| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2012 Desire NUENTSA WAKAM <desire.nuentsa_wakam@inria.fr | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
| namespace Eigen { | |
| /** | |
| * \ingroup IterativeLinearSolvers_Module | |
| * \brief iterative scaling algorithm to equilibrate rows and column norms in matrices | |
| * | |
| * This class can be used as a preprocessing tool to accelerate the convergence of iterative methods | |
| * | |
| * This feature is useful to limit the pivoting amount during LU/ILU factorization | |
| * The scaling strategy as presented here preserves the symmetry of the problem | |
| * NOTE It is assumed that the matrix does not have empty row or column, | |
| * | |
| * Example with key steps | |
| * \code | |
| * VectorXd x(n), b(n); | |
| * SparseMatrix<double> A; | |
| * // fill A and b; | |
| * IterScaling<SparseMatrix<double> > scal; | |
| * // Compute the left and right scaling vectors. The matrix is equilibrated at output | |
| * scal.computeRef(A); | |
| * // Scale the right hand side | |
| * b = scal.LeftScaling().cwiseProduct(b); | |
| * // Now, solve the equilibrated linear system with any available solver | |
| * | |
| * // Scale back the computed solution | |
| * x = scal.RightScaling().cwiseProduct(x); | |
| * \endcode | |
| * | |
| * \tparam _MatrixType the type of the matrix. It should be a real square sparsematrix | |
| * | |
| * References : D. Ruiz and B. Ucar, A Symmetry Preserving Algorithm for Matrix Scaling, INRIA Research report RR-7552 | |
| * | |
| * \sa \ref IncompleteLUT | |
| */ | |
| template<typename _MatrixType> | |
| class IterScaling | |
| { | |
| public: | |
| typedef _MatrixType MatrixType; | |
| typedef typename MatrixType::Scalar Scalar; | |
| typedef typename MatrixType::Index Index; | |
| public: | |
| IterScaling() { init(); } | |
| IterScaling(const MatrixType& matrix) | |
| { | |
| init(); | |
| compute(matrix); | |
| } | |
| ~IterScaling() { } | |
| /** | |
| * Compute the left and right diagonal matrices to scale the input matrix @p mat | |
| * | |
| * FIXME This algorithm will be modified such that the diagonal elements are permuted on the diagonal. | |
| * | |
| * \sa LeftScaling() RightScaling() | |
| */ | |
| void compute (const MatrixType& mat) | |
| { | |
| using std::abs; | |
| int m = mat.rows(); | |
| int n = mat.cols(); | |
| eigen_assert((m>0 && m == n) && "Please give a non - empty matrix"); | |
| m_left.resize(m); | |
| m_right.resize(n); | |
| m_left.setOnes(); | |
| m_right.setOnes(); | |
| m_matrix = mat; | |
| VectorXd Dr, Dc, DrRes, DcRes; // Temporary Left and right scaling vectors | |
| Dr.resize(m); Dc.resize(n); | |
| DrRes.resize(m); DcRes.resize(n); | |
| double EpsRow = 1.0, EpsCol = 1.0; | |
| int its = 0; | |
| do | |
| { // Iterate until the infinite norm of each row and column is approximately 1 | |
| // Get the maximum value in each row and column | |
| Dr.setZero(); Dc.setZero(); | |
| for (int k=0; k<m_matrix.outerSize(); ++k) | |
| { | |
| for (typename MatrixType::InnerIterator it(m_matrix, k); it; ++it) | |
| { | |
| if ( Dr(it.row()) < abs(it.value()) ) | |
| Dr(it.row()) = abs(it.value()); | |
| if ( Dc(it.col()) < abs(it.value()) ) | |
| Dc(it.col()) = abs(it.value()); | |
| } | |
| } | |
| for (int i = 0; i < m; ++i) | |
| { | |
| Dr(i) = std::sqrt(Dr(i)); | |
| } | |
| for (int i = 0; i < n; ++i) | |
| { | |
| Dc(i) = std::sqrt(Dc(i)); | |
| } | |
| // Save the scaling factors | |
| for (int i = 0; i < m; ++i) | |
| { | |
| m_left(i) /= Dr(i); | |
| } | |
| for (int i = 0; i < n; ++i) | |
| { | |
| m_right(i) /= Dc(i); | |
| } | |
| // Scale the rows and the columns of the matrix | |
| DrRes.setZero(); DcRes.setZero(); | |
| for (int k=0; k<m_matrix.outerSize(); ++k) | |
| { | |
| for (typename MatrixType::InnerIterator it(m_matrix, k); it; ++it) | |
| { | |
| it.valueRef() = it.value()/( Dr(it.row()) * Dc(it.col()) ); | |
| // Accumulate the norms of the row and column vectors | |
| if ( DrRes(it.row()) < abs(it.value()) ) | |
| DrRes(it.row()) = abs(it.value()); | |
| if ( DcRes(it.col()) < abs(it.value()) ) | |
| DcRes(it.col()) = abs(it.value()); | |
| } | |
| } | |
| DrRes.array() = (1-DrRes.array()).abs(); | |
| EpsRow = DrRes.maxCoeff(); | |
| DcRes.array() = (1-DcRes.array()).abs(); | |
| EpsCol = DcRes.maxCoeff(); | |
| its++; | |
| }while ( (EpsRow >m_tol || EpsCol > m_tol) && (its < m_maxits) ); | |
| m_isInitialized = true; | |
| } | |
| /** Compute the left and right vectors to scale the vectors | |
| * the input matrix is scaled with the computed vectors at output | |
| * | |
| * \sa compute() | |
| */ | |
| void computeRef (MatrixType& mat) | |
| { | |
| compute (mat); | |
| mat = m_matrix; | |
| } | |
| /** Get the vector to scale the rows of the matrix | |
| */ | |
| VectorXd& LeftScaling() | |
| { | |
| return m_left; | |
| } | |
| /** Get the vector to scale the columns of the matrix | |
| */ | |
| VectorXd& RightScaling() | |
| { | |
| return m_right; | |
| } | |
| /** Set the tolerance for the convergence of the iterative scaling algorithm | |
| */ | |
| void setTolerance(double tol) | |
| { | |
| m_tol = tol; | |
| } | |
| protected: | |
| void init() | |
| { | |
| m_tol = 1e-10; | |
| m_maxits = 5; | |
| m_isInitialized = false; | |
| } | |
| MatrixType m_matrix; | |
| mutable ComputationInfo m_info; | |
| bool m_isInitialized; | |
| VectorXd m_left; // Left scaling vector | |
| VectorXd m_right; // m_right scaling vector | |
| double m_tol; | |
| int m_maxits; // Maximum number of iterations allowed | |
| }; | |
| } | |