File size: 40,316 Bytes
a42735d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 |
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2013 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
// Copyright (C) 2013 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSEBLOCKMATRIX_H
#define EIGEN_SPARSEBLOCKMATRIX_H
namespace Eigen {
/** \ingroup SparseCore_Module
*
* \class BlockSparseMatrix
*
* \brief A versatile sparse matrix representation where each element is a block
*
* This class provides routines to manipulate block sparse matrices stored in a
* BSR-like representation. There are two main types :
*
* 1. All blocks have the same number of rows and columns, called block size
* in the following. In this case, if this block size is known at compile time,
* it can be given as a template parameter like
* \code
* BlockSparseMatrix<Scalar, 3, ColMajor> bmat(b_rows, b_cols);
* \endcode
* Here, bmat is a b_rows x b_cols block sparse matrix
* where each coefficient is a 3x3 dense matrix.
* If the block size is fixed but will be given at runtime,
* \code
* BlockSparseMatrix<Scalar, Dynamic, ColMajor> bmat(b_rows, b_cols);
* bmat.setBlockSize(block_size);
* \endcode
*
* 2. The second case is for variable-block sparse matrices.
* Here each block has its own dimensions. The only restriction is that all the blocks
* in a row (resp. a column) should have the same number of rows (resp. of columns).
* It is thus required in this case to describe the layout of the matrix by calling
* setBlockLayout(rowBlocks, colBlocks).
*
* In any of the previous case, the matrix can be filled by calling setFromTriplets().
* A regular sparse matrix can be converted to a block sparse matrix and vice versa.
* It is obviously required to describe the block layout beforehand by calling either
* setBlockSize() for fixed-size blocks or setBlockLayout for variable-size blocks.
*
* \tparam _Scalar The Scalar type
* \tparam _BlockAtCompileTime The block layout option. It takes the following values
* Dynamic : block size known at runtime
* a numeric number : fixed-size block known at compile time
*/
template<typename _Scalar, int _BlockAtCompileTime=Dynamic, int _Options=ColMajor, typename _StorageIndex=int> class BlockSparseMatrix;
template<typename BlockSparseMatrixT> class BlockSparseMatrixView;
namespace internal {
template<typename _Scalar, int _BlockAtCompileTime, int _Options, typename _Index>
struct traits<BlockSparseMatrix<_Scalar,_BlockAtCompileTime,_Options, _Index> >
{
typedef _Scalar Scalar;
typedef _Index Index;
typedef Sparse StorageKind; // FIXME Where is it used ??
typedef MatrixXpr XprKind;
enum {
RowsAtCompileTime = Dynamic,
ColsAtCompileTime = Dynamic,
MaxRowsAtCompileTime = Dynamic,
MaxColsAtCompileTime = Dynamic,
BlockSize = _BlockAtCompileTime,
Flags = _Options | NestByRefBit | LvalueBit,
CoeffReadCost = NumTraits<Scalar>::ReadCost,
SupportedAccessPatterns = InnerRandomAccessPattern
};
};
template<typename BlockSparseMatrixT>
struct traits<BlockSparseMatrixView<BlockSparseMatrixT> >
{
typedef Ref<Matrix<typename BlockSparseMatrixT::Scalar, BlockSparseMatrixT::BlockSize, BlockSparseMatrixT::BlockSize> > Scalar;
typedef Ref<Matrix<typename BlockSparseMatrixT::RealScalar, BlockSparseMatrixT::BlockSize, BlockSparseMatrixT::BlockSize> > RealScalar;
};
// Function object to sort a triplet list
template<typename Iterator, bool IsColMajor>
struct TripletComp
{
typedef typename Iterator::value_type Triplet;
bool operator()(const Triplet& a, const Triplet& b)
{ if(IsColMajor)
return ((a.col() == b.col() && a.row() < b.row()) || (a.col() < b.col()));
else
return ((a.row() == b.row() && a.col() < b.col()) || (a.row() < b.row()));
}
};
} // end namespace internal
/* Proxy to view the block sparse matrix as a regular sparse matrix */
template<typename BlockSparseMatrixT>
class BlockSparseMatrixView : public SparseMatrixBase<BlockSparseMatrixT>
{
public:
typedef Ref<typename BlockSparseMatrixT::BlockScalar> Scalar;
typedef Ref<typename BlockSparseMatrixT::BlockRealScalar> RealScalar;
typedef typename BlockSparseMatrixT::Index Index;
typedef BlockSparseMatrixT Nested;
enum {
Flags = BlockSparseMatrixT::Options,
Options = BlockSparseMatrixT::Options,
RowsAtCompileTime = BlockSparseMatrixT::RowsAtCompileTime,
ColsAtCompileTime = BlockSparseMatrixT::ColsAtCompileTime,
