|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef EIGEN_BIDIAGONALIZATION_H |
|
|
#define EIGEN_BIDIAGONALIZATION_H |
|
|
|
|
|
namespace Eigen { |
|
|
|
|
|
namespace internal { |
|
|
|
|
|
|
|
|
|
|
|
template<typename _MatrixType> class UpperBidiagonalization |
|
|
{ |
|
|
public: |
|
|
|
|
|
typedef _MatrixType MatrixType; |
|
|
enum { |
|
|
RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
|
|
ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
|
|
ColsAtCompileTimeMinusOne = internal::decrement_size<ColsAtCompileTime>::ret |
|
|
}; |
|
|
typedef typename MatrixType::Scalar Scalar; |
|
|
typedef typename MatrixType::RealScalar RealScalar; |
|
|
typedef Eigen::Index Index; |
|
|
typedef Matrix<Scalar, 1, ColsAtCompileTime> RowVectorType; |
|
|
typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType; |
|
|
typedef BandMatrix<RealScalar, ColsAtCompileTime, ColsAtCompileTime, 1, 0, RowMajor> BidiagonalType; |
|
|
typedef Matrix<Scalar, ColsAtCompileTime, 1> DiagVectorType; |
|
|
typedef Matrix<Scalar, ColsAtCompileTimeMinusOne, 1> SuperDiagVectorType; |
|
|
typedef HouseholderSequence< |
|
|
const MatrixType, |
|
|
const typename internal::remove_all<typename Diagonal<const MatrixType,0>::ConjugateReturnType>::type |
|
|
> HouseholderUSequenceType; |
|
|
typedef HouseholderSequence< |
|
|
const typename internal::remove_all<typename MatrixType::ConjugateReturnType>::type, |
|
|
Diagonal<const MatrixType,1>, |
|
|
OnTheRight |
|
|
> HouseholderVSequenceType; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
UpperBidiagonalization() : m_householder(), m_bidiagonal(), m_isInitialized(false) {} |
|
|
|
|
|
explicit UpperBidiagonalization(const MatrixType& matrix) |
|
|
: m_householder(matrix.rows(), matrix.cols()), |
|
|
m_bidiagonal(matrix.cols(), matrix.cols()), |
|
|
m_isInitialized(false) |
|
|
{ |
|
|
compute(matrix); |
|
|
} |
|
|
|
|
|
UpperBidiagonalization& compute(const MatrixType& matrix); |
|
|
UpperBidiagonalization& computeUnblocked(const MatrixType& matrix); |
|
|
|
|
|
const MatrixType& householder() const { return m_householder; } |
|
|
const BidiagonalType& bidiagonal() const { return m_bidiagonal; } |
|
|
|
|
|
const HouseholderUSequenceType householderU() const |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "UpperBidiagonalization is not initialized."); |
|
|
return HouseholderUSequenceType(m_householder, m_householder.diagonal().conjugate()); |
|
|
} |
|
|
|
|
|
const HouseholderVSequenceType householderV() |
|
|
{ |
|
|
eigen_assert(m_isInitialized && "UpperBidiagonalization is not initialized."); |
|
|
return HouseholderVSequenceType(m_householder.conjugate(), m_householder.const_derived().template diagonal<1>()) |
|
|
.setLength(m_householder.cols()-1) |
|
|
.setShift(1); |
|
|
} |
|
|
|
|
|
protected: |
|
|
MatrixType m_householder; |
|
|
BidiagonalType m_bidiagonal; |
|
|
bool m_isInitialized; |
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
template<typename MatrixType> |
