File size: 22,671 Bytes
a42735d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 |
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MATRIX_FUNCTION_H
#define EIGEN_MATRIX_FUNCTION_H
#include "StemFunction.h"
namespace Eigen {
namespace internal {
/** \brief Maximum distance allowed between eigenvalues to be considered "close". */
static const float matrix_function_separation = 0.1f;
/** \ingroup MatrixFunctions_Module
* \class MatrixFunctionAtomic
* \brief Helper class for computing matrix functions of atomic matrices.
*
* Here, an atomic matrix is a triangular matrix whose diagonal entries are close to each other.
*/
template <typename MatrixType>
class MatrixFunctionAtomic
{
public:
typedef typename MatrixType::Scalar Scalar;
typedef typename stem_function<Scalar>::type StemFunction;
/** \brief Constructor
* \param[in] f matrix function to compute.
*/
MatrixFunctionAtomic(StemFunction f) : m_f(f) { }
/** \brief Compute matrix function of atomic matrix
* \param[in] A argument of matrix function, should be upper triangular and atomic
* \returns f(A), the matrix function evaluated at the given matrix
*/
MatrixType compute(const MatrixType& A);
private:
StemFunction* m_f;
};
template <typename MatrixType>
typename NumTraits<typename MatrixType::Scalar>::Real matrix_function_compute_mu(const MatrixType& A)
{
typedef typename plain_col_type<MatrixType>::type VectorType;
Index rows = A.rows();
const MatrixType N = MatrixType::Identity(rows, rows) - A;
VectorType e = VectorType::Ones(rows);
N.template triangularView<Upper>().solveInPlace(e);
return e.cwiseAbs().maxCoeff();
}
template <typename MatrixType>
MatrixType MatrixFunctionAtomic<MatrixType>::compute(const MatrixType& A)
{
// TODO: Use that A is upper triangular
typedef typename NumTraits<Scalar>::Real RealScalar;
Index rows = A.rows();
Scalar avgEival = A.trace() / Scalar(RealScalar(rows));
MatrixType Ashifted = A - avgEival * MatrixType::Identity(rows, rows);
RealScalar mu = matrix_function_compute_mu(Ashifted);
MatrixType F = m_f(avgEival, 0) * MatrixType::Identity(rows, rows);
MatrixType P = Ashifted;
MatrixType Fincr;
for (Index s = 1; double(s) < 1.1 * double(rows) + 10.0; s++) { // upper limit is fairly arbitrary
Fincr = m_f(avgEival, static_cast<int>(s)) * P;
F += Fincr;
P = Scalar(RealScalar(1)/RealScalar(s + 1)) * P * Ashifted;
// test whether Taylor series converged
const RealScalar F_norm = F.cwiseAbs().rowwise().sum().maxCoeff();
const RealScalar Fincr_norm = Fincr.cwiseAbs().rowwise().sum().maxCoeff();
if (Fincr_norm < NumTraits<Scalar>::epsilon() * F_norm) {
RealScalar delta = 0;
RealScalar rfactorial = 1;
for (Index r = 0; r < rows; r++) {
RealScalar mx = 0;
for (Index i = 0; i < rows; i++)
mx = (std::max)(mx, std::abs(m_f(Ashifted(i, i) + avgEival, static_cast<int>(s+r))));
if (r != 0)
rfactorial *= RealScalar(r);
delta = (std::max)(delta, mx / rfactorial);
}
const RealScalar P_norm = P.cwiseAbs().rowwise().sum().maxCoeff();
if (mu * delta * P_norm < NumTraits<Scalar>::epsilon() * F_norm) // series converged
break;
}
}
return F;
}
/** \brief Find cluster in \p clusters containing some value
* \param[in] key Value to find
* \returns Iterator to cluster containing \p key, or \c clusters.end() if no cluster in \p m_clusters
* contains \p key.
*/
template <typename Index, typename ListOfClusters>
typename ListOfClusters::iterator matrix_function_find_cluster(Index key, ListOfClusters& clusters)
{
typename std::list<Index>::iterator j;
for (typename ListOfClusters::iterator i = clusters.begin(); i != clusters.end(); ++i) {
j = std::find(i->begin(), i->end(), key);
if (j != i->end())
return i;
}
return clusters.end();
}
/** \brief Partition eigenvalues in clusters of ei'vals close to each other
*
* \param[in] eivals Eigenvalues
* \param[out] clusters Resulting partition of eigenvalues
*
* The partition satisfies the following two properties:
* # Any eigenvalue in a certain cluster is at most matrix_function_separation() away from another eigenvalue
* in the same cluster.
