Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- pretraining/mathematica/geometry/solids/10221.txt +15 -0
- pretraining/mathematica/geometry/solids/12353.txt +19 -0
- pretraining/mathematica/geometry/solids/12990.txt +127 -0
- pretraining/mathematica/geometry/solids/15739.txt +19 -0
- pretraining/mathematica/geometry/solids/17878.txt +19 -0
- pretraining/mathematica/geometry/solids/19290.txt +19 -0
- pretraining/mathematica/geometry/solids/25680.txt +39 -0
- pretraining/mathematica/geometry/solids/32216.txt +13 -0
- pretraining/mathematica/geometry/solids/37709.txt +18 -0
- pretraining/mathematica/geometry/solids/38525.txt +15 -0
- pretraining/mathematica/geometry/solids/40646.txt +17 -0
- pretraining/mathematica/geometry/solids/44719.txt +18 -0
- pretraining/mathematica/geometry/solids/49716.txt +5 -0
- pretraining/mathematica/geometry/solids/49939.txt +17 -0
- pretraining/mathematica/geometry/solids/52051.txt +18 -0
- pretraining/mathematica/geometry/solids/54129.txt +17 -0
- pretraining/mathematica/geometry/solids/54821.txt +16 -0
- pretraining/mathematica/geometry/solids/55706.txt +67 -0
- pretraining/mathematica/geometry/solids/58129.txt +19 -0
- pretraining/mathematica/geometry/solids/60429.txt +16 -0
- pretraining/mathematica/geometry/solids/6543.txt +13 -0
- pretraining/mathematica/geometry/solids/67606.txt +99 -0
- pretraining/mathematica/geometry/solids/69074.txt +18 -0
- pretraining/mathematica/geometry/solids/6947.txt +30 -0
- pretraining/mathematica/geometry/solids/69803.txt +15 -0
- pretraining/mathematica/geometry/solids/69860.txt +14 -0
- pretraining/mathematica/geometry/solids/7050.txt +13 -0
- pretraining/mathematica/geometry/solids/70762.txt +19 -0
- pretraining/mathematica/geometry/solids/71187.txt +14 -0
- pretraining/mathematica/geometry/solids/77069.txt +15 -0
- pretraining/mathematica/geometry/solids/80224.txt +14 -0
- pretraining/mathematica/geometry/solids/80512.txt +17 -0
- pretraining/mathematica/geometry/solids/83016.txt +18 -0
- pretraining/mathematica/geometry/solids/8404.txt +21 -0
- pretraining/mathematica/geometry/solids/90245.txt +67 -0
- pretraining/mathematica/geometry/solids/90387.txt +13 -0
- pretraining/mathematica/geometry/solids/93420.txt +18 -0
- pretraining/mathematica/geometry/solids/94880.txt +17 -0
- pretraining/mathematica/geometry/solids/96125.txt +16 -0
- pretraining/mathematica/geometry/solids/97386.txt +14 -0
- pretraining/mathematica/number_theory/relatively_prime/10562.txt +4 -0
- pretraining/mathematica/number_theory/relatively_prime/12944.txt +4 -0
- pretraining/mathematica/number_theory/relatively_prime/14118.txt +4 -0
- pretraining/mathematica/number_theory/relatively_prime/14590.txt +4 -0
- pretraining/mathematica/number_theory/relatively_prime/14889.txt +4 -0
- pretraining/mathematica/number_theory/relatively_prime/17101.txt +4 -0
- pretraining/mathematica/number_theory/relatively_prime/18194.txt +4 -0
- pretraining/mathematica/number_theory/relatively_prime/20569.txt +4 -0
- pretraining/mathematica/number_theory/relatively_prime/22099.txt +4 -0
- pretraining/mathematica/number_theory/relatively_prime/24439.txt +4 -0
pretraining/mathematica/geometry/solids/10221.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0. & 0.819 & 0.478 \\
|
| 5 |
+
0.732 & 0.084 & 0.601 \\
|
| 6 |
+
0.903 & 0.188 & 0.201 \\
|
| 7 |
+
0.006 & 0.413 & 0.913 \\
|
| 8 |
+
0.414 & 0.078 & 0.368 \\
|
| 9 |
+
0.691 & 0.881 & 0.124 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Solid Angle: $0.65$
|
| 14 |
+
Volume: $0.1$
|
| 15 |
+
Surface Area: $1.72$
|
pretraining/mathematica/geometry/solids/12353.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.517 & 0.549 & 0.95 \\
|
| 5 |
+
0.202 & 0.296 & 0.582 \\
|
| 6 |
+
0.893 & 0.414 & 0.164 \\
|
| 7 |
+
0.916 & 0.174 & 0.774 \\
|
| 8 |
+
0.198 & 0.085 & 0.945 \\
|
| 9 |
+
0.113 & 0.634 & 0.241 \\
|
| 10 |
+
0.848 & 0.244 & 0.006 \\
|
| 11 |
+
0.49 & 0.986 & 0.435 \\
|
| 12 |
+
0.623 & 0.705 & 0.685 \\
|
| 13 |
+
0.924 & 0.573 & 0.435 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Solid Angle: $2.38$
|
| 18 |
+
Surface Area: $2.11$
|
| 19 |
+
Volume: $0.21$
|
pretraining/mathematica/geometry/solids/12990.txt
ADDED
|
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
-\frac{1}{10} \sqrt{\frac{1}{2} \left(25-11 \sqrt{5}\right)} & \frac{1}{4} \left(-3-\sqrt{5}\right) & \sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
|
| 5 |
+
-\frac{1}{10} \sqrt{\frac{1}{2} \left(25-11 \sqrt{5}\right)} & \frac{1}{4} \left(3+\sqrt{5}\right) & \sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
|
| 6 |
+
\sqrt{\frac{1}{8}-\frac{11}{40 \sqrt{5}}} & \frac{1}{4} \left(-3-\sqrt{5}\right) & -\sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
|
| 7 |
+
\sqrt{\frac{1}{8}-\frac{11}{40 \sqrt{5}}} & \frac{1}{4} \left(3+\sqrt{5}\right) & -\sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
|
| 8 |
+
-\frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} & \frac{1}{4} \left(-1-\sqrt{5}\right) & \sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} \\
|
| 9 |
+
-\frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} & \frac{1}{4} \left(1+\sqrt{5}\right) & \sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} \\
|
| 10 |
+
\sqrt{\frac{1}{8}-\frac{1}{8 \sqrt{5}}} & \frac{1}{4} \left(-1-\sqrt{5}\right) & -\sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} \\
|
| 11 |
+
\sqrt{\frac{1}{8}-\frac{1}{8 \sqrt{5}}} & \frac{1}{4} \left(1+\sqrt{5}\right) & -\sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} \\
|
| 12 |
+
-\frac{1}{10} \sqrt{5-2 \sqrt{5}} & -\frac{1}{2}-\frac{2}{\sqrt{5}} & \sqrt{\frac{1}{40}-\frac{1}{40 \sqrt{5}}} \\
|
| 13 |
+
-\frac{1}{10} \sqrt{5-2 \sqrt{5}} & \frac{1}{2}+\frac{2}{\sqrt{5}} & \sqrt{\frac{1}{40}-\frac{1}{40 \sqrt{5}}} \\
|
| 14 |
+
\frac{1}{10} \sqrt{5-2 \sqrt{5}} & -\frac{1}{2}-\frac{2}{\sqrt{5}} & -\frac{1}{10} \sqrt{\frac{1}{2} \left(5-\sqrt{5}\right)} \\
|
| 15 |
+
\frac{1}{10} \sqrt{5-2 \sqrt{5}} & \frac{1}{2}+\frac{2}{\sqrt{5}} & -\frac{1}{10} \sqrt{\frac{1}{2} \left(5-\sqrt{5}\right)} \\
|
| 16 |
+
-\frac{1}{5} \sqrt{\frac{1}{2} \left(5-\sqrt{5}\right)} & \frac{1}{10} \left(-5-3 \sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(65+19 \sqrt{5}\right)} \\
|
| 17 |
+