MaxColsAtCompileTime = BlockSparseMatrixT::MaxColsAtCompileTime,
MaxRowsAtCompileTime = BlockSparseMatrixT::MaxRowsAtCompileTime
};
public:
BlockSparseMatrixView(const BlockSparseMatrixT& spblockmat)
: m_spblockmat(spblockmat)
{}
Index outerSize() const
{
return (Flags&RowMajorBit) == 1 ? this->rows() : this->cols();
}
Index cols() const
{
return m_spblockmat.blockCols();
}
Index rows() const
{
return m_spblockmat.blockRows();
}
Scalar coeff(Index row, Index col)
{
return m_spblockmat.coeff(row, col);
}
Scalar coeffRef(Index row, Index col)
{
return m_spblockmat.coeffRef(row, col);
}
// Wrapper to iterate over all blocks
class InnerIterator : public BlockSparseMatrixT::BlockInnerIterator
{
public:
InnerIterator(const BlockSparseMatrixView& mat, Index outer)
: BlockSparseMatrixT::BlockInnerIterator(mat.m_spblockmat, outer)
{}
};
protected:
const BlockSparseMatrixT& m_spblockmat;
};
// Proxy to view a regular vector as a block vector
template<typename BlockSparseMatrixT, typename VectorType>
class BlockVectorView
{
public:
enum {
BlockSize = BlockSparseMatrixT::BlockSize,
ColsAtCompileTime = VectorType::ColsAtCompileTime,
RowsAtCompileTime = VectorType::RowsAtCompileTime,
Flags = VectorType::Flags
};
typedef Ref<const Matrix<typename BlockSparseMatrixT::Scalar, (RowsAtCompileTime==1)? 1 : BlockSize, (ColsAtCompileTime==1)? 1 : BlockSize> >Scalar;
typedef typename BlockSparseMatrixT::Index Index;
public:
BlockVectorView(const BlockSparseMatrixT& spblockmat, const VectorType& vec)
: m_spblockmat(spblockmat),m_vec(vec)
{ }
inline Index cols() const
{
return m_vec.cols();
}
inline Index size() const
{
return m_spblockmat.blockRows();
}
inline Scalar coeff(Index bi) const
{
Index startRow = m_spblockmat.blockRowsIndex(bi);
Index rowSize = m_spblockmat.blockRowsIndex(bi+1) - startRow;
return m_vec.middleRows(startRow, rowSize);
}
inline Scalar coeff(Index bi, Index j) const
{
Index startRow = m_spblockmat.blockRowsIndex(bi);
Index rowSize = m_spblockmat.blockRowsIndex(bi+1) - startRow;
return m_vec.block(startRow, j, rowSize, 1);
}
protected:
const BlockSparseMatrixT& m_spblockmat;
const VectorType& m_vec;
};
template<typename VectorType, typename Index> class BlockVectorReturn;
// Proxy to view a regular vector as a block vector
template<typename BlockSparseMatrixT, typename VectorType>
class BlockVectorReturn
{
public:
enum {
ColsAtCompileTime = VectorType::ColsAtCompileTime,
RowsAtCompileTime = VectorType::RowsAtCompileTime,
Flags = VectorType::Flags
};
typedef Ref<Matrix<typename VectorType::Scalar, RowsAtCompileTime, ColsAtCompileTime> > Scalar;
typedef typename BlockSparseMatrixT::Index Index;
public:
BlockVectorReturn(const BlockSparseMatrixT& spblockmat, VectorType& vec)
: m_spblockmat(spblockmat),m_vec(vec)
{ }
inline Index size() const
{
return m_spblockmat.blockRows();
}
inline Scalar coeffRef(Index bi)
{
Index startRow = m_spblockmat.blockRowsIndex(bi);
Index rowSize = m_spblockmat.blockRowsIndex(bi+1) - startRow;
return m_vec.middleRows(startRow, rowSize);
}
inline Scalar coeffRef(Index bi, Index j)
{
Index startRow = m_spblockmat.blockRowsIndex(bi);
Index rowSize = m_spblockmat.blockRowsIndex(bi+1) - startRow;
return m_vec.block(startRow, j, rowSize, 1);
}
protected:
const BlockSparseMatrixT& m_spblockmat;
VectorType& m_vec;
};
// Block version of the sparse dense product
template<typename Lhs, typename Rhs>
class BlockSparseTimeDenseProduct;
namespace internal {
template<typename BlockSparseMatrixT, typename VecType>
struct traits<BlockSparseTimeDenseProduct<BlockSparseMatrixT, VecType> >
{
typedef Dense StorageKind;
typedef MatrixXpr XprKind;
typedef typename BlockSparseMatrixT::Scalar Scalar;
typedef typename BlockSparseMatrixT::Index Index;
enum {
RowsAtCompileTime = Dynamic,
ColsAtCompileTime = Dynamic,
MaxRowsAtCompileTime = Dynamic,
MaxColsAtCompileTime = Dynamic,
Flags = 0,
CoeffReadCost = internal::traits<BlockSparseMatrixT>::CoeffReadCost
};
};
} // end namespace internal
template<typename Lhs, typename Rhs>
class BlockSparseTimeDenseProduct
: public ProductBase<BlockSparseTimeDenseProduct<Lhs,Rhs>, Lhs, Rhs>
{
public:
EIGEN_PRODUCT_PUBLIC_INTERFACE(BlockSparseTimeDenseProduct)
BlockSparseTimeDenseProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
{}
