Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- pretraining/mathematica/geometry/solids/10465.txt +20 -0
- pretraining/mathematica/geometry/solids/11604.txt +13 -0
- pretraining/mathematica/geometry/solids/11927.txt +13 -0
- pretraining/mathematica/geometry/solids/13012.txt +16 -0
- pretraining/mathematica/geometry/solids/13020.txt +17 -0
- pretraining/mathematica/geometry/solids/13347.txt +5 -0
- pretraining/mathematica/geometry/solids/14503.txt +15 -0
- pretraining/mathematica/geometry/solids/16981.txt +13 -0
- pretraining/mathematica/geometry/solids/1781.txt +14 -0
- pretraining/mathematica/geometry/solids/18337.txt +18 -0
- pretraining/mathematica/geometry/solids/20974.txt +14 -0
- pretraining/mathematica/geometry/solids/2108.txt +19 -0
- pretraining/mathematica/geometry/solids/22071.txt +15 -0
- pretraining/mathematica/geometry/solids/23156.txt +18 -0
- pretraining/mathematica/geometry/solids/23369.txt +17 -0
- pretraining/mathematica/geometry/solids/24561.txt +57 -0
- pretraining/mathematica/geometry/solids/25090.txt +19 -0
- pretraining/mathematica/geometry/solids/25311.txt +16 -0
- pretraining/mathematica/geometry/solids/25458.txt +16 -0
- pretraining/mathematica/geometry/solids/2833.txt +14 -0
- pretraining/mathematica/geometry/solids/28847.txt +16 -0
- pretraining/mathematica/geometry/solids/29034.txt +15 -0
- pretraining/mathematica/geometry/solids/30724.txt +17 -0
- pretraining/mathematica/geometry/solids/32155.txt +16 -0
- pretraining/mathematica/geometry/solids/32338.txt +5 -0
- pretraining/mathematica/geometry/solids/33738.txt +15 -0
- pretraining/mathematica/geometry/solids/36545.txt +49 -0
- pretraining/mathematica/geometry/solids/37576.txt +15 -0
- pretraining/mathematica/geometry/solids/38504.txt +17 -0
- pretraining/mathematica/geometry/solids/41440.txt +19 -0
- pretraining/mathematica/geometry/solids/43244.txt +14 -0
- pretraining/mathematica/geometry/solids/43973.txt +20 -0
- pretraining/mathematica/geometry/solids/46273.txt +19 -0
- pretraining/mathematica/geometry/solids/4836.txt +19 -0
- pretraining/mathematica/geometry/solids/50128.txt +13 -0
- pretraining/mathematica/geometry/solids/50351.txt +67 -0
- pretraining/mathematica/geometry/solids/50356.txt +16 -0
- pretraining/mathematica/geometry/solids/51903.txt +18 -0
- pretraining/mathematica/geometry/solids/52289.txt +18 -0
- pretraining/mathematica/geometry/solids/52741.txt +20 -0
- pretraining/mathematica/geometry/solids/54338.txt +13 -0
- pretraining/mathematica/geometry/solids/54538.txt +15 -0
- pretraining/mathematica/geometry/solids/55790.txt +18 -0
- pretraining/mathematica/geometry/solids/56128.txt +18 -0
- pretraining/mathematica/geometry/solids/5977.txt +15 -0
- pretraining/mathematica/geometry/solids/63724.txt +17 -0
- pretraining/mathematica/geometry/solids/65918.txt +14 -0
- pretraining/mathematica/geometry/solids/69281.txt +13 -0
- pretraining/mathematica/geometry/solids/70232.txt +16 -0
- pretraining/mathematica/geometry/solids/70395.txt +19 -0
pretraining/mathematica/geometry/solids/10465.txt
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.85 & 0.197 & 0.264 \\
|
| 5 |
+
0.351 & 0.854 & 0.89 \\
|
| 6 |
+
0.383 & 0.001 & 0.188 \\
|
| 7 |
+
0.845 & 0.393 & 0.026 \\
|
| 8 |
+
0.624 & 0.512 & 0.988 \\
|
| 9 |
+
0.514 & 0.207 & 0.89 \\
|
| 10 |
+
0.009 & 0.053 & 0.612 \\
|
| 11 |
+
0.064 & 0.19 & 0.405 \\
|
| 12 |
+
0.273 & 0.318 & 0.166 \\
|
| 13 |
+
0.958 & 0.682 & 0.53 \\
|
| 14 |
+
0.346 & 0.467 & 0.122 \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 17 |
+
Answer:
|
| 18 |
+
Solid Angle: $3.07$
|
| 19 |
+
Volume: $0.23$
|
| 20 |
+
Surface Area: $2.18$
|
pretraining/mathematica/geometry/solids/11604.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.604 & 0.936 & 0.754 \\
|
| 5 |
+
0.648 & 0.726 & 0.371 \\
|
| 6 |
+
0.631 & 0.386 & 0.853 \\
|
| 7 |
+
0.104 & 0.937 & 0.15 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Solid Angle: $0.72$
|
| 12 |
+
Surface Area: $0.63$
|
| 13 |
+
Volume: $0.02$
|
pretraining/mathematica/geometry/solids/11927.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.633 & 1. & 0.068 \\
|
| 5 |
+
0.574 & 0.901 & 0.444 \\
|
| 6 |
+
0.625 & 0.096 & 0.634 \\
|
| 7 |
+
0.317 & 0.28 & 0.852 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Surface Area: $0.64$
|
| 12 |
+
Volume: $0.01$
|
| 13 |
+
Solid Angle: $0.09$
|
pretraining/mathematica/geometry/solids/13012.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.831 & 0.282 & 0.758 \\
|
| 5 |
+
0.116 & 0.438 & 0.527 \\
|
| 6 |
+
0.081 & 0.125 & 0.328 \\
|
| 7 |
+
0.002 & 0.345 & 0.146 \\
|
| 8 |
+
0.098 & 0.985 & 0.623 \\
|
| 9 |
+
0.368 & 0.305 & 0.141 \\
|
| 10 |
+
0.653 & 0.279 & 0.156 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Solid Angle: $0.48$
|
| 15 |
+
Volume: $0.09$
|
| 16 |
+
Surface Area: $1.37$
|
pretraining/mathematica/geometry/solids/13020.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.437 & 0.115 & 0.812 \\
|
| 5 |
+
0.575 & 0.704 & 0.891 \\
|
| 6 |
+
0.91 & 0.897 & 0.332 \\
|
| 7 |
+
0.28 & 0.112 & 0.434 \\
|
| 8 |
+
0.98 & 0.127 & 0.447 \\
|
| 9 |
+
0.32 & 0.873 & 0.646 \\
|
| 10 |
+
0.682 & 0.563 & 0.896 \\
|
| 11 |
+
0.811 & 0.811 & 0.708 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Solid Angle: $1.77$
|
| 16 |
+
Volume: $0.14$
|
| 17 |
+
Surface Area: $1.6$
|
pretraining/mathematica/geometry/solids/13347.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A sphere centered at $\{-8.988,-6.447,7.867\}$ has radius $0.514$. Estimate the sphere's surface area and volume.