* # The distance between two eigenvalues in different clusters is more than matrix_function_separation().
* The implementation follows Algorithm 4.1 in the paper of Davies and Higham.
*/
template <typename EivalsType, typename Cluster>
void matrix_function_partition_eigenvalues(const EivalsType& eivals, std::list<Cluster>& clusters)
{
typedef typename EivalsType::RealScalar RealScalar;
for (Index i=0; i<eivals.rows(); ++i) {
// Find cluster containing i-th ei'val, adding a new cluster if necessary
typename std::list<Cluster>::iterator qi = matrix_function_find_cluster(i, clusters);
if (qi == clusters.end()) {
Cluster l;
l.push_back(i);
clusters.push_back(l);
qi = clusters.end();
--qi;
}
// Look for other element to add to the set
for (Index j=i+1; j<eivals.rows(); ++j) {
if (abs(eivals(j) - eivals(i)) <= RealScalar(matrix_function_separation)
&& std::find(qi->begin(), qi->end(), j) == qi->end()) {
typename std::list<Cluster>::iterator qj = matrix_function_find_cluster(j, clusters);
if (qj == clusters.end()) {
qi->push_back(j);
} else {
qi->insert(qi->end(), qj->begin(), qj->end());
clusters.erase(qj);
}
}
}
}
}
/** \brief Compute size of each cluster given a partitioning */
template <typename ListOfClusters, typename Index>
void matrix_function_compute_cluster_size(const ListOfClusters& clusters, Matrix<Index, Dynamic, 1>& clusterSize)
{
const Index numClusters = static_cast<Index>(clusters.size());
clusterSize.setZero(numClusters);
Index clusterIndex = 0;
for (typename ListOfClusters::const_iterator cluster = clusters.begin(); cluster != clusters.end(); ++cluster) {
clusterSize[clusterIndex] = cluster->size();
++clusterIndex;
}
}
/** \brief Compute start of each block using clusterSize */
template <typename VectorType>
void matrix_function_compute_block_start(const VectorType& clusterSize, VectorType& blockStart)
{
blockStart.resize(clusterSize.rows());
blockStart(0) = 0;
for (Index i = 1; i < clusterSize.rows(); i++) {
blockStart(i) = blockStart(i-1) + clusterSize(i-1);
}
}
/** \brief Compute mapping of eigenvalue indices to cluster indices */
template <typename EivalsType, typename ListOfClusters, typename VectorType>
void matrix_function_compute_map(const EivalsType& eivals, const ListOfClusters& clusters, VectorType& eivalToCluster)
{
eivalToCluster.resize(eivals.rows());
Index clusterIndex = 0;
for (typename ListOfClusters::const_iterator cluster = clusters.begin(); cluster != clusters.end(); ++cluster) {
for (Index i = 0; i < eivals.rows(); ++i) {
if (std::find(cluster->begin(), cluster->end(), i) != cluster->end()) {
eivalToCluster[i] = clusterIndex;
}
}
++clusterIndex;
}
}
/** \brief Compute permutation which groups ei'vals in same cluster together */
template <typename DynVectorType, typename VectorType>
void matrix_function_compute_permutation(const DynVectorType& blockStart, const DynVectorType& eivalToCluster, VectorType& permutation)
{
DynVectorType indexNextEntry = blockStart;
permutation.resize(eivalToCluster.rows());
for (Index i = 0; i < eivalToCluster.rows(); i++) {
Index cluster = eivalToCluster[i];
permutation[i] = indexNextEntry[cluster];
++indexNextEntry[cluster];
}
}
/** \brief Permute Schur decomposition in U and T according to permutation */
template <typename VectorType, typename MatrixType>
void matrix_function_permute_schur(VectorType& permutation, MatrixType& U, MatrixType& T)
{
for (Index i = 0; i < permutation.rows() - 1; i++) {
Index j;
for (j = i; j < permutation.rows(); j++) {
if (permutation(j) == i) break;
}
eigen_assert(permutation(j) == i);
for (Index k = j-1; k >= i; k--) {
JacobiRotation<typename MatrixType::Scalar> rotation;
rotation.makeGivens(T(k, k+1), T(k+1, k+1) - T(k, k));
T.applyOnTheLeft(k, k+1, rotation.adjoint());
T.applyOnTheRight(k, k+1, rotation);
U.applyOnTheRight(k, k+1, rotation);
std::swap(permutation.coeffRef(k), permutation.coeffRef(k+1));
}
}
}
/** \brief Compute block diagonal part of matrix function.
