|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef EIGEN_REALSVD2X2_H |
|
|
#define EIGEN_REALSVD2X2_H |
|
|
|
|
|
namespace Eigen { |
|
|
|
|
|
namespace internal { |
|
|
|
|
|
template<typename MatrixType, typename RealScalar, typename Index> |
|
|
void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q, |
|
|
JacobiRotation<RealScalar> *j_left, |
|
|
JacobiRotation<RealScalar> *j_right) |
|
|
{ |
|
|
using std::sqrt; |
|
|
using std::abs; |
|
|
Matrix<RealScalar,2,2> m; |
|
|
m << numext::real(matrix.coeff(p,p)), numext::real(matrix.coeff(p,q)), |
|
|
numext::real(matrix.coeff(q,p)), numext::real(matrix.coeff(q,q)); |
|
|
JacobiRotation<RealScalar> rot1; |
|
|
RealScalar t = m.coeff(0,0) + m.coeff(1,1); |
|
|
RealScalar d = m.coeff(1,0) - m.coeff(0,1); |
|
|
|
|
|
if(abs(d) < (std::numeric_limits<RealScalar>::min)()) |
|
|
{ |
|
|
rot1.s() = RealScalar(0); |
|
|
rot1.c() = RealScalar(1); |
|
|
} |
|
|
else |
|
|
{ |
|
|
|
|
|
|
|
|
RealScalar u = t / d; |
|
|
RealScalar tmp = sqrt(RealScalar(1) + numext::abs2(u)); |
|
|
rot1.s() = RealScalar(1) / tmp; |
|
|
rot1.c() = u / tmp; |
|
|
} |
|
|
m.applyOnTheLeft(0,1,rot1); |
|
|
j_right->makeJacobi(m,0,1); |
|
|
*j_left = rot1 * j_right->transpose(); |
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
#endif |
|
|
|