agungpambudi commited on
Commit
af6cbaf
·
verified ·
1 Parent(s): 480aba9

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. pretraining/mathematica/geometry/solids/10221.txt +15 -0
  2. pretraining/mathematica/geometry/solids/12353.txt +19 -0
  3. pretraining/mathematica/geometry/solids/12990.txt +127 -0
  4. pretraining/mathematica/geometry/solids/15739.txt +19 -0
  5. pretraining/mathematica/geometry/solids/17878.txt +19 -0
  6. pretraining/mathematica/geometry/solids/19290.txt +19 -0
  7. pretraining/mathematica/geometry/solids/25680.txt +39 -0
  8. pretraining/mathematica/geometry/solids/32216.txt +13 -0
  9. pretraining/mathematica/geometry/solids/37709.txt +18 -0
  10. pretraining/mathematica/geometry/solids/38525.txt +15 -0
  11. pretraining/mathematica/geometry/solids/40646.txt +17 -0
  12. pretraining/mathematica/geometry/solids/44719.txt +18 -0
  13. pretraining/mathematica/geometry/solids/49716.txt +5 -0
  14. pretraining/mathematica/geometry/solids/49939.txt +17 -0
  15. pretraining/mathematica/geometry/solids/52051.txt +18 -0
  16. pretraining/mathematica/geometry/solids/54129.txt +17 -0
  17. pretraining/mathematica/geometry/solids/54821.txt +16 -0
  18. pretraining/mathematica/geometry/solids/55706.txt +67 -0
  19. pretraining/mathematica/geometry/solids/58129.txt +19 -0
  20. pretraining/mathematica/geometry/solids/60429.txt +16 -0
  21. pretraining/mathematica/geometry/solids/6543.txt +13 -0
  22. pretraining/mathematica/geometry/solids/67606.txt +99 -0
  23. pretraining/mathematica/geometry/solids/69074.txt +18 -0
  24. pretraining/mathematica/geometry/solids/6947.txt +30 -0
  25. pretraining/mathematica/geometry/solids/69803.txt +15 -0
  26. pretraining/mathematica/geometry/solids/69860.txt +14 -0
  27. pretraining/mathematica/geometry/solids/7050.txt +13 -0
  28. pretraining/mathematica/geometry/solids/70762.txt +19 -0
  29. pretraining/mathematica/geometry/solids/71187.txt +14 -0
  30. pretraining/mathematica/geometry/solids/77069.txt +15 -0
  31. pretraining/mathematica/geometry/solids/80224.txt +14 -0
  32. pretraining/mathematica/geometry/solids/80512.txt +17 -0
  33. pretraining/mathematica/geometry/solids/83016.txt +18 -0
  34. pretraining/mathematica/geometry/solids/8404.txt +21 -0
  35. pretraining/mathematica/geometry/solids/90245.txt +67 -0
  36. pretraining/mathematica/geometry/solids/90387.txt +13 -0
  37. pretraining/mathematica/geometry/solids/93420.txt +18 -0
  38. pretraining/mathematica/geometry/solids/94880.txt +17 -0
  39. pretraining/mathematica/geometry/solids/96125.txt +16 -0
  40. pretraining/mathematica/geometry/solids/97386.txt +14 -0
  41. pretraining/mathematica/number_theory/relatively_prime/10562.txt +4 -0
  42. pretraining/mathematica/number_theory/relatively_prime/12944.txt +4 -0
  43. pretraining/mathematica/number_theory/relatively_prime/14118.txt +4 -0
  44. pretraining/mathematica/number_theory/relatively_prime/14590.txt +4 -0
  45. pretraining/mathematica/number_theory/relatively_prime/14889.txt +4 -0
  46. pretraining/mathematica/number_theory/relatively_prime/17101.txt +4 -0
  47. pretraining/mathematica/number_theory/relatively_prime/18194.txt +4 -0
  48. pretraining/mathematica/number_theory/relatively_prime/20569.txt +4 -0
  49. pretraining/mathematica/number_theory/relatively_prime/22099.txt +4 -0
  50. pretraining/mathematica/number_theory/relatively_prime/24439.txt +4 -0
pretraining/mathematica/geometry/solids/10221.txt ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0. & 0.819 & 0.478 \\
5
+ 0.732 & 0.084 & 0.601 \\
6
+ 0.903 & 0.188 & 0.201 \\
7
+ 0.006 & 0.413 & 0.913 \\
8
+ 0.414 & 0.078 & 0.368 \\
9
+ 0.691 & 0.881 & 0.124 \\
10
+ \end{array}
11
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
12
+ Answer:
13
+ Solid Angle: $0.65$
14
+ Volume: $0.1$
15
+ Surface Area: $1.72$
pretraining/mathematica/geometry/solids/12353.txt ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.517 & 0.549 & 0.95 \\
5
+ 0.202 & 0.296 & 0.582 \\
6
+ 0.893 & 0.414 & 0.164 \\
7
+ 0.916 & 0.174 & 0.774 \\
8
+ 0.198 & 0.085 & 0.945 \\
9
+ 0.113 & 0.634 & 0.241 \\
10
+ 0.848 & 0.244 & 0.006 \\
11
+ 0.49 & 0.986 & 0.435 \\
12
+ 0.623 & 0.705 & 0.685 \\
13
+ 0.924 & 0.573 & 0.435 \\
14
+ \end{array}
15
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
16
+ Answer:
17
+ Solid Angle: $2.38$
18
+ Surface Area: $2.11$
19
+ Volume: $0.21$
pretraining/mathematica/geometry/solids/12990.txt ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertex coordinates $\left(
3
+ \begin{array}{ccc}
4
+ -\frac{1}{10} \sqrt{\frac{1}{2} \left(25-11 \sqrt{5}\right)} & \frac{1}{4} \left(-3-\sqrt{5}\right) & \sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
5
+ -\frac{1}{10} \sqrt{\frac{1}{2} \left(25-11 \sqrt{5}\right)} & \frac{1}{4} \left(3+\sqrt{5}\right) & \sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
6
+ \sqrt{\frac{1}{8}-\frac{11}{40 \sqrt{5}}} & \frac{1}{4} \left(-3-\sqrt{5}\right) & -\sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
7
+ \sqrt{\frac{1}{8}-\frac{11}{40 \sqrt{5}}} & \frac{1}{4} \left(3+\sqrt{5}\right) & -\sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
8
+ -\frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} & \frac{1}{4} \left(-1-\sqrt{5}\right) & \sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} \\
9
+ -\frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} & \frac{1}{4} \left(1+\sqrt{5}\right) & \sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} \\
10
+ \sqrt{\frac{1}{8}-\frac{1}{8 \sqrt{5}}} & \frac{1}{4} \left(-1-\sqrt{5}\right) & -\sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} \\
11
+ \sqrt{\frac{1}{8}-\frac{1}{8 \sqrt{5}}} & \frac{1}{4} \left(1+\sqrt{5}\right) & -\sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} \\
12
+ -\frac{1}{10} \sqrt{5-2 \sqrt{5}} & -\frac{1}{2}-\frac{2}{\sqrt{5}} & \sqrt{\frac{1}{40}-\frac{1}{40 \sqrt{5}}} \\
13
+ -\frac{1}{10} \sqrt{5-2 \sqrt{5}} & \frac{1}{2}+\frac{2}{\sqrt{5}} & \sqrt{\frac{1}{40}-\frac{1}{40 \sqrt{5}}} \\
14
+ \frac{1}{10} \sqrt{5-2 \sqrt{5}} & -\frac{1}{2}-\frac{2}{\sqrt{5}} & -\frac{1}{10} \sqrt{\frac{1}{2} \left(5-\sqrt{5}\right)} \\
15
+ \frac{1}{10} \sqrt{5-2 \sqrt{5}} & \frac{1}{2}+\frac{2}{\sqrt{5}} & -\frac{1}{10} \sqrt{\frac{1}{2} \left(5-\sqrt{5}\right)} \\
16
+ -\frac{1}{5} \sqrt{\frac{1}{2} \left(5-\sqrt{5}\right)} & \frac{1}{10} \left(-5-3 \sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(65+19 \sqrt{5}\right)} \\
17
+ -\frac{1}{5} \sqrt{\frac{1}{2} \left(5-\sqrt{5}\right)} & \frac{1}{10} \left(5+3 \sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(65+19 \sqrt{5}\right)} \\
18
+ \sqrt{\frac{1}{10}-\frac{1}{10 \sqrt{5}}} & \frac{1}{10} \left(-5-3 \sqrt{5}\right) & \sqrt{\frac{13}{40}+\frac{19}{40 \sqrt{5}}} \\
19
+ \sqrt{\frac{1}{10}-\frac{1}{10 \sqrt{5}}} & \frac{1}{10} \left(5+3 \sqrt{5}\right) & \sqrt{\frac{13}{40}+\frac{19}{40 \sqrt{5}}} \\
20
+ -\frac{1}{10} \sqrt{\frac{1}{2} \left(5-\sqrt{5}\right)} & \frac{1}{20} \left(-5-\sqrt{5}\right) & -\sqrt{\frac{41}{40}+\frac{71}{40 \sqrt{5}}} \\
21
+ -\frac{1}{10} \sqrt{\frac{1}{2} \left(5-\sqrt{5}\right)} & -\frac{3}{20} \left(5+\sqrt{5}\right) & \sqrt{\frac{17}{40}+\frac{31}{40 \sqrt{5}}} \\
