FastRobustICP
/
include
/eigen
/unsupported
/Eigen
/src
/NonLinearOptimization
/HybridNonLinearSolver.h
| // -*- coding: utf-8 | |
| // vim: set fileencoding=utf-8 | |
| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
| namespace Eigen { | |
| namespace HybridNonLinearSolverSpace { | |
| enum Status { | |
| Running = -1, | |
| ImproperInputParameters = 0, | |
| RelativeErrorTooSmall = 1, | |
| TooManyFunctionEvaluation = 2, | |
| TolTooSmall = 3, | |
| NotMakingProgressJacobian = 4, | |
| NotMakingProgressIterations = 5, | |
| UserAsked = 6 | |
| }; | |
| } | |
| /** | |
| * \ingroup NonLinearOptimization_Module | |
| * \brief Finds a zero of a system of n | |
| * nonlinear functions in n variables by a modification of the Powell | |
| * hybrid method ("dogleg"). | |
| * | |
| * The user must provide a subroutine which calculates the | |
| * functions. The Jacobian is either provided by the user, or approximated | |
| * using a forward-difference method. | |
| * | |
| */ | |
| template<typename FunctorType, typename Scalar=double> | |
| class HybridNonLinearSolver | |
| { | |
| public: | |
| typedef DenseIndex Index; | |
| HybridNonLinearSolver(FunctorType &_functor) | |
| : functor(_functor) { nfev=njev=iter = 0; fnorm= 0.; useExternalScaling=false;} | |
| struct Parameters { | |
| Parameters() | |
| : factor(Scalar(100.)) | |
| , maxfev(1000) | |
| , xtol(numext::sqrt(NumTraits<Scalar>::epsilon())) | |
| , nb_of_subdiagonals(-1) | |
| , nb_of_superdiagonals(-1) | |
| , epsfcn(Scalar(0.)) {} | |
| Scalar factor; | |
| Index maxfev; // maximum number of function evaluation | |
| Scalar xtol; | |
| Index nb_of_subdiagonals; | |
| Index nb_of_superdiagonals; | |
| Scalar epsfcn; | |
| }; | |
| typedef Matrix< Scalar, Dynamic, 1 > FVectorType; | |
| typedef Matrix< Scalar, Dynamic, Dynamic > JacobianType; | |
| /* TODO: if eigen provides a triangular storage, use it here */ | |
| typedef Matrix< Scalar, Dynamic, Dynamic > UpperTriangularType; | |
| HybridNonLinearSolverSpace::Status hybrj1( | |
| FVectorType &x, | |
| const Scalar tol = numext::sqrt(NumTraits<Scalar>::epsilon()) | |
| ); | |
| HybridNonLinearSolverSpace::Status solveInit(FVectorType &x); | |
| HybridNonLinearSolverSpace::Status solveOneStep(FVectorType &x); | |
| HybridNonLinearSolverSpace::Status solve(FVectorType &x); | |
| HybridNonLinearSolverSpace::Status hybrd1( | |
| FVectorType &x, | |
| const Scalar tol = numext::sqrt(NumTraits<Scalar>::epsilon()) | |
| ); | |
| HybridNonLinearSolverSpace::Status solveNumericalDiffInit(FVectorType &x); | |
| HybridNonLinearSolverSpace::Status solveNumericalDiffOneStep(FVectorType &x); | |
| HybridNonLinearSolverSpace::Status solveNumericalDiff(FVectorType &x); | |
| void resetParameters(void) { parameters = Parameters(); } | |
| Parameters parameters; | |
| FVectorType fvec, qtf, diag; | |
| JacobianType fjac; | |
| UpperTriangularType R; | |
| Index nfev; | |
| Index njev; | |
| Index iter; | |
| Scalar fnorm; | |
| bool useExternalScaling; | |
| private: | |
| FunctorType &functor; | |
| Index n; | |
| Scalar sum; | |
| bool sing; | |
| Scalar temp; | |
| Scalar delta; | |
| bool jeval; | |
| Index ncsuc; | |
| Scalar ratio; | |
