agungpambudi commited on
Commit
a4b2c5f
·
verified ·
1 Parent(s): 3af7b2a

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. pretraining/mathematica/geometry/solids/10465.txt +20 -0
  2. pretraining/mathematica/geometry/solids/11604.txt +13 -0
  3. pretraining/mathematica/geometry/solids/11927.txt +13 -0
  4. pretraining/mathematica/geometry/solids/13012.txt +16 -0
  5. pretraining/mathematica/geometry/solids/13020.txt +17 -0
  6. pretraining/mathematica/geometry/solids/13347.txt +5 -0
  7. pretraining/mathematica/geometry/solids/14503.txt +15 -0
  8. pretraining/mathematica/geometry/solids/16981.txt +13 -0
  9. pretraining/mathematica/geometry/solids/1781.txt +14 -0
  10. pretraining/mathematica/geometry/solids/18337.txt +18 -0
  11. pretraining/mathematica/geometry/solids/20974.txt +14 -0
  12. pretraining/mathematica/geometry/solids/2108.txt +19 -0
  13. pretraining/mathematica/geometry/solids/22071.txt +15 -0
  14. pretraining/mathematica/geometry/solids/23156.txt +18 -0
  15. pretraining/mathematica/geometry/solids/23369.txt +17 -0
  16. pretraining/mathematica/geometry/solids/24561.txt +57 -0
  17. pretraining/mathematica/geometry/solids/25090.txt +19 -0
  18. pretraining/mathematica/geometry/solids/25311.txt +16 -0
  19. pretraining/mathematica/geometry/solids/25458.txt +16 -0
  20. pretraining/mathematica/geometry/solids/2833.txt +14 -0
  21. pretraining/mathematica/geometry/solids/28847.txt +16 -0
  22. pretraining/mathematica/geometry/solids/29034.txt +15 -0
  23. pretraining/mathematica/geometry/solids/30724.txt +17 -0
  24. pretraining/mathematica/geometry/solids/32155.txt +16 -0
  25. pretraining/mathematica/geometry/solids/32338.txt +5 -0
  26. pretraining/mathematica/geometry/solids/33738.txt +15 -0
  27. pretraining/mathematica/geometry/solids/36545.txt +49 -0
  28. pretraining/mathematica/geometry/solids/37576.txt +15 -0
  29. pretraining/mathematica/geometry/solids/38504.txt +17 -0
  30. pretraining/mathematica/geometry/solids/41440.txt +19 -0
  31. pretraining/mathematica/geometry/solids/43244.txt +14 -0
  32. pretraining/mathematica/geometry/solids/43973.txt +20 -0
  33. pretraining/mathematica/geometry/solids/46273.txt +19 -0
  34. pretraining/mathematica/geometry/solids/4836.txt +19 -0
  35. pretraining/mathematica/geometry/solids/50128.txt +13 -0
  36. pretraining/mathematica/geometry/solids/50351.txt +67 -0
  37. pretraining/mathematica/geometry/solids/50356.txt +16 -0
  38. pretraining/mathematica/geometry/solids/51903.txt +18 -0
  39. pretraining/mathematica/geometry/solids/52289.txt +18 -0
  40. pretraining/mathematica/geometry/solids/52741.txt +20 -0
  41. pretraining/mathematica/geometry/solids/54338.txt +13 -0
  42. pretraining/mathematica/geometry/solids/54538.txt +15 -0
  43. pretraining/mathematica/geometry/solids/55790.txt +18 -0
  44. pretraining/mathematica/geometry/solids/56128.txt +18 -0
  45. pretraining/mathematica/geometry/solids/5977.txt +15 -0
  46. pretraining/mathematica/geometry/solids/63724.txt +17 -0
  47. pretraining/mathematica/geometry/solids/65918.txt +14 -0
  48. pretraining/mathematica/geometry/solids/69281.txt +13 -0
  49. pretraining/mathematica/geometry/solids/70232.txt +16 -0
  50. pretraining/mathematica/geometry/solids/70395.txt +19 -0
pretraining/mathematica/geometry/solids/10465.txt ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.85 & 0.197 & 0.264 \\
5
+ 0.351 & 0.854 & 0.89 \\
6
+ 0.383 & 0.001 & 0.188 \\
7
+ 0.845 & 0.393 & 0.026 \\
8
+ 0.624 & 0.512 & 0.988 \\
9
+ 0.514 & 0.207 & 0.89 \\
10
+ 0.009 & 0.053 & 0.612 \\
11
+ 0.064 & 0.19 & 0.405 \\
12
+ 0.273 & 0.318 & 0.166 \\
13
+ 0.958 & 0.682 & 0.53 \\
14
+ 0.346 & 0.467 & 0.122 \\
15
+ \end{array}
16
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
17
+ Answer:
18
+ Solid Angle: $3.07$
19
+ Volume: $0.23$
20
+ Surface Area: $2.18$
pretraining/mathematica/geometry/solids/11604.txt ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.604 & 0.936 & 0.754 \\
5
+ 0.648 & 0.726 & 0.371 \\
6
+ 0.631 & 0.386 & 0.853 \\
7
+ 0.104 & 0.937 & 0.15 \\
8
+ \end{array}
9
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
10
+ Answer:
11
+ Solid Angle: $0.72$
12
+ Surface Area: $0.63$
13
+ Volume: $0.02$
pretraining/mathematica/geometry/solids/11927.txt ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.633 & 1. & 0.068 \\
5
+ 0.574 & 0.901 & 0.444 \\
6
+ 0.625 & 0.096 & 0.634 \\
7
+ 0.317 & 0.28 & 0.852 \\
8
+ \end{array}
9
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
10
+ Answer:
11
+ Surface Area: $0.64$
12
+ Volume: $0.01$
13
+ Solid Angle: $0.09$
pretraining/mathematica/geometry/solids/13012.txt ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.831 & 0.282 & 0.758 \\
5
+ 0.116 & 0.438 & 0.527 \\
6
+ 0.081 & 0.125 & 0.328 \\
7
+ 0.002 & 0.345 & 0.146 \\
8
+ 0.098 & 0.985 & 0.623 \\
9
+ 0.368 & 0.305 & 0.141 \\
10
+ 0.653 & 0.279 & 0.156 \\
11
+ \end{array}
12
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
13
+ Answer:
14
+ Solid Angle: $0.48$
15
+ Volume: $0.09$
16
+ Surface Area: $1.37$
pretraining/mathematica/geometry/solids/13020.txt ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.437 & 0.115 & 0.812 \\
5
+ 0.575 & 0.704 & 0.891 \\
6
+ 0.91 & 0.897 & 0.332 \\
7
+ 0.28 & 0.112 & 0.434 \\
8
+ 0.98 & 0.127 & 0.447 \\
9
+ 0.32 & 0.873 & 0.646 \\
10
+ 0.682 & 0.563 & 0.896 \\
11
+ 0.811 & 0.811 & 0.708 \\
12
+ \end{array}
13
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
14
+ Answer:
15
+ Solid Angle: $1.77$
16
+ Volume: $0.14$
17
+ Surface Area: $1.6$
pretraining/mathematica/geometry/solids/13347.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ Problem:
2
+ A sphere centered at $\{-8.988,-6.447,7.867\}$ has radius $0.514$. Estimate the sphere's surface area and volume.
