diff --git a/pretraining/mathematica/geometry/solids/10403.txt b/pretraining/mathematica/geometry/solids/10403.txt new file mode 100644 index 0000000000000000000000000000000000000000..ca9cfd64f0a6023863014e31b47024e404a3852f --- /dev/null +++ b/pretraining/mathematica/geometry/solids/10403.txt @@ -0,0 +1,17 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.533 & 0.273 & 0.215 \\ + 0.176 & 0.838 & 0.849 \\ + 0.011 & 0.241 & 0.233 \\ + 0.311 & 0.249 & 0.12 \\ + 0.013 & 0.956 & 0.788 \\ + 0.543 & 0.441 & 0.753 \\ + 0.628 & 0.956 & 0.341 \\ + 0.038 & 0.559 & 0.745 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.11$ +Solid Angle: $1.74$ +Surface Area: $1.49$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/10637.txt b/pretraining/mathematica/geometry/solids/10637.txt new file mode 100644 index 0000000000000000000000000000000000000000..14e9688a9e12702e060bdd3adff82ad66b666d88 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/10637.txt @@ -0,0 +1,15 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.326 & 0.731 & 0.387 \\ + 0.985 & 0.577 & 0.637 \\ + 0.163 & 0.766 & 0.823 \\ + 0.201 & 0.509 & 0.907 \\ + 0.364 & 0.243 & 0.492 \\ + 0.169 & 0.549 & 0.402 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.05$ +Surface Area: $0.89$ +Solid Angle: $1.81$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/1125.txt b/pretraining/mathematica/geometry/solids/1125.txt new file mode 100644 index 0000000000000000000000000000000000000000..010076262d96ef660b6bf49d0eb9a5a96cff4738 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/1125.txt @@ -0,0 +1,19 @@ +Problem: +A polyhedron has vertex coordinates $\left( +\begin{array}{ccc} + -\frac{1}{4} \sqrt{2+\sqrt{3}} & \frac{1}{8} \left(\sqrt{2}-\sqrt{6}\right) & \frac{1}{2 \sqrt{2}} \\ + -\frac{1}{4} \sqrt{2+\sqrt{3}} & \frac{\sqrt{2-\sqrt{3}}}{4} & -\frac{1}{2 \sqrt{2}} \\ + -\frac{1}{2 \sqrt{2}} & -\frac{1}{2 \sqrt{2}} & -\frac{1}{2 \sqrt{2}} \\ + -\frac{1}{2 \sqrt{2}} & \frac{1}{2 \sqrt{2}} & \frac{1}{2 \sqrt{2}} \\ + \frac{1}{8} \left(\sqrt{2}-\sqrt{6}\right) & -\frac{1}{4} \sqrt{2+\sqrt{3}} & \frac{1}{2 \sqrt{2}} \\ + \frac{1}{8} \left(\sqrt{2}-\sqrt{6}\right) & \frac{\sqrt{2+\sqrt{3}}}{4} & -\frac{1}{2 \sqrt{2}} \\ + \frac{\sqrt{2-\sqrt{3}}}{4} & -\frac{1}{4} \sqrt{2+\sqrt{3}} & -\frac{1}{2 \sqrt{2}} \\ + \frac{\sqrt{2-\sqrt{3}}}{4} & \frac{\sqrt{2+\sqrt{3}}}{4} & \frac{1}{2 \sqrt{2}} \\ + \frac{1}{2 \sqrt{2}} & -\frac{1}{2 \sqrt{2}} & \frac{1}{2 \sqrt{2}} \\ + \frac{1}{2 \sqrt{2}} & \frac{1}{2 \sqrt{2}} & -\frac{1}{2 \sqrt{2}} \\ + \frac{\sqrt{2+\sqrt{3}}}{4} & \frac{1}{8} \left(\sqrt{2}-\sqrt{6}\right) & -\frac{1}{2 \sqrt{2}} \\ + \frac{\sqrt{2+\sqrt{3}}}{4} & \frac{\sqrt{2-\sqrt{3}}}{4} & \frac{1}{2 \sqrt{2}} \\ +\end{array} +\right)$. Determine the Centroid. +Answer: +$\{0,0,0\}$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/13225.txt b/pretraining/mathematica/geometry/solids/13225.txt new file mode 100644 index 0000000000000000000000000000000000000000..dcca58b4d658b5f5a167de3c29df22c0a1081583 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/13225.txt @@ -0,0 +1,19 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.953 & 0.843 & 0.735 \\ + 0.082 & 0.661 & 0.148 \\ + 0.01 & 0.05 & 0.314 \\ + 0.673 & 0.636 & 0.158 \\ + 0.417 & 0.901 & 0.832 \\ + 0.634 & 0.498 & 0.29 \\ + 0.316 & 0.893 & 0.945 \\ + 0.719 & 0.566 & 0.784 \\ + 0.048 & 0.453 & 0.111 \\ + 0.812 & 0.919 & 0.21 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $1.94$ +Volume: $0.17$ +Solid Angle: $1.18$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/14573.txt b/pretraining/mathematica/geometry/solids/14573.txt new file mode 100644 index 0000000000000000000000000000000000000000..8fc0b14d2b5957f935ad4edd0c36cf3201119ae3 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/14573.txt @@ -0,0 +1,15 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.829 & 0.996 & 0.191 \\ + 0.885 & 0.411 & 0.785 \\ + 0.197 & 0.295 & 0.687 \\ + 0.955 & 0.742 & 0.28 \\ + 0.817 & 0.772 & 0.215 \\ + 0.386 & 0.582 & 0.421 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $0.82$ +Solid Angle: $0.46$ +Volume: $0.02$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/15700.txt b/pretraining/mathematica/geometry/solids/15700.txt new file mode 100644 index 0000000000000000000000000000000000000000..dc10a997e9648150bca1469f1b21f2591fb59a61 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/15700.txt @@ -0,0 +1,15 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.424 & 0.826 & 0.876 \\ + 0.664 & 0.373 & 0.057 \\ + 0.789 & 0.416 & 0.182 \\ + 0.82 & 0.491 & 0.524 \\ + 0.923 & 0.352 & 0.587 \\ + 0.111 & 0.926 & 0.795 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.02$ +Surface Area: $0.81$ +Solid Angle: $0.44$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/19583.txt b/pretraining/mathematica/geometry/solids/19583.txt new file mode 100644 index 0000000000000000000000000000000000000000..3f6048d72b3b887ef5ebb34a05c070f17cea5597 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/19583.txt @@ -0,0 +1,77 @@ +Problem: +A polyhedron has vertex coordinates $\left( +\begin{array}{ccc} + \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{4} \left(-3-\sqrt{5}\right) & \frac{1}{2} \left(2+\sqrt{5}\right) \\ + \frac{1}{2} \left(-3-\sqrt{5}\right) & \frac{1}{4} \left(-3-\sqrt{5}\right) & -\frac{1}{2} \\ + \frac{1}{2} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{2} \\ + \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) & -1-\frac{\sqrt{5}}{2} \\ + -\frac{1}{2} & \frac{1}{2} \left(-3-\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) \\ + \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{2} \left(2+\sqrt{5}\right) & \frac{1}{2} \left(-1-\sqrt{5}\right) \\ + \frac{1}{4} \left(3+\sqrt{5}\right) & -1-\frac{\sqrt{5}}{2} & \frac{1}{2} \left(1+\sqrt{5}\right) \\ + \frac{1}{2} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) & -\frac{1}{2} \\ + -1-\frac{\sqrt{5}}{2} & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) \\ + \frac{1}{4} \left(-3-\sqrt{5}\right) & -\frac{1}{2} & \frac{1}{2} \left(3+\sqrt{5}\right) \\ + 0 & \frac{1}{4} \left(5+3 \sqrt{5}\right) & \frac{1}{2} \\ + \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{4} \left(-3-\sqrt{5}\right) & \frac{1}{2} \left(2+\sqrt{5}\right) \\ + 0 & \frac{1}{4} \left(5+3 \sqrt{5}\right) & -\frac{1}{2} \\ + \frac{1}{2} \left(-3-\sqrt{5}\right) & \frac{1}{4} \left(-3-\sqrt{5}\right) & \frac{1}{2} \\ + \frac{1}{4} \left(-3-\sqrt{5}\right) & \frac{1}{2} \left(2+\sqrt{5}\right) & \frac{1}{2} \left(-1-\sqrt{5}\right) \\ + 0 & \frac{1}{4} \left(-5-3 \sqrt{5}\right) & \frac{1}{2} \\ + \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) & -1-\frac{\sqrt{5}}{2} \\ + \frac{1}{2} \left(2+\sqrt{5}\right) & \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{4} \left(-3-\sqrt{5}\right) \\ + \frac{1}{4} \left(-3-\sqrt{5}\right) & -1-\frac{\sqrt{5}}{2} & \frac{1}{2} \left(-1-\sqrt{5}\right) \\ + -\frac{1}{2} & 0 & \frac{1}{4} \left(-5-3 \sqrt{5}\right) \\ + 0 & \frac{1}{4} \left(-5-3 \sqrt{5}\right) & -\frac{1}{2} \\ + \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{2} & \frac{1}{2} \left(-3-\sqrt{5}\right) \\ + \frac{1}{2} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(-3-\sqrt{5}\right) & -\frac{1}{2} \\ + -\frac{1}{2} & \frac{1}{2} \left(-3-\sqrt{5}\right) & \frac{1}{4} \left(-3-\sqrt{5}\right) \\ + \frac{1}{2} & 0 & \frac{1}{4} \left(-5-3 \sqrt{5}\right) \\ + \frac{1}{4} \left(-3-\sqrt{5}\right) & \frac{1}{2} & \frac{1}{2} \left(3+\sqrt{5}\right) \\ + -\frac{1}{2} & \frac{1}{2} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) \\ + \frac{1}{2} & \frac{1}{2} \left(-3-\sqrt{5}\right) & \frac{1}{4} \left(-3-\sqrt{5}\right) \\ + \frac{1}{4} \left(3+\sqrt{5}\right) & -\frac{1}{2} & \frac{1}{2} \left(-3-\sqrt{5}\right) \\ + \frac{1}{4} \left(3+\sqrt{5}\right) & -1-\frac{\sqrt{5}}{2} & \frac{1}{2} \left(-1-\sqrt{5}\right) \\ + \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{4} \left(-3-\sqrt{5}\right) & -1-\frac{\sqrt{5}}{2} \\ + \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{2} \left(2+\sqrt{5}\right) \\ + \frac{1}{4} \left(-3-\sqrt{5}\right) & \frac{1}{2} \left(2+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) \\ + \frac{1}{2} \left(2+\sqrt{5}\right) & \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) \\ + -1-\frac{\sqrt{5}}{2} & \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{4} \left(-3-\sqrt{5}\right) \\ + \frac{1}{4} \left(5+3 \sqrt{5}\right) & \frac{1}{2} & 0 \\ + \frac{1}{4} \left(-3-\sqrt{5}\right) & \frac{1}{2} & \frac{1}{2} \left(-3-\sqrt{5}\right) \\ + \frac{1}{2} & \frac{1}{2} \left(-3-\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) \\ + \frac{1}{2} \left(2+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{4} \left(-3-\sqrt{5}\right) \\ + \frac{1}{4} \left(3+\sqrt{5}\right) & -\frac{1}{2} & \frac{1}{2} \left(3+\sqrt{5}\right) \\ + \frac{1}{4} \left(-5-3 \sqrt{5}\right) & -\frac{1}{2} & 0 \\ + \frac{1}{2} \left(2+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) \\ + -1-\frac{\sqrt{5}}{2} & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{4} \left(-3-\sqrt{5}\right) \\ + \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{2} & \frac{1}{2} \left(3+\sqrt{5}\right) \\ + \frac{1}{4} \left(-5-3 \sqrt{5}\right) & \frac{1}{2} & 0 \\ + \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{2} \left(2+\sqrt{5}\right) \\ + \frac{1}{2} \left(-3-\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) & -\frac{1}{2} \\ + \frac{1}{2} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(-3-\sqrt{5}\right) & \frac{1}{2} \\ + \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{4} \left(-3-\sqrt{5}\right) & -1-\frac{\sqrt{5}}{2} \\ + \frac{1}{4} \left(5+3 \sqrt{5}\right) & -\frac{1}{2} & 0 \\ + \frac{1}{4} \left(-3-\sqrt{5}\right) & -\frac{1}{2} & \frac{1}{2} \left(-3-\sqrt{5}\right) \\ + \frac{1}{2} \left(-3-\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{2} \\ + -\frac{1}{2} & 0 & \frac{1}{4} \left(5+3 \sqrt{5}\right) \\ + \frac{1}{2} & \frac{1}{2} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) \\ + -1-\frac{\sqrt{5}}{2} & \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) \\ + -\frac{1}{2} & \frac{1}{2} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(-3-\sqrt{5}\right) \\ + \frac{1}{2} & 0 & \frac{1}{4} \left(5+3 \sqrt{5}\right) \\ + \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{2} \left(2+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) \\ + \frac{1}{4} \left(-3-\sqrt{5}\right) & -1-\frac{\sqrt{5}}{2} & \frac{1}{2} \left(1+\sqrt{5}\right) \\ + \frac{1}{2} & \frac{1}{2} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(-3-\sqrt{5}\right) \\ + \frac{3}{4}+\frac{13}{4 \sqrt{5}} & \frac{1}{2} & \frac{3}{10} \left(5+\sqrt{5}\right) \\ + \frac{3}{4}+\frac{13}{4 \sqrt{5}} & -\frac{1}{2} & \frac{3}{10} \left(5+\sqrt{5}\right) \\ + \frac{5}{4}+\frac{13}{4 \sqrt{5}} & \frac{1}{4} \left(-1-\sqrt{5}\right) & \frac{1}{20} \left(25+\sqrt{5}\right) \\ + 1+\frac{9}{2 \sqrt{5}} & 0 & \frac{1}{20} \left(15+\sqrt{5}\right) \\ + \frac{5}{4}+\frac{13}{4 \sqrt{5}} & \frac{1}{4} \left(1+\sqrt{5}\right) & \frac{1}{20} \left(25+\sqrt{5}\right) \\ + -\frac{3}{4}-\frac{13}{4 \sqrt{5}} & \frac{1}{2} & \frac{3}{10} \left(5+\sqrt{5}\right) \\ + -\frac{3}{4}-\frac{13}{4 \sqrt{5}} & -\frac{1}{2} & \frac{3}{10} \left(5+\sqrt{5}\right) \\ + -\frac{5}{4}-\frac{13}{4 \sqrt{5}} & \frac{1}{4} \left(-1-\sqrt{5}\right) & \frac{1}{20} \left(25+\sqrt{5}\right) \\ + -1-\frac{9}{2 \sqrt{5}} & 0 & \frac{1}{20} \left(15+\sqrt{5}\right) \\ + -\frac{5}{4}-\frac{13}{4 \sqrt{5}} & \frac{1}{4} \left(1+\sqrt{5}\right) & \frac{1}{20} \left(25+\sqrt{5}\right) \\ +\end{array} +\right)$. Determine the SurfaceArea. +Answer: +$\frac{1}{2} \left(20+15 \sqrt{3}+50 \sqrt{5+2 \sqrt{5}}+\sqrt{5 \left(5+2 \sqrt{5}\right)}\right)$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/19870.txt b/pretraining/mathematica/geometry/solids/19870.txt new file mode 100644 index 0000000000000000000000000000000000000000..9f68bdabc70d572f33492bb839e9112398258b2d --- /dev/null +++ b/pretraining/mathematica/geometry/solids/19870.txt @@ -0,0 +1,15 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.682 & 0.384 & 0.234 \\ + 0.935 & 0.431 & 0.951 \\ + 0.851 & 0.177 & 0.746 \\ + 0.877 & 0.579 & 0.577 \\ + 0.028 & 0.474 & 0.714 \\ + 0.14 & 0.181 & 0.526 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $1.09$ +Volume: $0.06$ +Solid Angle: $1.02$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/22420.txt b/pretraining/mathematica/geometry/solids/22420.txt new file mode 100644 index 0000000000000000000000000000000000000000..6be856e5c815d8f16c20f7093987a869ee79ee1b --- /dev/null +++ b/pretraining/mathematica/geometry/solids/22420.txt @@ -0,0 +1,14 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.738 & 0.808 & 0.683 \\ + 0.777 & 0.329 & 0.728 \\ + 0.913 & 0.51 & 0.611 \\ + 0.407 & 0.9 & 0.938 \\ + 0.779 & 0.559 & 0.047 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $0.68$ +Volume: $0.02$ +Solid Angle: $2.55$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/22547.txt b/pretraining/mathematica/geometry/solids/22547.txt new file mode 100644 index 0000000000000000000000000000000000000000..d4e2851240def632e2ff8a10e613311b8533dbf9 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/22547.txt @@ -0,0 +1,14 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.138 & 0.392 & 0.973 \\ + 0.808 & 0.238 & 0.18 \\ + 0.781 & 0.944 & 0.931 \\ + 0.789 & 0.5 & 0.52 \\ + 0.212 & 0.96 & 0.716 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.06$ +Surface Area: $1.23$ +Solid Angle: $0.55$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/24321.txt b/pretraining/mathematica/geometry/solids/24321.txt new file mode 100644 index 0000000000000000000000000000000000000000..327c53245a286f588230fb69e57e2515d43f3529 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/24321.txt @@ -0,0 +1,20 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.207 & 0.901 & 0.595 \\ + 0.976 & 0.894 & 0.99 \\ + 0.244 & 0.157 & 0.405 \\ + 0.989 & 0.635 & 0.494 \\ + 0.474 & 0.953 & 0.299 \\ + 0.419 & 0.759 & 0.285 \\ + 0.305 & 0.316 & 0.728 \\ + 0.722 & 0.034 & 0.351 \\ + 0.835 & 0.273 & 0.756 \\ + 0.51 & 0.972 & 0.892 \\ + 0.621 & 0.332 & 0.893 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $2.08$ +Volume: $0.22$ +Solid Angle: $2.12$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/26253.txt b/pretraining/mathematica/geometry/solids/26253.txt new file mode 100644 index 0000000000000000000000000000000000000000..c351b77e31516ffb63f700d015204b8fe128b2a4 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/26253.txt @@ -0,0 +1,20 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.984 & 0.386 & 0.72 \\ + 0.269 & 0.492 & 0.843 \\ + 0.225 & 0.936 & 0.221 \\ + 0.755 & 0.315 & 0.816 \\ + 0.334 & 0.997 & 0.966 \\ + 0.248 & 0.333 & 0.198 \\ + 0.925 & 0.457 & 0.432 \\ + 0.734 & 0.862 & 0.461 \\ + 0.315 & 0.927 & 0.045 \\ + 0.474 & 0.214 & 0.082 \\ + 0.967 & 0.44 & 0.954 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $2.55$ +Surface Area: $2.2$ +Volume: $0.23$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/26276.txt b/pretraining/mathematica/geometry/solids/26276.txt new file mode 100644 index 0000000000000000000000000000000000000000..6eea4374d432a3643de548666f2707c6bace0d75 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/26276.txt @@ -0,0 +1,18 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.038 & 0.854 & 0.853 \\ + 0.567 & 0.032 & 0.75 \\ + 0.94 & 0.204 & 0.338 \\ + 0.158 & 0.667 & 0.207 \\ + 0.666 & 0.638 & 0.562 \\ + 0.016 & 0.764 & 0.827 \\ + 0.862 & 0.467 & 0.279 \\ + 0.271 & 0.2 & 0.449 \\ + 0.45 & 0.4 & 0.944 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $1.65$ +Solid Angle: $1.04$ +Volume: $0.14$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/2681.txt b/pretraining/mathematica/geometry/solids/2681.txt new file mode 100644 index 0000000000000000000000000000000000000000..874d105299cdbb67329aba2a9720b98c68bf0309 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/2681.txt @@ -0,0 +1,16 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.478 & 0.256 & 0.414 \\ + 0.496 & 0.722 & 0.023 \\ + 0.169 & 0.452 & 0.72 \\ + 0.709 & 0.346 & 0.047 \\ + 0.345 & 0.744 & 0.155 \\ + 0.871 & 0.724 & 0.014 \\ + 0.815 & 0.473 & 0.322 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $1.65$ +Surface Area: $0.88$ +Volume: $0.04$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/27848.txt b/pretraining/mathematica/geometry/solids/27848.txt new file mode 100644 index 0000000000000000000000000000000000000000..b5b36414e5d5ef31ab7bc1a9abcd19fe7cfc9b4a --- /dev/null +++ b/pretraining/mathematica/geometry/solids/27848.txt @@ -0,0 +1,15 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.251 & 0.382 & 0.863 \\ + 0.619 & 0.288 & 0.291 \\ + 0.909 & 0.965 & 0.848 \\ + 0.677 & 0.37 & 0.809 \\ + 0.825 & 0.193 & 0.387 \\ + 0.335 & 0.289 & 0.596 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $0.91$ +Volume: $0.04$ +Solid Angle: $0.54$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/28086.txt b/pretraining/mathematica/geometry/solids/28086.txt new file mode 100644 index 0000000000000000000000000000000000000000..b2db14ae59e33d4d0a515207945d14c2b247d903 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/28086.txt @@ -0,0 +1,17 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.248 & 0.749 & 0.539 \\ + 0.334 & 0. & 0.487 \\ + 0.127 & 0.216 & 0.882 \\ + 0.632 & 0.57 & 0.057 \\ + 0.671 & 0.913 & 0.278 \\ + 0.568 & 0.112 & 0.54 \\ + 0.721 & 0.458 & 0.864 \\ + 0.562 & 0.043 & 0.899 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $1.57$ +Solid Angle: $1.69$ +Volume: $0.12$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/28570.txt b/pretraining/mathematica/geometry/solids/28570.txt new file mode 100644 index 0000000000000000000000000000000000000000..3f9ff2be9e0db97781eabfbbda7be9dc5f5736a7 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/28570.txt @@ -0,0 +1,18 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.691 & 0.649 & 0.727 \\ + 0.808 & 0.123 & 0.345 \\ + 0.366 & 0.364 & 0.653 \\ + 0.88 & 0.14 & 0.983 \\ + 0.612 & 0.68 & 0.92 \\ + 0.433 & 0.39 & 0.81 \\ + 0.648 & 0.82 & 0.094 \\ + 0.664 & 0.398 & 0.961 \\ + 0.363 & 0.553 & 0.15 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.1$ +Solid Angle: $5.17$ +Surface Area: $1.38$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/30401.txt b/pretraining/mathematica/geometry/solids/30401.txt new file mode 100644 index 0000000000000000000000000000000000000000..62102bb34431b07500ef0a300334e4c0257ce2e5 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/30401.txt @@ -0,0 +1,17 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.346 & 0.984 & 0.993 \\ + 0.943 & 0.364 & 0.754 \\ + 0.244 & 0.022 & 0.508 \\ + 0.403 & 0.797 & 0.13 \\ + 0.711 & 0.678 & 0.048 \\ + 0.836 & 0.419 & 0.554 \\ + 0.907 & 0.492 & 0.993 \\ + 0.233 & 0.038 & 0.761 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.18$ +Surface Area: $2.05$ +Solid Angle: $0.76$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/31232.txt b/pretraining/mathematica/geometry/solids/31232.txt new file mode 100644 index 0000000000000000000000000000000000000000..b9602e430f02b850009aa2c05772277fff682d04 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/31232.txt @@ -0,0 +1,14 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.63 & 0.464 & 0.652 \\ + 0.319 & 0.517 & 0.376 \\ + 0.844 & 0.592 & 0.732 \\ + 0.88 & 0.57 & 0.656 \\ + 0.004 & 0.729 & 0.2 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.$ +Solid Angle: $1.1$ +Surface Area: $0.3$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/32177.txt b/pretraining/mathematica/geometry/solids/32177.txt new file mode 100644 index 0000000000000000000000000000000000000000..b13508586c2201f8dc1e426d4045b22fb4f123d3 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/32177.txt @@ -0,0 +1,15 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.894 & 0.19 & 0.505 \\ + 0.071 & 0.899 & 0.56 \\ + 0.005 & 0.807 & 0.937 \\ + 0.963 & 0.292 & 0.051 \\ + 0.968 & 0.883 & 0.239 \\ + 0.247 & 0.563 & 0.9 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $0.88$ +Surface Area: $1.61$ +Volume: $0.09$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/32186.txt b/pretraining/mathematica/geometry/solids/32186.txt new file mode 100644 index 0000000000000000000000000000000000000000..a248f0dd9445a1bbbaf5d83d8acd9c4d5dfcbb75 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/32186.txt @@ -0,0 +1,13 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.414 & 0.3 & 0.51 \\ + 0.951 & 0.128 & 0.502 \\ + 0.511 & 0.929 & 0.96 \\ + 0.837 & 0.223 & 0.471 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $0.15$ +Surface Area: $0.46$ +Volume: $0.$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/32500.txt b/pretraining/mathematica/geometry/solids/32500.txt new file mode 100644 index 0000000000000000000000000000000000000000..eb7ba98c85d1e609962182266ebcc209b2193686 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/32500.txt @@ -0,0 +1,15 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.007 & 0.121 & 0.156 \\ + 0.729 & 0.932 & 0.337 \\ + 0.927 & 0.755 & 0.795 \\ + 0.693 & 0.186 & 0.546 \\ + 0.268 & 0.091 & 0.393 \\ + 0.861 & 0.522 & 0.919 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $0.15$ +Volume: $0.04$ +Surface Area: $1.22$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/32778.txt b/pretraining/mathematica/geometry/solids/32778.txt new file mode 100644 index 0000000000000000000000000000000000000000..33966f778e32c9fa01a3078471edd13c11cecb2a --- /dev/null +++ b/pretraining/mathematica/geometry/solids/32778.txt @@ -0,0 +1,14 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.242 & 0.209 & 0.964 \\ + 0.261 & 0.647 & 0.113 \\ + 0.079 & 0.511 & 0.812 \\ + 0.536 & 0.592 & 0.015 \\ + 0.987 & 0.108 & 0.211 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.02$ +Surface Area: $1.22$ +Solid Angle: $0.16$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/33446.txt b/pretraining/mathematica/geometry/solids/33446.txt new file mode 100644 index 0000000000000000000000000000000000000000..60359ccd838a318eef0e21f6ef39aa8186f797fa --- /dev/null +++ b/pretraining/mathematica/geometry/solids/33446.txt @@ -0,0 +1,16 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.866 & 0.262 & 0.368 \\ + 0.331 & 0.256 & 0.489 \\ + 0.223 & 0.172 & 0.913 \\ + 0.368 & 0.909 & 0.507 \\ + 0.253 & 0.493 & 0.073 \\ + 0.081 & 0.4 & 0.75 \\ + 0.756 & 0.635 & 0.137 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.09$ +Surface Area: $1.36$ +Solid Angle: $0.86$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/35631.txt b/pretraining/mathematica/geometry/solids/35631.txt new file mode 100644 index 0000000000000000000000000000000000000000..c5e3288ccff07d33889f42923180ad75c18f55d3 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/35631.txt @@ -0,0 +1,17 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.687 & 0.546 & 0.353 \\ + 0.767 & 0.581 & 0.818 \\ + 0.093 & 0.136 & 0.563 \\ + 0.351 & 0.39 & 0.433 \\ + 0.414 & 0.12 & 0.482 \\ + 0.795 & 0.911 & 0.368 \\ + 0.463 & 0.182 & 0.539 \\ + 0.871 & 0.391 & 0.626 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.04$ +Surface Area: $0.84$ +Solid Angle: $3.47$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/36988.txt b/pretraining/mathematica/geometry/solids/36988.txt new file mode 100644 index 0000000000000000000000000000000000000000..f1653be082814a2c03acfe76508eee695cd46bb7 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/36988.txt @@ -0,0 +1,15 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.48 & 0.871 & 0.132 \\ + 0.823 & 0.176 & 0.774 \\ + 0.763 & 0.422 & 0.919 \\ + 0.941 & 0.515 & 0.244 \\ + 0.979 & 0.425 & 0.807 \\ + 0.146 & 0.16 & 0.041 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.09$ +Solid Angle: $0.72$ +Surface Area: $1.41$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/37187.txt b/pretraining/mathematica/geometry/solids/37187.txt new file mode 100644 index 0000000000000000000000000000000000000000..9c6293061ac535f22c318ca2c2247301d1462e6b --- /dev/null +++ b/pretraining/mathematica/geometry/solids/37187.txt @@ -0,0 +1,21 @@ +Problem: +A polyhedron has vertex coordinates $\left( +\begin{array}{ccc} + -1 & 0 & -\frac{1}{2} \\ + -1 & 0 & \frac{1}{2} \\ + -\frac{1}{2} & -\frac{\sqrt{3}}{2} & -\frac{1}{2} \\ + -\frac{1}{2} & -\frac{\sqrt{3}}{2} & \frac{1}{2} \\ + -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ + -\frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{1}{2} \\ + \frac{1}{2} & -\frac{\sqrt{3}}{2} & -\frac{1}{2} \\ + \frac{1}{2} & -\frac{\sqrt{3}}{2} & \frac{1}{2} \\ + \frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ + \frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{1}{2} \\ + 1 & 0 & -\frac{1}{2} \\ + 1 & 0 & \frac{1}{2} \\ + \frac{1}{4} \left(-3-\sqrt{6}\right) & \frac{1}{4} \sqrt{5+2 \sqrt{6}} & 0 \\ + \frac{1}{4} \left(3+\sqrt{6}\right) & \frac{1}{4} \sqrt{5+2 \sqrt{6}} & 0 \\ +\end{array} +\right)$. Determine the EdgeCount. +Answer: +$26$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/37946.txt b/pretraining/mathematica/geometry/solids/37946.txt new file mode 100644 index 0000000000000000000000000000000000000000..f358dd1789737007e27752ec39a3f52c07070738 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/37946.txt @@ -0,0 +1,20 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.864 & 0.643 & 0.707 \\ + 0.798 & 0.187 & 0.46 \\ + 0.234 & 0.205 & 0.109 \\ + 0.811 & 0.146 & 0.862 \\ + 0.138 & 0.039 & 0.418 \\ + 0.239 & 0.795 & 0.24 \\ + 0.985 & 0.482 & 0.852 \\ + 0.106 & 0.933 & 0.648 \\ + 0.866 & 0.241 & 0.326 \\ + 0.821 & 0.824 & 0.287 \\ + 0.209 & 0.341 & 0.113 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $4.96$ +Surface Area: $2.22$ +Volume: $0.24$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/38952.txt b/pretraining/mathematica/geometry/solids/38952.txt new file mode 100644 index 0000000000000000000000000000000000000000..a29659c904dd3724eae2ea77f859a6eb8b7957cf --- /dev/null +++ b/pretraining/mathematica/geometry/solids/38952.txt @@ -0,0 +1,19 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.915 & 0.736 & 0.564 \\ + 0.244 & 0.426 & 0.83 \\ + 0.14 & 0.188 & 0.033 \\ + 0.716 & 0.685 & 0.879 \\ + 0.312 & 0.883 & 0.047 \\ + 0.151 & 0.104 & 0.593 \\ + 0.202 & 0.522 & 0.024 \\ + 0.105 & 0.703 & 0.657 \\ + 0.357 & 0.999 & 0.52 \\ + 0.861 & 0.174 & 0.022 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.27$ +Solid Angle: $2.01$ +Surface Area: $2.39$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/41691.txt b/pretraining/mathematica/geometry/solids/41691.txt new file mode 100644 index 0000000000000000000000000000000000000000..b056e42229d7ef3e7a1f1534d0a54e8183f8878f --- /dev/null +++ b/pretraining/mathematica/geometry/solids/41691.txt @@ -0,0 +1,20 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.073 & 0.959 & 0.309 \\ + 0.026 & 0.947 & 0.271 \\ + 0.867 & 0.348 & 0.47 \\ + 0.226 & 0.43 & 0.866 \\ + 0.075 & 0.153 & 0.059 \\ + 0.235 & 0.509 & 0.019 \\ + 0.687 & 0.195 & 0.493 \\ + 0.196 & 0.983 & 0.628 \\ + 0.024 & 0.829 & 0.414 \\ + 0.773 & 0.662 & 0.872 \\ + 0.832 & 0.911 & 0.709 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.22$ +Solid Angle: $4.03$ +Surface Area: $2.15$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/41966.txt b/pretraining/mathematica/geometry/solids/41966.txt new file mode 100644 index 0000000000000000000000000000000000000000..69d7ba5aa5b6d9c42a4611d1ef03c0540555d820 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/41966.txt @@ -0,0 +1,15 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.947 & 0.154 & 0.043 \\ + 0.593 & 0.374 & 0.313 \\ + 0.469 & 0.345 & 0.77 \\ + 0.238 & 0.894 & 0.61 \\ + 0.029 & 0.901 & 0.423 \\ + 0.262 & 0.852 & 0.991 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $1.13$ +Volume: $0.04$ +Solid Angle: $0.1$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/42211.txt b/pretraining/mathematica/geometry/solids/42211.txt new file mode 100644 index 0000000000000000000000000000000000000000..9e498b840c69bfefd4a7537ff116a5b69591d045 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/42211.txt @@ -0,0 +1,19 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.763 & 0.511 & 0.768 \\ + 0.261 & 0.115 & 0.742 \\ + 0.216 & 0.37 & 0.172 \\ + 0.032 & 0.892 & 0.75 \\ + 0.537 & 0.926 & 0.002 \\ + 0.78 & 0.944 & 0.231 \\ + 0.126 & 0.078 & 0.974 \\ + 0.276 & 0.272 & 0.372 \\ + 0.229 & 0.852 & 0.954 \\ + 0.981 & 0.795 & 0.476 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $2.38$ +Volume: $0.22$ +Surface Area: $2.26$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/42352.txt b/pretraining/mathematica/geometry/solids/42352.txt new file mode 100644 index 0000000000000000000000000000000000000000..07a11958cf85f72ea7dacfd3f3a5adcf78a92c14 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/42352.txt @@ -0,0 +1,19 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.657 & 0.622 & 0.113 \\ + 0.27 & 0.776 & 0.085 \\ + 0.901 & 0.623 & 0.954 \\ + 0.195 & 0.422 & 0.809 \\ + 0.327 & 0.618 & 0.846 \\ + 0.315 & 0.893 & 0.826 \\ + 0.286 & 0.813 & 0.074 \\ + 0.56 & 0.248 & 0.42 \\ + 0.081 & 0.633 & 0.462 \\ + 0.902 & 0.924 & 0.123 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $3.62$ +Volume: $0.18$ +Surface Area: $1.87$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/42724.txt b/pretraining/mathematica/geometry/solids/42724.txt new file mode 100644 index 0000000000000000000000000000000000000000..321494e22ecee17f807cf81988e6fe3e6e8d6d1d --- /dev/null +++ b/pretraining/mathematica/geometry/solids/42724.txt @@ -0,0 +1,18 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.879 & 0.199 & 0.1 \\ + 0.935 & 0.754 & 0.894 \\ + 0.824 & 0.686 & 0.244 \\ + 0.625 & 0.191 & 0.835 \\ + 0.144 & 0.754 & 0.575 \\ + 0.676 & 0.851 & 0.455 \\ + 0.424 & 0.185 & 0.58 \\ + 0.436 & 0.577 & 0.181 \\ + 0.584 & 0.523 & 0.952 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $0.93$ +Surface Area: $1.7$ +Volume: $0.17$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/43559.txt b/pretraining/mathematica/geometry/solids/43559.txt new file mode 100644 index 0000000000000000000000000000000000000000..db8becbc27ef69a5918b8b6e35154721171d2e6d --- /dev/null +++ b/pretraining/mathematica/geometry/solids/43559.txt @@ -0,0 +1,18 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.649 & 0.717 & 0.212 \\ + 0.025 & 0.268 & 0.372 \\ + 0.608 & 0.894 & 0.957 \\ + 0.25 & 0.735 & 0.006 \\ + 0.031 & 0.775 & 0.04 \\ + 0.723 & 0.588 & 0.844 \\ + 0.289 & 0.19 & 0.875 \\ + 0.304 & 0.736 & 0.782 \\ + 0.103 & 0.13 & 0.544 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $1.42$ +Volume: $0.13$ +Surface Area: $1.73$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/47225.txt b/pretraining/mathematica/geometry/solids/47225.txt new file mode 100644 index 0000000000000000000000000000000000000000..8535ddab70c767d6fd2b685658ed5f6bc3d843d2 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/47225.txt @@ -0,0 +1,13 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.482 & 0.827 & 0.444 \\ + 0.717 & 0.09 & 0.571 \\ + 0.422 & 0.168 & 0.335 \\ + 0.611 & 0.35 & 0.147 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $0.43$ +Volume: $0.01$ +Solid Angle: $0.13$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/47674.txt b/pretraining/mathematica/geometry/solids/47674.txt new file mode 100644 index 0000000000000000000000000000000000000000..ceaaff2a0ca8407522da43d910d993ef9439eb61 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/47674.txt @@ -0,0 +1,5 @@ +Problem: +An ellipsoid centered at $\{-9.009,9.625,7.589\}$ has radii $\{5.837,9.789,0.137\}$. Estimate the ellipsoid's surface area and volume. +Answer: +Surface Area: $359.59$ +Volume: $32.71$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/48383.txt b/pretraining/mathematica/geometry/solids/48383.txt new file mode 100644 index 0000000000000000000000000000000000000000..82bf45b23113307ab409c56b5dfe634427865e62 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/48383.txt @@ -0,0 +1,15 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.098 & 0.215 & 0.079 \\ + 0.058 & 0.243 & 0.075 \\ + 0.113 & 0.525 & 0.941 \\ + 0.43 & 0.314 & 0.796 \\ + 0.057 & 0. & 0.121 \\ + 0.285 & 0.692 & 0.914 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $0.72$ +Volume: $0.03$ +Solid Angle: $2.83$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/52500.txt b/pretraining/mathematica/geometry/solids/52500.txt new file mode 100644 index 0000000000000000000000000000000000000000..6c2ee7468eb0d9428a04184bda714710a1832518 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/52500.txt @@ -0,0 +1,16 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.255 & 0.973 & 0.532 \\ + 0.882 & 0.463 & 0.099 \\ + 0.075 & 0.908 & 0.084 \\ + 0.727 & 0.489 & 0.875 \\ + 0.676 & 0.071 & 0.175 \\ + 0.366 & 0.683 & 0.812 \\ + 0.249 & 0.31 & 0.835 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $1.84$ +Solid Angle: $1.64$ +Volume: $0.16$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/52600.txt b/pretraining/mathematica/geometry/solids/52600.txt new file mode 100644 index 0000000000000000000000000000000000000000..e53cf358df6e49bbfe3c012a1c576445468453e0 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/52600.txt @@ -0,0 +1,6 @@ +Problem: +A cone with radius $1.666$ has its base centered at$\{7.487,4.707,5.466\}$ and its tip is at $\{2.384,8.789,2.599\}$. Estimate the cone's surface area, volume, and centroid. +Answer: +Surface Area: $47.07$ +Centroid: $\{6.21,5.73,4.75\}$ +Volume: $20.74$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/54182.txt b/pretraining/mathematica/geometry/solids/54182.txt new file mode 100644 index 0000000000000000000000000000000000000000..dfe5d61bdebc8495236ee7b65a0c5fd8e056e2e4 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/54182.txt @@ -0,0 +1,16 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.302 & 0.355 & 0.096 \\ + 0.121 & 0.847 & 0.418 \\ + 0.709 & 0.131 & 0.13 \\ + 0.047 & 0.259 & 0.921 \\ + 0.499 & 0.052 & 0.395 \\ + 0.159 & 0.553 & 0.089 \\ + 0.87 & 0.28 & 0.577 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $3.26$ +Surface Area: $1.49$ +Volume: $0.1$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/5442.txt b/pretraining/mathematica/geometry/solids/5442.txt new file mode 100644 index 0000000000000000000000000000000000000000..ab2c4559b71380d2bd41488692638a5e5e0cff17 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/5442.txt @@ -0,0 +1,19 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.499 & 0.866 & 0.059 \\ + 0.823 & 0.843 & 0.148 \\ + 0.371 & 0.642 & 0.134 \\ + 0.827 & 0.205 & 0.124 \\ + 0.193 & 0.327 & 0.793 \\ + 0.693 & 0.276 & 0.329 \\ + 0.625 & 0.971 & 0.294 \\ + 0.301 & 0.236 & 0.814 \\ + 0.12 & 0.565 & 0.91 \\ + 0.058 & 0.643 & 0.357 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $2.34$ +Surface Area: $1.61$ +Volume: $0.11$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/56677.txt b/pretraining/mathematica/geometry/solids/56677.txt new file mode 100644 index 0000000000000000000000000000000000000000..c033af576c3141f321041124f99a4dcc773f9dbf --- /dev/null +++ b/pretraining/mathematica/geometry/solids/56677.txt @@ -0,0 +1,19 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.336 & 0.885 & 0.049 \\ + 0.753 & 0.61 & 0.959 \\ + 0.008 & 0.479 & 0.498 \\ + 0.942 & 0.393 & 0.521 \\ + 0.427 & 0.814 & 0.776 \\ + 0.428 & 0.751 & 0.832 \\ + 0.584 & 0.164 & 0.372 \\ + 0.509 & 0.965 & 0.115 \\ + 0.383 & 0.652 & 0.803 \\ + 0.591 & 0.412 & 0.019 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $1.8$ +Volume: $0.16$ +Surface Area: $1.75$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/56783.txt b/pretraining/mathematica/geometry/solids/56783.txt new file mode 100644 index 0000000000000000000000000000000000000000..43ca0e2aab464d26ccb9d6a117ec61ae5963872f --- /dev/null +++ b/pretraining/mathematica/geometry/solids/56783.txt @@ -0,0 +1,13 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.622 & 0.947 & 0.1 \\ + 0.34 & 0.029 & 0.712 \\ + 0.797 & 0.18 & 0.316 \\ + 0.437 & 0.733 & 0.475 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.01$ +Surface Area: $0.72$ +Solid Angle: $0.08$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/57100.txt b/pretraining/mathematica/geometry/solids/57100.txt new file mode 100644 index 0000000000000000000000000000000000000000..ea99dc2331d48ef855b6899ffa3163fe07aa5ef4 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/57100.txt @@ -0,0 +1,99 @@ +Problem: +A polyhedron has vertex coordinates $\left( +\begin{array}{ccc} + -2.412 & 0. & -0.843 \\ + -2.412 & 0. & 0.157 \\ + -2.285 & -0.934 & -0.509 \\ + -2.285 & -0.934 & 0.491 \\ + -2.285 & 0.934 & -0.509 \\ + -2.285 & 0.934 & 0.491 \\ + -2.157 & 0. & 0.824 \\ + -2.079 & -0.577 & -1.588 \\ + -2.079 & 0.577 & -1.588 \\ + -1.951 & -1.512 & -1.255 \\ + -1.951 & -1.512 & -0.255 \\ + -1.951 & 1.512 & -1.255 \\ + -1.951 & 1.512 & -0.255 \\ + -1.745 & 0. & -2.333 \\ + -1.618 & -0.934 & -2. \\ + -1.618 & -0.934 & 1.236 \\ + -1.618 & 0.934 & -2. \\ + -1.618 & 0.934 & 1.236 \\ + -1.539 & -1.512 & 0.824 \\ + -1.539 & 1.512 & 0.824 \\ + -1.491 & 0. & 1.569 \\ + -1.206 & -2.089 & -0.921 \\ + -1.206 & -2.089 & 0.079 \\ + -1.206 & 2.089 & -0.921 \\ + -1.206 & 2.089 & 0.079 \\ + -1.079 & -1.868 & -1.588 \\ + -1.079 & 1.868 & -1.588 \\ + -0.873 & -1.512 & 1.569 \\ + -0.873 & -0.357 & -2.667 \\ + -0.873 & 0.357 & -2.667 \\ + -0.873 & 1.512 & 1.569 \\ + -0.745 & -1.291 & -2.333 \\ + -0.745 & -0.577 & 1.903 \\ + -0.745 & 0.577 & 1.903 \\ + -0.745 & 1.291 & -2.333 \\ + -0.539 & -2.089 & 0.824 \\ + -0.539 & 2.089 & 0.824 \\ + -0.333 & -2.446 & -1.255 \\ + -0.333 & -2.446 & -0.255 \\ + -0.333 & 2.446 & -1.255 \\ + -0.333 & 2.446 & -0.255 \\ + -0.127 & -0.934 & 1.903 \\ + -0.127 & 0.934 & 1.903 \\ + 0. & -1.868 & -2. \\ + 0. & -1.868 & 1.236 \\ + 0. & 0. & -3. \\ + 0. & 0. & 2.236 \\ + 0. & 1.868 & -2. \\ + 0. & 1.868 & 1.236 \\ + 0.127 & -0.934 & -2.667 \\ + 0.127 & 0.934 & -2.667 \\ + 0.333 & -2.446 & -0.509 \\ + 0.333 & -2.446 & 0.491 \\ + 0.333 & 2.446 & -0.509 \\ + 0.333 & 2.446 & 0.491 \\ + 0.539 & -2.089 & -1.588 \\ + 0.539 & 2.089 & -1.588 \\ + 0.745 & -1.291 & 1.569 \\ + 0.745 & -0.577 & -2.667 \\ + 0.745 & 0.577 & -2.667 \\ + 0.745 & 1.291 & 1.569 \\ + 0.873 & -1.512 & -2.333 \\ + 0.873 & -0.357 & 1.903 \\ + 0.873 & 0.357 & 1.903 \\ + 0.873 & 1.512 & -2.333 \\ + 1.079 & -1.868 & 0.824 \\ + 1.079 & 1.868 & 0.824 \\ + 1.206 & -2.089 & -0.843 \\ + 1.206 & -2.089 & 0.157 \\ + 1.206 & 2.089 & -0.843 \\ + 1.206 & 2.089 & 0.157 \\ + 1.491 & 0. & -2.333 \\ + 1.539 & -1.512 & -1.588 \\ + 1.539 & 1.512 & -1.588 \\ + 1.618 & -0.934 & -2. \\ + 1.618 & -0.934 & 1.236 \\ + 1.618 & 0.934 & -2. \\ + 1.618 & 0.934 & 1.236 \\ + 1.745 & 0. & 1.569 \\ + 1.951 & -1.512 & -0.509 \\ + 1.951 & -1.512 & 0.491 \\ + 1.951 & 1.512 & -0.509 \\ + 1.951 & 1.512 & 0.491 \\ + 2.079 & -0.577 & 0.824 \\ + 2.079 & 0.577 & 0.824 \\ + 2.157 & 0. & -1.588 \\ + 2.285 & -0.934 & -1.255 \\ + 2.285 & -0.934 & -0.255 \\ + 2.285 & 0.934 & -1.255 \\ + 2.285 & 0.934 & -0.255 \\ + 2.412 & 0. & -0.921 \\ + 2.412 & 0. & 0.079 \\ +\end{array} +\right)$. Determine the EdgeCount. +Answer: +$180.$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/57829.txt b/pretraining/mathematica/geometry/solids/57829.txt new file mode 100644 index 0000000000000000000000000000000000000000..2a3e448bed94baf4ed4250fc840d33dab1ffd898 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/57829.txt @@ -0,0 +1,15 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.618 & 0.681 & 0.011 \\ + 0.231 & 0.142 & 0.098 \\ + 0.545 & 0.928 & 0.645 \\ + 0.592 & 0.199 & 0.044 \\ + 0.806 & 0.685 & 0.606 \\ + 0.205 & 0.447 & 0.383 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.06$ +Surface Area: $1.03$ +Solid Angle: $1.3$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/58247.txt b/pretraining/mathematica/geometry/solids/58247.txt new file mode 100644 index 0000000000000000000000000000000000000000..7a3b885a6e11b5d64043cad8e57d53d207f76f4d --- /dev/null +++ b/pretraining/mathematica/geometry/solids/58247.txt @@ -0,0 +1,15 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.836 & 0.08 & 0.111 \\ + 0.551 & 0.149 & 0.582 \\ + 0.443 & 0.924 & 0.401 \\ + 0.213 & 0.885 & 0.461 \\ + 0.834 & 0.837 & 0.845 \\ + 0.463 & 0.242 & 0.691 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $0.35$ +Surface Area: $1.24$ +Volume: $0.08$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/60347.txt b/pretraining/mathematica/geometry/solids/60347.txt new file mode 100644 index 0000000000000000000000000000000000000000..b41d9ff90c958629266540b0a8a24f16611cedae --- /dev/null +++ b/pretraining/mathematica/geometry/solids/60347.txt @@ -0,0 +1,14 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.074 & 0.896 & 0.412 \\ + 0.057 & 0.026 & 0.731 \\ + 0.367 & 0.498 & 0.134 \\ + 0.08 & 0.098 & 0.387 \\ + 0.311 & 0.071 & 0.825 