| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2020 Chris Schoutrop <c.e.m.schoutrop@tue.nl> | |
| // Copyright (C) 2020 Jens Wehner <j.wehner@esciencecenter.nl> | |
| // Copyright (C) 2020 Jan van Dijk <j.v.dijk@tue.nl> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
| namespace Eigen | |
| { | |
| namespace internal | |
| { | |
| /** \internal Low-level Induced Dimension Reduction algoritm | |
| \param A The matrix A | |
| \param b The right hand side vector b | |
| \param x On input and initial solution, on output the computed solution. | |
| \param precond A preconditioner being able to efficiently solve for an | |
| approximation of Ax=b (regardless of b) | |
| \param iter On input the max number of iteration, on output the number of performed iterations. | |
| \param relres On input the tolerance error, on output an estimation of the relative error. | |
| \param S On input Number of the dimension of the shadow space. | |
| \param smoothing switches residual smoothing on. | |
| \param angle small omega lead to faster convergence at the expense of numerical stability | |
| \param replacement switches on a residual replacement strategy to increase accuracy of residual at the expense of more Mat*vec products | |
| \return false in the case of numerical issue, for example a break down of IDRS. | |
| */ | |
| template<typename Vector, typename RealScalar> | |
| typename Vector::Scalar omega(const Vector& t, const Vector& s, RealScalar angle) | |
| { | |
| using numext::abs; | |
| typedef typename Vector::Scalar Scalar; | |
| const RealScalar ns = s.norm(); | |
| const RealScalar nt = t.norm(); | |
| const Scalar ts = t.dot(s); | |
| const RealScalar rho = abs(ts / (nt * ns)); | |
| if (rho < angle) { | |
| if (ts == Scalar(0)) { | |
| return Scalar(0); | |
| } | |
| // Original relation for om is given by | |
| // om = om * angle / rho; | |
| // To alleviate potential (near) division by zero this can be rewritten as | |
| // om = angle * (ns / nt) * (ts / abs(ts)) = angle * (ns / nt) * sgn(ts) | |
| return angle * (ns / nt) * (ts / abs(ts)); | |
| } | |
| return ts / (nt * nt); | |
| } | |
| template <typename MatrixType, typename Rhs, typename Dest, typename Preconditioner> | |
| bool idrs(const MatrixType& A, const Rhs& b, Dest& x, const Preconditioner& precond, | |
| Index& iter, | |
| typename Dest::RealScalar& relres, Index S, bool smoothing, typename Dest::RealScalar angle, bool replacement) | |
| { | |
| typedef typename Dest::RealScalar RealScalar; | |
| typedef typename Dest::Scalar Scalar; | |
| typedef Matrix<Scalar, Dynamic, 1> VectorType; | |
| typedef Matrix<Scalar, Dynamic, Dynamic, ColMajor> DenseMatrixType; | |
| const Index N = b.size(); | |
| S = S < x.rows() ? S : x.rows(); | |
| const RealScalar tol = relres; | |
| const Index maxit = iter; | |
| Index replacements = 0; | |
| bool trueres = false; | |
| FullPivLU<DenseMatrixType> lu_solver; | |
| DenseMatrixType P; | |
| { | |
| HouseholderQR<DenseMatrixType> qr(DenseMatrixType::Random(N, S)); | |
| P = (qr.householderQ() * DenseMatrixType::Identity(N, S)); | |
| } | |
| const RealScalar normb = b.norm(); | |
| if (internal::isApprox(normb, RealScalar(0))) | |
| { | |
| //Solution is the zero vector | |
| x.setZero(); | |
| iter = 0; | |
| relres = 0; | |
| return true; | |
| } | |
| // from http://homepage.tudelft.nl/1w5b5/IDRS/manual.pdf | |
| // A peak in the residual is considered dangerously high if‖ri‖/‖b‖> C(tol/epsilon). | |
| // With epsilon the | |
| // relative machine precision. The factor tol/epsilon corresponds to the size of a | |
| // finite precision number that is so large that the absolute round-off error in | |