3
+ Answer:
4
+ Surface Area: $3.32$
5
+ Volume: $0.57$
pretraining/mathematica/geometry/solids/14503.txt ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.773 & 0.575 & 0.265 \\
5
+ 0.11 & 0.776 & 0.449 \\
6
+ 0.899 & 0.025 & 0.07 \\
7
+ 0.478 & 0.775 & 0.532 \\
8
+ 0.175 & 0.804 & 0.056 \\
9
+ 0.431 & 0.688 & 0.614 \\
10
+ \end{array}
11
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
12
+ Answer:
13
+ Solid Angle: $2.06$
14
+ Surface Area: $0.94$
15
+ Volume: $0.04$
pretraining/mathematica/geometry/solids/16981.txt ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.105 & 0.87 & 0.532 \\
5
+ 0.58 & 0.091 & 0.093 \\
6
+ 0.045 & 0.265 & 0.579 \\
7
+ 0.938 & 0.071 & 0.752 \\
8
+ \end{array}
9
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
10
+ Answer:
11
+ Volume: $0.05$
12
+ Surface Area: $1.15$
13
+ Solid Angle: $0.29$
pretraining/mathematica/geometry/solids/1781.txt ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.741 & 0.535 & 0.339 \\
5
+ 0.693 & 0.968 & 0.439 \\
6
+ 0.228 & 0.438 & 0.056 \\
7
+ 0.558 & 0.249 & 0.69 \\
8
+ 0.851 & 0.11 & 0.534 \\
9
+ \end{array}
10
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
11
+ Answer:
12
+ Surface Area: $0.86$
13
+ Solid Angle: $3.99$
14
+ Volume: $0.04$
pretraining/mathematica/geometry/solids/18337.txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.139 & 0.036 & 0.358 \\
5
+ 0.197 & 0.133 & 0.086 \\
6
+ 0.011 & 0.696 & 0.897 \\
7
+ 0.515 & 0.817 & 0.648 \\
8
+ 0.631 & 0.742 & 0.033 \\
9
+ 0.503 & 0.238 & 0.591 \\
10
+ 0.079 & 0.455 & 0.333 \\
11
+ 0.1 & 0.55 & 0.864 \\
12
+ 0.555 & 0.784 & 0.211 \\
13
+ \end{array}
14
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
15
+ Answer:
16
+ Surface Area: $1.51$
17
+ Solid Angle: $1.54$
18
+ Volume: $0.12$
pretraining/mathematica/geometry/solids/20974.txt ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.546 & 0.488 & 0.204 \\
5
+ 0.594 & 0.269 & 0.699 \\
6
+ 0.7 & 0.665 & 0.041 \\
7
+ 0.499 & 0.691 & 0.823 \\
8
+ 0.944 & 0.846 & 0.57 \\
9
+ \end{array}
10
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
11
+ Answer:
12
+ Surface Area: $0.75$
13
+ Volume: $0.03$
14
+ Solid Angle: $1.25$
pretraining/mathematica/geometry/solids/2108.txt ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.859 & 0.26 & 0.956 \\
5
+ 0.989 & 0.446 & 0.814 \\
6
+ 0.995 & 0.968 & 0.265 \\
7
+ 0.396 & 0.976 & 0.951 \\
8
+ 0.262 & 0.328 & 0.915 \\
9
+ 0.125 & 0.41 & 0.521 \\
10
+ 0.851 & 0.301 & 0.484 \\
11
+ 0.174 & 0.252 & 0.462 \\
12
+ 0.048 & 0.91 & 0.203 \\
13
+ 0.411 & 0.18 & 0.7 \\
14
+ \end{array}
15
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
16
+ Answer:
17
+ Solid Angle: $1.76$
18
+ Surface Area: $2.46$
19
+ Volume: $0.27$
pretraining/mathematica/geometry/solids/22071.txt ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.949 & 0.899 & 0.097 \\
5
+ 0.9 & 0.193 & 0.705 \\
6
+ 0.866 & 0.98 & 0.744 \\
7
+ 0.613 & 0.742 & 0.027 \\
8
+ 0.07 & 0.223 & 0.506 \\
9
+ 0.547 & 0.987 & 0.101 \\
10
+ \end{array}
11
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
12
+ Answer:
13
+ Volume: $0.14$
14
+ Solid Angle: $1.47$
15
+ Surface Area: $1.75$
pretraining/mathematica/geometry/solids/23156.txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.561 & 0.991 & 0.076 \\
5
+ 0.981 & 0.006 & 0.099 \\
6
+ 0.128 & 0.675 & 0.36 \\
7
+ 0.732 & 0.071 & 0.296 \\
8
+ 0.746 & 0.435 & 0.94 \\
9
+ 0.986 & 0.831 & 0.696 \\
10
+ 0.789 & 0.83 & 0.119 \\
11
+ 0.5 & 0.269 & 0.077 \\
12
+ 0.278 & 0.106 & 0.484 \\
13
+ \end{array}
14
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
15
+ Answer:
16
+ Solid Angle: $1.36$
17
+ Volume: $0.24$
18
+ Surface Area: $2.27$
pretraining/mathematica/geometry/solids/23369.txt ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.148 & 0.525 & 0.826 \\
5
+ 0.895 & 0.82 & 0.823 \\
