|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef EIGEN_EIGENSOLVER_H |
|
|
#define EIGEN_EIGENSOLVER_H |
|
|
|
|
|
#include "./RealSchur.h" |
|
|
|
|
|
namespace Eigen { |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename _MatrixType> class EigenSolver |
|
|
{ |
|
|
public: |
|
|
|
|
|
|
|
|
typedef _MatrixType MatrixType; |
|
|
|
|
|
enum { |
|
|
RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
|
|
ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
|
|
Options = MatrixType::Options, |
|
|
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
|
|
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
|
|
}; |
|
|
|
|
|
|
|
|
typedef typename MatrixType::Scalar Scalar; |
|
|
typedef typename NumTraits<Scalar>::Real RealScalar; |
|
|
typedef Eigen::Index Index; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
typedef std::complex<RealScalar> ComplexScalar; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false), m_eigenvectorsOk(false), m_realSchur(), m_matT(), m_tmp() {} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
explicit EigenSolver(Index size) |
|
|
: m_eivec(size, size), |
|
|
m_eivalues(size), |
|
|
m_isInitialized(false), |
|
|
m_eigenvectorsOk(false), |
|
|
m_realSchur(size), |
|
|
m_matT(size, size), |
|
|
m_tmp(size) |
|
|
{} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename InputType> |
|
|
explicit EigenSolver(const EigenBase<InputType>& matrix, bool computeEigenvectors = true) |
|
|
: m_eivec(matrix.rows(), matrix.cols()), |
|
|
m_eivalues(matrix.cols()), |
|
|
m_isInitialized(false), |
|
|
m_eigenvectorsOk(false), |
|
|
m_realSchur(matrix.cols()), |
|
|
m_matT(matrix.rows(), matrix.cols()), |
|
|
m_tmp(matrix.cols()) |
|
|
{ |
|
|
compute(matrix.derived(), computeEigenvectors); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EigenvectorsType eigenvectors() const; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const MatrixType& pseudoEigenvectors() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "EigenSolver is not initialized."); |
|
|
eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); |
|
|
return m_eivec; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MatrixType pseudoEigenvalueMatrix() const; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const EigenvalueType& eigenvalues() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "EigenSolver is not initialized."); |
|
|
return m_eivalues; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename InputType> |
|
|
EigenSolver& compute(const EigenBase<InputType>& matrix, bool computeEigenvectors = true); |
|
|
|
|
|
|
|
|
ComputationInfo info() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "EigenSolver is not initialized."); |
|
|
return m_info; |
|
|
} |
|
|
|
|
|
|
|
|
EigenSolver& setMaxIterations(Index maxIters) |
|
|
{ |
|
|
m_realSchur.setMaxIterations(maxIters); |
|
|
return *this; |
|
|
} |
|
|
|
|
|
|
|
|
Index getMaxIterations() |
|
|
{ |
|
|
return m_realSchur.getMaxIterations(); |
|
|
} |
|
|
|
|
|
private: |
|
|
void doComputeEigenvectors(); |
|
|
|
|
|
protected: |
|
|
|
|
|
static void check_template_parameters() |
|
|
{ |
|
|