|
| 3 |
+
Answer:
|
| 4 |
+
Surface Area: $3.32$
|
| 5 |
+
Volume: $0.57$
|
pretraining/mathematica/geometry/solids/14503.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.773 & 0.575 & 0.265 \\
|
| 5 |
+
0.11 & 0.776 & 0.449 \\
|
| 6 |
+
0.899 & 0.025 & 0.07 \\
|
| 7 |
+
0.478 & 0.775 & 0.532 \\
|
| 8 |
+
0.175 & 0.804 & 0.056 \\
|
| 9 |
+
0.431 & 0.688 & 0.614 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Solid Angle: $2.06$
|
| 14 |
+
Surface Area: $0.94$
|
| 15 |
+
Volume: $0.04$
|
pretraining/mathematica/geometry/solids/16981.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.105 & 0.87 & 0.532 \\
|
| 5 |
+
0.58 & 0.091 & 0.093 \\
|
| 6 |
+
0.045 & 0.265 & 0.579 \\
|
| 7 |
+
0.938 & 0.071 & 0.752 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Volume: $0.05$
|
| 12 |
+
Surface Area: $1.15$
|
| 13 |
+
Solid Angle: $0.29$
|
pretraining/mathematica/geometry/solids/1781.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.741 & 0.535 & 0.339 \\
|
| 5 |
+
0.693 & 0.968 & 0.439 \\
|
| 6 |
+
0.228 & 0.438 & 0.056 \\
|
| 7 |
+
0.558 & 0.249 & 0.69 \\
|
| 8 |
+
0.851 & 0.11 & 0.534 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Surface Area: $0.86$
|
| 13 |
+
Solid Angle: $3.99$
|
| 14 |
+
Volume: $0.04$
|
pretraining/mathematica/geometry/solids/18337.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.139 & 0.036 & 0.358 \\
|
| 5 |
+
0.197 & 0.133 & 0.086 \\
|
| 6 |
+
0.011 & 0.696 & 0.897 \\
|
| 7 |
+
0.515 & 0.817 & 0.648 \\
|
| 8 |
+
0.631 & 0.742 & 0.033 \\
|
| 9 |
+
0.503 & 0.238 & 0.591 \\
|
| 10 |
+
0.079 & 0.455 & 0.333 \\
|
| 11 |
+
0.1 & 0.55 & 0.864 \\
|
| 12 |
+
0.555 & 0.784 & 0.211 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Surface Area: $1.51$
|
| 17 |
+
Solid Angle: $1.54$
|
| 18 |
+
Volume: $0.12$
|
pretraining/mathematica/geometry/solids/20974.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.546 & 0.488 & 0.204 \\
|
| 5 |
+
0.594 & 0.269 & 0.699 \\
|
| 6 |
+
0.7 & 0.665 & 0.041 \\
|
| 7 |
+
0.499 & 0.691 & 0.823 \\
|
| 8 |
+
0.944 & 0.846 & 0.57 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Surface Area: $0.75$
|
| 13 |
+
Volume: $0.03$
|
| 14 |
+
Solid Angle: $1.25$
|
pretraining/mathematica/geometry/solids/2108.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.859 & 0.26 & 0.956 \\
|
| 5 |
+
0.989 & 0.446 & 0.814 \\
|
| 6 |
+
0.995 & 0.968 & 0.265 \\
|
| 7 |
+
0.396 & 0.976 & 0.951 \\
|
| 8 |
+
0.262 & 0.328 & 0.915 \\
|
| 9 |
+
0.125 & 0.41 & 0.521 \\
|
| 10 |
+
0.851 & 0.301 & 0.484 \\
|
| 11 |
+
0.174 & 0.252 & 0.462 \\
|
| 12 |
+
0.048 & 0.91 & 0.203 \\
|
| 13 |
+
0.411 & 0.18 & 0.7 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Solid Angle: $1.76$
|
| 18 |
+
Surface Area: $2.46$
|
| 19 |
+
Volume: $0.27$
|
pretraining/mathematica/geometry/solids/22071.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.949 & 0.899 & 0.097 \\
|
| 5 |
+
0.9 & 0.193 & 0.705 \\
|
| 6 |
+
0.866 & 0.98 & 0.744 \\
|
| 7 |
+
0.613 & 0.742 & 0.027 \\
|
| 8 |
+
0.07 & 0.223 & 0.506 \\
|
| 9 |
+
0.547 & 0.987 & 0.101 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Volume: $0.14$
|
| 14 |
+
Solid Angle: $1.47$
|
| 15 |
+
Surface Area: $1.75$
|
pretraining/mathematica/geometry/solids/23156.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.561 & 0.991 & 0.076 \\
|
| 5 |
+
0.981 & 0.006 & 0.099 \\
|
| 6 |
+
0.128 & 0.675 & 0.36 \\
|
| 7 |
+
0.732 & 0.071 & 0.296 \\
|
| 8 |
+
0.746 & 0.435 & 0.94 \\
|
| 9 |
+
0.986 & 0.831 & 0.696 \\
|
| 10 |
+
0.789 & 0.83 & 0.119 \\
|
| 11 |
+
0.5 & 0.269 & 0.077 \\
|
| 12 |
+
0.278 & 0.106 & 0.484 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Solid Angle: $1.36$
|
| 17 |
+
Volume: $0.24$
|
| 18 |
+
Surface Area: $2.27$
|
pretraining/mathematica/geometry/solids/23369.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.148 & 0.525 & 0.826 \\
|
| 5 |
+
0.895 & 0.82 & 0.823 \\
|
| 6 |
+
0.84 & 0.062 & 0.831 \\
|
| 7 |
+
0.729 & 0.84 & 0.477 \\
|
| 8 |
+
0.916 & 0.034 & 0.28 \\