template<typename Dest> void scaleAndAddTo(Dest& dest, const typename Rhs::Scalar& alpha) const
{
BlockVectorReturn<Lhs,Dest> tmpDest(m_lhs, dest);
internal::sparse_time_dense_product( BlockSparseMatrixView<Lhs>(m_lhs), BlockVectorView<Lhs, Rhs>(m_lhs, m_rhs), tmpDest, alpha);
}
private:
BlockSparseTimeDenseProduct& operator=(const BlockSparseTimeDenseProduct&);
};
template<typename _Scalar, int _BlockAtCompileTime, int _Options, typename _StorageIndex>
class BlockSparseMatrix : public SparseMatrixBase<BlockSparseMatrix<_Scalar,_BlockAtCompileTime, _Options,_StorageIndex> >
{
public:
typedef _Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef _StorageIndex StorageIndex;
typedef typename internal::ref_selector<BlockSparseMatrix<_Scalar, _BlockAtCompileTime, _Options, _StorageIndex> >::type Nested;
enum {
Options = _Options,
Flags = Options,
BlockSize=_BlockAtCompileTime,
RowsAtCompileTime = Dynamic,
ColsAtCompileTime = Dynamic,
MaxRowsAtCompileTime = Dynamic,
MaxColsAtCompileTime = Dynamic,
IsVectorAtCompileTime = 0,
IsColMajor = Flags&RowMajorBit ? 0 : 1
};
typedef Matrix<Scalar, _BlockAtCompileTime, _BlockAtCompileTime,IsColMajor ? ColMajor : RowMajor> BlockScalar;
typedef Matrix<RealScalar, _BlockAtCompileTime, _BlockAtCompileTime,IsColMajor ? ColMajor : RowMajor> BlockRealScalar;
typedef typename internal::conditional<_BlockAtCompileTime==Dynamic, Scalar, BlockScalar>::type BlockScalarReturnType;
typedef BlockSparseMatrix<Scalar, BlockSize, IsColMajor ? ColMajor : RowMajor, StorageIndex> PlainObject;
public:
// Default constructor
BlockSparseMatrix()
: m_innerBSize(0),m_outerBSize(0),m_innerOffset(0),m_outerOffset(0),
m_nonzerosblocks(0),m_values(0),m_blockPtr(0),m_indices(0),
m_outerIndex(0),m_blockSize(BlockSize)
{ }
/**
* \brief Construct and resize
*
*/
BlockSparseMatrix(Index brow, Index bcol)
: m_innerBSize(IsColMajor ? brow : bcol),
m_outerBSize(IsColMajor ? bcol : brow),
m_innerOffset(0),m_outerOffset(0),m_nonzerosblocks(0),
m_values(0),m_blockPtr(0),m_indices(0),
m_outerIndex(0),m_blockSize(BlockSize)
{ }
/**
* \brief Copy-constructor
*/
BlockSparseMatrix(const BlockSparseMatrix& other)
: m_innerBSize(other.m_innerBSize),m_outerBSize(other.m_outerBSize),
m_nonzerosblocks(other.m_nonzerosblocks),m_nonzeros(other.m_nonzeros),
m_blockPtr(0),m_blockSize(other.m_blockSize)
{
// should we allow copying between variable-size blocks and fixed-size blocks ??
eigen_assert(m_blockSize == BlockSize && " CAN NOT COPY BETWEEN FIXED-SIZE AND VARIABLE-SIZE BLOCKS");
std::copy(other.m_innerOffset, other.m_innerOffset+m_innerBSize+1, m_innerOffset);
std::copy(other.m_outerOffset, other.m_outerOffset+m_outerBSize+1, m_outerOffset);
std::copy(other.m_values, other.m_values+m_nonzeros, m_values);
if(m_blockSize != Dynamic)
std::copy(other.m_blockPtr, other.m_blockPtr+m_nonzerosblocks, m_blockPtr);
std::copy(other.m_indices, other.m_indices+m_nonzerosblocks, m_indices);
std::copy(other.m_outerIndex, other.m_outerIndex+m_outerBSize, m_outerIndex);
}
friend void swap(BlockSparseMatrix& first, BlockSparseMatrix& second)
{
std::swap(first.m_innerBSize, second.m_innerBSize);
std::swap(first.m_outerBSize, second.m_outerBSize);
std::swap(first.m_innerOffset, second.m_innerOffset);
std::swap(first.m_outerOffset, second.m_outerOffset);
std::swap(first.m_nonzerosblocks, second.m_nonzerosblocks);
std::swap(first.m_nonzeros, second.m_nonzeros);
std::swap(first.m_values, second.m_values);
std::swap(first.m_blockPtr, second.m_blockPtr);
std::swap(first.m_indices, second.m_indices);
std::swap(first.m_outerIndex, second.m_outerIndex);
std::swap(first.m_BlockSize, second.m_blockSize);
}
BlockSparseMatrix& operator=(BlockSparseMatrix other)
{
//Copy-and-swap paradigm ... avoid leaked data if thrown
swap(*this, other);
return *this;
}
// Destructor
~BlockSparseMatrix()
{
delete[] m_outerIndex;
delete[] m_innerOffset;
delete[] m_outerOffset;
delete[] m_indices;
delete[] m_blockPtr;
delete[] m_values;
}
/**
* \brief Constructor from a sparse matrix
*
*/
template<typename MatrixType>
inline BlockSparseMatrix(const MatrixType& spmat) : m_blockSize(BlockSize)
{
EIGEN_STATIC_ASSERT((m_blockSize != Dynamic), THIS_METHOD_IS_ONLY_FOR_FIXED_SIZE);
*this = spmat;
}
/**
* \brief Assignment from a sparse matrix with the same storage order
*
* Convert from a sparse matrix to block sparse matrix.