-\frac{1}{5} \sqrt{\frac{1}{2} \left(5-\sqrt{5}\right)} & \frac{1}{10} \left(5+3 \sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(65+19 \sqrt{5}\right)} \\
|
| 18 |
+
\sqrt{\frac{1}{10}-\frac{1}{10 \sqrt{5}}} & \frac{1}{10} \left(-5-3 \sqrt{5}\right) & \sqrt{\frac{13}{40}+\frac{19}{40 \sqrt{5}}} \\
|
| 19 |
+
\sqrt{\frac{1}{10}-\frac{1}{10 \sqrt{5}}} & \frac{1}{10} \left(5+3 \sqrt{5}\right) & \sqrt{\frac{13}{40}+\frac{19}{40 \sqrt{5}}} \\
|
| 20 |
+
-\frac{1}{10} \sqrt{\frac{1}{2} \left(5-\sqrt{5}\right)} & \frac{1}{20} \left(-5-\sqrt{5}\right) & -\sqrt{\frac{41}{40}+\frac{71}{40 \sqrt{5}}} \\
|
| 21 |
+
-\frac{1}{10} \sqrt{\frac{1}{2} \left(5-\sqrt{5}\right)} & -\frac{3}{20} \left(5+\sqrt{5}\right) & \sqrt{\frac{17}{40}+\frac{31}{40 \sqrt{5}}} \\
|
| 22 |
+
-\frac{1}{10} \sqrt{\frac{1}{2} \left(5-\sqrt{5}\right)} & \frac{1}{20} \left(5+\sqrt{5}\right) & -\sqrt{\frac{41}{40}+\frac{71}{40 \sqrt{5}}} \\
|
| 23 |
+
-\frac{1}{10} \sqrt{\frac{1}{2} \left(5-\sqrt{5}\right)} & \frac{3}{20} \left(5+\sqrt{5}\right) & \sqrt{\frac{17}{40}+\frac{31}{40 \sqrt{5}}} \\
|
| 24 |
+
\sqrt{\frac{1}{40}-\frac{1}{40 \sqrt{5}}} & \frac{1}{20} \left(-5-\sqrt{5}\right) & \sqrt{\frac{41}{40}+\frac{71}{40 \sqrt{5}}} \\
|
| 25 |
+
\sqrt{\frac{1}{40}-\frac{1}{40 \sqrt{5}}} & -\frac{3}{20} \left(5+\sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(85+31 \sqrt{5}\right)} \\
|
| 26 |
+
\sqrt{\frac{1}{40}-\frac{1}{40 \sqrt{5}}} & \frac{1}{20} \left(5+\sqrt{5}\right) & \sqrt{\frac{41}{40}+\frac{71}{40 \sqrt{5}}} \\
|
| 27 |
+
\sqrt{\frac{1}{40}-\frac{1}{40 \sqrt{5}}} & \frac{3}{20} \left(5+\sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(85+31 \sqrt{5}\right)} \\
|
| 28 |
+
-\frac{1}{10} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{20} \left(-5-3 \sqrt{5}\right) & \sqrt{\frac{37}{40}+\frac{59}{40 \sqrt{5}}} \\
|
| 29 |
+
-\frac{1}{10} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{20} \left(5+3 \sqrt{5}\right) & \sqrt{\frac{37}{40}+\frac{59}{40 \sqrt{5}}} \\
|
| 30 |
+
\frac{1}{10} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{20} \left(-5-3 \sqrt{5}\right) & -\sqrt{\frac{37}{40}+\frac{59}{40 \sqrt{5}}} \\
|
| 31 |
+
\frac{1}{10} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{20} \left(5+3 \sqrt{5}\right) & -\sqrt{\frac{37}{40}+\frac{59}{40 \sqrt{5}}} \\
|
| 32 |
+
-\frac{1}{10} \sqrt{5+2 \sqrt{5}} & -\frac{1}{2 \sqrt{5}} & \sqrt{\frac{41}{40}+\frac{71}{40 \sqrt{5}}} \\
|
| 33 |
+
-\frac{1}{10} \sqrt{5+2 \sqrt{5}} & \frac{1}{2 \sqrt{5}} & \sqrt{\frac{41}{40}+\frac{71}{40 \sqrt{5}}} \\
|
| 34 |
+
\frac{1}{10} \sqrt{5+2 \sqrt{5}} & -\frac{1}{2 \sqrt{5}} & -\sqrt{\frac{41}{40}+\frac{71}{40 \sqrt{5}}} \\
|
| 35 |
+
\frac{1}{10} \sqrt{5+2 \sqrt{5}} & \frac{1}{2 \sqrt{5}} & -\sqrt{\frac{41}{40}+\frac{71}{40 \sqrt{5}}} \\
|
| 36 |
+
-\frac{1}{5} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & 0 & -\sqrt{\frac{41}{40}+\frac{71}{40 \sqrt{5}}} \\
|
| 37 |
+
\frac{1}{5} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & 0 & \sqrt{\frac{41}{40}+\frac{71}{40 \sqrt{5}}} \\
|
| 38 |
+
-\frac{1}{10} \sqrt{25+2 \sqrt{5}} & -\frac{1}{2}-\frac{1}{\sqrt{5}} & \sqrt{\frac{17}{40}+\frac{31}{40 \sqrt{5}}} \\
|
| 39 |
+
-\frac{1}{10} \sqrt{25+2 \sqrt{5}} & \frac{1}{2}+\frac{1}{\sqrt{5}} & \sqrt{\frac{17}{40}+\frac{31}{40 \sqrt{5}}} \\
|
| 40 |
+
\frac{1}{10} \sqrt{25+2 \sqrt{5}} & -\frac{1}{2}-\frac{1}{\sqrt{5}} & -\frac{1}{10} \sqrt{\frac{1}{2} \left(85+31 \sqrt{5}\right)} \\
|
| 41 |
+
\frac{1}{10} \sqrt{25+2 \sqrt{5}} & \frac{1}{2}+\frac{1}{\sqrt{5}} & -\frac{1}{10} \sqrt{\frac{1}{2} \left(85+31 \sqrt{5}\right)} \\
|
| 42 |
+
-\frac{1}{2} \sqrt{\frac{1}{10} \left(5+\sqrt{5}\right)} & \frac{1}{4} \left(-3-\sqrt{5}\right) & \sqrt{\frac{1}{8}-\frac{1}{8 \sqrt{5}}} \\
|
| 43 |
+
-\frac{1}{2} \sqrt{\frac{1}{10} \left(5+\sqrt{5}\right)} & \frac{1}{4} \left(3+\sqrt{5}\right) & \sqrt{\frac{1}{8}-\frac{1}{8 \sqrt{5}}} \\
|
| 44 |
+
\sqrt{\frac{1}{8}+\frac{1}{8 \sqrt{5}}} & \frac{1}{4} \left(-3-\sqrt{5}\right) & -\frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} \\
|
| 45 |
+
\sqrt{\frac{1}{8}+\frac{1}{8 \sqrt{5}}} & \frac{1}{4} \left(3+\sqrt{5}\right) & -\frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} \\
|
| 46 |
+
-\sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} & \frac{1}{20} \left(-5-\sqrt{5}\right) & -\sqrt{\frac{37}{40}+\frac{59}{40 \sqrt{5}}} \\
|
| 47 |
+
-\sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} & -\frac{3}{20} \left(5+\sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(65+19 \sqrt{5}\right)} \\
|
| 48 |
+
-\sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} & \frac{1}{20} \left(5+\sqrt{5}\right) & -\sqrt{\frac{37}{40}+\frac{59}{40 \sqrt{5}}} \\
|
| 49 |
+
-\sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} & \frac{3}{20} \left(5+\sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(65+19 \sqrt{5}\right)} \\
|
| 50 |
+
\sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} & \frac{1}{20} \left(-5-\sqrt{5}\right) & \sqrt{\frac{37}{40}+\frac{59}{40 \sqrt{5}}} \\
|
| 51 |
+
\sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} & -\frac{3}{20} \left(5+\sqrt{5}\right) & \sqrt{\frac{13}{40}+\frac{19}{40 \sqrt{5}}} \\
|
| 52 |
+
\sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} & \frac{1}{20} \left(5+\sqrt{5}\right) & \sqrt{\frac{37}{40}+\frac{59}{40 \sqrt{5}}} \\
|
| 53 |
+
\sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} & \frac{3}{20} \left(5+\sqrt{5}\right) & \sqrt{\frac{13}{40}+\frac{19}{40 \sqrt{5}}} \\
|
| 54 |
+
-\frac{1}{5} \sqrt{5+2 \sqrt{5}} & 0 & \sqrt{\frac{37}{40}+\frac{59}{40 \sqrt{5}}} \\
|
| 55 |
+
\frac{1}{5} \sqrt{5+2 \sqrt{5}} & 0 & -\sqrt{\frac{37}{40}+\frac{59}{40 \sqrt{5}}} \\
|
| 56 |
+
-\frac{1}{5} \sqrt{2 \left(5+\sqrt{5}\right)} & \frac{1}{10} \left(-5-3 \sqrt{5}\right) & \sqrt{\frac{1}{40}-\frac{1}{40 \sqrt{5}}} \\
|
| 57 |
+
-\frac{1}{5} \sqrt{2 \left(5+\sqrt{5}\right)} & \frac{1}{10} \left(5+3 \sqrt{5}\right) & \sqrt{\frac{1}{40}-\frac{1}{40 \sqrt{5}}} \\
|
| 58 |
+
\frac{1}{5} \sqrt{2 \left(5+\sqrt{5}\right)} & \frac{1}{10} \left(-5-3 \sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(5-\sqrt{5}\right)} \\
|
| 59 |
+
\frac{1}{5} \sqrt{2 \left(5+\sqrt{5}\right)} & \frac{1}{10} \left(5+3 \sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(5-\sqrt{5}\right)} \\
|
| 60 |
+
