FastRobustICP / include /nanoflann.hpp
adfa5456's picture
Add files using upload-large-folder tool
fe2b563 verified
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
* Copyright 2011 Jose Luis Blanco (joseluisblancoc@gmail.com).
* All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef NANOFLANN_HPP_
#define NANOFLANN_HPP_
#include <vector>
#include <cassert>
#include <algorithm>
#include <stdexcept>
#include <cstdio> // for fwrite()
#include <cmath> // for fabs(),...
#include <limits>
// Avoid conflicting declaration of min/max macros in windows headers
#if !defined(NOMINMAX) && (defined(_WIN32) || defined(_WIN32_) || defined(WIN32) || defined(_WIN64))
# define NOMINMAX
# ifdef max
# undef max
# undef min
# endif
#endif
namespace nanoflann
{
/** @addtogroup nanoflann_grp nanoflann C++ library for ANN
* @{ */
/** Library version: 0xMmP (M=Major,m=minor,P=path) */
#define NANOFLANN_VERSION 0x113
/** @addtogroup result_sets_grp Result set classes
* @{ */
template <typename DistanceType, typename IndexType = size_t, typename CountType = size_t>
class KNNResultSet
{
IndexType * indices;
DistanceType* dists;
CountType capacity;
CountType count;
public:
inline KNNResultSet(CountType capacity_) : capacity(capacity_), count(0)
{
}
inline void init(IndexType* indices_, DistanceType* dists_)
{
indices = indices_;
dists = dists_;
count = 0;
dists[capacity-1] = (std::numeric_limits<DistanceType>::max)();
}
inline CountType size() const
{
return count;
}
inline bool full() const
{
return count == capacity;
}
inline void addPoint(DistanceType dist, IndexType index)
{
CountType i;
for (i=count; i>0; --i) {
#ifdef NANOFLANN_FIRST_MATCH // If defined and two poins have the same distance, the one with the lowest-index will be returned first.
if ( (dists[i-1]>dist) || ((dist==dists[i-1])&&(indices[i-1]>index)) ) {
#else
if (dists[i-1]>dist) {
#endif
if (i<capacity) {
dists[i] = dists[i-1];
indices[i] = indices[i-1];
}
}
else break;
}
if (i<capacity) {
dists[i] = dist;
indices[i] = index;
}
if (count<capacity) count++;
}
inline DistanceType worstDist() const
{
return dists[capacity-1];
}
};
/**
* A result-set class used when performing a radius based search.
*/
template <typename DistanceType, typename IndexType = size_t>
class RadiusResultSet
{
public:
const DistanceType radius;
std::vector<std::pair<IndexType,DistanceType> >& m_indices_dists;
inline RadiusResultSet(DistanceType radius_, std::vector<std::pair<IndexType,DistanceType> >& indices_dists) : radius(radius_), m_indices_dists(indices_dists)
{
init();
}
inline ~RadiusResultSet() { }
inline void init() { clear(); }
inline void clear() { m_indices_dists.clear(); }
inline size_t size() const { return m_indices_dists.size(); }
inline bool full() const { return true; }
inline void addPoint(DistanceType dist, IndexType index)
{
if (dist<radius)
m_indices_dists.push_back(std::make_pair<IndexType,DistanceType>(index,dist));
}
inline DistanceType worstDist() const { return radius; }
/** Clears the result set and adjusts the search radius. */
inline void set_radius_and_clear( const DistanceType r )
{
radius = r;
clear();
}
/**
* Find the worst result (furtherest neighbor) without copying or sorting
* Pre-conditions: size() > 0
*/
std::pair<IndexType,DistanceType> worst_item() const
{
if (m_indices_dists.empty()) throw std::runtime_error("Cannot invoke RadiusResultSet::worst_item() on an empty list of results.");
typedef typename std::vector<std::pair<IndexType,DistanceType> >::const_iterator DistIt;
DistIt it = std::max_element(m_indices_dists.begin(), m_indices_dists.end());
return *it;
}
};
/** operator "<" for std::sort() */
struct IndexDist_Sorter
{
/** PairType will be typically: std::pair<IndexType,DistanceType> */
template <typename PairType>
inline bool operator()(const PairType &p1, const PairType &p2) const {
return p1.second < p2.second;
}
};
/** @} */
/** @addtogroup loadsave_grp Load/save auxiliary functions
* @{ */
template<typename T>
void save_value(FILE* stream, const T& value, size_t count = 1)
{
fwrite(&value, sizeof(value),count, stream);
}
template<typename T>
void save_value(FILE* stream, const std::vector<T>& value)
{
size_t size = value.size();
fwrite(&size, sizeof(size_t), 1, stream);
fwrite(&value[0], sizeof(T), size, stream);
}
template<typename T>
void load_value(FILE* stream, T& value, size_t count = 1)
{
size_t read_cnt = fread(&value, sizeof(value), count, stream);
if (read_cnt != count) {
throw std::runtime_error("Cannot read from file");
}
}
template<typename T>
void load_value(FILE* stream, std::vector<T>& value)
{
size_t size;
size_t read_cnt = fread(&size, sizeof(size_t), 1, stream);
if (read_cnt!=1) {
throw std::runtime_error("Cannot read from file");
}
value.resize(size);
read_cnt = fread(&value[0], sizeof(T), size, stream);
if (read_cnt!=size) {
throw std::runtime_error("Cannot read from file");
}
}
/** @} */
/** @addtogroup metric_grp Metric (distance) classes
* @{ */
template<typename T> inline T abs(T x) { return (x<0) ? -x : x; }
template<> inline int abs<int>(int x) { return ::abs(x); }
template<> inline float abs<float>(float x) { return fabsf(x); }
template<> inline double abs<double>(double x) { return fabs(x); }
template<> inline long double abs<long double>(long double x) { return fabsl(x); }
/** Manhattan distance functor (generic version, optimized for high-dimensionality data sets).
