| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
| namespace Eigen | |
| { | |
| /** \class EulerAngles | |
| * | |
| * \ingroup EulerAngles_Module | |
| * | |
| * \brief Represents a rotation in a 3 dimensional space as three Euler angles. | |
| * | |
| * Euler rotation is a set of three rotation of three angles over three fixed axes, defined by the EulerSystem given as a template parameter. | |
| * | |
| * Here is how intrinsic Euler angles works: | |
| * - first, rotate the axes system over the alpha axis in angle alpha | |
| * - then, rotate the axes system over the beta axis(which was rotated in the first stage) in angle beta | |
| * - then, rotate the axes system over the gamma axis(which was rotated in the two stages above) in angle gamma | |
| * | |
| * \note This class support only intrinsic Euler angles for simplicity, | |
| * see EulerSystem how to easily overcome this for extrinsic systems. | |
| * | |
| * ### Rotation representation and conversions ### | |
| * | |
| * It has been proved(see Wikipedia link below) that every rotation can be represented | |
| * by Euler angles, but there is no single representation (e.g. unlike rotation matrices). | |
| * Therefore, you can convert from Eigen rotation and to them | |
| * (including rotation matrices, which is not called "rotations" by Eigen design). | |
| * | |
| * Euler angles usually used for: | |
| * - convenient human representation of rotation, especially in interactive GUI. | |
| * - gimbal systems and robotics | |
| * - efficient encoding(i.e. 3 floats only) of rotation for network protocols. | |
| * | |
| * However, Euler angles are slow comparing to quaternion or matrices, | |
| * because their unnatural math definition, although it's simple for human. | |
| * To overcome this, this class provide easy movement from the math friendly representation | |
| * to the human friendly representation, and vise-versa. | |
| * | |
| * All the user need to do is a safe simple C++ type conversion, | |
| * and this class take care for the math. | |
| * Additionally, some axes related computation is done in compile time. | |
| * | |
| * #### Euler angles ranges in conversions #### | |
| * Rotations representation as EulerAngles are not single (unlike matrices), | |
| * and even have infinite EulerAngles representations.<BR> | |
| * For example, add or subtract 2*PI from either angle of EulerAngles | |
| * and you'll get the same rotation. | |
| * This is the general reason for infinite representation, | |
| * but it's not the only general reason for not having a single representation. | |
| * | |
| * When converting rotation to EulerAngles, this class convert it to specific ranges | |
| * When converting some rotation to EulerAngles, the rules for ranges are as follow: | |
| * - If the rotation we converting from is an EulerAngles | |
| * (even when it represented as RotationBase explicitly), angles ranges are __undefined__. | |
| * - otherwise, alpha and gamma angles will be in the range [-PI, PI].<BR> | |
| * As for Beta angle: | |
| * - If the system is Tait-Bryan, the beta angle will be in the range [-PI/2, PI/2]. | |
| * - otherwise: | |
| * - If the beta axis is positive, the beta angle will be in the range [0, PI] | |
| * - If the beta axis is negative, the beta angle will be in the range [-PI, 0] | |
| * | |
| * \sa EulerAngles(const MatrixBase<Derived>&) | |
| * \sa EulerAngles(const RotationBase<Derived, 3>&) | |
| * | |
| * ### Convenient user typedefs ### | |
| * | |
| * Convenient typedefs for EulerAngles exist for float and double scalar, | |
| * in a form of EulerAngles{A}{B}{C}{scalar}, | |
| * e.g. \ref EulerAnglesXYZd, \ref EulerAnglesZYZf. | |
| * | |
| * Only for positive axes{+x,+y,+z} Euler systems are have convenient typedef. | |
| * If you need negative axes{-x,-y,-z}, it is recommended to create you own typedef with | |
| * a word that represent what you need. | |
| * | |
| * ### Example ### | |
| * | |
| * \include EulerAngles.cpp | |
| * Output: \verbinclude EulerAngles.out | |
| * | |
| * ### Additional reading ### | |
| * | |
| * If you're want to get more idea about how Euler system work in Eigen see EulerSystem. | |
| * | |
| * More information about Euler angles: https://en.wikipedia.org/wiki/Euler_angles | |
| * | |
| * \tparam _Scalar the scalar type, i.e. the type of the angles. | |
| * | |
| * \tparam _System the EulerSystem to use, which represents the axes of rotation. | |
| */ | |
| template <typename _Scalar, class _System> | |
