File size: 13,847 Bytes
c7cee1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2001 Intel Corporation
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
//
// The algorithm below is a reimplementation of former \src\LU\Inverse_SSE.h using PacketMath.
// inv(M) = M#/|M|, where inv(M), M# and |M| denote the inverse of M,
// adjugate of M and determinant of M respectively. M# is computed block-wise
// using specific formulae. For proof, see:
// https://lxjk.github.io/2017/09/03/Fast-4x4-Matrix-Inverse-with-SSE-SIMD-Explained.html
// Variable names are adopted from \src\LU\Inverse_SSE.h.
//
// The SSE code for the 4x4 float and double matrix inverse in former (deprecated) \src\LU\Inverse_SSE.h
// comes from the following Intel's library:
// http://software.intel.com/en-us/articles/optimized-matrix-library-for-use-with-the-intel-pentiumr-4-processors-sse2-instructions/
//
// Here is the respective copyright and license statement:
//
// Copyright (c) 2001 Intel Corporation.
//
// Permition is granted to use, copy, distribute and prepare derivative works
// of this library for any purpose and without fee, provided, that the above
// copyright notice and this statement appear in all copies.
// Intel makes no representations about the suitability of this software for
// any purpose, and specifically disclaims all warranties.
// See LEGAL.TXT for all the legal information.
//
// TODO: Unify implementations of different data types (i.e. float and double).
#ifndef EIGEN_INVERSE_SIZE_4_H
#define EIGEN_INVERSE_SIZE_4_H
#if EIGEN_COMP_GNUC_STRICT
// These routines requires bit manipulation of the sign, which is not compatible
// with fastmath.
#pragma GCC push_options
#pragma GCC optimize ("no-fast-math")
#endif
namespace Eigen
{
namespace internal
{
template <typename MatrixType, typename ResultType>
struct compute_inverse_size4<Architecture::Target, float, MatrixType, ResultType>
{
enum
{
MatrixAlignment = traits<MatrixType>::Alignment,
ResultAlignment = traits<ResultType>::Alignment,
StorageOrdersMatch = (MatrixType::Flags & RowMajorBit) == (ResultType::Flags & RowMajorBit)
};
typedef typename conditional<(MatrixType::Flags & LinearAccessBit), MatrixType const &, typename MatrixType::PlainObject>::type ActualMatrixType;
static void run(const MatrixType &mat, ResultType &result)
{
ActualMatrixType matrix(mat);
const float* data = matrix.data();
const Index stride = matrix.innerStride();
Packet4f _L1 = ploadt<Packet4f,MatrixAlignment>(data);
Packet4f _L2 = ploadt<Packet4f,MatrixAlignment>(data + stride*4);
Packet4f _L3 = ploadt<Packet4f,MatrixAlignment>(data + stride*8);
Packet4f _L4 = ploadt<Packet4f,MatrixAlignment>(data + stride*12);
// Four 2x2 sub-matrices of the input matrix
// input = [[A, B],
// [C, D]]
Packet4f A, B, C, D;
if (!StorageOrdersMatch)
{
A = vec4f_unpacklo(_L1, _L2);
B = vec4f_unpacklo(_L3, _L4);
C = vec4f_unpackhi(_L1, _L2);
D = vec4f_unpackhi(_L3, _L4);
}
else
{
A = vec4f_movelh(_L1, _L2);
B = vec4f_movehl(_L2, _L1);
C = vec4f_movelh(_L3, _L4);
D = vec4f_movehl(_L4, _L3);
}
Packet4f AB, DC;
// AB = A# * B, where A# denotes the adjugate of A, and * denotes matrix product.
