File size: 11,659 Bytes
a42735d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_EULERSYSTEM_H
#define EIGEN_EULERSYSTEM_H
namespace Eigen
{
// Forward declarations
template <typename _Scalar, class _System>
class EulerAngles;
namespace internal
{
// TODO: Add this trait to the Eigen internal API?
template <int Num, bool IsPositive = (Num > 0)>
struct Abs
{
enum { value = Num };
};
template <int Num>
struct Abs<Num, false>
{
enum { value = -Num };
};
template <int Axis>
struct IsValidAxis
{
enum { value = Axis != 0 && Abs<Axis>::value <= 3 };
};
template<typename System,
typename Other,
int OtherRows=Other::RowsAtCompileTime,
int OtherCols=Other::ColsAtCompileTime>
struct eulerangles_assign_impl;
}
#define EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(COND,MSG) typedef char static_assertion_##MSG[(COND)?1:-1]
/** \brief Representation of a fixed signed rotation axis for EulerSystem.
*
* \ingroup EulerAngles_Module
*
* Values here represent:
* - The axis of the rotation: X, Y or Z.
* - The sign (i.e. direction of the rotation along the axis): positive(+) or negative(-)
*
* Therefore, this could express all the axes {+X,+Y,+Z,-X,-Y,-Z}
*
* For positive axis, use +EULER_{axis}, and for negative axis use -EULER_{axis}.
*/
enum EulerAxis
{
EULER_X = 1, /*!< the X axis */
EULER_Y = 2, /*!< the Y axis */
EULER_Z = 3 /*!< the Z axis */
};
/** \class EulerSystem
*
* \ingroup EulerAngles_Module
*
* \brief Represents a fixed Euler rotation system.
*
* This meta-class goal is to represent the Euler system in compilation time, for EulerAngles.
*
* You can use this class to get two things:
* - Build an Euler system, and then pass it as a template parameter to EulerAngles.
* - Query some compile time data about an Euler system. (e.g. Whether it's Tait-Bryan)
*
* Euler rotation is a set of three rotation on fixed axes. (see \ref EulerAngles)
* This meta-class store constantly those signed axes. (see \ref EulerAxis)
*
* ### Types of Euler systems ###
*
* All and only valid 3 dimension Euler rotation over standard
* signed axes{+X,+Y,+Z,-X,-Y,-Z} are supported:
* - all axes X, Y, Z in each valid order (see below what order is valid)
* - rotation over the axis is supported both over the positive and negative directions.
* - both Tait-Bryan and proper/classic Euler angles (i.e. the opposite).
*
* Since EulerSystem support both positive and negative directions,
* you may call this rotation distinction in other names:
* - _right handed_ or _left handed_
* - _counterclockwise_ or _clockwise_
*
* Notice all axed combination are valid, and would trigger a static assertion.
* Same unsigned axes can't be neighbors, e.g. {X,X,Y} is invalid.
* This yield two and only two classes:
* - _Tait-Bryan_ - all unsigned axes are distinct, e.g. {X,Y,Z}
* - _proper/classic Euler angles_ - The first and the third unsigned axes is equal,
* and the second is different, e.g. {X,Y,X}
*
* ### Intrinsic vs extrinsic Euler systems ###
*
* Only intrinsic Euler systems are supported for simplicity.
* If you want to use extrinsic Euler systems,
* just use the equal intrinsic opposite order for axes and angles.
* I.e axes (A,B,C) becomes (C,B,A), and angles (a,b,c) becomes (c,b,a).
*
* ### Convenient user typedefs ###
*
* Convenient typedefs for EulerSystem exist (only for positive axes Euler systems),
* in a form of EulerSystem{A}{B}{C}, e.g. \ref EulerSystemXYZ.