|
| 9 |
+
0.64 & 0.666 & 0.031 \\
|
| 10 |
+
0.439 & 0.04 & 0.747 \\
|
| 11 |
+
0.906 & 0.32 & 0.004 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Surface Area: $2.02$
|
| 16 |
+
Volume: $0.18$
|
| 17 |
+
Solid Angle: $0.95$
|
pretraining/mathematica/geometry/solids/24561.txt
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
-2 \sqrt{\frac{2}{3}} & -\sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{3}} \\
|
| 5 |
+
-2 \sqrt{\frac{2}{3}} & -\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \\
|
| 6 |
+
-2 \sqrt{\frac{2}{3}} & 0 & 0 \\
|
| 7 |
+
-2 \sqrt{\frac{2}{3}} & \sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{3}} \\
|
| 8 |
+
-2 \sqrt{\frac{2}{3}} & \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \\
|
| 9 |
+
-\sqrt{\frac{2}{3}} & -2 \sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{3}} \\
|
| 10 |
+
-\sqrt{\frac{2}{3}} & -2 \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \\
|
| 11 |
+
-\sqrt{\frac{2}{3}} & -\sqrt{\frac{2}{3}} & -\frac{2}{\sqrt{3}} \\
|
| 12 |
+
-\sqrt{\frac{2}{3}} & -\sqrt{\frac{2}{3}} & 0 \\
|
| 13 |
+
-\sqrt{\frac{2}{3}} & -\sqrt{\frac{2}{3}} & \frac{2}{\sqrt{3}} \\
|
| 14 |
+
-\sqrt{\frac{2}{3}} & 0 & -\sqrt{3} \\
|
| 15 |
+
-\sqrt{\frac{2}{3}} & 0 & -\frac{1}{\sqrt{3}} \\
|
| 16 |
+
-\sqrt{\frac{2}{3}} & 0 & \frac{1}{\sqrt{3}} \\
|
| 17 |
+
-\sqrt{\frac{2}{3}} & 0 & \sqrt{3} \\
|
| 18 |
+
-\sqrt{\frac{2}{3}} & \sqrt{\frac{2}{3}} & -\frac{2}{\sqrt{3}} \\
|
| 19 |
+
-\sqrt{\frac{2}{3}} & \sqrt{\frac{2}{3}} & 0 \\
|
| 20 |
+
-\sqrt{\frac{2}{3}} & \sqrt{\frac{2}{3}} & \frac{2}{\sqrt{3}} \\
|
| 21 |
+
-\sqrt{\frac{2}{3}} & 2 \sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{3}} \\
|
| 22 |
+
-\sqrt{\frac{2}{3}} & 2 \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \\
|
| 23 |
+
0 & -2 \sqrt{\frac{2}{3}} & 0 \\
|
| 24 |
+
0 & -\sqrt{\frac{2}{3}} & -\sqrt{3} \\
|
| 25 |
+
0 & -\sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{3}} \\
|
| 26 |
+
0 & -\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \\
|
| 27 |
+
0 & -\sqrt{\frac{2}{3}} & \sqrt{3} \\
|
| 28 |
+
0 & 0 & -\frac{2}{\sqrt{3}} \\
|
| 29 |
+
0 & 0 & \frac{2}{\sqrt{3}} \\
|
| 30 |
+
0 & \sqrt{\frac{2}{3}} & -\sqrt{3} \\
|
| 31 |
+
0 & \sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{3}} \\
|
| 32 |
+
0 & \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \\
|
| 33 |
+
0 & \sqrt{\frac{2}{3}} & \sqrt{3} \\
|
| 34 |
+
0 & 2 \sqrt{\frac{2}{3}} & 0 \\
|
| 35 |
+
\sqrt{\frac{2}{3}} & -2 \sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{3}} \\
|
| 36 |
+
\sqrt{\frac{2}{3}} & -2 \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \\
|
| 37 |
+
\sqrt{\frac{2}{3}} & -\sqrt{\frac{2}{3}} & -\frac{2}{\sqrt{3}} \\
|
| 38 |
+
\sqrt{\frac{2}{3}} & -\sqrt{\frac{2}{3}} & 0 \\
|
| 39 |
+
\sqrt{\frac{2}{3}} & -\sqrt{\frac{2}{3}} & \frac{2}{\sqrt{3}} \\
|
| 40 |
+
\sqrt{\frac{2}{3}} & 0 & -\sqrt{3} \\
|
| 41 |
+
\sqrt{\frac{2}{3}} & 0 & -\frac{1}{\sqrt{3}} \\
|
| 42 |
+
\sqrt{\frac{2}{3}} & 0 & \frac{1}{\sqrt{3}} \\
|
| 43 |
+
\sqrt{\frac{2}{3}} & 0 & \sqrt{3} \\
|
| 44 |
+
\sqrt{\frac{2}{3}} & \sqrt{\frac{2}{3}} & -\frac{2}{\sqrt{3}} \\
|
| 45 |
+
\sqrt{\frac{2}{3}} & \sqrt{\frac{2}{3}} & 0 \\
|
| 46 |
+
\sqrt{\frac{2}{3}} & \sqrt{\frac{2}{3}} & \frac{2}{\sqrt{3}} \\
|
| 47 |
+
\sqrt{\frac{2}{3}} & 2 \sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{3}} \\
|
| 48 |
+
\sqrt{\frac{2}{3}} & 2 \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \\
|
| 49 |
+
2 \sqrt{\frac{2}{3}} & -\sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{3}} \\
|
| 50 |
+
2 \sqrt{\frac{2}{3}} & -\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \\
|
| 51 |
+
2 \sqrt{\frac{2}{3}} & 0 & 0 \\
|
| 52 |
+
2 \sqrt{\frac{2}{3}} & \sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{3}} \\
|
| 53 |
+
2 \sqrt{\frac{2}{3}} & \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \\
|
| 54 |
+
\end{array}
|
| 55 |
+
\right)$. Determine the Inradius.