22
+ -\frac{1}{10} \sqrt{\frac{1}{2} \left(5-\sqrt{5}\right)} & \frac{1}{20} \left(5+\sqrt{5}\right) & -\sqrt{\frac{41}{40}+\frac{71}{40 \sqrt{5}}} \\
23
+ -\frac{1}{10} \sqrt{\frac{1}{2} \left(5-\sqrt{5}\right)} & \frac{3}{20} \left(5+\sqrt{5}\right) & \sqrt{\frac{17}{40}+\frac{31}{40 \sqrt{5}}} \\
24
+ \sqrt{\frac{1}{40}-\frac{1}{40 \sqrt{5}}} & \frac{1}{20} \left(-5-\sqrt{5}\right) & \sqrt{\frac{41}{40}+\frac{71}{40 \sqrt{5}}} \\
25
+ \sqrt{\frac{1}{40}-\frac{1}{40 \sqrt{5}}} & -\frac{3}{20} \left(5+\sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(85+31 \sqrt{5}\right)} \\
26
+ \sqrt{\frac{1}{40}-\frac{1}{40 \sqrt{5}}} & \frac{1}{20} \left(5+\sqrt{5}\right) & \sqrt{\frac{41}{40}+\frac{71}{40 \sqrt{5}}} \\
27
+ \sqrt{\frac{1}{40}-\frac{1}{40 \sqrt{5}}} & \frac{3}{20} \left(5+\sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(85+31 \sqrt{5}\right)} \\
28
+ -\frac{1}{10} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{20} \left(-5-3 \sqrt{5}\right) & \sqrt{\frac{37}{40}+\frac{59}{40 \sqrt{5}}} \\
29
+ -\frac{1}{10} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{20} \left(5+3 \sqrt{5}\right) & \sqrt{\frac{37}{40}+\frac{59}{40 \sqrt{5}}} \\
30
+ \frac{1}{10} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{20} \left(-5-3 \sqrt{5}\right) & -\sqrt{\frac{37}{40}+\frac{59}{40 \sqrt{5}}} \\
31
+ \frac{1}{10} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{20} \left(5+3 \sqrt{5}\right) & -\sqrt{\frac{37}{40}+\frac{59}{40 \sqrt{5}}} \\
32
+ -\frac{1}{10} \sqrt{5+2 \sqrt{5}} & -\frac{1}{2 \sqrt{5}} & \sqrt{\frac{41}{40}+\frac{71}{40 \sqrt{5}}} \\
33
+ -\frac{1}{10} \sqrt{5+2 \sqrt{5}} & \frac{1}{2 \sqrt{5}} & \sqrt{\frac{41}{40}+\frac{71}{40 \sqrt{5}}} \\
34
+ \frac{1}{10} \sqrt{5+2 \sqrt{5}} & -\frac{1}{2 \sqrt{5}} & -\sqrt{\frac{41}{40}+\frac{71}{40 \sqrt{5}}} \\
35
+ \frac{1}{10} \sqrt{5+2 \sqrt{5}} & \frac{1}{2 \sqrt{5}} & -\sqrt{\frac{41}{40}+\frac{71}{40 \sqrt{5}}} \\
36
+ -\frac{1}{5} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & 0 & -\sqrt{\frac{41}{40}+\frac{71}{40 \sqrt{5}}} \\
37
+ \frac{1}{5} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & 0 & \sqrt{\frac{41}{40}+\frac{71}{40 \sqrt{5}}} \\
38
+ -\frac{1}{10} \sqrt{25+2 \sqrt{5}} & -\frac{1}{2}-\frac{1}{\sqrt{5}} & \sqrt{\frac{17}{40}+\frac{31}{40 \sqrt{5}}} \\
39
+ -\frac{1}{10} \sqrt{25+2 \sqrt{5}} & \frac{1}{2}+\frac{1}{\sqrt{5}} & \sqrt{\frac{17}{40}+\frac{31}{40 \sqrt{5}}} \\
40
+ \frac{1}{10} \sqrt{25+2 \sqrt{5}} & -\frac{1}{2}-\frac{1}{\sqrt{5}} & -\frac{1}{10} \sqrt{\frac{1}{2} \left(85+31 \sqrt{5}\right)} \\
41
+ \frac{1}{10} \sqrt{25+2 \sqrt{5}} & \frac{1}{2}+\frac{1}{\sqrt{5}} & -\frac{1}{10} \sqrt{\frac{1}{2} \left(85+31 \sqrt{5}\right)} \\
42
+ -\frac{1}{2} \sqrt{\frac{1}{10} \left(5+\sqrt{5}\right)} & \frac{1}{4} \left(-3-\sqrt{5}\right) & \sqrt{\frac{1}{8}-\frac{1}{8 \sqrt{5}}} \\
43
+ -\frac{1}{2} \sqrt{\frac{1}{10} \left(5+\sqrt{5}\right)} & \frac{1}{4} \left(3+\sqrt{5}\right) & \sqrt{\frac{1}{8}-\frac{1}{8 \sqrt{5}}} \\
44
+ \sqrt{\frac{1}{8}+\frac{1}{8 \sqrt{5}}} & \frac{1}{4} \left(-3-\sqrt{5}\right) & -\frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} \\
45
+ \sqrt{\frac{1}{8}+\frac{1}{8 \sqrt{5}}} & \frac{1}{4} \left(3+\sqrt{5}\right) & -\frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} \\
46
+ -\sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} & \frac{1}{20} \left(-5-\sqrt{5}\right) & -\sqrt{\frac{37}{40}+\frac{59}{40 \sqrt{5}}} \\
47
+ -\sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} & -\frac{3}{20} \left(5+\sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(65+19 \sqrt{5}\right)} \\
48
+ -\sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} & \frac{1}{20} \left(5+\sqrt{5}\right) & -\sqrt{\frac{37}{40}+\frac{59}{40 \sqrt{5}}} \\
49
+ -\sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} & \frac{3}{20} \left(5+\sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(65+19 \sqrt{5}\right)} \\
50
+ \sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} & \frac{1}{20} \left(-5-\sqrt{5}\right) & \sqrt{\frac{37}{40}+\frac{59}{40 \sqrt{5}}} \\
51
+ \sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} & -\frac{3}{20} \left(5+\sqrt{5}\right) & \sqrt{\frac{13}{40}+\frac{19}{40 \sqrt{5}}} \\
52
+ \sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} & \frac{1}{20} \left(5+\sqrt{5}\right) & \sqrt{\frac{37}{40}+\frac{59}{40 \sqrt{5}}} \\
53
+ \sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} & \frac{3}{20} \left(5+\sqrt{5}\right) & \sqrt{\frac{13}{40}+\frac{19}{40 \sqrt{5}}} \\
54
+ -\frac{1}{5} \sqrt{5+2 \sqrt{5}} & 0 & \sqrt{\frac{37}{40}+\frac{59}{40 \sqrt{5}}} \\
55
+ \frac{1}{5} \sqrt{5+2 \sqrt{5}} & 0 & -\sqrt{\frac{37}{40}+\frac{59}{40 \sqrt{5}}} \\
56
+ -\frac{1}{5} \sqrt{2 \left(5+\sqrt{5}\right)} & \frac{1}{10} \left(-5-3 \sqrt{5}\right) & \sqrt{\frac{1}{40}-\frac{1}{40 \sqrt{5}}} \\
57
+ -\frac{1}{5} \sqrt{2 \left(5+\sqrt{5}\right)} & \frac{1}{10} \left(5+3 \sqrt{5}\right) & \sqrt{\frac{1}{40}-\frac{1}{40 \sqrt{5}}} \\
58
+ \frac{1}{5} \sqrt{2 \left(5+\sqrt{5}\right)} & \frac{1}{10} \left(-5-3 \sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(5-\sqrt{5}\right)} \\
59
+ \frac{1}{5} \sqrt{2 \left(5+\sqrt{5}\right)} & \frac{1}{10} \left(5+3 \sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(5-\sqrt{5}\right)} \\
60
+ -\frac{1}{10} \sqrt{\frac{1}{2} \left(65+19 \sqrt{5}\right)} & -\frac{3}{20} \left(5+\sqrt{5}\right) & \sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
61
+ -\frac{1}{10} \sqrt{\frac{1}{2} \left(65+19 \sqrt{5}\right)} & \frac{1}{4} \left(-1-\sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(85+31 \sqrt{5}\right)} \\
62
+ -\frac{1}{10} \sqrt{\frac{1}{2} \left(65+19 \sqrt{5}\right)} & \frac{1}{4} \left(1+\sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(85+31 \sqrt{5}\right)} \\
63
+ -\frac{1}{10} \sqrt{\frac{1}{2} \left(65+19 \sqrt{5}\right)} & \frac{3}{20} \left(5+\sqrt{5}\right) & \sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
64
+ \sqrt{\frac{13}{40}+\frac{19}{40 \sqrt{5}}} & -\frac{3}{20} \left(5+\sqrt{5}\right) & -\sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
65
+ \sqrt{\frac{13}{40}+\frac{19}{40 \sqrt{5}}} & \frac{1}{4} \left(-1-\sqrt{5}\right) & \sqrt{\frac{17}{40}+\frac{31}{40 \sqrt{5}}} \\
66
+ \sqrt{\frac{13}{40}+\frac{19}{40 \sqrt{5}}} & \frac{1}{4} \left(1+\sqrt{5}\right) & \sqrt{\frac{17}{40}+\frac{31}{40 \sqrt{5}}} \\
67
+ \sqrt{\frac{13}{40}+\frac{19}{40 \sqrt{5}}} & \frac{3}{20} \left(5+\sqrt{5}\right) & -\sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
68
+ -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} & -\frac{1}{2} & -\sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} \\
69
+ -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} & \frac{1}{2} & -\sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} \\
70
+ \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} & -\frac{1}{2} & \sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} \\
71
+ \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} & \frac{1}{2} & \sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} \\
72
+ -\sqrt{\frac{1}{10} \left(5+\sqrt{5}\right)} & 0 & \sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} \\
