Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- pretraining/mathematica/geometry/solids/1050.txt +18 -0
- pretraining/mathematica/geometry/solids/11576.txt +15 -0
- pretraining/mathematica/geometry/solids/126.txt +17 -0
- pretraining/mathematica/geometry/solids/14549.txt +19 -0
- pretraining/mathematica/geometry/solids/1534.txt +14 -0
- pretraining/mathematica/geometry/solids/16163.txt +14 -0
- pretraining/mathematica/geometry/solids/17715.txt +17 -0
- pretraining/mathematica/geometry/solids/18910.txt +29 -0
- pretraining/mathematica/geometry/solids/19238.txt +5 -0
- pretraining/mathematica/geometry/solids/1965.txt +14 -0
- pretraining/mathematica/geometry/solids/20647.txt +17 -0
- pretraining/mathematica/geometry/solids/21259.txt +16 -0
- pretraining/mathematica/geometry/solids/21372.txt +14 -0
- pretraining/mathematica/geometry/solids/21957.txt +21 -0
- pretraining/mathematica/geometry/solids/24731.txt +18 -0
- pretraining/mathematica/geometry/solids/25817.txt +17 -0
- pretraining/mathematica/geometry/solids/26546.txt +15 -0
- pretraining/mathematica/geometry/solids/29389.txt +15 -0
- pretraining/mathematica/geometry/solids/29601.txt +18 -0
- pretraining/mathematica/geometry/solids/31717.txt +18 -0
- pretraining/mathematica/geometry/solids/3310.txt +67 -0
- pretraining/mathematica/geometry/solids/38854.txt +18 -0
- pretraining/mathematica/geometry/solids/41787.txt +17 -0
- pretraining/mathematica/geometry/solids/42244.txt +16 -0
- pretraining/mathematica/geometry/solids/42739.txt +33 -0
- pretraining/mathematica/geometry/solids/43260.txt +13 -0
- pretraining/mathematica/geometry/solids/44291.txt +16 -0
- pretraining/mathematica/geometry/solids/48354.txt +15 -0
- pretraining/mathematica/geometry/solids/49598.txt +17 -0
- pretraining/mathematica/geometry/solids/4982.txt +13 -0
- pretraining/mathematica/geometry/solids/50657.txt +14 -0
- pretraining/mathematica/geometry/solids/5155.txt +39 -0
- pretraining/mathematica/geometry/solids/522.txt +5 -0
- pretraining/mathematica/geometry/solids/54818.txt +15 -0
- pretraining/mathematica/geometry/solids/56848.txt +18 -0
- pretraining/mathematica/geometry/solids/57938.txt +15 -0
- pretraining/mathematica/geometry/solids/58362.txt +17 -0
- pretraining/mathematica/geometry/solids/60676.txt +13 -0
- pretraining/mathematica/geometry/solids/63728.txt +18 -0
- pretraining/mathematica/geometry/solids/64249.txt +17 -0
- pretraining/mathematica/geometry/solids/64670.txt +17 -0
- pretraining/mathematica/geometry/solids/64815.txt +18 -0
- pretraining/mathematica/geometry/solids/65960.txt +16 -0
- pretraining/mathematica/geometry/solids/66.txt +16 -0
- pretraining/mathematica/geometry/solids/66188.txt +18 -0
- pretraining/mathematica/geometry/solids/67198.txt +17 -0
- pretraining/mathematica/geometry/solids/68660.txt +15 -0
- pretraining/mathematica/geometry/solids/70221.txt +13 -0
- pretraining/mathematica/geometry/solids/71761.txt +16 -0
- pretraining/mathematica/geometry/solids/7302.txt +14 -0
pretraining/mathematica/geometry/solids/1050.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.33 & 0.419 & 0.314 \\
|
| 5 |
+
0.825 & 0.052 & 0.99 \\
|
| 6 |
+
0.088 & 0.671 & 0.016 \\
|
| 7 |
+
0.624 & 0.453 & 0.999 \\
|
| 8 |
+
0.597 & 0.734 & 0.832 \\
|
| 9 |
+
0.181 & 0.482 & 0.531 \\
|
| 10 |
+
0.826 & 0.941 & 0.638 \\
|
| 11 |
+
0.99 & 0.338 & 0.558 \\
|
| 12 |
+
0.742 & 0.324 & 0.116 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Solid Angle: $5.44$
|
| 17 |
+
Surface Area: $1.94$
|
| 18 |
+
Volume: $0.18$
|
pretraining/mathematica/geometry/solids/11576.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.53 & 0.187 & 0.395 \\
|
| 5 |
+
0.542 & 0.972 & 0.899 \\
|
| 6 |
+
0.152 & 0.789 & 0.959 \\
|
| 7 |
+
0.749 & 0.769 & 0.153 \\
