File size: 9,623 Bytes
c7cee1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <unsupported/Eigen/EulerAngles>
using namespace Eigen;
// Unfortunately, we need to specialize it in order to work. (We could add it in main.h test framework)
template <typename Scalar, class System>
bool verifyIsApprox(const Eigen::EulerAngles<Scalar, System>& a, const Eigen::EulerAngles<Scalar, System>& b)
{
return verifyIsApprox(a.angles(), b.angles());
}
// Verify that x is in the approxed range [a, b]
#define VERIFY_APPROXED_RANGE(a, x, b) \
do { \
VERIFY_IS_APPROX_OR_LESS_THAN(a, x); \
VERIFY_IS_APPROX_OR_LESS_THAN(x, b); \
} while(0)
const char X = EULER_X;
const char Y = EULER_Y;
const char Z = EULER_Z;
template<typename Scalar, class EulerSystem>
void verify_euler(const EulerAngles<Scalar, EulerSystem>& e)
{
typedef EulerAngles<Scalar, EulerSystem> EulerAnglesType;
typedef Matrix<Scalar,3,3> Matrix3;
typedef Matrix<Scalar,3,1> Vector3;
typedef Quaternion<Scalar> QuaternionType;
typedef AngleAxis<Scalar> AngleAxisType;
const Scalar ONE = Scalar(1);
const Scalar HALF_PI = Scalar(EIGEN_PI / 2);
const Scalar PI = Scalar(EIGEN_PI);
// It's very important calc the acceptable precision depending on the distance from the pole.
const Scalar longitudeRadius = std::abs(
EulerSystem::IsTaitBryan ?
std::cos(e.beta()) :
std::sin(e.beta())
);
Scalar precision = test_precision<Scalar>() / longitudeRadius;
Scalar betaRangeStart, betaRangeEnd;
if (EulerSystem::IsTaitBryan)
{
betaRangeStart = -HALF_PI;
betaRangeEnd = HALF_PI;
}
else
{
if (!EulerSystem::IsBetaOpposite)
{
betaRangeStart = 0;
betaRangeEnd = PI;
}
else
{
betaRangeStart = -PI;
betaRangeEnd = 0;
}
}
const Vector3 I_ = EulerAnglesType::AlphaAxisVector();
const Vector3 J_ = EulerAnglesType::BetaAxisVector();
const Vector3 K_ = EulerAnglesType::GammaAxisVector();
// Is approx checks
VERIFY(e.isApprox(e));
VERIFY_IS_APPROX(e, e);
VERIFY_IS_NOT_APPROX(e, EulerAnglesType(e.alpha() + ONE, e.beta() + ONE, e.gamma() + ONE));
const Matrix3 m(e);
VERIFY_IS_APPROX(Scalar(m.determinant()), ONE);
EulerAnglesType ebis(m);
// When no roll(acting like polar representation), we have the best precision.
// One of those cases is when the Euler angles are on the pole, and because it's singular case,
// the computation returns no roll.
if (ebis.beta() == 0)
precision = test_precision<Scalar>();
// Check that eabis in range
VERIFY_APPROXED_RANGE(-PI, ebis.alpha(), PI);
VERIFY_APPROXED_RANGE(betaRangeStart, ebis.beta(), betaRangeEnd);
VERIFY_APPROXED_RANGE(-PI, ebis.gamma(), PI);
const Matrix3 mbis(AngleAxisType(ebis.alpha(), I_) * AngleAxisType(ebis.beta(), J_) * AngleAxisType(ebis.gamma(), K_));
VERIFY_IS_APPROX(Scalar(mbis.determinant()), ONE);
VERIFY_IS_APPROX(mbis, ebis.toRotationMatrix());
/*std::cout << "===================\n" <<
"e: " << e << std::endl <<
"eabis: " << eabis.transpose() << std::endl <<
"m: " << m << std::endl <<
"mbis: " << mbis << std::endl <<
"X: " << (m * Vector3::UnitX()).transpose() << std::endl <<
"X: " << (mbis * Vector3::UnitX()).transpose() << std::endl;*/
VERIFY(m.isApprox(mbis, precision));
// Test if ea and eabis are the same
// Need to check both singular and non-singular cases
// There are two singular cases.
