| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2012-2016 Gael Guennebaud <gael.guennebaud@inria.fr> | |
| // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk> | |
| // Copyright (C) 2016 Tobias Wood <tobias@spinicist.org.uk> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
| namespace Eigen { | |
| /** \eigenvalues_module \ingroup Eigenvalues_Module | |
| * | |
| * | |
| * \class GeneralizedEigenSolver | |
| * | |
| * \brief Computes the generalized eigenvalues and eigenvectors of a pair of general matrices | |
| * | |
| * \tparam _MatrixType the type of the matrices of which we are computing the | |
| * eigen-decomposition; this is expected to be an instantiation of the Matrix | |
| * class template. Currently, only real matrices are supported. | |
| * | |
| * The generalized eigenvalues and eigenvectors of a matrix pair \f$ A \f$ and \f$ B \f$ are scalars | |
| * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda Bv \f$. If | |
| * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and | |
| * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V = | |
| * B V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we | |
| * have \f$ A = B V D V^{-1} \f$. This is called the generalized eigen-decomposition. | |
| * | |
| * The generalized eigenvalues and eigenvectors of a matrix pair may be complex, even when the | |
| * matrices are real. Moreover, the generalized eigenvalue might be infinite if the matrix B is | |
| * singular. To workaround this difficulty, the eigenvalues are provided as a pair of complex \f$ \alpha \f$ | |
| * and real \f$ \beta \f$ such that: \f$ \lambda_i = \alpha_i / \beta_i \f$. If \f$ \beta_i \f$ is (nearly) zero, | |
| * then one can consider the well defined left eigenvalue \f$ \mu = \beta_i / \alpha_i\f$ such that: | |
| * \f$ \mu_i A v_i = B v_i \f$, or even \f$ \mu_i u_i^T A = u_i^T B \f$ where \f$ u_i \f$ is | |
| * called the left eigenvector. | |
| * | |
| * Call the function compute() to compute the generalized eigenvalues and eigenvectors of | |
| * a given matrix pair. Alternatively, you can use the | |
| * GeneralizedEigenSolver(const MatrixType&, const MatrixType&, bool) constructor which computes the | |
| * eigenvalues and eigenvectors at construction time. Once the eigenvalue and | |
| * eigenvectors are computed, they can be retrieved with the eigenvalues() and | |
| * eigenvectors() functions. | |
| * | |
| * Here is an usage example of this class: | |
| * Example: \include GeneralizedEigenSolver.cpp | |
| * Output: \verbinclude GeneralizedEigenSolver.out | |
| * | |
| * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver | |
| */ | |
| template<typename _MatrixType> class GeneralizedEigenSolver | |
| { | |
| public: | |
| /** \brief Synonym for the template parameter \p _MatrixType. */ | |
| typedef _MatrixType MatrixType; | |
| enum { | |
| RowsAtCompileTime = MatrixType::RowsAtCompileTime, | |
| ColsAtCompileTime = MatrixType::ColsAtCompileTime, | |
| Options = MatrixType::Options, | |
| MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | |
| MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | |
| }; | |
| /** \brief Scalar type for matrices of type #MatrixType. */ | |
| typedef typename MatrixType::Scalar Scalar; | |
| typedef typename NumTraits<Scalar>::Real RealScalar; | |
| typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 | |
| /** \brief Complex scalar type for #MatrixType. | |
| * | |
| * This is \c std::complex<Scalar> if #Scalar is real (e.g., | |
| * \c float or \c double) and just \c Scalar if #Scalar is | |
| * complex. | |
| */ | |
| typedef std::complex<RealScalar> ComplexScalar; | |
| /** \brief Type for vector of real scalar values eigenvalues as returned by betas(). | |
| * | |
| * This is a column vector with entries of type #Scalar. | |
| * The length of the vector is the size of #MatrixType. | |
| */ | |
| typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> VectorType; | |
| /** \brief Type for vector of complex scalar values eigenvalues as returned by alphas(). | |
| * | |
| * This is a column vector with entries of type #ComplexScalar. | |