6
+ 0.84 & 0.062 & 0.831 \\
7
+ 0.729 & 0.84 & 0.477 \\
8
+ 0.916 & 0.034 & 0.28 \\
9
+ 0.64 & 0.666 & 0.031 \\
10
+ 0.439 & 0.04 & 0.747 \\
11
+ 0.906 & 0.32 & 0.004 \\
12
+ \end{array}
13
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
14
+ Answer:
15
+ Surface Area: $2.02$
16
+ Volume: $0.18$
17
+ Solid Angle: $0.95$
pretraining/mathematica/geometry/solids/24561.txt ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertex coordinates $\left(
3
+ \begin{array}{ccc}
4
+ -2 \sqrt{\frac{2}{3}} & -\sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{3}} \\
5
+ -2 \sqrt{\frac{2}{3}} & -\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \\
6
+ -2 \sqrt{\frac{2}{3}} & 0 & 0 \\
7
+ -2 \sqrt{\frac{2}{3}} & \sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{3}} \\
8
+ -2 \sqrt{\frac{2}{3}} & \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \\
9
+ -\sqrt{\frac{2}{3}} & -2 \sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{3}} \\
10
+ -\sqrt{\frac{2}{3}} & -2 \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \\
11
+ -\sqrt{\frac{2}{3}} & -\sqrt{\frac{2}{3}} & -\frac{2}{\sqrt{3}} \\
12
+ -\sqrt{\frac{2}{3}} & -\sqrt{\frac{2}{3}} & 0 \\
13
+ -\sqrt{\frac{2}{3}} & -\sqrt{\frac{2}{3}} & \frac{2}{\sqrt{3}} \\
14
+ -\sqrt{\frac{2}{3}} & 0 & -\sqrt{3} \\
15
+ -\sqrt{\frac{2}{3}} & 0 & -\frac{1}{\sqrt{3}} \\
16
+ -\sqrt{\frac{2}{3}} & 0 & \frac{1}{\sqrt{3}} \\
17
+ -\sqrt{\frac{2}{3}} & 0 & \sqrt{3} \\
18
+ -\sqrt{\frac{2}{3}} & \sqrt{\frac{2}{3}} & -\frac{2}{\sqrt{3}} \\
19
+ -\sqrt{\frac{2}{3}} & \sqrt{\frac{2}{3}} & 0 \\
20
+ -\sqrt{\frac{2}{3}} & \sqrt{\frac{2}{3}} & \frac{2}{\sqrt{3}} \\
21
+ -\sqrt{\frac{2}{3}} & 2 \sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{3}} \\
22
+ -\sqrt{\frac{2}{3}} & 2 \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \\
23
+ 0 & -2 \sqrt{\frac{2}{3}} & 0 \\
24
+ 0 & -\sqrt{\frac{2}{3}} & -\sqrt{3} \\
25
+ 0 & -\sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{3}} \\
26
+ 0 & -\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \\
27
+ 0 & -\sqrt{\frac{2}{3}} & \sqrt{3} \\
28
+ 0 & 0 & -\frac{2}{\sqrt{3}} \\
29
+ 0 & 0 & \frac{2}{\sqrt{3}} \\
30
+ 0 & \sqrt{\frac{2}{3}} & -\sqrt{3} \\
31
+ 0 & \sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{3}} \\
32
+ 0 & \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \\
33
+ 0 & \sqrt{\frac{2}{3}} & \sqrt{3} \\
34
+ 0 & 2 \sqrt{\frac{2}{3}} & 0 \\
35
+ \sqrt{\frac{2}{3}} & -2 \sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{3}} \\
36
+ \sqrt{\frac{2}{3}} & -2 \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \\
37
+ \sqrt{\frac{2}{3}} & -\sqrt{\frac{2}{3}} & -\frac{2}{\sqrt{3}} \\
38
+ \sqrt{\frac{2}{3}} & -\sqrt{\frac{2}{3}} & 0 \\
39
+ \sqrt{\frac{2}{3}} & -\sqrt{\frac{2}{3}} & \frac{2}{\sqrt{3}} \\
40
+ \sqrt{\frac{2}{3}} & 0 & -\sqrt{3} \\
41
+ \sqrt{\frac{2}{3}} & 0 & -\frac{1}{\sqrt{3}} \\
42
+ \sqrt{\frac{2}{3}} & 0 & \frac{1}{\sqrt{3}} \\
43
+ \sqrt{\frac{2}{3}} & 0 & \sqrt{3} \\
44
+ \sqrt{\frac{2}{3}} & \sqrt{\frac{2}{3}} & -\frac{2}{\sqrt{3}} \\
45
+ \sqrt{\frac{2}{3}} & \sqrt{\frac{2}{3}} & 0 \\
46
+ \sqrt{\frac{2}{3}} & \sqrt{\frac{2}{3}} & \frac{2}{\sqrt{3}} \\
47
+ \sqrt{\frac{2}{3}} & 2 \sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{3}} \\
48
+ \sqrt{\frac{2}{3}} & 2 \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \\
49
+ 2 \sqrt{\frac{2}{3}} & -\sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{3}} \\
50
+ 2 \sqrt{\frac{2}{3}} & -\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \\
51
+ 2 \sqrt{\frac{2}{3}} & 0 & 0 \\
52
+ 2 \sqrt{\frac{2}{3}} & \sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{3}} \\
53
+ 2 \sqrt{\frac{2}{3}} & \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \\
54
+ \end{array}
55
+ \right)$. Determine the Inradius.
