|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include "main.h" |
|
|
#include <Eigen/Eigenvalues> |
|
|
|
|
|
template<typename Scalar,int Size> void hessenberg(int size = Size) |
|
|
{ |
|
|
typedef Matrix<Scalar,Size,Size> MatrixType; |
|
|
|
|
|
|
|
|
for(int counter = 0; counter < g_repeat; ++counter) { |
|
|
MatrixType m = MatrixType::Random(size,size); |
|
|
HessenbergDecomposition<MatrixType> hess(m); |
|
|
MatrixType Q = hess.matrixQ(); |
|
|
MatrixType H = hess.matrixH(); |
|
|
VERIFY_IS_APPROX(m, Q * H * Q.adjoint()); |
|
|
for(int row = 2; row < size; ++row) { |
|
|
for(int col = 0; col < row-1; ++col) { |
|
|
VERIFY(H(row,col) == (typename MatrixType::Scalar)0); |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
MatrixType A = MatrixType::Random(size, size); |
|
|
HessenbergDecomposition<MatrixType> cs1; |
|
|
cs1.compute(A); |
|
|
HessenbergDecomposition<MatrixType> cs2(A); |
|
|
VERIFY_IS_EQUAL(cs1.matrixH().eval(), cs2.matrixH().eval()); |
|
|
MatrixType cs1Q = cs1.matrixQ(); |
|
|
MatrixType cs2Q = cs2.matrixQ(); |
|
|
VERIFY_IS_EQUAL(cs1Q, cs2Q); |
|
|
|
|
|
|
|
|
HessenbergDecomposition<MatrixType> hessUninitialized; |
|
|
VERIFY_RAISES_ASSERT( hessUninitialized.matrixH() ); |
|
|
VERIFY_RAISES_ASSERT( hessUninitialized.matrixQ() ); |
|
|
VERIFY_RAISES_ASSERT( hessUninitialized.householderCoefficients() ); |
|
|
VERIFY_RAISES_ASSERT( hessUninitialized.packedMatrix() ); |
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
EIGEN_DECLARE_TEST(hessenberg) |
|
|
{ |
|
|
CALL_SUBTEST_1(( hessenberg<std::complex<double>,1>() )); |
|
|
CALL_SUBTEST_2(( hessenberg<std::complex<double>,2>() )); |
|
|
CALL_SUBTEST_3(( hessenberg<std::complex<float>,4>() )); |
|
|
CALL_SUBTEST_4(( hessenberg<float,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)) )); |
|
|
CALL_SUBTEST_5(( hessenberg<std::complex<double>,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)) )); |
|
|
|
|
|
|
|
|
CALL_SUBTEST_6(HessenbergDecomposition<MatrixXf>(10)); |
|
|
} |
|
|
|