|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef EIGEN_REAL_QZ_H |
|
|
#define EIGEN_REAL_QZ_H |
|
|
|
|
|
namespace Eigen { |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename _MatrixType> class RealQZ |
|
|
{ |
|
|
public: |
|
|
typedef _MatrixType MatrixType; |
|
|
enum { |
|
|
RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
|
|
ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
|
|
Options = MatrixType::Options, |
|
|
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
|
|
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
|
|
}; |
|
|
typedef typename MatrixType::Scalar Scalar; |
|
|
typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar; |
|
|
typedef Eigen::Index Index; |
|
|
|
|
|
typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType; |
|
|
typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
explicit RealQZ(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime) : |
|
|
m_S(size, size), |
|
|
m_T(size, size), |
|
|
m_Q(size, size), |
|
|
m_Z(size, size), |
|
|
m_workspace(size*2), |
|
|
m_maxIters(400), |
|
|
m_isInitialized(false), |
|
|
m_computeQZ(true) |
|
|
{} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RealQZ(const MatrixType& A, const MatrixType& B, bool computeQZ = true) : |
|
|
m_S(A.rows(),A.cols()), |
|
|
m_T(A.rows(),A.cols()), |
|
|
m_Q(A.rows(),A.cols()), |
|
|
m_Z(A.rows(),A.cols()), |
|
|
m_workspace(A.rows()*2), |
|
|
m_maxIters(400), |
|
|
m_isInitialized(false), |
|
|
m_computeQZ(true) |
|
|
{ |
|
|
compute(A, B, computeQZ); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const MatrixType& matrixQ() const { |
|
|
eigen_assert(m_isInitialized && "RealQZ is not initialized."); |
|
|
eigen_assert(m_computeQZ && "The matrices Q and Z have not been computed during the QZ decomposition."); |
|
|
return m_Q; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const MatrixType& matrixZ() const { |
|
|
eigen_assert(m_isInitialized && "RealQZ is not initialized."); |
|
|
eigen_assert(m_computeQZ && "The matrices Q and Z have not been computed during the QZ decomposition."); |
|
|
return m_Z; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const MatrixType& matrixS() const { |
|
|
eigen_assert(m_isInitialized && "RealQZ is not initialized."); |
|
|
return m_S; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const MatrixType& matrixT() const { |
|
|
eigen_assert(m_isInitialized && "RealQZ is not initialized."); |
|
|
return m_T; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RealQZ& compute(const MatrixType& A, const MatrixType& B, bool computeQZ = true); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ComputationInfo info() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "RealQZ is not initialized."); |