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); |
|
|
EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL); |
|
|
} |
|
|
|
|
|
MatrixType m_eivec; |
|
|
EigenvalueType m_eivalues; |
|
|
bool m_isInitialized; |
|
|
bool m_eigenvectorsOk; |
|
|
ComputationInfo m_info; |
|
|
RealSchur<MatrixType> m_realSchur; |
|
|
MatrixType m_matT; |
|
|
|
|
|
typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType; |
|
|
ColumnVectorType m_tmp; |
|
|
}; |
|
|
|
|
|
template<typename MatrixType> |
|
|
MatrixType EigenSolver<MatrixType>::pseudoEigenvalueMatrix() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "EigenSolver is not initialized."); |
|
|
const RealScalar precision = RealScalar(2)*NumTraits<RealScalar>::epsilon(); |
|
|
Index n = m_eivalues.rows(); |
|
|
MatrixType matD = MatrixType::Zero(n,n); |
|
|
for (Index i=0; i<n; ++i) |
|
|
{ |
|
|
if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i)), precision)) |
|
|
matD.coeffRef(i,i) = numext::real(m_eivalues.coeff(i)); |
|
|
else |
|
|
{ |
|
|
matD.template block<2,2>(i,i) << numext::real(m_eivalues.coeff(i)), numext::imag(m_eivalues.coeff(i)), |
|
|
-numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i)); |
|
|
++i; |
|
|
} |
|
|
} |
|
|
return matD; |
|
|
} |
|
|
|
|
|
template<typename MatrixType> |
|
|
typename EigenSolver<MatrixType>::EigenvectorsType EigenSolver<MatrixType>::eigenvectors() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "EigenSolver is not initialized."); |
|
|
eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); |
|
|
const RealScalar precision = RealScalar(2)*NumTraits<RealScalar>::epsilon(); |
|
|
Index n = m_eivec.cols(); |
|
|
EigenvectorsType matV(n,n); |
|
|
for (Index j=0; j<n; ++j) |
|
|
{ |
|
|
if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(j)), numext::real(m_eivalues.coeff(j)), precision) || j+1==n) |
|
|
{ |
|
|
|
|
|
matV.col(j) = m_eivec.col(j).template cast<ComplexScalar>(); |
|
|
matV.col(j).normalize(); |
|
|
} |
|
|
else |
|
|
{ |
|
|
|
|
|
for (Index i=0; i<n; ++i) |
|
|
{ |
|
|
matV.coeffRef(i,j) = ComplexScalar(m_eivec.coeff(i,j), m_eivec.coeff(i,j+1)); |
|
|
matV.coeffRef(i,j+1) = ComplexScalar(m_eivec.coeff(i,j), -m_eivec.coeff(i,j+1)); |
|
|
} |
|
|
matV.col(j).normalize(); |
|
|
matV.col(j+1).normalize(); |
|
|
++j; |
|
|
} |
|
|
} |
|
|
return matV; |
|
|
} |
|
|
|
|
|
template<typename MatrixType> |
|
|
template<typename InputType> |
|
|
EigenSolver<MatrixType>& |
|
|
EigenSolver<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeEigenvectors) |
|
|
{ |
|
|
check_template_parameters(); |
|
|
|
|
|
using std::sqrt; |
|
|
using std::abs; |
|
|
using numext::isfinite; |
|
|
eigen_assert(matrix.cols() == matrix.rows()); |
|
|
|
|
|
|
|
|
m_realSchur.compute(matrix.derived(), computeEigenvectors); |
|
|
|
|
|
m_info = m_realSchur.info(); |
|
|
|
|
|
if (m_info == Success) |
|
|
{ |
|
|
m_matT = m_realSchur.matrixT(); |
|
|
if (computeEigenvectors) |
|
|
m_eivec = m_realSchur.matrixU(); |
|
|
|
|
|
|
|
|
m_eivalues.resize(matrix.cols()); |
|
|
Index i = 0; |
|
|
while (i < matrix.cols()) |
|
|
{ |
|
|
if (i == matrix.cols() - 1 || m_matT.coeff(i+1, i) == Scalar(0)) |