56
+ Answer:
57
+ $\sqrt{\frac{2}{3}}$
pretraining/mathematica/geometry/solids/25090.txt ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.493 & 0.205 & 0.792 \\
5
+ 0.452 & 0.941 & 0.988 \\
6
+ 0.574 & 0.623 & 0.304 \\
7
+ 0.838 & 0.302 & 0.015 \\
8
+ 0.577 & 0.258 & 0.848 \\
9
+ 0.929 & 0.187 & 0.23 \\
10
+ 0.199 & 0.55 & 0.557 \\
11
+ 0.42 & 0.218 & 0.851 \\
12
+ 0.979 & 0.421 & 0.18 \\
13
+ 0.006 & 0.922 & 0.897 \\
14
+ \end{array}
15
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
16
+ Answer:
17
+ Volume: $0.13$
18
+ Surface Area: $1.69$
19
+ Solid Angle: $4.23$
pretraining/mathematica/geometry/solids/25311.txt ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.337 & 0.826 & 0.432 \\
5
+ 0.246 & 0.45 & 0.693 \\
6
+ 0.418 & 0.132 & 0.944 \\
7
+ 0.094 & 0.254 & 0.229 \\
8
+ 0.297 & 0.626 & 0.404 \\
9
+ 0.252 & 0.239 & 0.839 \\
10
+ 0.096 & 0.233 & 0.451 \\
11
+ \end{array}
12
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
13
+ Answer:
14
+ Volume: $0.02$
15
+ Surface Area: $0.6$
16
+ Solid Angle: $0.21$
pretraining/mathematica/geometry/solids/25458.txt ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.566 & 0.773 & 0.776 \\
5
+ 0.701 & 0.109 & 0.075 \\
6
+ 0.095 & 0.587 & 0.052 \\
7
+ 0.285 & 0.214 & 0.027 \\
8
+ 0.336 & 0.13 & 0.38 \\
9
+ 0.825 & 0.37 & 0.545 \\
10
+ 0.627 & 0.35 & 0.076 \\
11
+ \end{array}
12
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
13
+ Answer:
14
+ Solid Angle: $0.41$
15
+ Volume: $0.08$
16
+ Surface Area: $1.21$
pretraining/mathematica/geometry/solids/2833.txt ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.095 & 0.814 & 0.733 \\
5
+ 0.43 & 0.743 & 0.44 \\
6
+ 0.342 & 0.659 & 0.394 \\
7
+ 0.902 & 0.417 & 0.129 \\
8
+ 0.947 & 0.015 & 0.881 \\
9
+ \end{array}
10
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
11
+ Answer:
12
+ Surface Area: $1.07$
13
+ Solid Angle: $0.15$
14
+ Volume: $0.02$
pretraining/mathematica/geometry/solids/28847.txt ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.082 & 0.459 & 0.762 \\
5
+ 0.366 & 0.875 & 0.206 \\
6
+ 0.925 & 0.831 & 0.533 \\
7
+ 0.068 & 0.149 & 0.287 \\
8
+ 0.886 & 0.836 & 0.135 \\
9
+ 0.267 & 0.071 & 0.802 \\
10
+ 0.525 & 0.991 & 0.993 \\
11
+ \end{array}
12
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
13
+ Answer:
14
+ Surface Area: $2.02$
15
+ Volume: $0.18$
16
+ Solid Angle: $2.8$
pretraining/mathematica/geometry/solids/29034.txt ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.286 & 0.933 & 0.205 \\
5
+ 0.096 & 0.612 & 0.221 \\
6
+ 0.127 & 0.774 & 0.577 \\
7
+ 0.595 & 0.649 & 0.551 \\
8
+ 0.759 & 0.47 & 0.125 \\
9
+ 0.153 & 0.149 & 0.858 \\
10
+ \end{array}
11
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
12
+ Answer:
13
+ Surface Area: $1.16$
14
+ Volume: $0.08$
15
+ Solid Angle: $1.26$
pretraining/mathematica/geometry/solids/30724.txt ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.381 & 0.606 & 0.707 \\
5
+ 0.548 & 0.245 & 0.24 \\
6
+ 0.889 & 0.334 & 0.095 \\
7
+ 0.642 & 0.135 & 0.256 \\
8
+ 0.555 & 0.061 & 0.987 \\
9
+ 0.823 & 0.11 & 0.385 \\
10
+ 0.485 & 0.265 & 0.802 \\
11
+ 0.434 & 0.419 & 0.876 \\
12
+ \end{array}
13
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
14
+ Answer:
15
+ Solid Angle: $0.47$
16
+ Volume: $0.03$
17
+ Surface Area: $0.86$
pretraining/mathematica/geometry/solids/32155.txt ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.503 & 0.454 & 0.643 \\
5
+ 0.019 & 0.916 & 0.221 \\
6
+ 0.568 & 0.903 & 0.773 \\
7
+ 0.35 & 0.632 & 0.044 \\
8
+ 0.236 & 0.901 & 0.236 \\
9
+ 0.499 & 0.472 & 0.961 \\
10
+ 0.013 & 0.101 & 0.129 \\
11
+ \end{array}
12
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
13
+ Answer:
14
+ Volume: $0.09$
15
+ Surface Area: $1.42$
16
+ Solid Angle: $4.06$
pretraining/mathematica/geometry/solids/32338.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ Problem:
2
+ An ellipsoid centered at $\{5.599,-9.511,-2.676\}$ has radii $\{1.59,1.412,3.194\}$. Estimate the ellipsoid's surface area and volume.