|
|
void upperbidiagonalization_inplace_unblocked(MatrixType& mat, |
|
|
typename MatrixType::RealScalar *diagonal, |
|
|
typename MatrixType::RealScalar *upper_diagonal, |
|
|
typename MatrixType::Scalar* tempData = 0) |
|
|
{ |
|
|
typedef typename MatrixType::Scalar Scalar; |
|
|
|
|
|
Index rows = mat.rows(); |
|
|
Index cols = mat.cols(); |
|
|
|
|
|
typedef Matrix<Scalar,Dynamic,1,ColMajor,MatrixType::MaxRowsAtCompileTime,1> TempType; |
|
|
TempType tempVector; |
|
|
if(tempData==0) |
|
|
{ |
|
|
tempVector.resize(rows); |
|
|
tempData = tempVector.data(); |
|
|
} |
|
|
|
|
|
for (Index k = 0; ; ++k) |
|
|
{ |
|
|
Index remainingRows = rows - k; |
|
|
Index remainingCols = cols - k - 1; |
|
|
|
|
|
|
|
|
mat.col(k).tail(remainingRows) |
|
|
.makeHouseholderInPlace(mat.coeffRef(k,k), diagonal[k]); |
|
|
|
|
|
mat.bottomRightCorner(remainingRows, remainingCols) |
|
|
.applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), mat.coeff(k,k), tempData); |
|
|
|
|
|
if(k == cols-1) break; |
|
|
|
|
|
|
|
|
mat.row(k).tail(remainingCols) |
|
|
.makeHouseholderInPlace(mat.coeffRef(k,k+1), upper_diagonal[k]); |
|
|
|
|
|
mat.bottomRightCorner(remainingRows-1, remainingCols) |
|
|
.applyHouseholderOnTheRight(mat.row(k).tail(remainingCols-1).adjoint(), mat.coeff(k,k+1), tempData); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename MatrixType> |
|
|
void upperbidiagonalization_blocked_helper(MatrixType& A, |
|
|
typename MatrixType::RealScalar *diagonal, |
|
|
typename MatrixType::RealScalar *upper_diagonal, |
|
|
Index bs, |
|
|
Ref<Matrix<typename MatrixType::Scalar, Dynamic, Dynamic, |
|
|
traits<MatrixType>::Flags & RowMajorBit> > X, |
|
|
Ref<Matrix<typename MatrixType::Scalar, Dynamic, Dynamic, |
|
|
traits<MatrixType>::Flags & RowMajorBit> > Y) |
|
|
{ |
|
|
typedef typename MatrixType::Scalar Scalar; |
|
|
typedef typename MatrixType::RealScalar RealScalar; |
|
|
typedef typename NumTraits<RealScalar>::Literal Literal; |
|
|
static const int StorageOrder = |
|
|
(traits<MatrixType>::Flags & RowMajorBit) ? RowMajor : ColMajor; |
|
|
typedef InnerStride<StorageOrder == ColMajor ? 1 : Dynamic> ColInnerStride; |
|
|
typedef InnerStride<StorageOrder == ColMajor ? Dynamic : 1> RowInnerStride; |
|
|
typedef Ref<Matrix<Scalar, Dynamic, 1>, 0, ColInnerStride> SubColumnType; |
|
|
typedef Ref<Matrix<Scalar, 1, Dynamic>, 0, RowInnerStride> SubRowType; |
|
|
typedef Ref<Matrix<Scalar, Dynamic, Dynamic, StorageOrder > > SubMatType; |
|
|
|
|
|
Index brows = A.rows(); |
|
|
Index bcols = A.cols(); |
|
|
|
|
|
Scalar tau_u, tau_u_prev(0), tau_v; |
|
|
|
|
|
for(Index k = 0; k < bs; ++k) |
|
|
{ |
|
|
Index remainingRows = brows - k; |
|
|
Index remainingCols = bcols - k - 1; |
|
|
|
|
|
SubMatType X_k1( X.block(k,0, remainingRows,k) ); |
|
|
SubMatType V_k1( A.block(k,0, remainingRows,k) ); |
|
|
|
|
|
|
|
|
SubColumnType v_k = A.col(k).tail(remainingRows); |
|
|
v_k -= V_k1 * Y.row(k).head(k).adjoint(); |
|
|