-\frac{1}{10} \sqrt{\frac{1}{2} \left(65+19 \sqrt{5}\right)} & -\frac{3}{20} \left(5+\sqrt{5}\right) & \sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
|
| 61 |
+
-\frac{1}{10} \sqrt{\frac{1}{2} \left(65+19 \sqrt{5}\right)} & \frac{1}{4} \left(-1-\sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(85+31 \sqrt{5}\right)} \\
|
| 62 |
+
-\frac{1}{10} \sqrt{\frac{1}{2} \left(65+19 \sqrt{5}\right)} & \frac{1}{4} \left(1+\sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(85+31 \sqrt{5}\right)} \\
|
| 63 |
+
-\frac{1}{10} \sqrt{\frac{1}{2} \left(65+19 \sqrt{5}\right)} & \frac{3}{20} \left(5+\sqrt{5}\right) & \sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
|
| 64 |
+
\sqrt{\frac{13}{40}+\frac{19}{40 \sqrt{5}}} & -\frac{3}{20} \left(5+\sqrt{5}\right) & -\sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
|
| 65 |
+
\sqrt{\frac{13}{40}+\frac{19}{40 \sqrt{5}}} & \frac{1}{4} \left(-1-\sqrt{5}\right) & \sqrt{\frac{17}{40}+\frac{31}{40 \sqrt{5}}} \\
|
| 66 |
+
\sqrt{\frac{13}{40}+\frac{19}{40 \sqrt{5}}} & \frac{1}{4} \left(1+\sqrt{5}\right) & \sqrt{\frac{17}{40}+\frac{31}{40 \sqrt{5}}} \\
|
| 67 |
+
\sqrt{\frac{13}{40}+\frac{19}{40 \sqrt{5}}} & \frac{3}{20} \left(5+\sqrt{5}\right) & -\sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
|
| 68 |
+
-\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} & -\frac{1}{2} & -\sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} \\
|
| 69 |
+
-\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} & \frac{1}{2} & -\sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} \\
|
| 70 |
+
\sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} & -\frac{1}{2} & \sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} \\
|
| 71 |
+
\sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} & \frac{1}{2} & \sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} \\
|
| 72 |
+
-\sqrt{\frac{1}{10} \left(5+\sqrt{5}\right)} & 0 & \sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} \\
|
| 73 |
+
\sqrt{\frac{1}{10} \left(5+\sqrt{5}\right)} & 0 & -\sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} \\
|
| 74 |
+
-\frac{1}{10} \sqrt{\frac{65}{2}+\frac{29 \sqrt{5}}{2}} & \frac{1}{20} \left(-5-7 \sqrt{5}\right) & -\sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
|
| 75 |
+
-\frac{1}{10} \sqrt{\frac{65}{2}+\frac{29 \sqrt{5}}{2}} & \frac{1}{20} \left(5+7 \sqrt{5}\right) & -\sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
|
| 76 |
+
\sqrt{\frac{13}{40}+\frac{29}{40 \sqrt{5}}} & \frac{1}{20} \left(-5-7 \sqrt{5}\right) & \sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
|
| 77 |
+
\sqrt{\frac{13}{40}+\frac{29}{40 \sqrt{5}}} & \frac{1}{20} \left(5+7 \sqrt{5}\right) & \sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
|
| 78 |
+
-\frac{1}{10} \sqrt{\frac{1}{2} \left(85+31 \sqrt{5}\right)} & -\frac{3}{20} \left(5+\sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(5-\sqrt{5}\right)} \\
|
| 79 |
+
-\frac{1}{10} \sqrt{\frac{1}{2} \left(85+31 \sqrt{5}\right)} & \frac{1}{4} \left(-1-\sqrt{5}\right) & \sqrt{\frac{13}{40}+\frac{19}{40 \sqrt{5}}} \\
|
| 80 |
+
-\frac{1}{10} \sqrt{\frac{1}{2} \left(85+31 \sqrt{5}\right)} & \frac{1}{4} \left(1+\sqrt{5}\right) & \sqrt{\frac{13}{40}+\frac{19}{40 \sqrt{5}}} \\
|
| 81 |
+
-\frac{1}{10} \sqrt{\frac{1}{2} \left(85+31 \sqrt{5}\right)} & \frac{3}{20} \left(5+\sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(5-\sqrt{5}\right)} \\
|
| 82 |
+
\sqrt{\frac{17}{40}+\frac{31}{40 \sqrt{5}}} & -\frac{3}{20} \left(5+\sqrt{5}\right) & \sqrt{\frac{1}{40}-\frac{1}{40 \sqrt{5}}} \\
|
| 83 |
+
\sqrt{\frac{17}{40}+\frac{31}{40 \sqrt{5}}} & \frac{1}{4} \left(-1-\sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(65+19 \sqrt{5}\right)} \\
|
| 84 |
+
\sqrt{\frac{17}{40}+\frac{31}{40 \sqrt{5}}} & \frac{1}{4} \left(1+\sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(65+19 \sqrt{5}\right)} \\
|
| 85 |
+
\sqrt{\frac{17}{40}+\frac{31}{40 \sqrt{5}}} & \frac{3}{20} \left(5+\sqrt{5}\right) & \sqrt{\frac{1}{40}-\frac{1}{40 \sqrt{5}}} \\
|
| 86 |
+
-\sqrt{\frac{5}{8}+\frac{41}{40 \sqrt{5}}} & \frac{1}{20} \left(-5-3 \sqrt{5}\right) & \sqrt{\frac{13}{40}+\frac{19}{40 \sqrt{5}}} \\
|
| 87 |
+
-\sqrt{\frac{5}{8}+\frac{41}{40 \sqrt{5}}} & \frac{1}{20} \left(5+3 \sqrt{5}\right) & \sqrt{\frac{13}{40}+\frac{19}{40 \sqrt{5}}} \\
|
| 88 |
+
\sqrt{\frac{5}{8}+\frac{41}{40 \sqrt{5}}} & \frac{1}{20} \left(-5-3 \sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(65+19 \sqrt{5}\right)} \\
|
| 89 |
+
\sqrt{\frac{5}{8}+\frac{41}{40 \sqrt{5}}} & \frac{1}{20} \left(5+3 \sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(65+19 \sqrt{5}\right)} \\
|
| 90 |
+
-\frac{1}{5} \sqrt{\frac{25}{2}+\frac{11 \sqrt{5}}{2}} & -\frac{1}{\sqrt{5}} & -\frac{1}{10} \sqrt{\frac{1}{2} \left(85+31 \sqrt{5}\right)} \\
|
| 91 |
+
-\frac{1}{5} \sqrt{\frac{25}{2}+\frac{11 \sqrt{5}}{2}} & \frac{1}{\sqrt{5}} & -\frac{1}{10} \sqrt{\frac{1}{2} \left(85+31 \sqrt{5}\right)} \\
|
| 92 |
+
\sqrt{\frac{1}{2}+\frac{11}{10 \sqrt{5}}} & -\frac{1}{\sqrt{5}} & \sqrt{\frac{17}{40}+\frac{31}{40 \sqrt{5}}} \\
|
| 93 |
+
\sqrt{\frac{1}{2}+\frac{11}{10 \sqrt{5}}} & \frac{1}{\sqrt{5}} & \sqrt{\frac{17}{40}+\frac{31}{40 \sqrt{5}}} \\
|
| 94 |
+
-\frac{1}{10} \sqrt{65+22 \sqrt{5}} & -\frac{1}{2 \sqrt{5}} & \sqrt{\frac{17}{40}+\frac{31}{40 \sqrt{5}}} \\
|
| 95 |
+
-\frac{1}{10} \sqrt{65+22 \sqrt{5}} & \frac{1}{2 \sqrt{5}} & \sqrt{\frac{17}{40}+\frac{31}{40 \sqrt{5}}} \\
|
| 96 |
+
\frac{1}{10} \sqrt{65+22 \sqrt{5}} & -\frac{1}{2 \sqrt{5}} & -\frac{1}{10} \sqrt{\frac{1}{2} \left(85+31 \sqrt{5}\right)} \\
|
| 97 |
+
\frac{1}{10} \sqrt{65+22 \sqrt{5}} & \frac{1}{2 \sqrt{5}} & -\frac{1}{10} \sqrt{\frac{1}{2} \left(85+31 \sqrt{5}\right)} \\
|
| 98 |
+
-\sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} & \frac{1}{4} \left(-1-\sqrt{5}\right) & -\frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} \\
|
| 99 |
+
-\sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} & \frac{1}{4} \left(1+\sqrt{5}\right) & -\frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} \\
|
| 100 |
+
\sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} & \frac{1}{4} \left(-1-\sqrt{5}\right) & \sqrt{\frac{1}{8}-\frac{1}{8 \sqrt{5}}} \\
|
| 101 |
+
\sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} & \frac{1}{4} \left(1+\sqrt{5}\right) & \sqrt{\frac{1}{8}-\frac{1}{8 \sqrt{5}}} \\