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.04$ +Surface Area: $0.83$ +Solid Angle: $0.28$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/60963.txt b/pretraining/mathematica/geometry/solids/60963.txt new file mode 100644 index 0000000000000000000000000000000000000000..88e36148cb7af3f0a50d32f1847ad95691855a1d --- /dev/null +++ b/pretraining/mathematica/geometry/solids/60963.txt @@ -0,0 +1,14 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.288 & 0.425 & 0.06 \\ + 0.417 & 0.673 & 0.696 \\ + 0.464 & 0.186 & 0.382 \\ + 0.374 & 0.067 & 0.563 \\ + 0.615 & 0.847 & 0.699 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $0.61$ +Solid Angle: $0.3$ +Volume: $0.02$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/61810.txt b/pretraining/mathematica/geometry/solids/61810.txt new file mode 100644 index 0000000000000000000000000000000000000000..89e41de127f18d6fe54832544f6fe4f334843af2 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/61810.txt @@ -0,0 +1,16 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.916 & 0.207 & 0.873 \\ + 0.766 & 0.053 & 0.573 \\ + 0.981 & 0.135 & 0.814 \\ + 0.115 & 0.69 & 0.991 \\ + 0.912 & 0.553 & 0.574 \\ + 0.072 & 0.65 & 0.319 \\ + 0.226 & 0.412 & 0.843 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.09$ +Surface Area: $1.37$ +Solid Angle: $2.32$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/62503.txt b/pretraining/mathematica/geometry/solids/62503.txt new file mode 100644 index 0000000000000000000000000000000000000000..64bd32cccd27b04dde3e35d96565c39528f331df --- /dev/null +++ b/pretraining/mathematica/geometry/solids/62503.txt @@ -0,0 +1,13 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.765 & 0.251 & 0.437 \\ + 0.785 & 0.75 & 0.199 \\ + 0.814 & 0.525 & 0.614 \\ + 0.257 & 0.829 & 0.681 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $0.45$ +Surface Area: $0.52$ +Volume: $0.02$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/62880.txt b/pretraining/mathematica/geometry/solids/62880.txt new file mode 100644 index 0000000000000000000000000000000000000000..43cc40dbc0b1a0a67355348f1afd6b01d4bf2be2 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/62880.txt @@ -0,0 +1,15 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.26 & 0.176 & 0.646 \\ + 0.641 & 0.109 & 0.329 \\ + 0.583 & 0.818 & 0.036 \\ + 0.899 & 0.85 & 0.571 \\ + 0.612 & 0.925 & 0.57 \\ + 0.377 & 0.408 & 0.229 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $1.11$ +Volume: $0.07$ +Solid Angle: $0.6$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/64587.txt b/pretraining/mathematica/geometry/solids/64587.txt new file mode 100644 index 0000000000000000000000000000000000000000..e68f8d51a6411261b557e7c7847671594f7b1a48 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/64587.txt @@ -0,0 +1,15 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.007 & 0.499 & 0.539 \\ + 0.803 & 0.876 & 0.165 \\ + 0.787 & 0.74 & 0.819 \\ + 0.566 & 0.663 & 0.936 \\ + 0.269 & 0.685 & 0.236 \\ + 0.4 & 0.031 & 0.901 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.08$ +Solid Angle: $0.89$ +Surface Area: $1.39$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/67913.txt b/pretraining/mathematica/geometry/solids/67913.txt new file mode 100644 index 0000000000000000000000000000000000000000..c037e0e5a4cf9d0446ec6eeb98f35c5eeea20fbc --- /dev/null +++ b/pretraining/mathematica/geometry/solids/67913.txt @@ -0,0 +1,15 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.138 & 0.511 & 0.583 \\ + 0.147 & 0.78 & 0.9 \\ + 0.706 & 0.037 & 0.873 \\ + 0.826 & 0.699 & 0.854 \\ + 0.252 & 0.905 & 0.289 \\ + 0.718 & 0.885 & 0.179 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.11$ +Surface Area: $1.54$ +Solid Angle: $2.26$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/68415.txt b/pretraining/mathematica/geometry/solids/68415.txt new file mode 100644 index 0000000000000000000000000000000000000000..fe3c89095782e0f033d4b5d78db3d314cd4be789 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/68415.txt @@ -0,0 +1,15 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.866 & 0.888 & 0.205 \\ + 0.37 & 0.914 & 0.956 \\ + 0.216 & 0.963 & 0.086 \\ + 0.387 & 0.349 & 0.71 \\ + 0.859 & 0.201 & 0.981 \\ + 0.458 & 0.361 & 0.601 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $1.62$ +Volume: $0.11$ +Solid Angle: $0.77$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/70352.txt b/pretraining/mathematica/geometry/solids/70352.txt new file mode 100644 index 0000000000000000000000000000000000000000..acb6a852de2d1a800d842687521b273cf17b5d03 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/70352.txt @@ -0,0 +1,39 @@ +Problem: +A polyhedron has vertex coordinates $\left( +\begin{array}{ccc} + 0 & 0 & \frac{1}{2} \left(-1-\sqrt{5}\right) \\ + 0 & 0 & \frac{1}{2} \left(1+\sqrt{5}\right) \\ + \frac{1}{10} \left(5-\sqrt{5}\right) & -\sqrt{\frac{1}{10} \left(5+\sqrt{5}\right)} & \frac{1}{10} \left(5+3 \sqrt{5}\right) \\ + \frac{1}{10} \left(5-\sqrt{5}\right) & \sqrt{\frac{1}{10} \left(5+\sqrt{5}\right)} & \frac{1}{10} \left(5+3 \sqrt{5}\right) \\ + \frac{2}{\sqrt{5}} & 0 & \frac{1}{10} \left(5+3 \sqrt{5}\right) \\ + \frac{1}{10} \left(5+3 \sqrt{5}\right) & -\sqrt{\frac{1}{10} \left(5+\sqrt{5}\right)} & \frac{1}{10} \left(5+\sqrt{5}\right) \\ + \frac{1}{10} \left(5+3 \sqrt{5}\right) & -\sqrt{\frac{1}{10} \left(5+\sqrt{5}\right)} & \frac{1}{10} \left(\sqrt{5}-5\right) \\ + \frac{1}{10} \left(5+3 \sqrt{5}\right) & \sqrt{\frac{1}{10} \left(5+\sqrt{5}\right)} & \frac{1}{10} \left(5+\sqrt{5}\right) \\ + \frac{1}{10} \left(5+3 \sqrt{5}\right) & \sqrt{\frac{1}{10} \left(5+\sqrt{5}\right)} & \frac{1}{10} \left(\sqrt{5}-5\right) \\ + -\frac{2}{\sqrt{5}} & 0 & \frac{1}{10} \left(-5-3 \sqrt{5}\right) \\ + -\frac{1}{\sqrt{5}} & -\sqrt{1+\frac{2}{\sqrt{5}}} & \frac{1}{10} \left(5+\sqrt{5}\right) \\ + -\frac{1}{\sqrt{5}} & -\sqrt{1+\frac{2}{\sqrt{5}}} & \frac{1}{10} \left(\sqrt{5}-5\right) \\ + -\frac{1}{\sqrt{5}} & \sqrt{1+\frac{2}{\sqrt{5}}} & \frac{1}{10} \left(5+\sqrt{5}\right) \\ + -\frac{1}{\sqrt{5}} & \sqrt{1+\frac{2}{\sqrt{5}}} & \frac{1}{10} \left(\sqrt{5}-5\right) \\ + \frac{1}{\sqrt{5}} & -\sqrt{1+\frac{2}{\sqrt{5}}} & \frac{1}{10} \left(5-\sqrt{5}\right) \\ + \frac{1}{\sqrt{5}} & -\sqrt{1+\frac{2}{\sqrt{5}}} & \frac{1}{10} \left(-5-\sqrt{5}\right) \\ + \frac{1}{\sqrt{5}} & \sqrt{1+\frac{2}{\sqrt{5}}} & \frac{1}{10} \left(5-\sqrt{5}\right) \\ + \frac{1}{\sqrt{5}} & \sqrt{1+\frac{2}{\sqrt{5}}} & \frac{1}{10} \left(-5-\sqrt{5}\right) \\ + -1-\frac{1}{\sqrt{5}} & 0 & \frac{1}{10} \left(5+\sqrt{5}\right) \\ + -1-\frac{1}{\sqrt{5}} & 0 & \frac{1}{10} \left(\sqrt{5}-5\right) \\ + \frac{1}{10} \left(-5-\sqrt{5}\right) & -\sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} & \frac{1}{10} \left(5+3 \sqrt{5}\right) \\ + \frac{1}{10} \left(-5-\sqrt{5}\right) & \sqrt{\frac{2}{5+\sqrt{5}}} & \frac{1}{10} \left(5+3 \sqrt{5}\right) \\ + \frac{1}{10} \left(5+\sqrt{5}\right) & -\sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} & \frac{1}{10} \left(-5-3 \sqrt{5}\right) \\ + \frac{1}{10} \left(5+\sqrt{5}\right) & \sqrt{\frac{2}{5+\sqrt{5}}} & \frac{1}{10} \left(-5-3 \sqrt{5}\right) \\ + 1+\frac{1}{\sqrt{5}} & 0 & \frac{1}{10} \left(5-\sqrt{5}\right) \\ + 1+\frac{1}{\sqrt{5}} & 0 & \frac{1}{10} \left(-5-\sqrt{5}\right) \\ + \frac{1}{10} \left(-5-3 \sqrt{5}\right) & -\sqrt{\frac{1}{10} \left(5+\sqrt{5}\right)} & \frac{1}{10} \left(5-\sqrt{5}\right) \\ + \frac{1}{10} \left(-5-3 \sqrt{5}\right) & -\sqrt{\frac{1}{10} \left(5+\sqrt{5}\right)} & \frac{1}{10} \left(-5-\sqrt{5}\right) \\ + \frac{1}{10} \left(-5-3 \sqrt{5}\right) & \sqrt{\frac{1}{10} \left(5+\sqrt{5}\right)} & \frac{1}{10} \left(5-\sqrt{5}\right) \\ + \frac{1}{10} \left(-5-3 \sqrt{5}\right) & \sqrt{\frac{1}{10} \left(5+\sqrt{5}\right)} & \frac{1}{10} \left(-5-\sqrt{5}\right) \\ + \frac{1}{10} \left(\sqrt{5}-5\right) & -\sqrt{\frac{1}{10} \left(5+\sqrt{5}\right)} & \frac{1}{10} \left(-5-3 \sqrt{5}\right) \\ + \frac{1}{10} \left(\sqrt{5}-5\right) & \sqrt{\frac{1}{10} \left(5+\sqrt{5}\right)} & \frac{1}{10} \left(-5-3 \sqrt{5}\right) \\ +\end{array} +\right)$. Determine the GeneralizedDiameter. +Answer: +$1+\sqrt{5}$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/73558.txt