3
+ Answer:
4
+ Surface Area: $51.11$
5
+ Volume: $30.06$
pretraining/mathematica/geometry/solids/33738.txt ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.828 & 0.516 & 0.843 \\
5
+ 0.972 & 0.618 & 0.545 \\
6
+ 0.926 & 0.217 & 0.483 \\
7
+ 0.376 & 0.749 & 0.542 \\
8
+ 0.615 & 0.191 & 0.275 \\
9
+ 0.364 & 0.555 & 0. \\
10
+ \end{array}
11
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
12
+ Answer:
13
+ Volume: $0.05$
14
+ Surface Area: $0.99$
15
+ Solid Angle: $1.01$
pretraining/mathematica/geometry/solids/36545.txt ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertex coordinates $\left(
3
+ \begin{array}{ccc}
4
+ -1 & 0 & 0 \\
5
+ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
6
+ -\frac{1}{\sqrt{2}} & -\frac{1}{2} & 0 \\
7
+ -\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\
8
+ -\frac{1}{\sqrt{2}} & 0 & -\frac{1}{2} \\
9
+ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{2} \\
10
+ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
11
+ -\frac{1}{\sqrt{2}} & \frac{1}{2} & 0 \\
12
+ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
13
+ -\frac{1}{2} & -\frac{1}{\sqrt{2}} & 0 \\
14
+ -\frac{1}{2} & 0 & -\frac{1}{\sqrt{2}} \\
15
+ -\frac{1}{2} & 0 & \frac{1}{\sqrt{2}} \\
16
+ -\frac{1}{2} & \frac{1}{\sqrt{2}} & 0 \\
17
+ 0 & -1 & 0 \\
18
+ 0 & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
19
+ 0 & -\frac{1}{\sqrt{2}} & -\frac{1}{2} \\
20
+ 0 & -\frac{1}{\sqrt{2}} & \frac{1}{2} \\
21
+ 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
22
+ 0 & -\frac{1}{2} & -\frac{1}{\sqrt{2}} \\
23
+ 0 & -\frac{1}{2} & \frac{1}{\sqrt{2}} \\
24
+ 0 & 0 & -1 \\
25
+ 0 & 0 & 1 \\
26
+ 0 & \frac{1}{2} & -\frac{1}{\sqrt{2}} \\
27
+ 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} \\
28
+ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
29
+ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{2} \\
30
+ 0 & \frac{1}{\sqrt{2}} & \frac{1}{2} \\
31
+ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
32
+ 0 & 1 & 0 \\
33
+ \frac{1}{2} & -\frac{1}{\sqrt{2}} & 0 \\
34
+ \frac{1}{2} & 0 & -\frac{1}{\sqrt{2}} \\
35
+ \frac{1}{2} & 0 & \frac{1}{\sqrt{2}} \\
36
+ \frac{1}{2} & \frac{1}{\sqrt{2}} & 0 \\
37
+ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
38
+ \frac{1}{\sqrt{2}} & -\frac{1}{2} & 0 \\
39
+ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\
40
+ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{2} \\
41
+ \frac{1}{\sqrt{2}} & 0 & \frac{1}{2} \\
42
+ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
43
+ \frac{1}{\sqrt{2}} & \frac{1}{2} & 0 \\
44
+ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
45
+ 1 & 0 & 0 \\
46
+ \end{array}
47
+ \right)$. Determine the SurfaceArea.
