|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef EIGEN_LU_H |
|
|
#define EIGEN_LU_H |
|
|
|
|
|
namespace Eigen { |
|
|
|
|
|
namespace internal { |
|
|
template<typename _MatrixType> struct traits<FullPivLU<_MatrixType> > |
|
|
: traits<_MatrixType> |
|
|
{ |
|
|
typedef MatrixXpr XprKind; |
|
|
typedef SolverStorage StorageKind; |
|
|
typedef int StorageIndex; |
|
|
enum { Flags = 0 }; |
|
|
}; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename _MatrixType> class FullPivLU |
|
|
: public SolverBase<FullPivLU<_MatrixType> > |
|
|
{ |
|
|
public: |
|
|
typedef _MatrixType MatrixType; |
|
|
typedef SolverBase<FullPivLU> Base; |
|
|
friend class SolverBase<FullPivLU>; |
|
|
|
|
|
EIGEN_GENERIC_PUBLIC_INTERFACE(FullPivLU) |
|
|
enum { |
|
|
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
|
|
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
|
|
}; |
|
|
typedef typename internal::plain_row_type<MatrixType, StorageIndex>::type IntRowVectorType; |
|
|
typedef typename internal::plain_col_type<MatrixType, StorageIndex>::type IntColVectorType; |
|
|
typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationQType; |
|
|
typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationPType; |
|
|
typedef typename MatrixType::PlainObject PlainObject; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
FullPivLU(); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
FullPivLU(Index rows, Index cols); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename InputType> |
|
|
explicit FullPivLU(const EigenBase<InputType>& matrix); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename InputType> |
|
|
explicit FullPivLU(EigenBase<InputType>& matrix); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename InputType> |
|
|
FullPivLU& compute(const EigenBase<InputType>& matrix) { |
|
|
m_lu = matrix.derived(); |
|
|
computeInPlace(); |
|
|
return *this; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inline const MatrixType& matrixLU() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "LU is not initialized."); |
|
|
return m_lu; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inline Index nonzeroPivots() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "LU is not initialized."); |
|
|
return m_nonzero_pivots; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RealScalar maxPivot() const { return m_maxpivot; } |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EIGEN_DEVICE_FUNC inline const PermutationPType& permutationP() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "LU is not initialized."); |
|
|
return m_p; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inline const PermutationQType& permutationQ() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "LU is not initialized."); |
|
|
return m_q; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inline const internal::kernel_retval<FullPivLU> kernel() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "LU is not initialized."); |
|
|
return internal::kernel_retval<FullPivLU>(*this); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inline const internal::image_retval<FullPivLU> |
|
|
image(const MatrixType& originalMatrix) const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "LU is not initialized."); |
|
|
return internal::image_retval<FullPivLU>(*this, originalMatrix); |
|
|
} |
|
|
|
|
|
#ifdef EIGEN_PARSED_BY_DOXYGEN |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename Rhs> |
|
|
inline const Solve<FullPivLU, Rhs> |
|
|
solve(const MatrixBase<Rhs>& b) const; |
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inline RealScalar rcond() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); |
|
|
return internal::rcond_estimate_helper(m_l1_norm, *this); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
typename internal::traits<MatrixType>::Scalar determinant() const; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