|
| 102 |
+
-\sqrt{\frac{37}{40}+\frac{59}{40 \sqrt{5}}} & \frac{1}{20} \left(-5-\sqrt{5}\right) & \sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
|
| 103 |
+
-\sqrt{\frac{37}{40}+\frac{59}{40 \sqrt{5}}} & \frac{1}{20} \left(5+\sqrt{5}\right) & \sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
|
| 104 |
+
\sqrt{\frac{37}{40}+\frac{59}{40 \sqrt{5}}} & \frac{1}{20} \left(-5-\sqrt{5}\right) & -\sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
|
| 105 |
+
\sqrt{\frac{37}{40}+\frac{59}{40 \sqrt{5}}} & \frac{1}{20} \left(5+\sqrt{5}\right) & -\sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
|
| 106 |
+
-\sqrt{\frac{29}{40}+\frac{61}{40 \sqrt{5}}} & \frac{1}{20} \left(5-\sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(65+19 \sqrt{5}\right)} \\
|
| 107 |
+
-\sqrt{\frac{29}{40}+\frac{61}{40 \sqrt{5}}} & \frac{1}{20} \left(\sqrt{5}-5\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(65+19 \sqrt{5}\right)} \\
|
| 108 |
+
\sqrt{\frac{29}{40}+\frac{61}{40 \sqrt{5}}} & \frac{1}{20} \left(5-\sqrt{5}\right) & \sqrt{\frac{13}{40}+\frac{19}{40 \sqrt{5}}} \\
|
| 109 |
+
\sqrt{\frac{29}{40}+\frac{61}{40 \sqrt{5}}} & \frac{1}{20} \left(\sqrt{5}-5\right) & \sqrt{\frac{13}{40}+\frac{19}{40 \sqrt{5}}} \\
|
| 110 |
+
-\frac{2}{5} \sqrt{5+2 \sqrt{5}} & -\frac{1}{\sqrt{5}} & -\sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
|
| 111 |
+
-\frac{2}{5} \sqrt{5+2 \sqrt{5}} & \frac{1}{\sqrt{5}} & -\sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
|
| 112 |
+
\frac{2}{5} \sqrt{5+2 \sqrt{5}} & -\frac{1}{\sqrt{5}} & \sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
|
| 113 |
+
\frac{2}{5} \sqrt{5+2 \sqrt{5}} & \frac{1}{\sqrt{5}} & \sqrt{\frac{1}{8}+\frac{11}{40 \sqrt{5}}} \\
|
| 114 |
+
-\sqrt{\frac{41}{40}+\frac{71}{40 \sqrt{5}}} & \frac{1}{20} \left(-5-\sqrt{5}\right) & \sqrt{\frac{1}{40}-\frac{1}{40 \sqrt{5}}} \\
|
| 115 |
+
-\sqrt{\frac{41}{40}+\frac{71}{40 \sqrt{5}}} & \frac{1}{20} \left(5+\sqrt{5}\right) & \sqrt{\frac{1}{40}-\frac{1}{40 \sqrt{5}}} \\
|
| 116 |
+
\sqrt{\frac{41}{40}+\frac{71}{40 \sqrt{5}}} & \frac{1}{20} \left(-5-\sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(5-\sqrt{5}\right)} \\
|
| 117 |
+
\sqrt{\frac{41}{40}+\frac{71}{40 \sqrt{5}}} & \frac{1}{20} \left(5+\sqrt{5}\right) & -\frac{1}{10} \sqrt{\frac{1}{2} \left(5-\sqrt{5}\right)} \\
|
| 118 |
+
-\frac{1}{10} \sqrt{85+38 \sqrt{5}} & -\frac{1}{2} & -\frac{1}{10} \sqrt{\frac{1}{2} \left(5-\sqrt{5}\right)} \\
|
| 119 |
+
-\frac{1}{10} \sqrt{85+38 \sqrt{5}} & \frac{1}{2} & -\frac{1}{10} \sqrt{\frac{1}{2} \left(5-\sqrt{5}\right)} \\
|
| 120 |
+
\frac{1}{10} \sqrt{85+38 \sqrt{5}} & -\frac{1}{2} & \sqrt{\frac{1}{40}-\frac{1}{40 \sqrt{5}}} \\
|
| 121 |
+
\frac{1}{10} \sqrt{85+38 \sqrt{5}} & \frac{1}{2} & \sqrt{\frac{1}{40}-\frac{1}{40 \sqrt{5}}} \\
|
| 122 |
+
-\sqrt{1+\frac{2}{\sqrt{5}}} & 0 & \sqrt{\frac{1}{8}-\frac{1}{8 \sqrt{5}}} \\
|
| 123 |
+
\sqrt{1+\frac{2}{\sqrt{5}}} & 0 & -\frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} \\
|
| 124 |
+
\end{array}
|
| 125 |
+
\right)$. Determine the SurfaceArea.
|
| 126 |
+
Answer:
|
| 127 |
+
$18 \sqrt{5 \left(5+2 \sqrt{5}\right)}$
|
pretraining/mathematica/geometry/solids/15739.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.735 & 0.866 & 0.968 \\
|
| 5 |
+
0.461 & 0.81 & 0.438 \\
|
| 6 |
+
0.274 & 0.939 & 0.649 \\
|
| 7 |
+
0.945 & 0.128 & 0.702 \\
|
| 8 |
+
0.225 & 0.888 & 0.708 \\
|
| 9 |
+
0.708 & 0.213 & 0.419 \\
|
| 10 |
+
0.763 & 0.802 & 0.584 \\
|
| 11 |
+
0.162 & 0.36 & 0.403 \\
|
| 12 |
+
0.849 & 0.589 & 0.329 \\
|
| 13 |
+
0.589 & 0.459 & 0.817 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Surface Area: $1.5$
|
| 18 |
+
Volume: $0.12$
|
| 19 |
+
Solid Angle: $1.12$
|
pretraining/mathematica/geometry/solids/17878.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.386 & 0.237 & 0.937 \\
|
| 5 |
+
0.76 & 0.656 & 0.182 \\
|
| 6 |
+
0.266 & 0.347 & 0.549 \\
|
| 7 |
+
0.086 & 0.525 & 0.28 \\
|
| 8 |
+
0.985 & 0.471 & 0.669 \\
|
| 9 |
+
0.762 & 0.062 & 0.663 \\
|
| 10 |
+
0.916 & 0.92 & 0.243 \\
|
| 11 |
+
0.124 & 0.644 & 0.315 \\
|
| 12 |
+
0.386 & 0.4 & 0.332 \\
|
| 13 |
+
0.613 & 0.698 & 0.506 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Surface Area: $1.52$
|
| 18 |
+
Volume: $0.11$
|
| 19 |
+
Solid Angle: $0.97$
|
pretraining/mathematica/geometry/solids/19290.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0. & 0. & 0.588 \\
|
| 5 |
+
0.425 & -0.309 & 0.263 \\
|
| 6 |
+
-0.162 & 0.5 & 0.263 \\
|
| 7 |
+
0.162 & -0.5 & -0.263 \\
|
| 8 |
+
-0.425 & 0.309 & -0.263 \\
|
| 9 |
+
0. & 0. & -0.588 \\
|
| 10 |
+
0.425 & 0.309 & 0.263 \\
|
| 11 |
+
-0.425 & -0.309 & -0.263 \\
|
| 12 |
+
-0.162 & -0.5 & 0.263 \\
|
| 13 |
+
-0.526 & 0. & 0.263 \\
|
| 14 |
+
0.526 & 0. & -0.263 \\
|
| 15 |
+
0.162 & 0.5 & -0.263 \\
|
| 16 |
+
\end{array}
|
| 17 |
+
\right)$. Determine the Incenter.
|
| 18 |
+
Answer:
|
| 19 |
+
$\{0.,0.,0.\}$
|
pretraining/mathematica/geometry/solids/25680.txt
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
-2.227 & 0. & 1.114 \\
|
| 5 |
+
-1.802 & -1.309 & -1.114 \\
|
| 6 |
+
-1.802 & 1.309 & -1.114 \\
|
| 7 |
+
-1.376 & 0. & -0.263 \\
|
| 8 |
+
-1.114 & -0.809 & 0.263 \\
|
| 9 |
+
-1.114 & 0.809 & 0.263 \\
|
| 10 |
+
-0.851 & 0. & -1.114 \\
|
| 11 |
+
-0.688 & -2.118 & 1.114 \\
|
| 12 |
+
-0.688 & -0.5 & 1.114 \\
|
| 13 |
+
-0.688 & 0.5 & 1.114 \\
|
| 14 |
+
-0.688 & 2.118 & 1.114 \\
|
| 15 |
+
-0.425 & -1.309 & -0.263 \\
|
| 16 |
+
-0.425 & 1.309 & -0.263 \\
|
| 17 |
+
-0.263 & -0.809 & -1.114 \\
|
| 18 |
+
-0.263 & 0.809 & -1.114 \\
|
| 19 |
+
0. & 0. & -2.49 \\
|
| 20 |
+
0. & 0. & 2.49 \\
|
| 21 |
+
0.263 & -0.809 & 1.114 \\
|
| 22 |
+
0.263 & 0.809 & 1.114 \\
|
| 23 |
+
0.425 & -1.309 & 0.263 \\
|
| 24 |
+
0.425 & 1.309 & 0.263 \\
|
| 25 |
+
0.688 & -2.118 & -1.114 \\
|
| 26 |
+
0.688 & -0.5 & -1.114 \\
|
| 27 |
+
0.688 & 0.5 & -1.114 \\
|
| 28 |
+
0.688 & 2.118 & -1.114 \\
|
| 29 |
+
0.851 & 0. & 1.114 \\
|
| 30 |
+
1.114 & -0.809 & -0.263 \\
|
| 31 |
+
1.114 & 0.809 & -0.263 \\
|
| 32 |
+
1.376 & 0. & 0.263 \\
|
| 33 |
+
1.802 & -1.309 & 1.114 \\
|
| 34 |
+
1.802 & 1.309 & 1.114 \\
|
| 35 |
+
2.227 & 0. & -1.114 \\
|
| 36 |
+
\end{array}
|
| 37 |
+
\right)$. Determine the EdgeCount.