// 1. When I==K and sin(ea(1)) == 0
// 2. When I!=K and cos(ea(1)) == 0
// TODO: Make this test work well, and use range saturation function.
/*// If I==K, and ea[1]==0, then there no unique solution.
// The remark apply in the case where I!=K, and |ea[1]| is close to +-pi/2.
if( (i!=k || ea[1]!=0) && (i==k || !internal::isApprox(abs(ea[1]),Scalar(EIGEN_PI/2),test_precision<Scalar>())) )
VERIFY_IS_APPROX(ea, eabis);*/
// Quaternions
const QuaternionType q(e);
ebis = q;
const QuaternionType qbis(ebis);
VERIFY(internal::isApprox<Scalar>(std::abs(q.dot(qbis)), ONE, precision));
//VERIFY_IS_APPROX(eabis, eabis2);// Verify that the euler angles are still the same
// A suggestion for simple product test when will be supported.
/*EulerAnglesType e2(PI/2, PI/2, PI/2);
Matrix3 m2(e2);
VERIFY_IS_APPROX(e*e2, m*m2);*/
}
template<signed char A, signed char B, signed char C, typename Scalar>
void verify_euler_vec(const Matrix<Scalar,3,1>& ea)
{
verify_euler(EulerAngles<Scalar, EulerSystem<A, B, C> >(ea[0], ea[1], ea[2]));
}
template<signed char A, signed char B, signed char C, typename Scalar>
void verify_euler_all_neg(const Matrix<Scalar,3,1>& ea)
{
verify_euler_vec<+A,+B,+C>(ea);
verify_euler_vec<+A,+B,-C>(ea);
verify_euler_vec<+A,-B,+C>(ea);
verify_euler_vec<+A,-B,-C>(ea);
verify_euler_vec<-A,+B,+C>(ea);
verify_euler_vec<-A,+B,-C>(ea);
verify_euler_vec<-A,-B,+C>(ea);
verify_euler_vec<-A,-B,-C>(ea);
}
template<typename Scalar> void check_all_var(const Matrix<Scalar,3,1>& ea)
{
verify_euler_all_neg<X,Y,Z>(ea);
verify_euler_all_neg<X,Y,X>(ea);
verify_euler_all_neg<X,Z,Y>(ea);
verify_euler_all_neg<X,Z,X>(ea);
verify_euler_all_neg<Y,Z,X>(ea);
verify_euler_all_neg<Y,Z,Y>(ea);
verify_euler_all_neg<Y,X,Z>(ea);
verify_euler_all_neg<Y,X,Y>(ea);
verify_euler_all_neg<Z,X,Y>(ea);
verify_euler_all_neg<Z,X,Z>(ea);
verify_euler_all_neg<Z,Y,X>(ea);
verify_euler_all_neg<Z,Y,Z>(ea);
}
template<typename Scalar> void check_singular_cases(const Scalar& singularBeta)
{
typedef Matrix<Scalar,3,1> Vector3;
const Scalar PI = Scalar(EIGEN_PI);
for (Scalar epsilon = NumTraits<Scalar>::epsilon(); epsilon < 1; epsilon *= Scalar(1.2))
{
check_all_var(Vector3(PI/4, singularBeta, PI/3));
check_all_var(Vector3(PI/4, singularBeta - epsilon, PI/3));
check_all_var(Vector3(PI/4, singularBeta - Scalar(1.5)*epsilon, PI/3));
check_all_var(Vector3(PI/4, singularBeta - 2*epsilon, PI/3));
check_all_var(Vector3(PI*Scalar(0.8), singularBeta - epsilon, Scalar(0.9)*PI));
check_all_var(Vector3(PI*Scalar(-0.9), singularBeta + epsilon, PI*Scalar(0.3)));
check_all_var(Vector3(PI*Scalar(-0.6), singularBeta + Scalar(1.5)*epsilon, PI*Scalar(0.3)));
check_all_var(Vector3(PI*Scalar(-0.5), singularBeta + 2*epsilon, PI*Scalar(0.4)));
check_all_var(Vector3(PI*Scalar(0.9), singularBeta + epsilon, Scalar(0.8)*PI));
}
// This one for sanity, it had a problem with near pole cases in float scalar.