|
| 56 |
+
Answer:
|
| 57 |
+
$\sqrt{\frac{2}{3}}$
|
pretraining/mathematica/geometry/solids/25090.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.493 & 0.205 & 0.792 \\
|
| 5 |
+
0.452 & 0.941 & 0.988 \\
|
| 6 |
+
0.574 & 0.623 & 0.304 \\
|
| 7 |
+
0.838 & 0.302 & 0.015 \\
|
| 8 |
+
0.577 & 0.258 & 0.848 \\
|
| 9 |
+
0.929 & 0.187 & 0.23 \\
|
| 10 |
+
0.199 & 0.55 & 0.557 \\
|
| 11 |
+
0.42 & 0.218 & 0.851 \\
|
| 12 |
+
0.979 & 0.421 & 0.18 \\
|
| 13 |
+
0.006 & 0.922 & 0.897 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Volume: $0.13$
|
| 18 |
+
Surface Area: $1.69$
|
| 19 |
+
Solid Angle: $4.23$
|
pretraining/mathematica/geometry/solids/25311.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.337 & 0.826 & 0.432 \\
|
| 5 |
+
0.246 & 0.45 & 0.693 \\
|
| 6 |
+
0.418 & 0.132 & 0.944 \\
|
| 7 |
+
0.094 & 0.254 & 0.229 \\
|
| 8 |
+
0.297 & 0.626 & 0.404 \\
|
| 9 |
+
0.252 & 0.239 & 0.839 \\
|
| 10 |
+
0.096 & 0.233 & 0.451 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Volume: $0.02$
|
| 15 |
+
Surface Area: $0.6$
|
| 16 |
+
Solid Angle: $0.21$
|
pretraining/mathematica/geometry/solids/25458.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.566 & 0.773 & 0.776 \\
|
| 5 |
+
0.701 & 0.109 & 0.075 \\
|
| 6 |
+
0.095 & 0.587 & 0.052 \\
|
| 7 |
+
0.285 & 0.214 & 0.027 \\
|
| 8 |
+
0.336 & 0.13 & 0.38 \\
|
| 9 |
+
0.825 & 0.37 & 0.545 \\
|
| 10 |
+
0.627 & 0.35 & 0.076 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Solid Angle: $0.41$
|
| 15 |
+
Volume: $0.08$
|
| 16 |
+
Surface Area: $1.21$
|
pretraining/mathematica/geometry/solids/2833.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.095 & 0.814 & 0.733 \\
|
| 5 |
+
0.43 & 0.743 & 0.44 \\
|
| 6 |
+
0.342 & 0.659 & 0.394 \\
|
| 7 |
+
0.902 & 0.417 & 0.129 \\
|
| 8 |
+
0.947 & 0.015 & 0.881 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Surface Area: $1.07$
|
| 13 |
+
Solid Angle: $0.15$
|
| 14 |
+
Volume: $0.02$
|
pretraining/mathematica/geometry/solids/28847.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.082 & 0.459 & 0.762 \\
|
| 5 |
+
0.366 & 0.875 & 0.206 \\
|
| 6 |
+
0.925 & 0.831 & 0.533 \\
|
| 7 |
+
0.068 & 0.149 & 0.287 \\
|
| 8 |
+
0.886 & 0.836 & 0.135 \\
|
| 9 |
+
0.267 & 0.071 & 0.802 \\
|
| 10 |
+
0.525 & 0.991 & 0.993 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Surface Area: $2.02$
|
| 15 |
+
Volume: $0.18$
|
| 16 |
+
Solid Angle: $2.8$
|
pretraining/mathematica/geometry/solids/29034.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.286 & 0.933 & 0.205 \\
|
| 5 |
+
0.096 & 0.612 & 0.221 \\
|
| 6 |
+
0.127 & 0.774 & 0.577 \\
|
| 7 |
+
0.595 & 0.649 & 0.551 \\
|
| 8 |
+
0.759 & 0.47 & 0.125 \\
|
| 9 |
+
0.153 & 0.149 & 0.858 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Surface Area: $1.16$
|
| 14 |
+
Volume: $0.08$
|
| 15 |
+
Solid Angle: $1.26$
|
pretraining/mathematica/geometry/solids/30724.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.381 & 0.606 & 0.707 \\
|
| 5 |
+
0.548 & 0.245 & 0.24 \\
|
| 6 |
+
0.889 & 0.334 & 0.095 \\
|
| 7 |
+
0.642 & 0.135 & 0.256 \\
|
| 8 |
+
0.555 & 0.061 & 0.987 \\
|
| 9 |
+
0.823 & 0.11 & 0.385 \\
|
| 10 |
+
0.485 & 0.265 & 0.802 \\
|
| 11 |
+
0.434 & 0.419 & 0.876 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Solid Angle: $0.47$
|
| 16 |
+
Volume: $0.03$
|
| 17 |
+
Surface Area: $0.86$
|
pretraining/mathematica/geometry/solids/32155.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.503 & 0.454 & 0.643 \\
|
| 5 |
+
0.019 & 0.916 & 0.221 \\
|
| 6 |
+
0.568 & 0.903 & 0.773 \\
|
| 7 |
+
0.35 & 0.632 & 0.044 \\
|
| 8 |
+
0.236 & 0.901 & 0.236 \\
|
| 9 |
+
0.499 & 0.472 & 0.961 \\
|
| 10 |
+
0.013 & 0.101 & 0.129 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Volume: $0.09$
|
| 15 |
+
Surface Area: $1.42$
|
| 16 |
+
Solid Angle: $4.06$
|
pretraining/mathematica/geometry/solids/32338.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
An ellipsoid centered at $\{5.599,-9.511,-2.676\}$ has radii $\{1.59,1.412,3.194\}$. Estimate the ellipsoid's surface area and volume.