|
| 38 |
+
Answer:
|
| 39 |
+
$90.$
|
pretraining/mathematica/geometry/solids/32216.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.926 & 0.271 & 0.605 \\
|
| 5 |
+
0.392 & 0.722 & 0.148 \\
|
| 6 |
+
0.605 & 0.759 & 0.257 \\
|
| 7 |
+
0.396 & 0.104 & 0.607 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Volume: $0.$
|
| 12 |
+
Surface Area: $0.55$
|
| 13 |
+
Solid Angle: $0.07$
|
pretraining/mathematica/geometry/solids/37709.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.741 & 0.726 & 0.829 \\
|
| 5 |
+
0.662 & 0.682 & 0.382 \\
|
| 6 |
+
0.606 & 0.467 & 0.182 \\
|
| 7 |
+
0.849 & 0.007 & 0.738 \\
|
| 8 |
+
0.034 & 0.999 & 0.718 \\
|
| 9 |
+
0.245 & 0.012 & 0.102 \\
|
| 10 |
+
0.509 & 0.872 & 0.826 \\
|
| 11 |
+
0.284 & 0.839 & 0.039 \\
|
| 12 |
+
0.747 & 0.353 & 0.891 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Solid Angle: $2.24$
|
| 17 |
+
Surface Area: $2.24$
|
| 18 |
+
Volume: $0.2$
|
pretraining/mathematica/geometry/solids/38525.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.049 & 0.68 & 0.071 \\
|
| 5 |
+
0.22 & 0.392 & 0.064 \\
|
| 6 |
+
0.242 & 0.774 & 0.624 \\
|
| 7 |
+
0.759 & 0.879 & 0.831 \\
|
| 8 |
+
0.828 & 0.265 & 0.416 \\
|
| 9 |
+
0.971 & 0.884 & 0.12 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Volume: $0.12$
|
| 14 |
+
Surface Area: $1.62$
|
| 15 |
+
Solid Angle: $0.93$
|
pretraining/mathematica/geometry/solids/40646.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.669 & 0.019 & 0.311 \\
|
| 5 |
+
0.004 & 0.155 & 0.551 \\
|
| 6 |
+
0.179 & 0.239 & 0.13 \\
|
| 7 |
+
0.728 & 0.916 & 0.167 \\
|
| 8 |
+
0.845 & 0.745 & 0.979 \\
|
| 9 |
+
0.277 & 0.974 & 0.557 \\
|
| 10 |
+
0.488 & 0.863 & 0.058 \\
|
| 11 |
+
0.005 & 0.608 & 0.862 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Solid Angle: $1.3$
|
| 16 |
+
Surface Area: $2.41$
|
| 17 |
+
Volume: $0.26$
|
pretraining/mathematica/geometry/solids/44719.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.26 & 0.001 & 0.915 \\
|
| 5 |
+
0.143 & 0.155 & 0.535 \\
|
| 6 |
+
0.307 & 0.857 & 0.437 \\
|
| 7 |
+
0.041 & 0.217 & 0.55 \\
|
| 8 |
+
0.873 & 0.626 & 0.907 \\
|
| 9 |
+
0.481 & 0.711 & 0.784 \\
|
| 10 |
+
0.723 & 0.432 & 0.339 \\
|
| 11 |
+
0.938 & 0.134 & 0.895 \\
|
| 12 |
+
0.704 & 0.357 & 0.922 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Surface Area: $1.64$
|
| 17 |
+
Solid Angle: $1.01$
|
| 18 |
+
Volume: $0.13$
|
pretraining/mathematica/geometry/solids/49716.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A sphere centered at $\{3.507,-3.927,4.165\}$ has radius $4.48$. Estimate the sphere's surface area and volume.
|
| 3 |
+
Answer:
|
| 4 |
+
Surface Area: $252.25$
|
| 5 |
+
Volume: $376.71$
|
pretraining/mathematica/geometry/solids/49939.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.732 & 0.606 & 0.652 \\
|
| 5 |
+
0.013 & 0.886 & 0.547 \\
|
| 6 |
+
0.619 & 0.852 & 0.982 \\
|
| 7 |
+
0.822 & 0.987 & 0.067 \\
|
| 8 |
+
0.151 & 0.895 & 0.858 \\
|
| 9 |
+
0.767 & 0.539 & 0.393 \\
|
| 10 |
+
0.338 & 0.923 & 0.838 \\
|
| 11 |
+
0.046 & 0.212 & 0.077 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Volume: $0.16$
|
| 16 |
+
Solid Angle: $2.85$
|
| 17 |
+
Surface Area: $1.87$
|
pretraining/mathematica/geometry/solids/52051.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.701 & 0.384 & 0.264 \\
|
| 5 |
+
0.99 & 0.791 & 0.272 \\
|
| 6 |
+
0.385 & 0.68 & 0.98 \\
|
| 7 |
+
0.502 & 0.873 & 0.597 \\
|
| 8 |
+
0.107 & 0.034 & 0.734 \\
|
| 9 |
+
0.134 & 0.182 & 0.934 \\
|
| 10 |
+
0.92 & 0.455 & 0.961 \\
|
| 11 |
+
0.434 & 0.667 & 0.105 \\
|
| 12 |
+
0.541 & 0.143 & 0.783 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Volume: $0.19$
|
| 17 |
+
Solid Angle: $3.17$
|
| 18 |
+
Surface Area: $1.98$
|
pretraining/mathematica/geometry/solids/54129.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.785 & 0.916 & 0.37 \\
|
| 5 |
+
0.353 & 0.07 & 0.124 \\
|
| 6 |
+
0.543 & 0. & 0.357 \\
|
| 7 |
+
0.239 & 0.542 & 0.711 \\
|
| 8 |
+
0.149 & 0.139 & 0.757 \\
|
| 9 |
+
0.84 & 0.447 & 0.04 \\
|
| 10 |
+
0.479 & 0.304 & 0.875 \\
|
| 11 |
+
0.647 & 0.092 & 0.269 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Solid Angle: $0.48$
|
| 16 |
+
Surface Area: $1.52$
|
| 17 |
+
Volume: $0.11$
|
pretraining/mathematica/geometry/solids/54821.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.519 & 0.753 & 0.771 \\
|
| 5 |
+
0.572 & 0.919 & 0.65 \\
|
| 6 |
+
0.613 & 0.567 & 0.084 \\
|
| 7 |
+
0.807 & 0.502 & 0.405 \\
|
| 8 |
+
0.442 & 0.549 & 0.192 \\
|
| 9 |
+
0.785 & 0.699 & 0.794 \\
|
| 10 |
+
0.276 & 0.001 & 0.283 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Volume: $0.06$
|
| 15 |
+
Surface Area: $0.96$
|
| 16 |
+
Solid Angle: $2.15$
|
pretraining/mathematica/geometry/solids/55706.txt
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0 & -\sqrt{\frac{1}{10} \left(5+\sqrt{5}\right)} & \sqrt{\frac{9}{4}+\frac{9}{2 \sqrt{5}}} \\
|
| 5 |
+
\frac{1}{2} \left(1+\sqrt{5}\right) & 0 & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 6 |
+
\frac{1}{4} \left(-1-\sqrt{5}\right) & -\frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} & \sqrt{\frac{9}{4}+\frac{9}{2 \sqrt{5}}} \\
|
| 7 |
+
\frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 8 |
+
\frac{1}{4} \left(1+\sqrt{5}\right) & -\frac{1}{4} \sqrt{34+\frac{62}{\sqrt{5}}} & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} \\
|
| 9 |
+
\frac{1}{4} \left(3+\sqrt{5}\right) & -\frac{1}{4} \sqrt{26+\frac{58}{\sqrt{5}}} & -\frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\
|
| 10 |
+
-\frac{1}{2} & \sqrt{\frac{9}{4}+\frac{9}{2 \sqrt{5}}} & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} \\
|
| 11 |
+
0 & \sqrt{\frac{5}{2}+\frac{11}{2 \sqrt{5}}} & -\frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\
|
| 12 |
+
-\frac{1}{2} & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} & \frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 13 |
+
\frac{1}{4} \left(3+\sqrt{5}\right) & -\frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 14 |
+
\frac{1}{4} \left(-3-\sqrt{5}\right) & \frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 15 |
+
\frac{1}{2} & \frac{1}{2} \sqrt{5+2 \sqrt{5}} & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 16 |
+
\frac{1}{4} \left(-3-\sqrt{5}\right) & -\frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 17 |