| Scalar pnorm, xnorm, fnorm1; | |
| Index nslow1, nslow2; | |
| Index ncfail; | |
| Scalar actred, prered; | |
| FVectorType wa1, wa2, wa3, wa4; | |
| HybridNonLinearSolver& operator=(const HybridNonLinearSolver&); | |
| }; | |
| template<typename FunctorType, typename Scalar> | |
| HybridNonLinearSolverSpace::Status | |
| HybridNonLinearSolver<FunctorType,Scalar>::hybrj1( | |
| FVectorType &x, | |
| const Scalar tol | |
| ) | |
| { | |
| n = x.size(); | |
| /* check the input parameters for errors. */ | |
| if (n <= 0 || tol < 0.) | |
| return HybridNonLinearSolverSpace::ImproperInputParameters; | |
| resetParameters(); | |
| parameters.maxfev = 100*(n+1); | |
| parameters.xtol = tol; | |
| diag.setConstant(n, 1.); | |
| useExternalScaling = true; | |
| return solve(x); | |
| } | |
| template<typename FunctorType, typename Scalar> | |
| HybridNonLinearSolverSpace::Status | |
| HybridNonLinearSolver<FunctorType,Scalar>::solveInit(FVectorType &x) | |
| { | |
| n = x.size(); | |
| wa1.resize(n); wa2.resize(n); wa3.resize(n); wa4.resize(n); | |
| fvec.resize(n); | |
| qtf.resize(n); | |
| fjac.resize(n, n); | |
| if (!useExternalScaling) | |
| diag.resize(n); | |
| eigen_assert( (!useExternalScaling || diag.size()==n) && "When useExternalScaling is set, the caller must provide a valid 'diag'"); | |
| /* Function Body */ | |
| nfev = 0; | |
| njev = 0; | |
| /* check the input parameters for errors. */ | |
| if (n <= 0 || parameters.xtol < 0. || parameters.maxfev <= 0 || parameters.factor <= 0. ) | |
| return HybridNonLinearSolverSpace::ImproperInputParameters; | |
| if (useExternalScaling) | |
| for (Index j = 0; j < n; ++j) | |
| if (diag[j] <= 0.) | |
| return HybridNonLinearSolverSpace::ImproperInputParameters; | |
| /* evaluate the function at the starting point */ | |
| /* and calculate its norm. */ | |
| nfev = 1; | |
| if ( functor(x, fvec) < 0) | |
| return HybridNonLinearSolverSpace::UserAsked; | |
| fnorm = fvec.stableNorm(); | |
| /* initialize iteration counter and monitors. */ | |
| iter = 1; | |
| ncsuc = 0; | |
| ncfail = 0; | |
| nslow1 = 0; | |
| nslow2 = 0; | |
| return HybridNonLinearSolverSpace::Running; | |
| } | |
| template<typename FunctorType, typename Scalar> | |
| HybridNonLinearSolverSpace::Status | |
| HybridNonLinearSolver<FunctorType,Scalar>::solveOneStep(FVectorType &x) | |
| { | |
| using std::abs; | |
| eigen_assert(x.size()==n); // check the caller is not cheating us | |
| Index j; | |
| std::vector<JacobiRotation<Scalar> > v_givens(n), w_givens(n); | |
| jeval = true; | |
| /* calculate the jacobian matrix. */ | |
| if ( functor.df(x, fjac) < 0) | |
| return HybridNonLinearSolverSpace::UserAsked; | |
| ++njev; | |
| wa2 = fjac.colwise().blueNorm(); | |
| /* on the first iteration and if external scaling is not used, scale according */ | |
| /* to the norms of the columns of the initial jacobian. */ | |
| if (iter == 1) { | |
| if (!useExternalScaling) | |
| for (j = 0; j < n; ++j) | |
| diag[j] = (wa2[j]==0.) ? 1. : wa2[j]; | |
| /* on the first iteration, calculate the norm of the scaled x */ | |
| /* and initialize the step bound delta. */ | |
| xnorm = diag.cwiseProduct(x).stableNorm(); | |