| * The length of the vector is the size of #MatrixType. | |
| */ | |
| typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ComplexVectorType; | |
| /** \brief Expression type for the eigenvalues as returned by eigenvalues(). | |
| */ | |
| typedef CwiseBinaryOp<internal::scalar_quotient_op<ComplexScalar,Scalar>,ComplexVectorType,VectorType> EigenvalueType; | |
| /** \brief Type for matrix of eigenvectors as returned by eigenvectors(). | |
| * | |
| * This is a square matrix with entries of type #ComplexScalar. | |
| * The size is the same as the size of #MatrixType. | |
| */ | |
| typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType; | |
| /** \brief Default constructor. | |
| * | |
| * The default constructor is useful in cases in which the user intends to | |
| * perform decompositions via EigenSolver::compute(const MatrixType&, bool). | |
| * | |
| * \sa compute() for an example. | |
| */ | |
| GeneralizedEigenSolver() | |
| : m_eivec(), | |
| m_alphas(), | |
| m_betas(), | |
| m_computeEigenvectors(false), | |
| m_isInitialized(false), | |
| m_realQZ() | |
| {} | |
| /** \brief Default constructor with memory preallocation | |
| * | |
| * Like the default constructor but with preallocation of the internal data | |
| * according to the specified problem \a size. | |
| * \sa GeneralizedEigenSolver() | |
| */ | |
| explicit GeneralizedEigenSolver(Index size) | |
| : m_eivec(size, size), | |
| m_alphas(size), | |
| m_betas(size), | |
| m_computeEigenvectors(false), | |
| m_isInitialized(false), | |
| m_realQZ(size), | |
| m_tmp(size) | |
| {} | |
| /** \brief Constructor; computes the generalized eigendecomposition of given matrix pair. | |
| * | |
| * \param[in] A Square matrix whose eigendecomposition is to be computed. | |
| * \param[in] B Square matrix whose eigendecomposition is to be computed. | |
| * \param[in] computeEigenvectors If true, both the eigenvectors and the | |
| * eigenvalues are computed; if false, only the eigenvalues are computed. | |
| * | |
| * This constructor calls compute() to compute the generalized eigenvalues | |
| * and eigenvectors. | |
| * | |
| * \sa compute() | |
| */ | |
| GeneralizedEigenSolver(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true) | |
| : m_eivec(A.rows(), A.cols()), | |
| m_alphas(A.cols()), | |
| m_betas(A.cols()), | |
| m_computeEigenvectors(false), | |
| m_isInitialized(false), | |
| m_realQZ(A.cols()), | |
| m_tmp(A.cols()) | |
| { | |
| compute(A, B, computeEigenvectors); | |
| } | |
| /* \brief Returns the computed generalized eigenvectors. | |
| * | |
| * \returns %Matrix whose columns are the (possibly complex) right eigenvectors. | |
| * i.e. the eigenvectors that solve (A - l*B)x = 0. The ordering matches the eigenvalues. | |
| * | |
| * \pre Either the constructor | |
| * GeneralizedEigenSolver(const MatrixType&,const MatrixType&, bool) or the member function | |
| * compute(const MatrixType&, const MatrixType& bool) has been called before, and | |
| * \p computeEigenvectors was set to true (the default). | |
| * | |
| * \sa eigenvalues() | |
| */ | |
| EigenvectorsType eigenvectors() const { | |
| eigen_assert(info() == Success && "GeneralizedEigenSolver failed to compute eigenvectors"); | |
| eigen_assert(m_computeEigenvectors && "Eigenvectors for GeneralizedEigenSolver were not calculated"); | |
| return m_eivec; | |
| } | |
| /** \brief Returns an expression of the computed generalized eigenvalues. | |
| * | |
| * \returns An expression of the column vector containing the eigenvalues. | |
| * | |
| * It is a shortcut for \code this->alphas().cwiseQuotient(this->betas()); \endcode | |
| * Not that betas might contain zeros. It is therefore not recommended to use this function, | |
| * but rather directly deal with the alphas and betas vectors. | |
| * | |
| * \pre Either the constructor | |
| * GeneralizedEigenSolver(const MatrixType&,const MatrixType&,bool) or the member function | |
| * compute(const MatrixType&,const MatrixType&,bool) has been called before. | |
| * | |
| * The eigenvalues are repeated according to their algebraic multiplicity, | |
