File size: 22,069 Bytes
fe2b563 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 |
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_PARTIALLU_H
#define EIGEN_PARTIALLU_H
namespace Eigen {
namespace internal {
template<typename _MatrixType> struct traits<PartialPivLU<_MatrixType> >
: traits<_MatrixType>
{
typedef MatrixXpr XprKind;
typedef SolverStorage StorageKind;
typedef int StorageIndex;
typedef traits<_MatrixType> BaseTraits;
enum {
Flags = BaseTraits::Flags & RowMajorBit,
CoeffReadCost = Dynamic
};
};
template<typename T,typename Derived>
struct enable_if_ref;
// {
// typedef Derived type;
// };
template<typename T,typename Derived>
struct enable_if_ref<Ref<T>,Derived> {
typedef Derived type;
};
} // end namespace internal
/** \ingroup LU_Module
*
* \class PartialPivLU
*
* \brief LU decomposition of a matrix with partial pivoting, and related features
*
* \tparam _MatrixType the type of the matrix of which we are computing the LU decomposition
*
* This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A
* is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P
* is a permutation matrix.
*
* Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible
* matrices. Thus LAPACK's dgesv and dgesvx require the matrix to be square and invertible. The present class
* does the same. It will assert that the matrix is square, but it won't (actually it can't) check that the
* matrix is invertible: it is your task to check that you only use this decomposition on invertible matrices.
*
* The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided
* by class FullPivLU.
*
* This is \b not a rank-revealing LU decomposition. Many features are intentionally absent from this class,
* such as rank computation. If you need these features, use class FullPivLU.
*
* This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses
* in the general case.
* On the other hand, it is \b not suitable to determine whether a given matrix is invertible.
*
* The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP().
*
* This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
*
* \sa MatrixBase::partialPivLu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse(), class FullPivLU
*/
template<typename _MatrixType> class PartialPivLU
: public SolverBase<PartialPivLU<_MatrixType> >
{
public:
typedef _MatrixType MatrixType;
typedef SolverBase<PartialPivLU> Base;
friend class SolverBase<PartialPivLU>;
EIGEN_GENERIC_PUBLIC_INTERFACE(PartialPivLU)
enum {
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;
typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
typedef typename MatrixType::PlainObject PlainObject;
/**
* \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via PartialPivLU::compute(const MatrixType&).
*/
PartialPivLU();
/** \brief Default Constructor with memory preallocation
*
* Like the default constructor but with preallocation of the internal data
* according to the specified problem \a size.
* \sa PartialPivLU()
*/
explicit PartialPivLU(Index size);
/** Constructor.
*
* \param matrix the matrix of which to compute the LU decomposition.
*
* \warning The matrix should have full rank (e.g. if it's square, it should be invertible).
* If you need to deal with non-full rank, use class FullPivLU instead.
*/
template<typename InputType>
explicit PartialPivLU(const EigenBase<InputType>& matrix);
/** Constructor for \link InplaceDecomposition inplace decomposition \endlink
*
* \param matrix the matrix of which to compute the LU decomposition.
*
* \warning The matrix should have full rank (e.g. if it's square, it should be invertible).
* If you need to deal with non-full rank, use class FullPivLU instead.
*/
template<typename InputType>
explicit PartialPivLU(EigenBase<InputType>& matrix);
template<typename InputType>
PartialPivLU& compute(const EigenBase<InputType>& matrix) {
m_lu = matrix.derived();
compute();
return *this;
}
/** \returns the LU decomposition matrix: the upper-triangular part is U, the
* unit-lower-triangular part is L (at least for square matrices; in the non-square
* case, special care is needed, see the documentation of class FullPivLU).
*
* \sa matrixL(), matrixU()
*/
inline const MatrixType& matrixLU() const
{
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
return m_lu;
}
/** \returns the permutation matrix P.
*/
inline const PermutationType& permutationP() const
{
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
return m_p;
}
#ifdef EIGEN_PARSED_BY_DOXYGEN
/** This method returns the solution x to the equation Ax=b, where A is the matrix of which
* *this is the LU decomposition.
*
* \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
* the only requirement in order for the equation to make sense is that
* b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
*
* \returns the solution.
*
* Example: \include PartialPivLU_solve.cpp
* Output: \verbinclude PartialPivLU_solve.out
*
* Since this PartialPivLU class assumes anyway that the matrix A is invertible, the solution
* theoretically exists and is unique regardless of b.
*
* \sa TriangularView::solve(), inverse(), computeInverse()
*/
template<typename Rhs>
inline const Solve<PartialPivLU, Rhs>
solve(const MatrixBase<Rhs>& b) const;
#endif
/** \returns an estimate of the reciprocal condition number of the matrix of which \c *this is
the LU decomposition.
