File size: 7,664 Bytes
fe2b563 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_TRANSLATION_H
#define EIGEN_TRANSLATION_H
namespace Eigen {
/** \geometry_module \ingroup Geometry_Module
*
* \class Translation
*
* \brief Represents a translation transformation
*
* \tparam _Scalar the scalar type, i.e., the type of the coefficients.
* \tparam _Dim the dimension of the space, can be a compile time value or Dynamic
*
* \note This class is not aimed to be used to store a translation transformation,
* but rather to make easier the constructions and updates of Transform objects.
*
* \sa class Scaling, class Transform
*/
template<typename _Scalar, int _Dim>
class Translation
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim)
/** dimension of the space */
enum { Dim = _Dim };
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
/** corresponding vector type */
typedef Matrix<Scalar,Dim,1> VectorType;
/** corresponding linear transformation matrix type */
typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
/** corresponding affine transformation type */
typedef Transform<Scalar,Dim,Affine> AffineTransformType;
/** corresponding isometric transformation type */
typedef Transform<Scalar,Dim,Isometry> IsometryTransformType;
protected:
VectorType m_coeffs;
public:
/** Default constructor without initialization. */
EIGEN_DEVICE_FUNC Translation() {}
/** */
EIGEN_DEVICE_FUNC inline Translation(const Scalar& sx, const Scalar& sy)
{
eigen_assert(Dim==2);
m_coeffs.x() = sx;
m_coeffs.y() = sy;
}
/** */
EIGEN_DEVICE_FUNC inline Translation(const Scalar& sx, const Scalar& sy, const Scalar& sz)
{
eigen_assert(Dim==3);
m_coeffs.x() = sx;
m_coeffs.y() = sy;
m_coeffs.z() = sz;
}
/** Constructs and initialize the translation transformation from a vector of translation coefficients */
EIGEN_DEVICE_FUNC explicit inline Translation(const VectorType& vector) : m_coeffs(vector) {}
/** \brief Returns the x-translation by value. **/
EIGEN_DEVICE_FUNC inline Scalar x() const { return m_coeffs.x(); }
/** \brief Returns the y-translation by value. **/
EIGEN_DEVICE_FUNC inline Scalar y() const { return m_coeffs.y(); }
/** \brief Returns the z-translation by value. **/
EIGEN_DEVICE_FUNC inline Scalar z() const { return m_coeffs.z(); }
/** \brief Returns the x-translation as a reference. **/
EIGEN_DEVICE_FUNC inline Scalar& x() { return m_coeffs.x(); }
/** \brief Returns the y-translation as a reference. **/
EIGEN_DEVICE_FUNC inline Scalar& y() { return m_coeffs.y(); }
/** \brief Returns the z-translation as a reference. **/
EIGEN_DEVICE_FUNC inline Scalar& z() { return m_coeffs.z(); }
EIGEN_DEVICE_FUNC const VectorType& vector() const { return m_coeffs; }
EIGEN_DEVICE_FUNC VectorType& vector() { return m_coeffs; }
EIGEN_DEVICE_FUNC const VectorType& translation() const { return m_coeffs; }
EIGEN_DEVICE_FUNC VectorType& translation() { return m_coeffs; }
/** Concatenates two translation */
EIGEN_DEVICE_FUNC inline Translation operator* (const Translation& other) const
{ return Translation(m_coeffs + other.m_coeffs); }
/** Concatenates a translation and a uniform scaling */
EIGEN_DEVICE_FUNC inline AffineTransformType operator* (const UniformScaling<Scalar>& other) const;
/** Concatenates a translation and a linear transformation */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC inline AffineTransformType operator* (const EigenBase<OtherDerived>& linear) const;
/** Concatenates a translation and a rotation */
template<typename Derived>
EIGEN_DEVICE_FUNC inline IsometryTransformType operator*(const RotationBase<Derived,Dim>& r) const
{ return *this * IsometryTransformType(r); }
/** \returns the concatenation of a linear transformation \a l with the translation \a t */
// its a nightmare to define a templated friend function outside its declaration
template<typename OtherDerived> friend
EIGEN_DEVICE_FUNC inline AffineTransformType operator*(const EigenBase<OtherDerived>& linear, const Translation& t)
{
AffineTransformType res;
res.matrix().setZero();
res.linear() = linear.derived();
res.translation() = linear.derived() * t.m_coeffs;
res.matrix().row(Dim).setZero();
res(Dim,Dim) = Scalar(1);
return res;
}
/** Concatenates a translation and a transformation */
template<int Mode, int Options>
EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode> operator* (const Transform<Scalar,Dim,Mode,Options>& t) const
{
Transform<Scalar,Dim,Mode> res = t;
res.pretranslate(m_coeffs);
return res;
}
/** Applies translation to vector */
template<typename Derived>
inline typename internal::enable_if<Derived::IsVectorAtCompileTime,VectorType>::type
operator* (const MatrixBase<Derived>& vec) const
{ return m_coeffs + vec.derived(); }
/** \returns the inverse translation (opposite) */
Translation inverse() const { return Translation(-m_coeffs); }
static const Translation Identity() { return Translation(VectorType::Zero()); }
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Translation,Translation<NewScalarType,Dim> >::type cast() const
{ return typename internal::cast_return_type<Translation,Translation<NewScalarType,Dim> >::type(*this); }
/** Copy constructor with scalar type conversion */
template<typename OtherScalarType>
EIGEN_DEVICE_FUNC inline explicit Translation(const Translation<OtherScalarType,Dim>& other)
{ m_coeffs = other.vector().template cast<Scalar>(); }
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
EIGEN_DEVICE_FUNC bool isApprox(const Translation& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
{ return m_coeffs.isApprox(other.m_coeffs, prec); }
};
/** \addtogroup Geometry_Module */
//@{
typedef Translation<float, 2> Translation2f;
typedef Translation<double,2> Translation2d;
typedef Translation<float, 3> Translation3f;
typedef Translation<double,3> Translation3d;
//@}
template<typename Scalar, int Dim>
EIGEN_DEVICE_FUNC inline typename Translation<Scalar,Dim>::AffineTransformType
Translation<Scalar,Dim>::operator* (const UniformScaling<Scalar>& other) const
{
AffineTransformType res;
res.matrix().setZero();
res.linear().diagonal().fill(other.factor());
res.translation() = m_coeffs;
res(Dim,Dim) = Scalar(1);
return res;
}
template<typename Scalar, int Dim>
template<typename OtherDerived>
EIGEN_DEVICE_FUNC inline typename Translation<Scalar,Dim>::AffineTransformType
Translation<Scalar,Dim>::operator* (const EigenBase<OtherDerived>& linear) const
{
AffineTransformType res;
res.matrix().setZero();
res.linear() = linear.derived();
res.translation() = m_coeffs;
res.matrix().row(Dim).setZero();
res(Dim,Dim) = Scalar(1);
return res;
}
} // end namespace Eigen
#endif // EIGEN_TRANSLATION_H
|