|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef EIGEN_LDLT_H |
|
|
#define EIGEN_LDLT_H |
|
|
|
|
|
namespace Eigen { |
|
|
|
|
|
namespace internal { |
|
|
template<typename _MatrixType, int _UpLo> struct traits<LDLT<_MatrixType, _UpLo> > |
|
|
: traits<_MatrixType> |
|
|
{ |
|
|
typedef MatrixXpr XprKind; |
|
|
typedef SolverStorage StorageKind; |
|
|
typedef int StorageIndex; |
|
|
enum { Flags = 0 }; |
|
|
}; |
|
|
|
|
|
template<typename MatrixType, int UpLo> struct LDLT_Traits; |
|
|
|
|
|
|
|
|
enum SignMatrix { PositiveSemiDef, NegativeSemiDef, ZeroSign, Indefinite }; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename _MatrixType, int _UpLo> class LDLT |
|
|
: public SolverBase<LDLT<_MatrixType, _UpLo> > |
|
|
{ |
|
|
public: |
|
|
typedef _MatrixType MatrixType; |
|
|
typedef SolverBase<LDLT> Base; |
|
|
friend class SolverBase<LDLT>; |
|
|
|
|
|
EIGEN_GENERIC_PUBLIC_INTERFACE(LDLT) |
|
|
enum { |
|
|
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
|
|
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, |
|
|
UpLo = _UpLo |
|
|
}; |
|
|
typedef Matrix<Scalar, RowsAtCompileTime, 1, 0, MaxRowsAtCompileTime, 1> TmpMatrixType; |
|
|
|
|
|
typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType; |
|
|
typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType; |
|
|
|
|
|
typedef internal::LDLT_Traits<MatrixType,UpLo> Traits; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LDLT() |
|
|
: m_matrix(), |
|
|
m_transpositions(), |
|
|
m_sign(internal::ZeroSign), |
|
|
m_isInitialized(false) |
|
|
{} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
explicit LDLT(Index size) |
|
|
: m_matrix(size, size), |
|
|
m_transpositions(size), |
|
|
m_temporary(size), |
|
|
m_sign(internal::ZeroSign), |
|
|
m_isInitialized(false) |
|
|
{} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename InputType> |
|
|
explicit LDLT(const EigenBase<InputType>& matrix) |
|
|
: m_matrix(matrix.rows(), matrix.cols()), |
|
|
m_transpositions(matrix.rows()), |
|
|
m_temporary(matrix.rows()), |
|
|
m_sign(internal::ZeroSign), |
|
|
m_isInitialized(false) |
|
|
{ |
|
|
compute(matrix.derived()); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename InputType> |
|
|
explicit LDLT(EigenBase<InputType>& matrix) |
|
|
: m_matrix(matrix.derived()), |
|
|
m_transpositions(matrix.rows()), |
|
|
m_temporary(matrix.rows()), |
|
|
m_sign(internal::ZeroSign), |
|
|
m_isInitialized(false) |
|
|
{ |
|
|
compute(matrix.derived()); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void setZero() |
|
|
{ |
|
|
m_isInitialized = false; |
|
|
} |
|
|
|
|
|
|
|
|
inline typename Traits::MatrixU matrixU() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "LDLT is not initialized."); |
|
|
return Traits::getU(m_matrix); |
|
|
} |
|
|
|
|
|
|
|
|
inline typename Traits::MatrixL matrixL() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "LDLT is not initialized."); |
|
|
return Traits::getL(m_matrix); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
inline const TranspositionType& transpositionsP() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "LDLT is not initialized."); |
|
|
return m_transpositions; |
|
|
} |
|
|
|
|
|
|
|
|
inline Diagonal<const MatrixType> vectorD() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "LDLT is not initialized."); |
|
|
return m_matrix.diagonal(); |
|
|
} |
|
|
|
|
|
|
|
|