* Corresponding distance traits: nanoflann::metric_L1
* \tparam T Type of the elements (e.g. double, float, uint8_t)
* \tparam DistanceType Type of distance variables (must be signed) (e.g. float, double, int64_t)
*/
template<class T, class DataSource, typename _DistanceType = T>
struct L1_Adaptor
{
typedef T ElementType;
typedef _DistanceType DistanceType;
const DataSource &data_source;
L1_Adaptor(const DataSource &_data_source) : data_source(_data_source) { }
inline DistanceType operator()(const T* a, const size_t b_idx, size_t size, DistanceType worst_dist = -1) const
{
DistanceType result = DistanceType();
const T* last = a + size;
const T* lastgroup = last - 3;
size_t d = 0;
/* Process 4 items with each loop for efficiency. */
while (a < lastgroup) {
const DistanceType diff0 = nanoflann::abs(a[0] - data_source.kdtree_get_pt(b_idx,d++));
const DistanceType diff1 = nanoflann::abs(a[1] - data_source.kdtree_get_pt(b_idx,d++));
const DistanceType diff2 = nanoflann::abs(a[2] - data_source.kdtree_get_pt(b_idx,d++));
const DistanceType diff3 = nanoflann::abs(a[3] - data_source.kdtree_get_pt(b_idx,d++));
result += diff0 + diff1 + diff2 + diff3;
a += 4;
if ((worst_dist>0)&&(result>worst_dist)) {
return result;
}
}
/* Process last 0-3 components. Not needed for standard vector lengths. */
while (a < last) {
result += nanoflann::abs( *a++ - data_source.kdtree_get_pt(b_idx,d++) );
}
return result;
}
template <typename U, typename V>
inline DistanceType accum_dist(const U a, const V b, int dim) const
{
return (a-b)*(a-b);
}
};
/** Squared Euclidean distance functor (generic version, optimized for high-dimensionality data sets).
* Corresponding distance traits: nanoflann::metric_L2
* \tparam T Type of the elements (e.g. double, float, uint8_t)
* \tparam DistanceType Type of distance variables (must be signed) (e.g. float, double, int64_t)
*/
template<class T, class DataSource, typename _DistanceType = T>
struct L2_Adaptor
{
typedef T ElementType;
typedef _DistanceType DistanceType;
const DataSource &data_source;
L2_Adaptor(const DataSource &_data_source) : data_source(_data_source) { }
inline DistanceType operator()(const T* a, const size_t b_idx, size_t size, DistanceType worst_dist = -1) const
{
DistanceType result = DistanceType();
const T* last = a + size;
const T* lastgroup = last - 3;
size_t d = 0;
/* Process 4 items with each loop for efficiency. */
while (a < lastgroup) {
const DistanceType diff0 = a[0] - data_source.kdtree_get_pt(b_idx,d++);
const DistanceType diff1 = a[1] - data_source.kdtree_get_pt(b_idx,d++);
const DistanceType diff2 = a[2] - data_source.kdtree_get_pt(b_idx,d++);
const DistanceType diff3 = a[3] - data_source.kdtree_get_pt(b_idx,d++);
result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3;
a += 4;
if ((worst_dist>0)&&(result>worst_dist)) {
return result;
}
}
/* Process last 0-3 components. Not needed for standard vector lengths. */
while (a < last) {
const DistanceType diff0 = *a++ - data_source.kdtree_get_pt(b_idx,d++);
result += diff0 * diff0;
}
return result;
}
template <typename U, typename V>
inline DistanceType accum_dist(const U a, const V b, int dim) const
{
return (a-b)*(a-b);
}
};
/** Squared Euclidean distance functor (suitable for low-dimensionality datasets, like 2D or 3D point clouds)
* Corresponding distance traits: nanoflann::metric_L2_Simple
* \tparam T Type of the elements (e.g. double, float, uint8_t)
* \tparam DistanceType Type of distance variables (must be signed) (e.g. float, double, int64_t)
*/
template<class T, class DataSource, typename _DistanceType = T>
struct L2_Simple_Adaptor
{
typedef T ElementType;
typedef _DistanceType DistanceType;
const DataSource &data_source;
L2_Simple_Adaptor(const DataSource &_data_source) : data_source(_data_source) { }
inline DistanceType operator()(const T* a, const size_t b_idx, size_t size) const {
return data_source.kdtree_distance(a,b_idx,size);
}
template <typename U, typename V>
inline DistanceType accum_dist(const U a, const V b, int dim) const
{
dim = dim;
return (a-b)*(a-b);
}
};
/** Metaprogramming helper traits class for the L1 (Manhattan) metric */
