| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | |
| // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
| namespace Eigen { | |
| namespace internal { | |
| template<typename Derived, bool IsComplex> | |
| struct eigenvalues_selector | |
| { | |
| // this is the implementation for the case IsComplex = true | |
| static inline typename MatrixBase<Derived>::EigenvaluesReturnType const | |
| run(const MatrixBase<Derived>& m) | |
| { | |
| typedef typename Derived::PlainObject PlainObject; | |
| PlainObject m_eval(m); | |
| return ComplexEigenSolver<PlainObject>(m_eval, false).eigenvalues(); | |
| } | |
| }; | |
| template<typename Derived> | |
| struct eigenvalues_selector<Derived, false> | |
| { | |
| static inline typename MatrixBase<Derived>::EigenvaluesReturnType const | |
| run(const MatrixBase<Derived>& m) | |
| { | |
| typedef typename Derived::PlainObject PlainObject; | |
| PlainObject m_eval(m); | |
| return EigenSolver<PlainObject>(m_eval, false).eigenvalues(); | |
| } | |
| }; | |
| } // end namespace internal | |
| /** \brief Computes the eigenvalues of a matrix | |
| * \returns Column vector containing the eigenvalues. | |
| * | |
| * \eigenvalues_module | |
| * This function computes the eigenvalues with the help of the EigenSolver | |
| * class (for real matrices) or the ComplexEigenSolver class (for complex | |
| * matrices). | |
| * | |
| * The eigenvalues are repeated according to their algebraic multiplicity, | |
| * so there are as many eigenvalues as rows in the matrix. | |
| * | |
| * The SelfAdjointView class provides a better algorithm for selfadjoint | |
| * matrices. | |
| * | |
| * Example: \include MatrixBase_eigenvalues.cpp | |
| * Output: \verbinclude MatrixBase_eigenvalues.out | |
| * | |
| * \sa EigenSolver::eigenvalues(), ComplexEigenSolver::eigenvalues(), | |
| * SelfAdjointView::eigenvalues() | |
| */ | |
| template<typename Derived> | |
| inline typename MatrixBase<Derived>::EigenvaluesReturnType | |
| MatrixBase<Derived>::eigenvalues() const | |
| { | |
| return internal::eigenvalues_selector<Derived, NumTraits<Scalar>::IsComplex>::run(derived()); | |
| } | |
| /** \brief Computes the eigenvalues of a matrix | |
| * \returns Column vector containing the eigenvalues. | |
| * | |
| * \eigenvalues_module | |
| * This function computes the eigenvalues with the help of the | |
| * SelfAdjointEigenSolver class. The eigenvalues are repeated according to | |
| * their algebraic multiplicity, so there are as many eigenvalues as rows in | |
| * the matrix. | |
| * | |
| * Example: \include SelfAdjointView_eigenvalues.cpp | |
| * Output: \verbinclude SelfAdjointView_eigenvalues.out | |
| * | |
| * \sa SelfAdjointEigenSolver::eigenvalues(), MatrixBase::eigenvalues() | |
| */ | |
| template<typename MatrixType, unsigned int UpLo> | |
| EIGEN_DEVICE_FUNC inline typename SelfAdjointView<MatrixType, UpLo>::EigenvaluesReturnType | |
| SelfAdjointView<MatrixType, UpLo>::eigenvalues() const | |
| { | |
| PlainObject thisAsMatrix(*this); | |
| return SelfAdjointEigenSolver<PlainObject>(thisAsMatrix, false).eigenvalues(); | |
| } | |
| /** \brief Computes the L2 operator norm | |
| * \returns Operator norm of the matrix. | |
| * | |
| * \eigenvalues_module | |
| * This function computes the L2 operator norm of a matrix, which is also | |
| * known as the spectral norm. The norm of a matrix \f$ A \f$ is defined to be | |
| * \f[ \|A\|_2 = \max_x \frac{\|Ax\|_2}{\|x\|_2} \f] | |
| * where the maximum is over all vectors and the norm on the right is the | |
| * Euclidean vector norm. The norm equals the largest singular value, which is | |
| * the square root of the largest eigenvalue of the positive semi-definite | |
| * matrix \f$ A^*A \f$. | |
| * | |
| * The current implementation uses the eigenvalues of \f$ A^*A \f$, as computed | |
| * by SelfAdjointView::eigenvalues(), to compute the operator norm of a | |
| * matrix. The SelfAdjointView class provides a better algorithm for | |
| * selfadjoint matrices. | |
| * | |
| * Example: \include MatrixBase_operatorNorm.cpp | |
| * Output: \verbinclude MatrixBase_operatorNorm.out | |
| * | |
| * \sa SelfAdjointView::eigenvalues(), SelfAdjointView::operatorNorm() | |
| */ | |
| template<typename Derived> | |
| inline typename MatrixBase<Derived>::RealScalar | |
| MatrixBase<Derived>::operatorNorm() const | |
| { | |
| using std::sqrt; | |
| typename Derived::PlainObject m_eval(derived()); | |
| // FIXME if it is really guaranteed that the eigenvalues are already sorted, | |
| // then we don't need to compute a maxCoeff() here, comparing the 1st and last ones is enough. | |
| return sqrt((m_eval*m_eval.adjoint()) | |
| .eval() | |
| .template selfadjointView<Lower>() | |
| .eigenvalues() | |
| .maxCoeff() | |
| ); | |
| } | |
| /** \brief Computes the L2 operator norm | |
| * \returns Operator norm of the matrix. | |
| * | |
| * \eigenvalues_module | |
| * This function computes the L2 operator norm of a self-adjoint matrix. For a | |
| * self-adjoint matrix, the operator norm is the largest eigenvalue. | |
| * | |
| * The current implementation uses the eigenvalues of the matrix, as computed | |
| * by eigenvalues(), to compute the operator norm of the matrix. | |
| * | |
| * Example: \include SelfAdjointView_operatorNorm.cpp | |
| * Output: \verbinclude SelfAdjointView_operatorNorm.out | |
| * | |
| * \sa eigenvalues(), MatrixBase::operatorNorm() | |
| */ | |
| template<typename MatrixType, unsigned int UpLo> | |
| EIGEN_DEVICE_FUNC inline typename SelfAdjointView<MatrixType, UpLo>::RealScalar | |
| SelfAdjointView<MatrixType, UpLo>::operatorNorm() const | |
| { | |
| return eigenvalues().cwiseAbs().maxCoeff(); | |
| } | |
| } // end namespace Eigen | |