inline bool isPositive() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "LDLT is not initialized."); |
|
|
return m_sign == internal::PositiveSemiDef || m_sign == internal::ZeroSign; |
|
|
} |
|
|
|
|
|
|
|
|
inline bool isNegative(void) const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "LDLT is not initialized."); |
|
|
return m_sign == internal::NegativeSemiDef || m_sign == internal::ZeroSign; |
|
|
} |
|
|
|
|
|
#ifdef EIGEN_PARSED_BY_DOXYGEN |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename Rhs> |
|
|
inline const Solve<LDLT, Rhs> |
|
|
solve(const MatrixBase<Rhs>& b) const; |
|
|
#endif |
|
|
|
|
|
template<typename Derived> |
|
|
bool solveInPlace(MatrixBase<Derived> &bAndX) const; |
|
|
|
|
|
template<typename InputType> |
|
|
LDLT& compute(const EigenBase<InputType>& matrix); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RealScalar rcond() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "LDLT is not initialized."); |
|
|
return internal::rcond_estimate_helper(m_l1_norm, *this); |
|
|
} |
|
|
|
|
|
template <typename Derived> |
|
|
LDLT& rankUpdate(const MatrixBase<Derived>& w, const RealScalar& alpha=1); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inline const MatrixType& matrixLDLT() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "LDLT is not initialized."); |
|
|
return m_matrix; |
|
|
} |
|
|
|
|
|
MatrixType reconstructedMatrix() const; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const LDLT& adjoint() const { return *this; }; |
|
|
|
|
|
EIGEN_DEVICE_FUNC inline EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows(); } |
|
|
EIGEN_DEVICE_FUNC inline EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); } |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ComputationInfo info() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "LDLT is not initialized."); |
|
|
return m_info; |
|
|
} |
|
|
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN |
|
|
template<typename RhsType, typename DstType> |
|
|
void _solve_impl(const RhsType &rhs, DstType &dst) const; |
|
|
|
|
|
template<bool Conjugate, typename RhsType, typename DstType> |
|
|
void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const; |
|
|
#endif |
|
|
|
|
|
protected: |
|
|
|
|
|
static void check_template_parameters() |
|
|
{ |
|
|
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MatrixType m_matrix; |
|
|
RealScalar m_l1_norm; |
|
|
TranspositionType m_transpositions; |
|
|
TmpMatrixType m_temporary; |
|
|
internal::SignMatrix m_sign; |
|
|
bool m_isInitialized; |
|
|
ComputationInfo m_info; |
|
|
}; |
|
|
|
|
|
namespace internal { |
|
|
|
|
|
template<int UpLo> struct ldlt_inplace; |
|
|
|
|
|
template<> struct ldlt_inplace<Lower> |
|
|
{ |
|
|
template<typename MatrixType, typename TranspositionType, typename Workspace> |
|
|
static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign) |
|
|
{ |
|
|
using std::abs; |
|
|
typedef typename MatrixType::Scalar Scalar; |
|
|
typedef typename MatrixType::RealScalar RealScalar; |
|
|
typedef typename TranspositionType::StorageIndex IndexType; |
|
|
eigen_assert(mat.rows()==mat.cols()); |
|
|
const Index size = mat.rows(); |
|
|
bool found_zero_pivot = false; |
|
|
bool ret = true; |
|
|
|
|
|
if (size <= 1) |
|
|
{ |
|
|
transpositions.setIdentity(); |
|
|
if(size==0) sign = ZeroSign; |
|
|
else if (numext::real(mat.coeff(0,0)) > static_cast<RealScalar>(0) ) sign = PositiveSemiDef; |
|
|