FullPivLU& setThreshold(const RealScalar& threshold) |
|
|
{ |
|
|
m_usePrescribedThreshold = true; |
|
|
m_prescribedThreshold = threshold; |
|
|
return *this; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
FullPivLU& setThreshold(Default_t) |
|
|
{ |
|
|
m_usePrescribedThreshold = false; |
|
|
return *this; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RealScalar threshold() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized || m_usePrescribedThreshold); |
|
|
return m_usePrescribedThreshold ? m_prescribedThreshold |
|
|
|
|
|
|
|
|
: NumTraits<Scalar>::epsilon() * RealScalar(m_lu.diagonalSize()); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inline Index rank() const |
|
|
{ |
|
|
using std::abs; |
|
|
eigen_assert(m_isInitialized && "LU is not initialized."); |
|
|
RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold(); |
|
|
Index result = 0; |
|
|
for(Index i = 0; i < m_nonzero_pivots; ++i) |
|
|
result += (abs(m_lu.coeff(i,i)) > premultiplied_threshold); |
|
|
return result; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inline Index dimensionOfKernel() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "LU is not initialized."); |
|
|
return cols() - rank(); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inline bool isInjective() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "LU is not initialized."); |
|
|
return rank() == cols(); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inline bool isSurjective() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "LU is not initialized."); |
|
|
return rank() == rows(); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inline bool isInvertible() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "LU is not initialized."); |
|
|
return isInjective() && (m_lu.rows() == m_lu.cols()); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inline const Inverse<FullPivLU> inverse() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "LU is not initialized."); |
|
|
eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!"); |
|
|
return Inverse<FullPivLU>(*this); |
|
|
} |
|
|
|
|
|
MatrixType reconstructedMatrix() const; |
|
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR |
|
|
inline Index rows() const EIGEN_NOEXCEPT { return m_lu.rows(); } |
|
|
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR |
|
|
inline Index cols() const EIGEN_NOEXCEPT { return m_lu.cols(); } |
|
|
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN |
|
|
template<typename RhsType, typename DstType> |
|
|
void _solve_impl(const RhsType &rhs, DstType &dst) const; |
|
|
|
|
|
template<bool Conjugate, typename RhsType, typename DstType> |
|
|
void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const; |
|
|
#endif |
|
|
|
|
|
protected: |
|
|
|
|
|
static void check_template_parameters() |
|
|
{ |
|
|
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); |
|
|
} |
|
|
|
|
|
void computeInPlace(); |
|
|
|
|
|
MatrixType m_lu; |
|
|
PermutationPType m_p; |
|
|
PermutationQType m_q; |
|
|
IntColVectorType m_rowsTranspositions; |
|
|
IntRowVectorType m_colsTranspositions; |
|
|
Index m_nonzero_pivots; |
|
|
RealScalar m_l1_norm; |
|
|
RealScalar m_maxpivot, m_prescribedThreshold; |
|
|
signed char m_det_pq; |
|
|
bool m_isInitialized, m_usePrescribedThreshold; |
|
|
}; |
|
|
|
|
|
template<typename MatrixType> |
|
|
FullPivLU<MatrixType>::FullPivLU() |
|
|
: m_isInitialized(false), m_usePrescribedThreshold(false) |
|
|
{ |
|
|
} |
|
|
|
|
|
template<typename MatrixType> |
|
|
FullPivLU<MatrixType>::FullPivLU(Index rows, Index cols) |
|
|
: m_lu(rows, cols), |
|
|
m_p(rows), |
|
|
m_q(cols), |
|
|
m_rowsTranspositions(rows), |
|
|
m_colsTranspositions(cols), |
|
|
m_isInitialized(false), |
|
|
m_usePrescribedThreshold(false) |
|
|
{ |
|
|
} |
|
|
|
|
|
template<typename MatrixType> |
|
|
template<typename InputType> |