73
+ \sqrt{\frac{1}{10} \left(5+\sqrt{5}\right)} & 0 & -\sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} \\
74
+ -\frac{1}{10} \sqrt{\frac{65}{2}+\frac{29 \sqrt{5}}{2}} & \frac{1}{20} \left(-5-7 \sqrt{5}\right) & -\sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
75
+ -\frac{1}{10} \sqrt{\frac{65}{2}+\frac{29 \sqrt{5}}{2}} & \frac{1}{20} \left(5+7 \sqrt{5}\right) & -\sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
76
+ \sqrt{\frac{13}{40}+\frac{29}{40 \sqrt{5}}} & \frac{1}{20} \left(-5-7 \sqrt{5}\right) & \sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
77
+ \sqrt{\frac{13}{40}+\frac{29}{40 \sqrt{5}}} & \frac{1}{20} \left(5+7 \sqrt{5}\right) & \sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
78
+ -\frac{1}{10} \sqrt{\frac{1}{2} \left(85+31 \sqrt{5}\right)} & -\frac{3}{20} \left(5+\sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(5-\sqrt{5}\right)} \\
79
+ -\frac{1}{10} \sqrt{\frac{1}{2} \left(85+31 \sqrt{5}\right)} & \frac{1}{4} \left(-1-\sqrt{5}\right) & \sqrt{\frac{13}{40}+\frac{19}{40 \sqrt{5}}} \\
80
+ -\frac{1}{10} \sqrt{\frac{1}{2} \left(85+31 \sqrt{5}\right)} & \frac{1}{4} \left(1+\sqrt{5}\right) & \sqrt{\frac{13}{40}+\frac{19}{40 \sqrt{5}}} \\
81
+ -\frac{1}{10} \sqrt{\frac{1}{2} \left(85+31 \sqrt{5}\right)} & \frac{3}{20} \left(5+\sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(5-\sqrt{5}\right)} \\
82
+ \sqrt{\frac{17}{40}+\frac{31}{40 \sqrt{5}}} & -\frac{3}{20} \left(5+\sqrt{5}\right) & \sqrt{\frac{1}{40}-\frac{1}{40 \sqrt{5}}} \\
83
+ \sqrt{\frac{17}{40}+\frac{31}{40 \sqrt{5}}} & \frac{1}{4} \left(-1-\sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(65+19 \sqrt{5}\right)} \\
84
+ \sqrt{\frac{17}{40}+\frac{31}{40 \sqrt{5}}} & \frac{1}{4} \left(1+\sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(65+19 \sqrt{5}\right)} \\
85
+ \sqrt{\frac{17}{40}+\frac{31}{40 \sqrt{5}}} & \frac{3}{20} \left(5+\sqrt{5}\right) & \sqrt{\frac{1}{40}-\frac{1}{40 \sqrt{5}}} \\
86
+ -\sqrt{\frac{5}{8}+\frac{41}{40 \sqrt{5}}} & \frac{1}{20} \left(-5-3 \sqrt{5}\right) & \sqrt{\frac{13}{40}+\frac{19}{40 \sqrt{5}}} \\
87
+ -\sqrt{\frac{5}{8}+\frac{41}{40 \sqrt{5}}} & \frac{1}{20} \left(5+3 \sqrt{5}\right) & \sqrt{\frac{13}{40}+\frac{19}{40 \sqrt{5}}} \\
88
+ \sqrt{\frac{5}{8}+\frac{41}{40 \sqrt{5}}} & \frac{1}{20} \left(-5-3 \sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(65+19 \sqrt{5}\right)} \\
89
+ \sqrt{\frac{5}{8}+\frac{41}{40 \sqrt{5}}} & \frac{1}{20} \left(5+3 \sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(65+19 \sqrt{5}\right)} \\
90
+ -\frac{1}{5} \sqrt{\frac{25}{2}+\frac{11 \sqrt{5}}{2}} & -\frac{1}{\sqrt{5}} & -\frac{1}{10} \sqrt{\frac{1}{2} \left(85+31 \sqrt{5}\right)} \\
91
+ -\frac{1}{5} \sqrt{\frac{25}{2}+\frac{11 \sqrt{5}}{2}} & \frac{1}{\sqrt{5}} & -\frac{1}{10} \sqrt{\frac{1}{2} \left(85+31 \sqrt{5}\right)} \\
92
+ \sqrt{\frac{1}{2}+\frac{11}{10 \sqrt{5}}} & -\frac{1}{\sqrt{5}} & \sqrt{\frac{17}{40}+\frac{31}{40 \sqrt{5}}} \\
93
+ \sqrt{\frac{1}{2}+\frac{11}{10 \sqrt{5}}} & \frac{1}{\sqrt{5}} & \sqrt{\frac{17}{40}+\frac{31}{40 \sqrt{5}}} \\
94
+ -\frac{1}{10} \sqrt{65+22 \sqrt{5}} & -\frac{1}{2 \sqrt{5}} & \sqrt{\frac{17}{40}+\frac{31}{40 \sqrt{5}}} \\
95
+ -\frac{1}{10} \sqrt{65+22 \sqrt{5}} & \frac{1}{2 \sqrt{5}} & \sqrt{\frac{17}{40}+\frac{31}{40 \sqrt{5}}} \\
96
+ \frac{1}{10} \sqrt{65+22 \sqrt{5}} & -\frac{1}{2 \sqrt{5}} & -\frac{1}{10} \sqrt{\frac{1}{2} \left(85+31 \sqrt{5}\right)} \\
97
+ \frac{1}{10} \sqrt{65+22 \sqrt{5}} & \frac{1}{2 \sqrt{5}} & -\frac{1}{10} \sqrt{\frac{1}{2} \left(85+31 \sqrt{5}\right)} \\
98
+ -\sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} & \frac{1}{4} \left(-1-\sqrt{5}\right) & -\frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} \\
99
+ -\sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} & \frac{1}{4} \left(1+\sqrt{5}\right) & -\frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} \\
100
+ \sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} & \frac{1}{4} \left(-1-\sqrt{5}\right) & \sqrt{\frac{1}{8}-\frac{1}{8 \sqrt{5}}} \\
101
+ \sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} & \frac{1}{4} \left(1+\sqrt{5}\right) & \sqrt{\frac{1}{8}-\frac{1}{8 \sqrt{5}}} \\
102
+ -\sqrt{\frac{37}{40}+\frac{59}{40 \sqrt{5}}} & \frac{1}{20} \left(-5-\sqrt{5}\right) & \sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
103
+ -\sqrt{\frac{37}{40}+\frac{59}{40 \sqrt{5}}} & \frac{1}{20} \left(5+\sqrt{5}\right) & \sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
104
+ \sqrt{\frac{37}{40}+\frac{59}{40 \sqrt{5}}} & \frac{1}{20} \left(-5-\sqrt{5}\right) & -\sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
105
+ \sqrt{\frac{37}{40}+\frac{59}{40 \sqrt{5}}} & \frac{1}{20} \left(5+\sqrt{5}\right) & -\sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
106
+ -\sqrt{\frac{29}{40}+\frac{61}{40 \sqrt{5}}} & \frac{1}{20} \left(5-\sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(65+19 \sqrt{5}\right)} \\
107
+ -\sqrt{\frac{29}{40}+\frac{61}{40 \sqrt{5}}} & \frac{1}{20} \left(\sqrt{5}-5\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(65+19 \sqrt{5}\right)} \\
108
+ \sqrt{\frac{29}{40}+\frac{61}{40 \sqrt{5}}} & \frac{1}{20} \left(5-\sqrt{5}\right) & \sqrt{\frac{13}{40}+\frac{19}{40 \sqrt{5}}} \\
109
+ \sqrt{\frac{29}{40}+\frac{61}{40 \sqrt{5}}} & \frac{1}{20} \left(\sqrt{5}-5\right) & \sqrt{\frac{13}{40}+\frac{19}{40 \sqrt{5}}} \\
110
+ -\frac{2}{5} \sqrt{5+2 \sqrt{5}} & -\frac{1}{\sqrt{5}} & -\sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
111
+ -\frac{2}{5} \sqrt{5+2 \sqrt{5}} & \frac{1}{\sqrt{5}} & -\sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
112
+ \frac{2}{5} \sqrt{5+2 \sqrt{5}} & -\frac{1}{\sqrt{5}} & \sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
113
+ \frac{2}{5} \sqrt{5+2 \sqrt{5}} & \frac{1}{\sqrt{5}} & \sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
114
+ -\sqrt{\frac{41}{40}+\frac{71}{40 \sqrt{5}}} & \frac{1}{20} \left(-5-\sqrt{5}\right) & \sqrt{\frac{1}{40}-\frac{1}{40 \sqrt{5}}} \\
115
+ -\sqrt{\frac{41}{40}+\frac{71}{40 \sqrt{5}}} & \frac{1}{20} \left(5+\sqrt{5}\right) & \sqrt{\frac{1}{40}-\frac{1}{40 \sqrt{5}}} \\
116
+ \sqrt{\frac{41}{40}+\frac{71}{40 \sqrt{5}}} & \frac{1}{20} \left(-5-\sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(5-\sqrt{5}\right)} \\
117
+ \sqrt{\frac{41}{40}+\frac{71}{40 \sqrt{5}}} & \frac{1}{20} \left(5+\sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(5-\sqrt{5}\right)} \\
118
+ -\frac{1}{10} \sqrt{85+38 \sqrt{5}} & -\frac{1}{2} & -\frac{1}{10} \sqrt{\frac{1}{2} \left(5-\sqrt{5}\right)} \\
119
+ -\frac{1}{10} \sqrt{85+38 \sqrt{5}} & \frac{1}{2} & -\frac{1}{10} \sqrt{\frac{1}{2} \left(5-\sqrt{5}\right)} \\
120
+ \frac{1}{10} \sqrt{85+38 \sqrt{5}} & -\frac{1}{2} & \sqrt{\frac{1}{40}-\frac{1}{40 \sqrt{5}}} \\
121
+ \frac{1}{10} \sqrt{85+38 \sqrt{5}} & \frac{1}{2} & \sqrt{\frac{1}{40}-\frac{1}{40 \sqrt{5}}} \\
122
+ -\sqrt{1+\frac{2}{\sqrt{5}}} & 0 & \sqrt{\frac{1}{8}-\frac{1}{8 \sqrt{5}}} \\
123
+ \sqrt{1+\frac{2}{\sqrt{5}}} & 0 & -\frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} \\
124
+ \end{array}
125
+ \right)$. Determine the SurfaceArea.