if(k) v_k -= X_k1 * A.col(k).head(k); |
|
|
|
|
|
|
|
|
v_k.makeHouseholderInPlace(tau_v, diagonal[k]); |
|
|
|
|
|
if(k+1<bcols) |
|
|
{ |
|
|
SubMatType Y_k ( Y.block(k+1,0, remainingCols, k+1) ); |
|
|
SubMatType U_k1 ( A.block(0,k+1, k,remainingCols) ); |
|
|
|
|
|
|
|
|
|
|
|
A(k,k) = Scalar(1); |
|
|
|
|
|
|
|
|
{ |
|
|
SubColumnType y_k( Y.col(k).tail(remainingCols) ); |
|
|
|
|
|
|
|
|
SubColumnType tmp( Y.col(k).head(k) ); |
|
|
y_k.noalias() = A.block(k,k+1, remainingRows,remainingCols).adjoint() * v_k; |
|
|
tmp.noalias() = V_k1.adjoint() * v_k; |
|
|
y_k.noalias() -= Y_k.leftCols(k) * tmp; |
|
|
tmp.noalias() = X_k1.adjoint() * v_k; |
|
|
y_k.noalias() -= U_k1.adjoint() * tmp; |
|
|
y_k *= numext::conj(tau_v); |
|
|
} |
|
|
|
|
|
|
|
|
SubRowType u_k( A.row(k).tail(remainingCols) ); |
|
|
u_k = u_k.conjugate(); |
|
|
{ |
|
|
u_k -= Y_k * A.row(k).head(k+1).adjoint(); |
|
|
if(k) u_k -= U_k1.adjoint() * X.row(k).head(k).adjoint(); |
|
|
} |
|
|
|
|
|
|
|
|
u_k.makeHouseholderInPlace(tau_u, upper_diagonal[k]); |
|
|
|
|
|
|
|
|
|
|
|
A(k,k+1) = Scalar(1); |
|
|
|
|
|
|
|
|
{ |
|
|
SubColumnType x_k ( X.col(k).tail(remainingRows-1) ); |
|
|
|
|
|
|
|
|
|
|
|
SubColumnType tmp0 ( X.col(k).head(k) ), |
|
|
tmp1 ( X.col(k).head(k+1) ); |
|
|
|
|
|
x_k.noalias() = A.block(k+1,k+1, remainingRows-1,remainingCols) * u_k.transpose(); |
|
|
tmp0.noalias() = U_k1 * u_k.transpose(); |
|
|
x_k.noalias() -= X_k1.bottomRows(remainingRows-1) * tmp0; |
|
|
tmp1.noalias() = Y_k.adjoint() * u_k.transpose(); |
|
|
x_k.noalias() -= A.block(k+1,0, remainingRows-1,k+1) * tmp1; |
|
|
x_k *= numext::conj(tau_u); |
|
|
tau_u = numext::conj(tau_u); |
|
|
u_k = u_k.conjugate(); |
|
|
} |
|
|
|
|
|
if(k>0) A.coeffRef(k-1,k) = tau_u_prev; |
|
|
tau_u_prev = tau_u; |
|
|
} |
|
|
else |
|
|
A.coeffRef(k-1,k) = tau_u_prev; |
|
|
|
|
|
A.coeffRef(k,k) = tau_v; |
|
|
} |
|
|
|
|
|
if(bs<bcols) |
|
|
A.coeffRef(bs-1,bs) = tau_u_prev; |
|
|
|
|
|
|
|
|
if(bcols>bs && brows>bs) |
|
|
{ |
|
|
SubMatType A11( A.bottomRightCorner(brows-bs,bcols-bs) ); |
|
|
SubMatType A10( A.block(bs,0, brows-bs,bs) ); |
|
|
SubMatType A01( A.block(0,bs, bs,bcols-bs) ); |
|
|
Scalar tmp = A01(bs-1,0); |
|
|
A01(bs-1,0) = Literal(1); |
|
|
A11.noalias() -= A10 * Y.topLeftCorner(bcols,bs).bottomRows(bcols-bs).adjoint(); |
|
|
A11.noalias() -= X.topLeftCorner(brows,bs).bottomRows(brows-bs) * A01; |
|
|
A01(bs-1,0) = tmp; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename MatrixType, typename BidiagType> |
|
|
void upperbidiagonalization_inplace_blocked(MatrixType& A, BidiagType& bidiagonal, |
|
|
Index maxBlockSize=32, |
|
|
typename MatrixType::Scalar* = 0) |
|
|
{ |
|
|
typedef typename MatrixType::Scalar Scalar; |
|
|
typedef Block<MatrixType,Dynamic,Dynamic> BlockType; |
|
|
|
|
|
Index rows = A.rows(); |
|
|
Index cols = A.cols(); |
|
|
Index size = (std::min)(rows, cols); |
|
|
|
|
|
|
|
|
enum { StorageOrder = (traits<MatrixType>::Flags & RowMajorBit) ? RowMajor : ColMajor }; |