*/
inline RealScalar rcond() const
{
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
return internal::rcond_estimate_helper(m_l1_norm, *this);
}
/** \returns the inverse of the matrix of which *this is the LU decomposition.
*
* \warning The matrix being decomposed here is assumed to be invertible. If you need to check for
* invertibility, use class FullPivLU instead.
*
* \sa MatrixBase::inverse(), LU::inverse()
*/
inline const Inverse<PartialPivLU> inverse() const
{
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
return Inverse<PartialPivLU>(*this);
}
/** \returns the determinant of the matrix of which
* *this is the LU decomposition. It has only linear complexity
* (that is, O(n) where n is the dimension of the square matrix)
* as the LU decomposition has already been computed.
*
* \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
* optimized paths.
*
* \warning a determinant can be very big or small, so for matrices
* of large enough dimension, there is a risk of overflow/underflow.
*
* \sa MatrixBase::determinant()
*/
Scalar determinant() const;
MatrixType reconstructedMatrix() const;
EIGEN_CONSTEXPR inline Index rows() const EIGEN_NOEXCEPT { return m_lu.rows(); }
EIGEN_CONSTEXPR inline Index cols() const EIGEN_NOEXCEPT { return m_lu.cols(); }
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename RhsType, typename DstType>
EIGEN_DEVICE_FUNC
void _solve_impl(const RhsType &rhs, DstType &dst) const {
/* The decomposition PA = LU can be rewritten as A = P^{-1} L U.
* So we proceed as follows:
* Step 1: compute c = Pb.
* Step 2: replace c by the solution x to Lx = c.
* Step 3: replace c by the solution x to Ux = c.
*/
// Step 1
dst = permutationP() * rhs;
// Step 2
m_lu.template triangularView<UnitLower>().solveInPlace(dst);
// Step 3
m_lu.template triangularView<Upper>().solveInPlace(dst);
}
template<bool Conjugate, typename RhsType, typename DstType>
EIGEN_DEVICE_FUNC
void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const {
/* The decomposition PA = LU can be rewritten as A^T = U^T L^T P.
* So we proceed as follows:
* Step 1: compute c as the solution to L^T c = b
* Step 2: replace c by the solution x to U^T x = c.
* Step 3: update c = P^-1 c.
*/
eigen_assert(rhs.rows() == m_lu.cols());
// Step 1
dst = m_lu.template triangularView<Upper>().transpose()
.template conjugateIf<Conjugate>().solve(rhs);
// Step 2
m_lu.template triangularView<UnitLower>().transpose()
.template conjugateIf<Conjugate>().solveInPlace(dst);
// Step 3
dst = permutationP().transpose() * dst;
}
#endif
protected:
static void check_template_parameters()
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
}
void compute();
MatrixType m_lu;
PermutationType m_p;
TranspositionType m_rowsTranspositions;
RealScalar m_l1_norm;
signed char m_det_p;
bool m_isInitialized;
};
template<typename MatrixType>
PartialPivLU<MatrixType>::PartialPivLU()
: m_lu(),
m_p(),
m_rowsTranspositions(),
m_l1_norm(0),
m_det_p(0),
m_isInitialized(false)
{
}
template<typename MatrixType>
PartialPivLU<MatrixType>::PartialPivLU(Index size)
: m_lu(size, size),
m_p(size),
m_rowsTranspositions(size),
m_l1_norm(0),
m_det_p(0),
m_isInitialized(false)
{
}
template<typename MatrixType>
template<typename InputType>
PartialPivLU<MatrixType>::PartialPivLU(const EigenBase<InputType>& matrix)
: m_lu(matrix.rows(),matrix.cols()),
m_p(matrix.rows()),
m_rowsTranspositions(matrix.rows()),
m_l1_norm(0),
m_det_p(0),
m_isInitialized(false)
{
compute(matrix.derived());
}
template<typename MatrixType>
template<typename InputType>
PartialPivLU<MatrixType>::PartialPivLU(EigenBase<InputType>& matrix)
: m_lu(matrix.derived()),
m_p(matrix.rows()),
m_rowsTranspositions(matrix.rows()),
m_l1_norm(0),
m_det_p(0),
m_isInitialized(false)
{
compute();
}
namespace internal {
/** \internal This is the blocked version of fullpivlu_unblocked() */
template<typename Scalar, int StorageOrder, typename PivIndex, int SizeAtCompileTime=Dynamic>
struct partial_lu_impl
{
static const int UnBlockedBound = 16;
static const bool UnBlockedAtCompileTime = SizeAtCompileTime!=Dynamic && SizeAtCompileTime<=UnBlockedBound;
static const int ActualSizeAtCompileTime = UnBlockedAtCompileTime ? SizeAtCompileTime : Dynamic;
// Remaining rows and columns at compile-time:
static const int RRows = SizeAtCompileTime==2 ? 1 : Dynamic;
static const int RCols = SizeAtCompileTime==2 ? 1 : Dynamic;
typedef Matrix<Scalar, ActualSizeAtCompileTime, ActualSizeAtCompileTime, StorageOrder> MatrixType;
typedef Ref<MatrixType> MatrixTypeRef;
typedef Ref<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > BlockType;
typedef typename MatrixType::RealScalar RealScalar;
/** \internal performs the LU decomposition in-place of the matrix \a lu
* using an unblocked algorithm.