* \warning Before calling this function, tt is necessary to call
* either setBlockLayout() (matrices with variable-size blocks)
* or setBlockSize() (for fixed-size blocks).
*/
template<typename MatrixType>
inline BlockSparseMatrix& operator=(const MatrixType& spmat)
{
eigen_assert((m_innerBSize != 0 && m_outerBSize != 0)
&& "Trying to assign to a zero-size matrix, call resize() first");
eigen_assert(((MatrixType::Options&RowMajorBit) != IsColMajor) && "Wrong storage order");
typedef SparseMatrix<bool,MatrixType::Options,typename MatrixType::Index> MatrixPatternType;
MatrixPatternType blockPattern(blockRows(), blockCols());
m_nonzeros = 0;
// First, compute the number of nonzero blocks and their locations
for(StorageIndex bj = 0; bj < m_outerBSize; ++bj)
{
// Browse each outer block and compute the structure
std::vector<bool> nzblocksFlag(m_innerBSize,false); // Record the existing blocks
blockPattern.startVec(bj);
for(StorageIndex j = blockOuterIndex(bj); j < blockOuterIndex(bj+1); ++j)
{
typename MatrixType::InnerIterator it_spmat(spmat, j);
for(; it_spmat; ++it_spmat)
{
StorageIndex bi = innerToBlock(it_spmat.index()); // Index of the current nonzero block
if(!nzblocksFlag[bi])
{
// Save the index of this nonzero block
nzblocksFlag[bi] = true;
blockPattern.insertBackByOuterInnerUnordered(bj, bi) = true;
// Compute the total number of nonzeros (including explicit zeros in blocks)
m_nonzeros += blockOuterSize(bj) * blockInnerSize(bi);
}
}
} // end current outer block
}
blockPattern.finalize();
// Allocate the internal arrays
setBlockStructure(blockPattern);
for(StorageIndex nz = 0; nz < m_nonzeros; ++nz) m_values[nz] = Scalar(0);
for(StorageIndex bj = 0; bj < m_outerBSize; ++bj)
{
// Now copy the values
for(StorageIndex j = blockOuterIndex(bj); j < blockOuterIndex(bj+1); ++j)
{
// Browse the outer block column by column (for column-major matrices)
typename MatrixType::InnerIterator it_spmat(spmat, j);
for(; it_spmat; ++it_spmat)
{
StorageIndex idx = 0; // Position of this block in the column block
StorageIndex bi = innerToBlock(it_spmat.index()); // Index of the current nonzero block
// Go to the inner block where this element belongs to
while(bi > m_indices[m_outerIndex[bj]+idx]) ++idx; // Not expensive for ordered blocks
StorageIndex idxVal;// Get the right position in the array of values for this element
if(m_blockSize == Dynamic)
{
// Offset from all blocks before ...
idxVal = m_blockPtr[m_outerIndex[bj]+idx];
// ... and offset inside the block
idxVal += (j - blockOuterIndex(bj)) * blockOuterSize(bj) + it_spmat.index() - m_innerOffset[bi];
}
else
{
// All blocks before
idxVal = (m_outerIndex[bj] + idx) * m_blockSize * m_blockSize;
// inside the block
idxVal += (j - blockOuterIndex(bj)) * m_blockSize + (it_spmat.index()%m_blockSize);
}
// Insert the value
m_values[idxVal] = it_spmat.value();
} // end of this column
} // end of this block
} // end of this outer block
return *this;
}
/**
* \brief Set the nonzero block pattern of the matrix
*
* Given a sparse matrix describing the nonzero block pattern,
* this function prepares the internal pointers for values.
* After calling this function, any *nonzero* block (bi, bj) can be set
* with a simple call to coeffRef(bi,bj).
*
*
* \warning Before calling this function, tt is necessary to call
* either setBlockLayout() (matrices with variable-size blocks)
* or setBlockSize() (for fixed-size blocks).
*
* \param blockPattern Sparse matrix of boolean elements describing the block structure
*
* \sa setBlockLayout() \sa setBlockSize()
*/
template<typename MatrixType>
void setBlockStructure(const MatrixType& blockPattern)
{
resize(blockPattern.rows(), blockPattern.cols());
reserve(blockPattern.nonZeros());
// Browse the block pattern and set up the various pointers
m_outerIndex[0] = 0;
if(m_blockSize == Dynamic) m_blockPtr[0] = 0;
for(StorageIndex nz = 0; nz < m_nonzeros; ++nz) m_values[nz] = Scalar(0);
for(StorageIndex bj = 0; bj < m_outerBSize; ++bj)
{
//Browse each outer block
//First, copy and save the indices of nonzero blocks
//FIXME : find a way to avoid this ...
std::vector<int> nzBlockIdx;
typename MatrixType::InnerIterator it(blockPattern, bj);
for(; it; ++it)
{
nzBlockIdx.push_back(it.index());
}
std::sort(nzBlockIdx.begin(), nzBlockIdx.end());
// Now, fill block indices and (eventually) pointers to blocks
for(StorageIndex idx = 0; idx < nzBlockIdx.size(); ++idx)
{
StorageIndex offset = m_outerIndex[bj]+idx; // offset in m_indices
m_indices[offset] = nzBlockIdx[idx];
if(m_blockSize == Dynamic)
m_blockPtr[offset] = m_blockPtr[offset-1] + blockInnerSize(nzBlockIdx[idx]) * blockOuterSize(bj);
// There is no blockPtr for fixed-size blocks... not needed !???