struct metric_L1 {
template<class T, class DataSource>
struct traits {
typedef L1_Adaptor<T,DataSource> distance_t;
};
};
/** Metaprogramming helper traits class for the L2 (Euclidean) metric */
struct metric_L2 {
template<class T, class DataSource>
struct traits {
typedef L2_Adaptor<T,DataSource> distance_t;
};
};
/** Metaprogramming helper traits class for the L2_simple (Euclidean) metric */
struct metric_L2_Simple {
template<class T, class DataSource>
struct traits {
typedef L2_Simple_Adaptor<T,DataSource> distance_t;
};
};
/** @} */
/** @addtogroup param_grp Parameter structs
* @{ */
/** Parameters (see http://code.google.com/p/nanoflann/ for help choosing the parameters)
*/
struct KDTreeSingleIndexAdaptorParams
{
KDTreeSingleIndexAdaptorParams(size_t _leaf_max_size = 10, int dim_ = -1) :
leaf_max_size(_leaf_max_size), dim(dim_)
{}
size_t leaf_max_size;
int dim;
};
/** Search options for KDTreeSingleIndexAdaptor::findNeighbors() */
struct SearchParams
{
/** Note: The first argument (checks_IGNORED_) is ignored, but kept for compatibility with the FLANN interface */
SearchParams(int checks_IGNORED_ = 32, float eps_ = 0, bool sorted_ = true ) :
eps(eps_), sorted(sorted_) {
checks_IGNORED_ = checks_IGNORED_;
}
int checks; //!< Ignored parameter (Kept for compatibility with the FLANN interface).
float eps; //!< search for eps-approximate neighbours (default: 0)
bool sorted; //!< only for radius search, require neighbours sorted by distance (default: true)
};
/** @} */
/** @addtogroup memalloc_grp Memory allocation
* @{ */
/**
* Allocates (using C's malloc) a generic type T.
*
* Params:
* count = number of instances to allocate.
* Returns: pointer (of type T*) to memory buffer
*/
template <typename T>
inline T* allocate(size_t count = 1)
{
T* mem = (T*) ::malloc(sizeof(T)*count);
return mem;
}
/**
* Pooled storage allocator
*
* The following routines allow for the efficient allocation of storage in
* small chunks from a specified pool. Rather than allowing each structure
* to be freed individually, an entire pool of storage is freed at once.
* This method has two advantages over just using malloc() and free(). First,
* it is far more efficient for allocating small objects, as there is
* no overhead for remembering all the information needed to free each
* object or consolidating fragmented memory. Second, the decision about
* how long to keep an object is made at the time of allocation, and there
* is no need to track down all the objects to free them.
*
*/
const size_t WORDSIZE=16;
const size_t BLOCKSIZE=8192;
class PooledAllocator
{
/* We maintain memory alignment to word boundaries by requiring that all
allocations be in multiples of the machine wordsize. */
/* Size of machine word in bytes. Must be power of 2. */
/* Minimum number of bytes requested at a time from the system. Must be multiple of WORDSIZE. */
size_t remaining; /* Number of bytes left in current block of storage. */
void* base; /* Pointer to base of current block of storage. */
void* loc; /* Current location in block to next allocate memory. */
size_t blocksize;
public:
size_t usedMemory;
size_t wastedMemory;
/**
Default constructor. Initializes a new pool.
*/
PooledAllocator(const size_t blocksize = BLOCKSIZE)
{
this->blocksize = blocksize;
remaining = 0;
base = NULL;
usedMemory = 0;
wastedMemory = 0;
}
/**
* Destructor. Frees all the memory allocated in this pool.
*/
~PooledAllocator()
{
while (base != NULL) {
void *prev = *((void**) base); /* Get pointer to prev block. */
::free(base);
base = prev;
}
}
/**
* Returns a pointer to a piece of new memory of the given size in bytes
* allocated from the pool.
*/
void* malloc(const size_t req_size)
{
/* Round size up to a multiple of wordsize. The following expression
only works for WORDSIZE that is a power of 2, by masking last bits of
incremented size to zero.
*/
const size_t size = (req_size + (WORDSIZE - 1)) & ~(WORDSIZE - 1);
/* Check whether a new block must be allocated. Note that the first word
of a block is reserved for a pointer to the previous block.