|
| 8 |
+
0.296 & 0.396 & 0.916 \\
|
| 9 |
+
0.345 & 0.486 & 0.352 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Surface Area: $1.2$
|
| 14 |
+
Volume: $0.06$
|
| 15 |
+
Solid Angle: $0.78$
|
pretraining/mathematica/geometry/solids/126.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.953 & 0.804 & 0.11 \\
|
| 5 |
+
0.657 & 0.835 & 0.968 \\
|
| 6 |
+
0.973 & 0.03 & 0.129 \\
|
| 7 |
+
0.521 & 0.239 & 0.932 \\
|
| 8 |
+
0.031 & 0.659 & 0.394 \\
|
| 9 |
+
0.126 & 0.298 & 0.086 \\
|
| 10 |
+
0.42 & 0.113 & 0.127 \\
|
| 11 |
+
0.086 & 0.433 & 0.424 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Volume: $0.25$
|
| 16 |
+
Solid Angle: $1.11$
|
| 17 |
+
Surface Area: $2.43$
|
pretraining/mathematica/geometry/solids/14549.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.975 & 0.867 & 0.7 \\
|
| 5 |
+
0.85 & 0.369 & 0.93 \\
|
| 6 |
+
0.461 & 0.982 & 0.237 \\
|
| 7 |
+
0.798 & 0.543 & 0.201 \\
|
| 8 |
+
0.482 & 0.837 & 0.798 \\
|
| 9 |
+
0.802 & 0.865 & 0.228 \\
|
| 10 |
+
0.015 & 0.728 & 0.395 \\
|
| 11 |
+
0.717 & 0.116 & 0.516 \\
|
| 12 |
+
0.311 & 0.05 & 0.356 \\
|
| 13 |
+
0.29 & 0.468 & 0.924 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Surface Area: $2.21$
|
| 18 |
+
Volume: $0.24$
|
| 19 |
+
Solid Angle: $1.61$
|
pretraining/mathematica/geometry/solids/1534.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.43 & 0.849 & 0.348 \\
|
| 5 |
+
0.371 & 0.245 & 0.96 \\
|
| 6 |
+
0.274 & 0.27 & 0.101 \\
|
| 7 |
+
0.224 & 0.234 & 0.839 \\
|
| 8 |
+
0.367 & 0.038 & 0.369 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Volume: $0.02$
|
| 13 |
+
Surface Area: $0.8$
|
| 14 |
+
Solid Angle: $0.18$
|
pretraining/mathematica/geometry/solids/16163.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.254 & 0.731 & 0.291 \\
|
| 5 |
+
0.654 & 0.648 & 0.28 \\
|
| 6 |
+
0.709 & 0.071 & 0.69 \\
|
| 7 |
+
0.312 & 0.134 & 0.438 \\
|
| 8 |
+
0.793 & 0.699 & 0.981 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Solid Angle: $0.69$
|
| 13 |
+
Surface Area: $1.05$
|
| 14 |
+
Volume: $0.05$
|
pretraining/mathematica/geometry/solids/17715.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.408 & 0.604 & 0.289 \\
|
| 5 |
+
0.997 & 0.783 & 0.571 \\
|
| 6 |
+
0.181 & 0.017 & 0.861 \\
|
| 7 |
+
0.88 & 0.482 & 0.239 \\
|
| 8 |
+
0.244 & 0.872 & 0.494 \\
|
| 9 |
+
0.02 & 0.212 & 0.876 \\
|
| 10 |
+
0.11 & 0.468 & 0.295 \\
|
| 11 |
+
0.668 & 0.004 & 0.201 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Surface Area: $1.92$
|
| 16 |
+
Volume: $0.17$
|
| 17 |
+
Solid Angle: $4.87$
|
pretraining/mathematica/geometry/solids/18910.txt
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0. & 0. & 1.401 \\
|
| 5 |
+
0. & 0. & -1.401 \\
|
| 6 |
+
0.178 & -1.309 & 0.467 \\
|
| 7 |
+
0.178 & 1.309 & 0.467 \\
|
| 8 |
+
0.467 & -0.809 & -1.044 \\
|
| 9 |
+
0.467 & 0.809 & -1.044 \\
|
| 10 |
+
1.044 & -0.809 & 0.467 \\
|
| 11 |
+
1.044 & 0.809 & 0.467 \\
|
| 12 |
+
-1.223 & -0.5 & 0.467 \\
|
| 13 |
+
-1.223 & 0.5 & 0.467 \\
|
| 14 |
+
1.223 & -0.5 & -0.467 \\
|
| 15 |
+
1.223 & 0.5 & -0.467 \\
|
| 16 |
+
-0.934 & 0. & -1.044 \\
|
| 17 |
+
-0.467 & -0.809 & 1.044 \\
|
| 18 |
+
-0.467 & 0.809 & 1.044 \\
|
| 19 |
+
0.934 & 0. & 1.044 \\
|
| 20 |
+
-1.044 & -0.809 & -0.467 \\
|
| 21 |
+
-1.044 & 0.809 & -0.467 \\
|
| 22 |
+
-0.995 & 0. & 1.303 \\
|
| 23 |
+
-0.178 & -1.309 & -0.467 \\
|
| 24 |
+
-0.178 & 1.309 & -0.467 \\
|
| 25 |
+
0.805 & -1.394 & -0.308 \\
|
| 26 |
+
\end{array}
|
| 27 |
+
\right)$. Determine the Volume.
|
| 28 |
+
Answer:
|
| 29 |
+
$8.27$
|
pretraining/mathematica/geometry/solids/19238.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A sphere centered at $\{-6.57,2.079,5.098\}$ has radius $3.58$. Estimate the sphere's surface area and volume.
