| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr> | |
| // Copyright (C) 2012, 2014 Kolja Brix <brix@igpm.rwth-aaachen.de> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
| namespace Eigen { | |
| namespace internal { | |
| /** | |
| * Generalized Minimal Residual Algorithm based on the | |
| * Arnoldi algorithm implemented with Householder reflections. | |
| * | |
| * Parameters: | |
| * \param mat matrix of linear system of equations | |
| * \param rhs right hand side vector of linear system of equations | |
| * \param x on input: initial guess, on output: solution | |
| * \param precond preconditioner used | |
| * \param iters on input: maximum number of iterations to perform | |
| * on output: number of iterations performed | |
| * \param restart number of iterations for a restart | |
| * \param tol_error on input: relative residual tolerance | |
| * on output: residuum achieved | |
| * | |
| * \sa IterativeMethods::bicgstab() | |
| * | |
| * | |
| * For references, please see: | |
| * | |
| * Saad, Y. and Schultz, M. H. | |
| * GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems. | |
| * SIAM J.Sci.Stat.Comp. 7, 1986, pp. 856 - 869. | |
| * | |
| * Saad, Y. | |
| * Iterative Methods for Sparse Linear Systems. | |
| * Society for Industrial and Applied Mathematics, Philadelphia, 2003. | |
| * | |
| * Walker, H. F. | |
| * Implementations of the GMRES method. | |
| * Comput.Phys.Comm. 53, 1989, pp. 311 - 320. | |
| * | |
| * Walker, H. F. | |
| * Implementation of the GMRES Method using Householder Transformations. | |
| * SIAM J.Sci.Stat.Comp. 9, 1988, pp. 152 - 163. | |
| * | |
| */ | |
| template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner> | |
| bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Preconditioner & precond, | |
| Index &iters, const Index &restart, typename Dest::RealScalar & tol_error) { | |
| using std::sqrt; | |
| using std::abs; | |
| typedef typename Dest::RealScalar RealScalar; | |
| typedef typename Dest::Scalar Scalar; | |
| typedef Matrix < Scalar, Dynamic, 1 > VectorType; | |
| typedef Matrix < Scalar, Dynamic, Dynamic, ColMajor> FMatrixType; | |
| const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)(); | |
| if(rhs.norm() <= considerAsZero) | |
| { | |
| x.setZero(); | |
| tol_error = 0; | |
| return true; | |
| } | |
| RealScalar tol = tol_error; | |
| const Index maxIters = iters; | |
| iters = 0; | |
| const Index m = mat.rows(); | |
| // residual and preconditioned residual | |
| VectorType p0 = rhs - mat*x; | |
| VectorType r0 = precond.solve(p0); | |
| const RealScalar r0Norm = r0.norm(); | |
| // is initial guess already good enough? | |
| if(r0Norm == 0) | |
| { | |
| tol_error = 0; | |
| return true; | |
| } | |
| // storage for Hessenberg matrix and Householder data | |
| FMatrixType H = FMatrixType::Zero(m, restart + 1); | |
| VectorType w = VectorType::Zero(restart + 1); | |
| VectorType tau = VectorType::Zero(restart + 1); | |
| // storage for Jacobi rotations | |
| std::vector < JacobiRotation < Scalar > > G(restart); | |
| // storage for temporaries | |
| VectorType t(m), v(m), workspace(m), x_new(m); | |
| // generate first Householder vector | |
| Ref<VectorType> H0_tail = H.col(0).tail(m - 1); | |
| RealScalar beta; | |
| r0.makeHouseholder(H0_tail, tau.coeffRef(0), beta); | |
| w(0) = Scalar(beta); | |
| for (Index k = 1; k <= restart; ++k) | |
| { | |
| ++iters; | |
| v = VectorType::Unit(m, k - 1); | |
| // apply Householder reflections H_{1} ... H_{k-1} to v | |
| // TODO: use a HouseholderSequence | |
| for (Index i = k - 1; i >= 0; --i) { | |
| v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data()); | |
| } | |
| // apply matrix M to v: v = mat * v; | |
| t.noalias() = mat * v; | |
| v = precond.solve(t); | |
| // apply Householder reflections H_{k-1} ... H_{1} to v | |
| // TODO: use a HouseholderSequence | |
| for (Index i = 0; i < k; ++i) { | |
| v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data()); | |
| } | |
| if (v.tail(m - k).norm() != 0.0) | |
| { | |
| if (k <= restart) | |
| { | |
| // generate new Householder vector | |
| Ref<VectorType> Hk_tail = H.col(k).tail(m - k - 1); | |
| v.tail(m - k).makeHouseholder(Hk_tail, tau.coeffRef(k), beta); | |
| // apply Householder reflection H_{k} to v | |
| v.tail(m - k).applyHouseholderOnTheLeft(Hk_tail, tau.coeffRef(k), workspace.data()); | |
| } | |
| } | |
| if (k > 1) | |
| { | |
| for (Index i = 0; i < k - 1; ++i) | |
| { | |
| // apply old Givens rotations to v | |
| v.applyOnTheLeft(i, i + 1, G[i].adjoint()); | |
| } | |
| } | |
| if (k<m && v(k) != (Scalar) 0) | |
| { | |
| // determine next Givens rotation | |
| G[k - 1].makeGivens(v(k - 1), v(k)); | |
| // apply Givens rotation to v and w | |
| v.applyOnTheLeft(k - 1, k, G[k - 1].adjoint()); | |
| w.applyOnTheLeft(k - 1, k, G[k - 1].adjoint()); | |
| } | |
| // insert coefficients into upper matrix triangle | |
| H.col(k-1).head(k) = v.head(k); | |
| tol_error = abs(w(k)) / r0Norm; | |
| bool stop = (k==m || tol_error < tol || iters == maxIters); | |