*/
if (size > remaining) {
wastedMemory += remaining;
/* Allocate new storage. */
const size_t blocksize = (size + sizeof(void*) + (WORDSIZE-1) > BLOCKSIZE) ?
size + sizeof(void*) + (WORDSIZE-1) : BLOCKSIZE;
// use the standard C malloc to allocate memory
void* m = ::malloc(blocksize);
if (!m) {
fprintf(stderr,"Failed to allocate memory.\n");
return NULL;
}
/* Fill first word of new block with pointer to previous block. */
((void**) m)[0] = base;
base = m;
size_t shift = 0;
//int size_t = (WORDSIZE - ( (((size_t)m) + sizeof(void*)) & (WORDSIZE-1))) & (WORDSIZE-1);
remaining = blocksize - sizeof(void*) - shift;
loc = ((char*)m + sizeof(void*) + shift);
}
void* rloc = loc;
loc = (char*)loc + size;
remaining -= size;
usedMemory += size;
return rloc;
}
/**
* Allocates (using this pool) a generic type T.
*
* Params:
* count = number of instances to allocate.
* Returns: pointer (of type T*) to memory buffer
*/
template <typename T>
T* allocate(const size_t count = 1)
{
T* mem = (T*) this->malloc(sizeof(T)*count);
return mem;
}
};
/** @} */
/** @addtogroup kdtrees_grp KD-tree classes and adaptors
* @{ */
/** kd-tree index
*
* Contains the k-d trees and other information for indexing a set of points
* for nearest-neighbor matching.
*
* The class "DatasetAdaptor" must provide the following interface (can be non-virtual, inlined methods):
*
* \code
* // Must return the number of data points
* inline size_t kdtree_get_point_count() const { ... }
*
* // Must return the Euclidean (L2) distance between the vector "p1[0:size-1]" and the data point with index "idx_p2" stored in the class:
* inline DistanceType kdtree_distance(const T *p1, const size_t idx_p2,size_t size) const { ... }
*
* // Must return the dim'th component of the idx'th point in the class:
* inline T kdtree_get_pt(const size_t idx, int dim) const { ... }
*
* // Optional bounding-box computation: return false to default to a standard bbox computation loop.
* // Return true if the BBOX was already computed by the class and returned in "bb" so it can be avoided to redo it again.
* // Look at bb.size() to find out the expected dimensionality (e.g. 2 or 3 for point clouds)
* template <class BBOX>
* bool kdtree_get_bbox(BBOX &bb) const
* {
* bb[0].low = ...; bb[0].high = ...; // 0th dimension limits
* bb[1].low = ...; bb[1].high = ...; // 1st dimension limits
* ...
* return true;
* }
*
* \endcode
*
* \tparam IndexType Will be typically size_t or int
*/
template <typename Distance, class DatasetAdaptor,int DIM = -1, typename IndexType = size_t>
class KDTreeSingleIndexAdaptor
{
public:
typedef typename Distance::ElementType ElementType;
typedef typename Distance::DistanceType DistanceType;
protected:
/**
* Array of indices to vectors in the dataset.
*/
std::vector<IndexType> vind;
size_t m_leaf_max_size;
/**
* The dataset used by this index
*/
const DatasetAdaptor &dataset; //!< The source of our data
const KDTreeSingleIndexAdaptorParams index_params;
size_t m_size;
int dim; //!< Dimensionality of each data point
/*--------------------- Internal Data Structures --------------------------*/
struct Node
{
union {
struct
{
/**
* Indices of points in leaf node
*/
IndexType left, right;
} lr;
struct
{
/**
* Dimension used for subdivision.
*/
int divfeat;
/**
* The values used for subdivision.
*/
DistanceType divlow, divhigh;
} sub;
};
/**
* The child nodes.
*/
Node* child1, * child2;
};
typedef Node* NodePtr;
struct Interval
{
ElementType low, high;
};
typedef std::vector<Interval> BoundingBox;
/** This record represents a branch point when finding neighbors in
the tree. It contains a record of the minimum distance to the query
point, as well as the node at which the search resumes.
*/
template <typename T, typename DistanceType>
struct BranchStruct
{
T node; /* Tree node at which search resumes */
DistanceType mindist; /* Minimum distance to query for all nodes below. */
BranchStruct() {}
BranchStruct(const T& aNode, DistanceType dist) : node(aNode), mindist(dist) {}
inline bool operator<(const BranchStruct<T, DistanceType>& rhs) const
{
return mindist<rhs.mindist;
}
};
/**
* Array of k-d trees used to find neighbours.
*/
NodePtr root_node;
typedef BranchStruct<NodePtr, DistanceType> BranchSt;
typedef BranchSt* Branch;
BoundingBox root_bbox;
/**
* Pooled memory allocator.
*
* Using a pooled memory allocator is more efficient
* than allocating memory directly when there is a large
* number small of memory allocations.
