File size: 5,410 Bytes
138cfea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#define EIGEN_RUNTIME_NO_MALLOC
#include "main.h"
#include <limits>
#include <Eigen/Eigenvalues>
#include <Eigen/LU>

template<typename MatrixType> void generalized_eigensolver_real(const MatrixType& m)
{
  /* this test covers the following files:
     GeneralizedEigenSolver.h
  */
  Index rows = m.rows();
  Index cols = m.cols();

  typedef typename MatrixType::Scalar Scalar;
  typedef std::complex<Scalar> ComplexScalar;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;

  MatrixType a = MatrixType::Random(rows,cols);
  MatrixType b = MatrixType::Random(rows,cols);
  MatrixType a1 = MatrixType::Random(rows,cols);
  MatrixType b1 = MatrixType::Random(rows,cols);
  MatrixType spdA =  a.adjoint() * a + a1.adjoint() * a1;
  MatrixType spdB =  b.adjoint() * b + b1.adjoint() * b1;

  // lets compare to GeneralizedSelfAdjointEigenSolver
  {
    GeneralizedSelfAdjointEigenSolver<MatrixType> symmEig(spdA, spdB);
    GeneralizedEigenSolver<MatrixType> eig(spdA, spdB);

    VERIFY_IS_EQUAL(eig.eigenvalues().imag().cwiseAbs().maxCoeff(), 0);

    VectorType realEigenvalues = eig.eigenvalues().real();
    std::sort(realEigenvalues.data(), realEigenvalues.data()+realEigenvalues.size());
    VERIFY_IS_APPROX(realEigenvalues, symmEig.eigenvalues());

    // check eigenvectors
    typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType D = eig.eigenvalues().asDiagonal();
    typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType V = eig.eigenvectors();
    VERIFY_IS_APPROX(spdA*V, spdB*V*D);
  }

  // non symmetric case:
  {
    GeneralizedEigenSolver<MatrixType> eig(rows);
    // TODO enable full-prealocation of required memory, this probably requires an in-place mode for HessenbergDecomposition
    //Eigen::internal::set_is_malloc_allowed(false);
    eig.compute(a,b);
    //Eigen::internal::set_is_malloc_allowed(true);
    for(Index k=0; k<cols; ++k)
    {
      Matrix<ComplexScalar,Dynamic,Dynamic> tmp = (eig.betas()(k)*a).template cast<ComplexScalar>() - eig.alphas()(k)*b;
      if(tmp.size()>1 && tmp.norm()>(std::numeric_limits<Scalar>::min)())
        tmp /= tmp.norm();
      VERIFY_IS_MUCH_SMALLER_THAN( std::abs(tmp.determinant()), Scalar(1) );
    }
    // check eigenvectors
    typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType D = eig.eigenvalues().asDiagonal();
    typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType V = eig.eigenvectors();
    VERIFY_IS_APPROX(a*V, b*V*D);
  }

  // regression test for bug 1098
  {
    GeneralizedSelfAdjointEigenSolver<MatrixType> eig1(a.adjoint() * a,b.adjoint() * b);
    eig1.compute(a.adjoint() * a,b.adjoint() * b);
    GeneralizedEigenSolver<MatrixType> eig2(a.adjoint() * a,b.adjoint() * b);
    eig2.compute(a.adjoint() * a,b.adjoint() * b);
  }

  // check without eigenvectors
  {
    GeneralizedEigenSolver<MatrixType> eig1(spdA, spdB, true);
    GeneralizedEigenSolver<MatrixType> eig2(spdA, spdB, false);
    VERIFY_IS_APPROX(eig1.eigenvalues(), eig2.eigenvalues());
  }
}

template<typename MatrixType>
void generalized_eigensolver_assert() {
    GeneralizedEigenSolver<MatrixType> eig;
    // all raise assert if uninitialized
    VERIFY_RAISES_ASSERT(eig.info());
    VERIFY_RAISES_ASSERT(eig.eigenvectors());
    VERIFY_RAISES_ASSERT(eig.eigenvalues());
    VERIFY_RAISES_ASSERT(eig.alphas());
    VERIFY_RAISES_ASSERT(eig.betas());

    // none raise assert after compute called
    eig.compute(MatrixType::Random(20, 20), MatrixType::Random(20, 20));
    VERIFY(eig.info() == Success);
    eig.eigenvectors();
    eig.eigenvalues();
    eig.alphas();
    eig.betas();

    // eigenvectors() raises assert, if eigenvectors were not requested
    eig.compute(MatrixType::Random(20, 20), MatrixType::Random(20, 20), false);
    VERIFY(eig.info() == Success);
    VERIFY_RAISES_ASSERT(eig.eigenvectors());
    eig.eigenvalues();
    eig.alphas();
    eig.betas();

    // all except info raise assert if realQZ did not converge
    eig.setMaxIterations(0); // force real QZ to fail.
    eig.compute(MatrixType::Random(20, 20), MatrixType::Random(20, 20));
    VERIFY(eig.info() == NoConvergence);
    VERIFY_RAISES_ASSERT(eig.eigenvectors());
    VERIFY_RAISES_ASSERT(eig.eigenvalues());
    VERIFY_RAISES_ASSERT(eig.alphas());
    VERIFY_RAISES_ASSERT(eig.betas());
}

EIGEN_DECLARE_TEST(eigensolver_generalized_real)
{
  for(int i = 0; i < g_repeat; i++) {
    int s = 0;
    CALL_SUBTEST_1( generalized_eigensolver_real(Matrix4f()) );
    s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
    CALL_SUBTEST_2( generalized_eigensolver_real(MatrixXd(s,s)) );

    // some trivial but implementation-wise special cases
    CALL_SUBTEST_2( generalized_eigensolver_real(MatrixXd(1,1)) );
    CALL_SUBTEST_2( generalized_eigensolver_real(MatrixXd(2,2)) );
    CALL_SUBTEST_3( generalized_eigensolver_real(Matrix<double,1,1>()) );
    CALL_SUBTEST_4( generalized_eigensolver_real(Matrix2d()) );
    CALL_SUBTEST_5( generalized_eigensolver_assert<MatrixXd>() );
    TEST_SET_BUT_UNUSED_VARIABLE(s)
  }
}