|
|
{ |
|
|
m_eivalues.coeffRef(i) = m_matT.coeff(i, i); |
|
|
if(!(isfinite)(m_eivalues.coeffRef(i))) |
|
|
{ |
|
|
m_isInitialized = true; |
|
|
m_eigenvectorsOk = false; |
|
|
m_info = NumericalIssue; |
|
|
return *this; |
|
|
} |
|
|
++i; |
|
|
} |
|
|
else |
|
|
{ |
|
|
Scalar p = Scalar(0.5) * (m_matT.coeff(i, i) - m_matT.coeff(i+1, i+1)); |
|
|
Scalar z; |
|
|
|
|
|
|
|
|
{ |
|
|
Scalar t0 = m_matT.coeff(i+1, i); |
|
|
Scalar t1 = m_matT.coeff(i, i+1); |
|
|
Scalar maxval = numext::maxi<Scalar>(abs(p),numext::maxi<Scalar>(abs(t0),abs(t1))); |
|
|
t0 /= maxval; |
|
|
t1 /= maxval; |
|
|
Scalar p0 = p/maxval; |
|
|
z = maxval * sqrt(abs(p0 * p0 + t0 * t1)); |
|
|
} |
|
|
|
|
|
m_eivalues.coeffRef(i) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, z); |
|
|
m_eivalues.coeffRef(i+1) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, -z); |
|
|
if(!((isfinite)(m_eivalues.coeffRef(i)) && (isfinite)(m_eivalues.coeffRef(i+1)))) |
|
|
{ |
|
|
m_isInitialized = true; |
|
|
m_eigenvectorsOk = false; |
|
|
m_info = NumericalIssue; |
|
|
return *this; |
|
|
} |
|
|
i += 2; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
if (computeEigenvectors) |
|
|
doComputeEigenvectors(); |
|
|
} |
|
|
|
|
|
m_isInitialized = true; |
|
|
m_eigenvectorsOk = computeEigenvectors; |
|
|
|
|
|
return *this; |
|
|
} |
|
|
|
|
|
|
|
|
template<typename MatrixType> |
|
|
void EigenSolver<MatrixType>::doComputeEigenvectors() |
|
|
{ |
|
|
using std::abs; |
|
|
const Index size = m_eivec.cols(); |
|
|
const Scalar eps = NumTraits<Scalar>::epsilon(); |
|
|
|
|
|
|
|
|
Scalar norm(0); |
|
|
for (Index j = 0; j < size; ++j) |
|
|
{ |
|
|
norm += m_matT.row(j).segment((std::max)(j-1,Index(0)), size-(std::max)(j-1,Index(0))).cwiseAbs().sum(); |
|
|
} |
|
|
|
|
|
|
|
|
if (norm == Scalar(0)) |
|
|
{ |
|
|
return; |
|
|
} |
|
|
|
|
|
for (Index n = size-1; n >= 0; n--) |
|
|
{ |
|
|
Scalar p = m_eivalues.coeff(n).real(); |
|
|
Scalar q = m_eivalues.coeff(n).imag(); |
|
|
|
|
|
|
|
|
if (q == Scalar(0)) |
|
|
{ |
|
|
Scalar lastr(0), lastw(0); |
|
|
Index l = n; |
|
|
|
|
|
m_matT.coeffRef(n,n) = Scalar(1); |
|
|
for (Index i = n-1; i >= 0; i--) |
|
|
{ |
|
|
Scalar w = m_matT.coeff(i,i) - p; |
|
|
Scalar r = m_matT.row(i).segment(l,n-l+1).dot(m_matT.col(n).segment(l, n-l+1)); |
|
|
|
|
|
if (m_eivalues.coeff(i).imag() < Scalar(0)) |
|
|
{ |
|
|
lastw = w; |
|
|
lastr = r; |
|
|
} |
|
|
else |
|
|
{ |
|
|
l = i; |
|
|
if (m_eivalues.coeff(i).imag() == Scalar(0)) |
|
|
{ |
|
|
if (w != Scalar(0)) |
|
|
m_matT.coeffRef(i,n) = -r / w; |
|
|
else |
|
|
m_matT.coeffRef(i,n) = -r / (eps * norm); |
|
|
} |
|
|
else |
|
|
{ |
|
|
Scalar x = m_matT.coeff(i,i+1); |
|
|
Scalar y = m_matT.coeff(i+1,i); |
|
|
Scalar denom = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag(); |
|
|
Scalar t = (x * lastr - lastw * r) / denom; |
|
|
m_matT.coeffRef(i,n) = t; |
|
|
if (abs(x) > abs(lastw)) |
|
|
m_matT.coeffRef(i+1,n) = (-r - w * t) / x; |
|
|
else |
|
|
m_matT.coeffRef(i+1,n) = (-lastr - y * t) / lastw; |
|
|
} |
|
|
|
|
|
|
|
|
Scalar t = abs(m_matT.coeff(i,n)); |
|
|
if ((eps * t) * t > Scalar(1)) |
|