check_all_var(Vector3(PI*Scalar(0.8), singularBeta - Scalar(1E-6), Scalar(0.9)*PI));
}
template<typename Scalar> void eulerangles_manual()
{
typedef Matrix<Scalar,3,1> Vector3;
typedef Matrix<Scalar,Dynamic,1> VectorX;
const Vector3 Zero = Vector3::Zero();
const Scalar PI = Scalar(EIGEN_PI);
check_all_var(Zero);
// singular cases
check_singular_cases(PI/2);
check_singular_cases(-PI/2);
check_singular_cases(Scalar(0));
check_singular_cases(Scalar(-0));
check_singular_cases(PI);
check_singular_cases(-PI);
// non-singular cases
VectorX alpha = VectorX::LinSpaced(20, Scalar(-0.99) * PI, PI);
VectorX beta = VectorX::LinSpaced(20, Scalar(-0.49) * PI, Scalar(0.49) * PI);
VectorX gamma = VectorX::LinSpaced(20, Scalar(-0.99) * PI, PI);
for (int i = 0; i < alpha.size(); ++i) {
for (int j = 0; j < beta.size(); ++j) {
for (int k = 0; k < gamma.size(); ++k) {
check_all_var(Vector3(alpha(i), beta(j), gamma(k)));
}
}
}
}
template<typename Scalar> void eulerangles_rand()
{
typedef Matrix<Scalar,3,3> Matrix3;
typedef Matrix<Scalar,3,1> Vector3;
typedef Array<Scalar,3,1> Array3;
typedef Quaternion<Scalar> Quaternionx;
typedef AngleAxis<Scalar> AngleAxisType;
Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
Quaternionx q1;
q1 = AngleAxisType(a, Vector3::Random().normalized());
Matrix3 m;
m = q1;
Vector3 ea = m.eulerAngles(0,1,2);
check_all_var(ea);
ea = m.eulerAngles(0,1,0);
check_all_var(ea);
// Check with purely random Quaternion:
q1.coeffs() = Quaternionx::Coefficients::Random().normalized();
m = q1;
ea = m.eulerAngles(0,1,2);
check_all_var(ea);
ea = m.eulerAngles(0,1,0);
check_all_var(ea);
// Check with random angles in range [0:pi]x[-pi:pi]x[-pi:pi].
ea = (Array3::Random() + Array3(1,0,0))*Scalar(EIGEN_PI)*Array3(0.5,1,1);
check_all_var(ea);
ea[2] = ea[0] = internal::random<Scalar>(0,Scalar(EIGEN_PI));
check_all_var(ea);
ea[0] = ea[1] = internal::random<Scalar>(0,Scalar(EIGEN_PI));
check_all_var(ea);
ea[1] = 0;
check_all_var(ea);
ea.head(2).setZero();
check_all_var(ea);
ea.setZero();
check_all_var(ea);
}
EIGEN_DECLARE_TEST(EulerAngles)
{
// Simple cast test
EulerAnglesXYZd onesEd(1, 1, 1);
EulerAnglesXYZf onesEf = onesEd.cast<float>();
VERIFY_IS_APPROX(onesEd, onesEf.cast<double>());
// Simple Construction from Vector3 test
VERIFY_IS_APPROX(onesEd, EulerAnglesXYZd(Vector3d::Ones()));
CALL_SUBTEST_1( eulerangles_manual<float>() );
CALL_SUBTEST_2( eulerangles_manual<double>() );
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_3( eulerangles_rand<float>() );
CALL_SUBTEST_4( eulerangles_rand<double>() );
}
// TODO: Add tests for auto diff
// TODO: Add tests for complex numbers
}
|