|
|
Matrix<Scalar, |
|
|
MatrixType::RowsAtCompileTime, |
|
|
Dynamic, |
|
|
StorageOrder, |
|
|
MatrixType::MaxRowsAtCompileTime> X(rows,maxBlockSize); |
|
|
Matrix<Scalar, |
|
|
MatrixType::ColsAtCompileTime, |
|
|
Dynamic, |
|
|
StorageOrder, |
|
|
MatrixType::MaxColsAtCompileTime> Y(cols,maxBlockSize); |
|
|
Index blockSize = (std::min)(maxBlockSize,size); |
|
|
|
|
|
Index k = 0; |
|
|
for(k = 0; k < size; k += blockSize) |
|
|
{ |
|
|
Index bs = (std::min)(size-k,blockSize); |
|
|
Index brows = rows - k; |
|
|
Index bcols = cols - k; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BlockType B = A.block(k,k,brows,bcols); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if(k+bs==cols || bcols<48) |
|
|
{ |
|
|
upperbidiagonalization_inplace_unblocked(B, |
|
|
&(bidiagonal.template diagonal<0>().coeffRef(k)), |
|
|
&(bidiagonal.template diagonal<1>().coeffRef(k)), |
|
|
X.data() |
|
|
); |
|
|
break; |
|
|
} |
|
|
else |
|
|
{ |
|
|
upperbidiagonalization_blocked_helper<BlockType>( B, |
|
|
&(bidiagonal.template diagonal<0>().coeffRef(k)), |
|
|
&(bidiagonal.template diagonal<1>().coeffRef(k)), |
|
|
bs, |
|
|
X.topLeftCorner(brows,bs), |
|
|
Y.topLeftCorner(bcols,bs) |
|
|
); |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
template<typename _MatrixType> |
|
|
UpperBidiagonalization<_MatrixType>& UpperBidiagonalization<_MatrixType>::computeUnblocked(const _MatrixType& matrix) |
|
|
{ |
|
|
Index rows = matrix.rows(); |
|
|
Index cols = matrix.cols(); |
|
|
EIGEN_ONLY_USED_FOR_DEBUG(cols); |
|
|
|
|
|
eigen_assert(rows >= cols && "UpperBidiagonalization is only for Arices satisfying rows>=cols."); |
|
|
|
|
|
m_householder = matrix; |
|
|
|
|
|
ColVectorType temp(rows); |
|
|
|
|
|
upperbidiagonalization_inplace_unblocked(m_householder, |
|
|
&(m_bidiagonal.template diagonal<0>().coeffRef(0)), |
|
|
&(m_bidiagonal.template diagonal<1>().coeffRef(0)), |
|
|
temp.data()); |
|
|
|
|
|
m_isInitialized = true; |
|
|
return *this; |
|
|
} |
|
|
|
|
|
template<typename _MatrixType> |
|
|
UpperBidiagonalization<_MatrixType>& UpperBidiagonalization<_MatrixType>::compute(const _MatrixType& matrix) |
|
|
{ |
|
|
Index rows = matrix.rows(); |
|
|
Index cols = matrix.cols(); |
|
|
EIGEN_ONLY_USED_FOR_DEBUG(rows); |
|
|
EIGEN_ONLY_USED_FOR_DEBUG(cols); |
|
|
|
|
|
eigen_assert(rows >= cols && "UpperBidiagonalization is only for Arices satisfying rows>=cols."); |
|
|
|
|
|
m_householder = matrix; |
|
|
upperbidiagonalization_inplace_blocked(m_householder, m_bidiagonal); |
|
|
|
|
|
m_isInitialized = true; |
|
|
return *this; |
|
|
} |
|
|
|
|
|
#if 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename Derived> |
|
|
const UpperBidiagonalization<typename MatrixBase<Derived>::PlainObject> |
|
|
MatrixBase<Derived>::bidiagonalization() const |
|
|
{ |
|
|
return UpperBidiagonalization<PlainObject>(eval()); |
|
|
} |
|
|
#endif |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
#endif |
|
|
|