|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef EIGEN_INCOMPLETE_CHOlESKY_H |
|
|
#define EIGEN_INCOMPLETE_CHOlESKY_H |
|
|
|
|
|
#include <vector> |
|
|
#include <list> |
|
|
|
|
|
namespace Eigen { |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <typename Scalar, int _UpLo = Lower, typename _OrderingType = AMDOrdering<int> > |
|
|
class IncompleteCholesky : public SparseSolverBase<IncompleteCholesky<Scalar,_UpLo,_OrderingType> > |
|
|
{ |
|
|
protected: |
|
|
typedef SparseSolverBase<IncompleteCholesky<Scalar,_UpLo,_OrderingType> > Base; |
|
|
using Base::m_isInitialized; |
|
|
public: |
|
|
typedef typename NumTraits<Scalar>::Real RealScalar; |
|
|
typedef _OrderingType OrderingType; |
|
|
typedef typename OrderingType::PermutationType PermutationType; |
|
|
typedef typename PermutationType::StorageIndex StorageIndex; |
|
|
typedef SparseMatrix<Scalar,ColMajor,StorageIndex> FactorType; |
|
|
typedef Matrix<Scalar,Dynamic,1> VectorSx; |
|
|
typedef Matrix<RealScalar,Dynamic,1> VectorRx; |
|
|
typedef Matrix<StorageIndex,Dynamic, 1> VectorIx; |
|
|
typedef std::vector<std::list<StorageIndex> > VectorList; |
|
|
enum { UpLo = _UpLo }; |
|
|
enum { |
|
|
ColsAtCompileTime = Dynamic, |
|
|
MaxColsAtCompileTime = Dynamic |
|
|
}; |
|
|
public: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
IncompleteCholesky() : m_initialShift(1e-3),m_analysisIsOk(false),m_factorizationIsOk(false) {} |
|
|
|
|
|
|
|
|
|
|
|
template<typename MatrixType> |
|
|
IncompleteCholesky(const MatrixType& matrix) : m_initialShift(1e-3),m_analysisIsOk(false),m_factorizationIsOk(false) |
|
|
{ |
|
|
compute(matrix); |
|
|
} |
|
|
|
|
|
|
|
|
EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_L.rows(); } |
|
|
|
|
|
|
|
|
EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_L.cols(); } |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ComputationInfo info() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "IncompleteCholesky is not initialized."); |
|
|
return m_info; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void setInitialShift(RealScalar shift) { m_initialShift = shift; } |
|
|
|
|
|
|
|
|
|
|
|
template<typename MatrixType> |
|
|
void analyzePattern(const MatrixType& mat) |
|
|
{ |
|
|
OrderingType ord; |
|
|
PermutationType pinv; |
|
|
ord(mat.template selfadjointView<UpLo>(), pinv); |
|
|
if(pinv.size()>0) m_perm = pinv.inverse(); |
|
|
else m_perm.resize(0); |
|
|
m_L.resize(mat.rows(), mat.cols()); |
|
|
m_analysisIsOk = true; |
|
|
m_isInitialized = true; |
|
|
m_info = Success; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename MatrixType> |
|
|
void factorize(const MatrixType& mat); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename MatrixType> |
|
|
void compute(const MatrixType& mat) |
|
|
{ |
|
|
analyzePattern(mat); |
|
|
factorize(mat); |
|
|
} |
|
|
|
|
|
|
|
|
template<typename Rhs, typename Dest> |
|
|
void _solve_impl(const Rhs& b, Dest& x) const |
|
|
{ |
|
|
eigen_assert(m_factorizationIsOk && "factorize() should be called first"); |
|
|
if (m_perm.rows() == b.rows()) x = m_perm * b; |
|
|
else x = b; |
|
|
x = m_scale.asDiagonal() * x; |
|
|
x = m_L.template triangularView<Lower>().solve(x); |
|
|
x = m_L.adjoint().template triangularView<Upper>().solve(x); |
|
|
x = m_scale.asDiagonal() * x; |
|
|
if (m_perm.rows() == b.rows()) |