| delta = parameters.factor * xnorm; | |
| if (delta == 0.) | |
| delta = parameters.factor; | |
| } | |
| /* compute the qr factorization of the jacobian. */ | |
| HouseholderQR<JacobianType> qrfac(fjac); // no pivoting: | |
| /* copy the triangular factor of the qr factorization into r. */ | |
| R = qrfac.matrixQR(); | |
| /* accumulate the orthogonal factor in fjac. */ | |
| fjac = qrfac.householderQ(); | |
| /* form (q transpose)*fvec and store in qtf. */ | |
| qtf = fjac.transpose() * fvec; | |
| /* rescale if necessary. */ | |
| if (!useExternalScaling) | |
| diag = diag.cwiseMax(wa2); | |
| while (true) { | |
| /* determine the direction p. */ | |
| internal::dogleg<Scalar>(R, diag, qtf, delta, wa1); | |
| /* store the direction p and x + p. calculate the norm of p. */ | |
| wa1 = -wa1; | |
| wa2 = x + wa1; | |
| pnorm = diag.cwiseProduct(wa1).stableNorm(); | |
| /* on the first iteration, adjust the initial step bound. */ | |
| if (iter == 1) | |
| delta = (std::min)(delta,pnorm); | |
| /* evaluate the function at x + p and calculate its norm. */ | |
| if ( functor(wa2, wa4) < 0) | |
| return HybridNonLinearSolverSpace::UserAsked; | |
| ++nfev; | |
| fnorm1 = wa4.stableNorm(); | |
| /* compute the scaled actual reduction. */ | |
| actred = -1.; | |
| if (fnorm1 < fnorm) /* Computing 2nd power */ | |
| actred = 1. - numext::abs2(fnorm1 / fnorm); | |
| /* compute the scaled predicted reduction. */ | |
| wa3 = R.template triangularView<Upper>()*wa1 + qtf; | |
| temp = wa3.stableNorm(); | |
| prered = 0.; | |
| if (temp < fnorm) /* Computing 2nd power */ | |
| prered = 1. - numext::abs2(temp / fnorm); | |
| /* compute the ratio of the actual to the predicted reduction. */ | |
| ratio = 0.; | |
| if (prered > 0.) | |
| ratio = actred / prered; | |
| /* update the step bound. */ | |
| if (ratio < Scalar(.1)) { | |
| ncsuc = 0; | |
| ++ncfail; | |
| delta = Scalar(.5) * delta; | |
| } else { | |
| ncfail = 0; | |
| ++ncsuc; | |
| if (ratio >= Scalar(.5) || ncsuc > 1) | |
| delta = (std::max)(delta, pnorm / Scalar(.5)); | |
| if (abs(ratio - 1.) <= Scalar(.1)) { | |
| delta = pnorm / Scalar(.5); | |
| } | |
| } | |
| /* test for successful iteration. */ | |
| if (ratio >= Scalar(1e-4)) { | |
| /* successful iteration. update x, fvec, and their norms. */ | |
| x = wa2; | |
| wa2 = diag.cwiseProduct(x); | |
| fvec = wa4; | |
| xnorm = wa2.stableNorm(); | |
| fnorm = fnorm1; | |
| ++iter; | |
| } | |
| /* determine the progress of the iteration. */ | |
| ++nslow1; | |
| if (actred >= Scalar(.001)) | |
| nslow1 = 0; | |
| if (jeval) | |
| ++nslow2; | |
| if (actred >= Scalar(.1)) | |
| nslow2 = 0; | |
| /* test for convergence. */ | |
| if (delta <= parameters.xtol * xnorm || fnorm == 0.) | |
| return HybridNonLinearSolverSpace::RelativeErrorTooSmall; | |
| /* tests for termination and stringent tolerances. */ | |
| if (nfev >= parameters.maxfev) | |
| return HybridNonLinearSolverSpace::TooManyFunctionEvaluation; | |
| if (Scalar(.1) * (std::max)(Scalar(.1) * delta, pnorm) <= NumTraits<Scalar>::epsilon() * xnorm) | |
| return HybridNonLinearSolverSpace::TolTooSmall; | |
| if (nslow2 == 5) | |
| return HybridNonLinearSolverSpace::NotMakingProgressJacobian; | |