*
* ### Additional reading ###
*
* More information about Euler angles: https://en.wikipedia.org/wiki/Euler_angles
*
* \tparam _AlphaAxis the first fixed EulerAxis
*
* \tparam _BetaAxis the second fixed EulerAxis
*
* \tparam _GammaAxis the third fixed EulerAxis
*/
template <int _AlphaAxis, int _BetaAxis, int _GammaAxis>
class EulerSystem
{
public:
// It's defined this way and not as enum, because I think
// that enum is not guerantee to support negative numbers
/** The first rotation axis */
static const int AlphaAxis = _AlphaAxis;
/** The second rotation axis */
static const int BetaAxis = _BetaAxis;
/** The third rotation axis */
static const int GammaAxis = _GammaAxis;
enum
{
AlphaAxisAbs = internal::Abs<AlphaAxis>::value, /*!< the first rotation axis unsigned */
BetaAxisAbs = internal::Abs<BetaAxis>::value, /*!< the second rotation axis unsigned */
GammaAxisAbs = internal::Abs<GammaAxis>::value, /*!< the third rotation axis unsigned */
IsAlphaOpposite = (AlphaAxis < 0) ? 1 : 0, /*!< whether alpha axis is negative */
IsBetaOpposite = (BetaAxis < 0) ? 1 : 0, /*!< whether beta axis is negative */
IsGammaOpposite = (GammaAxis < 0) ? 1 : 0, /*!< whether gamma axis is negative */
// Parity is even if alpha axis X is followed by beta axis Y, or Y is followed
// by Z, or Z is followed by X; otherwise it is odd.
IsOdd = ((AlphaAxisAbs)%3 == (BetaAxisAbs - 1)%3) ? 0 : 1, /*!< whether the Euler system is odd */
IsEven = IsOdd ? 0 : 1, /*!< whether the Euler system is even */
IsTaitBryan = ((unsigned)AlphaAxisAbs != (unsigned)GammaAxisAbs) ? 1 : 0 /*!< whether the Euler system is Tait-Bryan */
};
private:
EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<AlphaAxis>::value,
ALPHA_AXIS_IS_INVALID);
EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<BetaAxis>::value,
BETA_AXIS_IS_INVALID);
EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<GammaAxis>::value,
GAMMA_AXIS_IS_INVALID);
EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT((unsigned)AlphaAxisAbs != (unsigned)BetaAxisAbs,
ALPHA_AXIS_CANT_BE_EQUAL_TO_BETA_AXIS);
EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT((unsigned)BetaAxisAbs != (unsigned)GammaAxisAbs,
BETA_AXIS_CANT_BE_EQUAL_TO_GAMMA_AXIS);
static const int
// I, J, K are the pivot indexes permutation for the rotation matrix, that match this Euler system.
// They are used in this class converters.
// They are always different from each other, and their possible values are: 0, 1, or 2.
I_ = AlphaAxisAbs - 1,
J_ = (AlphaAxisAbs - 1 + 1 + IsOdd)%3,
K_ = (AlphaAxisAbs - 1 + 2 - IsOdd)%3
;
// TODO: Get @mat parameter in form that avoids double evaluation.
template <typename Derived>
static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar, 3, 1>& res, const MatrixBase<Derived>& mat, internal::true_type /*isTaitBryan*/)
{
using std::atan2;
using std::sqrt;
typedef typename Derived::Scalar Scalar;
const Scalar plusMinus = IsEven? 1 : -1;
const Scalar minusPlus = IsOdd? 1 : -1;
const Scalar Rsum = sqrt((mat(I_,I_) * mat(I_,I_) + mat(I_,J_) * mat(I_,J_) + mat(J_,K_) * mat(J_,K_) + mat(K_,K_) * mat(K_,K_))/2);
res[1] = atan2(plusMinus * mat(I_,K_), Rsum);
// There is a singularity when cos(beta) == 0
if(Rsum > 4 * NumTraits<Scalar>::epsilon()) {// cos(beta) != 0