|
|
FullPivLU<MatrixType>::FullPivLU(const EigenBase<InputType>& matrix) |
|
|
: m_lu(matrix.rows(), matrix.cols()), |
|
|
m_p(matrix.rows()), |
|
|
m_q(matrix.cols()), |
|
|
m_rowsTranspositions(matrix.rows()), |
|
|
m_colsTranspositions(matrix.cols()), |
|
|
m_isInitialized(false), |
|
|
m_usePrescribedThreshold(false) |
|
|
{ |
|
|
compute(matrix.derived()); |
|
|
} |
|
|
|
|
|
template<typename MatrixType> |
|
|
template<typename InputType> |
|
|
FullPivLU<MatrixType>::FullPivLU(EigenBase<InputType>& matrix) |
|
|
: m_lu(matrix.derived()), |
|
|
m_p(matrix.rows()), |
|
|
m_q(matrix.cols()), |
|
|
m_rowsTranspositions(matrix.rows()), |
|
|
m_colsTranspositions(matrix.cols()), |
|
|
m_isInitialized(false), |
|
|
m_usePrescribedThreshold(false) |
|
|
{ |
|
|
computeInPlace(); |
|
|
} |
|
|
|
|
|
template<typename MatrixType> |
|
|
void FullPivLU<MatrixType>::computeInPlace() |
|
|
{ |
|
|
check_template_parameters(); |
|
|
|
|
|
|
|
|
eigen_assert(m_lu.rows()<=NumTraits<int>::highest() && m_lu.cols()<=NumTraits<int>::highest()); |
|
|
|
|
|
m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff(); |
|
|
|
|
|
const Index size = m_lu.diagonalSize(); |
|
|
const Index rows = m_lu.rows(); |
|
|
const Index cols = m_lu.cols(); |
|
|
|
|
|
|
|
|
|
|
|
m_rowsTranspositions.resize(m_lu.rows()); |
|
|
m_colsTranspositions.resize(m_lu.cols()); |
|
|
Index number_of_transpositions = 0; |
|
|
|
|
|
m_nonzero_pivots = size; |
|
|
m_maxpivot = RealScalar(0); |
|
|
|
|
|
for(Index k = 0; k < size; ++k) |
|
|
{ |
|
|
|
|
|
|
|
|
|
|
|
Index row_of_biggest_in_corner, col_of_biggest_in_corner; |
|
|
typedef internal::scalar_score_coeff_op<Scalar> Scoring; |
|
|
typedef typename Scoring::result_type Score; |
|
|
Score biggest_in_corner; |
|
|
biggest_in_corner = m_lu.bottomRightCorner(rows-k, cols-k) |
|
|
.unaryExpr(Scoring()) |
|
|
.maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner); |
|
|
row_of_biggest_in_corner += k; |
|
|
col_of_biggest_in_corner += k; |
|
|
|
|
|
if(biggest_in_corner==Score(0)) |
|
|
{ |
|
|
|
|
|
|
|
|
m_nonzero_pivots = k; |
|
|
for(Index i = k; i < size; ++i) |
|
|
{ |
|
|
m_rowsTranspositions.coeffRef(i) = internal::convert_index<StorageIndex>(i); |
|
|
m_colsTranspositions.coeffRef(i) = internal::convert_index<StorageIndex>(i); |
|
|
} |
|
|
break; |
|
|
} |
|
|
|
|
|
RealScalar abs_pivot = internal::abs_knowing_score<Scalar>()(m_lu(row_of_biggest_in_corner, col_of_biggest_in_corner), biggest_in_corner); |
|
|
if(abs_pivot > m_maxpivot) m_maxpivot = abs_pivot; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
m_rowsTranspositions.coeffRef(k) = internal::convert_index<StorageIndex>(row_of_biggest_in_corner); |
|
|
m_colsTranspositions.coeffRef(k) = internal::convert_index<StorageIndex>(col_of_biggest_in_corner); |
|
|
if(k != row_of_biggest_in_corner) { |
|
|
m_lu.row(k).swap(m_lu.row(row_of_biggest_in_corner)); |
|
|
++number_of_transpositions; |
|
|
} |
|
|
if(k != col_of_biggest_in_corner) { |
|
|
m_lu.col(k).swap(m_lu.col(col_of_biggest_in_corner)); |
|
|
++number_of_transpositions; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if(k<rows-1) |
|
|
m_lu.col(k).tail(rows-k-1) /= m_lu.coeff(k,k); |
|
|
if(k<size-1) |
|
|
m_lu.block(k+1,k+1,rows-k-1,cols-k-1).noalias() -= m_lu.col(k).tail(rows-k-1) * m_lu.row(k).tail(cols-k-1); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
m_p.setIdentity(rows); |
|
|
for(Index k = size-1; k >= 0; --k) |
|
|
m_p.applyTranspositionOnTheRight(k, m_rowsTranspositions.coeff(k)); |
|
|
|
|
|
m_q.setIdentity(cols); |
|
|
for(Index k = 0; k < size; ++k) |
|
|
m_q.applyTranspositionOnTheRight(k, m_colsTranspositions.coeff(k)); |
|
|
|
|
|
m_det_pq = (number_of_transpositions%2) ? -1 : 1; |
|
|
|
|
|
m_isInitialized = true; |
|
|
} |
|
|
|
|
|
template<typename MatrixType> |
|
|
