File size: 11,876 Bytes
c87d79d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SUITESPARSEQRSUPPORT_H
#define EIGEN_SUITESPARSEQRSUPPORT_H
namespace Eigen {
template<typename MatrixType> class SPQR;
template<typename SPQRType> struct SPQRMatrixQReturnType;
template<typename SPQRType> struct SPQRMatrixQTransposeReturnType;
template <typename SPQRType, typename Derived> struct SPQR_QProduct;
namespace internal {
template <typename SPQRType> struct traits<SPQRMatrixQReturnType<SPQRType> >
{
typedef typename SPQRType::MatrixType ReturnType;
};
template <typename SPQRType> struct traits<SPQRMatrixQTransposeReturnType<SPQRType> >
{
typedef typename SPQRType::MatrixType ReturnType;
};
template <typename SPQRType, typename Derived> struct traits<SPQR_QProduct<SPQRType, Derived> >
{
typedef typename Derived::PlainObject ReturnType;
};
} // End namespace internal
/**
* \ingroup SPQRSupport_Module
* \class SPQR
* \brief Sparse QR factorization based on SuiteSparseQR library
*
* This class is used to perform a multithreaded and multifrontal rank-revealing QR decomposition
* of sparse matrices. The result is then used to solve linear leasts_square systems.
* Clearly, a QR factorization is returned such that A*P = Q*R where :
*
* P is the column permutation. Use colsPermutation() to get it.
*
* Q is the orthogonal matrix represented as Householder reflectors.
* Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose.
* You can then apply it to a vector.
*
* R is the sparse triangular factor. Use matrixQR() to get it as SparseMatrix.
* NOTE : The Index type of R is always SuiteSparse_long. You can get it with SPQR::Index
*
* \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<>
*
* \implsparsesolverconcept
*
*
*/
template<typename _MatrixType>
class SPQR : public SparseSolverBase<SPQR<_MatrixType> >
{
protected:
typedef SparseSolverBase<SPQR<_MatrixType> > Base;
using Base::m_isInitialized;
public:
typedef typename _MatrixType::Scalar Scalar;
typedef typename _MatrixType::RealScalar RealScalar;
typedef SuiteSparse_long StorageIndex ;
typedef SparseMatrix<Scalar, ColMajor, StorageIndex> MatrixType;
typedef Map<PermutationMatrix<Dynamic, Dynamic, StorageIndex> > PermutationType;
enum {
ColsAtCompileTime = Dynamic,
MaxColsAtCompileTime = Dynamic
};
public:
SPQR()
: m_analysisIsOk(false),
m_factorizationIsOk(false),
m_isRUpToDate(false),
m_ordering(SPQR_ORDERING_DEFAULT),
m_allow_tol(SPQR_DEFAULT_TOL),
m_tolerance (NumTraits<Scalar>::epsilon()),
m_cR(0),
m_E(0),
m_H(0),
m_HPinv(0),
m_HTau(0),
m_useDefaultThreshold(true)
{
cholmod_l_start(&m_cc);
}
explicit SPQR(const _MatrixType& matrix)
: m_analysisIsOk(false),
m_factorizationIsOk(false),
m_isRUpToDate(false),
m_ordering(SPQR_ORDERING_DEFAULT),
m_allow_tol(SPQR_DEFAULT_TOL),
m_tolerance (NumTraits<Scalar>::epsilon()),
m_cR(0),
m_E(0),
m_H(0),
m_HPinv(0),
m_HTau(0),
m_useDefaultThreshold(true)
{
cholmod_l_start(&m_cc);
compute(matrix);
}
~SPQR()
{
SPQR_free();
cholmod_l_finish(&m_cc);
}
void SPQR_free()
{
cholmod_l_free_sparse(&m_H, &m_cc);
cholmod_l_free_sparse(&m_cR, &m_cc);
cholmod_l_free_dense(&m_HTau, &m_cc);
std::free(m_E);
std::free(m_HPinv);
}
void compute(const _MatrixType& matrix)
{
if(m_isInitialized) SPQR_free();
MatrixType mat(matrix);
/* Compute the default threshold as in MatLab, see:
* Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing
* Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3
*/
RealScalar pivotThreshold = m_tolerance;
if(m_useDefaultThreshold)
{
RealScalar max2Norm = 0.0;
for (int j = 0; j < mat.cols(); j++) max2Norm = numext::maxi(max2Norm, mat.col(j).norm());
if(max2Norm==RealScalar(0))
max2Norm = RealScalar(1);
pivotThreshold = 20 * (mat.rows() + mat.cols()) * max2Norm * NumTraits<RealScalar>::epsilon();
}
cholmod_sparse A;
A = viewAsCholmod(mat);
m_rows = matrix.rows();
Index col = matrix.cols();
m_rank = SuiteSparseQR<Scalar>(m_ordering, pivotThreshold, col, &A,
&m_cR, &m_E, &m_H, &m_HPinv, &m_HTau, &m_cc);
if (!m_cR)
{
m_info = NumericalIssue;
m_isInitialized = false;
return;
}
m_info = Success;
m_isInitialized = true;
m_isRUpToDate = false;
}
/**
* Get the number of rows of the input matrix and the Q matrix
*/
inline Index rows() const {return m_rows; }
/**
* Get the number of columns of the input matrix.