|
|
x = m_perm.inverse() * x; |
|
|
} |
|
|
|
|
|
|
|
|
const FactorType& matrixL() const { eigen_assert(m_factorizationIsOk && "factorize() should be called first"); return m_L; } |
|
|
|
|
|
|
|
|
const VectorRx& scalingS() const { eigen_assert(m_factorizationIsOk && "factorize() should be called first"); return m_scale; } |
|
|
|
|
|
|
|
|
const PermutationType& permutationP() const { eigen_assert(m_analysisIsOk && "analyzePattern() should be called first"); return m_perm; } |
|
|
|
|
|
protected: |
|
|
FactorType m_L; |
|
|
VectorRx m_scale; |
|
|
RealScalar m_initialShift; |
|
|
bool m_analysisIsOk; |
|
|
bool m_factorizationIsOk; |
|
|
ComputationInfo m_info; |
|
|
PermutationType m_perm; |
|
|
|
|
|
private: |
|
|
inline void updateList(Ref<const VectorIx> colPtr, Ref<VectorIx> rowIdx, Ref<VectorSx> vals, const Index& col, const Index& jk, VectorIx& firstElt, VectorList& listCol); |
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename Scalar, int _UpLo, typename OrderingType> |
|
|
template<typename _MatrixType> |
|
|
void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType& mat) |
|
|
{ |
|
|
using std::sqrt; |
|
|
eigen_assert(m_analysisIsOk && "analyzePattern() should be called first"); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (m_perm.rows() == mat.rows() ) |
|
|
{ |
|
|
|
|
|
FactorType tmp(mat.rows(), mat.cols()); |
|
|
tmp = mat.template selfadjointView<_UpLo>().twistedBy(m_perm); |
|
|
m_L.template selfadjointView<Lower>() = tmp.template selfadjointView<Lower>(); |
|
|
} |
|
|
else |
|
|
{ |
|
|
m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>(); |
|
|
} |
|
|
|
|
|
Index n = m_L.cols(); |
|
|
Index nnz = m_L.nonZeros(); |
|
|
Map<VectorSx> vals(m_L.valuePtr(), nnz); |
|
|
Map<VectorIx> rowIdx(m_L.innerIndexPtr(), nnz); |
|
|
Map<VectorIx> colPtr( m_L.outerIndexPtr(), n+1); |
|
|
VectorIx firstElt(n-1); |
|
|
VectorList listCol(n); |
|
|
VectorSx col_vals(n); |
|
|
VectorIx col_irow(n); |
|
|
VectorIx col_pattern(n); |
|
|
col_pattern.fill(-1); |
|
|
StorageIndex col_nnz; |
|
|
|
|
|
|
|
|
|
|
|
m_scale.resize(n); |
|
|
m_scale.setZero(); |
|
|
for (Index j = 0; j < n; j++) |
|
|
for (Index k = colPtr[j]; k < colPtr[j+1]; k++) |
|
|
{ |
|
|
m_scale(j) += numext::abs2(vals(k)); |
|
|
if(rowIdx[k]!=j) |
|
|
m_scale(rowIdx[k]) += numext::abs2(vals(k)); |
|
|
} |
|
|
|
|
|
m_scale = m_scale.cwiseSqrt().cwiseSqrt(); |
|
|
|
|
|
for (Index j = 0; j < n; ++j) |
|
|
if(m_scale(j)>(std::numeric_limits<RealScalar>::min)()) |
|
|
m_scale(j) = RealScalar(1)/m_scale(j); |
|
|
else |
|
|
m_scale(j) = 1; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RealScalar mindiag = NumTraits<RealScalar>::highest(); |
|
|
for (Index j = 0; j < n; j++) |
|
|
{ |
|
|
for (Index k = colPtr[j]; k < colPtr[j+1]; k++) |
|
|
vals[k] *= (m_scale(j)*m_scale(rowIdx[k])); |
|
|
eigen_internal_assert(rowIdx[colPtr[j]]==j && "IncompleteCholesky: only the lower triangular part must be stored"); |
|
|
mindiag = numext::mini(numext::real(vals[colPtr[j]]), mindiag); |
|
|
} |
|
|
|
|
|
FactorType L_save = m_L; |
|
|
|
|
|
RealScalar shift = 0; |
|
|
if(mindiag <= RealScalar(0.)) |
|
|
shift = m_initialShift - mindiag; |
|
|
|
|
|
m_info = NumericalIssue; |
|
|
|
|
|
|
|
|
int iter = 0; |
|
|
do |
|
|
{ |
|
|
|
|
|
for (Index j = 0; j < n; j++) |
|
|