126
+ Answer:
127
+ $18 \sqrt{5 \left(5+2 \sqrt{5}\right)}$
pretraining/mathematica/geometry/solids/15739.txt ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.735 & 0.866 & 0.968 \\
5
+ 0.461 & 0.81 & 0.438 \\
6
+ 0.274 & 0.939 & 0.649 \\
7
+ 0.945 & 0.128 & 0.702 \\
8
+ 0.225 & 0.888 & 0.708 \\
9
+ 0.708 & 0.213 & 0.419 \\
10
+ 0.763 & 0.802 & 0.584 \\
11
+ 0.162 & 0.36 & 0.403 \\
12
+ 0.849 & 0.589 & 0.329 \\
13
+ 0.589 & 0.459 & 0.817 \\
14
+ \end{array}
15
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
16
+ Answer:
17
+ Surface Area: $1.5$
18
+ Volume: $0.12$
19
+ Solid Angle: $1.12$
pretraining/mathematica/geometry/solids/17878.txt ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.386 & 0.237 & 0.937 \\
5
+ 0.76 & 0.656 & 0.182 \\
6
+ 0.266 & 0.347 & 0.549 \\
7
+ 0.086 & 0.525 & 0.28 \\
8
+ 0.985 & 0.471 & 0.669 \\
9
+ 0.762 & 0.062 & 0.663 \\
10
+ 0.916 & 0.92 & 0.243 \\
11
+ 0.124 & 0.644 & 0.315 \\
12
+ 0.386 & 0.4 & 0.332 \\
13
+ 0.613 & 0.698 & 0.506 \\
14
+ \end{array}
15
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
16
+ Answer:
17
+ Surface Area: $1.52$
18
+ Volume: $0.11$
19
+ Solid Angle: $0.97$
pretraining/mathematica/geometry/solids/19290.txt ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertex coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0. & 0. & 0.588 \\
5
+ 0.425 & -0.309 & 0.263 \\
6
+ -0.162 & 0.5 & 0.263 \\
7
+ 0.162 & -0.5 & -0.263 \\
8
+ -0.425 & 0.309 & -0.263 \\
9
+ 0. & 0. & -0.588 \\
10
+ 0.425 & 0.309 & 0.263 \\
11
+ -0.425 & -0.309 & -0.263 \\
12
+ -0.162 & -0.5 & 0.263 \\
13
+ -0.526 & 0. & 0.263 \\
14
+ 0.526 & 0. & -0.263 \\
15
+ 0.162 & 0.5 & -0.263 \\
16
+ \end{array}
17
+ \right)$. Determine the Incenter.
18
+ Answer:
19
+ $\{0.,0.,0.\}$
pretraining/mathematica/geometry/solids/25680.txt ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertex coordinates $\left(
3
+ \begin{array}{ccc}
4
+ -2.227 & 0. & 1.114 \\
5
+ -1.802 & -1.309 & -1.114 \\
6
+ -1.802 & 1.309 & -1.114 \\
7
+ -1.376 & 0. & -0.263 \\
8
+ -1.114 & -0.809 & 0.263 \\
9
+ -1.114 & 0.809 & 0.263 \\
10
+ -0.851 & 0. & -1.114 \\
11
+ -0.688 & -2.118 & 1.114 \\
12
+ -0.688 & -0.5 & 1.114 \\
13
+ -0.688 & 0.5 & 1.114 \\
14
+ -0.688 & 2.118 & 1.114 \\
15
+ -0.425 & -1.309 & -0.263 \\
16
+ -0.425 & 1.309 & -0.263 \\
17
+ -0.263 & -0.809 & -1.114 \\
18
+ -0.263 & 0.809 & -1.114 \\
19
+ 0. & 0. & -2.49 \\
20
+ 0. & 0. & 2.49 \\
21
+ 0.263 & -0.809 & 1.114 \\
22
+ 0.263 & 0.809 & 1.114 \\
23
+ 0.425 & -1.309 & 0.263 \\
24
+ 0.425 & 1.309 & 0.263 \\
25
+ 0.688 & -2.118 & -1.114 \\
26
+ 0.688 & -0.5 & -1.114 \\
27
+ 0.688 & 0.5 & -1.114 \\
28
+ 0.688 & 2.118 & -1.114 \\
29
+ 0.851 & 0. & 1.114 \\
30
+ 1.114 & -0.809 & -0.263 \\
31
+ 1.114 & 0.809 & -0.263 \\
32
+ 1.376 & 0. & 0.263 \\
33
+ 1.802 & -1.309 & 1.114 \\
34
+ 1.802 & 1.309 & 1.114 \\
35
+ 2.227 & 0. & -1.114 \\
36
+ \end{array}
37
+ \right)$. Determine the EdgeCount.
38
+ Answer:
39
+ $90.$
pretraining/mathematica/geometry/solids/32216.txt ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.926 & 0.271 & 0.605 \\
5
+ 0.392 & 0.722 & 0.148 \\
6
+ 0.605 & 0.759 & 0.257 \\
7
+ 0.396 & 0.104 & 0.607 \\
8
+ \end{array}
9
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
10
+ Answer:
11
+ Volume: $0.$
12
+ Surface Area: $0.55$
13
+ Solid Angle: $0.07$
pretraining/mathematica/geometry/solids/37709.txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.741 & 0.726 & 0.829 \\
5
+ 0.662 & 0.682 & 0.382 \\
6
+ 0.606 & 0.467 & 0.182 \\
7
+ 0.849 & 0.007 & 0.738 \\
8
+ 0.034 & 0.999 & 0.718 \\
9
+ 0.245 & 0.012 & 0.102 \\
10
+ 0.509 & 0.872 & 0.826 \\
11
+ 0.284 & 0.839 & 0.039 \\
12
+ 0.747 & 0.353 & 0.891 \\
13
+ \end{array}
14
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
15
+ Answer:
16
+ Solid Angle: $2.24$
17
+ Surface Area: $2.24$
18
+ Volume: $0.2$
pretraining/mathematica/geometry/solids/38525.txt ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.049 & 0.68 & 0.071 \\
5
+ 0.22 & 0.392 & 0.064 \\
6
+ 0.242 & 0.774 & 0.624 \\
7
+ 0.759 & 0.879 & 0.831 \\
8
+ 0.828 & 0.265 & 0.416 \\
9
+ 0.971 & 0.884 & 0.12 \\
10
+ \end{array}
11
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
12
+ Answer:
13
+ Volume: $0.12$
14
+ Surface Area: $1.62$
15
+ Solid Angle: $0.93$
pretraining/mathematica/geometry/solids/40646.txt ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.669 & 0.019 & 0.311 \\
5
+ 0.004 & 0.155 & 0.551 \\
6
+ 0.179 & 0.239 & 0.13 \\
7
+ 0.728 & 0.916 & 0.167 \\
8
+ 0.845 & 0.745 & 0.979 \\
9
+ 0.277 & 0.974 & 0.557 \\
10
+ 0.488 & 0.863 & 0.058 \\
11
+ 0.005 & 0.608 & 0.862 \\
12
+ \end{array}
13
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
14
+ Answer:
15
+ Solid Angle: $1.3$
16
+ Surface Area: $2.41$
17
+ Volume: $0.26$
pretraining/mathematica/geometry/solids/44719.txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.26 & 0.001 & 0.915 \\
5
+ 0.143 & 0.155 & 0.535 \\
6
+ 0.307 & 0.857 & 0.437 \\
7
+ 0.041 & 0.217 & 0.55 \\
8
+ 0.873 & 0.626 & 0.907 \\
9
+ 0.481 & 0.711 & 0.784 \\
10
+ 0.723 & 0.432 & 0.339 \\
11
+ 0.938 & 0.134 & 0.895 \\
12
+ 0.704 & 0.357 & 0.922 \\
13
+ \end{array}
14
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
15
+ Answer:
16
+ Surface Area: $1.64$
17
+ Solid Angle: $1.01$
18
+ Volume: $0.13$
pretraining/mathematica/geometry/solids/49716.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ Problem:
2
+ A sphere centered at $\{3.507,-3.927,4.165\}$ has radius $4.48$. Estimate the sphere's surface area and volume.