| class EulerAngles : public RotationBase<EulerAngles<_Scalar, _System>, 3> | |
| { | |
| public: | |
| typedef RotationBase<EulerAngles<_Scalar, _System>, 3> Base; | |
| /** the scalar type of the angles */ | |
| typedef _Scalar Scalar; | |
| typedef typename NumTraits<Scalar>::Real RealScalar; | |
| /** the EulerSystem to use, which represents the axes of rotation. */ | |
| typedef _System System; | |
| typedef Matrix<Scalar,3,3> Matrix3; /*!< the equivalent rotation matrix type */ | |
| typedef Matrix<Scalar,3,1> Vector3; /*!< the equivalent 3 dimension vector type */ | |
| typedef Quaternion<Scalar> QuaternionType; /*!< the equivalent quaternion type */ | |
| typedef AngleAxis<Scalar> AngleAxisType; /*!< the equivalent angle-axis type */ | |
| /** \returns the axis vector of the first (alpha) rotation */ | |
| static Vector3 AlphaAxisVector() { | |
| const Vector3& u = Vector3::Unit(System::AlphaAxisAbs - 1); | |
| return System::IsAlphaOpposite ? -u : u; | |
| } | |
| /** \returns the axis vector of the second (beta) rotation */ | |
| static Vector3 BetaAxisVector() { | |
| const Vector3& u = Vector3::Unit(System::BetaAxisAbs - 1); | |
| return System::IsBetaOpposite ? -u : u; | |
| } | |
| /** \returns the axis vector of the third (gamma) rotation */ | |
| static Vector3 GammaAxisVector() { | |
| const Vector3& u = Vector3::Unit(System::GammaAxisAbs - 1); | |
| return System::IsGammaOpposite ? -u : u; | |
| } | |
| private: | |
| Vector3 m_angles; | |
| public: | |
| /** Default constructor without initialization. */ | |
| EulerAngles() {} | |
| /** Constructs and initialize an EulerAngles (\p alpha, \p beta, \p gamma). */ | |
| EulerAngles(const Scalar& alpha, const Scalar& beta, const Scalar& gamma) : | |
| m_angles(alpha, beta, gamma) {} | |
| // TODO: Test this constructor | |
| /** Constructs and initialize an EulerAngles from the array data {alpha, beta, gamma} */ | |
| explicit EulerAngles(const Scalar* data) : m_angles(data) {} | |
| /** Constructs and initializes an EulerAngles from either: | |
| * - a 3x3 rotation matrix expression(i.e. pure orthogonal matrix with determinant of +1), | |
| * - a 3D vector expression representing Euler angles. | |
| * | |
| * \note If \p other is a 3x3 rotation matrix, the angles range rules will be as follow:<BR> | |
| * Alpha and gamma angles will be in the range [-PI, PI].<BR> | |
| * As for Beta angle: | |
| * - If the system is Tait-Bryan, the beta angle will be in the range [-PI/2, PI/2]. | |
| * - otherwise: | |
| * - If the beta axis is positive, the beta angle will be in the range [0, PI] | |
| * - If the beta axis is negative, the beta angle will be in the range [-PI, 0] | |
| */ | |
| template<typename Derived> | |
| explicit EulerAngles(const MatrixBase<Derived>& other) { *this = other; } | |
| /** Constructs and initialize Euler angles from a rotation \p rot. | |
| * | |
| * \note If \p rot is an EulerAngles (even when it represented as RotationBase explicitly), | |
| * angles ranges are __undefined__. | |
| * Otherwise, alpha and gamma angles will be in the range [-PI, PI].<BR> | |
| * As for Beta angle: | |
| * - If the system is Tait-Bryan, the beta angle will be in the range [-PI/2, PI/2]. | |
| * - otherwise: | |
| * - If the beta axis is positive, the beta angle will be in the range [0, PI] | |
| * - If the beta axis is negative, the beta angle will be in the range [-PI, 0] | |
| */ | |
| template<typename Derived> | |
| EulerAngles(const RotationBase<Derived, 3>& rot) { System::CalcEulerAngles(*this, rot.toRotationMatrix()); } | |
| /*EulerAngles(const QuaternionType& q) | |
| { | |
| // TODO: Implement it in a faster way for quaternions | |
| // According to http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/ | |
| // we can compute only the needed matrix cells and then convert to euler angles. (see ZYX example below) | |
| // Currently we compute all matrix cells from quaternion. | |
| // Special case only for ZYX | |
| //Scalar y2 = q.y() * q.y(); | |
| //m_angles[0] = std::atan2(2*(q.w()*q.z() + q.x()*q.y()), (1 - 2*(y2 + q.z()*q.z()))); | |
| //m_angles[1] = std::asin( 2*(q.w()*q.y() - q.z()*q.x())); | |
| //m_angles[2] = std::atan2(2*(q.w()*q.x() + q.y()*q.z()), (1 - 2*(q.x()*q.x() + y2))); | |
| }*/ | |
| /** \returns The angle values stored in a vector (alpha, beta, gamma). */ | |
| const Vector3& angles() const { return m_angles; } | |
| /** \returns A read-write reference to the angle values stored in a vector (alpha, beta, gamma). */ | |
| Vector3& angles() { return m_angles; } | |