|
|
return m_info; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
Index iterations() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "RealQZ is not initialized."); |
|
|
return m_global_iter; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RealQZ& setMaxIterations(Index maxIters) |
|
|
{ |
|
|
m_maxIters = maxIters; |
|
|
return *this; |
|
|
} |
|
|
|
|
|
private: |
|
|
|
|
|
MatrixType m_S, m_T, m_Q, m_Z; |
|
|
Matrix<Scalar,Dynamic,1> m_workspace; |
|
|
ComputationInfo m_info; |
|
|
Index m_maxIters; |
|
|
bool m_isInitialized; |
|
|
bool m_computeQZ; |
|
|
Scalar m_normOfT, m_normOfS; |
|
|
Index m_global_iter; |
|
|
|
|
|
typedef Matrix<Scalar,3,1> Vector3s; |
|
|
typedef Matrix<Scalar,2,1> Vector2s; |
|
|
typedef Matrix<Scalar,2,2> Matrix2s; |
|
|
typedef JacobiRotation<Scalar> JRs; |
|
|
|
|
|
void hessenbergTriangular(); |
|
|
void computeNorms(); |
|
|
Index findSmallSubdiagEntry(Index iu); |
|
|
Index findSmallDiagEntry(Index f, Index l); |
|
|
void splitOffTwoRows(Index i); |
|
|
void pushDownZero(Index z, Index f, Index l); |
|
|
void step(Index f, Index l, Index iter); |
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
template<typename MatrixType> |
|
|
void RealQZ<MatrixType>::hessenbergTriangular() |
|
|
{ |
|
|
|
|
|
const Index dim = m_S.cols(); |
|
|
|
|
|
|
|
|
HouseholderQR<MatrixType> qrT(m_T); |
|
|
m_T = qrT.matrixQR(); |
|
|
m_T.template triangularView<StrictlyLower>().setZero(); |
|
|
m_Q = qrT.householderQ(); |
|
|
|
|
|
m_S.applyOnTheLeft(m_Q.adjoint()); |
|
|
|
|
|
if (m_computeQZ) |
|
|
m_Z = MatrixType::Identity(dim,dim); |
|
|
|
|
|
for (Index j=0; j<=dim-3; j++) { |
|
|
for (Index i=dim-1; i>=j+2; i--) { |
|
|
JRs G; |
|
|
|
|
|
if(m_S.coeff(i,j) != 0) |
|
|
{ |
|
|
G.makeGivens(m_S.coeff(i-1,j), m_S.coeff(i,j), &m_S.coeffRef(i-1, j)); |
|
|
m_S.coeffRef(i,j) = Scalar(0.0); |
|
|
m_S.rightCols(dim-j-1).applyOnTheLeft(i-1,i,G.adjoint()); |
|
|
m_T.rightCols(dim-i+1).applyOnTheLeft(i-1,i,G.adjoint()); |
|
|
|
|
|
if (m_computeQZ) |
|
|
m_Q.applyOnTheRight(i-1,i,G); |
|
|
} |
|
|
|
|
|
if(m_T.coeff(i,i-1)!=Scalar(0)) |
|
|
{ |
|
|
G.makeGivens(m_T.coeff(i,i), m_T.coeff(i,i-1), &m_T.coeffRef(i,i)); |
|
|
m_T.coeffRef(i,i-1) = Scalar(0.0); |
|
|
m_S.applyOnTheRight(i,i-1,G); |
|
|
m_T.topRows(i).applyOnTheRight(i,i-1,G); |
|
|
|
|
|
if (m_computeQZ) |
|
|
m_Z.applyOnTheLeft(i,i-1,G.adjoint()); |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
template<typename MatrixType> |
|
|
inline void RealQZ<MatrixType>::computeNorms() |
|
|
{ |
|
|
const Index size = m_S.cols(); |
|
|
m_normOfS = Scalar(0.0); |
|
|