| * so there are as many eigenvalues as rows in the matrix. The eigenvalues | |
| * are not sorted in any particular order. | |
| * | |
| * \sa alphas(), betas(), eigenvectors() | |
| */ | |
| EigenvalueType eigenvalues() const | |
| { | |
| eigen_assert(info() == Success && "GeneralizedEigenSolver failed to compute eigenvalues."); | |
| return EigenvalueType(m_alphas,m_betas); | |
| } | |
| /** \returns A const reference to the vectors containing the alpha values | |
| * | |
| * This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j). | |
| * | |
| * \sa betas(), eigenvalues() */ | |
| ComplexVectorType alphas() const | |
| { | |
| eigen_assert(info() == Success && "GeneralizedEigenSolver failed to compute alphas."); | |
| return m_alphas; | |
| } | |
| /** \returns A const reference to the vectors containing the beta values | |
| * | |
| * This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j). | |
| * | |
| * \sa alphas(), eigenvalues() */ | |
| VectorType betas() const | |
| { | |
| eigen_assert(info() == Success && "GeneralizedEigenSolver failed to compute betas."); | |
| return m_betas; | |
| } | |
| /** \brief Computes generalized eigendecomposition of given matrix. | |
| * | |
| * \param[in] A Square matrix whose eigendecomposition is to be computed. | |
| * \param[in] B Square matrix whose eigendecomposition is to be computed. | |
| * \param[in] computeEigenvectors If true, both the eigenvectors and the | |
| * eigenvalues are computed; if false, only the eigenvalues are | |
| * computed. | |
| * \returns Reference to \c *this | |
| * | |
| * This function computes the eigenvalues of the real matrix \p matrix. | |
| * The eigenvalues() function can be used to retrieve them. If | |
| * \p computeEigenvectors is true, then the eigenvectors are also computed | |
| * and can be retrieved by calling eigenvectors(). | |
| * | |
| * The matrix is first reduced to real generalized Schur form using the RealQZ | |
| * class. The generalized Schur decomposition is then used to compute the eigenvalues | |
| * and eigenvectors. | |
| * | |
| * The cost of the computation is dominated by the cost of the | |
| * generalized Schur decomposition. | |
| * | |
| * This method reuses of the allocated data in the GeneralizedEigenSolver object. | |
| */ | |
| GeneralizedEigenSolver& compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true); | |
| ComputationInfo info() const | |
| { | |
| eigen_assert(m_isInitialized && "EigenSolver is not initialized."); | |
| return m_realQZ.info(); | |
| } | |
| /** Sets the maximal number of iterations allowed. | |
| */ | |
| GeneralizedEigenSolver& setMaxIterations(Index maxIters) | |
| { | |
| m_realQZ.setMaxIterations(maxIters); | |
| return *this; | |
| } | |
| protected: | |
| static void check_template_parameters() | |
| { | |
| EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); | |
| EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL); | |
| } | |
| EigenvectorsType m_eivec; | |
| ComplexVectorType m_alphas; | |
| VectorType m_betas; | |
| bool m_computeEigenvectors; | |
| bool m_isInitialized; | |
| RealQZ<MatrixType> m_realQZ; | |
| ComplexVectorType m_tmp; | |
| }; | |
| template<typename MatrixType> | |
| GeneralizedEigenSolver<MatrixType>& | |
| GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors) | |
| { | |
| check_template_parameters(); | |
| using std::sqrt; | |
| using std::abs; | |
| eigen_assert(A.cols() == A.rows() && B.cols() == A.rows() && B.cols() == B.rows()); | |
| Index size = A.cols(); | |
| // Reduce to generalized real Schur form: | |
| // A = Q S Z and B = Q T Z | |
| m_realQZ.compute(A, B, computeEigenvectors); | |
| if (m_realQZ.info() == Success) | |
| { | |
| // Resize storage | |
| m_alphas.resize(size); | |
| m_betas.resize(size); | |
| if (computeEigenvectors) | |
| { | |
| m_eivec.resize(size,size); | |
| m_tmp.resize(size); | |
| } | |
| // Aliases: | |
| Map<VectorType> v(reinterpret_cast<Scalar*>(m_tmp.data()), size); | |
| ComplexVectorType &cv = m_tmp; | |
| const MatrixType &mS = m_realQZ.matrixS(); | |
| const MatrixType &mT = m_realQZ.matrixT(); | |