*
* This routine computes the matrix function applied to the block diagonal part of \p T (which should be
* upper triangular), with the blocking given by \p blockStart and \p clusterSize. The matrix function of
* each diagonal block is computed by \p atomic. The off-diagonal parts of \p fT are set to zero.
*/
template <typename MatrixType, typename AtomicType, typename VectorType>
void matrix_function_compute_block_atomic(const MatrixType& T, AtomicType& atomic, const VectorType& blockStart, const VectorType& clusterSize, MatrixType& fT)
{
fT.setZero(T.rows(), T.cols());
for (Index i = 0; i < clusterSize.rows(); ++i) {
fT.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i))
= atomic.compute(T.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i)));
}
}
/** \brief Solve a triangular Sylvester equation AX + XB = C
*
* \param[in] A the matrix A; should be square and upper triangular
* \param[in] B the matrix B; should be square and upper triangular
* \param[in] C the matrix C; should have correct size.
*
* \returns the solution X.
*
* If A is m-by-m and B is n-by-n, then both C and X are m-by-n. The (i,j)-th component of the Sylvester
* equation is
* \f[
* \sum_{k=i}^m A_{ik} X_{kj} + \sum_{k=1}^j X_{ik} B_{kj} = C_{ij}.
* \f]
* This can be re-arranged to yield:
* \f[
* X_{ij} = \frac{1}{A_{ii} + B_{jj}} \Bigl( C_{ij}
* - \sum_{k=i+1}^m A_{ik} X_{kj} - \sum_{k=1}^{j-1} X_{ik} B_{kj} \Bigr).
* \f]
* It is assumed that A and B are such that the numerator is never zero (otherwise the Sylvester equation
* does not have a unique solution). In that case, these equations can be evaluated in the order
* \f$ i=m,\ldots,1 \f$ and \f$ j=1,\ldots,n \f$.
*/
template <typename MatrixType>
MatrixType matrix_function_solve_triangular_sylvester(const MatrixType& A, const MatrixType& B, const MatrixType& C)
{
eigen_assert(A.rows() == A.cols());
eigen_assert(A.isUpperTriangular());
eigen_assert(B.rows() == B.cols());
eigen_assert(B.isUpperTriangular());
eigen_assert(C.rows() == A.rows());
eigen_assert(C.cols() == B.rows());
typedef typename MatrixType::Scalar Scalar;
Index m = A.rows();
Index n = B.rows();
MatrixType X(m, n);
for (Index i = m - 1; i >= 0; --i) {
for (Index j = 0; j < n; ++j) {
// Compute AX = \sum_{k=i+1}^m A_{ik} X_{kj}
Scalar AX;
if (i == m - 1) {
AX = 0;
} else {
Matrix<Scalar,1,1> AXmatrix = A.row(i).tail(m-1-i) * X.col(j).tail(m-1-i);
AX = AXmatrix(0,0);
}
// Compute XB = \sum_{k=1}^{j-1} X_{ik} B_{kj}
Scalar XB;
if (j == 0) {
XB = 0;
} else {
Matrix<Scalar,1,1> XBmatrix = X.row(i).head(j) * B.col(j).head(j);
XB = XBmatrix(0,0);
}
X(i,j) = (C(i,j) - AX - XB) / (A(i,i) + B(j,j));
}
}
return X;
}
/** \brief Compute part of matrix function above block diagonal.
*
* This routine completes the computation of \p fT, denoting a matrix function applied to the triangular
* matrix \p T. It assumes that the block diagonal part of \p fT has already been computed. The part below
* the diagonal is zero, because \p T is upper triangular.
