File size: 12,641 Bytes
a42735d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016 Eugene Brevdo <ebrevdo@gmail.com>
// Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_BESSELFUNCTIONS_FUNCTORS_H
#define EIGEN_BESSELFUNCTIONS_FUNCTORS_H
namespace Eigen {
namespace internal {
/** \internal
* \brief Template functor to compute the modified Bessel function of the first
* kind of order zero.
* \sa class CwiseUnaryOp, Cwise::bessel_i0()
*/
template <typename Scalar>
struct scalar_bessel_i0_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_bessel_i0_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& x) const {
using numext::bessel_i0;
return bessel_i0(x);
}
typedef typename packet_traits<Scalar>::type Packet;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const {
return internal::pbessel_i0(x);
}
};
template <typename Scalar>
struct functor_traits<scalar_bessel_i0_op<Scalar> > {
enum {
// On average, a Chebyshev polynomial of order N=20 is computed.
// The cost is N multiplications and 2N additions. We also add
// the cost of an additional exp over i0e.
Cost = 28 * NumTraits<Scalar>::MulCost + 48 * NumTraits<Scalar>::AddCost,
PacketAccess = packet_traits<Scalar>::HasBessel
};
};
/** \internal
* \brief Template functor to compute the exponentially scaled modified Bessel
* function of the first kind of order zero
* \sa class CwiseUnaryOp, Cwise::bessel_i0e()
*/
template <typename Scalar>
struct scalar_bessel_i0e_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_bessel_i0e_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& x) const {
using numext::bessel_i0e;
return bessel_i0e(x);
}
typedef typename packet_traits<Scalar>::type Packet;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const {
return internal::pbessel_i0e(x);
}
};
template <typename Scalar>
struct functor_traits<scalar_bessel_i0e_op<Scalar> > {
enum {
// On average, a Chebyshev polynomial of order N=20 is computed.
// The cost is N multiplications and 2N additions.
Cost = 20 * NumTraits<Scalar>::MulCost + 40 * NumTraits<Scalar>::AddCost,
PacketAccess = packet_traits<Scalar>::HasBessel
};
};
/** \internal
* \brief Template functor to compute the modified Bessel function of the first
* kind of order one
* \sa class CwiseUnaryOp, Cwise::bessel_i1()
*/
template <typename Scalar>
struct scalar_bessel_i1_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_bessel_i1_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& x) const {
using numext::bessel_i1;
return bessel_i1(x);
}
typedef typename packet_traits<Scalar>::type Packet;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const {
return internal::pbessel_i1(x);
}
};
template <typename Scalar>
struct functor_traits<scalar_bessel_i1_op<Scalar> > {
enum {
// On average, a Chebyshev polynomial of order N=20 is computed.
// The cost is N multiplications and 2N additions. We also add
// the cost of an additional exp over i1e.
Cost = 28 * NumTraits<Scalar>::MulCost + 48 * NumTraits<Scalar>::AddCost,
PacketAccess = packet_traits<Scalar>::HasBessel
};
};
/** \internal
* \brief Template functor to compute the exponentially scaled modified Bessel
* function of the first kind of order zero
* \sa class CwiseUnaryOp, Cwise::bessel_i1e()
*/
template <typename Scalar>
struct scalar_bessel_i1e_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_bessel_i1e_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& x) const {
using numext::bessel_i1e;
return bessel_i1e(x);
}
typedef typename packet_traits<Scalar>::type Packet;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const {
return internal::pbessel_i1e(x);
}
};
template <typename Scalar>
struct functor_traits<scalar_bessel_i1e_op<Scalar> > {
enum {
// On average, a Chebyshev polynomial of order N=20 is computed.
// The cost is N multiplications and 2N additions.
Cost = 20 * NumTraits<Scalar>::MulCost + 40 * NumTraits<Scalar>::AddCost,
PacketAccess = packet_traits<Scalar>::HasBessel
};
};
/** \internal
* \brief Template functor to compute the Bessel function of the second kind of
* order zero
* \sa class CwiseUnaryOp, Cwise::bessel_j0()
*/
template <typename Scalar>
struct scalar_bessel_j0_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_bessel_j0_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& x) const {
using numext::bessel_j0;
return bessel_j0(x);
}
typedef typename packet_traits<Scalar>::type Packet;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const {
return internal::pbessel_j0(x);
}
};
template <typename Scalar>
struct functor_traits<scalar_bessel_j0_op<Scalar> > {
enum {
// 6 polynomial of order ~N=8 is computed.
// The cost is N multiplications and N additions each, along with a
// sine, cosine and rsqrt cost.
Cost = 63 * NumTraits<Scalar>::MulCost + 48 * NumTraits<Scalar>::AddCost,
PacketAccess = packet_traits<Scalar>::HasBessel
};
};
/** \internal
* \brief Template functor to compute the Bessel function of the second kind of
* order zero
* \sa class CwiseUnaryOp, Cwise::bessel_y0()
*/
template <typename Scalar>
struct scalar_bessel_y0_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_bessel_y0_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& x) const {
using numext::bessel_y0;
return bessel_y0(x);
}
typedef typename packet_traits<Scalar>::type Packet;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const {
return internal::pbessel_y0(x);
}
};
template <typename Scalar>
struct functor_traits<scalar_bessel_y0_op<Scalar> > {
enum {
// 6 polynomial of order ~N=8 is computed.
// The cost is N multiplications and N additions each, along with a
// sine, cosine, rsqrt and j0 cost.
