|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef EIGEN_LLT_H |
|
|
#define EIGEN_LLT_H |
|
|
|
|
|
namespace Eigen { |
|
|
|
|
|
namespace internal{ |
|
|
|
|
|
template<typename _MatrixType, int _UpLo> struct traits<LLT<_MatrixType, _UpLo> > |
|
|
: traits<_MatrixType> |
|
|
{ |
|
|
typedef MatrixXpr XprKind; |
|
|
typedef SolverStorage StorageKind; |
|
|
typedef int StorageIndex; |
|
|
enum { Flags = 0 }; |
|
|
}; |
|
|
|
|
|
template<typename MatrixType, int UpLo> struct LLT_Traits; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename _MatrixType, int _UpLo> class LLT |
|
|
: public SolverBase<LLT<_MatrixType, _UpLo> > |
|
|
{ |
|
|
public: |
|
|
typedef _MatrixType MatrixType; |
|
|
typedef SolverBase<LLT> Base; |
|
|
friend class SolverBase<LLT>; |
|
|
|
|
|
EIGEN_GENERIC_PUBLIC_INTERFACE(LLT) |
|
|
enum { |
|
|
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
|
|
}; |
|
|
|
|
|
enum { |
|
|
PacketSize = internal::packet_traits<Scalar>::size, |
|
|
AlignmentMask = int(PacketSize)-1, |
|
|
UpLo = _UpLo |
|
|
}; |
|
|
|
|
|
typedef internal::LLT_Traits<MatrixType,UpLo> Traits; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LLT() : m_matrix(), m_isInitialized(false) {} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
explicit LLT(Index size) : m_matrix(size, size), |
|
|
m_isInitialized(false) {} |
|
|
|
|
|
template<typename InputType> |
|
|
explicit LLT(const EigenBase<InputType>& matrix) |
|
|
: m_matrix(matrix.rows(), matrix.cols()), |
|
|
m_isInitialized(false) |
|
|
{ |
|
|
compute(matrix.derived()); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename InputType> |
|
|
explicit LLT(EigenBase<InputType>& matrix) |
|
|
: m_matrix(matrix.derived()), |
|
|
m_isInitialized(false) |
|
|
{ |
|
|
compute(matrix.derived()); |
|
|
} |
|
|
|
|
|
|
|
|
inline typename Traits::MatrixU matrixU() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "LLT is not initialized."); |
|
|
return Traits::getU(m_matrix); |
|
|
} |
|
|
|
|
|
|
|
|
inline typename Traits::MatrixL matrixL() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "LLT is not initialized."); |
|
|
return Traits::getL(m_matrix); |
|
|
} |
|
|
|
|
|
#ifdef EIGEN_PARSED_BY_DOXYGEN |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename Rhs> |
|
|
inline const Solve<LLT, Rhs> |
|
|
solve(const MatrixBase<Rhs>& b) const; |
|
|
#endif |
|
|
|
|
|
template<typename Derived> |
|
|
void solveInPlace(const MatrixBase<Derived> &bAndX) const; |
|
|
|
|
|
template<typename InputType> |
|
|
LLT& compute(const EigenBase<InputType>& matrix); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RealScalar rcond() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "LLT is not initialized."); |
|
|
eigen_assert(m_info == Success && "LLT failed because matrix appears to be negative"); |
|
|
return internal::rcond_estimate_helper(m_l1_norm, *this); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inline const MatrixType& matrixLLT() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "LLT is not initialized."); |
|
|
return m_matrix; |
|
|
} |
|
|
|
|
|
MatrixType reconstructedMatrix() const; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ComputationInfo info() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "LLT is not initialized."); |
|
|
return m_info; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const LLT& adjoint() const EIGEN_NOEXCEPT { return *this; }; |
|
|
|
|
|