48
+ Answer:
49
+ $6 \left(3+2 \sqrt{3}\right)$
pretraining/mathematica/geometry/solids/37576.txt ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.233 & 0.554 & 0.886 \\
5
+ 0.787 & 0.6 & 0.918 \\
6
+ 0.165 & 0.306 & 0.135 \\
7
+ 0.869 & 0.676 & 0.036 \\
8
+ 0.694 & 0.399 & 0.381 \\
9
+ 0.594 & 0.241 & 0.051 \\
10
+ \end{array}
11
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
12
+ Answer:
13
+ Solid Angle: $0.36$
14
+ Volume: $0.06$
15
+ Surface Area: $1.32$
pretraining/mathematica/geometry/solids/38504.txt ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 1. & 0.805 & 0.209 \\
5
+ 0.5 & 0.778 & 0.165 \\
6
+ 0.485 & 0.26 & 0.078 \\
7
+ 0.94 & 0.918 & 0.332 \\
8
+ 0.583 & 0.018 & 0.416 \\
9
+ 0.464 & 0.374 & 0.148 \\
10
+ 0.344 & 0.1 & 0.765 \\
11
+ 0.892 & 0.172 & 0.02 \\
12
+ \end{array}
13
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
14
+ Answer:
15
+ Volume: $0.09$
16
+ Solid Angle: $1.33$
17
+ Surface Area: $1.36$
pretraining/mathematica/geometry/solids/41440.txt ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.715 & 0.032 & 0.573 \\
5
+ 0.435 & 0.03 & 0.707 \\
6
+ 0.387 & 0.919 & 0.994 \\
7
+ 0.565 & 0.57 & 0.047 \\
8
+ 0.575 & 0.904 & 0.712 \\
9
+ 0.982 & 0.786 & 0.15 \\
10
+ 0.115 & 0.275 & 0.868 \\
11
+ 0.631 & 0.257 & 0.005 \\
12
+ 0.791 & 0.3 & 0.046 \\
13
+ 0.73 & 0.608 & 0.731 \\
14
+ \end{array}
15
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
16
+ Answer:
17
+ Solid Angle: $1.97$
18
+ Volume: $0.18$
19
+ Surface Area: $2.06$
pretraining/mathematica/geometry/solids/43244.txt ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.706 & 0.451 & 0.207 \\
5
+ 0.962 & 0.939 & 0.281 \\
6
+ 0.751 & 0.843 & 0.9 \\
7
+ 0.189 & 0.816 & 0.57 \\
8
+ 0.817 & 0.774 & 0.788 \\
9
+ \end{array}
10
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
11
+ Answer:
12
+ Volume: $0.04$
13
+ Solid Angle: $0.54$
14
+ Surface Area: $0.84$
pretraining/mathematica/geometry/solids/43973.txt ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.144 & 0.183 & 0.413 \\
5
+ 0.022 & 0.528 & 0.582 \\
6
+ 0.445 & 0.8 & 0.701 \\
7
+ 0.651 & 0.052 & 0.752 \\
8
+ 0.361 & 0.441 & 0.065 \\
9
+ 0.091 & 0.156 & 0.596 \\
10
+ 0.113 & 0.4 & 0.329 \\
11
+ 0.227 & 0.793 & 0.361 \\
12
+ 0.611 & 0.628 & 0.879 \\
13
+ 0.953 & 0.237 & 0.299 \\
14
+ 0.987 & 0.128 & 0.744 \\
15
+ \end{array}
16
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
17
+ Answer:
18
+ Volume: $0.17$
19
+ Solid Angle: $3.37$
20
+ Surface Area: $1.86$
pretraining/mathematica/geometry/solids/46273.txt ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.581 & 0.699 & 0.813 \\
5
+ 0.906 & 0.269 & 0.634 \\
6
+ 0.265 & 0.435 & 0.351 \\
7
+ 0.973 & 0.646 & 0.246 \\
8
+ 0.795 & 0.065 & 0.953 \\
9
+ 0.73 & 0.689 & 0.897 \\
10
+ 0.004 & 0.587 & 0.478 \\
11
+ 0.968 & 0.728 & 0.082 \\
12
+ 0.758 & 0.924 & 0.264 \\
13
+ 0.024 & 0.04 & 0.522 \\
14
+ \end{array}
15
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
16
+ Answer:
17
+ Solid Angle: $3.74$
18
+ Surface Area: $2.11$
19
+ Volume: $0.18$
pretraining/mathematica/geometry/solids/4836.txt ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.93 & 0.795 & 0.657 \\
5
+ 0.83 & 0.989 & 0.939 \\
6
+ 0.125 & 0.658 & 0.587 \\
7
+ 0.537 & 0.806 & 0.339 \\
8
+ 0.079 & 0.19 & 0.051 \\
9
+ 0.059 & 0.855 & 0.92 \\
10
+ 0.997 & 0.926 & 0.252 \\
11
+ 0.278 & 0.017 & 0.167 \\
12
+ 0.067 & 0.154 & 0.208 \\
13
+ 0.218 & 0.028 & 0.679 \\
14
+ \end{array}
15
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
16
+ Answer:
17
+ Volume: $0.24$
18
+ Solid Angle: $3.76$
19
+ Surface Area: $2.5$
pretraining/mathematica/geometry/solids/50128.txt ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.027 & 0.019 & 0.144 \\
5
+ 0.512 & 0.342 & 0.341 \\
6
+ 0.106 & 0.995 & 0.882 \\
7
+ 0.06 & 0.073 & 0.848 \\
8
+ \end{array}
9
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
10
+ Answer:
11
+ Solid Angle: $0.41$
12
+ Volume: $0.05$
13
+ Surface Area: $1.12$
pretraining/mathematica/geometry/solids/50351.txt ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertex coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0. & -0.851 & 2.065 \\
5
+ 1.618 & 0. & -1.539 \\
6
+ -0.809 & -0.263 & 2.065 \\
7