m_normOfT = Scalar(0.0); |
|
|
for (Index j = 0; j < size; ++j) |
|
|
{ |
|
|
m_normOfS += m_S.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum(); |
|
|
m_normOfT += m_T.row(j).segment(j, size - j).cwiseAbs().sum(); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
template<typename MatrixType> |
|
|
inline Index RealQZ<MatrixType>::findSmallSubdiagEntry(Index iu) |
|
|
{ |
|
|
using std::abs; |
|
|
Index res = iu; |
|
|
while (res > 0) |
|
|
{ |
|
|
Scalar s = abs(m_S.coeff(res-1,res-1)) + abs(m_S.coeff(res,res)); |
|
|
if (s == Scalar(0.0)) |
|
|
s = m_normOfS; |
|
|
if (abs(m_S.coeff(res,res-1)) < NumTraits<Scalar>::epsilon() * s) |
|
|
break; |
|
|
res--; |
|
|
} |
|
|
return res; |
|
|
} |
|
|
|
|
|
|
|
|
template<typename MatrixType> |
|
|
inline Index RealQZ<MatrixType>::findSmallDiagEntry(Index f, Index l) |
|
|
{ |
|
|
using std::abs; |
|
|
Index res = l; |
|
|
while (res >= f) { |
|
|
if (abs(m_T.coeff(res,res)) <= NumTraits<Scalar>::epsilon() * m_normOfT) |
|
|
break; |
|
|
res--; |
|
|
} |
|
|
return res; |
|
|
} |
|
|
|
|
|
|
|
|
template<typename MatrixType> |
|
|
inline void RealQZ<MatrixType>::splitOffTwoRows(Index i) |
|
|
{ |
|
|
using std::abs; |
|
|
using std::sqrt; |
|
|
const Index dim=m_S.cols(); |
|
|
if (abs(m_S.coeff(i+1,i))==Scalar(0)) |
|
|
return; |
|
|
Index j = findSmallDiagEntry(i,i+1); |
|
|
if (j==i-1) |
|
|
{ |
|
|
|
|
|
Matrix2s STi = m_T.template block<2,2>(i,i).template triangularView<Upper>(). |
|
|
template solve<OnTheRight>(m_S.template block<2,2>(i,i)); |
|
|
Scalar p = Scalar(0.5)*(STi(0,0)-STi(1,1)); |
|
|
Scalar q = p*p + STi(1,0)*STi(0,1); |
|
|
if (q>=0) { |
|
|
Scalar z = sqrt(q); |
|
|
|
|
|
|
|
|
|
|
|
JRs G; |
|
|
if (p>=0) |
|
|
G.makeGivens(p + z, STi(1,0)); |
|
|
else |
|
|
G.makeGivens(p - z, STi(1,0)); |
|
|
m_S.rightCols(dim-i).applyOnTheLeft(i,i+1,G.adjoint()); |
|
|
m_T.rightCols(dim-i).applyOnTheLeft(i,i+1,G.adjoint()); |
|
|
|
|
|
if (m_computeQZ) |
|
|
m_Q.applyOnTheRight(i,i+1,G); |
|
|
|
|
|
G.makeGivens(m_T.coeff(i+1,i+1), m_T.coeff(i+1,i)); |
|
|
m_S.topRows(i+2).applyOnTheRight(i+1,i,G); |
|
|
m_T.topRows(i+2).applyOnTheRight(i+1,i,G); |
|
|
|
|
|
if (m_computeQZ) |
|
|
m_Z.applyOnTheLeft(i+1,i,G.adjoint()); |
|
|
|
|
|
m_S.coeffRef(i+1,i) = Scalar(0.0); |
|
|
m_T.coeffRef(i+1,i) = Scalar(0.0); |
|
|
} |
|
|
} |
|
|
else |
|
|
{ |
|
|
pushDownZero(j,i,i+1); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
template<typename MatrixType> |
|
|
inline void RealQZ<MatrixType>::pushDownZero(Index z, Index f, Index l) |
|
|
{ |
|
|
JRs G; |
|
|
const Index dim = m_S.cols(); |
|
|
for (Index zz=z; zz<l; zz++) |
|
|
{ |
|
|
|
|
|
Index firstColS = zz>f ? (zz-1) : zz; |