| if (stop || k == restart) | |
| { | |
| // solve upper triangular system | |
| Ref<VectorType> y = w.head(k); | |
| H.topLeftCorner(k, k).template triangularView <Upper>().solveInPlace(y); | |
| // use Horner-like scheme to calculate solution vector | |
| x_new.setZero(); | |
| for (Index i = k - 1; i >= 0; --i) | |
| { | |
| x_new(i) += y(i); | |
| // apply Householder reflection H_{i} to x_new | |
| x_new.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data()); | |
| } | |
| x += x_new; | |
| if(stop) | |
| { | |
| return true; | |
| } | |
| else | |
| { | |
| k=0; | |
| // reset data for restart | |
| p0.noalias() = rhs - mat*x; | |
| r0 = precond.solve(p0); | |
| // clear Hessenberg matrix and Householder data | |
| H.setZero(); | |
| w.setZero(); | |
| tau.setZero(); | |
| // generate first Householder vector | |
| r0.makeHouseholder(H0_tail, tau.coeffRef(0), beta); | |
| w(0) = Scalar(beta); | |
| } | |
| } | |
| } | |
| return false; | |
| } | |
| } | |
| template< typename _MatrixType, | |
| typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> > | |
| class GMRES; | |
| namespace internal { | |
| template< typename _MatrixType, typename _Preconditioner> | |
| struct traits<GMRES<_MatrixType,_Preconditioner> > | |
| { | |
| typedef _MatrixType MatrixType; | |
| typedef _Preconditioner Preconditioner; | |
| }; | |
| } | |
| /** \ingroup IterativeLinearSolvers_Module | |
| * \brief A GMRES solver for sparse square problems | |
| * | |
| * This class allows to solve for A.x = b sparse linear problems using a generalized minimal | |
| * residual method. The vectors x and b can be either dense or sparse. | |
| * | |
| * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix. | |
| * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner | |
| * | |
| * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() | |
| * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations | |
| * and NumTraits<Scalar>::epsilon() for the tolerance. | |
| * | |
| * This class can be used as the direct solver classes. Here is a typical usage example: | |
| * \code | |
| * int n = 10000; | |
| * VectorXd x(n), b(n); | |
| * SparseMatrix<double> A(n,n); | |
| * // fill A and b | |
| * GMRES<SparseMatrix<double> > solver(A); | |
| * x = solver.solve(b); | |
| * std::cout << "#iterations: " << solver.iterations() << std::endl; | |
| * std::cout << "estimated error: " << solver.error() << std::endl; | |
| * // update b, and solve again | |
| * x = solver.solve(b); | |
| * \endcode | |
| * | |
| * By default the iterations start with x=0 as an initial guess of the solution. | |
| * One can control the start using the solveWithGuess() method. | |
| * | |
| * GMRES can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink. | |
| * | |
| * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner | |
| */ | |
| template< typename _MatrixType, typename _Preconditioner> | |
| class GMRES : public IterativeSolverBase<GMRES<_MatrixType,_Preconditioner> > | |
| { | |
| typedef IterativeSolverBase<GMRES> Base; | |
| using Base::matrix; | |
| using Base::m_error; | |
| using Base::m_iterations; | |
| using Base::m_info; | |
| using Base::m_isInitialized; | |
| private: | |
| Index m_restart; | |
| public: | |
| using Base::_solve_impl; | |
| typedef _MatrixType MatrixType; | |
| typedef typename MatrixType::Scalar Scalar; | |
| typedef typename MatrixType::RealScalar RealScalar; | |
| typedef _Preconditioner Preconditioner; | |
| public: | |
| /** Default constructor. */ | |
| GMRES() : Base(), m_restart(30) {} | |
| /** Initialize the solver with matrix \a A for further \c Ax=b solving. | |
| * | |
| * This constructor is a shortcut for the default constructor followed | |
| * by a call to compute(). | |
| * | |
| * \warning this class stores a reference to the matrix A as well as some | |
| * precomputed values that depend on it. Therefore, if \a A is changed | |
| * this class becomes invalid. Call compute() to update it with the new | |
| * matrix A, or modify a copy of A. | |
| */ | |
| template<typename MatrixDerived> | |
| explicit GMRES(const EigenBase<MatrixDerived>& A) : Base(A.derived()), m_restart(30) {} | |
| ~GMRES() {} | |
| /** Get the number of iterations after that a restart is performed. | |
| */ | |
| Index get_restart() { return m_restart; } | |
| /** Set the number of iterations after that a restart is performed. | |
| * \param restart number of iterations for a restarti, default is 30. | |
| */ | |
| void set_restart(const Index restart) { m_restart=restart; } | |
| /** \internal */ | |
| template<typename Rhs,typename Dest> | |
| void _solve_vector_with_guess_impl(const Rhs& b, Dest& x) const | |
| { | |
| m_iterations = Base::maxIterations(); | |
| m_error = Base::m_tolerance; | |
| bool ret = internal::gmres(matrix(), b, x, Base::m_preconditioner, m_iterations, m_restart, m_error); | |
| m_info = (!ret) ? NumericalIssue | |
| : m_error <= Base::m_tolerance ? Success | |
| : NoConvergence; | |
| } | |
| protected: | |
| }; | |
| } // end namespace Eigen | |