inline EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows(); } |
|
|
inline EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); } |
|
|
|
|
|
template<typename VectorType> |
|
|
LLT & rankUpdate(const VectorType& vec, const RealScalar& sigma = 1); |
|
|
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN |
|
|
template<typename RhsType, typename DstType> |
|
|
void _solve_impl(const RhsType &rhs, DstType &dst) const; |
|
|
|
|
|
template<bool Conjugate, typename RhsType, typename DstType> |
|
|
void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const; |
|
|
#endif |
|
|
|
|
|
protected: |
|
|
|
|
|
static void check_template_parameters() |
|
|
{ |
|
|
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MatrixType m_matrix; |
|
|
RealScalar m_l1_norm; |
|
|
bool m_isInitialized; |
|
|
ComputationInfo m_info; |
|
|
}; |
|
|
|
|
|
namespace internal { |
|
|
|
|
|
template<typename Scalar, int UpLo> struct llt_inplace; |
|
|
|
|
|
template<typename MatrixType, typename VectorType> |
|
|
static Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) |
|
|
{ |
|
|
using std::sqrt; |
|
|
typedef typename MatrixType::Scalar Scalar; |
|
|
typedef typename MatrixType::RealScalar RealScalar; |
|
|
typedef typename MatrixType::ColXpr ColXpr; |
|
|
typedef typename internal::remove_all<ColXpr>::type ColXprCleaned; |
|
|
typedef typename ColXprCleaned::SegmentReturnType ColXprSegment; |
|
|
typedef Matrix<Scalar,Dynamic,1> TempVectorType; |
|
|
typedef typename TempVectorType::SegmentReturnType TempVecSegment; |
|
|
|
|
|
Index n = mat.cols(); |
|
|
eigen_assert(mat.rows()==n && vec.size()==n); |
|
|
|
|
|
TempVectorType temp; |
|
|
|
|
|
if(sigma>0) |
|
|
{ |
|
|
|
|
|
|
|
|
|
|
|
temp = sqrt(sigma) * vec; |
|
|
|
|
|
for(Index i=0; i<n; ++i) |
|
|
{ |
|
|
JacobiRotation<Scalar> g; |
|
|
g.makeGivens(mat(i,i), -temp(i), &mat(i,i)); |
|
|
|
|
|
Index rs = n-i-1; |
|
|
if(rs>0) |
|
|
{ |
|
|
ColXprSegment x(mat.col(i).tail(rs)); |
|
|
TempVecSegment y(temp.tail(rs)); |
|
|
apply_rotation_in_the_plane(x, y, g); |
|
|
} |
|
|
} |
|
|
} |
|
|
else |
|
|
{ |
|
|
temp = vec; |
|
|
RealScalar beta = 1; |
|
|
for(Index j=0; j<n; ++j) |
|
|
{ |
|
|
RealScalar Ljj = numext::real(mat.coeff(j,j)); |
|
|
RealScalar dj = numext::abs2(Ljj); |
|
|
Scalar wj = temp.coeff(j); |
|
|
RealScalar swj2 = sigma*numext::abs2(wj); |
|
|
RealScalar gamma = dj*beta + swj2; |
|
|
|
|
|
RealScalar x = dj + swj2/beta; |
|
|
if (x<=RealScalar(0)) |
|
|
return j; |
|
|
RealScalar nLjj = sqrt(x); |
|
|
mat.coeffRef(j,j) = nLjj; |
|
|
beta += swj2/dj; |
|
|
|
|
|
|
|
|
Index rs = n-j-1; |
|
|
if(rs) |
|
|
{ |
|
|
temp.tail(rs) -= (wj/Ljj) * mat.col(j).tail(rs); |
|
|
if(gamma != 0) |
|
|
mat.col(j).tail(rs) = (nLjj/Ljj) * mat.col(j).tail(rs) + (nLjj * sigma*numext::conj(wj)/gamma)*temp.tail(rs); |
|
|
} |
|
|
} |
|
|
} |
|
|
return -1; |
|
|
} |
|
|
|
|
|
template<typename Scalar> struct llt_inplace<Scalar, Lower> |
|
|
{ |
|
|
typedef typename NumTraits<Scalar>::Real RealScalar; |
|
|
template<typename MatrixType> |
|
|
static Index unblocked(MatrixType& mat) |
|
|
{ |
|
|
using std::sqrt; |
|
|
|
|
|
eigen_assert(mat.rows()==mat.cols()); |
|
|
const Index size = mat.rows(); |
|
|
for(Index k = 0; k < size; ++k) |
|
|
{ |
|
|
Index rs = size-k-1; |
|
|
|
|
|
Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1); |
|
|
Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k); |
|
|
Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k); |
|
|
|
|
|
