::NestedExpression,Rhs> helper;
typedef typename helper::ConstantBlock ConstantBlock;
typedef typename helper::Xpr RefactoredXpr;
typedef evaluator<RefactoredXpr> Base;
EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
: Base( xpr.lhs().nestedExpression() .lazyProduct( xpr.rhs().template topRows<helper::Dim>(xpr.lhs().nestedExpression().cols()) )
+ ConstantBlock(xpr.rhs().row(xpr.rhs().rows()-1),xpr.lhs().rows(), 1) )
{}
};
template<typename Lhs, typename RhsArg, int ProductTag>
struct generic_product_impl<Lhs, Homogeneous<RhsArg,Vertical>, DenseShape, HomogeneousShape, ProductTag>
{
template<typename Dest>
EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous<RhsArg,Vertical>& rhs)
{
homogeneous_left_product_impl<Homogeneous<RhsArg,Vertical>, Lhs>(lhs, rhs.nestedExpression()).evalTo(dst);
}
};
// TODO: the following specialization is to address a regression from 3.2 to 3.3
// In the future, this path should be optimized.
template<typename Lhs, typename RhsArg, int ProductTag>
struct generic_product_impl<Lhs, Homogeneous<RhsArg,Vertical>, TriangularShape, HomogeneousShape, ProductTag>
{
template<typename Dest>
static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous<RhsArg,Vertical>& rhs)
{
dst.noalias() = lhs * rhs.eval();
}
};
template<typename Lhs,typename Rhs>
struct homogeneous_left_product_refactoring_helper
{
enum {
Dim = Rhs::RowsAtCompileTime,
Cols = Rhs::ColsAtCompileTime
};
typedef typename Lhs::template ConstNColsBlockXpr<Dim>::Type LinearBlockConst;
typedef typename remove_const<LinearBlockConst>::type LinearBlock;
typedef typename Lhs::ConstColXpr ConstantColumn;
typedef Replicate<const ConstantColumn,1,Cols> ConstantBlock;
typedef Product<LinearBlock,Rhs,LazyProduct> LinearProduct;
typedef CwiseBinaryOp<internal::scalar_sum_op<typename Lhs::Scalar,typename Rhs::Scalar>, const LinearProduct, const ConstantBlock> Xpr;
};
template<typename Lhs, typename Rhs, int ProductTag>
struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, DenseShape, HomogeneousShape>
: public evaluator<typename homogeneous_left_product_refactoring_helper<Lhs,typename Rhs::NestedExpression>::Xpr>
{
typedef Product<Lhs, Rhs, LazyProduct> XprType;
typedef homogeneous_left_product_refactoring_helper<Lhs,typename Rhs::NestedExpression> helper;
typedef typename helper::ConstantBlock ConstantBlock;
typedef typename helper::Xpr RefactoredXpr;
typedef evaluator<RefactoredXpr> Base;
EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
: Base( xpr.lhs().template leftCols<helper::Dim>(xpr.rhs().nestedExpression().rows()) .lazyProduct( xpr.rhs().nestedExpression() )
+ ConstantBlock(xpr.lhs().col(xpr.lhs().cols()-1),1,xpr.rhs().cols()) )
{}
};
template<typename Scalar, int Dim, int Mode,int Options, typename RhsArg, int ProductTag>
struct generic_product_impl<Transform<Scalar,Dim,Mode,Options>, Homogeneous<RhsArg,Vertical>, DenseShape, HomogeneousShape, ProductTag>
{
typedef Transform<Scalar,Dim,Mode,Options> TransformType;
template<typename Dest>
EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const TransformType& lhs, const Homogeneous<RhsArg,Vertical>& rhs)
{
homogeneous_left_product_impl<Homogeneous<RhsArg,Vertical>, TransformType>(lhs, rhs.nestedExpression()).evalTo(dst);
}
};
template<typename ExpressionType, int Side, bool Transposed>
struct permutation_matrix_product<ExpressionType, Side, Transposed, HomogeneousShape>
: public permutation_matrix_product<ExpressionType, Side, Transposed, DenseShape>
{};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_HOMOGENEOUS_H
|