*/
PooledAllocator pool;
public:
Distance distance;
/**
* KDTree constructor
*
* Params:
* inputData = dataset with the input features
* params = parameters passed to the kdtree algorithm (see http://code.google.com/p/nanoflann/ for help choosing the parameters)
*/
KDTreeSingleIndexAdaptor(const int dimensionality, const DatasetAdaptor& inputData, const KDTreeSingleIndexAdaptorParams& params = KDTreeSingleIndexAdaptorParams() ) :
dataset(inputData), index_params(params), distance(inputData)
{
m_size = dataset.kdtree_get_point_count();
dim = dimensionality;
if (DIM>0) dim=DIM;
else {
if (params.dim>0) dim = params.dim;
}
m_leaf_max_size = params.leaf_max_size;
// Create a permutable array of indices to the input vectors.
init_vind();
}
/**
* Standard destructor
*/
~KDTreeSingleIndexAdaptor()
{
}
/**
* Builds the index
*/
void buildIndex()
{
init_vind();
computeBoundingBox(root_bbox);
root_node = divideTree(0, m_size, root_bbox ); // construct the tree
}
/**
* Returns size of index.
*/
size_t size() const
{
return m_size;
}
/**
* Returns the length of an index feature.
*/
size_t veclen() const
{
return static_cast<size_t>(DIM>0 ? DIM : dim);
}
/**
* Computes the inde memory usage
* Returns: memory used by the index
*/
size_t usedMemory() const
{
return pool.usedMemory+pool.wastedMemory+dataset.kdtree_get_point_count()*sizeof(IndexType); // pool memory and vind array memory
}
/** \name Query methods
* @{ */
/**
* Find set of nearest neighbors to vec[0:dim-1]. Their indices are stored inside
* the result object.
*
* Params:
* result = the result object in which the indices of the nearest-neighbors are stored
* vec = the vector for which to search the nearest neighbors
*
* \tparam RESULTSET Should be any ResultSet<DistanceType>
* \sa knnSearch, radiusSearch
*/
template <typename RESULTSET>
void findNeighbors(RESULTSET& result, const ElementType* vec, const SearchParams& searchParams) const
{
assert(vec);
float epsError = 1+searchParams.eps;
std::vector<DistanceType> dists( (DIM>0 ? DIM : dim) ,0);
DistanceType distsq = computeInitialDistances(vec, dists);
searchLevel(result, vec, root_node, distsq, dists, epsError); // "count_leaf" parameter removed since was neither used nor returned to the user.
}
/**
* Find the "num_closest" nearest neighbors to the \a query_point[0:dim-1]. Their indices are stored inside
* the result object.
* \sa radiusSearch, findNeighbors
* \note nChecks_IGNORED is ignored but kept for compatibility with the original FLANN interface.
*/
inline void knnSearch(const ElementType *query_point, const size_t num_closest, IndexType *out_indices, DistanceType *out_distances_sq) const
{
nanoflann::KNNResultSet<DistanceType,IndexType> resultSet(num_closest);
resultSet.init(out_indices, out_distances_sq);
this->findNeighbors(resultSet, query_point, nanoflann::SearchParams());
}
/**
* Find all the neighbors to \a query_point[0:dim-1] within a maximum radius.
* The output is given as a vector of pairs, of which the first element is a point index and the second the corresponding distance.
* Previous contents of \a IndicesDists are cleared.
*
* If searchParams.sorted==true, the output list is sorted by ascending distances.
*
* For a better performance, it is advisable to do a .reserve() on the vector if you have any wild guess about the number of expected matches.
*
* \sa knnSearch, findNeighbors
* \return The number of points within the given radius (i.e. indices.size() or dists.size() )
*/
size_t radiusSearch(const ElementType *query_point,const DistanceType radius, std::vector<std::pair<IndexType,DistanceType> >& IndicesDists, const SearchParams& searchParams) const
{
RadiusResultSet<DistanceType,IndexType> resultSet(radius,IndicesDists);
this->findNeighbors(resultSet, query_point, searchParams);
if (searchParams.sorted)
std::sort(IndicesDists.begin(),IndicesDists.end(), IndexDist_Sorter() );
return resultSet.size();
}
/** @} */
private:
/** Make sure the auxiliary list \a vind has the same size than the current dataset, and re-generate if size has changed. */
void init_vind()
{
// Create a permutable array of indices to the input vectors.
m_size = dataset.kdtree_get_point_count();
if (vind.size()!=m_size)
{
vind.resize(m_size);
for (size_t i = 0; i < m_size; i++) vind[i] = i;
}
}
/// Helper accessor to the dataset points:
inline ElementType dataset_get(size_t idx, int component) const {
return dataset.kdtree_get_pt(idx,component);
}
void save_tree(FILE* stream, NodePtr tree)
{
save_value(stream, *tree);
if (tree->child1!=NULL) {
save_tree(stream, tree->child1);
}
if (tree->child2!=NULL) {
save_tree(stream, tree->child2);
}
}
void load_tree(FILE* stream, NodePtr& tree)
{
tree = pool.allocate<Node>();
load_value(stream, *tree);
if (tree->child1!=NULL) {
load_tree(stream, tree->child1);
}
if (tree->child2!=NULL) {
load_tree(stream, tree->child2);
}
}
void computeBoundingBox(BoundingBox& bbox)
{
bbox.resize((DIM>0 ? DIM : dim));
if (dataset.kdtree_get_bbox(bbox))
{
// Done! It was implemented in derived class
}
else
{
for (int i=0; i<(DIM>0 ? DIM : dim); ++i) {
bbox[i].low =
bbox[i].high = dataset_get(0,i);
}
const size_t N = dataset.kdtree_get_point_count();
for (size_t k=1; k<N; ++k) {
for (int i=0; i<(DIM>0 ? DIM : dim); ++i) {
if (dataset_get(k,i)<bbox[i].low) bbox[i].low = dataset_get(k,i);
if (dataset_get(k,i)>bbox[i].high) bbox[i].high = dataset_get(k,i);
}
}
}
}
/**
* Create a tree node that subdivides the list of vecs from vind[first]
* to vind[last]. The routine is called recursively on each sublist.