Cost = 126 * NumTraits<Scalar>::MulCost + 96 * NumTraits<Scalar>::AddCost,
PacketAccess = packet_traits<Scalar>::HasBessel
};
};
/** \internal
* \brief Template functor to compute the Bessel function of the first kind of
* order one
* \sa class CwiseUnaryOp, Cwise::bessel_j1()
*/
template <typename Scalar>
struct scalar_bessel_j1_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_bessel_j1_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& x) const {
using numext::bessel_j1;
return bessel_j1(x);
}
typedef typename packet_traits<Scalar>::type Packet;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const {
return internal::pbessel_j1(x);
}
};
template <typename Scalar>
struct functor_traits<scalar_bessel_j1_op<Scalar> > {
enum {
// 6 polynomial of order ~N=8 is computed.
// The cost is N multiplications and N additions each, along with a
// sine, cosine and rsqrt cost.
Cost = 63 * NumTraits<Scalar>::MulCost + 48 * NumTraits<Scalar>::AddCost,
PacketAccess = packet_traits<Scalar>::HasBessel
};
};
/** \internal
* \brief Template functor to compute the Bessel function of the second kind of
* order one
* \sa class CwiseUnaryOp, Cwise::bessel_j1e()
*/
template <typename Scalar>
struct scalar_bessel_y1_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_bessel_y1_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& x) const {
using numext::bessel_y1;
return bessel_y1(x);
}
typedef typename packet_traits<Scalar>::type Packet;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const {
return internal::pbessel_y1(x);
}
};
template <typename Scalar>
struct functor_traits<scalar_bessel_y1_op<Scalar> > {
enum {
// 6 polynomial of order ~N=8 is computed.
// The cost is N multiplications and N additions each, along with a
// sine, cosine, rsqrt and j1 cost.
Cost = 126 * NumTraits<Scalar>::MulCost + 96 * NumTraits<Scalar>::AddCost,
PacketAccess = packet_traits<Scalar>::HasBessel
};
};
/** \internal
* \brief Template functor to compute the modified Bessel function of the second
* kind of order zero
* \sa class CwiseUnaryOp, Cwise::bessel_k0()
*/
template <typename Scalar>
struct scalar_bessel_k0_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_bessel_k0_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& x) const {
using numext::bessel_k0;
return bessel_k0(x);
}
typedef typename packet_traits<Scalar>::type Packet;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const {
return internal::pbessel_k0(x);
}
};
template <typename Scalar>
struct functor_traits<scalar_bessel_k0_op<Scalar> > {
enum {
// On average, a Chebyshev polynomial of order N=10 is computed.
// The cost is N multiplications and 2N additions. In addition we compute
// i0, a log, exp and prsqrt and sin and cos.
Cost = 68 * NumTraits<Scalar>::MulCost + 88 * NumTraits<Scalar>::AddCost,
PacketAccess = packet_traits<Scalar>::HasBessel
};
};
/** \internal
* \brief Template functor to compute the exponentially scaled modified Bessel
* function of the second kind of order zero
* \sa class CwiseUnaryOp, Cwise::bessel_k0e()
*/
template <typename Scalar>
struct scalar_bessel_k0e_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_bessel_k0e_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& x) const {
using numext::bessel_k0e;
return bessel_k0e(x);
}
typedef typename packet_traits<Scalar>::type Packet;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const {
return internal::pbessel_k0e(x);
}
};
template <typename Scalar>
struct functor_traits<scalar_bessel_k0e_op<Scalar> > {
enum {
// On average, a Chebyshev polynomial of order N=10 is computed.
// The cost is N multiplications and 2N additions. In addition we compute
// i0, a log, exp and prsqrt and sin and cos.
Cost = 68 * NumTraits<Scalar>::MulCost + 88 * NumTraits<Scalar>::AddCost,
PacketAccess = packet_traits<Scalar>::HasBessel
};
};
/** \internal
* \brief Template functor to compute the modified Bessel function of the
* second kind of order one
* \sa class CwiseUnaryOp, Cwise::bessel_k1()
*/
template <typename Scalar>
struct scalar_bessel_k1_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_bessel_k1_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& x) const {
using numext::bessel_k1;
return bessel_k1(x);
}
typedef typename packet_traits<Scalar>::type Packet;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const {
return internal::pbessel_k1(x);
}
};
template <typename Scalar>
struct functor_traits<scalar_bessel_k1_op<Scalar> > {
enum {
// On average, a Chebyshev polynomial of order N=10 is computed.
// The cost is N multiplications and 2N additions. In addition we compute
// i1, a log, exp and prsqrt and sin and cos.
Cost = 68 * NumTraits<Scalar>::MulCost + 88 * NumTraits<Scalar>::AddCost,
PacketAccess = packet_traits<Scalar>::HasBessel
};
};
/** \internal
* \brief Template functor to compute the exponentially scaled modified Bessel
* function of the second kind of order one
* \sa class CwiseUnaryOp, Cwise::bessel_k1e()
*/
template <typename Scalar>
struct scalar_bessel_k1e_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_bessel_k1e_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& x) const {
using numext::bessel_k1e;
return bessel_k1e(x);
}
typedef typename packet_traits<Scalar>::type Packet;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const {
return internal::pbessel_k1e(x);
}
};
template <typename Scalar>
struct functor_traits<scalar_bessel_k1e_op<Scalar> > {
enum {
// On average, a Chebyshev polynomial of order N=10 is computed.
// The cost is N multiplications and 2N additions. In addition we compute
// i1, a log, exp and prsqrt and sin and cos.
Cost = 68 * NumTraits<Scalar>::MulCost + 88 * NumTraits<Scalar>::AddCost,
PacketAccess = packet_traits<Scalar>::HasBessel
};
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_BESSELFUNCTIONS_FUNCTORS_H
|