| if (nslow1 == 10) | |
| return HybridNonLinearSolverSpace::NotMakingProgressIterations; | |
| /* criterion for recalculating jacobian. */ | |
| if (ncfail == 2) | |
| break; // leave inner loop and go for the next outer loop iteration | |
| /* calculate the rank one modification to the jacobian */ | |
| /* and update qtf if necessary. */ | |
| wa1 = diag.cwiseProduct( diag.cwiseProduct(wa1)/pnorm ); | |
| wa2 = fjac.transpose() * wa4; | |
| if (ratio >= Scalar(1e-4)) | |
| qtf = wa2; | |
| wa2 = (wa2-wa3)/pnorm; | |
| /* compute the qr factorization of the updated jacobian. */ | |
| internal::r1updt<Scalar>(R, wa1, v_givens, w_givens, wa2, wa3, &sing); | |
| internal::r1mpyq<Scalar>(n, n, fjac.data(), v_givens, w_givens); | |
| internal::r1mpyq<Scalar>(1, n, qtf.data(), v_givens, w_givens); | |
| jeval = false; | |
| } | |
| return HybridNonLinearSolverSpace::Running; | |
| } | |
| template<typename FunctorType, typename Scalar> | |
| HybridNonLinearSolverSpace::Status | |
| HybridNonLinearSolver<FunctorType,Scalar>::solve(FVectorType &x) | |
| { | |
| HybridNonLinearSolverSpace::Status status = solveInit(x); | |
| if (status==HybridNonLinearSolverSpace::ImproperInputParameters) | |
| return status; | |
| while (status==HybridNonLinearSolverSpace::Running) | |
| status = solveOneStep(x); | |
| return status; | |
| } | |
| template<typename FunctorType, typename Scalar> | |
| HybridNonLinearSolverSpace::Status | |
| HybridNonLinearSolver<FunctorType,Scalar>::hybrd1( | |
| FVectorType &x, | |
| const Scalar tol | |
| ) | |
| { | |
| n = x.size(); | |
| /* check the input parameters for errors. */ | |
| if (n <= 0 || tol < 0.) | |
| return HybridNonLinearSolverSpace::ImproperInputParameters; | |
| resetParameters(); | |
| parameters.maxfev = 200*(n+1); | |
| parameters.xtol = tol; | |
| diag.setConstant(n, 1.); | |
| useExternalScaling = true; | |
| return solveNumericalDiff(x); | |
| } | |
| template<typename FunctorType, typename Scalar> | |
| HybridNonLinearSolverSpace::Status | |
| HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffInit(FVectorType &x) | |
| { | |
| n = x.size(); | |
| if (parameters.nb_of_subdiagonals<0) parameters.nb_of_subdiagonals= n-1; | |
| if (parameters.nb_of_superdiagonals<0) parameters.nb_of_superdiagonals= n-1; | |
| wa1.resize(n); wa2.resize(n); wa3.resize(n); wa4.resize(n); | |
| qtf.resize(n); | |
| fjac.resize(n, n); | |
| fvec.resize(n); | |
| if (!useExternalScaling) | |
| diag.resize(n); | |
| eigen_assert( (!useExternalScaling || diag.size()==n) && "When useExternalScaling is set, the caller must provide a valid 'diag'"); | |
| /* Function Body */ | |
| nfev = 0; | |
| njev = 0; | |
| /* check the input parameters for errors. */ | |
| if (n <= 0 || parameters.xtol < 0. || parameters.maxfev <= 0 || parameters.nb_of_subdiagonals< 0 || parameters.nb_of_superdiagonals< 0 || parameters.factor <= 0. ) | |
| return HybridNonLinearSolverSpace::ImproperInputParameters; | |
| if (useExternalScaling) | |
| for (Index j = 0; j < n; ++j) | |
| if (diag[j] <= 0.) | |
| return HybridNonLinearSolverSpace::ImproperInputParameters; | |
| /* evaluate the function at the starting point */ | |