+
\frac{1}{4} \left(1+\sqrt{5}\right) & -\frac{1}{4} \sqrt{2-\frac{2}{\sqrt{5}}} & -\frac{3}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
|
| 18 |
+
\frac{1}{2} \left(-1-\sqrt{5}\right) & 0 & \frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 19 |
+
\frac{1}{2} & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} & -\frac{3}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
|
| 20 |
+
0 & -\sqrt{\frac{5}{2}+\frac{11}{2 \sqrt{5}}} & \frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\
|
| 21 |
+
\frac{1}{2} & -\frac{3}{2} \sqrt{1+\frac{2}{\sqrt{5}}} & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
|
| 22 |
+
\frac{1}{4} \left(-3-\sqrt{5}\right) & \sqrt{\frac{13}{8}+\frac{29}{8 \sqrt{5}}} & \frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\
|
| 23 |
+
\frac{1}{4} \left(-1-\sqrt{5}\right) & \sqrt{\frac{17}{8}+\frac{31}{8 \sqrt{5}}} & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
|
| 24 |
+
\frac{1}{2} & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} & \sqrt{\frac{9}{4}+\frac{9}{2 \sqrt{5}}} \\
|
| 25 |
+
\frac{1}{2} \left(2+\sqrt{5}\right) & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} & -\frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\
|
| 26 |
+
\frac{1}{2} & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} & \frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 27 |
+
\frac{1}{4} \left(5+\sqrt{5}\right) & -\sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
|
| 28 |
+
-\frac{1}{2} & \frac{1}{2} \sqrt{5+2 \sqrt{5}} & \frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 29 |
+
\frac{1}{4} \left(1+\sqrt{5}\right) & \sqrt{\frac{17}{8}+\frac{31}{8 \sqrt{5}}} & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
|
| 30 |
+
\frac{1}{4} \left(3+\sqrt{5}\right) & -\frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 31 |
+
\frac{1}{2} \left(2+\sqrt{5}\right) & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} & \frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\
|
| 32 |
+
\frac{1}{2} & \frac{1}{2} \sqrt{5+2 \sqrt{5}} & \frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 33 |
+
\frac{1}{4} \left(3+\sqrt{5}\right) & \sqrt{\frac{13}{8}+\frac{29}{8 \sqrt{5}}} & \frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\
|
| 34 |
+
\frac{1}{2} \left(1+\sqrt{5}\right) & 0 & \frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 35 |
+
\frac{1}{2} \left(2+\sqrt{5}\right) & \frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} \\
|
| 36 |
+
\frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 37 |
+
\frac{1}{4} \left(5+\sqrt{5}\right) & \sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} \\
|
| 38 |
+
\frac{1}{2} \left(1+\sqrt{5}\right) & -\sqrt{1+\frac{2}{\sqrt{5}}} & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} \\
|
| 39 |
+
\frac{1}{4} \left(1+\sqrt{5}\right) & -\frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} & \sqrt{\frac{9}{4}+\frac{9}{2 \sqrt{5}}} \\
|
| 40 |
+
\frac{1}{2} \left(2+\sqrt{5}\right) & -\frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
|
| 41 |
+
-\frac{1}{2} & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} & \sqrt{\frac{9}{4}+\frac{9}{2 \sqrt{5}}} \\
|
| 42 |
+
\frac{1}{2} \left(1+\sqrt{5}\right) & \sqrt{1+\frac{2}{\sqrt{5}}} & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
|
| 43 |
+
\frac{1}{2} & \sqrt{\frac{9}{4}+\frac{9}{2 \sqrt{5}}} & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} \\
|
| 44 |
+
\frac{1}{4} \left(-1-\sqrt{5}\right) & -\sqrt{\frac{17}{8}+\frac{31}{8 \sqrt{5}}} & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} \\
|
| 45 |
+
\frac{1}{2} & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 46 |
+
\frac{1}{4} \left(-5-\sqrt{5}\right) & \sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} \\
|
| 47 |
+
-\frac{1}{2} & \frac{1}{2} \sqrt{5+2 \sqrt{5}} & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 48 |
+
\frac{1}{\sqrt{5}-3} & -\sqrt{\frac{13}{8}+\frac{29}{8 \sqrt{5}}} & -\frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\
|
| 49 |
+
-\frac{1}{2} & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 50 |
+
-1-\frac{\sqrt{5}}{2} & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} & -\frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\
|
| 51 |
+
\frac{1}{4} \left(-3-\sqrt{5}\right) & \frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 52 |
+
\frac{1}{4} \left(-5-\sqrt{5}\right) & -\frac{1}{4} \sqrt{10+\frac{22}{\sqrt{5}}} & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
|
| 53 |
+
\frac{1}{4} \left(-3-\sqrt{5}\right) & -\frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 54 |
+
-1-\frac{\sqrt{5}}{2} & -\frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
|
| 55 |
+
\frac{1}{2} \left(-1-\sqrt{5}\right) & 0 & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\
|
| 56 |
+
-\frac{1}{2} & -\frac{3}{2} \sqrt{1+\frac{2}{\sqrt{5}}} & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
|
| 57 |
+
\frac{1}{2} \left(-1-\sqrt{5}\right) & -\sqrt{1+\frac{2}{\sqrt{5}}} & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} \\
|
| 58 |
+
0 & -\sqrt{\frac{1}{10} \left(5+\sqrt{5}\right)} & -\frac{3}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
|
| 59 |
+
-1-\frac{\sqrt{5}}{2} & \frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} \\
|
| 60 |
+
-\frac{1}{2} & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} & -\frac{3}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
|
| 61 |
+
\frac{1}{2} \left(-1-\sqrt{5}\right) & \sqrt{1+\frac{2}{\sqrt{5}}} & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
|
| 62 |
+
-1-\frac{\sqrt{5}}{2} & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} & \frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\
|
| 63 |
+
\frac{1}{4} \left(-1-\sqrt{5}\right) & -\frac{1}{4} \sqrt{2-\frac{2}{\sqrt{5}}} & -\frac{3}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\
|
| 64 |
+
\end{array}
|
| 65 |
+
\right)$. Determine the EdgeCount.
|
| 66 |
+
Answer:
|
| 67 |
+
$120$
|
pretraining/mathematica/geometry/solids/58129.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.211 & 0.209 & 0.1 \\
|
| 5 |
+
0.341 & 0.807 & 0.219 \\
|
| 6 |
+
0.905 & 0.621 & 0.772 \\
|
| 7 |
+
0.962 & 0.485 & 0.553 \\
|
| 8 |
+
0.738 & 0.198 & 0.243 \\