|
| 3 |
+
Answer:
|
| 4 |
+
Surface Area: $51.11$
|
| 5 |
+
Volume: $30.06$
|
pretraining/mathematica/geometry/solids/33738.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.828 & 0.516 & 0.843 \\
|
| 5 |
+
0.972 & 0.618 & 0.545 \\
|
| 6 |
+
0.926 & 0.217 & 0.483 \\
|
| 7 |
+
0.376 & 0.749 & 0.542 \\
|
| 8 |
+
0.615 & 0.191 & 0.275 \\
|
| 9 |
+
0.364 & 0.555 & 0. \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Volume: $0.05$
|
| 14 |
+
Surface Area: $0.99$
|
| 15 |
+
Solid Angle: $1.01$
|
pretraining/mathematica/geometry/solids/36545.txt
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
-1 & 0 & 0 \\
|
| 5 |
+
-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
|
| 6 |
+
-\frac{1}{\sqrt{2}} & -\frac{1}{2} & 0 \\
|
| 7 |
+
-\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\
|
| 8 |
+
-\frac{1}{\sqrt{2}} & 0 & -\frac{1}{2} \\
|
| 9 |
+
-\frac{1}{\sqrt{2}} & 0 & \frac{1}{2} \\
|
| 10 |
+
-\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
|
| 11 |
+
-\frac{1}{\sqrt{2}} & \frac{1}{2} & 0 \\
|
| 12 |
+
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
|
| 13 |
+
-\frac{1}{2} & -\frac{1}{\sqrt{2}} & 0 \\
|
| 14 |
+
-\frac{1}{2} & 0 & -\frac{1}{\sqrt{2}} \\
|
| 15 |
+
-\frac{1}{2} & 0 & \frac{1}{\sqrt{2}} \\
|
| 16 |
+
-\frac{1}{2} & \frac{1}{\sqrt{2}} & 0 \\
|
| 17 |
+
0 & -1 & 0 \\
|
| 18 |
+
0 & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
|
| 19 |
+
0 & -\frac{1}{\sqrt{2}} & -\frac{1}{2} \\
|
| 20 |
+
0 & -\frac{1}{\sqrt{2}} & \frac{1}{2} \\
|
| 21 |
+
0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
|
| 22 |
+
0 & -\frac{1}{2} & -\frac{1}{\sqrt{2}} \\
|
| 23 |
+
0 & -\frac{1}{2} & \frac{1}{\sqrt{2}} \\
|
| 24 |
+
0 & 0 & -1 \\
|
| 25 |
+
0 & 0 & 1 \\
|
| 26 |
+
0 & \frac{1}{2} & -\frac{1}{\sqrt{2}} \\
|
| 27 |
+
0 & \frac{1}{2} & \frac{1}{\sqrt{2}} \\
|
| 28 |
+
0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
|
| 29 |
+
0 & \frac{1}{\sqrt{2}} & -\frac{1}{2} \\
|
| 30 |
+
0 & \frac{1}{\sqrt{2}} & \frac{1}{2} \\
|
| 31 |
+
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
|
| 32 |
+
0 & 1 & 0 \\
|
| 33 |
+
\frac{1}{2} & -\frac{1}{\sqrt{2}} & 0 \\
|
| 34 |
+
\frac{1}{2} & 0 & -\frac{1}{\sqrt{2}} \\
|
| 35 |
+
\frac{1}{2} & 0 & \frac{1}{\sqrt{2}} \\
|
| 36 |
+
\frac{1}{2} & \frac{1}{\sqrt{2}} & 0 \\
|
| 37 |
+
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
|
| 38 |
+
\frac{1}{\sqrt{2}} & -\frac{1}{2} & 0 \\
|
| 39 |
+
\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\
|
| 40 |
+
\frac{1}{\sqrt{2}} & 0 & -\frac{1}{2} \\
|
| 41 |
+
\frac{1}{\sqrt{2}} & 0 & \frac{1}{2} \\
|
| 42 |
+
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
|
| 43 |
+
\frac{1}{\sqrt{2}} & \frac{1}{2} & 0 \\
|
| 44 |
+
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
|
| 45 |
+
1 & 0 & 0 \\
|
| 46 |
+
\end{array}
|
| 47 |
+
\right)$. Determine the SurfaceArea.
|
| 48 |
+
Answer:
|
| 49 |
+
$6 \left(3+2 \sqrt{3}\right)$
|
pretraining/mathematica/geometry/solids/37576.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.233 & 0.554 & 0.886 \\
|
| 5 |
+
0.787 & 0.6 & 0.918 \\
|
| 6 |
+
0.165 & 0.306 & 0.135 \\
|
| 7 |
+
0.869 & 0.676 & 0.036 \\
|
| 8 |
+
0.694 & 0.399 & 0.381 \\
|
| 9 |
+
0.594 & 0.241 & 0.051 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Solid Angle: $0.36$
|
| 14 |
+
Volume: $0.06$
|
| 15 |
+
Surface Area: $1.32$
|
pretraining/mathematica/geometry/solids/38504.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
1. & 0.805 & 0.209 \\
|
| 5 |
+
0.5 & 0.778 & 0.165 \\
|
| 6 |
+
0.485 & 0.26 & 0.078 \\
|
| 7 |
+
0.94 & 0.918 & 0.332 \\
|
| 8 |
+
0.583 & 0.018 & 0.416 \\
|
| 9 |
+
0.464 & 0.374 & 0.148 \\
|
| 10 |
+
0.344 & 0.1 & 0.765 \\
|
| 11 |
+
0.892 & 0.172 & 0.02 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Volume: $0.09$
|
| 16 |
+
Solid Angle: $1.33$
|
| 17 |
+
Surface Area: $1.36$
|
pretraining/mathematica/geometry/solids/41440.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.715 & 0.032 & 0.573 \\
|
| 5 |
+
0.435 & 0.03 & 0.707 \\
|
| 6 |
+