*/
template <typename MatrixType, typename VectorType>
void matrix_function_compute_above_diagonal(const MatrixType& T, const VectorType& blockStart, const VectorType& clusterSize, MatrixType& fT)
{
typedef internal::traits<MatrixType> Traits;
typedef typename MatrixType::Scalar Scalar;
static const int Options = MatrixType::Options;
typedef Matrix<Scalar, Dynamic, Dynamic, Options, Traits::RowsAtCompileTime, Traits::ColsAtCompileTime> DynMatrixType;
for (Index k = 1; k < clusterSize.rows(); k++) {
for (Index i = 0; i < clusterSize.rows() - k; i++) {
// compute (i, i+k) block
DynMatrixType A = T.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i));
DynMatrixType B = -T.block(blockStart(i+k), blockStart(i+k), clusterSize(i+k), clusterSize(i+k));
DynMatrixType C = fT.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i))
* T.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k));
C -= T.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k))
* fT.block(blockStart(i+k), blockStart(i+k), clusterSize(i+k), clusterSize(i+k));
for (Index m = i + 1; m < i + k; m++) {
C += fT.block(blockStart(i), blockStart(m), clusterSize(i), clusterSize(m))
* T.block(blockStart(m), blockStart(i+k), clusterSize(m), clusterSize(i+k));
C -= T.block(blockStart(i), blockStart(m), clusterSize(i), clusterSize(m))
* fT.block(blockStart(m), blockStart(i+k), clusterSize(m), clusterSize(i+k));
}
fT.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k))
= matrix_function_solve_triangular_sylvester(A, B, C);
}
}
}
/** \ingroup MatrixFunctions_Module
* \brief Class for computing matrix functions.
* \tparam MatrixType type of the argument of the matrix function,
* expected to be an instantiation of the Matrix class template.
* \tparam AtomicType type for computing matrix function of atomic blocks.
* \tparam IsComplex used internally to select correct specialization.
*
* This class implements the Schur-Parlett algorithm for computing matrix functions. The spectrum of the
* matrix is divided in clustered of eigenvalues that lies close together. This class delegates the
* computation of the matrix function on every block corresponding to these clusters to an object of type
* \p AtomicType and uses these results to compute the matrix function of the whole matrix. The class
* \p AtomicType should have a \p compute() member function for computing the matrix function of a block.
*
* \sa class MatrixFunctionAtomic, class MatrixLogarithmAtomic
*/
template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
struct matrix_function_compute
{
/** \brief Compute the matrix function.
*
* \param[in] A argument of matrix function, should be a square matrix.
* \param[in] atomic class for computing matrix function of atomic blocks.
* \param[out] result the function \p f applied to \p A, as
* specified in the constructor.
*
* See MatrixBase::matrixFunction() for details on how this computation
* is implemented.
*/
template <typename AtomicType, typename ResultType>
static void run(const MatrixType& A, AtomicType& atomic, ResultType &result);
};
/** \internal \ingroup MatrixFunctions_Module
* \brief Partial specialization of MatrixFunction for real matrices
*
* This converts the real matrix to a complex matrix, compute the matrix function of that matrix, and then
* converts the result back to a real matrix.
*/
template <typename MatrixType>
struct matrix_function_compute<MatrixType, 0>
{
template <typename MatA, typename AtomicType, typename ResultType>
static void run(const MatA& A, AtomicType& atomic, ResultType &result)
{
typedef internal::traits<MatrixType> Traits;
typedef typename Traits::Scalar Scalar;
static const int Rows = Traits::RowsAtCompileTime, Cols = Traits::ColsAtCompileTime;
static const int MaxRows = Traits::MaxRowsAtCompileTime, MaxCols = Traits::MaxColsAtCompileTime;
typedef std::complex<Scalar> ComplexScalar;
typedef Matrix<ComplexScalar, Rows, Cols, 0, MaxRows, MaxCols> ComplexMatrix;
ComplexMatrix CA = A.template cast<ComplexScalar>();
ComplexMatrix Cresult;
matrix_function_compute<ComplexMatrix>::run(CA, atomic, Cresult);
result = Cresult.real();
}
};
/** \internal \ingroup MatrixFunctions_Module
* \brief Partial specialization of MatrixFunction for complex matrices
*/
template <typename MatrixType>
struct matrix_function_compute<MatrixType, 1>
{
template <typename MatA, typename AtomicType, typename ResultType>
static void run(const MatA& A, AtomicType& atomic, ResultType &result)
{
typedef internal::traits<MatrixType> Traits;
// compute Schur decomposition of A
const ComplexSchur<MatrixType> schurOfA(A);
eigen_assert(schurOfA.info()==Success);
MatrixType T = schurOfA.matrixT();