| /* and calculate its norm. */ | |
| nfev = 1; | |
| if ( functor(x, fvec) < 0) | |
| return HybridNonLinearSolverSpace::UserAsked; | |
| fnorm = fvec.stableNorm(); | |
| /* initialize iteration counter and monitors. */ | |
| iter = 1; | |
| ncsuc = 0; | |
| ncfail = 0; | |
| nslow1 = 0; | |
| nslow2 = 0; | |
| return HybridNonLinearSolverSpace::Running; | |
| } | |
| template<typename FunctorType, typename Scalar> | |
| HybridNonLinearSolverSpace::Status | |
| HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffOneStep(FVectorType &x) | |
| { | |
| using std::sqrt; | |
| using std::abs; | |
| assert(x.size()==n); // check the caller is not cheating us | |
| Index j; | |
| std::vector<JacobiRotation<Scalar> > v_givens(n), w_givens(n); | |
| jeval = true; | |
| if (parameters.nb_of_subdiagonals<0) parameters.nb_of_subdiagonals= n-1; | |
| if (parameters.nb_of_superdiagonals<0) parameters.nb_of_superdiagonals= n-1; | |
| /* calculate the jacobian matrix. */ | |
| if (internal::fdjac1(functor, x, fvec, fjac, parameters.nb_of_subdiagonals, parameters.nb_of_superdiagonals, parameters.epsfcn) <0) | |
| return HybridNonLinearSolverSpace::UserAsked; | |
| nfev += (std::min)(parameters.nb_of_subdiagonals+parameters.nb_of_superdiagonals+ 1, n); | |
| wa2 = fjac.colwise().blueNorm(); | |
| /* on the first iteration and if external scaling is not used, scale according */ | |
| /* to the norms of the columns of the initial jacobian. */ | |
| if (iter == 1) { | |
| if (!useExternalScaling) | |
| for (j = 0; j < n; ++j) | |
| diag[j] = (wa2[j]==0.) ? 1. : wa2[j]; | |
| /* on the first iteration, calculate the norm of the scaled x */ | |
| /* and initialize the step bound delta. */ | |
| xnorm = diag.cwiseProduct(x).stableNorm(); | |
| delta = parameters.factor * xnorm; | |
| if (delta == 0.) | |
| delta = parameters.factor; | |
| } | |
| /* compute the qr factorization of the jacobian. */ | |
| HouseholderQR<JacobianType> qrfac(fjac); // no pivoting: | |
| /* copy the triangular factor of the qr factorization into r. */ | |
| R = qrfac.matrixQR(); | |
| /* accumulate the orthogonal factor in fjac. */ | |
| fjac = qrfac.householderQ(); | |
| /* form (q transpose)*fvec and store in qtf. */ | |
| qtf = fjac.transpose() * fvec; | |
| /* rescale if necessary. */ | |
| if (!useExternalScaling) | |
| diag = diag.cwiseMax(wa2); | |
| while (true) { | |
| /* determine the direction p. */ | |
| internal::dogleg<Scalar>(R, diag, qtf, delta, wa1); | |
| /* store the direction p and x + p. calculate the norm of p. */ | |
| wa1 = -wa1; | |
| wa2 = x + wa1; | |
| pnorm = diag.cwiseProduct(wa1).stableNorm(); | |
| /* on the first iteration, adjust the initial step bound. */ | |
| if (iter == 1) | |
| delta = (std::min)(delta,pnorm); | |
| /* evaluate the function at x + p and calculate its norm. */ | |
| if ( functor(wa2, wa4) < 0) | |
| return HybridNonLinearSolverSpace::UserAsked; | |
| ++nfev; | |
| fnorm1 = wa4.stableNorm(); | |
| /* compute the scaled actual reduction. */ | |
| actred = -1.; | |
| if (fnorm1 < fnorm) /* Computing 2nd power */ | |
| actred = 1. - numext::abs2(fnorm1 / fnorm); | |
| /* compute the scaled predicted reduction. */ | |
| wa3 = R.template triangularView<Upper>()*wa1 + qtf; | |