| // this number, when propagated through the process, makes it impossible to | |
| // achieve the required accuracy.The factor C accounts for the accumulation of | |
| // round-off errors. This parameter has beenset to 10−3. | |
| // mp is epsilon/C | |
| // 10^3 * eps is very conservative, so normally no residual replacements will take place. | |
| // It only happens if things go very wrong. Too many restarts may ruin the convergence. | |
| const RealScalar mp = RealScalar(1e3) * NumTraits<Scalar>::epsilon(); | |
| //Compute initial residual | |
| const RealScalar tolb = tol * normb; //Relative tolerance | |
| VectorType r = b - A * x; | |
| VectorType x_s, r_s; | |
| if (smoothing) | |
| { | |
| x_s = x; | |
| r_s = r; | |
| } | |
| RealScalar normr = r.norm(); | |
| if (normr <= tolb) | |
| { | |
| //Initial guess is a good enough solution | |
| iter = 0; | |
| relres = normr / normb; | |
| return true; | |
| } | |
| DenseMatrixType G = DenseMatrixType::Zero(N, S); | |
| DenseMatrixType U = DenseMatrixType::Zero(N, S); | |
| DenseMatrixType M = DenseMatrixType::Identity(S, S); | |
| VectorType t(N), v(N); | |
| Scalar om = 1.; | |
| //Main iteration loop, guild G-spaces: | |
| iter = 0; | |
| while (normr > tolb && iter < maxit) | |
| { | |
| //New right hand size for small system: | |
| VectorType f = (r.adjoint() * P).adjoint(); | |
| for (Index k = 0; k < S; ++k) | |
| { | |
| //Solve small system and make v orthogonal to P: | |
| //c = M(k:s,k:s)\f(k:s); | |
| lu_solver.compute(M.block(k , k , S -k, S - k )); | |
| VectorType c = lu_solver.solve(f.segment(k , S - k )); | |
| //v = r - G(:,k:s)*c; | |
| v = r - G.rightCols(S - k ) * c; | |
| //Preconditioning | |
| v = precond.solve(v); | |
| //Compute new U(:,k) and G(:,k), G(:,k) is in space G_j | |
| U.col(k) = U.rightCols(S - k ) * c + om * v; | |
| G.col(k) = A * U.col(k ); | |
| //Bi-Orthogonalise the new basis vectors: | |
| for (Index i = 0; i < k-1 ; ++i) | |
| { | |
| //alpha = ( P(:,i)'*G(:,k) )/M(i,i); | |
| Scalar alpha = P.col(i ).dot(G.col(k )) / M(i, i ); | |
| G.col(k ) = G.col(k ) - alpha * G.col(i ); | |
| U.col(k ) = U.col(k ) - alpha * U.col(i ); | |
| } | |
| //New column of M = P'*G (first k-1 entries are zero) | |
| //M(k:s,k) = (G(:,k)'*P(:,k:s))'; | |
| M.block(k , k , S - k , 1) = (G.col(k ).adjoint() * P.rightCols(S - k )).adjoint(); | |
| if (internal::isApprox(M(k,k), Scalar(0))) | |
| { | |
| return false; | |
| } | |
| //Make r orthogonal to q_i, i = 0..k-1 | |
| Scalar beta = f(k ) / M(k , k ); | |
| r = r - beta * G.col(k ); | |
| x = x + beta * U.col(k ); | |
| normr = r.norm(); | |
| if (replacement && normr > tolb / mp) | |
| { | |
| trueres = true; | |
| } | |
| //Smoothing: | |
| if (smoothing) | |
| { | |
| t = r_s - r; | |
| //gamma is a Scalar, but the conversion is not allowed | |
| Scalar gamma = t.dot(r_s) / t.norm(); | |
| r_s = r_s - gamma * t; | |
| x_s = x_s - gamma * (x_s - x); | |
| normr = r_s.norm(); | |
| } | |
| if (normr < tolb || iter == maxit) | |
| { | |
| break; | |
| } | |
| //New f = P'*r (first k components are zero) | |
| if (k < S-1) | |
| { | |
| f.segment(k + 1, S - (k + 1) ) = f.segment(k + 1 , S - (k + 1)) - beta * M.block(k + 1 , k , S - (k + 1), 1); | |
| } | |
| }//end for | |
| if (normr < tolb || iter == maxit) | |
| { | |
| break; | |
| } | |
| //Now we have sufficient vectors in G_j to compute residual in G_j+1 | |
| //Note: r is already perpendicular to P so v = r | |
| //Preconditioning | |
| v = r; | |
| v = precond.solve(v); | |
| //Matrix-vector multiplication: | |
| t = A * v; | |
| //Computation of a new omega | |
| om = internal::omega(t, r, angle); | |
| if (om == RealScalar(0.0)) | |
| { | |
| return false; | |
| } | |
| r = r - om * t; | |
| x = x + om * v; | |