|
|
G.makeGivens(m_T.coeff(zz, zz+1), m_T.coeff(zz+1, zz+1)); |
|
|
m_S.rightCols(dim-firstColS).applyOnTheLeft(zz,zz+1,G.adjoint()); |
|
|
m_T.rightCols(dim-zz).applyOnTheLeft(zz,zz+1,G.adjoint()); |
|
|
m_T.coeffRef(zz+1,zz+1) = Scalar(0.0); |
|
|
|
|
|
if (m_computeQZ) |
|
|
m_Q.applyOnTheRight(zz,zz+1,G); |
|
|
|
|
|
if (zz>f) |
|
|
{ |
|
|
G.makeGivens(m_S.coeff(zz+1, zz), m_S.coeff(zz+1,zz-1)); |
|
|
m_S.topRows(zz+2).applyOnTheRight(zz, zz-1,G); |
|
|
m_T.topRows(zz+1).applyOnTheRight(zz, zz-1,G); |
|
|
m_S.coeffRef(zz+1,zz-1) = Scalar(0.0); |
|
|
|
|
|
if (m_computeQZ) |
|
|
m_Z.applyOnTheLeft(zz,zz-1,G.adjoint()); |
|
|
} |
|
|
} |
|
|
|
|
|
G.makeGivens(m_S.coeff(l,l), m_S.coeff(l,l-1)); |
|
|
m_S.applyOnTheRight(l,l-1,G); |
|
|
m_T.applyOnTheRight(l,l-1,G); |
|
|
m_S.coeffRef(l,l-1)=Scalar(0.0); |
|
|
|
|
|
if (m_computeQZ) |
|
|
m_Z.applyOnTheLeft(l,l-1,G.adjoint()); |
|
|
} |
|
|
|
|
|
|
|
|
template<typename MatrixType> |
|
|
inline void RealQZ<MatrixType>::step(Index f, Index l, Index iter) |
|
|
{ |
|
|
using std::abs; |
|
|
const Index dim = m_S.cols(); |
|
|
|
|
|
|
|
|
Scalar x, y, z; |
|
|
if (iter==10) |
|
|
{ |
|
|
|
|
|
const Scalar |
|
|
a11=m_S.coeff(f+0,f+0), a12=m_S.coeff(f+0,f+1), |
|
|
a21=m_S.coeff(f+1,f+0), a22=m_S.coeff(f+1,f+1), a32=m_S.coeff(f+2,f+1), |
|
|
b12=m_T.coeff(f+0,f+1), |
|
|
b11i=Scalar(1.0)/m_T.coeff(f+0,f+0), |
|
|
b22i=Scalar(1.0)/m_T.coeff(f+1,f+1), |
|
|
a87=m_S.coeff(l-1,l-2), |
|
|
a98=m_S.coeff(l-0,l-1), |
|
|
b77i=Scalar(1.0)/m_T.coeff(l-2,l-2), |
|
|
b88i=Scalar(1.0)/m_T.coeff(l-1,l-1); |
|
|
Scalar ss = abs(a87*b77i) + abs(a98*b88i), |
|
|
lpl = Scalar(1.5)*ss, |
|
|
ll = ss*ss; |
|
|
x = ll + a11*a11*b11i*b11i - lpl*a11*b11i + a12*a21*b11i*b22i |
|
|
- a11*a21*b12*b11i*b11i*b22i; |
|
|
y = a11*a21*b11i*b11i - lpl*a21*b11i + a21*a22*b11i*b22i |
|
|
- a21*a21*b12*b11i*b11i*b22i; |
|
|
z = a21*a32*b11i*b22i; |
|
|
} |
|
|
else if (iter==16) |
|
|
{ |
|
|
|
|
|
x = m_S.coeff(f,f)/m_T.coeff(f,f)-m_S.coeff(l,l)/m_T.coeff(l,l) + m_S.coeff(l,l-1)*m_T.coeff(l-1,l) / |
|
|
(m_T.coeff(l-1,l-1)*m_T.coeff(l,l)); |
|
|
y = m_S.coeff(f+1,f)/m_T.coeff(f,f); |
|
|
z = 0; |
|
|
} |
|
|
else if (iter>23 && !(iter%8)) |
|
|
{ |
|
|
|
|
|
x = internal::random<Scalar>(-1.0,1.0); |
|
|
y = internal::random<Scalar>(-1.0,1.0); |
|
|
z = internal::random<Scalar>(-1.0,1.0); |
|
|
} |
|
|
else |
|
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const Scalar |
|
|
a11 = m_S.coeff(f,f), a12 = m_S.coeff(f,f+1), |
|
|
a21 = m_S.coeff(f+1,f), a22 = m_S.coeff(f+1,f+1), |
|
|
a32 = m_S.coeff(f+2,f+1), |
|
|
|
|
|
a88 = m_S.coeff(l-1,l-1), a89 = m_S.coeff(l-1,l), |
|
|
a98 = m_S.coeff(l,l-1), a99 = m_S.coeff(l,l), |