| temp = wa3.stableNorm(); | |
| prered = 0.; | |
| if (temp < fnorm) /* Computing 2nd power */ | |
| prered = 1. - numext::abs2(temp / fnorm); | |
| /* compute the ratio of the actual to the predicted reduction. */ | |
| ratio = 0.; | |
| if (prered > 0.) | |
| ratio = actred / prered; | |
| /* update the step bound. */ | |
| if (ratio < Scalar(.1)) { | |
| ncsuc = 0; | |
| ++ncfail; | |
| delta = Scalar(.5) * delta; | |
| } else { | |
| ncfail = 0; | |
| ++ncsuc; | |
| if (ratio >= Scalar(.5) || ncsuc > 1) | |
| delta = (std::max)(delta, pnorm / Scalar(.5)); | |
| if (abs(ratio - 1.) <= Scalar(.1)) { | |
| delta = pnorm / Scalar(.5); | |
| } | |
| } | |
| /* test for successful iteration. */ | |
| if (ratio >= Scalar(1e-4)) { | |
| /* successful iteration. update x, fvec, and their norms. */ | |
| x = wa2; | |
| wa2 = diag.cwiseProduct(x); | |
| fvec = wa4; | |
| xnorm = wa2.stableNorm(); | |
| fnorm = fnorm1; | |
| ++iter; | |
| } | |
| /* determine the progress of the iteration. */ | |
| ++nslow1; | |
| if (actred >= Scalar(.001)) | |
| nslow1 = 0; | |
| if (jeval) | |
| ++nslow2; | |
| if (actred >= Scalar(.1)) | |
| nslow2 = 0; | |
| /* test for convergence. */ | |
| if (delta <= parameters.xtol * xnorm || fnorm == 0.) | |
| return HybridNonLinearSolverSpace::RelativeErrorTooSmall; | |
| /* tests for termination and stringent tolerances. */ | |
| if (nfev >= parameters.maxfev) | |
| return HybridNonLinearSolverSpace::TooManyFunctionEvaluation; | |
| if (Scalar(.1) * (std::max)(Scalar(.1) * delta, pnorm) <= NumTraits<Scalar>::epsilon() * xnorm) | |
| return HybridNonLinearSolverSpace::TolTooSmall; | |
| if (nslow2 == 5) | |
| return HybridNonLinearSolverSpace::NotMakingProgressJacobian; | |
| if (nslow1 == 10) | |
| return HybridNonLinearSolverSpace::NotMakingProgressIterations; | |
| /* criterion for recalculating jacobian. */ | |
| if (ncfail == 2) | |
| break; // leave inner loop and go for the next outer loop iteration | |
| /* calculate the rank one modification to the jacobian */ | |
| /* and update qtf if necessary. */ | |
| wa1 = diag.cwiseProduct( diag.cwiseProduct(wa1)/pnorm ); | |
| wa2 = fjac.transpose() * wa4; | |
| if (ratio >= Scalar(1e-4)) | |
| qtf = wa2; | |
| wa2 = (wa2-wa3)/pnorm; | |
| /* compute the qr factorization of the updated jacobian. */ | |
| internal::r1updt<Scalar>(R, wa1, v_givens, w_givens, wa2, wa3, &sing); | |
| internal::r1mpyq<Scalar>(n, n, fjac.data(), v_givens, w_givens); | |
| internal::r1mpyq<Scalar>(1, n, qtf.data(), v_givens, w_givens); | |
| jeval = false; | |
| } | |
| return HybridNonLinearSolverSpace::Running; | |
| } | |
| template<typename FunctorType, typename Scalar> | |
| HybridNonLinearSolverSpace::Status | |
| HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiff(FVectorType &x) | |
| { | |
| HybridNonLinearSolverSpace::Status status = solveNumericalDiffInit(x); | |
| if (status==HybridNonLinearSolverSpace::ImproperInputParameters) | |
| return status; | |
| while (status==HybridNonLinearSolverSpace::Running) | |
| status = solveNumericalDiffOneStep(x); | |
| return status; | |
| } | |
| } // end namespace Eigen | |
| //vim: ai ts=4 sts=4 et sw=4 | |