RealScalar x = numext::real(mat.coeff(k,k)); |
|
|
if (k>0) x -= A10.squaredNorm(); |
|
|
if (x<=RealScalar(0)) |
|
|
return k; |
|
|
mat.coeffRef(k,k) = x = sqrt(x); |
|
|
if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint(); |
|
|
if (rs>0) A21 /= x; |
|
|
} |
|
|
return -1; |
|
|
} |
|
|
|
|
|
template<typename MatrixType> |
|
|
static Index blocked(MatrixType& m) |
|
|
{ |
|
|
eigen_assert(m.rows()==m.cols()); |
|
|
Index size = m.rows(); |
|
|
if(size<32) |
|
|
return unblocked(m); |
|
|
|
|
|
Index blockSize = size/8; |
|
|
blockSize = (blockSize/16)*16; |
|
|
blockSize = (std::min)((std::max)(blockSize,Index(8)), Index(128)); |
|
|
|
|
|
for (Index k=0; k<size; k+=blockSize) |
|
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Index bs = (std::min)(blockSize, size-k); |
|
|
Index rs = size - k - bs; |
|
|
Block<MatrixType,Dynamic,Dynamic> A11(m,k, k, bs,bs); |
|
|
Block<MatrixType,Dynamic,Dynamic> A21(m,k+bs,k, rs,bs); |
|
|
Block<MatrixType,Dynamic,Dynamic> A22(m,k+bs,k+bs,rs,rs); |
|
|
|
|
|
Index ret; |
|
|
if((ret=unblocked(A11))>=0) return k+ret; |
|
|
if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21); |
|
|
if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,typename NumTraits<RealScalar>::Literal(-1)); |
|
|
} |
|
|
return -1; |
|
|
} |
|
|
|
|
|
template<typename MatrixType, typename VectorType> |
|
|
static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) |
|
|
{ |
|
|
return Eigen::internal::llt_rank_update_lower(mat, vec, sigma); |
|
|
} |
|
|
}; |
|
|
|
|
|
template<typename Scalar> struct llt_inplace<Scalar, Upper> |
|
|
{ |
|
|
typedef typename NumTraits<Scalar>::Real RealScalar; |
|
|
|
|
|
template<typename MatrixType> |
|
|
static EIGEN_STRONG_INLINE Index unblocked(MatrixType& mat) |
|
|
{ |
|
|
Transpose<MatrixType> matt(mat); |
|
|
return llt_inplace<Scalar, Lower>::unblocked(matt); |
|
|
} |
|
|
template<typename MatrixType> |
|
|
static EIGEN_STRONG_INLINE Index blocked(MatrixType& mat) |
|
|
{ |
|
|
Transpose<MatrixType> matt(mat); |
|
|
return llt_inplace<Scalar, Lower>::blocked(matt); |
|
|
} |
|
|
template<typename MatrixType, typename VectorType> |
|
|
static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) |
|
|
{ |
|
|
Transpose<MatrixType> matt(mat); |
|
|
return llt_inplace<Scalar, Lower>::rankUpdate(matt, vec.conjugate(), sigma); |
|
|
} |
|
|
}; |
|
|
|
|
|
template<typename MatrixType> struct LLT_Traits<MatrixType,Lower> |
|
|
{ |
|
|
typedef const TriangularView<const MatrixType, Lower> MatrixL; |
|
|
typedef const TriangularView<const typename MatrixType::AdjointReturnType, Upper> MatrixU; |
|
|
static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); } |
|
|
static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); } |
|
|
static bool inplace_decomposition(MatrixType& m) |
|
|
{ return llt_inplace<typename MatrixType::Scalar, Lower>::blocked(m)==-1; } |
|
|
}; |
|
|
|
|
|
template<typename MatrixType> struct LLT_Traits<MatrixType,Upper> |
|
|
{ |
|
|
typedef const TriangularView<const typename MatrixType::AdjointReturnType, Lower> MatrixL; |
|
|
typedef const TriangularView<const MatrixType, Upper> MatrixU; |
|
|
static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); } |
|
|
static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); } |
|
|
static bool inplace_decomposition(MatrixType& m) |
|
|
{ return llt_inplace<typename MatrixType::Scalar, Upper>::blocked(m)==-1; } |
|
|
}; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename MatrixType, int _UpLo> |
|
|
template<typename InputType> |
|
|
LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>& a) |
|
|
{ |
|
|
check_template_parameters(); |
|
|
|
|
|
eigen_assert(a.rows()==a.cols()); |
|
|
const Index size = a.rows(); |
|
|
m_matrix.resize(size, size); |
|
|
if (!internal::is_same_dense(m_matrix, a.derived())) |
|
|
m_matrix = a.derived(); |
|
|
|
|
|
|
|
|
m_l1_norm = RealScalar(0); |
|
|
|
|
|
for (Index col = 0; col < size; ++col) { |
|
|
RealScalar abs_col_sum; |
|
|
if (_UpLo == Lower) |
|
|
abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); |
|
|
else |
|
|
abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>(); |
|
|
if (abs_col_sum > m_l1_norm) |
|
|
m_l1_norm = abs_col_sum; |
|
|
} |
|
|
|
|
|
m_isInitialized = true; |
|
|
bool ok = Traits::inplace_decomposition(m_matrix); |
|
|
m_info = ok ? Success : NumericalIssue; |
|
|
|
|
|
return *this; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename _MatrixType, int _UpLo> |
|
|
template<typename VectorType> |
|
|
LLT<_MatrixType,_UpLo> & LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v, const RealScalar& sigma) |
|
|
{ |
|
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType); |
|
|
eigen_assert(v.size()==m_matrix.cols()); |
|
|
eigen_assert(m_isInitialized); |
|
|
if(internal::llt_inplace<typename MatrixType::Scalar, UpLo>::rankUpdate(m_matrix,v,sigma)>=0) |
|
|
m_info = NumericalIssue; |
|
|
else |
|
|
m_info = Success; |
|
|
|
|
|
return *this; |
|
|
} |
|
|
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN |
|
|
template<typename _MatrixType,int _UpLo> |
|
|
template<typename RhsType, typename DstType> |
|
|
void LLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const |
|
|
{ |
|
|
_solve_impl_transposed<true>(rhs, dst); |
|
|
} |
|
|
|
|
|
template<typename _MatrixType,int _UpLo> |
|
|
template<bool Conjugate, typename RhsType, typename DstType> |
|
|
void LLT<_MatrixType,_UpLo>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const |
|
|
{ |
|
|
dst = rhs; |
|
|
|
|
|
matrixL().template conjugateIf<!Conjugate>().solveInPlace(dst); |
|
|
matrixU().template conjugateIf<!Conjugate>().solveInPlace(dst); |
|
|
} |
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename MatrixType, int _UpLo> |
|
|
template<typename Derived> |
|
|
void LLT<MatrixType,_UpLo>::solveInPlace(const MatrixBase<Derived> &bAndX) const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "LLT is not initialized."); |
|
|
eigen_assert(m_matrix.rows()==bAndX.rows()); |
|
|
matrixL().solveInPlace(bAndX); |
|
|
matrixU().solveInPlace(bAndX); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename MatrixType, int _UpLo> |
|
|
MatrixType LLT<MatrixType,_UpLo>::reconstructedMatrix() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "LLT is not initialized."); |
|
|
return matrixL() * matrixL().adjoint().toDenseMatrix(); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename Derived> |
|
|
inline const LLT<typename MatrixBase<Derived>::PlainObject> |
|
|
MatrixBase<Derived>::llt() const |
|
|
{ |
|
|
return LLT<PlainObject>(derived()); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename MatrixType, unsigned int UpLo> |
|
|
inline const LLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo> |
|
|
SelfAdjointView<MatrixType, UpLo>::llt() const |
|
|
{ |
|
|
return LLT<PlainObject,UpLo>(m_matrix); |
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
#endif |
|
|
|