|
|
|
|
|
b11 = m_T.coeff(f,f), b12 = m_T.coeff(f,f+1), |
|
|
b22 = m_T.coeff(f+1,f+1), |
|
|
|
|
|
b88 = m_T.coeff(l-1,l-1), b89 = m_T.coeff(l-1,l), |
|
|
b99 = m_T.coeff(l,l); |
|
|
|
|
|
x = ( (a88/b88 - a11/b11)*(a99/b99 - a11/b11) - (a89/b99)*(a98/b88) + (a98/b88)*(b89/b99)*(a11/b11) ) * (b11/a21) |
|
|
+ a12/b22 - (a11/b11)*(b12/b22); |
|
|
y = (a22/b22-a11/b11) - (a21/b11)*(b12/b22) - (a88/b88-a11/b11) - (a99/b99-a11/b11) + (a98/b88)*(b89/b99); |
|
|
z = a32/b22; |
|
|
} |
|
|
|
|
|
JRs G; |
|
|
|
|
|
for (Index k=f; k<=l-2; k++) |
|
|
{ |
|
|
|
|
|
Vector2s essential2; |
|
|
Scalar tau, beta; |
|
|
|
|
|
Vector3s hr(x,y,z); |
|
|
|
|
|
|
|
|
hr.makeHouseholderInPlace(tau, beta); |
|
|
essential2 = hr.template bottomRows<2>(); |
|
|
Index fc=(std::max)(k-1,Index(0)); |
|
|
m_S.template middleRows<3>(k).rightCols(dim-fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data()); |
|
|
m_T.template middleRows<3>(k).rightCols(dim-fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data()); |
|
|
if (m_computeQZ) |
|
|
m_Q.template middleCols<3>(k).applyHouseholderOnTheRight(essential2, tau, m_workspace.data()); |
|
|
if (k>f) |
|
|
m_S.coeffRef(k+2,k-1) = m_S.coeffRef(k+1,k-1) = Scalar(0.0); |
|
|
|
|
|
|
|
|
hr << m_T.coeff(k+2,k+2),m_T.coeff(k+2,k),m_T.coeff(k+2,k+1); |
|
|
hr.makeHouseholderInPlace(tau, beta); |
|
|
essential2 = hr.template bottomRows<2>(); |
|
|
{ |
|
|
Index lr = (std::min)(k+4,dim); |
|
|
Map<Matrix<Scalar,Dynamic,1> > tmp(m_workspace.data(),lr); |
|
|
|
|
|
tmp = m_S.template middleCols<2>(k).topRows(lr) * essential2; |
|
|
tmp += m_S.col(k+2).head(lr); |
|
|
m_S.col(k+2).head(lr) -= tau*tmp; |
|
|
m_S.template middleCols<2>(k).topRows(lr) -= (tau*tmp) * essential2.adjoint(); |
|
|
|
|
|
tmp = m_T.template middleCols<2>(k).topRows(lr) * essential2; |
|
|
tmp += m_T.col(k+2).head(lr); |
|
|
m_T.col(k+2).head(lr) -= tau*tmp; |
|
|
m_T.template middleCols<2>(k).topRows(lr) -= (tau*tmp) * essential2.adjoint(); |
|
|
} |
|
|
if (m_computeQZ) |
|
|
{ |
|
|
|
|
|
Map<Matrix<Scalar,1,Dynamic> > tmp(m_workspace.data(),dim); |
|
|
tmp = essential2.adjoint()*(m_Z.template middleRows<2>(k)); |
|
|
tmp += m_Z.row(k+2); |
|
|
m_Z.row(k+2) -= tau*tmp; |
|
|
m_Z.template middleRows<2>(k) -= essential2 * (tau*tmp); |
|
|
} |
|
|
m_T.coeffRef(k+2,k) = m_T.coeffRef(k+2,k+1) = Scalar(0.0); |
|
|
|
|
|
|
|
|
G.makeGivens(m_T.coeff(k+1,k+1), m_T.coeff(k+1,k)); |
|
|
m_S.applyOnTheRight(k+1,k,G); |
|
|
m_T.applyOnTheRight(k+1,k,G); |
|
|
|
|
|
if (m_computeQZ) |
|
|
m_Z.applyOnTheLeft(k+1,k,G.adjoint()); |
|
|
m_T.coeffRef(k+1,k) = Scalar(0.0); |
|
|
|
|
|
|
|
|
x = m_S.coeff(k+1,k); |
|
|
y = m_S.coeff(k+2,k); |