res[0] = atan2(minusPlus * mat(J_, K_), mat(K_, K_));
res[2] = atan2(minusPlus * mat(I_, J_), mat(I_, I_));
}
else if(plusMinus * mat(I_, K_) > 0) {// cos(beta) == 0 and sin(beta) == 1
Scalar spos = mat(J_, I_) + plusMinus * mat(K_, J_); // 2*sin(alpha + plusMinus * gamma
Scalar cpos = mat(J_, J_) + minusPlus * mat(K_, I_); // 2*cos(alpha + plusMinus * gamma)
Scalar alphaPlusMinusGamma = atan2(spos, cpos);
res[0] = alphaPlusMinusGamma;
res[2] = 0;
}
else {// cos(beta) == 0 and sin(beta) == -1
Scalar sneg = plusMinus * (mat(K_, J_) + minusPlus * mat(J_, I_)); // 2*sin(alpha + minusPlus*gamma)
Scalar cneg = mat(J_, J_) + plusMinus * mat(K_, I_); // 2*cos(alpha + minusPlus*gamma)
Scalar alphaMinusPlusBeta = atan2(sneg, cneg);
res[0] = alphaMinusPlusBeta;
res[2] = 0;
}
}
template <typename Derived>
static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar,3,1>& res,
const MatrixBase<Derived>& mat, internal::false_type /*isTaitBryan*/)
{
using std::atan2;
using std::sqrt;
typedef typename Derived::Scalar Scalar;
const Scalar plusMinus = IsEven? 1 : -1;
const Scalar minusPlus = IsOdd? 1 : -1;
const Scalar Rsum = sqrt((mat(I_, J_) * mat(I_, J_) + mat(I_, K_) * mat(I_, K_) + mat(J_, I_) * mat(J_, I_) + mat(K_, I_) * mat(K_, I_)) / 2);
res[1] = atan2(Rsum, mat(I_, I_));
// There is a singularity when sin(beta) == 0
if(Rsum > 4 * NumTraits<Scalar>::epsilon()) {// sin(beta) != 0
res[0] = atan2(mat(J_, I_), minusPlus * mat(K_, I_));
res[2] = atan2(mat(I_, J_), plusMinus * mat(I_, K_));
}
else if(mat(I_, I_) > 0) {// sin(beta) == 0 and cos(beta) == 1
Scalar spos = plusMinus * mat(K_, J_) + minusPlus * mat(J_, K_); // 2*sin(alpha + gamma)
Scalar cpos = mat(J_, J_) + mat(K_, K_); // 2*cos(alpha + gamma)
res[0] = atan2(spos, cpos);
res[2] = 0;
}
else {// sin(beta) == 0 and cos(beta) == -1
Scalar sneg = plusMinus * mat(K_, J_) + plusMinus * mat(J_, K_); // 2*sin(alpha - gamma)
Scalar cneg = mat(J_, J_) - mat(K_, K_); // 2*cos(alpha - gamma)
res[0] = atan2(sneg, cneg);
res[2] = 0;
}
}
template<typename Scalar>
static void CalcEulerAngles(
EulerAngles<Scalar, EulerSystem>& res,
const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat)
{
CalcEulerAngles_imp(
res.angles(), mat,
typename internal::conditional<IsTaitBryan, internal::true_type, internal::false_type>::type());
if (IsAlphaOpposite)
res.alpha() = -res.alpha();
if (IsBetaOpposite)
res.beta() = -res.beta();
if (IsGammaOpposite)
res.gamma() = -res.gamma();
}
template <typename _Scalar, class _System>
friend class Eigen::EulerAngles;
template<typename System,
typename Other,
int OtherRows,
int OtherCols>
friend struct internal::eulerangles_assign_impl;
};
#define EIGEN_EULER_SYSTEM_TYPEDEF(A, B, C) \
/** \ingroup EulerAngles_Module */ \
/** \brief \noop */ \
typedef EulerSystem<EULER_##A, EULER_##B, EULER_##C> EulerSystem##A##B##C;
EIGEN_EULER_SYSTEM_TYPEDEF(X,Y,Z)
EIGEN_EULER_SYSTEM_TYPEDEF(X,Y,X)
EIGEN_EULER_SYSTEM_TYPEDEF(X,Z,Y)
EIGEN_EULER_SYSTEM_TYPEDEF(X,Z,X)
EIGEN_EULER_SYSTEM_TYPEDEF(Y,Z,X)
EIGEN_EULER_SYSTEM_TYPEDEF(Y,Z,Y)
EIGEN_EULER_SYSTEM_TYPEDEF(Y,X,Z)
EIGEN_EULER_SYSTEM_TYPEDEF(Y,X,Y)
EIGEN_EULER_SYSTEM_TYPEDEF(Z,X,Y)
EIGEN_EULER_SYSTEM_TYPEDEF(Z,X,Z)
EIGEN_EULER_SYSTEM_TYPEDEF(Z,Y,X)
EIGEN_EULER_SYSTEM_TYPEDEF(Z,Y,Z)
}
#endif // EIGEN_EULERSYSTEM_H
|