* Place a pointer to this new tree node in the location pTree.
*
* Params: pTree = the new node to create
* first = index of the first vector
* last = index of the last vector
*/
NodePtr divideTree(const IndexType left, const IndexType right, BoundingBox& bbox)
{
NodePtr node = pool.allocate<Node>(); // allocate memory
/* If too few exemplars remain, then make this a leaf node. */
if ( (right-left) <= m_leaf_max_size) {
node->child1 = node->child2 = NULL; /* Mark as leaf node. */
node->lr.left = left;
node->lr.right = right;
// compute bounding-box of leaf points
for (int i=0; i<(DIM>0 ? DIM : dim); ++i) {
bbox[i].low = dataset_get(vind[left],i);
bbox[i].high = dataset_get(vind[left],i);
}
for (IndexType k=left+1; k<right; ++k) {
for (int i=0; i<(DIM>0 ? DIM : dim); ++i) {
if (bbox[i].low>dataset_get(vind[k],i)) bbox[i].low=dataset_get(vind[k],i);
if (bbox[i].high<dataset_get(vind[k],i)) bbox[i].high=dataset_get(vind[k],i);
}
}
}
else {
IndexType idx;
int cutfeat;
DistanceType cutval;
middleSplit_(&vind[0]+left, right-left, idx, cutfeat, cutval, bbox);
node->sub.divfeat = cutfeat;
BoundingBox left_bbox(bbox);
left_bbox[cutfeat].high = cutval;
node->child1 = divideTree(left, left+idx, left_bbox);
BoundingBox right_bbox(bbox);
right_bbox[cutfeat].low = cutval;
node->child2 = divideTree(left+idx, right, right_bbox);
node->sub.divlow = left_bbox[cutfeat].high;
node->sub.divhigh = right_bbox[cutfeat].low;
for (int i=0; i<(DIM>0 ? DIM : dim); ++i) {
bbox[i].low = std::min(left_bbox[i].low, right_bbox[i].low);
bbox[i].high = std::max(left_bbox[i].high, right_bbox[i].high);
}
}
return node;
}
void computeMinMax(IndexType* ind, IndexType count, int element, ElementType& min_elem, ElementType& max_elem)
{
min_elem = dataset_get(ind[0],element);
max_elem = dataset_get(ind[0],element);
for (IndexType i=1; i<count; ++i) {
ElementType val = dataset_get(ind[i],element);
if (val<min_elem) min_elem = val;
if (val>max_elem) max_elem = val;
}
}
void middleSplit(IndexType* ind, IndexType count, IndexType& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox)
{
// find the largest span from the approximate bounding box
ElementType max_span = bbox[0].high-bbox[0].low;
cutfeat = 0;
cutval = (bbox[0].high+bbox[0].low)/2;
for (int i=1; i<(DIM>0 ? DIM : dim); ++i) {
ElementType span = bbox[i].low-bbox[i].low;
if (span>max_span) {
max_span = span;
cutfeat = i;
cutval = (bbox[i].high+bbox[i].low)/2;
}
}
// compute exact span on the found dimension
ElementType min_elem, max_elem;
computeMinMax(ind, count, cutfeat, min_elem, max_elem);
cutval = (min_elem+max_elem)/2;
max_span = max_elem - min_elem;
// check if a dimension of a largest span exists
size_t k = cutfeat;
for (size_t i=0; i<(DIM>0 ? DIM : dim); ++i) {
if (i==k) continue;
ElementType span = bbox[i].high-bbox[i].low;
if (span>max_span) {
computeMinMax(ind, count, i, min_elem, max_elem);
span = max_elem - min_elem;
if (span>max_span) {
max_span = span;
cutfeat = i;
cutval = (min_elem+max_elem)/2;
}
}
}
IndexType lim1, lim2;
planeSplit(ind, count, cutfeat, cutval, lim1, lim2);
if (lim1>count/2) index = lim1;
else if (lim2<count/2) index = lim2;
else index = count/2;
}
void middleSplit_(IndexType* ind, IndexType count, IndexType& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox)
{
const DistanceType EPS=static_cast<DistanceType>(0.00001);
ElementType max_span = bbox[0].high-bbox[0].low;
for (int i=1; i<(DIM>0 ? DIM : dim); ++i) {
ElementType span = bbox[i].high-bbox[i].low;
if (span>max_span) {
max_span = span;
}
}
ElementType max_spread = -1;
cutfeat = 0;
for (int i=0; i<(DIM>0 ? DIM : dim); ++i) {
ElementType span = bbox[i].high-bbox[i].low;
if (span>(1-EPS)*max_span) {
ElementType min_elem, max_elem;
computeMinMax(ind, count, cutfeat, min_elem, max_elem);
ElementType spread = max_elem-min_elem;;
if (spread>max_spread) {
cutfeat = i;
max_spread = spread;
}
}
}
// split in the middle
DistanceType split_val = (bbox[cutfeat].low+bbox[cutfeat].high)/2;
ElementType min_elem, max_elem;
computeMinMax(ind, count, cutfeat, min_elem, max_elem);
if (split_val<min_elem) cutval = min_elem;
else if (split_val>max_elem) cutval = max_elem;
else cutval = split_val;
IndexType lim1, lim2;
planeSplit(ind, count, cutfeat, cutval, lim1, lim2);
if (lim1>count/2) index = lim1;
else if (lim2<count/2) index = lim2;
else index = count/2;
}
/**
* Subdivide the list of points by a plane perpendicular on axe corresponding
* to the 'cutfeat' dimension at 'cutval' position.