else if (numext::real(mat.coeff(0,0)) < static_cast<RealScalar>(0)) sign = NegativeSemiDef; |
|
|
else sign = ZeroSign; |
|
|
return true; |
|
|
} |
|
|
|
|
|
for (Index k = 0; k < size; ++k) |
|
|
{ |
|
|
|
|
|
Index index_of_biggest_in_corner; |
|
|
mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner); |
|
|
index_of_biggest_in_corner += k; |
|
|
|
|
|
transpositions.coeffRef(k) = IndexType(index_of_biggest_in_corner); |
|
|
if(k != index_of_biggest_in_corner) |
|
|
{ |
|
|
|
|
|
|
|
|
Index s = size-index_of_biggest_in_corner-1; |
|
|
mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k)); |
|
|
mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s)); |
|
|
std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner)); |
|
|
for(Index i=k+1;i<index_of_biggest_in_corner;++i) |
|
|
{ |
|
|
Scalar tmp = mat.coeffRef(i,k); |
|
|
mat.coeffRef(i,k) = numext::conj(mat.coeffRef(index_of_biggest_in_corner,i)); |
|
|
mat.coeffRef(index_of_biggest_in_corner,i) = numext::conj(tmp); |
|
|
} |
|
|
if(NumTraits<Scalar>::IsComplex) |
|
|
mat.coeffRef(index_of_biggest_in_corner,k) = numext::conj(mat.coeff(index_of_biggest_in_corner,k)); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Index rs = size - k - 1; |
|
|
Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1); |
|
|
Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k); |
|
|
Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k); |
|
|
|
|
|
if(k>0) |
|
|
{ |
|
|
temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint(); |
|
|
mat.coeffRef(k,k) -= (A10 * temp.head(k)).value(); |
|
|
if(rs>0) |
|
|
A21.noalias() -= A20 * temp.head(k); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RealScalar realAkk = numext::real(mat.coeffRef(k,k)); |
|
|
bool pivot_is_valid = (abs(realAkk) > RealScalar(0)); |
|
|
|
|
|
if(k==0 && !pivot_is_valid) |
|
|
{ |
|
|
|
|
|
|
|
|
sign = ZeroSign; |
|
|
for(Index j = 0; j<size; ++j) |
|
|
{ |
|
|
transpositions.coeffRef(j) = IndexType(j); |
|
|
ret = ret && (mat.col(j).tail(size-j-1).array()==Scalar(0)).all(); |
|
|
} |
|
|
return ret; |
|
|
} |
|
|
|
|
|
if((rs>0) && pivot_is_valid) |
|
|
A21 /= realAkk; |
|
|
else if(rs>0) |
|
|
ret = ret && (A21.array()==Scalar(0)).all(); |
|
|
|
|
|
if(found_zero_pivot && pivot_is_valid) ret = false; |
|
|
else if(!pivot_is_valid) found_zero_pivot = true; |
|
|
|
|
|
if (sign == PositiveSemiDef) { |
|
|
if (realAkk < static_cast<RealScalar>(0)) sign = Indefinite; |
|
|
} else if (sign == NegativeSemiDef) { |
|
|
if (realAkk > static_cast<RealScalar>(0)) sign = Indefinite; |
|
|
} else if (sign == ZeroSign) { |
|
|
if (realAkk > static_cast<RealScalar>(0)) sign = PositiveSemiDef; |
|
|
else if (realAkk < static_cast<RealScalar>(0)) sign = NegativeSemiDef; |
|
|
} |
|
|
} |
|
|
|
|
|
return ret; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename MatrixType, typename WDerived> |
|
|
static bool updateInPlace(MatrixType& mat, MatrixBase<WDerived>& w, const typename MatrixType::RealScalar& sigma=1) |
|
|
{ |
|
|
using numext::isfinite; |
|
|
typedef typename MatrixType::Scalar Scalar; |
|
|
typedef typename MatrixType::RealScalar RealScalar; |
|
|
|
|
|
const Index size = mat.rows(); |
|
|
eigen_assert(mat.cols() == size && w.size()==size); |
|
|
|
|
|
RealScalar alpha = 1; |
|
|
|
|
|
|
|
|
for (Index j = 0; j < size; j++) |
|
|
{ |
|
|
|
|
|
if (!(isfinite)(alpha)) |
|
|
break; |
|
|
|
|
|
|
|
|
RealScalar dj = numext::real(mat.coeff(j,j)); |
|
|
Scalar wj = w.coeff(j); |
|