+ 1.309 & 0.951 & -1.539 \\
8
+ 0.809 & -1.964 & 0.688 \\
9
+ 1.309 & -1.802 & -0.162 \\
10
+ -0.5 & 2.065 & 0.688 \\
11
+ 0. & 2.227 & -0.162 \\
12
+ -0.5 & -1.539 & 1.539 \\
13
+ 1.309 & -0.951 & -1.539 \\
14
+ -1.309 & 0.951 & 1.539 \\
15
+ 0.5 & 1.539 & -1.539 \\
16
+ -1.309 & -0.951 & 1.539 \\
17
+ 0.5 & -0.688 & -2.065 \\
18
+ -1.618 & 0. & 1.539 \\
19
+ 0.809 & 0.263 & -2.065 \\
20
+ 0. & -2.227 & 0.162 \\
21
+ 0.5 & -2.065 & -0.688 \\
22
+ -1.309 & 1.802 & 0.162 \\
23
+ -0.809 & 1.964 & -0.688 \\
24
+ 0.5 & 0.688 & 2.065 \\
25
+ 2.118 & 0.688 & -0.162 \\
26
+ 0.5 & -1.539 & 1.539 \\
27
+ 1.809 & -1.114 & -0.688 \\
28
+ -0.5 & 1.539 & 1.539 \\
29
+ 0.809 & 1.964 & -0.688 \\
30
+ 1.309 & -0.951 & 1.539 \\
31
+ 2.118 & -0.688 & 0.162 \\
32
+ 0.5 & 1.539 & 1.539 \\
33
+ 1.309 & 1.802 & 0.162 \\
34
+ 1.618 & 0. & 1.539 \\
35
+ 2.118 & 0.162 & 0.688 \\
36
+ 1.309 & 0.951 & 1.539 \\
37
+ 1.809 & 1.114 & 0.688 \\
38
+ 1.618 & -1.376 & 0.688 \\
39
+ 0.809 & -0.263 & 2.065 \\
40
+ 2.118 & -0.162 & -0.688 \\
41
+ -0.5 & 0.688 & 2.065 \\
42
+ 1.618 & 1.376 & -0.688 \\
43
+ 0.5 & 2.065 & 0.688 \\
44
+ -0.809 & -1.964 & 0.688 \\
45
+ 0.5 & -1.539 & -1.539 \\
46
+ -1.809 & 1.114 & 0.688 \\
47
+ -0.5 & 1.539 & -1.539 \\
48
+ -1.309 & -1.802 & -0.162 \\
49
+ -0.5 & -1.539 & -1.539 \\
50
+ -2.118 & 0.688 & -0.162 \\
51
+ -1.309 & 0.951 & -1.539 \\
52
+ -1.809 & -1.114 & -0.688 \\
53
+ -1.309 & -0.951 & -1.539 \\
54
+ -2.118 & -0.162 & -0.688 \\
55
+ -1.618 & 0. & -1.539 \\
56
+ -0.5 & -2.065 & -0.688 \\
57
+ -1.618 & -1.376 & 0.688 \\
58
+ -0.5 & -0.688 & -2.065 \\
59
+ -2.118 & 0.162 & 0.688 \\
60
+ 0. & 0.851 & -2.065 \\
61
+ -1.618 & 1.376 & -0.688 \\
62
+ -2.118 & -0.688 & 0.162 \\
63
+ -0.809 & 0.263 & -2.065 \\
64
+ \end{array}
65
+ \right)$. Determine the EdgeCount.
66
+ Answer:
67
+ $120.$
pretraining/mathematica/geometry/solids/50356.txt ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.966 & 0.775 & 0.301 \\
5
+ 0.693 & 0.007 & 0.521 \\
6
+ 0.287 & 0.797 & 0.205 \\
7
+ 0.147 & 0.189 & 0.04 \\
8
+ 0.776 & 0.486 & 0.65 \\
9
+ 0.914 & 0.189 & 0.867 \\
10
+ 0.589 & 0.706 & 0.448 \\
11
+ \end{array}
12
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
13
+ Answer:
14
+ Solid Angle: $0.85$
15
+ Surface Area: $1.47$
16
+ Volume: $0.08$
pretraining/mathematica/geometry/solids/51903.txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.69 & 0.047 & 0.484 \\
5
+ 0.508 & 0.495 & 0.11 \\
6
+ 0.669 & 0.799 & 0.804 \\
7
+ 0.004 & 0.584 & 0.475 \\
8
+ 0.64 & 0.47 & 0.897 \\
9
+ 0.716 & 0.402 & 0.189 \\
10
+ 0.682 & 0.77 & 0.587 \\
11
+ 0.384 & 0.392 & 0.316 \\
12
+ 0.969 & 0.586 & 0.845 \\
13
+ \end{array}
14
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
15
+ Answer:
16
+ Solid Angle: $1.23$
17
+ Surface Area: $1.38$
18
+ Volume: $0.11$
pretraining/mathematica/geometry/solids/52289.txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.739 & 0.267 & 0.238 \\
5
+ 0.562 & 0.041 & 0.831 \\
6
+ 0.177 & 0.22 & 0.597 \\
7
+ 0.23 & 0.853 & 0.636 \\
8
+ 0.202 & 0.528 & 0.748 \\
9
+ 0.569 & 0.087 & 0.571 \\
10
+ 0.086 & 0.503 & 0.286 \\
11
+ 0.869 & 0.875 & 0.615 \\
12
+ 0.685 & 0.167 & 0.854 \\
13
+ \end{array}
14
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
15
+ Answer:
16
+ Surface Area: $1.59$
17
+ Volume: $0.13$
18
+ Solid Angle: $1.4$
pretraining/mathematica/geometry/solids/52741.txt ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.972 & 0.636 & 0.443 \\
5
+ 0.045 & 0.986 & 0.102 \\
6
+ 0.909 & 0.49 & 0.393 \\
7
+ 0.373 & 0.542 & 0.057 \\
8
+ 0.186 & 0.989 & 0.237 \\
9
+ 0.35 & 0.148 & 0.581 \\
10
+ 0.918 & 0.208 & 0.77 \\
11
+ 0.287 & 0.065 & 0.144 \\
12
+ 0.002 & 0.168 & 0.66 \\
13
+ 0.309 & 0.404 & 0.649 \\
14
+ 0.608 & 0.499 & 0.664 \\
15
+ \end{array}
16
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
17
+ Answer:
18
+ Volume: $0.2$
19
+ Surface Area: $2.07$
20
+ Solid Angle: $1.42$
pretraining/mathematica/geometry/solids/54338.txt ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.021 & 0.584 & 0.452 \\
5
+ 0.742 & 0.946 & 0.312 \\
6
+ 0.676 & 0.031 & 0.652 \\
7
+ 0.805 & 0.401 & 0.089 \\
8
+ \end{array}
9
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
10
+ Answer:
11
+ Solid Angle: $0.3$