|
| 3 |
+
Answer:
|
| 4 |
+
Volume: $192.12$
|
| 5 |
+
Surface Area: $161.02$
|
pretraining/mathematica/geometry/solids/1965.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.065 & 0.82 & 0.523 \\
|
| 5 |
+
0.123 & 0.356 & 0.947 \\
|
| 6 |
+
0.083 & 0.444 & 0.679 \\
|
| 7 |
+
0.952 & 0.295 & 0.932 \\
|
| 8 |
+
0.031 & 0.595 & 0.68 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Surface Area: $0.61$
|
| 13 |
+
Solid Angle: $0.19$
|
| 14 |
+
Volume: $0.01$
|
pretraining/mathematica/geometry/solids/20647.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.957 & 0.783 & 0.172 \\
|
| 5 |
+
0.76 & 0.888 & 0.999 \\
|
| 6 |
+
0.881 & 0.344 & 0.635 \\
|
| 7 |
+
0.233 & 0.93 & 0.444 \\
|
| 8 |
+
0.75 & 0.236 & 0.861 \\
|
| 9 |
+
0.576 & 0.587 & 0.902 \\
|
| 10 |
+
0.607 & 0.95 & 0.872 \\
|
| 11 |
+
0.693 & 0.971 & 0.891 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Surface Area: $1.29$
|
| 16 |
+
Solid Angle: $0.55$
|
| 17 |
+
Volume: $0.09$
|
pretraining/mathematica/geometry/solids/21259.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.867 & 0.008 & 0.813 \\
|
| 5 |
+
0.276 & 0.913 & 0.138 \\
|
| 6 |
+
0.696 & 0.475 & 0.174 \\
|
| 7 |
+
0.226 & 0.857 & 0.019 \\
|
| 8 |
+
0.147 & 0.843 & 0.117 \\
|
| 9 |
+
0.933 & 0.538 & 0.526 \\
|
| 10 |
+
0.986 & 0.919 & 0.973 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Volume: $0.09$
|
| 15 |
+
Solid Angle: $0.38$
|
| 16 |
+
Surface Area: $1.58$
|
pretraining/mathematica/geometry/solids/21372.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.015 & 0.624 & 0.275 \\
|
| 5 |
+
0.18 & 0.761 & 0.695 \\
|
| 6 |
+
0.029 & 0.414 & 0.165 \\
|
| 7 |
+
0.883 & 0.6 & 0.952 \\
|
| 8 |
+
0.641 & 0.488 & 0.189 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Solid Angle: $1.32$
|
| 13 |
+
Volume: $0.03$
|
| 14 |
+
Surface Area: $0.99$
|
pretraining/mathematica/geometry/solids/21957.txt
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.326 & 0.863 & 0.275 \\
|
| 5 |
+
0.463 & 0.049 & 0.36 \\
|
| 6 |
+
0.602 & 0.01 & 0.436 \\
|
| 7 |
+
0.82 & 0.154 & 0.218 \\
|
| 8 |
+
0.31 & 0.802 & 0.048 \\
|
| 9 |
+
0.006 & 0.392 & 0.221 \\
|
| 10 |
+
0.791 & 0.031 & 0.522 \\
|
| 11 |
+
0.342 & 0.31 & 0.052 \\
|
| 12 |
+
0.596 & 0.639 & 0.122 \\
|
| 13 |
+
0.62 & 0.046 & 0.063 \\
|
| 14 |
+
0.002 & 0.267 & 0.89 \\
|
| 15 |
+
0.374 & 0.747 & 0.953 \\
|
| 16 |
+
\end{array}
|
| 17 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 18 |
+
Answer:
|
| 19 |
+
Surface Area: $2.18$
|
| 20 |
+
Solid Angle: $2.47$
|
| 21 |
+
Volume: $0.22$
|
pretraining/mathematica/geometry/solids/24731.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.853 & 0.306 & 0.698 \\
|
| 5 |
+
0.34 & 0.609 & 0.125 \\
|
| 6 |
+
0.49 & 0.767 & 0.159 \\
|
| 7 |
+
0.918 & 0.771 & 0.534 \\
|
| 8 |
+
0.522 & 0.972 & 0.835 \\
|
| 9 |
+
0.468 & 0.863 & 0.456 \\
|
| 10 |
+
0.018 & 0.506 & 0.682 \\
|
| 11 |
+
0.123 & 0.03 & 0.246 \\
|
| 12 |
+
0.302 & 0.141 & 0.178 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Surface Area: $1.81$
|
| 17 |
+
Volume: $0.16$
|
| 18 |
+
Solid Angle: $1.26$
|
pretraining/mathematica/geometry/solids/25817.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.05 & 0.558 & 0.991 \\
|
| 5 |
+
0.667 & 0.102 & 0.926 \\
|
| 6 |
+
0.509 & 0.206 & 0.063 \\
|
| 7 |
+
0.439 & 0.841 & 0.152 \\
|
| 8 |
+
0.952 & 0.558 & 0.302 \\
|
| 9 |
+
0.303 & 0.292 & 0.547 \\
|
| 10 |
+
0.787 & 0.857 & 0.737 \\
|
| 11 |
+
0.23 & 0.634 & 0.452 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Surface Area: $2.01$
|
| 16 |
+
Volume: $0.2$
|
| 17 |
+
Solid Angle: $0.83$
|
pretraining/mathematica/geometry/solids/26546.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.248 & 0.583 & 0.938 \\
|
| 5 |
+
0.266 & 0.481 & 0.972 \\
|
| 6 |
+
0.418 & 0.711 & 0.168 \\
|
| 7 |
+
0.118 & 0.645 & 0.653 \\
|
| 8 |
+
0.977 & 0.432 & 0.079 \\
|
| 9 |
+
0.704 & 0.272 & 0.252 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Solid Angle: $1.54$