| /** \returns The value of the first angle. */ | |
| Scalar alpha() const { return m_angles[0]; } | |
| /** \returns A read-write reference to the angle of the first angle. */ | |
| Scalar& alpha() { return m_angles[0]; } | |
| /** \returns The value of the second angle. */ | |
| Scalar beta() const { return m_angles[1]; } | |
| /** \returns A read-write reference to the angle of the second angle. */ | |
| Scalar& beta() { return m_angles[1]; } | |
| /** \returns The value of the third angle. */ | |
| Scalar gamma() const { return m_angles[2]; } | |
| /** \returns A read-write reference to the angle of the third angle. */ | |
| Scalar& gamma() { return m_angles[2]; } | |
| /** \returns The Euler angles rotation inverse (which is as same as the negative), | |
| * (-alpha, -beta, -gamma). | |
| */ | |
| EulerAngles inverse() const | |
| { | |
| EulerAngles res; | |
| res.m_angles = -m_angles; | |
| return res; | |
| } | |
| /** \returns The Euler angles rotation negative (which is as same as the inverse), | |
| * (-alpha, -beta, -gamma). | |
| */ | |
| EulerAngles operator -() const | |
| { | |
| return inverse(); | |
| } | |
| /** Set \c *this from either: | |
| * - a 3x3 rotation matrix expression(i.e. pure orthogonal matrix with determinant of +1), | |
| * - a 3D vector expression representing Euler angles. | |
| * | |
| * See EulerAngles(const MatrixBase<Derived, 3>&) for more information about | |
| * angles ranges output. | |
| */ | |
| template<class Derived> | |
| EulerAngles& operator=(const MatrixBase<Derived>& other) | |
| { | |
| EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename Derived::Scalar>::value), | |
| YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) | |
| internal::eulerangles_assign_impl<System, Derived>::run(*this, other.derived()); | |
| return *this; | |
| } | |
| // TODO: Assign and construct from another EulerAngles (with different system) | |
| /** Set \c *this from a rotation. | |
| * | |
| * See EulerAngles(const RotationBase<Derived, 3>&) for more information about | |
| * angles ranges output. | |
| */ | |
| template<typename Derived> | |
| EulerAngles& operator=(const RotationBase<Derived, 3>& rot) { | |
| System::CalcEulerAngles(*this, rot.toRotationMatrix()); | |
| return *this; | |
| } | |
| /** \returns \c true if \c *this is approximately equal to \a other, within the precision | |
| * determined by \a prec. | |
| * | |
| * \sa MatrixBase::isApprox() */ | |
| bool isApprox(const EulerAngles& other, | |
| const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const | |
| { return angles().isApprox(other.angles(), prec); } | |
| /** \returns an equivalent 3x3 rotation matrix. */ | |
| Matrix3 toRotationMatrix() const | |
| { | |
| // TODO: Calc it faster | |
| return static_cast<QuaternionType>(*this).toRotationMatrix(); | |
| } | |
| /** Convert the Euler angles to quaternion. */ | |
| operator QuaternionType() const | |
| { | |
| return | |
| AngleAxisType(alpha(), AlphaAxisVector()) * | |
| AngleAxisType(beta(), BetaAxisVector()) * | |
| AngleAxisType(gamma(), GammaAxisVector()); | |
| } | |
| friend std::ostream& operator<<(std::ostream& s, const EulerAngles<Scalar, System>& eulerAngles) | |
| { | |
| s << eulerAngles.angles().transpose(); | |
| return s; | |
| } | |
| /** \returns \c *this with scalar type casted to \a NewScalarType */ | |
| template <typename NewScalarType> | |
| EulerAngles<NewScalarType, System> cast() const | |
| { | |
| EulerAngles<NewScalarType, System> e; | |
| e.angles() = angles().template cast<NewScalarType>(); | |
| return e; | |
| } | |
| }; | |
| EIGEN_EULER_ANGLES_TYPEDEFS(float, f) | |
| EIGEN_EULER_ANGLES_TYPEDEFS(double, d) | |
| namespace internal | |
| { | |
| template<typename _Scalar, class _System> | |
| struct traits<EulerAngles<_Scalar, _System> > | |
| { | |
| typedef _Scalar Scalar; | |
| }; | |
| // set from a rotation matrix | |
| template<class System, class Other> | |
| struct eulerangles_assign_impl<System,Other,3,3> | |
| { | |
| typedef typename Other::Scalar Scalar; | |
| static void run(EulerAngles<Scalar, System>& e, const Other& m) | |
| { | |
| System::CalcEulerAngles(e, m); | |
| } | |
| }; | |
| // set from a vector of Euler angles | |
| template<class System, class Other> | |
| struct eulerangles_assign_impl<System,Other,3,1> | |
| { | |
| typedef typename Other::Scalar Scalar; | |
| static void run(EulerAngles<Scalar, System>& e, const Other& vec) | |
| { | |
| e.angles() = vec; | |
| } | |
| }; | |
| } | |
| } | |