3
+ Answer:
4
+ Surface Area: $252.25$
5
+ Volume: $376.71$
pretraining/mathematica/geometry/solids/49939.txt ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.732 & 0.606 & 0.652 \\
5
+ 0.013 & 0.886 & 0.547 \\
6
+ 0.619 & 0.852 & 0.982 \\
7
+ 0.822 & 0.987 & 0.067 \\
8
+ 0.151 & 0.895 & 0.858 \\
9
+ 0.767 & 0.539 & 0.393 \\
10
+ 0.338 & 0.923 & 0.838 \\
11
+ 0.046 & 0.212 & 0.077 \\
12
+ \end{array}
13
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
14
+ Answer:
15
+ Volume: $0.16$
16
+ Solid Angle: $2.85$
17
+ Surface Area: $1.87$
pretraining/mathematica/geometry/solids/52051.txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.701 & 0.384 & 0.264 \\
5
+ 0.99 & 0.791 & 0.272 \\
6
+ 0.385 & 0.68 & 0.98 \\
7
+ 0.502 & 0.873 & 0.597 \\
8
+ 0.107 & 0.034 & 0.734 \\
9
+ 0.134 & 0.182 & 0.934 \\
10
+ 0.92 & 0.455 & 0.961 \\
11
+ 0.434 & 0.667 & 0.105 \\
12
+ 0.541 & 0.143 & 0.783 \\
13
+ \end{array}
14
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
15
+ Answer:
16
+ Volume: $0.19$
17
+ Solid Angle: $3.17$
18
+ Surface Area: $1.98$
pretraining/mathematica/geometry/solids/54129.txt ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.785 & 0.916 & 0.37 \\
5
+ 0.353 & 0.07 & 0.124 \\
6
+ 0.543 & 0. & 0.357 \\
7
+ 0.239 & 0.542 & 0.711 \\
8
+ 0.149 & 0.139 & 0.757 \\
9
+ 0.84 & 0.447 & 0.04 \\
10
+ 0.479 & 0.304 & 0.875 \\
11
+ 0.647 & 0.092 & 0.269 \\
12
+ \end{array}
13
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
14
+ Answer:
15
+ Solid Angle: $0.48$
16
+ Surface Area: $1.52$
17
+ Volume: $0.11$
pretraining/mathematica/geometry/solids/54821.txt ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.519 & 0.753 & 0.771 \\
5
+ 0.572 & 0.919 & 0.65 \\
6
+ 0.613 & 0.567 & 0.084 \\
7
+ 0.807 & 0.502 & 0.405 \\
8
+ 0.442 & 0.549 & 0.192 \\
9
+ 0.785 & 0.699 & 0.794 \\
10
+ 0.276 & 0.001 & 0.283 \\
11
+ \end{array}
12
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
13
+ Answer:
14
+ Volume: $0.06$
15
+ Surface Area: $0.96$
16
+ Solid Angle: $2.15$
pretraining/mathematica/geometry/solids/55706.txt ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertex coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0 & -\sqrt{\frac{1}{10} \left(5+\sqrt{5}\right)} & \sqrt{\frac{9}{4}+\frac{9}{2 \sqrt{5}}} \\
5
+ \frac{1}{2} \left(1+\sqrt{5}\right) & 0 & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
6
+ \frac{1}{4} \left(-1-\sqrt{5}\right) & -\frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} & \sqrt{\frac{9}{4}+\frac{9}{2 \sqrt{5}}} \\
7
+ \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
8
+ \frac{1}{4} \left(1+\sqrt{5}\right) & -\frac{1}{4} \sqrt{34+\frac{62}{\sqrt{5}}} & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} \\
9
+ \frac{1}{4} \left(3+\sqrt{5}\right) & -\frac{1}{4} \sqrt{26+\frac{58}{\sqrt{5}}} & -\frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\
10
+ -\frac{1}{2} & \sqrt{\frac{9}{4}+\frac{9}{2 \sqrt{5}}} & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} \\
11
+ 0 & \sqrt{\frac{5}{2}+\frac{11}{2 \sqrt{5}}} & -\frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\
12
+ -\frac{1}{2} & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} & \frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
13
+ \frac{1}{4} \left(3+\sqrt{5}\right) & -\frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
14
+ \frac{1}{4} \left(-3-\sqrt{5}\right) & \frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
15
+ \frac{1}{2} & \frac{1}{2} \sqrt{5+2 \sqrt{5}} & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
16
+ \frac{1}{4} \left(-3-\sqrt{5}\right) & -\frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
17
+ \frac{1}{4} \left(1+\sqrt{5}\right) & -\frac{1}{4} \sqrt{2-\frac{2}{\sqrt{5}}} & -\frac{3}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
18
+ \frac{1}{2} \left(-1-\sqrt{5}\right) & 0 & \frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
19
+ \frac{1}{2} & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} & -\frac{3}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
20
+ 0 & -\sqrt{\frac{5}{2}+\frac{11}{2 \sqrt{5}}} & \frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\
21
+ \frac{1}{2} & -\frac{3}{2} \sqrt{1+\frac{2}{\sqrt{5}}} & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
22
+ \frac{1}{4} \left(-3-\sqrt{5}\right) & \sqrt{\frac{13}{8}+\frac{29}{8 \sqrt{5}}} & \frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\
23
+ \frac{1}{4} \left(-1-\sqrt{5}\right) & \sqrt{\frac{17}{8}+\frac{31}{8 \sqrt{5}}} & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
24
+ \frac{1}{2} & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} & \sqrt{\frac{9}{4}+\frac{9}{2 \sqrt{5}}} \\
25
+ \frac{1}{2} \left(2+\sqrt{5}\right) & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} & -\frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\
26
+ \frac{1}{2} & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} & \frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
27
+ \frac{1}{4} \left(5+\sqrt{5}\right) & -\sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
28
+ -\frac{1}{2} & \frac{1}{2} \sqrt{5+2 \sqrt{5}} & \frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
29
+ \frac{1}{4} \left(1+\sqrt{5}\right) & \sqrt{\frac{17}{8}+\frac{31}{8 \sqrt{5}}} & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
30
+ \frac{1}{4} \left(3+\sqrt{5}\right) & -\frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
31
+ \frac{1}{2} \left(2+\sqrt{5}\right) & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} & \frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\
32
+ \frac{1}{2} & \frac{1}{2} \sqrt{5+2 \sqrt{5}} & \frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
33
+ \frac{1}{4} \left(3+\sqrt{5}\right) & \sqrt{\frac{13}{8}+\frac{29}{8 \sqrt{5}}} & \frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\
34
+ \frac{1}{2} \left(1+\sqrt{5}\right) & 0 & \frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
35
+ \frac{1}{2} \left(2+\sqrt{5}\right) & \frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} \\
36
+ \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
37
+ \frac{1}{4} \left(5+\sqrt{5}\right) & \sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} \\
38
+ \frac{1}{2} \left(1+\sqrt{5}\right) & -\sqrt{1+\frac{2}{\sqrt{5}}} & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} \\
39
+ \frac{1}{4} \left(1+\sqrt{5}\right) & -\frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} & \sqrt{\frac{9}{4}+\frac{9}{2 \sqrt{5}}} \\
40
+ \frac{1}{2} \left(2+\sqrt{5}\right) & -\frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
41
+ -\frac{1}{2} & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} & \sqrt{\frac{9}{4}+\frac{9}{2 \sqrt{5}}} \\
42
+ \frac{1}{2} \left(1+\sqrt{5}\right) & \sqrt{1+\frac{2}{\sqrt{5}}} & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
43
+ \frac{1}{2} & \sqrt{\frac{9}{4}+\frac{9}{2 \sqrt{5}}} & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} \\
44
+ \frac{1}{4} \left(-1-\sqrt{5}\right) & -\sqrt{\frac{17}{8}+\frac{31}{8 \sqrt{5}}} & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} \\
45
+ \frac{1}{2} & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
46
+ \frac{1}{4} \left(-5-\sqrt{5}\right) & \sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} \\
47
+ -\frac{1}{2} & \frac{1}{2} \sqrt{5+2 \sqrt{5}} & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
48
+ \frac{1}{\sqrt{5}-3} & -\sqrt{\frac{13}{8}+\frac{29}{8 \sqrt{5}}} & -\frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\
49
+ -\frac{1}{2} & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
50
+ -1-\frac{\sqrt{5}}{2} & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} & -\frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\
51
+ \frac{1}{4} \left(-3-\sqrt{5}\right) & \frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
52
+ \frac{1}{4} \left(-5-\sqrt{5}\right) & -\frac{1}{4} \sqrt{10+\frac{22}{\sqrt{5}}} & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
53
+ \frac{1}{4} \left(-3-\sqrt{5}\right) & -\frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
54
+ -1-\frac{\sqrt{5}}{2} & -\frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
55
+ \frac{1}{2} \left(-1-\sqrt{5}\right) & 0 & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
56
+ -\frac{1}{2} & -\frac{3}{2} \sqrt{1+\frac{2}{\sqrt{5}}} & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
57
+ \frac{1}{2} \left(-1-\sqrt{5}\right) & -\sqrt{1+\frac{2}{\sqrt{5}}} & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} \\
58
+ 0 & -\sqrt{\frac{1}{10} \left(5+\sqrt{5}\right)} & -\frac{3}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
59
+ -1-\frac{\sqrt{5}}{2} & \frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} \\
60
+ -\frac{1}{2} & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} & -\frac{3}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
61
+ \frac{1}{2} \left(-1-\sqrt{5}\right) & \sqrt{1+\frac{2}{\sqrt{5}}} & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
62
+ -1-\frac{\sqrt{5}}{2} & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} & \frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\
63
+ \frac{1}{4} \left(-1-\sqrt{5}\right) & -\frac{1}{4} \sqrt{2-\frac{2}{\sqrt{5}}} & -\frac{3}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
64
+ \end{array}
65
+ \right)$. Determine the EdgeCount.