AB = pmul(vec4f_swizzle2(A, A, 3, 3, 0, 0), B);
AB = psub(AB, pmul(vec4f_swizzle2(A, A, 1, 1, 2, 2), vec4f_swizzle2(B, B, 2, 3, 0, 1)));
// DC = D#*C
DC = pmul(vec4f_swizzle2(D, D, 3, 3, 0, 0), C);
DC = psub(DC, pmul(vec4f_swizzle2(D, D, 1, 1, 2, 2), vec4f_swizzle2(C, C, 2, 3, 0, 1)));
// determinants of the sub-matrices
Packet4f dA, dB, dC, dD;
dA = pmul(vec4f_swizzle2(A, A, 3, 3, 1, 1), A);
dA = psub(dA, vec4f_movehl(dA, dA));
dB = pmul(vec4f_swizzle2(B, B, 3, 3, 1, 1), B);
dB = psub(dB, vec4f_movehl(dB, dB));
dC = pmul(vec4f_swizzle2(C, C, 3, 3, 1, 1), C);
dC = psub(dC, vec4f_movehl(dC, dC));
dD = pmul(vec4f_swizzle2(D, D, 3, 3, 1, 1), D);
dD = psub(dD, vec4f_movehl(dD, dD));
Packet4f d, d1, d2;
d = pmul(vec4f_swizzle2(DC, DC, 0, 2, 1, 3), AB);
d = padd(d, vec4f_movehl(d, d));
d = padd(d, vec4f_swizzle2(d, d, 1, 0, 0, 0));
d1 = pmul(dA, dD);
d2 = pmul(dB, dC);
// determinant of the input matrix, det = |A||D| + |B||C| - trace(A#*B*D#*C)
Packet4f det = vec4f_duplane(psub(padd(d1, d2), d), 0);
// reciprocal of the determinant of the input matrix, rd = 1/det
Packet4f rd = pdiv(pset1<Packet4f>(1.0f), det);
// Four sub-matrices of the inverse
Packet4f iA, iB, iC, iD;
// iD = D*|A| - C*A#*B
iD = pmul(vec4f_swizzle2(C, C, 0, 0, 2, 2), vec4f_movelh(AB, AB));
iD = padd(iD, pmul(vec4f_swizzle2(C, C, 1, 1, 3, 3), vec4f_movehl(AB, AB)));
iD = psub(pmul(D, vec4f_duplane(dA, 0)), iD);
// iA = A*|D| - B*D#*C
iA = pmul(vec4f_swizzle2(B, B, 0, 0, 2, 2), vec4f_movelh(DC, DC));
iA = padd(iA, pmul(vec4f_swizzle2(B, B, 1, 1, 3, 3), vec4f_movehl(DC, DC)));
iA = psub(pmul(A, vec4f_duplane(dD, 0)), iA);
// iB = C*|B| - D * (A#B)# = C*|B| - D*B#*A
iB = pmul(D, vec4f_swizzle2(AB, AB, 3, 0, 3, 0));
iB = psub(iB, pmul(vec4f_swizzle2(D, D, 1, 0, 3, 2), vec4f_swizzle2(AB, AB, 2, 1, 2, 1)));
iB = psub(pmul(C, vec4f_duplane(dB, 0)), iB);
// iC = B*|C| - A * (D#C)# = B*|C| - A*C#*D
iC = pmul(A, vec4f_swizzle2(DC, DC, 3, 0, 3, 0));
iC = psub(iC, pmul(vec4f_swizzle2(A, A, 1, 0, 3, 2), vec4f_swizzle2(DC, DC, 2, 1, 2, 1)));
iC = psub(pmul(B, vec4f_duplane(dC, 0)), iC);
EIGEN_ALIGN_MAX const float sign_mask[4] = {0.0f, -0.0f, -0.0f, 0.0f};
const Packet4f p4f_sign_PNNP = pload<Packet4f>(sign_mask);
rd = pxor(rd, p4f_sign_PNNP);
iA = pmul(iA, rd);
iB = pmul(iB, rd);
iC = pmul(iC, rd);
iD = pmul(iD, rd);
Index res_stride = result.outerStride();
float *res = result.data();
pstoret<float, Packet4f, ResultAlignment>(res + 0, vec4f_swizzle2(iA, iB, 3, 1, 3, 1));
pstoret<float, Packet4f, ResultAlignment>(res + res_stride, vec4f_swizzle2(iA, iB, 2, 0, 2, 0));
pstoret<float, Packet4f, ResultAlignment>(res + 2 * res_stride, vec4f_swizzle2(iC, iD, 3, 1, 3, 1));
pstoret<float, Packet4f, ResultAlignment>(res + 3 * res_stride, vec4f_swizzle2(iC, iD, 2, 0, 2, 0));
}
};
#if !(defined EIGEN_VECTORIZE_NEON && !(EIGEN_ARCH_ARM64 && !EIGEN_APPLE_DOUBLE_NEON_BUG))
// same algorithm as above, except that each operand is split into
// halves for two registers to hold.