|
| 14 |
+
Surface Area: $0.91$
|
| 15 |
+
Volume: $0.03$
|
pretraining/mathematica/geometry/solids/29389.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.561 & 0.571 & 0.41 \\
|
| 5 |
+
0.109 & 0.471 & 0.216 \\
|
| 6 |
+
0.67 & 0.012 & 0.673 \\
|
| 7 |
+
0.462 & 0.341 & 0.804 \\
|
| 8 |
+
0.623 & 0.808 & 0.722 \\
|
| 9 |
+
0.088 & 0.706 & 0.629 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Surface Area: $0.97$
|
| 14 |
+
Solid Angle: $2.85$
|
| 15 |
+
Volume: $0.06$
|
pretraining/mathematica/geometry/solids/29601.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.869 & 0.661 & 0.889 \\
|
| 5 |
+
0.006 & 0.528 & 0.679 \\
|
| 6 |
+
0.043 & 0.359 & 0.279 \\
|
| 7 |
+
0.589 & 0.47 & 0.352 \\
|
| 8 |
+
0.089 & 0.883 & 0.393 \\
|
| 9 |
+
0.011 & 0.573 & 0.324 \\
|
| 10 |
+
0.948 & 0.746 & 0.107 \\
|
| 11 |
+
0.579 & 0.303 & 0.793 \\
|
| 12 |
+
0.162 & 0.34 & 0.146 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Solid Angle: $0.91$
|
| 17 |
+
Surface Area: $1.79$
|
| 18 |
+
Volume: $0.15$
|
pretraining/mathematica/geometry/solids/31717.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.066 & 0.214 & 0.312 \\
|
| 5 |
+
0.814 & 0.547 & 0.405 \\
|
| 6 |
+
0.976 & 0.808 & 0.848 \\
|
| 7 |
+
0.393 & 0.123 & 0.931 \\
|
| 8 |
+
0.993 & 0.093 & 0.318 \\
|
| 9 |
+
0.603 & 0.02 & 0.963 \\
|
| 10 |
+
0.402 & 0.981 & 0.839 \\
|
| 11 |
+
0.77 & 0.939 & 0.553 \\
|
| 12 |
+
0.329 & 0.553 & 0.95 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Volume: $0.24$
|
| 17 |
+
Solid Angle: $0.94$
|
| 18 |
+
Surface Area: $2.27$
|
pretraining/mathematica/geometry/solids/3310.txt
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
-0.685 & 0. & -0.175 \\
|
| 5 |
+
-0.685 & 0. & 0.175 \\
|
| 6 |
+
-0.608 & -0.201 & -0.299 \\
|
| 7 |
+
-0.608 & -0.201 & 0.299 \\
|
| 8 |
+
-0.608 & 0.201 & -0.299 \\
|
| 9 |
+
-0.608 & 0.201 & 0.299 \\
|
| 10 |
+
-0.5 & -0.484 & -0.124 \\
|
| 11 |
+
-0.5 & -0.484 & 0.124 \\
|
| 12 |
+
-0.5 & 0.484 & -0.124 \\
|
| 13 |
+
-0.5 & 0.484 & 0.124 \\
|
| 14 |
+
-0.484 & -0.124 & -0.5 \\
|
| 15 |
+
-0.484 & -0.124 & 0.5 \\
|
| 16 |
+
-0.484 & 0.124 & -0.5 \\
|
| 17 |
+
-0.484 & 0.124 & 0.5 \\
|
| 18 |
+
-0.299 & -0.608 & -0.201 \\
|
| 19 |
+
-0.299 & -0.608 & 0.201 \\
|
| 20 |
+
-0.299 & 0.608 & -0.201 \\
|
| 21 |
+
-0.299 & 0.608 & 0.201 \\
|
| 22 |
+
-0.201 & -0.299 & -0.608 \\
|
| 23 |
+
-0.201 & -0.299 & 0.608 \\
|
| 24 |
+
-0.201 & 0.299 & -0.608 \\
|
| 25 |
+
-0.201 & 0.299 & 0.608 \\
|
| 26 |
+
-0.175 & -0.685 & 0. \\
|
| 27 |
+
-0.175 & 0.685 & 0. \\
|
| 28 |
+
-0.124 & -0.5 & -0.484 \\
|
| 29 |
+
-0.124 & -0.5 & 0.484 \\
|
| 30 |
+
-0.124 & 0.5 & -0.484 \\
|
| 31 |
+
-0.124 & 0.5 & 0.484 \\
|
| 32 |
+
0. & -0.175 & -0.685 \\
|
| 33 |
+
0. & -0.175 & 0.685 \\
|
| 34 |
+
0. & 0.175 & -0.685 \\
|
| 35 |
+
0. & 0.175 & 0.685 \\
|
| 36 |
+
0.124 & -0.5 & -0.484 \\
|
| 37 |
+
0.124 & -0.5 & 0.484 \\
|
| 38 |
+
0.124 & 0.5 & -0.484 \\
|
| 39 |
+
0.124 & 0.5 & 0.484 \\
|
| 40 |
+
0.175 & -0.685 & 0. \\
|
| 41 |
+
0.175 & 0.685 & 0. \\
|
| 42 |
+
0.201 & -0.299 & -0.608 \\
|
| 43 |
+
0.201 & -0.299 & 0.608 \\
|
| 44 |
+
0.201 & 0.299 & -0.608 \\
|
| 45 |
+
0.201 & 0.299 & 0.608 \\
|
| 46 |
+
0.299 & -0.608 & -0.201 \\
|
| 47 |
+
0.299 & -0.608 & 0.201 \\
|
| 48 |
+
0.299 & 0.608 & -0.201 \\
|
| 49 |
+
0.299 & 0.608 & 0.201 \\
|
| 50 |
+
0.484 & -0.124 & -0.5 \\
|
| 51 |
+
0.484 & -0.124 & 0.5 \\
|
| 52 |
+
0.484 & 0.124 & -0.5 \\
|
| 53 |
+
0.484 & 0.124 & 0.5 \\
|
| 54 |
+
0.5 & -0.484 & -0.124 \\
|
| 55 |
+
0.5 & -0.484 & 0.124 \\
|
| 56 |
+
0.5 & 0.484 & -0.124 \\
|
| 57 |
+
0.5 & 0.484 & 0.124 \\
|
| 58 |
+
0.608 & -0.201 & -0.299 \\
|
| 59 |
+
0.608 & -0.201 & 0.299 \\
|
| 60 |
+
0.608 & 0.201 & -0.299 \\
|
| 61 |
+
0.608 & 0.201 & 0.299 \\
|
| 62 |
+
0.685 & 0. & -0.175 \\
|
| 63 |
+
0.685 & 0. & 0.175 \\
|
| 64 |
+
\end{array}
|
| 65 |
+
\right)$. Determine the EdgeCount.