66
+ Answer:
67
+ $120$
pretraining/mathematica/geometry/solids/58129.txt ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.211 & 0.209 & 0.1 \\
5
+ 0.341 & 0.807 & 0.219 \\
6
+ 0.905 & 0.621 & 0.772 \\
7
+ 0.962 & 0.485 & 0.553 \\
8
+ 0.738 & 0.198 & 0.243 \\
9
+ 0.017 & 0.235 & 0.765 \\
10
+ 0.887 & 0.166 & 0.595 \\
11
+ 0.91 & 0.008 & 0.273 \\
12
+ 0.597 & 0.348 & 0.791 \\
13
+ 0.645 & 0.211 & 0.713 \\
14
+ \end{array}
15
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
16
+ Answer:
17
+ Surface Area: $1.84$
18
+ Solid Angle: $1.48$
19
+ Volume: $0.17$
pretraining/mathematica/geometry/solids/60429.txt ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.178 & 0.698 & 0.609 \\
5
+ 0.837 & 0.749 & 0.909 \\
6
+ 0.503 & 0.035 & 0.029 \\
7
+ 0.356 & 0.118 & 0.011 \\
8
+ 0.581 & 0.533 & 0.097 \\
9
+ 0.554 & 0.859 & 0.062 \\
10
+ 0.925 & 0.994 & 0.467 \\
11
+ \end{array}
12
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
13
+ Answer:
14
+ Solid Angle: $1.13$
15
+ Volume: $0.12$
16
+ Surface Area: $1.6$
pretraining/mathematica/geometry/solids/6543.txt ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.547 & 0.704 & 0.114 \\
5
+ 0.668 & 0.857 & 0.448 \\
6
+ 0.404 & 0.83 & 0.8 \\
7
+ 0.284 & 0.132 & 0.153 \\
8
+ \end{array}
9
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
10
+ Answer:
11
+ Solid Angle: $0.49$
12
+ Surface Area: $0.6$
13
+ Volume: $0.01$
pretraining/mathematica/geometry/solids/67606.txt ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertex coordinates $\left(
3
+ \begin{array}{ccc}
4
+ -3.521 & 0. & -1.761 \\
5
+ -2.849 & -2.07 & 1.761 \\
6
+ -2.849 & 2.07 & 1.761 \\
7
+ -2.176 & 0. & 0.416 \\
8
+ -1.761 & -1.279 & -0.416 \\
9
+ -1.761 & 1.279 & -0.416 \\
10
+ -1.46 & -0.354 & -0.186 \\
11
+ -1.46 & 0.354 & -0.186 \\
12
+ -1.389 & -0.572 & 0.186 \\
13
+ -1.389 & 0.572 & 0.186 \\
14
+ -1.345 & 0. & 1.761 \\
15
+ -1.274 & -0.219 & 0.787 \\
16
+ -1.274 & 0.219 & 0.787 \\
17
+ -1.159 & -0.572 & -0.787 \\
18
+ -1.159 & 0.572 & -0.787 \\
19
+ -1.088 & -3.349 & -1.761 \\
20
+ -1.088 & -0.791 & -1.761 \\
21
+ -1.088 & 0.791 & -1.761 \\
22
+ -1.088 & 3.349 & -1.761 \\
23
+ -0.973 & -1.144 & 0.186 \\
24
+ -0.973 & 0. & -1.159 \\
25
+ -0.973 & 1.144 & 0.186 \\
26
+ -0.902 & -0.926 & -0.787 \\
27
+ -0.902 & 0.926 & -0.787 \\
28
+ -0.787 & -1.279 & -0.186 \\
29
+ -0.787 & -0.572 & 1.159 \\
30
+ -0.787 & 0.572 & 1.159 \\
31
+ -0.787 & 1.279 & -0.186 \\
32
+ -0.672 & -2.07 & 0.416 \\
33
+ -0.672 & 2.07 & 0.416 \\
34
+ -0.602 & -1.144 & 0.787 \\
35
+ -0.602 & 0. & -1.389 \\
36
+ -0.602 & 1.144 & 0.787 \\
37
+ -0.487 & -0.354 & 1.389 \\
38
+ -0.487 & 0.354 & 1.389 \\
39
+ -0.416 & -1.279 & 1.761 \\
40
+ -0.416 & 1.279 & 1.761 \\
41
+ -0.301 & -0.926 & -1.159 \\
42
+ -0.301 & 0.926 & -1.159 \\
43
+ -0.186 & -1.279 & 0.787 \\
44
+ -0.186 & -0.572 & -1.389 \\
45
+ -0.186 & 0.572 & -1.389 \\
46
+ -0.186 & 1.279 & 0.787 \\
47
+ -0.115 & -1.498 & -0.186 \\
48
+ -0.115 & 1.498 & -0.186 \\
49
+ 0. & 0. & -3.937 \\
50
+ 0. & 0. & 3.937 \\
51
+ 0.115 & -1.498 & 0.186 \\
52
+ 0.115 & 1.498 & 0.186 \\
53
+ 0.186 & -1.279 & -0.787 \\
54
+ 0.186 & -0.572 & 1.389 \\
55
+ 0.186 & 0.572 & 1.389 \\
56
+ 0.186 & 1.279 & -0.787 \\
57
+ 0.301 & -0.926 & 1.159 \\
58
+ 0.301 & 0.926 & 1.159 \\
59
+ 0.416 & -1.279 & -1.761 \\
60
+ 0.416 & 1.279 & -1.761 \\
61
+ 0.487 & -0.354 & -1.389 \\
62
+ 0.487 & 0.354 & -1.389 \\
63
+ 0.602 & -1.144 & -0.787 \\
64
+ 0.602 & 0. & 1.389 \\
65
+ 0.602 & 1.144 & -0.787 \\
66
+ 0.672 & -2.07 & -0.416 \\
67
+ 0.672 & 2.07 & -0.416 \\
68
+ 0.787 & -1.279 & 0.186 \\
69
+ 0.787 & -0.572 & -1.159 \\
70
+ 0.787 & 0.572 & -1.159 \\
71
+ 0.787 & 1.279 & 0.186 \\
72
+ 0.902 & -0.926 & 0.787 \\
73
+ 0.902 & 0.926 & 0.787 \\
74
+ 0.973 & -1.144 & -0.186 \\
75
+ 0.973 & 0. & 1.159 \\
76
+ 0.973 & 1.144 & -0.186 \\
77
+ 1.088 & -3.349 & 1.761 \\
78
+ 1.088 & -0.791 & 1.761 \\
79
+ 1.088 & 0.791 & 1.761 \\
80
+ 1.088 & 3.349 & 1.761 \\
81
+ 1.159 & -0.572 & 0.787 \\
82
+ 1.159 & 0.572 & 0.787 \\
83
+ 1.274 & -0.219 & -0.787 \\
84
+ 1.274 & 0.219 & -0.787 \\
85
+ 1.345 & 0. & -1.761 \\
86
+ 1.389 & -0.572 & -0.186 \\
87
+ 1.389 & 0.572 & -0.186 \\
88
+ 1.46 & -0.354 & 0.186 \\
89
+ 1.46 & 0.354 & 0.186 \\
90
+ 1.761 & -1.279 & 0.416 \\
91
+ 1.761 & 1.279 & 0.416 \\
92
+ 2.176 & 0. & -0.416 \\
93
+ 2.849 & -2.07 & -1.761 \\
94
+ 2.849 & 2.07 & -1.761 \\
95
+ 3.521 & 0. & 1.761 \\
96
+ \end{array}
97
+ \right)$. Determine the Incenter.
98
+ Answer:
99
+ $\{0.,0.,0.\}$
pretraining/mathematica/geometry/solids/69074.txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.034 & 0.715 & 0.417 \\
5
+ 0.22 & 0.157 & 0.942 \\
6
+ 0.54 & 0.185 & 0.799 \\
7
+ 0.08 & 0.314 & 0.472 \\
8
+ 0.895 & 0.611 & 0.227 \\
9
+ 0.954 & 0.634 & 0.735 \\
10
+ 0.495 & 0.035 & 0.285 \\
11
+ 0.858 & 0.821 & 0.33 \\
12
+ 0.107 & 0.796 & 0.718 \\
13
+ \end{array}
14
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
15
+ Answer:
16
+ Volume: $0.2$
17
+ Surface Area: $1.96$
18
+ Solid Angle: $1.77$
pretraining/mathematica/geometry/solids/6947.txt ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertex coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0. & 0. & 1.401 \\
5
+ 0. & 0. & -1.401 \\
6
+ 0.178 & -1.309 & 0.467 \\
7
+ 0.178 & 1.309 & 0.467 \\
8
+ 0.467 & -0.809 & -1.044 \\
9
+ 0.467 & 0.809 & -1.044 \\
10
+ 1.044 & -0.809 & 0.467 \\
11
+ 1.044 & 0.809 & 0.467 \\
12
+ -1.223 & -0.5 & 0.467 \\
13
+ -1.223 & 0.5 & 0.467 \\
14
+ 1.223 & -0.5 & -0.467 \\
15
+ 1.223 & 0.5 & -0.467 \\
16
+ -0.934 & 0. & -1.044 \\
17
+ -0.467 & -0.809 & 1.044 \\
18
+ -0.467 & 0.809 & 1.044 \\
19
+ 0.934 & 0. & 1.044 \\
20
+ -1.044 & -0.809 & -0.467 \\
21
+ -1.044 & 0.809 & -0.467 \\
22
+ -0.995 & 0. & 1.303 \\
23
+ -0.178 & -1.309 & -0.467 \\
24
+ -0.178 & 1.309 & -0.467 \\
25
+ 0.805 & 1.394 & -0.308 \\
26
+ 0.805 & -1.394 & -0.308 \\
27
+ \end{array}
28
+ \right)$. Determine the EdgeCount.