vals[colPtr[j]] += shift; |
|
|
|
|
|
|
|
|
Index j=0; |
|
|
for (; j < n; ++j) |
|
|
{ |
|
|
|
|
|
|
|
|
Scalar diag = vals[colPtr[j]]; |
|
|
col_nnz = 0; |
|
|
for (Index i = colPtr[j] + 1; i < colPtr[j+1]; i++) |
|
|
{ |
|
|
StorageIndex l = rowIdx[i]; |
|
|
col_vals(col_nnz) = vals[i]; |
|
|
col_irow(col_nnz) = l; |
|
|
col_pattern(l) = col_nnz; |
|
|
col_nnz++; |
|
|
} |
|
|
{ |
|
|
typename std::list<StorageIndex>::iterator k; |
|
|
|
|
|
for(k = listCol[j].begin(); k != listCol[j].end(); k++) |
|
|
{ |
|
|
Index jk = firstElt(*k); |
|
|
eigen_internal_assert(rowIdx[jk]==j); |
|
|
Scalar v_j_jk = numext::conj(vals[jk]); |
|
|
|
|
|
jk += 1; |
|
|
for (Index i = jk; i < colPtr[*k+1]; i++) |
|
|
{ |
|
|
StorageIndex l = rowIdx[i]; |
|
|
if(col_pattern[l]<0) |
|
|
{ |
|
|
col_vals(col_nnz) = vals[i] * v_j_jk; |
|
|
col_irow[col_nnz] = l; |
|
|
col_pattern(l) = col_nnz; |
|
|
col_nnz++; |
|
|
} |
|
|
else |
|
|
col_vals(col_pattern[l]) -= vals[i] * v_j_jk; |
|
|
} |
|
|
updateList(colPtr,rowIdx,vals, *k, jk, firstElt, listCol); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
if(numext::real(diag) <= 0) |
|
|
{ |
|
|
if(++iter>=10) |
|
|
return; |
|
|
|
|
|
|
|
|
shift = numext::maxi(m_initialShift,RealScalar(2)*shift); |
|
|
|
|
|
vals = Map<const VectorSx>(L_save.valuePtr(), nnz); |
|
|
rowIdx = Map<const VectorIx>(L_save.innerIndexPtr(), nnz); |
|
|
colPtr = Map<const VectorIx>(L_save.outerIndexPtr(), n+1); |
|
|
col_pattern.fill(-1); |
|
|
for(Index i=0; i<n; ++i) |
|
|
listCol[i].clear(); |
|
|
|
|
|
break; |
|
|
} |
|
|
|
|
|
RealScalar rdiag = sqrt(numext::real(diag)); |
|
|
vals[colPtr[j]] = rdiag; |
|
|
for (Index k = 0; k<col_nnz; ++k) |
|
|
{ |
|
|
Index i = col_irow[k]; |
|
|
|
|
|
col_vals(k) /= rdiag; |
|
|
|
|
|
vals[colPtr[i]] -= numext::abs2(col_vals(k)); |
|
|
} |
|
|
|
|
|
|
|
|
Index p = colPtr[j+1] - colPtr[j] - 1 ; |
|
|
Ref<VectorSx> cvals = col_vals.head(col_nnz); |
|
|
Ref<VectorIx> cirow = col_irow.head(col_nnz); |
|
|
internal::QuickSplit(cvals,cirow, p); |
|
|
|
|
|
Index cpt = 0; |
|
|
for (Index i = colPtr[j]+1; i < colPtr[j+1]; i++) |
|
|
{ |
|
|
vals[i] = col_vals(cpt); |
|
|
rowIdx[i] = col_irow(cpt); |
|
|
|
|
|
col_pattern(col_irow(cpt)) = -1; |
|
|
cpt++; |
|
|
} |
|
|
|
|
|
Index jk = colPtr(j)+1; |
|
|
updateList(colPtr,rowIdx,vals,j,jk,firstElt,listCol); |
|
|
} |
|
|
|
|
|
if(j==n) |
|
|
{ |
|
|
m_factorizationIsOk = true; |
|
|
m_info = Success; |
|
|
} |
|
|
} while(m_info!=Success); |
|
|
} |
|
|
|
|
|
template<typename Scalar, int _UpLo, typename OrderingType> |
|
|
inline void IncompleteCholesky<Scalar,_UpLo, OrderingType>::updateList(Ref<const VectorIx> colPtr, Ref<VectorIx> rowIdx, Ref<VectorSx> vals, const Index& col, const Index& jk, VectorIx& firstElt, VectorList& listCol) |
|
|
{ |
|
|
if (jk < colPtr(col+1) ) |
|
|
{ |
|
|
Index p = colPtr(col+1) - jk; |
|
|
Index minpos; |
|
|
rowIdx.segment(jk,p).minCoeff(&minpos); |
|
|
minpos += jk; |
|
|
if (rowIdx(minpos) != rowIdx(jk)) |
|
|
{ |
|
|
|
|
|
std::swap(rowIdx(jk),rowIdx(minpos)); |
|
|
std::swap(vals(jk),vals(minpos)); |
|
|
} |
|
|
firstElt(col) = internal::convert_index<StorageIndex,Index>(jk); |
|
|
listCol[rowIdx(jk)].push_back(internal::convert_index<StorageIndex,Index>(col)); |
|
|
} |
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
#endif |
|
|
|