| normr = r.norm(); | |
| if (replacement && normr > tolb / mp) | |
| { | |
| trueres = true; | |
| } | |
| //Residual replacement? | |
| if (trueres && normr < normb) | |
| { | |
| r = b - A * x; | |
| trueres = false; | |
| replacements++; | |
| } | |
| //Smoothing: | |
| if (smoothing) | |
| { | |
| t = r_s - r; | |
| Scalar gamma = t.dot(r_s) /t.norm(); | |
| r_s = r_s - gamma * t; | |
| x_s = x_s - gamma * (x_s - x); | |
| normr = r_s.norm(); | |
| } | |
| iter++; | |
| }//end while | |
| if (smoothing) | |
| { | |
| x = x_s; | |
| } | |
| relres=normr/normb; | |
| return true; | |
| } | |
| } // namespace internal | |
| template <typename _MatrixType, typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> > | |
| class IDRS; | |
| namespace internal | |
| { | |
| template <typename _MatrixType, typename _Preconditioner> | |
| struct traits<Eigen::IDRS<_MatrixType, _Preconditioner> > | |
| { | |
| typedef _MatrixType MatrixType; | |
| typedef _Preconditioner Preconditioner; | |
| }; | |
| } // namespace internal | |
| /** \ingroup IterativeLinearSolvers_Module | |
| * \brief The Induced Dimension Reduction method (IDR(s)) is a short-recurrences Krylov method for sparse square problems. | |
| * | |
| * This class allows to solve for A.x = b sparse linear problems. The vectors x and b can be either dense or sparse. | |
| * he Induced Dimension Reduction method, IDR(), is a robust and efficient short-recurrence Krylov subspace method for | |
| * solving large nonsymmetric systems of linear equations. | |
| * | |
| * For indefinite systems IDR(S) outperforms both BiCGStab and BiCGStab(L). Additionally, IDR(S) can handle matrices | |
| * with complex eigenvalues more efficiently than BiCGStab. | |
| * | |
| * Many problems that do not converge for BiCGSTAB converge for IDR(s) (for larger values of s). And if both methods | |
| * converge the convergence for IDR(s) is typically much faster for difficult systems (for example indefinite problems). | |
| * | |
| * IDR(s) is a limited memory finite termination method. In exact arithmetic it converges in at most N+N/s iterations, | |
| * with N the system size. It uses a fixed number of 4+3s vector. In comparison, BiCGSTAB terminates in 2N iterations | |
| * and uses 7 vectors. GMRES terminates in at most N iterations, and uses I+3 vectors, with I the number of iterations. | |
| * Restarting GMRES limits the memory consumption, but destroys the finite termination property. | |
| * | |
| * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix. | |
| * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner | |
| * | |
| * \implsparsesolverconcept | |
| * | |
| * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() | |
| * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations | |
| * and NumTraits<Scalar>::epsilon() for the tolerance. | |
| * | |
| * The tolerance corresponds to the relative residual error: |Ax-b|/|b| | |
| * | |
| * \b Performance: when using sparse matrices, best performance is achied for a row-major sparse matrix format. | |
| * Moreover, in this case multi-threading can be exploited if the user code is compiled with OpenMP enabled. | |
| * See \ref TopicMultiThreading for details. | |
| * | |
| * By default the iterations start with x=0 as an initial guess of the solution. | |
| * One can control the start using the solveWithGuess() method. | |
| * | |
| * IDR(s) can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink. | |
| * | |
| * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner | |
| */ | |
| template <typename _MatrixType, typename _Preconditioner> | |
| class IDRS : public IterativeSolverBase<IDRS<_MatrixType, _Preconditioner> > | |
| { | |
| public: | |