}
// Save the pointer to the next outer block
m_outerIndex[bj+1] = m_outerIndex[bj] + nzBlockIdx.size();
}
}
/**
* \brief Set the number of rows and columns blocks
*/
inline void resize(Index brow, Index bcol)
{
m_innerBSize = IsColMajor ? brow : bcol;
m_outerBSize = IsColMajor ? bcol : brow;
}
/**
* \brief set the block size at runtime for fixed-size block layout
*
* Call this only for fixed-size blocks
*/
inline void setBlockSize(Index blockSize)
{
m_blockSize = blockSize;
}
/**
* \brief Set the row and column block layouts,
*
* This function set the size of each row and column block.
* So this function should be used only for blocks with variable size.
* \param rowBlocks : Number of rows per row block
* \param colBlocks : Number of columns per column block
* \sa resize(), setBlockSize()
*/
inline void setBlockLayout(const VectorXi& rowBlocks, const VectorXi& colBlocks)
{
const VectorXi& innerBlocks = IsColMajor ? rowBlocks : colBlocks;
const VectorXi& outerBlocks = IsColMajor ? colBlocks : rowBlocks;
eigen_assert(m_innerBSize == innerBlocks.size() && "CHECK THE NUMBER OF ROW OR COLUMN BLOCKS");
eigen_assert(m_outerBSize == outerBlocks.size() && "CHECK THE NUMBER OF ROW OR COLUMN BLOCKS");
m_outerBSize = outerBlocks.size();
// starting index of blocks... cumulative sums
m_innerOffset = new StorageIndex[m_innerBSize+1];
m_outerOffset = new StorageIndex[m_outerBSize+1];
m_innerOffset[0] = 0;
m_outerOffset[0] = 0;
std::partial_sum(&innerBlocks[0], &innerBlocks[m_innerBSize-1]+1, &m_innerOffset[1]);
std::partial_sum(&outerBlocks[0], &outerBlocks[m_outerBSize-1]+1, &m_outerOffset[1]);
// Compute the total number of nonzeros
m_nonzeros = 0;
for(StorageIndex bj = 0; bj < m_outerBSize; ++bj)
for(StorageIndex bi = 0; bi < m_innerBSize; ++bi)
m_nonzeros += outerBlocks[bj] * innerBlocks[bi];
}
/**
* \brief Allocate the internal array of pointers to blocks and their inner indices
*
* \note For fixed-size blocks, call setBlockSize() to set the block.
* And For variable-size blocks, call setBlockLayout() before using this function
*
* \param nonzerosblocks Number of nonzero blocks. The total number of nonzeros is
* is computed in setBlockLayout() for variable-size blocks
* \sa setBlockSize()
*/
inline void reserve(const Index nonzerosblocks)
{
eigen_assert((m_innerBSize != 0 && m_outerBSize != 0) &&
"TRYING TO RESERVE ZERO-SIZE MATRICES, CALL resize() first");
//FIXME Should free if already allocated
m_outerIndex = new StorageIndex[m_outerBSize+1];
m_nonzerosblocks = nonzerosblocks;
if(m_blockSize != Dynamic)
{
m_nonzeros = nonzerosblocks * (m_blockSize * m_blockSize);
m_blockPtr = 0;
}
else
{
// m_nonzeros is already computed in setBlockLayout()
m_blockPtr = new StorageIndex[m_nonzerosblocks+1];
}
m_indices = new StorageIndex[m_nonzerosblocks+1];
m_values = new Scalar[m_nonzeros];
}
/**
* \brief Fill values in a matrix from a triplet list.
*
* Each triplet item has a block stored in an Eigen dense matrix.
* The InputIterator class should provide the functions row(), col() and value()
*
* \note For fixed-size blocks, call setBlockSize() before this function.