*
* On return:
* dataset[ind[0..lim1-1]][cutfeat]<cutval
* dataset[ind[lim1..lim2-1]][cutfeat]==cutval
* dataset[ind[lim2..count]][cutfeat]>cutval
*/
void planeSplit(IndexType* ind, const IndexType count, int cutfeat, DistanceType cutval, IndexType& lim1, IndexType& lim2)
{
/* Move vector indices for left subtree to front of list. */
IndexType left = 0;
IndexType right = count-1;
for (;; ) {
while (left<=right && dataset_get(ind[left],cutfeat)<cutval) ++left;
while (right && left<=right && dataset_get(ind[right],cutfeat)>=cutval) --right;
if (left>right || !right) break; // "!right" was added to support unsigned Index types
std::swap(ind[left], ind[right]);
++left;
--right;
}
/* If either list is empty, it means that all remaining features
* are identical. Split in the middle to maintain a balanced tree.
*/
lim1 = left;
right = count-1;
for (;; ) {
while (left<=right && dataset_get(ind[left],cutfeat)<=cutval) ++left;
while (right && left<=right && dataset_get(ind[right],cutfeat)>cutval) --right;
if (left>right || !right) break; // "!right" was added to support unsigned Index types
std::swap(ind[left], ind[right]);
++left;
--right;
}
lim2 = left;
}
DistanceType computeInitialDistances(const ElementType* vec, std::vector<DistanceType>& dists) const
{
assert(vec);
DistanceType distsq = 0.0;
for (int i = 0; i < (DIM>0 ? DIM : dim); ++i) {
if (vec[i] < root_bbox[i].low) {
dists[i] = distance.accum_dist(vec[i], root_bbox[i].low, i);
distsq += dists[i];
}
if (vec[i] > root_bbox[i].high) {
dists[i] = distance.accum_dist(vec[i], root_bbox[i].high, i);
distsq += dists[i];
}
}
return distsq;
}
/**
* Performs an exact search in the tree starting from a node.
* \tparam RESULTSET Should be any ResultSet<DistanceType>
*/
template <class RESULTSET>
void searchLevel(RESULTSET& result_set, const ElementType* vec, const NodePtr node, DistanceType mindistsq,
std::vector<DistanceType>& dists, const float epsError) const
{
/* If this is a leaf node, then do check and return. */
if ((node->child1 == NULL)&&(node->child2 == NULL)) {
//count_leaf += (node->lr.right-node->lr.left); // Removed since was neither used nor returned to the user.
DistanceType worst_dist = result_set.worstDist();
for (IndexType i=node->lr.left; i<node->lr.right; ++i) {
const IndexType index = vind[i];// reorder... : i;
DistanceType dist = distance(vec, index, (DIM>0 ? DIM : dim));
if (dist<worst_dist) {
result_set.addPoint(dist,vind[i]);
}
}
return;
}
/* Which child branch should be taken first? */
int idx = node->sub.divfeat;
ElementType val = vec[idx];
DistanceType diff1 = val - node->sub.divlow;
DistanceType diff2 = val - node->sub.divhigh;
NodePtr bestChild;
NodePtr otherChild;
DistanceType cut_dist;
if ((diff1+diff2)<0) {
bestChild = node->child1;
otherChild = node->child2;
cut_dist = distance.accum_dist(val, node->sub.divhigh, idx);
}
else {
bestChild = node->child2;
otherChild = node->child1;
cut_dist = distance.accum_dist( val, node->sub.divlow, idx);
}
/* Call recursively to search next level down. */
searchLevel(result_set, vec, bestChild, mindistsq, dists, epsError);
DistanceType dst = dists[idx];
mindistsq = mindistsq + cut_dist - dst;
dists[idx] = cut_dist;
if (mindistsq*epsError<=result_set.worstDist()) {
searchLevel(result_set, vec, otherChild, mindistsq, dists, epsError);
}
dists[idx] = dst;
}
void saveIndex(FILE* stream)
{
save_value(stream, m_size);
save_value(stream, dim);
save_value(stream, root_bbox);
save_value(stream, m_leaf_max_size);
save_value(stream, vind);
save_tree(stream, root_node);
}
void loadIndex(FILE* stream)
{
load_value(stream, m_size);
load_value(stream, dim);
load_value(stream, root_bbox);
load_value(stream, m_leaf_max_size);
load_value(stream, vind);
load_tree(stream, root_node);
}
}; // class KDTree
/** A simple KD-tree adaptor for working with data directly stored in an Eigen Matrix, without duplicating the data storage.