0.387 & 0.919 & 0.994 \\
|
| 7 |
+
0.565 & 0.57 & 0.047 \\
|
| 8 |
+
0.575 & 0.904 & 0.712 \\
|
| 9 |
+
0.982 & 0.786 & 0.15 \\
|
| 10 |
+
0.115 & 0.275 & 0.868 \\
|
| 11 |
+
0.631 & 0.257 & 0.005 \\
|
| 12 |
+
0.791 & 0.3 & 0.046 \\
|
| 13 |
+
0.73 & 0.608 & 0.731 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Solid Angle: $1.97$
|
| 18 |
+
Volume: $0.18$
|
| 19 |
+
Surface Area: $2.06$
|
pretraining/mathematica/geometry/solids/43244.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.706 & 0.451 & 0.207 \\
|
| 5 |
+
0.962 & 0.939 & 0.281 \\
|
| 6 |
+
0.751 & 0.843 & 0.9 \\
|
| 7 |
+
0.189 & 0.816 & 0.57 \\
|
| 8 |
+
0.817 & 0.774 & 0.788 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Volume: $0.04$
|
| 13 |
+
Solid Angle: $0.54$
|
| 14 |
+
Surface Area: $0.84$
|
pretraining/mathematica/geometry/solids/43973.txt
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.144 & 0.183 & 0.413 \\
|
| 5 |
+
0.022 & 0.528 & 0.582 \\
|
| 6 |
+
0.445 & 0.8 & 0.701 \\
|
| 7 |
+
0.651 & 0.052 & 0.752 \\
|
| 8 |
+
0.361 & 0.441 & 0.065 \\
|
| 9 |
+
0.091 & 0.156 & 0.596 \\
|
| 10 |
+
0.113 & 0.4 & 0.329 \\
|
| 11 |
+
0.227 & 0.793 & 0.361 \\
|
| 12 |
+
0.611 & 0.628 & 0.879 \\
|
| 13 |
+
0.953 & 0.237 & 0.299 \\
|
| 14 |
+
0.987 & 0.128 & 0.744 \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 17 |
+
Answer:
|
| 18 |
+
Volume: $0.17$
|
| 19 |
+
Solid Angle: $3.37$
|
| 20 |
+
Surface Area: $1.86$
|
pretraining/mathematica/geometry/solids/46273.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.581 & 0.699 & 0.813 \\
|
| 5 |
+
0.906 & 0.269 & 0.634 \\
|
| 6 |
+
0.265 & 0.435 & 0.351 \\
|
| 7 |
+
0.973 & 0.646 & 0.246 \\
|
| 8 |
+
0.795 & 0.065 & 0.953 \\
|
| 9 |
+
0.73 & 0.689 & 0.897 \\
|
| 10 |
+
0.004 & 0.587 & 0.478 \\
|
| 11 |
+
0.968 & 0.728 & 0.082 \\
|
| 12 |
+
0.758 & 0.924 & 0.264 \\
|
| 13 |
+
0.024 & 0.04 & 0.522 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Solid Angle: $3.74$
|
| 18 |
+
Surface Area: $2.11$
|
| 19 |
+
Volume: $0.18$
|
pretraining/mathematica/geometry/solids/4836.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.93 & 0.795 & 0.657 \\
|
| 5 |
+
0.83 & 0.989 & 0.939 \\
|
| 6 |
+
0.125 & 0.658 & 0.587 \\
|
| 7 |
+
0.537 & 0.806 & 0.339 \\
|
| 8 |
+
0.079 & 0.19 & 0.051 \\
|
| 9 |
+
0.059 & 0.855 & 0.92 \\
|
| 10 |
+
0.997 & 0.926 & 0.252 \\
|
| 11 |
+
0.278 & 0.017 & 0.167 \\
|
| 12 |
+
0.067 & 0.154 & 0.208 \\
|
| 13 |
+
0.218 & 0.028 & 0.679 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Volume: $0.24$
|
| 18 |
+
Solid Angle: $3.76$
|
| 19 |
+
Surface Area: $2.5$
|
pretraining/mathematica/geometry/solids/50128.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.027 & 0.019 & 0.144 \\
|
| 5 |
+
0.512 & 0.342 & 0.341 \\
|
| 6 |
+
0.106 & 0.995 & 0.882 \\
|
| 7 |
+
0.06 & 0.073 & 0.848 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Solid Angle: $0.41$
|
| 12 |
+
Volume: $0.05$
|
| 13 |
+
Surface Area: $1.12$
|
pretraining/mathematica/geometry/solids/50351.txt
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0. & -0.851 & 2.065 \\
|
| 5 |
+
1.618 & 0. & -1.539 \\
|
| 6 |
+
-0.809 & -0.263 & 2.065 \\
|
| 7 |
+
1.309 & 0.951 & -1.539 \\
|
| 8 |
+
0.809 & -1.964 & 0.688 \\
|
| 9 |
+
1.309 & -1.802 & -0.162 \\
|
| 10 |
+
-0.5 & 2.065 & 0.688 \\
|
| 11 |
+
0. & 2.227 & -0.162 \\
|
| 12 |
+
-0.5 & -1.539 & 1.539 \\
|
| 13 |
+
1.309 & -0.951 & -1.539 \\
|
| 14 |
+
-1.309 & 0.951 & 1.539 \\
|
| 15 |
+
0.5 & 1.539 & -1.539 \\
|
| 16 |
+
-1.309 & -0.951 & 1.539 \\
|
| 17 |
+
0.5 & -0.688 & -2.065 \\
|
| 18 |
+
-1.618 & 0. & 1.539 \\
|
| 19 |
+
0.809 & 0.263 & -2.065 \\
|
| 20 |
+
0. & -2.227 & 0.162 \\
|
| 21 |
+
0.5 & -2.065 & -0.688 \\
|
| 22 |
+
-1.309 & 1.802 & 0.162 \\
|
| 23 |
+
-0.809 & 1.964 & -0.688 \\
|
| 24 |
+
0.5 & 0.688 & 2.065 \\
|
| 25 |
+
2.118 & 0.688 & -0.162 \\
|
| 26 |
+
0.5 & -1.539 & 1.539 \\
|
| 27 |
+
1.809 & -1.114 & -0.688 \\
|
| 28 |
+
-0.5 & 1.539 & 1.539 \\
|
| 29 |
+
0.809 & 1.964 & -0.688 \\
|
| 30 |
+
1.309 & -0.951 & 1.539 \\
|
| 31 |
+
2.118 & -0.688 & 0.162 \\