*/
inline Index cols() const { return m_cR->ncol; }
template<typename Rhs, typename Dest>
void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
{
eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
eigen_assert(b.cols()==1 && "This method is for vectors only");
//Compute Q^T * b
typename Dest::PlainObject y, y2;
y = matrixQ().transpose() * b;
// Solves with the triangular matrix R
Index rk = this->rank();
y2 = y;
y.resize((std::max)(cols(),Index(y.rows())),y.cols());
y.topRows(rk) = this->matrixR().topLeftCorner(rk, rk).template triangularView<Upper>().solve(y2.topRows(rk));
// Apply the column permutation
// colsPermutation() performs a copy of the permutation,
// so let's apply it manually:
for(Index i = 0; i < rk; ++i) dest.row(m_E[i]) = y.row(i);
for(Index i = rk; i < cols(); ++i) dest.row(m_E[i]).setZero();
// y.bottomRows(y.rows()-rk).setZero();
// dest = colsPermutation() * y.topRows(cols());
m_info = Success;
}
/** \returns the sparse triangular factor R. It is a sparse matrix
*/
const MatrixType matrixR() const
{
eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
if(!m_isRUpToDate) {
m_R = viewAsEigen<Scalar,ColMajor, typename MatrixType::StorageIndex>(*m_cR);
m_isRUpToDate = true;
}
return m_R;
}
/// Get an expression of the matrix Q
SPQRMatrixQReturnType<SPQR> matrixQ() const
{
return SPQRMatrixQReturnType<SPQR>(*this);
}
/// Get the permutation that was applied to columns of A
PermutationType colsPermutation() const
{
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
return PermutationType(m_E, m_cR->ncol);
}
/**
* Gets the rank of the matrix.
* It should be equal to matrixQR().cols if the matrix is full-rank
*/
Index rank() const
{
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
return m_cc.SPQR_istat[4];
}
/// Set the fill-reducing ordering method to be used
void setSPQROrdering(int ord) { m_ordering = ord;}
/// Set the tolerance tol to treat columns with 2-norm < =tol as zero
void setPivotThreshold(const RealScalar& tol)
{
m_useDefaultThreshold = false;
m_tolerance = tol;
}
/** \returns a pointer to the SPQR workspace */
cholmod_common *cholmodCommon() const { return &m_cc; }
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was successful,
* \c NumericalIssue if the sparse QR can not be computed
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
return m_info;
}
protected:
bool m_analysisIsOk;
bool m_factorizationIsOk;
mutable bool m_isRUpToDate;
mutable ComputationInfo m_info;
int m_ordering; // Ordering method to use, see SPQR's manual
int m_allow_tol; // Allow to use some tolerance during numerical factorization.
RealScalar m_tolerance; // treat columns with 2-norm below this tolerance as zero
mutable cholmod_sparse *m_cR = nullptr; // The sparse R factor in cholmod format
mutable MatrixType m_R; // The sparse matrix R in Eigen format
mutable StorageIndex *m_E = nullptr; // The permutation applied to columns
mutable cholmod_sparse *m_H = nullptr; //The householder vectors
mutable StorageIndex *m_HPinv = nullptr; // The row permutation of H
mutable cholmod_dense *m_HTau = nullptr; // The Householder coefficients
mutable Index m_rank; // The rank of the matrix
mutable cholmod_common m_cc; // Workspace and parameters
bool m_useDefaultThreshold; // Use default threshold
Index m_rows;
template<typename ,typename > friend struct SPQR_QProduct;
};
template <typename SPQRType, typename Derived>
struct SPQR_QProduct : ReturnByValue<SPQR_QProduct<SPQRType,Derived> >
{
typedef typename SPQRType::Scalar Scalar;
typedef typename SPQRType::StorageIndex StorageIndex;
//Define the constructor to get reference to argument types
SPQR_QProduct(const SPQRType& spqr, const Derived& other, bool transpose) : m_spqr(spqr),m_other(other),m_transpose(transpose) {}
inline Index rows() const { return m_transpose ? m_spqr.rows() : m_spqr.cols(); }
inline Index cols() const { return m_other.cols(); }
// Assign to a vector
template<typename ResType>
void evalTo(ResType& res) const
{
cholmod_dense y_cd;
cholmod_dense *x_cd;
int method = m_transpose ? SPQR_QTX : SPQR_QX;
cholmod_common *cc = m_spqr.cholmodCommon();
y_cd = viewAsCholmod(m_other.const_cast_derived());
x_cd = SuiteSparseQR_qmult<Scalar>(method, m_spqr.m_H, m_spqr.m_HTau, m_spqr.m_HPinv, &y_cd, cc);
res = Matrix<Scalar,ResType::RowsAtCompileTime,ResType::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x), x_cd->nrow, x_cd->ncol);
cholmod_l_free_dense(&x_cd, cc);
}
const SPQRType& m_spqr;
const Derived& m_other;
bool m_transpose;
};
template<typename SPQRType>
struct SPQRMatrixQReturnType{
SPQRMatrixQReturnType(const SPQRType& spqr) : m_spqr(spqr) {}
template<typename Derived>
SPQR_QProduct<SPQRType, Derived> operator*(const MatrixBase<Derived>& other)
{
return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(),false);
}
SPQRMatrixQTransposeReturnType<SPQRType> adjoint() const
{
return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr);
}
// To use for operations with the transpose of Q
SPQRMatrixQTransposeReturnType<SPQRType> transpose() const
{
return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr);
}
const SPQRType& m_spqr;
};
template<typename SPQRType>
struct SPQRMatrixQTransposeReturnType{
SPQRMatrixQTransposeReturnType(const SPQRType& spqr) : m_spqr(spqr) {}
template<typename Derived>
SPQR_QProduct<SPQRType,Derived> operator*(const MatrixBase<Derived>& other)
{
return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(), true);
}
const SPQRType& m_spqr;
};
}// End namespace Eigen
#endif
|