* Each row in the matrix represents a point in the state space.
*
* Example of usage:
* \code
* Eigen::Matrix<num_t,Dynamic,Dynamic> mat;
* // Fill out "mat"...
*
* typedef KDTreeEigenMatrixAdaptor< Eigen::Matrix<num_t,Dynamic,Dynamic> > my_kd_tree_t;
* const int max_leaf = 10;
* my_kd_tree_t mat_index(dimdim, mat, max_leaf );
* mat_index.index->buildIndex();
* mat_index.index->...
* \endcode
*
* \tparam DIM If set to >0, it specifies a compile-time fixed dimensionality for the points in the data set, allowing more compiler optimizations.
* \tparam Distance The distance metric to use: nanoflann::metric_L1, nanoflann::metric_L2, nanoflann::metric_L2_Simple, etc.
* \tparam IndexType The type for indices in the KD-tree index (typically, size_t of int)
*/
template <class MatrixType, int DIM = -1, class Distance = nanoflann::metric_L2, typename IndexType = size_t>
struct KDTreeEigenMatrixAdaptor
{
typedef KDTreeEigenMatrixAdaptor<MatrixType,DIM,Distance> self_t;
typedef typename MatrixType::Scalar num_t;
typedef typename Distance::template traits<num_t,self_t>::distance_t metric_t;
typedef KDTreeSingleIndexAdaptor< metric_t,self_t,DIM,IndexType> index_t;
index_t* index; //! The kd-tree index for the user to call its methods as usual with any other FLANN index.
/// Constructor: takes a const ref to the matrix object with the data points
KDTreeEigenMatrixAdaptor(const int dimensionality, const MatrixType &mat, const int leaf_max_size = 10) : m_data_matrix(mat)
{
const size_t dims = mat.cols();
if (DIM>0 && static_cast<int>(dims)!=DIM)
throw std::runtime_error("Data set dimensionality does not match the 'DIM' template argument");
index = new index_t( dims, *this /* adaptor */, nanoflann::KDTreeSingleIndexAdaptorParams(leaf_max_size, dims ) );
index->buildIndex();
}
~KDTreeEigenMatrixAdaptor() {
delete index;
}
const MatrixType &m_data_matrix;
/** Query for the \a num_closest closest points to a given point (entered as query_point[0:dim-1]).
* Note that this is a short-cut method for index->findNeighbors().
* The user can also call index->... methods as desired.
* \note nChecks_IGNORED is ignored but kept for compatibility with the original FLANN interface.
*/
inline void query(const num_t *query_point, const size_t num_closest, IndexType *out_indices, num_t *out_distances_sq, const int nChecks_IGNORED = 10) const
{
nanoflann::KNNResultSet<typename MatrixType::Scalar,IndexType> resultSet(num_closest);
resultSet.init(out_indices, out_distances_sq);
index->findNeighbors(resultSet, query_point, nanoflann::SearchParams());
}
/** @name Interface expected by KDTreeSingleIndexAdaptor
* @{ */
const self_t & derived() const {
return *this;
}
self_t & derived() {
return *this;
}
// Must return the number of data points
inline size_t kdtree_get_point_count() const {
return m_data_matrix.rows();
}
// Returns the distance between the vector "p1[0:size-1]" and the data point with index "idx_p2" stored in the class:
inline num_t kdtree_distance(const num_t *p1, const size_t idx_p2,size_t size) const
{
num_t s=0;
for (size_t i=0; i<size; i++) {
const num_t d= p1[i]-m_data_matrix.coeff(idx_p2,i);
s+=d*d;
}
return s;
}
// Returns the dim'th component of the idx'th point in the class:
inline num_t kdtree_get_pt(const size_t idx, int dim) const {
return m_data_matrix.coeff(idx,dim);
}
// Optional bounding-box computation: return false to default to a standard bbox computation loop.
// Return true if the BBOX was already computed by the class and returned in "bb" so it can be avoided to redo it again.
// Look at bb.size() to find out the expected dimensionality (e.g. 2 or 3 for point clouds)
template <class BBOX>
bool kdtree_get_bbox(BBOX &bb) const {
return false;
}
/** @} */
}; // end of KDTreeEigenMatrixAdaptor
/** @} */
/** @} */ // end of grouping
} // end of NS
#endif /* NANOFLANN_HPP_ */