|
| 32 |
+
0.5 & 1.539 & 1.539 \\
|
| 33 |
+
1.309 & 1.802 & 0.162 \\
|
| 34 |
+
1.618 & 0. & 1.539 \\
|
| 35 |
+
2.118 & 0.162 & 0.688 \\
|
| 36 |
+
1.309 & 0.951 & 1.539 \\
|
| 37 |
+
1.809 & 1.114 & 0.688 \\
|
| 38 |
+
1.618 & -1.376 & 0.688 \\
|
| 39 |
+
0.809 & -0.263 & 2.065 \\
|
| 40 |
+
2.118 & -0.162 & -0.688 \\
|
| 41 |
+
-0.5 & 0.688 & 2.065 \\
|
| 42 |
+
1.618 & 1.376 & -0.688 \\
|
| 43 |
+
0.5 & 2.065 & 0.688 \\
|
| 44 |
+
-0.809 & -1.964 & 0.688 \\
|
| 45 |
+
0.5 & -1.539 & -1.539 \\
|
| 46 |
+
-1.809 & 1.114 & 0.688 \\
|
| 47 |
+
-0.5 & 1.539 & -1.539 \\
|
| 48 |
+
-1.309 & -1.802 & -0.162 \\
|
| 49 |
+
-0.5 & -1.539 & -1.539 \\
|
| 50 |
+
-2.118 & 0.688 & -0.162 \\
|
| 51 |
+
-1.309 & 0.951 & -1.539 \\
|
| 52 |
+
-1.809 & -1.114 & -0.688 \\
|
| 53 |
+
-1.309 & -0.951 & -1.539 \\
|
| 54 |
+
-2.118 & -0.162 & -0.688 \\
|
| 55 |
+
-1.618 & 0. & -1.539 \\
|
| 56 |
+
-0.5 & -2.065 & -0.688 \\
|
| 57 |
+
-1.618 & -1.376 & 0.688 \\
|
| 58 |
+
-0.5 & -0.688 & -2.065 \\
|
| 59 |
+
-2.118 & 0.162 & 0.688 \\
|
| 60 |
+
0. & 0.851 & -2.065 \\
|
| 61 |
+
-1.618 & 1.376 & -0.688 \\
|
| 62 |
+
-2.118 & -0.688 & 0.162 \\
|
| 63 |
+
-0.809 & 0.263 & -2.065 \\
|
| 64 |
+
\end{array}
|
| 65 |
+
\right)$. Determine the EdgeCount.
|
| 66 |
+
Answer:
|
| 67 |
+
$120.$
|
pretraining/mathematica/geometry/solids/50356.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.966 & 0.775 & 0.301 \\
|
| 5 |
+
0.693 & 0.007 & 0.521 \\
|
| 6 |
+
0.287 & 0.797 & 0.205 \\
|
| 7 |
+
0.147 & 0.189 & 0.04 \\
|
| 8 |
+
0.776 & 0.486 & 0.65 \\
|
| 9 |
+
0.914 & 0.189 & 0.867 \\
|
| 10 |
+
0.589 & 0.706 & 0.448 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Solid Angle: $0.85$
|
| 15 |
+
Surface Area: $1.47$
|
| 16 |
+
Volume: $0.08$
|
pretraining/mathematica/geometry/solids/51903.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.69 & 0.047 & 0.484 \\
|
| 5 |
+
0.508 & 0.495 & 0.11 \\
|
| 6 |
+
0.669 & 0.799 & 0.804 \\
|
| 7 |
+
0.004 & 0.584 & 0.475 \\
|
| 8 |
+
0.64 & 0.47 & 0.897 \\
|
| 9 |
+
0.716 & 0.402 & 0.189 \\
|
| 10 |
+
0.682 & 0.77 & 0.587 \\
|
| 11 |
+
0.384 & 0.392 & 0.316 \\
|
| 12 |
+
0.969 & 0.586 & 0.845 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Solid Angle: $1.23$
|
| 17 |
+
Surface Area: $1.38$
|
| 18 |
+
Volume: $0.11$
|
pretraining/mathematica/geometry/solids/52289.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.739 & 0.267 & 0.238 \\
|
| 5 |
+
0.562 & 0.041 & 0.831 \\
|
| 6 |
+
0.177 & 0.22 & 0.597 \\
|
| 7 |
+
0.23 & 0.853 & 0.636 \\
|
| 8 |
+
0.202 & 0.528 & 0.748 \\
|
| 9 |
+
0.569 & 0.087 & 0.571 \\
|
| 10 |
+
0.086 & 0.503 & 0.286 \\
|
| 11 |
+
0.869 & 0.875 & 0.615 \\
|
| 12 |
+
0.685 & 0.167 & 0.854 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Surface Area: $1.59$
|
| 17 |
+
Volume: $0.13$
|
| 18 |
+
Solid Angle: $1.4$
|
pretraining/mathematica/geometry/solids/52741.txt
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.972 & 0.636 & 0.443 \\
|
| 5 |
+
0.045 & 0.986 & 0.102 \\
|
| 6 |
+
0.909 & 0.49 & 0.393 \\
|
| 7 |
+
0.373 & 0.542 & 0.057 \\
|
| 8 |
+
0.186 & 0.989 & 0.237 \\
|
| 9 |
+
0.35 & 0.148 & 0.581 \\
|
| 10 |
+
0.918 & 0.208 & 0.77 \\
|
| 11 |
+
0.287 & 0.065 & 0.144 \\
|
| 12 |
+
0.002 & 0.168 & 0.66 \\
|
| 13 |
+
0.309 & 0.404 & 0.649 \\
|
| 14 |
+
0.608 & 0.499 & 0.664 \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 17 |
+
Answer:
|
| 18 |
+
Volume: $0.2$
|
| 19 |
+
Surface Area: $2.07$
|
| 20 |
+
Solid Angle: $1.42$
|
pretraining/mathematica/geometry/solids/54338.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.021 & 0.584 & 0.452 \\
|
| 5 |
+
0.742 & 0.946 & 0.312 \\
|
| 6 |
+
0.676 & 0.031 & 0.652 \\
|
| 7 |
+
0.805 & 0.401 & 0.089 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Solid Angle: $0.3$
|
| 12 |
+
Volume: $0.04$
|
| 13 |
+
Surface Area: $1.05$
|
pretraining/mathematica/geometry/solids/54538.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.739 & 0.857 & 0.527 \\
|
| 5 |
+
0.275 & 0.036 & 0.732 \\
|
| 6 |
+
0.927 & 0.885 & 0.223 \\