template <typename MatrixType, typename ResultType>
struct compute_inverse_size4<Architecture::Target, double, MatrixType, ResultType>
{
enum
{
MatrixAlignment = traits<MatrixType>::Alignment,
ResultAlignment = traits<ResultType>::Alignment,
StorageOrdersMatch = (MatrixType::Flags & RowMajorBit) == (ResultType::Flags & RowMajorBit)
};
typedef typename conditional<(MatrixType::Flags & LinearAccessBit),
MatrixType const &,
typename MatrixType::PlainObject>::type
ActualMatrixType;
static void run(const MatrixType &mat, ResultType &result)
{
ActualMatrixType matrix(mat);
// Four 2x2 sub-matrices of the input matrix, each is further divided into upper and lower
// row e.g. A1, upper row of A, A2, lower row of A
// input = [[A, B], = [[[A1, [B1,
// [C, D]] A2], B2]],
// [[C1, [D1,
// C2], D2]]]
Packet2d A1, A2, B1, B2, C1, C2, D1, D2;
const double* data = matrix.data();
const Index stride = matrix.innerStride();
if (StorageOrdersMatch)
{
A1 = ploadt<Packet2d,MatrixAlignment>(data + stride*0);
B1 = ploadt<Packet2d,MatrixAlignment>(data + stride*2);
A2 = ploadt<Packet2d,MatrixAlignment>(data + stride*4);
B2 = ploadt<Packet2d,MatrixAlignment>(data + stride*6);
C1 = ploadt<Packet2d,MatrixAlignment>(data + stride*8);
D1 = ploadt<Packet2d,MatrixAlignment>(data + stride*10);
C2 = ploadt<Packet2d,MatrixAlignment>(data + stride*12);
D2 = ploadt<Packet2d,MatrixAlignment>(data + stride*14);
}
else
{
Packet2d temp;
A1 = ploadt<Packet2d,MatrixAlignment>(data + stride*0);
C1 = ploadt<Packet2d,MatrixAlignment>(data + stride*2);
A2 = ploadt<Packet2d,MatrixAlignment>(data + stride*4);
C2 = ploadt<Packet2d,MatrixAlignment>(data + stride*6);
temp = A1;
A1 = vec2d_unpacklo(A1, A2);
A2 = vec2d_unpackhi(temp, A2);
temp = C1;
C1 = vec2d_unpacklo(C1, C2);
C2 = vec2d_unpackhi(temp, C2);
B1 = ploadt<Packet2d,MatrixAlignment>(data + stride*8);
D1 = ploadt<Packet2d,MatrixAlignment>(data + stride*10);
B2 = ploadt<Packet2d,MatrixAlignment>(data + stride*12);
D2 = ploadt<Packet2d,MatrixAlignment>(data + stride*14);
temp = B1;
B1 = vec2d_unpacklo(B1, B2);
B2 = vec2d_unpackhi(temp, B2);
temp = D1;
D1 = vec2d_unpacklo(D1, D2);
D2 = vec2d_unpackhi(temp, D2);
}
// determinants of the sub-matrices
Packet2d dA, dB, dC, dD;
dA = vec2d_swizzle2(A2, A2, 1);
dA = pmul(A1, dA);
dA = psub(dA, vec2d_duplane(dA, 1));
dB = vec2d_swizzle2(B2, B2, 1);
dB = pmul(B1, dB);
dB = psub(dB, vec2d_duplane(dB, 1));
dC = vec2d_swizzle2(C2, C2, 1);
dC = pmul(C1, dC);
dC = psub(dC, vec2d_duplane(dC, 1));
dD = vec2d_swizzle2(D2, D2, 1);
dD = pmul(D1, dD);
dD = psub(dD, vec2d_duplane(dD, 1));
Packet2d DC1, DC2, AB1, AB2;
// AB = A# * B, where A# denotes the adjugate of A, and * denotes matrix product.