*
* FIXME Do not accept duplicates
*/
template<typename InputIterator>
void setFromTriplets(const InputIterator& begin, const InputIterator& end)
{
eigen_assert((m_innerBSize!=0 && m_outerBSize !=0) && "ZERO BLOCKS, PLEASE CALL resize() before");
/* First, sort the triplet list
* FIXME This can be unnecessarily expensive since only the inner indices have to be sorted
* The best approach is like in SparseMatrix::setFromTriplets()
*/
internal::TripletComp<InputIterator, IsColMajor> tripletcomp;
std::sort(begin, end, tripletcomp);
/* Count the number of rows and column blocks,
* and the number of nonzero blocks per outer dimension
*/
VectorXi rowBlocks(m_innerBSize); // Size of each block row
VectorXi colBlocks(m_outerBSize); // Size of each block column
rowBlocks.setZero(); colBlocks.setZero();
VectorXi nzblock_outer(m_outerBSize); // Number of nz blocks per outer vector
VectorXi nz_outer(m_outerBSize); // Number of nz per outer vector...for variable-size blocks
nzblock_outer.setZero();
nz_outer.setZero();
for(InputIterator it(begin); it !=end; ++it)
{
eigen_assert(it->row() >= 0 && it->row() < this->blockRows() && it->col() >= 0 && it->col() < this->blockCols());
eigen_assert((it->value().rows() == it->value().cols() && (it->value().rows() == m_blockSize))
|| (m_blockSize == Dynamic));
if(m_blockSize == Dynamic)
{
eigen_assert((rowBlocks[it->row()] == 0 || rowBlocks[it->row()] == it->value().rows()) &&
"NON CORRESPONDING SIZES FOR ROW BLOCKS");
eigen_assert((colBlocks[it->col()] == 0 || colBlocks[it->col()] == it->value().cols()) &&
"NON CORRESPONDING SIZES FOR COLUMN BLOCKS");
rowBlocks[it->row()] =it->value().rows();
colBlocks[it->col()] = it->value().cols();
}
nz_outer(IsColMajor ? it->col() : it->row()) += it->value().rows() * it->value().cols();
nzblock_outer(IsColMajor ? it->col() : it->row())++;
}
// Allocate member arrays
if(m_blockSize == Dynamic) setBlockLayout(rowBlocks, colBlocks);
StorageIndex nzblocks = nzblock_outer.sum();
reserve(nzblocks);
// Temporary markers
VectorXi block_id(m_outerBSize); // To be used as a block marker during insertion
// Setup outer index pointers and markers
m_outerIndex[0] = 0;
if (m_blockSize == Dynamic) m_blockPtr[0] = 0;
for(StorageIndex bj = 0; bj < m_outerBSize; ++bj)
{
m_outerIndex[bj+1] = m_outerIndex[bj] + nzblock_outer(bj);
block_id(bj) = m_outerIndex[bj];
if(m_blockSize==Dynamic)
{
m_blockPtr[m_outerIndex[bj+1]] = m_blockPtr[m_outerIndex[bj]] + nz_outer(bj);
}
}
// Fill the matrix
for(InputIterator it(begin); it!=end; ++it)
{
StorageIndex outer = IsColMajor ? it->col() : it->row();
StorageIndex inner = IsColMajor ? it->row() : it->col();
m_indices[block_id(outer)] = inner;
StorageIndex block_size = it->value().rows()*it->value().cols();
StorageIndex nz_marker = blockPtr(block_id[outer]);
memcpy(&(m_values[nz_marker]), it->value().data(), block_size * sizeof(Scalar));
if(m_blockSize == Dynamic)
{
m_blockPtr[block_id(outer)+1] = m_blockPtr[block_id(outer)] + block_size;
}
block_id(outer)++;
}
// An alternative when the outer indices are sorted...no need to use an array of markers
// for(Index bcol = 0; bcol < m_outerBSize; ++bcol)
// {
// Index id = 0, id_nz = 0, id_nzblock = 0;
// for(InputIterator it(begin); it!=end; ++it)
// {
// while (id<bcol) // one pass should do the job unless there are empty columns
// {
// id++;
// m_outerIndex[id+1]=m_outerIndex[id];
// }
// m_outerIndex[id+1] += 1;
// m_indices[id_nzblock]=brow;
// Index block_size = it->value().rows()*it->value().cols();
// m_blockPtr[id_nzblock+1] = m_blockPtr[id_nzblock] + block_size;
// id_nzblock++;
// memcpy(&(m_values[id_nz]),it->value().data(), block_size*sizeof(Scalar));
// id_nz += block_size;
// }
// while(id < m_outerBSize-1) // Empty columns at the end
// {
// id++;
// m_outerIndex[id+1]=m_outerIndex[id];
// }
// }
}
/**
* \returns the number of rows
*/
inline Index rows() const
{
// return blockRows();
return (IsColMajor ? innerSize() : outerSize());
}
/**
* \returns the number of cols
*/
inline Index cols() const
{
// return blockCols();
return (IsColMajor ? outerSize() : innerSize());
}
inline Index innerSize() const
{
if(m_blockSize == Dynamic) return m_innerOffset[m_innerBSize];
else return (m_innerBSize * m_blockSize) ;
}
inline Index outerSize() const
{
if(m_blockSize == Dynamic) return m_outerOffset[m_outerBSize];
else return (m_outerBSize * m_blockSize) ;
}
/** \returns the number of rows grouped by blocks */
inline Index blockRows() const
{
return (IsColMajor ? m_innerBSize : m_outerBSize);
}
/** \returns the number of columns grouped by blocks */
inline Index blockCols() const
{
return (IsColMajor ? m_outerBSize : m_innerBSize);
}
inline Index outerBlocks() const { return m_outerBSize; }
inline Index innerBlocks() const { return m_innerBSize; }
/** \returns the block index where outer belongs to */
inline Index outerToBlock(Index outer) const
{
eigen_assert(outer < outerSize() && "OUTER INDEX OUT OF BOUNDS");
if(m_blockSize != Dynamic)
return (outer / m_blockSize); // Integer division
StorageIndex b_outer = 0;
while(m_outerOffset[b_outer] <= outer) ++b_outer;
return b_outer - 1;
}
/** \returns the block index where inner belongs to */
inline Index innerToBlock(Index inner) const
{
eigen_assert(inner < innerSize() && "OUTER INDEX OUT OF BOUNDS");
if(m_blockSize != Dynamic)
return (inner / m_blockSize); // Integer division
StorageIndex b_inner = 0;
while(m_innerOffset[b_inner] <= inner) ++b_inner;
return b_inner - 1;
}
/**
*\returns a reference to the (i,j) block as an Eigen Dense Matrix
*/
Ref<BlockScalar> coeffRef(Index brow, Index bcol)
{
eigen_assert(brow < blockRows() && "BLOCK ROW INDEX OUT OF BOUNDS");
eigen_assert(bcol < blockCols() && "BLOCK nzblocksFlagCOLUMN OUT OF BOUNDS");
StorageIndex rsize = IsColMajor ? blockInnerSize(brow): blockOuterSize(bcol);
StorageIndex csize = IsColMajor ? blockOuterSize(bcol) : blockInnerSize(brow);
StorageIndex inner = IsColMajor ? brow : bcol;
StorageIndex outer = IsColMajor ? bcol : brow;
StorageIndex offset = m_outerIndex[outer];
while(offset < m_outerIndex[outer+1] && m_indices[offset] != inner)
offset++;
if(m_indices[offset] == inner)
{
return Map<BlockScalar>(&(m_values[blockPtr(offset)]), rsize, csize);
}
else
{
//FIXME the block does not exist, Insert it !!!!!!!!!