|
| 66 |
+
Answer:
|
| 67 |
+
$120.$
|
pretraining/mathematica/geometry/solids/38854.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.557 & 0.249 & 0.096 \\
|
| 5 |
+
0.361 & 0.762 & 0.016 \\
|
| 6 |
+
0.201 & 0.174 & 0.985 \\
|
| 7 |
+
0.988 & 0.083 & 0.682 \\
|
| 8 |
+
0.752 & 0.136 & 0.882 \\
|
| 9 |
+
0.189 & 0.662 & 0.879 \\
|
| 10 |
+
0.868 & 0.832 & 0.292 \\
|
| 11 |
+
0.639 & 0.436 & 0.117 \\
|
| 12 |
+
0.398 & 0.8 & 0.015 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Solid Angle: $1.91$
|
| 17 |
+
Volume: $0.19$
|
| 18 |
+
Surface Area: $2.09$
|
pretraining/mathematica/geometry/solids/41787.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.902 & 0.689 & 0.142 \\
|
| 5 |
+
0.466 & 0.664 & 0.466 \\
|
| 6 |
+
0.806 & 0.762 & 0.177 \\
|
| 7 |
+
0.941 & 0.572 & 0.763 \\
|
| 8 |
+
0.581 & 0.714 & 0.358 \\
|
| 9 |
+
0.83 & 0.058 & 0.71 \\
|
| 10 |
+
0.463 & 0.065 & 0.096 \\
|
| 11 |
+
0.835 & 0.812 & 0.38 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Volume: $0.08$
|
| 16 |
+
Solid Angle: $1.86$
|
| 17 |
+
Surface Area: $1.22$
|
pretraining/mathematica/geometry/solids/42244.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.761 & 0.437 & 0.577 \\
|
| 5 |
+
0.266 & 0.673 & 0.982 \\
|
| 6 |
+
0.77 & 0.94 & 0.025 \\
|
| 7 |
+
0.146 & 0.838 & 0.064 \\
|
| 8 |
+
0.933 & 0.89 & 0.379 \\
|
| 9 |
+
0.533 & 0.128 & 0.16 \\
|
| 10 |
+
0.648 & 0.981 & 0.196 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Surface Area: $1.76$
|
| 15 |
+
Volume: $0.16$
|
| 16 |
+
Solid Angle: $2.73$
|
pretraining/mathematica/geometry/solids/42739.txt
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0 & \frac{1}{2} \sqrt{3+\frac{3}{\sqrt{2}}} & \frac{1}{2} \sqrt{3+\frac{3}{\sqrt{2}}} \\
|
| 5 |
+
0 & -\frac{1}{2} \sqrt{3+\frac{3}{\sqrt{2}}} & -\frac{1}{2} \sqrt{3+\frac{3}{\sqrt{2}}} \\
|
| 6 |
+
0 & \frac{1}{2} \sqrt{3+\frac{3}{\sqrt{2}}} & -\frac{1}{2} \sqrt{3+\frac{3}{\sqrt{2}}} \\
|
| 7 |
+
0 & -\frac{1}{2} \sqrt{3+\frac{3}{\sqrt{2}}} & \frac{1}{2} \sqrt{3+\frac{3}{\sqrt{2}}} \\
|
| 8 |
+
\frac{1}{2} \sqrt{3+\frac{3}{\sqrt{2}}} & 0 & \frac{1}{2} \sqrt{3+\frac{3}{\sqrt{2}}} \\
|
| 9 |
+
\frac{1}{2} \sqrt{3+\frac{3}{\sqrt{2}}} & \frac{1}{2} \sqrt{3+\frac{3}{\sqrt{2}}} & 0 \\
|
| 10 |
+
\frac{7}{\sqrt{60-6 \sqrt{2}}} & \frac{7}{\sqrt{60-6 \sqrt{2}}} & \frac{7}{\sqrt{60-6 \sqrt{2}}} \\
|
| 11 |
+
-\frac{7}{\sqrt{60-6 \sqrt{2}}} & -\frac{7}{\sqrt{60-6 \sqrt{2}}} & -\frac{7}{\sqrt{60-6 \sqrt{2}}} \\
|
| 12 |
+
-\frac{1}{2} \sqrt{3+\frac{3}{\sqrt{2}}} & 0 & -\frac{1}{2} \sqrt{3+\frac{3}{\sqrt{2}}} \\
|
| 13 |
+
-\frac{1}{2} \sqrt{3+\frac{3}{\sqrt{2}}} & -\frac{1}{2} \sqrt{3+\frac{3}{\sqrt{2}}} & 0 \\
|
| 14 |
+
\frac{7}{\sqrt{60-6 \sqrt{2}}} & \frac{7}{\sqrt{60-6 \sqrt{2}}} & -\frac{7}{\sqrt{60-6 \sqrt{2}}} \\
|
| 15 |
+
\frac{7}{\sqrt{60-6 \sqrt{2}}} & -\frac{7}{\sqrt{60-6 \sqrt{2}}} & \frac{7}{\sqrt{60-6 \sqrt{2}}} \\
|
| 16 |
+
-\frac{7}{\sqrt{60-6 \sqrt{2}}} & \frac{7}{\sqrt{60-6 \sqrt{2}}} & \frac{7}{\sqrt{60-6 \sqrt{2}}} \\
|
| 17 |
+
\frac{7}{\sqrt{60-6 \sqrt{2}}} & -\frac{7}{\sqrt{60-6 \sqrt{2}}} & -\frac{7}{\sqrt{60-6 \sqrt{2}}} \\
|
| 18 |
+
-\frac{7}{\sqrt{60-6 \sqrt{2}}} & \frac{7}{\sqrt{60-6 \sqrt{2}}} & -\frac{7}{\sqrt{60-6 \sqrt{2}}} \\
|
| 19 |
+
-\frac{7}{\sqrt{60-6 \sqrt{2}}} & -\frac{7}{\sqrt{60-6 \sqrt{2}}} & \frac{7}{\sqrt{60-6 \sqrt{2}}} \\
|
| 20 |
+
\frac{1}{2} \sqrt{3+\frac{3}{\sqrt{2}}} & 0 & -\frac{1}{2} \sqrt{3+\frac{3}{\sqrt{2}}} \\
|
| 21 |
+
\frac{1}{2} \sqrt{3+\frac{3}{\sqrt{2}}} & -\frac{1}{2} \sqrt{3+\frac{3}{\sqrt{2}}} & 0 \\
|
| 22 |
+
-\frac{1}{2} \sqrt{3+\frac{3}{\sqrt{2}}} & 0 & \frac{1}{2} \sqrt{3+\frac{3}{\sqrt{2}}} \\
|
| 23 |
+
-\frac{1}{2} \sqrt{3+\frac{3}{\sqrt{2}}} & \frac{1}{2} \sqrt{3+\frac{3}{\sqrt{2}}} & 0 \\
|
| 24 |
+
-\frac{1}{14} \sqrt{366+213 \sqrt{2}} & 0 & 0 \\
|
| 25 |
+
0 & -\frac{1}{14} \sqrt{366+213 \sqrt{2}} & 0 \\
|
| 26 |
+
0 & 0 & -\frac{1}{14} \sqrt{366+213 \sqrt{2}} \\
|
| 27 |
+
\frac{1}{14} \sqrt{366+213 \sqrt{2}} & 0 & 0 \\
|
| 28 |
+
0 & \frac{1}{14} \sqrt{366+213 \sqrt{2}} & 0 \\
|
| 29 |
+
0 & 0 & \frac{1}{14} \sqrt{366+213 \sqrt{2}} \\
|
| 30 |
+
\end{array}
|
| 31 |
+
\right)$. Determine the Inradius.