|
| 9 |
+
0.017 & 0.235 & 0.765 \\
|
| 10 |
+
0.887 & 0.166 & 0.595 \\
|
| 11 |
+
0.91 & 0.008 & 0.273 \\
|
| 12 |
+
0.597 & 0.348 & 0.791 \\
|
| 13 |
+
0.645 & 0.211 & 0.713 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Surface Area: $1.84$
|
| 18 |
+
Solid Angle: $1.48$
|
| 19 |
+
Volume: $0.17$
|
pretraining/mathematica/geometry/solids/60429.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.178 & 0.698 & 0.609 \\
|
| 5 |
+
0.837 & 0.749 & 0.909 \\
|
| 6 |
+
0.503 & 0.035 & 0.029 \\
|
| 7 |
+
0.356 & 0.118 & 0.011 \\
|
| 8 |
+
0.581 & 0.533 & 0.097 \\
|
| 9 |
+
0.554 & 0.859 & 0.062 \\
|
| 10 |
+
0.925 & 0.994 & 0.467 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Solid Angle: $1.13$
|
| 15 |
+
Volume: $0.12$
|
| 16 |
+
Surface Area: $1.6$
|
pretraining/mathematica/geometry/solids/6543.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.547 & 0.704 & 0.114 \\
|
| 5 |
+
0.668 & 0.857 & 0.448 \\
|
| 6 |
+
0.404 & 0.83 & 0.8 \\
|
| 7 |
+
0.284 & 0.132 & 0.153 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Solid Angle: $0.49$
|
| 12 |
+
Surface Area: $0.6$
|
| 13 |
+
Volume: $0.01$
|
pretraining/mathematica/geometry/solids/67606.txt
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
-3.521 & 0. & -1.761 \\
|
| 5 |
+
-2.849 & -2.07 & 1.761 \\
|
| 6 |
+
-2.849 & 2.07 & 1.761 \\
|
| 7 |
+
-2.176 & 0. & 0.416 \\
|
| 8 |
+
-1.761 & -1.279 & -0.416 \\
|
| 9 |
+
-1.761 & 1.279 & -0.416 \\
|
| 10 |
+
-1.46 & -0.354 & -0.186 \\
|
| 11 |
+
-1.46 & 0.354 & -0.186 \\
|
| 12 |
+
-1.389 & -0.572 & 0.186 \\
|
| 13 |
+
-1.389 & 0.572 & 0.186 \\
|
| 14 |
+
-1.345 & 0. & 1.761 \\
|
| 15 |
+
-1.274 & -0.219 & 0.787 \\
|
| 16 |
+
-1.274 & 0.219 & 0.787 \\
|
| 17 |
+
-1.159 & -0.572 & -0.787 \\
|
| 18 |
+
-1.159 & 0.572 & -0.787 \\
|
| 19 |
+
-1.088 & -3.349 & -1.761 \\
|
| 20 |
+
-1.088 & -0.791 & -1.761 \\
|
| 21 |
+
-1.088 & 0.791 & -1.761 \\
|
| 22 |
+
-1.088 & 3.349 & -1.761 \\
|
| 23 |
+
-0.973 & -1.144 & 0.186 \\
|
| 24 |
+
-0.973 & 0. & -1.159 \\
|
| 25 |
+
-0.973 & 1.144 & 0.186 \\
|
| 26 |
+
-0.902 & -0.926 & -0.787 \\
|
| 27 |
+
-0.902 & 0.926 & -0.787 \\
|
| 28 |
+
-0.787 & -1.279 & -0.186 \\
|
| 29 |
+
-0.787 & -0.572 & 1.159 \\
|
| 30 |
+
-0.787 & 0.572 & 1.159 \\
|
| 31 |
+
-0.787 & 1.279 & -0.186 \\
|
| 32 |
+
-0.672 & -2.07 & 0.416 \\
|
| 33 |
+
-0.672 & 2.07 & 0.416 \\
|
| 34 |
+
-0.602 & -1.144 & 0.787 \\
|
| 35 |
+
-0.602 & 0. & -1.389 \\
|
| 36 |
+
-0.602 & 1.144 & 0.787 \\
|
| 37 |
+
-0.487 & -0.354 & 1.389 \\
|
| 38 |
+
-0.487 & 0.354 & 1.389 \\
|
| 39 |
+
-0.416 & -1.279 & 1.761 \\
|
| 40 |
+
-0.416 & 1.279 & 1.761 \\
|
| 41 |
+
-0.301 & -0.926 & -1.159 \\
|
| 42 |
+
-0.301 & 0.926 & -1.159 \\
|
| 43 |
+
-0.186 & -1.279 & 0.787 \\
|
| 44 |
+
-0.186 & -0.572 & -1.389 \\
|
| 45 |
+
-0.186 & 0.572 & -1.389 \\
|
| 46 |
+
-0.186 & 1.279 & 0.787 \\
|
| 47 |
+
-0.115 & -1.498 & -0.186 \\
|
| 48 |
+
-0.115 & 1.498 & -0.186 \\
|
| 49 |
+
0. & 0. & -3.937 \\
|
| 50 |
+
0. & 0. & 3.937 \\
|
| 51 |
+
0.115 & -1.498 & 0.186 \\
|
| 52 |
+
0.115 & 1.498 & 0.186 \\
|
| 53 |
+
0.186 & -1.279 & -0.787 \\
|
| 54 |
+
0.186 & -0.572 & 1.389 \\
|
| 55 |
+
0.186 & 0.572 & 1.389 \\
|
| 56 |
+
0.186 & 1.279 & -0.787 \\
|
| 57 |
+
0.301 & -0.926 & 1.159 \\
|
| 58 |
+
0.301 & 0.926 & 1.159 \\
|
| 59 |
+
0.416 & -1.279 & -1.761 \\
|
| 60 |
+
0.416 & 1.279 & -1.761 \\
|
| 61 |
+
0.487 & -0.354 & -1.389 \\
|
| 62 |
+
0.487 & 0.354 & -1.389 \\
|
| 63 |
+
0.602 & -1.144 & -0.787 \\
|
| 64 |
+
0.602 & 0. & 1.389 \\
|
| 65 |
+
0.602 & 1.144 & -0.787 \\
|
| 66 |
+
0.672 & -2.07 & -0.416 \\
|
| 67 |
+
0.672 & 2.07 & -0.416 \\
|
| 68 |
+
0.787 & -1.279 & 0.186 \\
|
| 69 |
+
0.787 & -0.572 & -1.159 \\
|
| 70 |
+
0.787 & 0.572 & -1.159 \\
|
| 71 |
+
0.787 & 1.279 & 0.186 \\
|
| 72 |
+
0.902 & -0.926 & 0.787 \\
|
| 73 |
+
0.902 & 0.926 & 0.787 \\
|
| 74 |
+
0.973 & -1.144 & -0.186 \\
|
| 75 |
+
0.973 & 0. & 1.159 \\
|
| 76 |
+
0.973 & 1.144 & -0.186 \\
|
| 77 |
+
1.088 & -3.349 & 1.761 \\
|
| 78 |
+
1.088 & -0.791 & 1.761 \\
|
| 79 |
+
1.088 & 0.791 & 1.761 \\
|
| 80 |
+
1.088 & 3.349 & 1.761 \\
|
| 81 |
+
1.159 & -0.572 & 0.787 \\
|
| 82 |
+
1.159 & 0.572 & 0.787 \\
|
| 83 |
+
1.274 & -0.219 & -0.787 \\
|
| 84 |
+
1.274 & 0.219 & -0.787 \\
|
| 85 |
+
1.345 & 0. & -1.761 \\
|
| 86 |
+
1.389 & -0.572 & -0.186 \\
|
| 87 |
+
1.389 & 0.572 & -0.186 \\
|
| 88 |
+
1.46 & -0.354 & 0.186 \\
|
| 89 |
+
1.46 & 0.354 & 0.186 \\
|
| 90 |
+
1.761 & -1.279 & 0.416 \\
|
| 91 |
+
1.761 & 1.279 & 0.416 \\
|
| 92 |
+
2.176 & 0. & -0.416 \\
|
| 93 |
+
2.849 & -2.07 & -1.761 \\
|
| 94 |
+
2.849 & 2.07 & -1.761 \\
|
| 95 |
+
3.521 & 0. & 1.761 \\
|
| 96 |
+
\end{array}
|
| 97 |
+
\right)$. Determine the Incenter.
|
| 98 |
+
Answer:
|
| 99 |
+
$\{0.,0.,0.\}$
|
pretraining/mathematica/geometry/solids/69074.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.034 & 0.715 & 0.417 \\
|
| 5 |
+
0.22 & 0.157 & 0.942 \\
|
| 6 |
+
0.54 & 0.185 & 0.799 \\
|
| 7 |
+
0.08 & 0.314 & 0.472 \\
|
| 8 |
+
0.895 & 0.611 & 0.227 \\
|
| 9 |
+
0.954 & 0.634 & 0.735 \\
|
| 10 |
+
0.495 & 0.035 & 0.285 \\
|
| 11 |
+
0.858 & 0.821 & 0.33 \\
|
| 12 |
+
0.107 & 0.796 & 0.718 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Volume: $0.2$
|
| 17 |
+
Surface Area: $1.96$
|
| 18 |
+
Solid Angle: $1.77$
|
pretraining/mathematica/geometry/solids/6947.txt
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0. & 0. & 1.401 \\
|
| 5 |
+
0. & 0. & -1.401 \\
|
| 6 |
+
0.178 & -1.309 & 0.467 \\
|
| 7 |
+
0.178 & 1.309 & 0.467 \\
|
| 8 |
+
0.467 & -0.809 & -1.044 \\
|
| 9 |
+
0.467 & 0.809 & -1.044 \\
|
| 10 |
+
1.044 & -0.809 & 0.467 \\
|
| 11 |
+
1.044 & 0.809 & 0.467 \\
|
| 12 |
+
-1.223 & -0.5 & 0.467 \\
|
| 13 |
+
-1.223 & 0.5 & 0.467 \\
|
| 14 |
+
1.223 & -0.5 & -0.467 \\
|
| 15 |
+
1.223 & 0.5 & -0.467 \\
|
| 16 |
+
-0.934 & 0. & -1.044 \\
|
| 17 |
+
-0.467 & -0.809 & 1.044 \\
|
| 18 |
+
-0.467 & 0.809 & 1.044 \\
|
| 19 |
+
0.934 & 0. & 1.044 \\
|
| 20 |
+
-1.044 & -0.809 & -0.467 \\
|
| 21 |
+
-1.044 & 0.809 & -0.467 \\
|
| 22 |
+
-0.995 & 0. & 1.303 \\
|
| 23 |
+
-0.178 & -1.309 & -0.467 \\
|
| 24 |
+
-0.178 & 1.309 & -0.467 \\
|
| 25 |
+
0.805 & 1.394 & -0.308 \\
|
| 26 |
+
0.805 & -1.394 & -0.308 \\
|
| 27 |
+
\end{array}
|
| 28 |
+
\right)$. Determine the EdgeCount.