*
* In addition, this function returns the row transpositions in the
* vector \a row_transpositions which must have a size equal to the number
* of columns of the matrix \a lu, and an integer \a nb_transpositions
* which returns the actual number of transpositions.
*
* \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise.
*/
static Index unblocked_lu(MatrixTypeRef& lu, PivIndex* row_transpositions, PivIndex& nb_transpositions)
{
typedef scalar_score_coeff_op<Scalar> Scoring;
typedef typename Scoring::result_type Score;
const Index rows = lu.rows();
const Index cols = lu.cols();
const Index size = (std::min)(rows,cols);
// For small compile-time matrices it is worth processing the last row separately:
// speedup: +100% for 2x2, +10% for others.
const Index endk = UnBlockedAtCompileTime ? size-1 : size;
nb_transpositions = 0;
Index first_zero_pivot = -1;
for(Index k = 0; k < endk; ++k)
{
int rrows = internal::convert_index<int>(rows-k-1);
int rcols = internal::convert_index<int>(cols-k-1);
Index row_of_biggest_in_col;
Score biggest_in_corner
= lu.col(k).tail(rows-k).unaryExpr(Scoring()).maxCoeff(&row_of_biggest_in_col);
row_of_biggest_in_col += k;
row_transpositions[k] = PivIndex(row_of_biggest_in_col);
if(biggest_in_corner != Score(0))
{
if(k != row_of_biggest_in_col)
{
lu.row(k).swap(lu.row(row_of_biggest_in_col));
++nb_transpositions;
}
lu.col(k).tail(fix<RRows>(rrows)) /= lu.coeff(k,k);
}
else if(first_zero_pivot==-1)
{
// the pivot is exactly zero, we record the index of the first pivot which is exactly 0,
// and continue the factorization such we still have A = PLU
first_zero_pivot = k;
}
if(k<rows-1)
lu.bottomRightCorner(fix<RRows>(rrows),fix<RCols>(rcols)).noalias() -= lu.col(k).tail(fix<RRows>(rrows)) * lu.row(k).tail(fix<RCols>(rcols));
}
// special handling of the last entry
if(UnBlockedAtCompileTime)
{
Index k = endk;
row_transpositions[k] = PivIndex(k);
if (Scoring()(lu(k, k)) == Score(0) && first_zero_pivot == -1)
first_zero_pivot = k;
}
return first_zero_pivot;
}
/** \internal performs the LU decomposition in-place of the matrix represented
* by the variables \a rows, \a cols, \a lu_data, and \a lu_stride using a
* recursive, blocked algorithm.
*
* In addition, this function returns the row transpositions in the
* vector \a row_transpositions which must have a size equal to the number
* of columns of the matrix \a lu, and an integer \a nb_transpositions
* which returns the actual number of transpositions.
*
* \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise.
*
* \note This very low level interface using pointers, etc. is to:
* 1 - reduce the number of instantiations to the strict minimum
* 2 - avoid infinite recursion of the instantiations with Block<Block<Block<...> > >
*/
static Index blocked_lu(Index rows, Index cols, Scalar* lu_data, Index luStride, PivIndex* row_transpositions, PivIndex& nb_transpositions, Index maxBlockSize=256)
{
MatrixTypeRef lu = MatrixType::Map(lu_data,rows, cols, OuterStride<>(luStride));
const Index size = (std::min)(rows,cols);
// if the matrix is too small, no blocking:
if(UnBlockedAtCompileTime || size<=UnBlockedBound)
{
return unblocked_lu(lu, row_transpositions, nb_transpositions);
}
// automatically adjust the number of subdivisions to the size
// of the matrix so that there is enough sub blocks:
Index blockSize;
{
blockSize = size/8;
blockSize = (blockSize/16)*16;
blockSize = (std::min)((std::max)(blockSize,Index(8)), maxBlockSize);
}
nb_transpositions = 0;
Index first_zero_pivot = -1;
for(Index k = 0; k < size; k+=blockSize)
{
Index bs = (std::min)(size-k,blockSize); // actual size of the block
Index trows = rows - k - bs; // trailing rows
Index tsize = size - k - bs; // trailing size
// partition the matrix:
// A00 | A01 | A02
// lu = A_0 | A_1 | A_2 = A10 | A11 | A12
// A20 | A21 | A22
BlockType A_0 = lu.block(0,0,rows,k);
BlockType A_2 = lu.block(0,k+bs,rows,tsize);
BlockType A11 = lu.block(k,k,bs,bs);
BlockType A12 = lu.block(k,k+bs,bs,tsize);
BlockType A21 = lu.block(k+bs,k,trows,bs);
BlockType A22 = lu.block(k+bs,k+bs,trows,tsize);
PivIndex nb_transpositions_in_panel;
// recursively call the blocked LU algorithm on [A11^T A21^T]^T
// with a very small blocking size:
Index ret = blocked_lu(trows+bs, bs, &lu.coeffRef(k,k), luStride,
row_transpositions+k, nb_transpositions_in_panel, 16);
if(ret>=0 && first_zero_pivot==-1)
first_zero_pivot = k+ret;
nb_transpositions += nb_transpositions_in_panel;
// update permutations and apply them to A_0
for(Index i=k; i<k+bs; ++i)
{
Index piv = (row_transpositions[i] += internal::convert_index<PivIndex>(k));
A_0.row(i).swap(A_0.row(piv));
}
if(trows)
{
// apply permutations to A_2
for(Index i=k;i<k+bs; ++i)
A_2.row(i).swap(A_2.row(row_transpositions[i]));
// A12 = A11^-1 A12
A11.template triangularView<UnitLower>().solveInPlace(A12);
A22.noalias() -= A21 * A12;
}
}
return first_zero_pivot;
}
};
/** \internal performs the LU decomposition with partial pivoting in-place.
*/
template<typename MatrixType, typename TranspositionType>
void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename TranspositionType::StorageIndex& nb_transpositions)
{
// Special-case of zero matrix.
if (lu.rows() == 0 || lu.cols() == 0) {
nb_transpositions = 0;
return;
}
eigen_assert(lu.cols() == row_transpositions.size());
eigen_assert(row_transpositions.size() < 2 || (&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1);
partial_lu_impl
< typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor,
typename TranspositionType::StorageIndex,
EIGEN_SIZE_MIN_PREFER_FIXED(MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime)>
::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions);
}
} // end namespace internal
template<typename MatrixType>
void PartialPivLU<MatrixType>::compute()
{
check_template_parameters();
// the row permutation is stored as int indices, so just to be sure:
eigen_assert(m_lu.rows()<NumTraits<int>::highest());
if(m_lu.cols()>0)
m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff();
else
m_l1_norm = RealScalar(0);
eigen_assert(m_lu.rows() == m_lu.cols() && "PartialPivLU is only for square (and moreover invertible) matrices");
const Index size = m_lu.rows();
m_rowsTranspositions.resize(size);
typename TranspositionType::StorageIndex nb_transpositions;
internal::partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions);
m_det_p = (nb_transpositions%2) ? -1 : 1;
m_p = m_rowsTranspositions;
m_isInitialized = true;
}
template<typename MatrixType>
typename PartialPivLU<MatrixType>::Scalar PartialPivLU<MatrixType>::determinant() const
{
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
return Scalar(m_det_p) * m_lu.diagonal().prod();
}
/** \returns the matrix represented by the decomposition,
* i.e., it returns the product: P^{-1} L U.
* This function is provided for debug purpose. */
template<typename MatrixType>
MatrixType PartialPivLU<MatrixType>::reconstructedMatrix() const
{
eigen_assert(m_isInitialized && "LU is not initialized.");
// LU
MatrixType res = m_lu.template triangularView<UnitLower>().toDenseMatrix()
* m_lu.template triangularView<Upper>();
// P^{-1}(LU)
res = m_p.inverse() * res;
return res;
}
/***** Implementation details *****************************************************/
namespace internal {
/***** Implementation of inverse() *****************************************************/
template<typename DstXprType, typename MatrixType>
struct Assignment<DstXprType, Inverse<PartialPivLU<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename PartialPivLU<MatrixType>::Scalar>, Dense2Dense>
{
typedef PartialPivLU<MatrixType> LuType;
typedef Inverse<LuType> SrcXprType;
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename LuType::Scalar> &)
{
dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols()));
}
};
} // end namespace internal
/******** MatrixBase methods *******/
/** \lu_module
*
* \return the partial-pivoting LU decomposition of \c *this.
*
* \sa class PartialPivLU
*/
template<typename Derived>
inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::partialPivLu() const
{
return PartialPivLU<PlainObject>(eval());
}
/** \lu_module
*
* Synonym of partialPivLu().
*
* \return the partial-pivoting LU decomposition of \c *this.
*
* \sa class PartialPivLU
*/
template<typename Derived>
inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::lu() const
{
return PartialPivLU<PlainObject>(eval());
}
} // end namespace Eigen
#endif // EIGEN_PARTIALLU_H
|