|
| 32 |
+
Answer:
|
| 33 |
+
$\frac{1}{2} \sqrt{\frac{3}{97} \left(166+95 \sqrt{2}\right)}$
|
pretraining/mathematica/geometry/solids/43260.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.638 & 0.876 & 0.418 \\
|
| 5 |
+
0.245 & 0.385 & 0.139 \\
|
| 6 |
+
0.288 & 0.203 & 0.98 \\
|
| 7 |
+
0.488 & 0.059 & 0.066 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Surface Area: $0.97$
|
| 12 |
+
Solid Angle: $0.27$
|
| 13 |
+
Volume: $0.04$
|
pretraining/mathematica/geometry/solids/44291.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.217 & 0.067 & 0.12 \\
|
| 5 |
+
0.462 & 0.742 & 0.64 \\
|
| 6 |
+
0.373 & 0.944 & 0.201 \\
|
| 7 |
+
0.967 & 0.412 & 0.421 \\
|
| 8 |
+
0.397 & 0.017 & 0.015 \\
|
| 9 |
+
0.583 & 0.168 & 0.799 \\
|
| 10 |
+
0.625 & 0.335 & 0.874 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Solid Angle: $1.5$
|
| 15 |
+
Surface Area: $1.55$
|
| 16 |
+
Volume: $0.12$
|
pretraining/mathematica/geometry/solids/48354.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.061 & 0.721 & 0.586 \\
|
| 5 |
+
0.316 & 0.565 & 0.99 \\
|
| 6 |
+
0.486 & 0.386 & 0.725 \\
|
| 7 |
+
0.742 & 0.186 & 0.208 \\
|
| 8 |
+
0.62 & 0.389 & 0.357 \\
|
| 9 |
+
0.927 & 0.086 & 0.27 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Surface Area: $0.7$
|
| 14 |
+
Solid Angle: $0.12$
|
| 15 |
+
Volume: $0.01$
|
pretraining/mathematica/geometry/solids/49598.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.143 & 0.608 & 0.286 \\
|
| 5 |
+
0.519 & 0.871 & 0.994 \\
|
| 6 |
+
0.856 & 0.055 & 0.229 \\
|
| 7 |
+
0.114 & 0.218 & 0.747 \\
|
| 8 |
+
0.777 & 0.103 & 0.22 \\
|
| 9 |
+
0.911 & 0.571 & 0.491 \\
|
| 10 |
+
0.429 & 0.055 & 0.796 \\
|
| 11 |
+
0.444 & 0.372 & 0.201 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Solid Angle: $1.25$
|
| 16 |
+
Surface Area: $1.73$
|
| 17 |
+
Volume: $0.14$
|
pretraining/mathematica/geometry/solids/4982.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.85 & 0.246 & 0.922 \\
|
| 5 |
+
0.428 & 0.955 & 0.481 \\
|
| 6 |
+
0.477 & 0.343 & 0.869 \\
|
| 7 |
+
0.48 & 0.7 & 0.767 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Volume: $0.$
|
| 12 |
+
Solid Angle: $0.07$
|
| 13 |
+
Surface Area: $0.32$
|
pretraining/mathematica/geometry/solids/50657.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.985 & 0.555 & 0.132 \\
|
| 5 |
+
0.344 & 0.892 & 0.941 \\
|
| 6 |
+
0.888 & 0.203 & 0.299 \\
|
| 7 |
+
0.488 & 0.565 & 0.106 \\
|
| 8 |
+
0.701 & 0.832 & 0.111 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Solid Angle: $1.16$
|
| 13 |
+
Volume: $0.05$
|
| 14 |
+
Surface Area: $0.97$
|
pretraining/mathematica/geometry/solids/5155.txt
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0. & 0. & 1.401 \\
|
| 5 |
+
0. & 0. & -1.401 \\
|
| 6 |
+
0.178 & -1.309 & 0.467 \\
|
| 7 |
+
0.178 & 1.309 & 0.467 \\
|
| 8 |
+
0.467 & -0.5 & 1.223 \\
|
| 9 |
+
0.467 & 0.5 & 1.223 \\
|
| 10 |
+
0.467 & -1.309 & -0.178 \\
|
| 11 |
+
0.467 & -0.809 & -1.044 \\
|
| 12 |
+
0.467 & 0.809 & -1.044 \\
|
| 13 |
+
0.467 & 1.309 & -0.178 \\
|
| 14 |
+
1.044 & 0. & -0.934 \\
|
| 15 |
+
1.044 & -0.809 & 0.467 \\
|
| 16 |
+
1.044 & 0.809 & 0.467 \\
|
| 17 |
+
-1.223 & -0.5 & 0.467 \\
|
| 18 |
+
-1.223 & 0.5 & 0.467 \\
|
| 19 |
+
1.223 & -0.5 & -0.467 \\
|
| 20 |
+
1.223 & 0.5 & -0.467 \\
|
| 21 |
+
1.401 & 0. & 0. \\
|
| 22 |
+
-0.934 & 0. & -1.044 \\
|
| 23 |
+
-0.467 & -0.5 & -1.223 \\
|
| 24 |
+
-0.467 & 0.5 & -1.223 \\
|
| 25 |
+
-0.467 & -1.309 & 0.178 \\
|
| 26 |
+
-0.467 & -0.809 & 1.044 \\
|
| 27 |
+
-0.467 & 0.809 & 1.044 \\
|
| 28 |
+
-0.467 & 1.309 & 0.178 \\
|
| 29 |
+
0.934 & 0. & 1.044 \\
|
| 30 |
+
-1.044 & 0. & 0.934 \\
|
| 31 |
+
-1.044 & -0.809 & -0.467 \\
|
| 32 |
+
-1.044 & 0.809 & -0.467 \\
|
| 33 |
+
-1.401 & 0. & 0. \\
|
| 34 |
+
-0.178 & -1.309 & -0.467 \\
|
| 35 |
+
-0.178 & 1.309 & -0.467 \\
|
| 36 |
+
\end{array}
|
| 37 |
+
\right)$. Determine the SurfaceArea.