| Index i = 0; | |
| while (i < size) | |
| { | |
| if (i == size - 1 || mS.coeff(i+1, i) == Scalar(0)) | |
| { | |
| // Real eigenvalue | |
| m_alphas.coeffRef(i) = mS.diagonal().coeff(i); | |
| m_betas.coeffRef(i) = mT.diagonal().coeff(i); | |
| if (computeEigenvectors) | |
| { | |
| v.setConstant(Scalar(0.0)); | |
| v.coeffRef(i) = Scalar(1.0); | |
| // For singular eigenvalues do nothing more | |
| if(abs(m_betas.coeffRef(i)) >= (std::numeric_limits<RealScalar>::min)()) | |
| { | |
| // Non-singular eigenvalue | |
| const Scalar alpha = real(m_alphas.coeffRef(i)); | |
| const Scalar beta = m_betas.coeffRef(i); | |
| for (Index j = i-1; j >= 0; j--) | |
| { | |
| const Index st = j+1; | |
| const Index sz = i-j; | |
| if (j > 0 && mS.coeff(j, j-1) != Scalar(0)) | |
| { | |
| // 2x2 block | |
| Matrix<Scalar, 2, 1> rhs = (alpha*mT.template block<2,Dynamic>(j-1,st,2,sz) - beta*mS.template block<2,Dynamic>(j-1,st,2,sz)) .lazyProduct( v.segment(st,sz) ); | |
| Matrix<Scalar, 2, 2> lhs = beta * mS.template block<2,2>(j-1,j-1) - alpha * mT.template block<2,2>(j-1,j-1); | |
| v.template segment<2>(j-1) = lhs.partialPivLu().solve(rhs); | |
| j--; | |
| } | |
| else | |
| { | |
| v.coeffRef(j) = -v.segment(st,sz).transpose().cwiseProduct(beta*mS.block(j,st,1,sz) - alpha*mT.block(j,st,1,sz)).sum() / (beta*mS.coeffRef(j,j) - alpha*mT.coeffRef(j,j)); | |
| } | |
| } | |
| } | |
| m_eivec.col(i).real().noalias() = m_realQZ.matrixZ().transpose() * v; | |
| m_eivec.col(i).real().normalize(); | |
| m_eivec.col(i).imag().setConstant(0); | |
| } | |
| ++i; | |
| } | |
| else | |
| { | |
| // We need to extract the generalized eigenvalues of the pair of a general 2x2 block S and a positive diagonal 2x2 block T | |
| // Then taking beta=T_00*T_11, we can avoid any division, and alpha is the eigenvalues of A = (U^-1 * S * U) * diag(T_11,T_00): | |
| // T = [a 0] | |
| // [0 b] | |
| RealScalar a = mT.diagonal().coeff(i), | |
| b = mT.diagonal().coeff(i+1); | |
| const RealScalar beta = m_betas.coeffRef(i) = m_betas.coeffRef(i+1) = a*b; | |
| // ^^ NOTE: using diagonal()(i) instead of coeff(i,i) workarounds a MSVC bug. | |
| Matrix<RealScalar,2,2> S2 = mS.template block<2,2>(i,i) * Matrix<Scalar,2,1>(b,a).asDiagonal(); | |
| Scalar p = Scalar(0.5) * (S2.coeff(0,0) - S2.coeff(1,1)); | |
| Scalar z = sqrt(abs(p * p + S2.coeff(1,0) * S2.coeff(0,1))); | |
| const ComplexScalar alpha = ComplexScalar(S2.coeff(1,1) + p, (beta > 0) ? z : -z); | |
| m_alphas.coeffRef(i) = conj(alpha); | |
| m_alphas.coeffRef(i+1) = alpha; | |
| if (computeEigenvectors) { | |
| // Compute eigenvector in position (i+1) and then position (i) is just the conjugate | |
| cv.setZero(); | |
| cv.coeffRef(i+1) = Scalar(1.0); | |
| // here, the "static_cast" workaound expression template issues. | |
| cv.coeffRef(i) = -(static_cast<Scalar>(beta*mS.coeffRef(i,i+1)) - alpha*mT.coeffRef(i,i+1)) | |
| / (static_cast<Scalar>(beta*mS.coeffRef(i,i)) - alpha*mT.coeffRef(i,i)); | |
| for (Index j = i-1; j >= 0; j--) | |
| { | |
| const Index st = j+1; | |
| const Index sz = i+1-j; | |
| if (j > 0 && mS.coeff(j, j-1) != Scalar(0)) | |
| { | |
| // 2x2 block | |
| Matrix<ComplexScalar, 2, 1> rhs = (alpha*mT.template block<2,Dynamic>(j-1,st,2,sz) - beta*mS.template block<2,Dynamic>(j-1,st,2,sz)) .lazyProduct( cv.segment(st,sz) ); | |
| Matrix<ComplexScalar, 2, 2> lhs = beta * mS.template block<2,2>(j-1,j-1) - alpha * mT.template block<2,2>(j-1,j-1); | |
| cv.template segment<2>(j-1) = lhs.partialPivLu().solve(rhs); | |
| j--; | |
| } else { | |
| cv.coeffRef(j) = cv.segment(st,sz).transpose().cwiseProduct(beta*mS.block(j,st,1,sz) - alpha*mT.block(j,st,1,sz)).sum() | |
| / (alpha*mT.coeffRef(j,j) - static_cast<Scalar>(beta*mS.coeffRef(j,j))); | |
| } | |
| } | |
| m_eivec.col(i+1).noalias() = (m_realQZ.matrixZ().transpose() * cv); | |
| m_eivec.col(i+1).normalize(); | |
| m_eivec.col(i) = m_eivec.col(i+1).conjugate(); | |
| } | |
| i += 2; | |
| } | |
| } | |
| } | |
| m_computeEigenvectors = computeEigenvectors; | |
| m_isInitialized = true; | |
| return *this; | |
| } | |
| } // end namespace Eigen | |