AB1 = pmul(B1, vec2d_duplane(A2, 1));
AB2 = pmul(B2, vec2d_duplane(A1, 0));
AB1 = psub(AB1, pmul(B2, vec2d_duplane(A1, 1)));
AB2 = psub(AB2, pmul(B1, vec2d_duplane(A2, 0)));
// DC = D#*C
DC1 = pmul(C1, vec2d_duplane(D2, 1));
DC2 = pmul(C2, vec2d_duplane(D1, 0));
DC1 = psub(DC1, pmul(C2, vec2d_duplane(D1, 1)));
DC2 = psub(DC2, pmul(C1, vec2d_duplane(D2, 0)));
Packet2d d1, d2;
// determinant of the input matrix, det = |A||D| + |B||C| - trace(A#*B*D#*C)
Packet2d det;
// reciprocal of the determinant of the input matrix, rd = 1/det
Packet2d rd;
d1 = pmul(AB1, vec2d_swizzle2(DC1, DC2, 0));
d2 = pmul(AB2, vec2d_swizzle2(DC1, DC2, 3));
rd = padd(d1, d2);
rd = padd(rd, vec2d_duplane(rd, 1));
d1 = pmul(dA, dD);
d2 = pmul(dB, dC);
det = padd(d1, d2);
det = psub(det, rd);
det = vec2d_duplane(det, 0);
rd = pdiv(pset1<Packet2d>(1.0), det);
// rows of four sub-matrices of the inverse
Packet2d iA1, iA2, iB1, iB2, iC1, iC2, iD1, iD2;
// iD = D*|A| - C*A#*B
iD1 = pmul(AB1, vec2d_duplane(C1, 0));
iD2 = pmul(AB1, vec2d_duplane(C2, 0));
iD1 = padd(iD1, pmul(AB2, vec2d_duplane(C1, 1)));
iD2 = padd(iD2, pmul(AB2, vec2d_duplane(C2, 1)));
dA = vec2d_duplane(dA, 0);
iD1 = psub(pmul(D1, dA), iD1);
iD2 = psub(pmul(D2, dA), iD2);
// iA = A*|D| - B*D#*C
iA1 = pmul(DC1, vec2d_duplane(B1, 0));
iA2 = pmul(DC1, vec2d_duplane(B2, 0));
iA1 = padd(iA1, pmul(DC2, vec2d_duplane(B1, 1)));
iA2 = padd(iA2, pmul(DC2, vec2d_duplane(B2, 1)));
dD = vec2d_duplane(dD, 0);
iA1 = psub(pmul(A1, dD), iA1);
iA2 = psub(pmul(A2, dD), iA2);
// iB = C*|B| - D * (A#B)# = C*|B| - D*B#*A
iB1 = pmul(D1, vec2d_swizzle2(AB2, AB1, 1));
iB2 = pmul(D2, vec2d_swizzle2(AB2, AB1, 1));
iB1 = psub(iB1, pmul(vec2d_swizzle2(D1, D1, 1), vec2d_swizzle2(AB2, AB1, 2)));
iB2 = psub(iB2, pmul(vec2d_swizzle2(D2, D2, 1), vec2d_swizzle2(AB2, AB1, 2)));
dB = vec2d_duplane(dB, 0);
iB1 = psub(pmul(C1, dB), iB1);
iB2 = psub(pmul(C2, dB), iB2);
// iC = B*|C| - A * (D#C)# = B*|C| - A*C#*D
iC1 = pmul(A1, vec2d_swizzle2(DC2, DC1, 1));
iC2 = pmul(A2, vec2d_swizzle2(DC2, DC1, 1));
iC1 = psub(iC1, pmul(vec2d_swizzle2(A1, A1, 1), vec2d_swizzle2(DC2, DC1, 2)));
iC2 = psub(iC2, pmul(vec2d_swizzle2(A2, A2, 1), vec2d_swizzle2(DC2, DC1, 2)));
dC = vec2d_duplane(dC, 0);
iC1 = psub(pmul(B1, dC), iC1);
iC2 = psub(pmul(B2, dC), iC2);
EIGEN_ALIGN_MAX const double sign_mask1[2] = {0.0, -0.0};
EIGEN_ALIGN_MAX const double sign_mask2[2] = {-0.0, 0.0};
const Packet2d sign_PN = pload<Packet2d>(sign_mask1);
const Packet2d sign_NP = pload<Packet2d>(sign_mask2);
d1 = pxor(rd, sign_PN);
d2 = pxor(rd, sign_NP);
Index res_stride = result.outerStride();
double *res = result.data();
pstoret<double, Packet2d, ResultAlignment>(res + 0, pmul(vec2d_swizzle2(iA2, iA1, 3), d1));
pstoret<double, Packet2d, ResultAlignment>(res + res_stride, pmul(vec2d_swizzle2(iA2, iA1, 0), d2));
pstoret<double, Packet2d, ResultAlignment>(res + 2, pmul(vec2d_swizzle2(iB2, iB1, 3), d1));
pstoret<double, Packet2d, ResultAlignment>(res + res_stride + 2, pmul(vec2d_swizzle2(iB2, iB1, 0), d2));
pstoret<double, Packet2d, ResultAlignment>(res + 2 * res_stride, pmul(vec2d_swizzle2(iC2, iC1, 3), d1));
pstoret<double, Packet2d, ResultAlignment>(res + 3 * res_stride, pmul(vec2d_swizzle2(iC2, iC1, 0), d2));
pstoret<double, Packet2d, ResultAlignment>(res + 2 * res_stride + 2, pmul(vec2d_swizzle2(iD2, iD1, 3), d1));
pstoret<double, Packet2d, ResultAlignment>(res + 3 * res_stride + 2, pmul(vec2d_swizzle2(iD2, iD1, 0), d2));
}
};
#endif
} // namespace internal
} // namespace Eigen
#if EIGEN_COMP_GNUC_STRICT
#pragma GCC pop_options
#endif
#endif
|