|
| 38 |
+
Answer:
|
| 39 |
+
$41.29$
|
pretraining/mathematica/geometry/solids/522.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A sphere centered at $\{-4.226,7.201,1.064\}$ has radius $4.835$. Estimate the sphere's surface area and volume.
|
| 3 |
+
Answer:
|
| 4 |
+
Surface Area: $293.77$
|
| 5 |
+
Volume: $473.46$
|
pretraining/mathematica/geometry/solids/54818.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.35 & 0.492 & 0.079 \\
|
| 5 |
+
0.213 & 0.261 & 0.146 \\
|
| 6 |
+
0.913 & 0.717 & 0.358 \\
|
| 7 |
+
0.829 & 0.818 & 0.754 \\
|
| 8 |
+
0.005 & 0.942 & 0.531 \\
|
| 9 |
+
0.788 & 0.8 & 0.232 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Volume: $0.07$
|
| 14 |
+
Surface Area: $1.19$
|
| 15 |
+
Solid Angle: $2.57$
|
pretraining/mathematica/geometry/solids/56848.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.109 & 0.576 & 0.748 \\
|
| 5 |
+
0.381 & 0.164 & 0.283 \\
|
| 6 |
+
0.823 & 0.586 & 0.763 \\
|
| 7 |
+
0.865 & 0.606 & 0.143 \\
|
| 8 |
+
0.241 & 0.076 & 0.006 \\
|
| 9 |
+
0.288 & 0.818 & 0.058 \\
|
| 10 |
+
0.226 & 0.065 & 0.127 \\
|
| 11 |
+
0.725 & 0.912 & 0.242 \\
|
| 12 |
+
0.419 & 0.669 & 0.743 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Volume: $0.15$
|
| 17 |
+
Solid Angle: $1.07$
|
| 18 |
+
Surface Area: $1.75$
|
pretraining/mathematica/geometry/solids/57938.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.614 & 0.018 & 0.252 \\
|
| 5 |
+
0.043 & 0.267 & 0.857 \\
|
| 6 |
+
0.453 & 0.977 & 0.837 \\
|
| 7 |
+
0.513 & 0.023 & 0.164 \\
|
| 8 |
+
0.886 & 0.978 & 0.646 \\
|
| 9 |
+
0.188 & 0.793 & 0.155 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Surface Area: $1.88$
|
| 14 |
+
Volume: $0.15$
|
| 15 |
+
Solid Angle: $1.41$
|
pretraining/mathematica/geometry/solids/58362.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.462 & 0.186 & 0.489 \\
|
| 5 |
+
0.997 & 0.612 & 0.611 \\
|
| 6 |
+
0.198 & 0.422 & 0.683 \\
|
| 7 |
+
0.114 & 0.584 & 0.891 \\
|
| 8 |
+
0.719 & 0.743 & 0.27 \\
|
| 9 |
+
0.62 & 0.604 & 0.211 \\
|
| 10 |
+
0.639 & 0.953 & 0.666 \\
|
| 11 |
+
0.351 & 0.804 & 0.702 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Solid Angle: $1.04$
|
| 16 |
+
Surface Area: $1.13$
|
| 17 |
+
Volume: $0.07$
|
pretraining/mathematica/geometry/solids/60676.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.328 & 0.711 & 0.172 \\
|
| 5 |
+
0.588 & 0.83 & 0.036 \\
|
| 6 |
+
0.431 & 0.14 & 0.537 \\
|
| 7 |
+
0.066 & 0.651 & 0.735 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Volume: $0.01$
|
| 12 |
+
Solid Angle: $2.13$
|
| 13 |
+
Surface Area: $0.61$
|
pretraining/mathematica/geometry/solids/63728.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.624 & 0.955 & 0.14 \\
|
| 5 |
+
0.905 & 0.663 & 0.871 \\
|
| 6 |
+
0.146 & 0.867 & 0.699 \\
|
| 7 |
+
0.653 & 0.641 & 0.172 \\
|
| 8 |
+
0.165 & 0.285 & 0.374 \\
|
| 9 |
+
0.201 & 0.462 & 0.714 \\
|
| 10 |
+
0.949 & 0.311 & 0.571 \\
|
| 11 |
+
0.406 & 0.101 & 0.738 \\
|
| 12 |
+
0.209 & 0.292 & 0.327 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Solid Angle: $1.06$
|
| 17 |
+
Volume: $0.17$
|
| 18 |
+
Surface Area: $1.79$
|
pretraining/mathematica/geometry/solids/64249.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.126 & 0.545 & 0.389 \\
|
| 5 |
+
0.01 & 0.925 & 0.87 \\
|
| 6 |
+
0.851 & 0.782 & 0.995 \\
|
| 7 |
+
0.032 & 0.186 & 0.066 \\
|
| 8 |
+
0.274 & 0.271 & 0.858 \\
|
| 9 |
+
0.962 & 0.787 & 0.117 \\
|
| 10 |
+
0.692 & 0.022 & 0.374 \\
|
| 11 |
+
0.719 & 0.445 & 0.051 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Surface Area: $2.72$
|
| 16 |
+
Solid Angle: $6.26$
|
| 17 |
+
Volume: $0.31$
|
pretraining/mathematica/geometry/solids/64670.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.955 & 0.757 & 0.445 \\
|
| 5 |
+
0.525 & 0.541 & 0.625 \\
|
| 6 |
+
0.535 & 0.626 & 0.599 \\
|
| 7 |
+
0.016 & 0.134 & 0.311 \\
|
| 8 |
+
0.382 & 0.024 & 0.367 \\
|
| 9 |
+
0.171 & 0.932 & 0.547 \\
|
| 10 |
+
0.937 & 0.079 & 0.065 \\
|
| 11 |
+
0.268 & 0.512 & 0.31 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Surface Area: $1.63$
|
| 16 |
+
Solid Angle: $0.56$
|
| 17 |
+
Volume: $0.09$
|