eigen_assert("DYNAMIC INSERTION IS NOT YET SUPPORTED");
}
}
/**
* \returns the value of the (i,j) block as an Eigen Dense Matrix
*/
Map<const BlockScalar> coeff(Index brow, Index bcol) const
{
eigen_assert(brow < blockRows() && "BLOCK ROW INDEX OUT OF BOUNDS");
eigen_assert(bcol < blockCols() && "BLOCK COLUMN OUT OF BOUNDS");
StorageIndex rsize = IsColMajor ? blockInnerSize(brow): blockOuterSize(bcol);
StorageIndex csize = IsColMajor ? blockOuterSize(bcol) : blockInnerSize(brow);
StorageIndex inner = IsColMajor ? brow : bcol;
StorageIndex outer = IsColMajor ? bcol : brow;
StorageIndex offset = m_outerIndex[outer];
while(offset < m_outerIndex[outer+1] && m_indices[offset] != inner) offset++;
if(m_indices[offset] == inner)
{
return Map<const BlockScalar> (&(m_values[blockPtr(offset)]), rsize, csize);
}
else
// return BlockScalar::Zero(rsize, csize);
eigen_assert("NOT YET SUPPORTED");
}
// Block Matrix times vector product
template<typename VecType>
BlockSparseTimeDenseProduct<BlockSparseMatrix, VecType> operator*(const VecType& lhs) const
{
return BlockSparseTimeDenseProduct<BlockSparseMatrix, VecType>(*this, lhs);
}
/** \returns the number of nonzero blocks */
inline Index nonZerosBlocks() const { return m_nonzerosblocks; }
/** \returns the total number of nonzero elements, including eventual explicit zeros in blocks */
inline Index nonZeros() const { return m_nonzeros; }
inline BlockScalarReturnType *valuePtr() {return static_cast<BlockScalarReturnType *>(m_values);}
// inline Scalar *valuePtr(){ return m_values; }
inline StorageIndex *innerIndexPtr() {return m_indices; }
inline const StorageIndex *innerIndexPtr() const {return m_indices; }
inline StorageIndex *outerIndexPtr() {return m_outerIndex; }
inline const StorageIndex* outerIndexPtr() const {return m_outerIndex; }
/** \brief for compatibility purposes with the SparseMatrix class */
inline bool isCompressed() const {return true;}
/**
* \returns the starting index of the bi row block
*/
inline Index blockRowsIndex(Index bi) const
{
return IsColMajor ? blockInnerIndex(bi) : blockOuterIndex(bi);
}
/**
* \returns the starting index of the bj col block
*/
inline Index blockColsIndex(Index bj) const
{
return IsColMajor ? blockOuterIndex(bj) : blockInnerIndex(bj);
}
inline Index blockOuterIndex(Index bj) const
{
return (m_blockSize == Dynamic) ? m_outerOffset[bj] : (bj * m_blockSize);
}
inline Index blockInnerIndex(Index bi) const
{
return (m_blockSize == Dynamic) ? m_innerOffset[bi] : (bi * m_blockSize);
}
// Not needed ???