|
|
if (k < l-2) |
|
|
z = m_S.coeff(k+3,k); |
|
|
} |
|
|
|
|
|
|
|
|
G.makeGivens(x,y); |
|
|
m_S.applyOnTheLeft(l-1,l,G.adjoint()); |
|
|
m_T.applyOnTheLeft(l-1,l,G.adjoint()); |
|
|
if (m_computeQZ) |
|
|
m_Q.applyOnTheRight(l-1,l,G); |
|
|
m_S.coeffRef(l,l-2) = Scalar(0.0); |
|
|
|
|
|
|
|
|
G.makeGivens(m_T.coeff(l,l),m_T.coeff(l,l-1)); |
|
|
m_S.applyOnTheRight(l,l-1,G); |
|
|
m_T.applyOnTheRight(l,l-1,G); |
|
|
if (m_computeQZ) |
|
|
m_Z.applyOnTheLeft(l,l-1,G.adjoint()); |
|
|
m_T.coeffRef(l,l-1) = Scalar(0.0); |
|
|
} |
|
|
|
|
|
template<typename MatrixType> |
|
|
RealQZ<MatrixType>& RealQZ<MatrixType>::compute(const MatrixType& A_in, const MatrixType& B_in, bool computeQZ) |
|
|
{ |
|
|
|
|
|
const Index dim = A_in.cols(); |
|
|
|
|
|
eigen_assert (A_in.rows()==dim && A_in.cols()==dim |
|
|
&& B_in.rows()==dim && B_in.cols()==dim |
|
|
&& "Need square matrices of the same dimension"); |
|
|
|
|
|
m_isInitialized = true; |
|
|
m_computeQZ = computeQZ; |
|
|
m_S = A_in; m_T = B_in; |
|
|
m_workspace.resize(dim*2); |
|
|
m_global_iter = 0; |
|
|
|
|
|
|
|
|
hessenbergTriangular(); |
|
|
|
|
|
computeNorms(); |
|
|
|
|
|
Index l = dim-1, |
|
|
f, |
|
|
local_iter = 0; |
|
|
|
|
|
while (l>0 && local_iter<m_maxIters) |
|
|
{ |
|
|
f = findSmallSubdiagEntry(l); |
|
|
|
|
|
if (f>0) m_S.coeffRef(f,f-1) = Scalar(0.0); |
|
|
if (f == l) |
|
|
{ |
|
|
l--; |
|
|
local_iter = 0; |
|
|
} |
|
|
else if (f == l-1) |
|
|
{ |
|
|
splitOffTwoRows(f); |
|
|
l -= 2; |
|
|
local_iter = 0; |
|
|
} |
|
|
else |
|
|
{ |
|
|
|
|
|
Index z = findSmallDiagEntry(f,l); |
|
|
if (z>=f) |
|
|
{ |
|
|
|
|
|
pushDownZero(z,f,l); |
|
|
} |
|
|
else |
|
|
{ |
|
|
|
|
|
|
|
|
|
|
|
step(f,l, local_iter); |
|
|
local_iter++; |
|
|
m_global_iter++; |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
m_info = (local_iter<m_maxIters) ? Success : NoConvergence; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if(m_info==Success) |
|
|
{ |
|
|
for(Index i=0; i<dim-1; ++i) |
|
|
{ |
|
|
if(m_S.coeff(i+1, i) != Scalar(0)) |
|
|
{ |
|
|
JacobiRotation<Scalar> j_left, j_right; |
|
|
internal::real_2x2_jacobi_svd(m_T, i, i+1, &j_left, &j_right); |
|
|
|
|
|
|
|
|
m_S.applyOnTheLeft(i,i+1,j_left); |
|
|
m_S.applyOnTheRight(i,i+1,j_right); |
|
|
m_T.applyOnTheLeft(i,i+1,j_left); |
|
|
m_T.applyOnTheRight(i,i+1,j_right); |
|
|
m_T(i+1,i) = m_T(i,i+1) = Scalar(0); |
|
|
|
|
|
if(m_computeQZ) { |
|
|
m_Q.applyOnTheRight(i,i+1,j_left.transpose()); |
|
|
m_Z.applyOnTheLeft(i,i+1,j_right.transpose()); |
|
|
} |
|
|
|
|
|
i++; |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
return *this; |
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
#endif |
|
|
|