pretraining/mathematica/geometry/solids/64815.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.047 & 0.671 & 0.108 \\
|
| 5 |
+
0.829 & 0.933 & 0.662 \\
|
| 6 |
+
0.442 & 0.869 & 0.054 \\
|
| 7 |
+
0.357 & 0.89 & 0.33 \\
|
| 8 |
+
0.957 & 0.813 & 0.627 \\
|
| 9 |
+
0.884 & 0.881 & 0.921 \\
|
| 10 |
+
0.347 & 0.093 & 0.781 \\
|
| 11 |
+
0.361 & 0.708 & 0.009 \\
|
| 12 |
+
0.155 & 0.458 & 0.831 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Volume: $0.15$
|
| 17 |
+
Surface Area: $1.79$
|
| 18 |
+
Solid Angle: $1.17$
|
pretraining/mathematica/geometry/solids/65960.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.356 & 0.648 & 0.124 \\
|
| 5 |
+
0.928 & 0.861 & 0.56 \\
|
| 6 |
+
0.463 & 0.79 & 0.718 \\
|
| 7 |
+
0.709 & 0.049 & 0.535 \\
|
| 8 |
+
0.092 & 0.193 & 0.004 \\
|
| 9 |
+
0.036 & 0.785 & 0.569 \\
|
| 10 |
+
0.614 & 0.527 & 0.13 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Volume: $0.14$
|
| 15 |
+
Solid Angle: $3.45$
|
| 16 |
+
Surface Area: $1.69$
|
pretraining/mathematica/geometry/solids/66.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.23 & 0.277 & 0.297 \\
|
| 5 |
+
0.719 & 0.476 & 0.626 \\
|
| 6 |
+
0.093 & 0.516 & 0.859 \\
|
| 7 |
+
0.767 & 0.908 & 0.414 \\
|
| 8 |
+
0.453 & 0.522 & 0.98 \\
|
| 9 |
+
0.189 & 0.055 & 0.167 \\
|
| 10 |
+
0.966 & 0.904 & 0.71 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Surface Area: $1.36$
|
| 15 |
+
Solid Angle: $4.98$
|
| 16 |
+
Volume: $0.08$
|
pretraining/mathematica/geometry/solids/66188.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.884 & 0.116 & 0.372 \\
|
| 5 |
+
0.141 & 0.019 & 0.152 \\
|
| 6 |
+
0.631 & 0.003 & 0.672 \\
|
| 7 |
+
0.026 & 0.999 & 0.189 \\
|
| 8 |
+
0.85 & 0.722 & 0.236 \\
|
| 9 |
+
0.107 & 0.55 & 0.325 \\
|
| 10 |
+
0.873 & 0.184 & 0.913 \\
|
| 11 |
+
0.152 & 0.228 & 0.104 \\
|
| 12 |
+
0.459 & 0.211 & 0.112 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Solid Angle: $2.47$
|
| 17 |
+
Volume: $0.18$
|
| 18 |
+
Surface Area: $2.05$
|
pretraining/mathematica/geometry/solids/67198.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.101 & 0.282 & 0.029 \\
|
| 5 |
+
0.634 & 0.838 & 0.079 \\
|
| 6 |
+
0.641 & 0.97 & 0.287 \\
|
| 7 |
+
0.666 & 0.07 & 0.785 \\
|
| 8 |
+
0.109 & 0.799 & 0.941 \\
|
| 9 |
+
0.688 & 0.701 & 0.776 \\
|
| 10 |
+
0.433 & 0.937 & 0.197 \\
|
| 11 |
+
0.195 & 0.171 & 0.128 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Surface Area: $2.01$
|
| 16 |
+
Volume: $0.19$
|
| 17 |
+
Solid Angle: $1.16$
|
pretraining/mathematica/geometry/solids/68660.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.911 & 0.177 & 0.516 \\
|
| 5 |
+
0.395 & 0.18 & 0.696 \\
|
| 6 |
+
0.334 & 0.788 & 0.963 \\
|
| 7 |
+
0.931 & 0.314 & 0.817 \\
|
| 8 |
+
0.16 & 0.951 & 0.085 \\
|
| 9 |
+
0.248 & 0.487 & 0.154 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Volume: $0.1$
|
| 14 |
+
Surface Area: $1.56$
|
| 15 |
+
Solid Angle: $1.08$
|
pretraining/mathematica/geometry/solids/70221.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.019 & 0.346 & 0.168 \\
|
| 5 |
+
0.423 & 0.555 & 0.136 \\
|
| 6 |
+
0.258 & 0.05 & 0.045 \\
|
| 7 |
+
0.788 & 0.722 & 0.394 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Volume: $0.01$
|
| 12 |
+
Solid Angle: $0.27$
|
| 13 |
+
Surface Area: $0.43$
|
pretraining/mathematica/geometry/solids/71761.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.82 & 0.935 & 0.928 \\
|
| 5 |
+
0.283 & 0.72 & 0.492 \\
|
| 6 |
+
0.522 & 0.805 & 0.946 \\
|
| 7 |
+
0.353 & 0.399 & 0.957 \\
|
| 8 |
+
0.872 & 0.923 & 0.957 \\
|
| 9 |
+
0.31 & 0.761 & 0.024 \\
|
| 10 |
+
0.567 & 0.466 & 0.326 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Volume: $0.06$
|
| 15 |
+
Surface Area: $1.06$
|
| 16 |
+
Solid Angle: $3.14$
|
pretraining/mathematica/geometry/solids/7302.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.3 & 0.036 & 0.208 \\
|
| 5 |
+
0.172 & 0.667 & 0.373 \\
|
| 6 |
+
0.062 & 0.959 & 0.686 \\
|
| 7 |
+
0.822 & 0.549 & 0.172 \\
|
| 8 |
+
0.069 & 0.319 & 0.894 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Solid Angle: $0.54$
|
| 13 |
+
Volume: $0.06$
|
| 14 |
+
Surface Area: $1.29$
|