MatrixType U = schurOfA.matrixU();
// partition eigenvalues into clusters of ei'vals "close" to each other
std::list<std::list<Index> > clusters;
matrix_function_partition_eigenvalues(T.diagonal(), clusters);
// compute size of each cluster
Matrix<Index, Dynamic, 1> clusterSize;
matrix_function_compute_cluster_size(clusters, clusterSize);
// blockStart[i] is row index at which block corresponding to i-th cluster starts
Matrix<Index, Dynamic, 1> blockStart;
matrix_function_compute_block_start(clusterSize, blockStart);
// compute map so that eivalToCluster[i] = j means that i-th ei'val is in j-th cluster
Matrix<Index, Dynamic, 1> eivalToCluster;
matrix_function_compute_map(T.diagonal(), clusters, eivalToCluster);
// compute permutation which groups ei'vals in same cluster together
Matrix<Index, Traits::RowsAtCompileTime, 1> permutation;
matrix_function_compute_permutation(blockStart, eivalToCluster, permutation);
// permute Schur decomposition
matrix_function_permute_schur(permutation, U, T);
// compute result
MatrixType fT; // matrix function applied to T
matrix_function_compute_block_atomic(T, atomic, blockStart, clusterSize, fT);
matrix_function_compute_above_diagonal(T, blockStart, clusterSize, fT);
result = U * (fT.template triangularView<Upper>() * U.adjoint());
}
};
} // end of namespace internal
/** \ingroup MatrixFunctions_Module
*
* \brief Proxy for the matrix function of some matrix (expression).
*
* \tparam Derived Type of the argument to the matrix function.
*
* This class holds the argument to the matrix function until it is assigned or evaluated for some other
* reason (so the argument should not be changed in the meantime). It is the return type of
* matrixBase::matrixFunction() and related functions and most of the time this is the only way it is used.
*/
template<typename Derived> class MatrixFunctionReturnValue
: public ReturnByValue<MatrixFunctionReturnValue<Derived> >
{
public:
typedef typename Derived::Scalar Scalar;
typedef typename internal::stem_function<Scalar>::type StemFunction;
protected:
typedef typename internal::ref_selector<Derived>::type DerivedNested;
public:
/** \brief Constructor.
*
* \param[in] A %Matrix (expression) forming the argument of the matrix function.
* \param[in] f Stem function for matrix function under consideration.
*/
MatrixFunctionReturnValue(const Derived& A, StemFunction f) : m_A(A), m_f(f) { }
/** \brief Compute the matrix function.
*
* \param[out] result \p f applied to \p A, where \p f and \p A are as in the constructor.
*/
template <typename ResultType>
inline void evalTo(ResultType& result) const
{
typedef typename internal::nested_eval<Derived, 10>::type NestedEvalType;
typedef typename internal::remove_all<NestedEvalType>::type NestedEvalTypeClean;
typedef internal::traits<NestedEvalTypeClean> Traits;
typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0, Traits::RowsAtCompileTime, Traits::ColsAtCompileTime> DynMatrixType;
typedef internal::MatrixFunctionAtomic<DynMatrixType> AtomicType;
AtomicType atomic(m_f);
internal::matrix_function_compute<typename NestedEvalTypeClean::PlainObject>::run(m_A, atomic, result);
}
Index rows() const { return m_A.rows(); }
Index cols() const { return m_A.cols(); }
private:
const DerivedNested m_A;
StemFunction *m_f;
};
namespace internal {
template<typename Derived>
struct traits<MatrixFunctionReturnValue<Derived> >
{
typedef typename Derived::PlainObject ReturnType;
};
}
/********** MatrixBase methods **********/
template <typename Derived>
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::matrixFunction(typename internal::stem_function<typename internal::traits<Derived>::Scalar>::type f) const
{
eigen_assert(rows() == cols());
return MatrixFunctionReturnValue<Derived>(derived(), f);
}
template <typename Derived>
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const
{
eigen_assert(rows() == cols());
typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_sin<ComplexScalar>);
}
template <typename Derived>
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const
{
eigen_assert(rows() == cols());
typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_cos<ComplexScalar>);
}
template <typename Derived>
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sinh() const
{
eigen_assert(rows() == cols());
typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_sinh<ComplexScalar>);
}
template <typename Derived>
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cosh() const
{
eigen_assert(rows() == cols());
typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_cosh<ComplexScalar>);
}
} // end namespace Eigen
#endif // EIGEN_MATRIX_FUNCTION_H
|