inline Index blockInnerSize(Index bi) const
{
return (m_blockSize == Dynamic) ? (m_innerOffset[bi+1] - m_innerOffset[bi]) : m_blockSize;
}
inline Index blockOuterSize(Index bj) const
{
return (m_blockSize == Dynamic) ? (m_outerOffset[bj+1]- m_outerOffset[bj]) : m_blockSize;
}
/**
* \brief Browse the matrix by outer index
*/
class InnerIterator; // Browse column by column
/**
* \brief Browse the matrix by block outer index
*/
class BlockInnerIterator; // Browse block by block
friend std::ostream & operator << (std::ostream & s, const BlockSparseMatrix& m)
{
for (StorageIndex j = 0; j < m.outerBlocks(); ++j)
{
BlockInnerIterator itb(m, j);
for(; itb; ++itb)
{
s << "("<<itb.row() << ", " << itb.col() << ")\n";
s << itb.value() <<"\n";
}
}
s << std::endl;
return s;
}
/**
* \returns the starting position of the block \p id in the array of values
*/
Index blockPtr(Index id) const
{
if(m_blockSize == Dynamic) return m_blockPtr[id];
else return id * m_blockSize * m_blockSize;
//return blockDynIdx(id, typename internal::conditional<(BlockSize==Dynamic), internal::true_type, internal::false_type>::type());
}
protected:
// inline Index blockDynIdx(Index id, internal::true_type) const
// {
// return m_blockPtr[id];
// }
// inline Index blockDynIdx(Index id, internal::false_type) const
// {
// return id * BlockSize * BlockSize;
// }
// To be implemented
// Insert a block at a particular location... need to make a room for that
Map<BlockScalar> insert(Index brow, Index bcol);
Index m_innerBSize; // Number of block rows
Index m_outerBSize; // Number of block columns
StorageIndex *m_innerOffset; // Starting index of each inner block (size m_innerBSize+1)
StorageIndex *m_outerOffset; // Starting index of each outer block (size m_outerBSize+1)
Index m_nonzerosblocks; // Total nonzeros blocks (lower than m_innerBSize x m_outerBSize)
Index m_nonzeros; // Total nonzeros elements
Scalar *m_values; //Values stored block column after block column (size m_nonzeros)
StorageIndex *m_blockPtr; // Pointer to the beginning of each block in m_values, size m_nonzeroblocks ... null for fixed-size blocks
StorageIndex *m_indices; //Inner block indices, size m_nonzerosblocks ... OK
StorageIndex *m_outerIndex; // Starting pointer of each block column in m_indices (size m_outerBSize)... OK
Index m_blockSize; // Size of a block for fixed-size blocks, otherwise -1
};
template<typename _Scalar, int _BlockAtCompileTime, int _Options, typename _StorageIndex>
class BlockSparseMatrix<_Scalar, _BlockAtCompileTime, _Options, _StorageIndex>::BlockInnerIterator
{
public:
enum{
Flags = _Options
};
BlockInnerIterator(const BlockSparseMatrix& mat, const Index outer)
: m_mat(mat),m_outer(outer),
m_id(mat.m_outerIndex[outer]),
m_end(mat.m_outerIndex[outer+1])
{
}
inline BlockInnerIterator& operator++() {m_id++; return *this; }
inline const Map<const BlockScalar> value() const
{
return Map<const BlockScalar>(&(m_mat.m_values[m_mat.blockPtr(m_id)]),
rows(),cols());
}
inline Map<BlockScalar> valueRef()
{
return Map<BlockScalar>(&(m_mat.m_values[m_mat.blockPtr(m_id)]),
rows(),cols());
}
// Block inner index
inline Index index() const {return m_mat.m_indices[m_id]; }
inline Index outer() const { return m_outer; }
// block row index
inline Index row() const {return index(); }
// block column index
inline Index col() const {return outer(); }
// FIXME Number of rows in the current block
inline Index rows() const { return (m_mat.m_blockSize==Dynamic) ? (m_mat.m_innerOffset[index()+1] - m_mat.m_innerOffset[index()]) : m_mat.m_blockSize; }
// Number of columns in the current block ...
inline Index cols() const { return (m_mat.m_blockSize==Dynamic) ? (m_mat.m_outerOffset[m_outer+1]-m_mat.m_outerOffset[m_outer]) : m_mat.m_blockSize;}
inline operator bool() const { return (m_id < m_end); }
protected:
const BlockSparseMatrix<_Scalar, _BlockAtCompileTime, _Options, StorageIndex>& m_mat;
const Index m_outer;
Index m_id;
Index m_end;
};
template<typename _Scalar, int _BlockAtCompileTime, int _Options, typename _StorageIndex>
class BlockSparseMatrix<_Scalar, _BlockAtCompileTime, _Options, _StorageIndex>::InnerIterator
{
public:
InnerIterator(const BlockSparseMatrix& mat, Index outer)
: m_mat(mat),m_outerB(mat.outerToBlock(outer)),m_outer(outer),
itb(mat, mat.outerToBlock(outer)),
m_offset(outer - mat.blockOuterIndex(m_outerB))
{
if (itb)
{
m_id = m_mat.blockInnerIndex(itb.index());
m_start = m_id;
m_end = m_mat.blockInnerIndex(itb.index()+1);
}
}
inline InnerIterator& operator++()
{
m_id++;
if (m_id >= m_end)
{
++itb;
if (itb)
{
m_id = m_mat.blockInnerIndex(itb.index());
m_start = m_id;
m_end = m_mat.blockInnerIndex(itb.index()+1);
}
}
return *this;
}
inline const Scalar& value() const
{
return itb.value().coeff(m_id - m_start, m_offset);
}
inline Scalar& valueRef()
{
return itb.valueRef().coeff(m_id - m_start, m_offset);
}
inline Index index() const { return m_id; }
inline Index outer() const {return m_outer; }
inline Index col() const {return outer(); }
inline Index row() const { return index();}
inline operator bool() const
{
return itb;
}
protected:
const BlockSparseMatrix& m_mat;
const Index m_outer;
const Index m_outerB;
BlockInnerIterator itb; // Iterator through the blocks
const Index m_offset; // Position of this column in the block
Index m_start; // starting inner index of this block
Index m_id; // current inner index in the block
Index m_end; // starting inner index of the next block
};
} // end namespace Eigen
#endif // EIGEN_SPARSEBLOCKMATRIX_H
|