12
+ Volume: $0.04$
13
+ Surface Area: $1.05$
pretraining/mathematica/geometry/solids/54538.txt ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.739 & 0.857 & 0.527 \\
5
+ 0.275 & 0.036 & 0.732 \\
6
+ 0.927 & 0.885 & 0.223 \\
7
+ 0.989 & 0.883 & 0.579 \\
8
+ 0.716 & 0.597 & 0.107 \\
9
+ 0.859 & 0.766 & 0.002 \\
10
+ \end{array}
11
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
12
+ Answer:
13
+ Solid Angle: $2.63$
14
+ Volume: $0.02$
15
+ Surface Area: $0.87$
pretraining/mathematica/geometry/solids/55790.txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.115 & 0.792 & 0.71 \\
5
+ 0.2 & 0.483 & 0.473 \\
6
+ 0.91 & 0.826 & 0.356 \\
7
+ 0.611 & 0.15 & 0.286 \\
8
+ 0.122 & 0.674 & 0.574 \\
9
+ 0.568 & 0.173 & 0.641 \\
10
+ 0.038 & 0.621 & 0.775 \\
11
+ 0.246 & 0.264 & 0.823 \\
12
+ 0.696 & 0.26 & 0.09 \\
13
+ \end{array}
14
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
15
+ Answer:
16
+ Surface Area: $1.35$
17
+ Solid Angle: $1.23$
18
+ Volume: $0.08$
pretraining/mathematica/geometry/solids/56128.txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.552 & 0.096 & 0.537 \\
5
+ 0.943 & 0.991 & 0.426 \\
6
+ 0.653 & 0.857 & 0.272 \\
7
+ 0.531 & 0.126 & 0.857 \\
8
+ 0.565 & 0.92 & 0.307 \\
9
+ 0.525 & 0.074 & 0.176 \\
10
+ 0.426 & 0.832 & 0.175 \\
11
+ 0.688 & 0.167 & 0.423 \\
12
+ 0.611 & 0.196 & 0.088 \\
13
+ \end{array}
14
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
15
+ Answer:
16
+ Volume: $0.08$
17
+ Surface Area: $1.26$
18
+ Solid Angle: $4.64$
pretraining/mathematica/geometry/solids/5977.txt ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.56 & 0.939 & 0.256 \\
5
+ 0.754 & 0.161 & 0.714 \\
6
+ 0.353 & 0.311 & 0.922 \\
7
+ 0.795 & 0.671 & 0.509 \\
8
+ 0.028 & 0.731 & 0.138 \\
9
+ 0.838 & 0.274 & 0.13 \\
10
+ \end{array}
11
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
12
+ Answer:
13
+ Surface Area: $1.51$
14
+ Volume: $0.1$
15
+ Solid Angle: $1.32$
pretraining/mathematica/geometry/solids/63724.txt ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.906 & 0.025 & 0.844 \\
5
+ 0.676 & 0.435 & 0.823 \\
6
+ 0.246 & 0.784 & 0.572 \\
7
+ 0.878 & 0.801 & 0.857 \\
8
+ 0.024 & 0.17 & 0.472 \\
9
+ 0.55 & 0.83 & 0.461 \\
10
+ 0.007 & 0.721 & 0.422 \\
11
+ 0.685 & 0.928 & 0.63 \\
12
+ \end{array}
13
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
14
+ Answer:
15
+ Solid Angle: $0.28$
16
+ Volume: $0.07$
17
+ Surface Area: $1.55$
pretraining/mathematica/geometry/solids/65918.txt ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.492 & 0.272 & 0.662 \\
5
+ 0.647 & 0.219 & 0.933 \\
6
+ 0.133 & 0.454 & 0.02 \\
7
+ 0.83 & 0.057 & 0.548 \\
8
+ 0.815 & 0.372 & 0.388 \\
9
+ \end{array}
10
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
11
+ Answer:
12
+ Solid Angle: $3.88$
13
+ Surface Area: $0.66$
14
+ Volume: $0.02$
pretraining/mathematica/geometry/solids/69281.txt ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.198 & 0.494 & 0.866 \\
5
+ 0.242 & 0.236 & 0.984 \\
6
+ 0.516 & 0.486 & 0.558 \\
7
+ 0.653 & 0.896 & 0.285 \\
8
+ \end{array}
9
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
10
+ Answer:
11
+ Surface Area: $0.32$
12
+ Solid Angle: $0.17$
13
+ Volume: $0.$
pretraining/mathematica/geometry/solids/70232.txt ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.36 & 0.892 & 0.421 \\
5
+ 0.458 & 0.691 & 0.205 \\
6
+ 0.211 & 0.218 & 0.635 \\
7
+ 0.56 & 0.129 & 0.311 \\
8
+ 0.989 & 0.506 & 0.996 \\
9
+ 0.295 & 0.654 & 0.856 \\
10
+ 0.192 & 0.159 & 0.396 \\
11
+ \end{array}
12
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
13
+ Answer:
14
+ Volume: $0.11$
15
+ Solid Angle: $1.36$
16
+ Surface Area: $1.43$
pretraining/mathematica/geometry/solids/70395.txt ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.15 & 0.718 & 0.594 \\
5
+ 0.632 & 0.605 & 0.682 \\
6
+ 0.907 & 0.44 & 0.891 \\
7
+ 0.766 & 0.103 & 0.371 \\
8
+ 0.279 & 0.091 & 0.004 \\
9
+ 0.159 & 0.047 & 0.238 \\
10
+ 0.061 & 0.406 & 0.204 \\
11
+ 0.057 & 0.739 & 0.216 \\
12
+ 0.262 & 0.558 & 0.798 \\
13
+ 0.389 & 0.152 & 0.797 \\
14
+ \end{array}
15
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
16
+ Answer:
17
+ Solid Angle: $2.04$
18
+ Surface Area: $1.77$
19
+ Volume: $0.14$