b/pretraining/mathematica/geometry/solids/73558.txt new file mode 100644 index 0000000000000000000000000000000000000000..15b95eee76863e77ed5ab22ea08fa0b6db242955 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/73558.txt @@ -0,0 +1,18 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.574 & 0.054 & 0.32 \\ + 0.424 & 0.166 & 0.727 \\ + 0.483 & 0.134 & 0.081 \\ + 0.229 & 0.988 & 0.968 \\ + 0.125 & 0.926 & 0.068 \\ + 0.35 & 0.255 & 0.768 \\ + 0.222 & 0.527 & 0.816 \\ + 0.739 & 0.862 & 0.881 \\ + 0.161 & 0.751 & 0.244 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.15$ +Solid Angle: $1.36$ +Surface Area: $1.93$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/74044.txt b/pretraining/mathematica/geometry/solids/74044.txt new file mode 100644 index 0000000000000000000000000000000000000000..26e273480526fe035bb6581a93832758779801b5 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/74044.txt @@ -0,0 +1,15 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.218 & 0.544 & 0.734 \\ + 0.946 & 0.923 & 0.573 \\ + 0.188 & 0.484 & 0.14 \\ + 0.439 & 0.295 & 0.043 \\ + 0.334 & 0.344 & 0.889 \\ + 0.488 & 0.194 & 0.103 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $1.18$ +Volume: $0.07$ +Solid Angle: $2.03$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/74083.txt b/pretraining/mathematica/geometry/solids/74083.txt new file mode 100644 index 0000000000000000000000000000000000000000..6ab0caad6f23b2da07eb652e42a8958443e4eec2 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/74083.txt @@ -0,0 +1,14 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.495 & 0.525 & 0.303 \\ + 0.168 & 0.689 & 0.548 \\ + 0.149 & 0.893 & 0.463 \\ + 0.59 & 0.946 & 0.821 \\ + 0.099 & 0.664 & 0.164 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.01$ +Solid Angle: $0.42$ +Surface Area: $0.53$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/75518.txt b/pretraining/mathematica/geometry/solids/75518.txt new file mode 100644 index 0000000000000000000000000000000000000000..fafd7ccd2aca4488f5cfd89fd92084e4a71bc079 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/75518.txt @@ -0,0 +1,15 @@ +Problem: +A polyhedron has vertex coordinates $\left( +\begin{array}{ccc} + 0. & 0. & 1.192 \\ + 0.607 & 0. & 0.397 \\ + -0.304 & 0.526 & 0.397 \\ + 0.304 & 0.526 & -0.397 \\ + -0.304 & -0.526 & 0.397 \\ + 0.304 & -0.526 & -0.397 \\ + -0.607 & 0. & -0.397 \\ + 0. & 0. & -1.192 \\ +\end{array} +\right)$. Determine the GeneralizedDiameter. +Answer: +$2.38$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/77284.txt b/pretraining/mathematica/geometry/solids/77284.txt new file mode 100644 index 0000000000000000000000000000000000000000..d2b7353659a938708841902bea407c90ef658a89 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/77284.txt @@ -0,0 +1,27 @@ +Problem: +A polyhedron has vertex coordinates $\left( +\begin{array}{ccc} + 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ + 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ + 0 & -\sqrt{\frac{1}{2} \left(2+\sqrt{2}\right)} & -\sqrt{-1-\sqrt{2}+\sqrt{\frac{1}{2} \left(10+7 \sqrt{2}\right)}} \\ + 0 & \sqrt{\frac{1}{2} \left(2+\sqrt{2}\right)} & -\sqrt{-1-\sqrt{2}+\sqrt{\frac{1}{2} \left(10+7 \sqrt{2}\right)}} \\ + -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ + \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ + \frac{1}{2} \left(-1-\sqrt{2}\right) & -\frac{1}{2} & 0 \\ + -\sqrt{\frac{1}{2} \left(2+\sqrt{2}\right)} & 0 & -\sqrt{-1-\sqrt{2}+\sqrt{\frac{1}{2} \left(10+7 \sqrt{2}\right)}} \\ + \sqrt{\frac{1}{2} \left(2+\sqrt{2}\right)} & 0 & -\sqrt{-1-\sqrt{2}+\sqrt{\frac{1}{2} \left(10+7 \sqrt{2}\right)}} \\ + -\frac{1}{2} \sqrt{2+\sqrt{2}} & -\frac{1}{2} \sqrt{2+\sqrt{2}} & -\sqrt{-1-\sqrt{2}+\sqrt{\frac{1}{2} \left(10+7 \sqrt{2}\right)}} \\ + -\frac{1}{2} \sqrt{2+\sqrt{2}} & \frac{\sqrt{2+\sqrt{2}}}{2} & -\sqrt{-1-\sqrt{2}+\sqrt{\frac{1}{2} \left(10+7 \sqrt{2}\right)}} \\ + \frac{\sqrt{2+\sqrt{2}}}{2} & -\frac{1}{2} \sqrt{2+\sqrt{2}} & -\sqrt{-1-\sqrt{2}+\sqrt{\frac{1}{2} \left(10+7 \sqrt{2}\right)}} \\ + \frac{\sqrt{2+\sqrt{2}}}{2} & \frac{\sqrt{2+\sqrt{2}}}{2} & -\sqrt{-1-\sqrt{2}+\sqrt{\frac{1}{2} \left(10+7 \sqrt{2}\right)}} \\ + -\frac{1}{2} & \frac{1}{2} \left(-1-\sqrt{2}\right) & 0 \\ + \frac{1}{2} & \frac{1}{2} \left(1+\sqrt{2}\right) & 0 \\ + \frac{1}{2} & \frac{1}{2} \left(-1-\sqrt{2}\right) & 0 \\ + -\frac{1}{2} & \frac{1}{2} \left(1+\sqrt{2}\right) & 0 \\ + \frac{1}{2} \left(1+\sqrt{2}\right) & -\frac{1}{2} & 0 \\ + \frac{1}{2} \left(-1-\sqrt{2}\right) & \frac{1}{2} & 0 \\ + \frac{1}{2} \left(1+\sqrt{2}\right) & \frac{1}{2} & 0 \\ +\end{array} +\right)$. Determine the GeneralizedDiameter. +Answer: +$\sqrt{1+\sqrt{20+14 \sqrt{2}}}$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/79145.txt b/pretraining/mathematica/geometry/solids/79145.txt new file mode 100644 index 0000000000000000000000000000000000000000..78706864770802c08fdb2fc76a9c5b9eed97abc4 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/79145.txt @@ -0,0 +1,18 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.464 & 0.567 & 0.351 \\ + 0.547 & 0.377 & 0.119 \\ + 0.095 & 0.576 & 0.514 \\ + 0.385 & 0.586 & 0.872 \\ + 0.83 & 0.774 & 0.952 \\ + 0.049 & 0.415 & 0.139 \\ + 0.213 & 0.209 & 0.792 \\ + 0.83 & 0.409 & 0.985 \\ + 0.761 & 0.117 & 0.172 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $4.89$ +Surface Area: $1.73$ +Volume: $0.15$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/80582.txt b/pretraining/mathematica/geometry/solids/80582.txt new file mode 100644 index 0000000000000000000000000000000000000000..ddc088af029b5541e869112be7ccf0595ef4d7e2 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/80582.txt @@ -0,0 +1,16 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.531 & 0.875 & 0.449 \\ + 0.869 & 0.078 & 0.917 \\ + 0.097 & 0.403 & 0.415 \\ + 0.74 & 0.502 & 0.285 \\ + 0.621 & 0.284 & 0.579 \\ + 0.274 & 0.665 & 0.108 \\ + 0.136 & 0.249 & 0.903 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $1.42$ +Solid Angle: $1.38$ +Volume: $0.09$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/81637.txt b/pretraining/mathematica/geometry/solids/81637.txt new file mode 100644 index 0000000000000000000000000000000000000000..4a21db28bc44ce45d067c5cfa34c46d5587124e0 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/81637.txt @@ -0,0 +1,32 @@ +Problem: +A polyhedron has vertex coordinates $\left( +\begin{array}{ccc} + 0 & \frac{1}{2} \left(-1-\sqrt{5}\right) & 0 \\ + 0 & \frac{1}{2} \left(1+\sqrt{5}\right) & 0 \\ + \frac{1}{2} \left(-1-\sqrt{5}\right) & 0 & -\sqrt{\frac{1}{2} \left(-4-2 \sqrt{5}+\sqrt{2 \left(25+11 \sqrt{5}\right)}\right)} \\ + \sqrt{\frac{1}{10} \left(5+\sqrt{5}\right)} & 0 & \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} \\ + \frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} & \frac{1}{4} \left(-1-\sqrt{5}\right) & \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} \\ + \frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} & \frac{1}{4} \left(1+\sqrt{5}\right) & \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} \\ + \frac{1}{2} \left(1+\sqrt{5}\right) & 0 & -\sqrt{\frac{1}{2} \left(-4-2 \sqrt{5}+\sqrt{2 \left(25+11 \sqrt{5}\right)}\right)} \\ + -\frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{4} \left(-3-\sqrt{5}\right) & 0 \\ + -\frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{4} \left(3+\sqrt{5}\right) & 0 \\ + \frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{4} \left(-3-\sqrt{5}\right) & 0 \\ + \frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{4} \left(3+\sqrt{5}\right) & 0 \\ + -\sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} & -\frac{1}{2} & \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} \\ + -\sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} & \frac{1}{2} & \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} \\ + -\frac{1}{2} & -\sqrt{\frac{5}{4}+\frac{\sqrt{5}}{2}} & -\sqrt{\frac{1}{2} \left(-4-2 \sqrt{5}+\sqrt{2 \left(25+11 \sqrt{5}\right)}\right)} \\ + -\frac{1}{2} & \sqrt{\frac{5}{4}+\frac{\sqrt{5}}{2}} & -\sqrt{\frac{1}{2} \left(-4-2 \sqrt{5}+\sqrt{2 \left(25+11 \sqrt{5}\right)}\right)} \\ + \frac{1}{2} & -\sqrt{\frac{5}{4}+\frac{\sqrt{5}}{2}} & -\sqrt{\frac{1}{2} \left(-4-2 \sqrt{5}+\sqrt{2 \left(25+11 \sqrt{5}\right)}\right)} \\ + \frac{1}{2} & \sqrt{\frac{5}{4}+\frac{\sqrt{5}}{2}} & -\sqrt{\frac{1}{2} \left(-4-2 \sqrt{5}+\sqrt{2 \left(25+11 \sqrt{5}\right)}\right)} \\ + \frac{1}{4} \left(-3-\sqrt{5}\right) & -\frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & -\sqrt{\frac{1}{2} \left(-4-2 \sqrt{5}+\sqrt{2 \left(25+11 \sqrt{5}\right)}\right)} \\ + \frac{1}{4} \left(-3-\sqrt{5}\right) & \frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & -\sqrt{\frac{1}{2} \left(-4-2 \sqrt{5}+\sqrt{2 \left(25+11 \sqrt{5}\right)}\right)} \\ + \frac{1}{4} \left(3+\sqrt{5}\right) & -\frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & -\sqrt{\frac{1}{2} \left(-4-2 \sqrt{5}+\sqrt{2 \left(25+11 \sqrt{5}\right)}\right)} \\ + \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & -\sqrt{\frac{1}{2} \left(-4-2 \sqrt{5}+\sqrt{2 \left(25+11 \sqrt{5}\right)}\right)} \\ + -\sqrt{\frac{5}{4}+\frac{\sqrt{5}}{2}} & -\frac{1}{2} & 0 \\ + -\sqrt{\frac{5}{4}+\frac{\sqrt{5}}{2}} & \frac{1}{2} & 0 \\ + \sqrt{\frac{5}{4}+\frac{\sqrt{5}}{2}} & -\frac{1}{2} & 0 \\ + \sqrt{\frac{5}{4}+\frac{\sqrt{5}}{2}} & \frac{1}{2} & 0 \\ +\end{array} +\right)$. Determine the FaceCount. +Answer: +$32$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/82319.txt b/pretraining/mathematica/geometry/solids/82319.txt new file mode 100644 index 0000000000000000000000000000000000000000..5fd056394b8980decdfe3db704b54129c123b966 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/82319.txt @@ -0,0 +1,18 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.971 & 0.691 & 0.182 \\ + 0.516 & 0.137 & 0.221 \\ + 0.59 & 0.694 & 0.679 \\ + 0.3 & 0.668 & 0.365 \\ + 0.465 & 0.094 & 0.324 \\ + 0.982 & 0.12 & 0.659 \\ + 0.834 & 0.395 & 0.819 \\ + 0.09 & 0.234 & 0.81 \\ + 0.67 & 0.768 & 0.034 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.17$ +Surface Area: $1.78$ +Solid Angle: $1.41$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/8517.txt b/pretraining/mathematica/geometry/solids/8517.txt new file mode 100644 index 0000000000000000000000000000000000000000..3c82217f953aae985c557f9f8ed61af6c2e0b1ab --- /dev/null +++ b/pretraining/mathematica/geometry/solids/8517.txt @@ -0,0 +1,19 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.495 & 0.713 & 0.792 \\ + 0.376 & 0.28 & 0.013 \\ + 0.681 & 0.485 & 0.887 \\ + 0.8 & 0.141 & 0.037 \\ + 0.857 & 0.57 & 0.189 \\ + 0.741 & 0.699 & 0.278 \\ + 0.557 & 0.621 & 0.363 \\ + 0.395 & 0.415 & 0.865 \\ + 0.378 & 0.136 & 0.195 \\ + 0.957 & 0.04 & 0.611 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $1.55$ +Volume: $0.14$ +Surface Area: $1.56$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/86221.txt b/pretraining/mathematica/geometry/solids/86221.txt new file mode 100644 index 0000000000000000000000000000000000000000..d83210b60743b1a03c12c83298aa3ce130c605db --- /dev/null +++ b/pretraining/mathematica/geometry/solids/86221.txt @@ -0,0 +1,13 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.124 & 0.076 & 0.484 \\ + 0.187 & 0.155 & 0.209 \\ + 0.763 & 0.677 & 0.906 \\ + 0.262 & 0.05 & 0.286 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $0.35$ +Solid Angle: $0.57$ +Volume: $0.01$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/87961.txt b/pretraining/mathematica/geometry/solids/87961.txt new file mode 100644 index 0000000000000000000000000000000000000000..c6e6093dcc0b951608a1194f7d77d6ad80090925 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/87961.txt @@ -0,0 +1,16 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.57 & 0.785 & 0.094 \\ + 0.31 & 0.954 & 0.456 \\ + 0.416 & 0.684 & 0.541 \\ + 0.588 & 0.468 & 0.302 \\ + 0.545 & 0.408 & 0.459 \\ + 0.221 & 0.752 & 0.26 \\ + 0.275 & 0.534 & 0.54 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $0.59$ +Surface Area: $0.5$ +Volume: $0.02$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/88755.txt b/pretraining/mathematica/geometry/solids/88755.txt new file mode 100644 index 0000000000000000000000000000000000000000..8c0415c92cb080d2f9e4d97a38ecd1d790bb1674 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/88755.txt @@ -0,0 +1,14 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.841 & 0.342 & 0.059 \\ + 0.485 & 0.39 & 0.58 \\ + 0.839 & 0.022 & 0.793 \\ + 0.768 & 0.801 & 0.542 \\ + 0.383 & 0.186 & 0.547 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $0.46$ +Surface Area: $0.85$ +Volume: $0.04$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/91435.txt b/pretraining/mathematica/geometry/solids/91435.txt new file mode 100644 index 0000000000000000000000000000000000000000..1bd81e68df53c7fdd918e320ac255db244ec28b4 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/91435.txt @@ -0,0 +1,17 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.229 & 0.724 & 0.887 \\ + 0.578 & 0.607 & 0.201 \\ + 0.888 & 0.776 & 0.125 \\ + 0.785 & 0.093 & 0.001 \\ + 0.698 & 0.661 & 0.527 \\ + 0.328 & 0.432 & 0.459 \\ + 0.187 & 0.643 & 0.938 \\ + 0.664 & 0.3 & 0.354 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $1.$ +Surface Area: $1.06$ +Volume: $0.05$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/92428.txt b/pretraining/mathematica/geometry/solids/92428.txt new file mode 100644 index 0000000000000000000000000000000000000000..4feb9c9effe0657c0ddb90c02f53904a6de7c774 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/92428.txt @@ -0,0 +1,5 @@ +Problem: +A sphere centered at $\{2.553,-3.937,-5.833\}$ has radius $4.181$. Estimate the sphere's surface area and volume. +Answer: +Surface Area: $219.68$ +Volume: $306.18$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/9531.txt b/pretraining/mathematica/geometry/solids/9531.txt new file mode 100644 index 0000000000000000000000000000000000000000..368c7c00e35491b2e3f66b80c7816e165c72f2c6 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/9531.txt @@ -0,0 +1,18 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.09 & 0.073 & 0.413 \\ + 0.559 & 0.949 & 0.254 \\ + 0.248 & 0.067 & 0.101 \\ + 0.288 & 0.003 & 0.599 \\ + 0.964 & 0.047 & 0.189 \\ + 0.877 & 0.12 & 0.506 \\ + 0.136 & 0.342 & 0.941 \\ + 0.355 & 0.888 & 0.309 \\ + 0.395 & 0.91 & 0.784 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.22$ +Solid Angle: $2.45$ +Surface Area: $2.23$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/96881.txt b/pretraining/mathematica/geometry/solids/96881.txt new file mode 100644 index 0000000000000000000000000000000000000000..1126723cf787de75fd31f25e2dd782112b886497 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/96881.txt @@ -0,0 +1,15 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.545 & 0.867 & 0.291 \\ + 0.951 & 0.729 & 0.643 \\ + 0.321 & 0.211 & 0.768 \\ + 0.3 & 0.616 & 0.481 \\ + 0.077 & 0.715 & 0.109 \\ + 0.585 & 0.333 & 0.149 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $1.64$ +Surface Area: $1.19$ +Volume: $0.07$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/97328.txt b/pretraining/mathematica/geometry/solids/97328.txt new file mode 100644 index 0000000000000000000000000000000000000000..603d54b67d76e2c6c07b98cef8f00a3143babe43 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/97328.txt @@ -0,0 +1,15 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.681 & 0.657 & 0.599 \\ + 0.869 & 0.423 & 0.774 \\ + 0.336 & 0.634 & 0.346 \\ + 0.343 & 0.714 & 0.637 \\ + 0.561 & 0.589 & 0.168 \\ + 0.962 & 0.112 & 0.687 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $0.67$ +Solid Angle: $3.09$ +Volume: $0.02$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/99589.txt b/pretraining/mathematica/geometry/solids/99589.txt new file mode 100644 index 0000000000000000000000000000000000000000..89f777927eae673351affc0e31b2348c66e9af8b --- /dev/null +++ b/pretraining/mathematica/geometry/solids/99589.txt @@ -0,0 +1,18 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.78 & 0.813 & 0.496 \\ + 0.959 & 0.235 & 0.324 \\ + 0.139 & 0.951 & 0.787 \\ + 0.039 & 0.008 & 0.711 \\ + 0.361 & 0.745 & 0.904 \\ + 0.66 & 0.959 & 0.258 \\ + 0.677 & 0.709 & 0.91 \\ + 0.317 & 0.569 & 0.998 \\ + 0.262 & 0.598 & 0.09 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $2.28$ +Solid Angle: $3.95$ +Volume: $0.25$ \ No newline at end of file