|
RealScalar swj2 = sigma*numext::abs2(wj); |
|
|
RealScalar gamma = dj*alpha + swj2; |
|
|
|
|
|
mat.coeffRef(j,j) += swj2/alpha; |
|
|
alpha += swj2/dj; |
|
|
|
|
|
|
|
|
|
|
|
Index rs = size-j-1; |
|
|
w.tail(rs) -= wj * mat.col(j).tail(rs); |
|
|
if(gamma != 0) |
|
|
mat.col(j).tail(rs) += (sigma*numext::conj(wj)/gamma)*w.tail(rs); |
|
|
} |
|
|
return true; |
|
|
} |
|
|
|
|
|
template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType> |
|
|
static bool update(MatrixType& mat, const TranspositionType& transpositions, Workspace& tmp, const WType& w, const typename MatrixType::RealScalar& sigma=1) |
|
|
{ |
|
|
|
|
|
tmp = transpositions * w; |
|
|
|
|
|
return ldlt_inplace<Lower>::updateInPlace(mat,tmp,sigma); |
|
|
} |
|
|
}; |
|
|
|
|
|
template<> struct ldlt_inplace<Upper> |
|
|
{ |
|
|
template<typename MatrixType, typename TranspositionType, typename Workspace> |
|
|
static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign) |
|
|
{ |
|
|
Transpose<MatrixType> matt(mat); |
|
|
return ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign); |
|
|
} |
|
|
|
|
|
template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType> |
|
|
static EIGEN_STRONG_INLINE bool update(MatrixType& mat, TranspositionType& transpositions, Workspace& tmp, WType& w, const typename MatrixType::RealScalar& sigma=1) |
|
|
{ |
|
|
Transpose<MatrixType> matt(mat); |
|
|
return ldlt_inplace<Lower>::update(matt, transpositions, tmp, w.conjugate(), sigma); |
|
|
} |
|
|
}; |
|
|
|
|
|
template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower> |
|
|
{ |
|
|
typedef const TriangularView<const MatrixType, UnitLower> MatrixL; |
|
|
typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitUpper> MatrixU; |
|
|
static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); } |
|
|
static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); } |
|
|
}; |
|
|
|
|
|
template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper> |
|
|
{ |
|
|
typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitLower> MatrixL; |
|
|
typedef const TriangularView<const MatrixType, UnitUpper> MatrixU; |
|
|
static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); } |
|
|
static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); } |
|
|
}; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
template<typename MatrixType, int _UpLo> |
|
|
template<typename InputType> |
|
|
LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>& a) |
|
|
{ |
|
|
check_template_parameters(); |
|
|
|
|
|
eigen_assert(a.rows()==a.cols()); |
|
|
const Index size = a.rows(); |
|
|
|
|
|
m_matrix = a.derived(); |
|
|
|
|
|
|
|
|
m_l1_norm = RealScalar(0); |
|
|
|
|
|
for (Index col = 0; col < size; ++col) { |
|
|
RealScalar abs_col_sum; |
|
|
if (_UpLo == Lower) |
|
|
abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); |
|
|
else |
|
|
abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>(); |
|
|
if (abs_col_sum > m_l1_norm) |
|
|
m_l1_norm = abs_col_sum; |
|
|
} |
|
|
|
|
|
m_transpositions.resize(size); |
|
|
m_isInitialized = false; |
|
|
m_temporary.resize(size); |
|
|
m_sign = internal::ZeroSign; |
|
|
|
|
|
m_info = internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; |
|
|
|
|
|
m_isInitialized = true; |
|
|
return *this; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename MatrixType, int _UpLo> |
|
|
template<typename Derived> |
|
|
LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w, const typename LDLT<MatrixType,_UpLo>::RealScalar& sigma) |
|
|
{ |
|
|
typedef typename TranspositionType::StorageIndex IndexType; |
|
|
const Index size = w.rows(); |
|
|
if (m_isInitialized) |
|
|
{ |
|
|
eigen_assert(m_matrix.rows()==size); |
|
|
} |
|
|
else |
|
|
{ |
|
|
m_matrix.resize(size,size); |
|
|
m_matrix.setZero(); |
|
|
m_transpositions.resize(size); |
|
|
for (Index i = 0; i < size; i++) |
|
|
m_transpositions.coeffRef(i) = IndexType(i); |
|
|
m_temporary.resize(size); |
|
|
m_sign = sigma>=0 ? internal::PositiveSemiDef : internal::NegativeSemiDef; |
|
|
m_isInitialized = true; |
|
|
} |
|
|
|
|
|
internal::ldlt_inplace<UpLo>::update(m_matrix, m_transpositions, m_temporary, w, sigma); |
|
|
|
|
|
return *this; |
|
|
} |
|
|
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN |
|
|
template<typename _MatrixType, int _UpLo> |
|
|
template<typename RhsType, typename DstType> |
|
|
void LDLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const |
|
|
{ |
|
|
_solve_impl_transposed<true>(rhs, dst); |
|
|
} |
|
|
|
|
|
template<typename _MatrixType,int _UpLo> |
|
|
template<bool Conjugate, typename RhsType, typename DstType> |
|
|
void LDLT<_MatrixType,_UpLo>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const |
|
|
{ |
|
|
|
|
|
dst = m_transpositions * rhs; |
|
|
|
|
|
|
|
|
|
|
|
matrixL().template conjugateIf<!Conjugate>().solveInPlace(dst); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
using std::abs; |
|
|
const typename Diagonal<const MatrixType>::RealReturnType vecD(vectorD()); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RealScalar tolerance = (std::numeric_limits<RealScalar>::min)(); |
|
|
for (Index i = 0; i < vecD.size(); ++i) |
|
|
{ |
|
|
if(abs(vecD(i)) > tolerance) |
|
|
dst.row(i) /= vecD(i); |
|
|
else |
|
|
dst.row(i).setZero(); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
matrixL().transpose().template conjugateIf<Conjugate>().solveInPlace(dst); |
|
|
|
|
|
|
|
|
|
|
|
dst = m_transpositions.transpose() * dst; |
|
|
} |
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename MatrixType,int _UpLo> |
|
|
template<typename Derived> |
|
|
bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "LDLT is not initialized."); |
|
|
eigen_assert(m_matrix.rows() == bAndX.rows()); |
|
|
|
|
|
bAndX = this->solve(bAndX); |
|
|
|
|
|
return true; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename MatrixType, int _UpLo> |
|
|
MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "LDLT is not initialized."); |
|
|
const Index size = m_matrix.rows(); |
|
|
MatrixType res(size,size); |
|
|
|
|
|
|
|
|
res.setIdentity(); |
|
|
res = transpositionsP() * res; |
|
|
|
|
|
res = matrixU() * res; |
|
|
|
|
|
res = vectorD().real().asDiagonal() * res; |
|
|
|
|
|
res = matrixL() * res; |
|
|
|
|
|
res = transpositionsP().transpose() * res; |
|
|
|
|
|
return res; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename MatrixType, unsigned int UpLo> |
|
|
inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo> |
|
|
SelfAdjointView<MatrixType, UpLo>::ldlt() const |
|
|
{ |
|
|
return LDLT<PlainObject,UpLo>(m_matrix); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename Derived> |
|
|
inline const LDLT<typename MatrixBase<Derived>::PlainObject> |
|
|
MatrixBase<Derived>::ldlt() const |
|
|
{ |
|
|
return LDLT<PlainObject>(derived()); |
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
#endif |
|
|
|