typename internal::traits<MatrixType>::Scalar FullPivLU<MatrixType>::determinant() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "LU is not initialized."); |
|
|
eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the determinant of a non-square matrix!"); |
|
|
return Scalar(m_det_pq) * Scalar(m_lu.diagonal().prod()); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename MatrixType> |
|
|
MatrixType FullPivLU<MatrixType>::reconstructedMatrix() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "LU is not initialized."); |
|
|
const Index smalldim = (std::min)(m_lu.rows(), m_lu.cols()); |
|
|
|
|
|
MatrixType res(m_lu.rows(),m_lu.cols()); |
|
|
|
|
|
res = m_lu.leftCols(smalldim) |
|
|
.template triangularView<UnitLower>().toDenseMatrix() |
|
|
* m_lu.topRows(smalldim) |
|
|
.template triangularView<Upper>().toDenseMatrix(); |
|
|
|
|
|
|
|
|
res = m_p.inverse() * res; |
|
|
|
|
|
|
|
|
res = res * m_q.inverse(); |
|
|
|
|
|
return res; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
namespace internal { |
|
|
template<typename _MatrixType> |
|
|
struct kernel_retval<FullPivLU<_MatrixType> > |
|
|
: kernel_retval_base<FullPivLU<_MatrixType> > |
|
|
{ |
|
|
EIGEN_MAKE_KERNEL_HELPERS(FullPivLU<_MatrixType>) |
|
|
|
|
|
enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED( |
|
|
MatrixType::MaxColsAtCompileTime, |
|
|
MatrixType::MaxRowsAtCompileTime) |
|
|
}; |
|
|
|
|
|
template<typename Dest> void evalTo(Dest& dst) const |
|
|
{ |
|
|
using std::abs; |
|
|
const Index cols = dec().matrixLU().cols(), dimker = cols - rank(); |
|
|
if(dimker == 0) |
|
|
{ |
|
|
|
|
|
|
|
|
|
|
|
dst.setZero(); |
|
|
return; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank()); |
|
|
RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold(); |
|
|
Index p = 0; |
|
|
for(Index i = 0; i < dec().nonzeroPivots(); ++i) |
|
|
if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold) |
|
|
pivots.coeffRef(p++) = i; |
|
|
eigen_internal_assert(p == rank()); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Matrix<typename MatrixType::Scalar, Dynamic, Dynamic, MatrixType::Options, |
|
|
MaxSmallDimAtCompileTime, MatrixType::MaxColsAtCompileTime> |
|
|
m(dec().matrixLU().block(0, 0, rank(), cols)); |
|
|
for(Index i = 0; i < rank(); ++i) |
|
|
{ |
|
|
if(i) m.row(i).head(i).setZero(); |
|
|
m.row(i).tail(cols-i) = dec().matrixLU().row(pivots.coeff(i)).tail(cols-i); |
|
|
} |
|
|
m.block(0, 0, rank(), rank()); |
|
|
m.block(0, 0, rank(), rank()).template triangularView<StrictlyLower>().setZero(); |
|
|
for(Index i = 0; i < rank(); ++i) |
|
|
m.col(i).swap(m.col(pivots.coeff(i))); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
m.topLeftCorner(rank(), rank()) |
|
|
.template triangularView<Upper>().solveInPlace( |
|
|
m.topRightCorner(rank(), dimker) |
|
|
); |
|
|
|
|
|
|
|
|
for(Index i = rank()-1; i >= 0; --i) |
|
|
m.col(i).swap(m.col(pivots.coeff(i))); |
|
|
|
|
|
|
|
|
for(Index i = 0; i < rank(); ++i) dst.row(dec().permutationQ().indices().coeff(i)) = -m.row(i).tail(dimker); |
|
|
for(Index i = rank(); i < cols; ++i) dst.row(dec().permutationQ().indices().coeff(i)).setZero(); |
|
|
for(Index k = 0; k < dimker; ++k) dst.coeffRef(dec().permutationQ().indices().coeff(rank()+k), k) = Scalar(1); |
|
|
} |
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
template<typename _MatrixType> |
|
|
struct image_retval<FullPivLU<_MatrixType> > |
|
|
: image_retval_base<FullPivLU<_MatrixType> > |
|
|
{ |
|
|
EIGEN_MAKE_IMAGE_HELPERS(FullPivLU<_MatrixType>) |
|
|
|
|
|
enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED( |
|
|
MatrixType::MaxColsAtCompileTime, |
|
|
MatrixType::MaxRowsAtCompileTime) |
|
|
}; |
|
|
|
|
|
template<typename Dest> void evalTo(Dest& dst) const |
|
|
{ |
|
|
using std::abs; |
|
|
if(rank() == 0) |
|
|
{ |
|
|
|
|
|
|
|
|
|
|
|
dst.setZero(); |
|
|
return; |
|
|
} |
|
|
|
|
|
Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank()); |
|
|
RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold(); |
|
|
Index p = 0; |
|
|
for(Index i = 0; i < dec().nonzeroPivots(); ++i) |
|
|
if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold) |
|
|
pivots.coeffRef(p++) = i; |
|
|
eigen_internal_assert(p == rank()); |
|
|
|
|
|
for(Index i = 0; i < rank(); ++i) |
|
|
dst.col(i) = originalMatrix().col(dec().permutationQ().indices().coeff(pivots.coeff(i))); |
|
|
} |
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN |
|
|
template<typename _MatrixType> |
|
|
template<typename RhsType, typename DstType> |
|
|
void FullPivLU<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const |
|
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const Index rows = this->rows(), |
|
|
cols = this->cols(), |
|
|
nonzero_pivots = this->rank(); |
|
|
const Index smalldim = (std::min)(rows, cols); |
|
|
|
|
|
if(nonzero_pivots == 0) |
|
|
{ |
|
|
dst.setZero(); |
|
|
return; |
|
|
} |
|
|
|
|
|
typename RhsType::PlainObject c(rhs.rows(), rhs.cols()); |
|
|
|
|
|
|
|
|
c = permutationP() * rhs; |
|
|
|
|
|
|
|
|
m_lu.topLeftCorner(smalldim,smalldim) |
|
|
.template triangularView<UnitLower>() |
|
|
.solveInPlace(c.topRows(smalldim)); |
|
|
if(rows>cols) |
|
|
c.bottomRows(rows-cols) -= m_lu.bottomRows(rows-cols) * c.topRows(cols); |
|
|
|
|
|
|
|
|
m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots) |
|
|
.template triangularView<Upper>() |
|
|
.solveInPlace(c.topRows(nonzero_pivots)); |
|
|
|
|
|
|
|
|
for(Index i = 0; i < nonzero_pivots; ++i) |
|
|
dst.row(permutationQ().indices().coeff(i)) = c.row(i); |
|
|
for(Index i = nonzero_pivots; i < m_lu.cols(); ++i) |
|
|
dst.row(permutationQ().indices().coeff(i)).setZero(); |
|
|
} |
|
|
|
|
|
template<typename _MatrixType> |
|
|
template<bool Conjugate, typename RhsType, typename DstType> |
|
|
void FullPivLU<_MatrixType>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const |
|
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const Index rows = this->rows(), cols = this->cols(), |
|
|
nonzero_pivots = this->rank(); |
|
|
const Index smalldim = (std::min)(rows, cols); |
|
|
|
|
|
if(nonzero_pivots == 0) |
|
|
{ |
|
|
dst.setZero(); |
|
|
return; |
|
|
} |
|
|
|
|
|
typename RhsType::PlainObject c(rhs.rows(), rhs.cols()); |
|
|
|
|
|
|
|
|
c = permutationQ().inverse() * rhs; |
|
|
|
|
|
|
|
|
m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots) |
|
|
.template triangularView<Upper>() |
|
|
.transpose() |
|
|
.template conjugateIf<Conjugate>() |
|
|
.solveInPlace(c.topRows(nonzero_pivots)); |
|
|
|
|
|
|
|
|
m_lu.topLeftCorner(smalldim, smalldim) |
|
|
.template triangularView<UnitLower>() |
|
|
.transpose() |
|
|
.template conjugateIf<Conjugate>() |
|
|
.solveInPlace(c.topRows(smalldim)); |
|
|
|
|
|
|
|
|
PermutationPType invp = permutationP().inverse().eval(); |
|
|
for(Index i = 0; i < smalldim; ++i) |
|
|
dst.row(invp.indices().coeff(i)) = c.row(i); |
|
|
for(Index i = smalldim; i < rows; ++i) |
|
|
dst.row(invp.indices().coeff(i)).setZero(); |
|
|
} |
|
|
|
|
|
#endif |
|
|
|
|
|
namespace internal { |
|
|
|
|
|
|
|
|
|
|
|
template<typename DstXprType, typename MatrixType> |
|
|
struct Assignment<DstXprType, Inverse<FullPivLU<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename FullPivLU<MatrixType>::Scalar>, Dense2Dense> |
|
|
{ |
|
|
typedef FullPivLU<MatrixType> LuType; |
|
|
typedef Inverse<LuType> SrcXprType; |
|
|
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename MatrixType::Scalar> &) |
|
|
{ |
|
|
dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols())); |
|
|
} |
|
|
}; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename Derived> |
|
|
inline const FullPivLU<typename MatrixBase<Derived>::PlainObject> |
|
|
MatrixBase<Derived>::fullPivLu() const |
|
|
{ |
|
|
return FullPivLU<PlainObject>(eval()); |
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
#endif |
|
|
|