| typedef _MatrixType MatrixType; | |
| typedef typename MatrixType::Scalar Scalar; | |
| typedef typename MatrixType::RealScalar RealScalar; | |
| typedef _Preconditioner Preconditioner; | |
| private: | |
| typedef IterativeSolverBase<IDRS> Base; | |
| using Base::m_error; | |
| using Base::m_info; | |
| using Base::m_isInitialized; | |
| using Base::m_iterations; | |
| using Base::matrix; | |
| Index m_S; | |
| bool m_smoothing; | |
| RealScalar m_angle; | |
| bool m_residual; | |
| public: | |
| /** Default constructor. */ | |
| IDRS(): m_S(4), m_smoothing(false), m_angle(RealScalar(0.7)), m_residual(false) {} | |
| /** Initialize the solver with matrix \a A for further \c Ax=b solving. | |
| This constructor is a shortcut for the default constructor followed | |
| by a call to compute(). | |
| \warning this class stores a reference to the matrix A as well as some | |
| precomputed values that depend on it. Therefore, if \a A is changed | |
| this class becomes invalid. Call compute() to update it with the new | |
| matrix A, or modify a copy of A. | |
| */ | |
| template <typename MatrixDerived> | |
| explicit IDRS(const EigenBase<MatrixDerived>& A) : Base(A.derived()), m_S(4), m_smoothing(false), | |
| m_angle(RealScalar(0.7)), m_residual(false) {} | |
| /** \internal */ | |
| /** Loops over the number of columns of b and does the following: | |
| 1. sets the tolerence and maxIterations | |
| 2. Calls the function that has the core solver routine | |
| */ | |
| template <typename Rhs, typename Dest> | |
| void _solve_vector_with_guess_impl(const Rhs& b, Dest& x) const | |
| { | |
| m_iterations = Base::maxIterations(); | |
| m_error = Base::m_tolerance; | |
| bool ret = internal::idrs(matrix(), b, x, Base::m_preconditioner, m_iterations, m_error, m_S,m_smoothing,m_angle,m_residual); | |
| m_info = (!ret) ? NumericalIssue : m_error <= Base::m_tolerance ? Success : NoConvergence; | |
| } | |
| /** Sets the parameter S, indicating the dimension of the shadow space. Default is 4*/ | |
| void setS(Index S) | |
| { | |
| if (S < 1) | |
| { | |
| S = 4; | |
| } | |
| m_S = S; | |
| } | |
| /** Switches off and on smoothing. | |
| Residual smoothing results in monotonically decreasing residual norms at | |
| the expense of two extra vectors of storage and a few extra vector | |
| operations. Although monotonic decrease of the residual norms is a | |
| desirable property, the rate of convergence of the unsmoothed process and | |
| the smoothed process is basically the same. Default is off */ | |
| void setSmoothing(bool smoothing) | |
| { | |
| m_smoothing=smoothing; | |
| } | |
| /** The angle must be a real scalar. In IDR(s), a value for the | |
| iteration parameter omega must be chosen in every s+1th step. The most | |
| natural choice is to select a value to minimize the norm of the next residual. | |
| This corresponds to the parameter omega = 0. In practice, this may lead to | |
| values of omega that are so small that the other iteration parameters | |
| cannot be computed with sufficient accuracy. In such cases it is better to | |
| increase the value of omega sufficiently such that a compromise is reached | |
| between accurate computations and reduction of the residual norm. The | |
| parameter angle =0.7 (”maintaining the convergence strategy”) | |
| results in such a compromise. */ | |
| void setAngle(RealScalar angle) | |
| { | |
| m_angle=angle; | |
| } | |
| /** The parameter replace is a logical that determines whether a | |
| residual replacement strategy is employed to increase the accuracy of the | |
| solution. */ | |
| void setResidualUpdate(bool update) | |
| { | |
| m_residual=update; | |
| } | |
| }; | |
| } // namespace Eigen | |