29
+ Answer:
30
+ $45.$
pretraining/mathematica/geometry/solids/69803.txt ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.695 & 0.837 & 0.07 \\
5
+ 0.983 & 0.925 & 0.296 \\
6
+ 0.626 & 0.044 & 0.873 \\
7
+ 0.649 & 0.818 & 0.815 \\
8
+ 0.57 & 0.958 & 0.036 \\
9
+ 0.477 & 0.669 & 0.189 \\
10
+ \end{array}
11
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
12
+ Answer:
13
+ Solid Angle: $3.27$
14
+ Surface Area: $1.14$
15
+ Volume: $0.06$
pretraining/mathematica/geometry/solids/69860.txt ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.443 & 0.557 & 0.302 \\
5
+ 0.33 & 0.142 & 0.882 \\
6
+ 0.434 & 0.643 & 0.784 \\
7
+ 0.439 & 0.825 & 0.299 \\
8
+ 0.468 & 0.75 & 0.891 \\
9
+ \end{array}
10
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
11
+ Answer:
12
+ Solid Angle: $0.3$
13
+ Surface Area: $0.53$
14
+ Volume: $0.$
pretraining/mathematica/geometry/solids/7050.txt ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.82 & 0.067 & 0.325 \\
5
+ 0.549 & 0.376 & 0.975 \\
6
+ 0.87 & 0.699 & 0.891 \\
7
+ 0.671 & 0.503 & 0.528 \\
8
+ \end{array}
9
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
10
+ Answer:
11
+ Solid Angle: $0.13$
12
+ Volume: $0.01$
13
+ Surface Area: $0.48$
pretraining/mathematica/geometry/solids/70762.txt ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.394 & 0.563 & 0.394 \\
5
+ 0.703 & 0.757 & 0.508 \\
6
+ 0.598 & 0.896 & 0.595 \\
7
+ 0.28 & 0.376 & 0.527 \\
8
+ 0.15 & 0.822 & 0.718 \\
9
+ 0.492 & 0.813 & 0.875 \\
10
+ 0.272 & 0.89 & 0.038 \\
11
+ 0.403 & 0.457 & 0.638 \\
12
+ 0.012 & 0.707 & 0.159 \\
13
+ 0.028 & 0.554 & 0.172 \\
14
+ \end{array}
15
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
16
+ Answer:
17
+ Surface Area: $1.09$
18
+ Solid Angle: $5.46$
19
+ Volume: $0.07$
pretraining/mathematica/geometry/solids/71187.txt ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.259 & 0.422 & 0.045 \\
5
+ 0.98 & 0.556 & 0.519 \\
6
+ 0.424 & 0.879 & 0.126 \\
7
+ 0.388 & 0.492 & 0.72 \\
8
+ 0.337 & 0.05 & 0.555 \\
9
+ \end{array}
10
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
11
+ Answer:
12
+ Volume: $0.06$
13
+ Surface Area: $1.1$
14
+ Solid Angle: $0.8$
pretraining/mathematica/geometry/solids/77069.txt ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.631 & 0.07 & 0.229 \\
5
+ 0.446 & 0.486 & 0.118 \\
6
+ 0.683 & 0.712 & 0.17 \\
7
+ 0.246 & 0.339 & 0.668 \\
8
+ 0.979 & 0.535 & 0.119 \\
9
+ 0.691 & 0.3 & 0.629 \\
10
+ \end{array}
11
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
12
+ Answer:
13
+ Solid Angle: $1.28$
14
+ Surface Area: $0.88$
15
+ Volume: $0.05$
pretraining/mathematica/geometry/solids/80224.txt ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.264 & 0.997 & 0.564 \\
5
+ 0.434 & 0.704 & 0.501 \\
6
+ 0.307 & 0.152 & 0.12 \\
7
+ 0.046 & 0.573 & 0.912 \\
8
+ 0.771 & 0.633 & 0.769 \\
9
+ \end{array}
10
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
11
+ Answer:
12
+ Solid Angle: $0.84$
13
+ Volume: $0.06$
14
+ Surface Area: $1.06$
pretraining/mathematica/geometry/solids/80512.txt ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.728 & 0.669 & 0.786 \\
5
+ 0.824 & 0.56 & 0.358 \\
6
+ 0.089 & 0.561 & 0.159 \\
7
+ 0.359 & 0.778 & 0.239 \\
8
+ 0.027 & 0.988 & 0.927 \\
9
+ 0.262 & 0.651 & 0.094 \\
10
+ 0.804 & 0.04 & 0.775 \\
11
+ 0.584 & 0.082 & 0.992 \\
12
+ \end{array}
13
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
14
+ Answer:
15
+ Surface Area: $1.96$
16
+ Volume: $0.17$
17
+ Solid Angle: $2.79$
pretraining/mathematica/geometry/solids/83016.txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.21 & 0. & 0.129 \\
5
+ 0.287 & 0.689 & 0.497 \\
6
+ 0.313 & 0.602 & 0.963 \\
7
+ 0.647 & 0.433 & 0.142 \\
8
+ 0.584 & 0.798 & 0.696 \\
9
+ 0.625 & 0.445 & 0.926 \\
10
+ 0.039 & 0.088 & 0.841 \\
11
+ 0.201 & 0.083 & 0.018 \\
12
+ 0.727 & 0.571 & 0.134 \\
13
+ \end{array}
14
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
15
+ Answer:
16
+ Volume: $0.14$
17
+ Solid Angle: $1.78$
18
+ Surface Area: $1.75$
pretraining/mathematica/geometry/solids/8404.txt ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertex coordinates $\left(
3
+ \begin{array}{ccc}
4
+ -\sqrt{\frac{2}{3}} & -\sqrt{\frac{2}{3}} & 0 \\
5
+ -\sqrt{\frac{2}{3}} & 0 & -\frac{1}{\sqrt{3}} \\
6
+ -\sqrt{\frac{2}{3}} & 0 & \frac{1}{\sqrt{3}} \\
7
+ -\sqrt{\frac{2}{3}} & \sqrt{\frac{2}{3}} & 0 \\
8
+ 0 & -\sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{3}} \\
9
+ 0 & -\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \\
10
+ 0 & 0 & -\frac{2}{\sqrt{3}} \\
11
+ 0 & 0 & \frac{2}{\sqrt{3}} \\
12
+ 0 & \sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{3}} \\
13
+ 0 & \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \\
14
+ \sqrt{\frac{2}{3}} & -\sqrt{\frac{2}{3}} & 0 \\
15
+ \sqrt{\frac{2}{3}} & 0 & -\frac{1}{\sqrt{3}} \\
16
+ \sqrt{\frac{2}{3}} & 0 & \frac{1}{\sqrt{3}} \\
17
+ \sqrt{\frac{2}{3}} & \sqrt{\frac{2}{3}} & 0 \\
18
+ \end{array}
19
+ \right)$. Determine the Volume.
20
+ Answer:
21
+ $\frac{16}{3 \sqrt{3}}$
pretraining/mathematica/geometry/solids/90245.txt ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertex coordinates $\left(
3
+ \begin{array}{ccc}
4
+ -\frac{1}{2} & -\frac{1}{2} & -1-\frac{\sqrt{5}}{2} \\
5
+ -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \left(2+\sqrt{5}\right) \\
6
+ -\frac{1}{2} & \frac{1}{2} & -1-\frac{\sqrt{5}}{2} \\
7
+ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \left(2+\sqrt{5}\right) \\
8
+ -\frac{1}{2} & -1-\frac{\sqrt{5}}{2} & -\frac{1}{2} \\
9
+ 0 & -\frac{3}{4}-\frac{13}{4 \sqrt{5}} & \frac{1}{20} \left(5+\sqrt{5}\right) \\
10
+ -\frac{1}{2} & \frac{1}{2} \left(2+\sqrt{5}\right) & -\frac{1}{2} \\
11
+ \frac{1}{4} \left(-1-\sqrt{5}\right) & 1+\frac{2}{\sqrt{5}} & \frac{1}{20} \left(15+\sqrt{5}\right) \\
12
+ 0 & \frac{1}{\sqrt{5}-3} & \frac{1}{4} \left(-5-\sqrt{5}\right) \\
13
+ -\frac{1}{2} & -\frac{1}{2}-\frac{2}{\sqrt{5}} & 1+\frac{3}{2 \sqrt{5}} \\
14
+ 0 & \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(-5-\sqrt{5}\right) \\
15
+ \frac{1}{2} & \frac{1}{2}+\frac{2}{\sqrt{5}} & 1+\frac{3}{2 \sqrt{5}} \\
16
+ \frac{1}{2} & -\frac{1}{2} & -1-\frac{\sqrt{5}}{2} \\
17
+ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \left(2+\sqrt{5}\right) \\
18
+ \frac{1}{2} & \frac{1}{2} & -1-\frac{\sqrt{5}}{2} \\
19
+ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \left(2+\sqrt{5}\right) \\
20
+ \frac{1}{2} & -1-\frac{\sqrt{5}}{2} & -\frac{1}{2} \\
21
+ \frac{1}{4} \left(1+\sqrt{5}\right) & -1-\frac{2}{\sqrt{5}} & \frac{1}{20} \left(15+\sqrt{5}\right) \\
22
+ \frac{1}{2} & \frac{1}{2} \left(2+\sqrt{5}\right) & -\frac{1}{2} \\
23
+ 0 & \frac{3}{4}+\frac{13}{4 \sqrt{5}} & \frac{1}{20} \left(5+\sqrt{5}\right) \\
24
+ \frac{1}{4} \left(-5-\sqrt{5}\right) & 0 & \frac{1}{\sqrt{5}-3} \\
25
+ \frac{1}{4} \left(-5-\sqrt{5}\right) & 0 & \frac{1}{4} \left(3+\sqrt{5}\right) \\
26
+ \frac{1}{4} \left(-1-\sqrt{5}\right) & \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{\sqrt{5}-3} \\
27
+ \frac{1}{4} \left(-1-\sqrt{5}\right) & -1-\frac{2}{\sqrt{5}} & \frac{1}{20} \left(15+\sqrt{5}\right) \\
28
+ \frac{1}{4} \left(-1-\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{\sqrt{5}-3} \\
29
+ -\frac{1}{2} & \frac{1}{2}+\frac{2}{\sqrt{5}} & 1+\frac{3}{2 \sqrt{5}} \\
30
+ \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{\sqrt{5}-3} & \frac{1}{4} \left(-1-\sqrt{5}\right) \\
31
+ \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{\sqrt{5}-3} & \frac{1}{4} \left(1+\sqrt{5}\right) \\
