|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef EIGEN_ANGLEAXIS_H |
|
|
#define EIGEN_ANGLEAXIS_H |
|
|
|
|
|
namespace Eigen { |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
namespace internal { |
|
|
template<typename _Scalar> struct traits<AngleAxis<_Scalar> > |
|
|
{ |
|
|
typedef _Scalar Scalar; |
|
|
}; |
|
|
} |
|
|
|
|
|
template<typename _Scalar> |
|
|
class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3> |
|
|
{ |
|
|
typedef RotationBase<AngleAxis<_Scalar>,3> Base; |
|
|
|
|
|
public: |
|
|
|
|
|
using Base::operator*; |
|
|
|
|
|
enum { Dim = 3 }; |
|
|
|
|
|
typedef _Scalar Scalar; |
|
|
typedef Matrix<Scalar,3,3> Matrix3; |
|
|
typedef Matrix<Scalar,3,1> Vector3; |
|
|
typedef Quaternion<Scalar> QuaternionType; |
|
|
|
|
|
protected: |
|
|
|
|
|
Vector3 m_axis; |
|
|
Scalar m_angle; |
|
|
|
|
|
public: |
|
|
|
|
|
|
|
|
EIGEN_DEVICE_FUNC AngleAxis() {} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename Derived> |
|
|
EIGEN_DEVICE_FUNC |
|
|
inline AngleAxis(const Scalar& angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {} |
|
|
|
|
|
|
|
|
|
|
|
template<typename QuatDerived> |
|
|
EIGEN_DEVICE_FUNC inline explicit AngleAxis(const QuaternionBase<QuatDerived>& q) { *this = q; } |
|
|
|
|
|
template<typename Derived> |
|
|
EIGEN_DEVICE_FUNC inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; } |
|
|
|
|
|
|
|
|
EIGEN_DEVICE_FUNC Scalar angle() const { return m_angle; } |
|
|
|
|
|
EIGEN_DEVICE_FUNC Scalar& angle() { return m_angle; } |
|
|
|
|
|
|
|
|
EIGEN_DEVICE_FUNC const Vector3& axis() const { return m_axis; } |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EIGEN_DEVICE_FUNC Vector3& axis() { return m_axis; } |
|
|
|
|
|
|
|
|
EIGEN_DEVICE_FUNC inline QuaternionType operator* (const AngleAxis& other) const |
|
|
{ return QuaternionType(*this) * QuaternionType(other); } |
|
|
|
|
|
|
|
|
EIGEN_DEVICE_FUNC inline QuaternionType operator* (const QuaternionType& other) const |
|
|
{ return QuaternionType(*this) * other; } |
|
|
|
|
|
|
|
|
friend EIGEN_DEVICE_FUNC inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b) |
|
|
{ return a * QuaternionType(b); } |
|
|
|
|
|
|
|
|
EIGEN_DEVICE_FUNC AngleAxis inverse() const |
|
|
{ return AngleAxis(-m_angle, m_axis); } |
|
|
|
|
|
template<class QuatDerived> |
|
|
EIGEN_DEVICE_FUNC AngleAxis& operator=(const QuaternionBase<QuatDerived>& q); |
|
|
template<typename Derived> |
|
|
EIGEN_DEVICE_FUNC AngleAxis& operator=(const MatrixBase<Derived>& m); |
|
|
|
|
|
template<typename Derived> |
|
|
EIGEN_DEVICE_FUNC AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m); |
|
|
EIGEN_DEVICE_FUNC Matrix3 toRotationMatrix(void) const; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename NewScalarType> |
|
|
EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const |
|
|
{ return typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); } |
|
|
|
|
|
|
|
|
template<typename OtherScalarType> |
|
|
EIGEN_DEVICE_FUNC inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other) |
|
|
{ |
|
|
m_axis = other.axis().template cast<Scalar>(); |
|
|
m_angle = Scalar(other.angle()); |
|
|
} |
|
|
|
|
|
EIGEN_DEVICE_FUNC static inline const AngleAxis Identity() { return AngleAxis(Scalar(0), Vector3::UnitX()); } |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EIGEN_DEVICE_FUNC bool isApprox(const AngleAxis& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const |
|
|
{ return m_axis.isApprox(other.m_axis, prec) && internal::isApprox(m_angle,other.m_angle, prec); } |
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
typedef AngleAxis<float> AngleAxisf; |
|
|
|
|
|
|
|
|
typedef AngleAxis<double> AngleAxisd; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename Scalar> |
|
|
template<typename QuatDerived> |
|
|
EIGEN_DEVICE_FUNC AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived>& q) |
|
|
{ |
|
|
EIGEN_USING_STD(atan2) |
|
|
EIGEN_USING_STD(abs) |
|
|
Scalar n = q.vec().norm(); |
|
|
if(n<NumTraits<Scalar>::epsilon()) |
|
|
n = q.vec().stableNorm(); |
|
|
|
|
|
if (n != Scalar(0)) |
|
|
{ |
|
|
m_angle = Scalar(2)*atan2(n, abs(q.w())); |
|
|
if(q.w() < Scalar(0)) |
|
|
n = -n; |
|
|
m_axis = q.vec() / n; |
|
|
} |
|
|
else |
|
|
{ |
|
|
m_angle = Scalar(0); |
|
|
m_axis << Scalar(1), Scalar(0), Scalar(0); |
|
|
} |
|
|
return *this; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
template<typename Scalar> |
|
|
template<typename Derived> |
|
|
EIGEN_DEVICE_FUNC AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat) |
|
|
{ |
|
|
|
|
|
|
|
|
return *this = QuaternionType(mat); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename Scalar> |
|
|
template<typename Derived> |
|
|
EIGEN_DEVICE_FUNC AngleAxis<Scalar>& AngleAxis<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat) |
|
|
{ |
|
|
return *this = QuaternionType(mat); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
template<typename Scalar> |
|
|
typename AngleAxis<Scalar>::Matrix3 |
|
|
EIGEN_DEVICE_FUNC AngleAxis<Scalar>::toRotationMatrix(void) const |
|
|
{ |
|
|
EIGEN_USING_STD(sin) |
|
|
EIGEN_USING_STD(cos) |
|
|
Matrix3 res; |
|
|
Vector3 sin_axis = sin(m_angle) * m_axis; |
|
|
Scalar c = cos(m_angle); |
|
|
Vector3 cos1_axis = (Scalar(1)-c) * m_axis; |
|
|
|
|
|
Scalar tmp; |
|
|
tmp = cos1_axis.x() * m_axis.y(); |
|
|
res.coeffRef(0,1) = tmp - sin_axis.z(); |
|
|
res.coeffRef(1,0) = tmp + sin_axis.z(); |
|
|
|
|
|
tmp = cos1_axis.x() * m_axis.z(); |
|
|
res.coeffRef(0,2) = tmp + sin_axis.y(); |
|
|
res.coeffRef(2,0) = tmp - sin_axis.y(); |
|
|
|
|
|
tmp = cos1_axis.y() * m_axis.z(); |
|
|
res.coeffRef(1,2) = tmp - sin_axis.x(); |
|
|
res.coeffRef(2,1) = tmp + sin_axis.x(); |
|
|
|
|
|
res.diagonal() = (cos1_axis.cwiseProduct(m_axis)).array() + c; |
|
|
|
|
|
return res; |
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
#endif |
|
|
|