|
| 7 |
+
0.989 & 0.883 & 0.579 \\
|
| 8 |
+
0.716 & 0.597 & 0.107 \\
|
| 9 |
+
0.859 & 0.766 & 0.002 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Solid Angle: $2.63$
|
| 14 |
+
Volume: $0.02$
|
| 15 |
+
Surface Area: $0.87$
|
pretraining/mathematica/geometry/solids/55790.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.115 & 0.792 & 0.71 \\
|
| 5 |
+
0.2 & 0.483 & 0.473 \\
|
| 6 |
+
0.91 & 0.826 & 0.356 \\
|
| 7 |
+
0.611 & 0.15 & 0.286 \\
|
| 8 |
+
0.122 & 0.674 & 0.574 \\
|
| 9 |
+
0.568 & 0.173 & 0.641 \\
|
| 10 |
+
0.038 & 0.621 & 0.775 \\
|
| 11 |
+
0.246 & 0.264 & 0.823 \\
|
| 12 |
+
0.696 & 0.26 & 0.09 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Surface Area: $1.35$
|
| 17 |
+
Solid Angle: $1.23$
|
| 18 |
+
Volume: $0.08$
|
pretraining/mathematica/geometry/solids/56128.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.552 & 0.096 & 0.537 \\
|
| 5 |
+
0.943 & 0.991 & 0.426 \\
|
| 6 |
+
0.653 & 0.857 & 0.272 \\
|
| 7 |
+
0.531 & 0.126 & 0.857 \\
|
| 8 |
+
0.565 & 0.92 & 0.307 \\
|
| 9 |
+
0.525 & 0.074 & 0.176 \\
|
| 10 |
+
0.426 & 0.832 & 0.175 \\
|
| 11 |
+
0.688 & 0.167 & 0.423 \\
|
| 12 |
+
0.611 & 0.196 & 0.088 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Volume: $0.08$
|
| 17 |
+
Surface Area: $1.26$
|
| 18 |
+
Solid Angle: $4.64$
|
pretraining/mathematica/geometry/solids/5977.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.56 & 0.939 & 0.256 \\
|
| 5 |
+
0.754 & 0.161 & 0.714 \\
|
| 6 |
+
0.353 & 0.311 & 0.922 \\
|
| 7 |
+
0.795 & 0.671 & 0.509 \\
|
| 8 |
+
0.028 & 0.731 & 0.138 \\
|
| 9 |
+
0.838 & 0.274 & 0.13 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Surface Area: $1.51$
|
| 14 |
+
Volume: $0.1$
|
| 15 |
+
Solid Angle: $1.32$
|
pretraining/mathematica/geometry/solids/63724.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.906 & 0.025 & 0.844 \\
|
| 5 |
+
0.676 & 0.435 & 0.823 \\
|
| 6 |
+
0.246 & 0.784 & 0.572 \\
|
| 7 |
+
0.878 & 0.801 & 0.857 \\
|
| 8 |
+
0.024 & 0.17 & 0.472 \\
|
| 9 |
+
0.55 & 0.83 & 0.461 \\
|
| 10 |
+
0.007 & 0.721 & 0.422 \\
|
| 11 |
+
0.685 & 0.928 & 0.63 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Solid Angle: $0.28$
|
| 16 |
+
Volume: $0.07$
|
| 17 |
+
Surface Area: $1.55$
|
pretraining/mathematica/geometry/solids/65918.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.492 & 0.272 & 0.662 \\
|
| 5 |
+
0.647 & 0.219 & 0.933 \\
|
| 6 |
+
0.133 & 0.454 & 0.02 \\
|
| 7 |
+
0.83 & 0.057 & 0.548 \\
|
| 8 |
+
0.815 & 0.372 & 0.388 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Solid Angle: $3.88$
|
| 13 |
+
Surface Area: $0.66$
|
| 14 |
+
Volume: $0.02$
|
pretraining/mathematica/geometry/solids/69281.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.198 & 0.494 & 0.866 \\
|
| 5 |
+
0.242 & 0.236 & 0.984 \\
|
| 6 |
+
0.516 & 0.486 & 0.558 \\
|
| 7 |
+
0.653 & 0.896 & 0.285 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Surface Area: $0.32$
|
| 12 |
+
Solid Angle: $0.17$
|
| 13 |
+
Volume: $0.$
|
pretraining/mathematica/geometry/solids/70232.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.36 & 0.892 & 0.421 \\
|
| 5 |
+
0.458 & 0.691 & 0.205 \\
|
| 6 |
+
0.211 & 0.218 & 0.635 \\
|
| 7 |
+
0.56 & 0.129 & 0.311 \\
|
| 8 |
+
0.989 & 0.506 & 0.996 \\
|
| 9 |
+
0.295 & 0.654 & 0.856 \\
|
| 10 |
+
0.192 & 0.159 & 0.396 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Volume: $0.11$
|
| 15 |
+
Solid Angle: $1.36$
|
| 16 |
+
Surface Area: $1.43$
|
pretraining/mathematica/geometry/solids/70395.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.15 & 0.718 & 0.594 \\
|
| 5 |
+
0.632 & 0.605 & 0.682 \\
|
| 6 |
+
0.907 & 0.44 & 0.891 \\
|
| 7 |
+
0.766 & 0.103 & 0.371 \\
|
| 8 |
+
0.279 & 0.091 & 0.004 \\
|
| 9 |
+
0.159 & 0.047 & 0.238 \\
|
| 10 |
+
0.061 & 0.406 & 0.204 \\
|
| 11 |
+
0.057 & 0.739 & 0.216 \\
|
| 12 |
+
0.262 & 0.558 & 0.798 \\
|
| 13 |
+
0.389 & 0.152 & 0.797 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Solid Angle: $2.04$
|
| 18 |
+
Surface Area: $1.77$
|
| 19 |
+
Volume: $0.14$
|