32
+ \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(-1-\sqrt{5}\right) \\
33
+ \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(1+\sqrt{5}\right) \\
34
+ -1-\frac{\sqrt{5}}{2} & -\frac{1}{2} & -\frac{1}{2} \\
35
+ -1-\frac{\sqrt{5}}{2} & -\frac{1}{2} & \frac{1}{2} \\
36
+ -1-\frac{\sqrt{5}}{2} & \frac{1}{2} & -\frac{1}{2} \\
37
+ -1-\frac{\sqrt{5}}{2} & \frac{1}{2} & \frac{1}{2} \\
38
+ \frac{1}{\sqrt{5}-3} & \frac{1}{4} \left(-5-\sqrt{5}\right) & 0 \\
39
+ \frac{1}{\sqrt{5}-3} & \frac{1}{4} \left(-1-\sqrt{5}\right) & \frac{1}{2} \left(-1-\sqrt{5}\right) \\
40
+ \frac{1}{\sqrt{5}-3} & \frac{1}{4} \left(-1-\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) \\
41
+ \frac{1}{\sqrt{5}-3} & \frac{1}{4} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(-1-\sqrt{5}\right) \\
42
+ \frac{1}{\sqrt{5}-3} & \frac{1}{4} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) \\
43
+ \frac{1}{\sqrt{5}-3} & \frac{1}{4} \left(5+\sqrt{5}\right) & 0 \\
44
+ \frac{1}{4} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{\sqrt{5}-3} \\
45
+ \frac{1}{2} & -\frac{1}{2}-\frac{2}{\sqrt{5}} & 1+\frac{3}{2 \sqrt{5}} \\
46
+ \frac{1}{4} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{\sqrt{5}-3} \\
47
+ \frac{1}{4} \left(1+\sqrt{5}\right) & 1+\frac{2}{\sqrt{5}} & \frac{1}{20} \left(15+\sqrt{5}\right) \\
48
+ \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{\sqrt{5}-3} & \frac{1}{4} \left(-1-\sqrt{5}\right) \\
49
+ \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{\sqrt{5}-3} & \frac{1}{4} \left(1+\sqrt{5}\right) \\
50
+ \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(-1-\sqrt{5}\right) \\
51
+ \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(1+\sqrt{5}\right) \\
52
+ \frac{1}{2} \left(2+\sqrt{5}\right) & -\frac{1}{2} & -\frac{1}{2} \\
53
+ \frac{1}{2} \left(2+\sqrt{5}\right) & -\frac{1}{2} & \frac{1}{2} \\
54
+ \frac{1}{2} \left(2+\sqrt{5}\right) & \frac{1}{2} & -\frac{1}{2} \\
55
+ \frac{1}{2} \left(2+\sqrt{5}\right) & \frac{1}{2} & \frac{1}{2} \\
56
+ \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(-5-\sqrt{5}\right) & 0 \\
57
+ \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(-1-\sqrt{5}\right) & \frac{1}{2} \left(-1-\sqrt{5}\right) \\
58
+ \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(-1-\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) \\
59
+ \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(-1-\sqrt{5}\right) \\
60
+ \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) \\
61
+ \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(5+\sqrt{5}\right) & 0 \\
62
+ \frac{1}{4} \left(5+\sqrt{5}\right) & 0 & \frac{1}{\sqrt{5}-3} \\
63
+ \frac{1}{4} \left(5+\sqrt{5}\right) & 0 & \frac{1}{4} \left(3+\sqrt{5}\right) \\
64
+ \end{array}
65
+ \right)$. Determine the Volume.
66
+ Answer:
67
+ $20+\frac{29 \sqrt{5}}{3}$
pretraining/mathematica/geometry/solids/90387.txt ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.465 & 0.274 & 0.655 \\
5
+ 0.202 & 0.106 & 0.067 \\
6
+ 0.763 & 0.37 & 0.308 \\
7
+ 0.346 & 0.166 & 0.476 \\
8
+ \end{array}
9
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
10
+ Answer:
11
+ Solid Angle: $0.11$
12
+ Surface Area: $0.33$
13
+ Volume: $0.$
pretraining/mathematica/geometry/solids/93420.txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.882 & 0.754 & 0.5 \\
5
+ 0.768 & 0.267 & 0.612 \\
6
+ 0.087 & 0.091 & 0.477 \\
7
+ 0.106 & 0.031 & 0.624 \\
8
+ 0.754 & 0.435 & 0.274 \\
9
+ 0.187 & 0.088 & 0.13 \\
10
+ 0.127 & 0.995 & 0.348 \\
11
+ 0.199 & 0.001 & 0.781 \\
12
+ 0.691 & 0.011 & 0.157 \\
13
+ \end{array}
14
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
15
+ Answer:
16
+ Surface Area: $1.94$
17
+ Volume: $0.17$
18
+ Solid Angle: $0.93$
pretraining/mathematica/geometry/solids/94880.txt ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.443 & 0.18 & 0.776 \\
5
+ 0.053 & 0.558 & 0.483 \\
6
+ 0.418 & 0.48 & 0.881 \\
7
+ 0.934 & 0.102 & 0.723 \\
8
+ 0.952 & 0.53 & 0.939 \\
9
+ 0.265 & 0.902 & 0.744 \\
10
+ 0.783 & 0.768 & 0.971 \\
11
+ 0.59 & 0.987 & 0.832 \\
12
+ \end{array}
13
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
14
+ Answer:
15
+ Volume: $0.06$
16
+ Solid Angle: $1.86$
17
+ Surface Area: $1.29$
pretraining/mathematica/geometry/solids/96125.txt ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.97 & 0.094 & 0.294 \\
5
+ 0.34 & 0.297 & 0.646 \\
6
+ 0.413 & 0.636 & 0.758 \\
7
+ 0.749 & 0.143 & 0.522 \\
8
+ 0.593 & 0.068 & 0.201 \\
9
+ 0.885 & 0.129 & 0.159 \\
10
+ 0.379 & 0.391 & 0.506 \\
11
+ \end{array}
12
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
13
+ Answer:
14
+ Surface Area: $0.62$
15
+ Solid Angle: $0.83$
16
+ Volume: $0.03$
pretraining/mathematica/geometry/solids/97386.txt ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ A polyhedron has vertices with the coordinates $\left(
3
+ \begin{array}{ccc}
4
+ 0.271 & 0.005 & 0.912 \\
5
+ 0.119 & 0.296 & 0.018 \\
6
+ 0.298 & 0.942 & 0.372 \\
7
+ 0.447 & 0.151 & 0.495 \\
8
+ 0.767 & 0.183 & 0.932 \\
9
+ \end{array}
10
+ \right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
11
+ Answer:
12
+ Surface Area: $1.29$
13
+ Volume: $0.06$
14
+ Solid Angle: $0.72$
pretraining/mathematica/number_theory/relatively_prime/10562.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Problem:
2
+ Are the following numbers relatively prime (coprime)? $\{-862,-749\}$.
3
+ Answer:
4
+ $\text{True}$
pretraining/mathematica/number_theory/relatively_prime/12944.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Problem:
2
+ Are the following numbers relatively prime (coprime)? $\{-338,981\}$.
3
+ Answer:
4
+ $\text{True}$
pretraining/mathematica/number_theory/relatively_prime/14118.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Problem:
2
+ Are the following numbers relatively prime (coprime)? $\{-423,29,54\}$.
3
+ Answer:
4
+ $\text{False}$
pretraining/mathematica/number_theory/relatively_prime/14590.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Problem:
2
+ Are the following numbers relatively prime (coprime)? $\{673,760,-304\}$.
3
+ Answer:
4
+ $\text{False}$
pretraining/mathematica/number_theory/relatively_prime/14889.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Problem:
2
+ Are the following numbers relatively prime (coprime)? $\{-113,100\}$.
3
+ Answer:
4
+ $\text{True}$
pretraining/mathematica/number_theory/relatively_prime/17101.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Problem:
2
+ Are the following numbers relatively prime (coprime)? $\{334,988\}$.
3
+ Answer:
4
+ $\text{False}$
pretraining/mathematica/number_theory/relatively_prime/18194.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Problem:
2
+ Are the following numbers relatively prime (coprime)? $\{30,393\}$.
3
+ Answer:
4
+ $\text{False}$
pretraining/mathematica/number_theory/relatively_prime/20569.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Problem:
2
+ Are the following numbers relatively prime (coprime)? $\{649,675\}$.
3
+ Answer:
4
+ $\text{True}$
pretraining/mathematica/number_theory/relatively_prime/22099.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Problem:
2
+ Are the following numbers relatively prime (coprime)? $\{-750,253,-265\}$.
3
+ Answer:
4
+ $\text{False}$
pretraining/mathematica/number_theory/relatively_prime/24439.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Problem:
2
+ Are the following numbers relatively prime (coprime)? $\{571,-704\}$.
3
+ Answer:
4
+ $\text{True}$