|
m_matT.col(n).tail(size-i) /= t; |
|
|
} |
|
|
} |
|
|
} |
|
|
else if (q < Scalar(0) && n > 0) |
|
|
{ |
|
|
Scalar lastra(0), lastsa(0), lastw(0); |
|
|
Index l = n-1; |
|
|
|
|
|
|
|
|
if (abs(m_matT.coeff(n,n-1)) > abs(m_matT.coeff(n-1,n))) |
|
|
{ |
|
|
m_matT.coeffRef(n-1,n-1) = q / m_matT.coeff(n,n-1); |
|
|
m_matT.coeffRef(n-1,n) = -(m_matT.coeff(n,n) - p) / m_matT.coeff(n,n-1); |
|
|
} |
|
|
else |
|
|
{ |
|
|
ComplexScalar cc = ComplexScalar(Scalar(0),-m_matT.coeff(n-1,n)) / ComplexScalar(m_matT.coeff(n-1,n-1)-p,q); |
|
|
m_matT.coeffRef(n-1,n-1) = numext::real(cc); |
|
|
m_matT.coeffRef(n-1,n) = numext::imag(cc); |
|
|
} |
|
|
m_matT.coeffRef(n,n-1) = Scalar(0); |
|
|
m_matT.coeffRef(n,n) = Scalar(1); |
|
|
for (Index i = n-2; i >= 0; i--) |
|
|
{ |
|
|
Scalar ra = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n-1).segment(l, n-l+1)); |
|
|
Scalar sa = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n).segment(l, n-l+1)); |
|
|
Scalar w = m_matT.coeff(i,i) - p; |
|
|
|
|
|
if (m_eivalues.coeff(i).imag() < Scalar(0)) |
|
|
{ |
|
|
lastw = w; |
|
|
lastra = ra; |
|
|
lastsa = sa; |
|
|
} |
|
|
else |
|
|
{ |
|
|
l = i; |
|
|
if (m_eivalues.coeff(i).imag() == RealScalar(0)) |
|
|
{ |
|
|
ComplexScalar cc = ComplexScalar(-ra,-sa) / ComplexScalar(w,q); |
|
|
m_matT.coeffRef(i,n-1) = numext::real(cc); |
|
|
m_matT.coeffRef(i,n) = numext::imag(cc); |
|
|
} |
|
|
else |
|
|
{ |
|
|
|
|
|
Scalar x = m_matT.coeff(i,i+1); |
|
|
Scalar y = m_matT.coeff(i+1,i); |
|
|
Scalar vr = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag() - q * q; |
|
|
Scalar vi = (m_eivalues.coeff(i).real() - p) * Scalar(2) * q; |
|
|
if ((vr == Scalar(0)) && (vi == Scalar(0))) |
|
|
vr = eps * norm * (abs(w) + abs(q) + abs(x) + abs(y) + abs(lastw)); |
|
|
|
|
|
ComplexScalar cc = ComplexScalar(x*lastra-lastw*ra+q*sa,x*lastsa-lastw*sa-q*ra) / ComplexScalar(vr,vi); |
|
|
m_matT.coeffRef(i,n-1) = numext::real(cc); |
|
|
m_matT.coeffRef(i,n) = numext::imag(cc); |
|
|
if (abs(x) > (abs(lastw) + abs(q))) |
|
|
{ |
|
|
m_matT.coeffRef(i+1,n-1) = (-ra - w * m_matT.coeff(i,n-1) + q * m_matT.coeff(i,n)) / x; |
|
|
m_matT.coeffRef(i+1,n) = (-sa - w * m_matT.coeff(i,n) - q * m_matT.coeff(i,n-1)) / x; |
|
|
} |
|
|
else |
|
|
{ |
|
|
cc = ComplexScalar(-lastra-y*m_matT.coeff(i,n-1),-lastsa-y*m_matT.coeff(i,n)) / ComplexScalar(lastw,q); |
|
|
m_matT.coeffRef(i+1,n-1) = numext::real(cc); |
|
|
m_matT.coeffRef(i+1,n) = numext::imag(cc); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
Scalar t = numext::maxi<Scalar>(abs(m_matT.coeff(i,n-1)),abs(m_matT.coeff(i,n))); |
|
|
if ((eps * t) * t > Scalar(1)) |
|
|
m_matT.block(i, n-1, size-i, 2) /= t; |
|
|
|
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
n--; |
|
|
} |
|
|
else |
|
|
{ |
|
|
eigen_assert(0 && "Internal bug in EigenSolver (INF or NaN has not been detected)"); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
for (Index j = size-1; j >= 0; j--) |
|
|
{ |
|
|
m_tmp.noalias() = m_eivec.leftCols(j+1) * m_matT.col(j).segment(0, j+1); |
|
|
m_eivec.col(j) = m_tmp; |
|
|
} |
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
#endif |
|
|
|