|
|
namespace Eigen { |
|
|
|
|
|
namespace internal { |
|
|
|
|
|
|
|
|
template <typename Scalar> |
|
|
void qrsolv( |
|
|
Matrix< Scalar, Dynamic, Dynamic > &s, |
|
|
|
|
|
const VectorXi &ipvt, |
|
|
const Matrix< Scalar, Dynamic, 1 > &diag, |
|
|
const Matrix< Scalar, Dynamic, 1 > &qtb, |
|
|
Matrix< Scalar, Dynamic, 1 > &x, |
|
|
Matrix< Scalar, Dynamic, 1 > &sdiag) |
|
|
|
|
|
{ |
|
|
typedef DenseIndex Index; |
|
|
|
|
|
|
|
|
Index i, j, k, l; |
|
|
Scalar temp; |
|
|
Index n = s.cols(); |
|
|
Matrix< Scalar, Dynamic, 1 > wa(n); |
|
|
JacobiRotation<Scalar> givens; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x = s.diagonal(); |
|
|
wa = qtb; |
|
|
|
|
|
s.topLeftCorner(n,n).template triangularView<StrictlyLower>() = s.topLeftCorner(n,n).transpose(); |
|
|
|
|
|
|
|
|
for (j = 0; j < n; ++j) { |
|
|
|
|
|
|
|
|
|
|
|
l = ipvt[j]; |
|
|
if (diag[l] == 0.) |
|
|
break; |
|
|
sdiag.tail(n-j).setZero(); |
|
|
sdiag[j] = diag[l]; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Scalar qtbpj = 0.; |
|
|
for (k = j; k < n; ++k) { |
|
|
|
|
|
|
|
|
givens.makeGivens(-s(k,k), sdiag[k]); |
|
|
|
|
|
|
|
|
|
|
|
s(k,k) = givens.c() * s(k,k) + givens.s() * sdiag[k]; |
|
|
temp = givens.c() * wa[k] + givens.s() * qtbpj; |
|
|
qtbpj = -givens.s() * wa[k] + givens.c() * qtbpj; |
|
|
wa[k] = temp; |
|
|
|
|
|
|
|
|
for (i = k+1; i<n; ++i) { |
|
|
temp = givens.c() * s(i,k) + givens.s() * sdiag[i]; |
|
|
sdiag[i] = -givens.s() * s(i,k) + givens.c() * sdiag[i]; |
|
|
s(i,k) = temp; |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
Index nsing; |
|
|
for(nsing=0; nsing<n && sdiag[nsing]!=0; nsing++) {} |
|
|
|
|
|
wa.tail(n-nsing).setZero(); |
|
|
s.topLeftCorner(nsing, nsing).transpose().template triangularView<Upper>().solveInPlace(wa.head(nsing)); |
|
|
|
|
|
|
|
|
sdiag = s.diagonal(); |
|
|
s.diagonal() = x; |
|
|
|
|
|
|
|
|
for (j = 0; j < n; ++j) x[ipvt[j]] = wa[j]; |
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|