|
| 29 |
+
Answer:
|
| 30 |
+
$45.$
|
pretraining/mathematica/geometry/solids/69803.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.695 & 0.837 & 0.07 \\
|
| 5 |
+
0.983 & 0.925 & 0.296 \\
|
| 6 |
+
0.626 & 0.044 & 0.873 \\
|
| 7 |
+
0.649 & 0.818 & 0.815 \\
|
| 8 |
+
0.57 & 0.958 & 0.036 \\
|
| 9 |
+
0.477 & 0.669 & 0.189 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Solid Angle: $3.27$
|
| 14 |
+
Surface Area: $1.14$
|
| 15 |
+
Volume: $0.06$
|
pretraining/mathematica/geometry/solids/69860.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.443 & 0.557 & 0.302 \\
|
| 5 |
+
0.33 & 0.142 & 0.882 \\
|
| 6 |
+
0.434 & 0.643 & 0.784 \\
|
| 7 |
+
0.439 & 0.825 & 0.299 \\
|
| 8 |
+
0.468 & 0.75 & 0.891 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Solid Angle: $0.3$
|
| 13 |
+
Surface Area: $0.53$
|
| 14 |
+
Volume: $0.$
|
pretraining/mathematica/geometry/solids/7050.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.82 & 0.067 & 0.325 \\
|
| 5 |
+
0.549 & 0.376 & 0.975 \\
|
| 6 |
+
0.87 & 0.699 & 0.891 \\
|
| 7 |
+
0.671 & 0.503 & 0.528 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Solid Angle: $0.13$
|
| 12 |
+
Volume: $0.01$
|
| 13 |
+
Surface Area: $0.48$
|
pretraining/mathematica/geometry/solids/70762.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.394 & 0.563 & 0.394 \\
|
| 5 |
+
0.703 & 0.757 & 0.508 \\
|
| 6 |
+
0.598 & 0.896 & 0.595 \\
|
| 7 |
+
0.28 & 0.376 & 0.527 \\
|
| 8 |
+
0.15 & 0.822 & 0.718 \\
|
| 9 |
+
0.492 & 0.813 & 0.875 \\
|
| 10 |
+
0.272 & 0.89 & 0.038 \\
|
| 11 |
+
0.403 & 0.457 & 0.638 \\
|
| 12 |
+
0.012 & 0.707 & 0.159 \\
|
| 13 |
+
0.028 & 0.554 & 0.172 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Surface Area: $1.09$
|
| 18 |
+
Solid Angle: $5.46$
|
| 19 |
+
Volume: $0.07$
|
pretraining/mathematica/geometry/solids/71187.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.259 & 0.422 & 0.045 \\
|
| 5 |
+
0.98 & 0.556 & 0.519 \\
|
| 6 |
+
0.424 & 0.879 & 0.126 \\
|
| 7 |
+
0.388 & 0.492 & 0.72 \\
|
| 8 |
+
0.337 & 0.05 & 0.555 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Volume: $0.06$
|
| 13 |
+
Surface Area: $1.1$
|
| 14 |
+
Solid Angle: $0.8$
|
pretraining/mathematica/geometry/solids/77069.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.631 & 0.07 & 0.229 \\
|
| 5 |
+
0.446 & 0.486 & 0.118 \\
|
| 6 |
+
0.683 & 0.712 & 0.17 \\
|
| 7 |
+
0.246 & 0.339 & 0.668 \\
|
| 8 |
+
0.979 & 0.535 & 0.119 \\
|
| 9 |
+
0.691 & 0.3 & 0.629 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Solid Angle: $1.28$
|
| 14 |
+
Surface Area: $0.88$
|
| 15 |
+
Volume: $0.05$
|
pretraining/mathematica/geometry/solids/80224.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.264 & 0.997 & 0.564 \\
|
| 5 |
+
0.434 & 0.704 & 0.501 \\
|
| 6 |
+
0.307 & 0.152 & 0.12 \\
|
| 7 |
+
0.046 & 0.573 & 0.912 \\
|
| 8 |
+
0.771 & 0.633 & 0.769 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Solid Angle: $0.84$
|
| 13 |
+
Volume: $0.06$
|
| 14 |
+
Surface Area: $1.06$
|
pretraining/mathematica/geometry/solids/80512.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.728 & 0.669 & 0.786 \\
|
| 5 |
+
0.824 & 0.56 & 0.358 \\
|
| 6 |
+
0.089 & 0.561 & 0.159 \\
|
| 7 |
+
0.359 & 0.778 & 0.239 \\
|
| 8 |
+
0.027 & 0.988 & 0.927 \\
|
| 9 |
+
0.262 & 0.651 & 0.094 \\
|
| 10 |
+
0.804 & 0.04 & 0.775 \\
|
| 11 |
+
0.584 & 0.082 & 0.992 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Surface Area: $1.96$
|
| 16 |
+
Volume: $0.17$
|
| 17 |
+
Solid Angle: $2.79$
|
pretraining/mathematica/geometry/solids/83016.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.21 & 0. & 0.129 \\
|
| 5 |
+
0.287 & 0.689 & 0.497 \\
|
| 6 |
+
0.313 & 0.602 & 0.963 \\
|
| 7 |
+
0.647 & 0.433 & 0.142 \\
|
| 8 |
+
0.584 & 0.798 & 0.696 \\
|
| 9 |
+
0.625 & 0.445 & 0.926 \\
|
| 10 |
+
0.039 & 0.088 & 0.841 \\
|
| 11 |
+
0.201 & 0.083 & 0.018 \\
|
| 12 |
+
0.727 & 0.571 & 0.134 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Volume: $0.14$
|
| 17 |
+
Solid Angle: $1.78$
|
| 18 |
+
Surface Area: $1.75$
|
pretraining/mathematica/geometry/solids/8404.txt
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
-\sqrt{\frac{2}{3}} & -\sqrt{\frac{2}{3}} & 0 \\
|
| 5 |
+
-\sqrt{\frac{2}{3}} & 0 & -\frac{1}{\sqrt{3}} \\
|
| 6 |
+
-\sqrt{\frac{2}{3}} & 0 & \frac{1}{\sqrt{3}} \\
|
| 7 |
+
-\sqrt{\frac{2}{3}} & \sqrt{\frac{2}{3}} & 0 \\
|
| 8 |
+
0 & -\sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{3}} \\
|
| 9 |
+
0 & -\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \\
|
| 10 |
+
0 & 0 & -\frac{2}{\sqrt{3}} \\
|
| 11 |
+
0 & 0 & \frac{2}{\sqrt{3}} \\
|
| 12 |
+
0 & \sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{3}} \\
|
| 13 |
+
0 & \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \\
|
| 14 |
+
\sqrt{\frac{2}{3}} & -\sqrt{\frac{2}{3}} & 0 \\
|
| 15 |
+
\sqrt{\frac{2}{3}} & 0 & -\frac{1}{\sqrt{3}} \\
|
| 16 |
+
\sqrt{\frac{2}{3}} & 0 & \frac{1}{\sqrt{3}} \\
|
| 17 |
+
\sqrt{\frac{2}{3}} & \sqrt{\frac{2}{3}} & 0 \\
|
| 18 |
+
\end{array}
|
| 19 |
+
\right)$. Determine the Volume.
|
| 20 |
+
Answer:
|
| 21 |
+
$\frac{16}{3 \sqrt{3}}$
|
pretraining/mathematica/geometry/solids/90245.txt
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
-\frac{1}{2} & -\frac{1}{2} & -1-\frac{\sqrt{5}}{2} \\
|
| 5 |
+
-\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \left(2+\sqrt{5}\right) \\
|
| 6 |
+
-\frac{1}{2} & \frac{1}{2} & -1-\frac{\sqrt{5}}{2} \\
|
| 7 |
+
-\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \left(2+\sqrt{5}\right) \\
|
| 8 |
+
-\frac{1}{2} & -1-\frac{\sqrt{5}}{2} & -\frac{1}{2} \\
|
| 9 |
+
0 & -\frac{3}{4}-\frac{13}{4 \sqrt{5}} & \frac{1}{20} \left(5+\sqrt{5}\right) \\
|
| 10 |
+
-\frac{1}{2} & \frac{1}{2} \left(2+\sqrt{5}\right) & -\frac{1}{2} \\
|
| 11 |
+
\frac{1}{4} \left(-1-\sqrt{5}\right) & 1+\frac{2}{\sqrt{5}} & \frac{1}{20} \left(15+\sqrt{5}\right) \\
|
| 12 |
+
0 & \frac{1}{\sqrt{5}-3} & \frac{1}{4} \left(-5-\sqrt{5}\right) \\
|
| 13 |
+
-\frac{1}{2} & -\frac{1}{2}-\frac{2}{\sqrt{5}} & 1+\frac{3}{2 \sqrt{5}} \\
|
| 14 |
+
0 & \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(-5-\sqrt{5}\right) \\
|
| 15 |
+
\frac{1}{2} & \frac{1}{2}+\frac{2}{\sqrt{5}} & 1+\frac{3}{2 \sqrt{5}} \\
|
| 16 |
+
\frac{1}{2} & -\frac{1}{2} & -1-\frac{\sqrt{5}}{2} \\
|
| 17 |
+
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \left(2+\sqrt{5}\right) \\
|
| 18 |
+
\frac{1}{2} & \frac{1}{2} & -1-\frac{\sqrt{5}}{2} \\
|
| 19 |
+
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \left(2+\sqrt{5}\right) \\
|
| 20 |
+
\frac{1}{2} & -1-\frac{\sqrt{5}}{2} & -\frac{1}{2} \\
|
| 21 |
+
\frac{1}{4} \left(1+\sqrt{5}\right) & -1-\frac{2}{\sqrt{5}} & \frac{1}{20} \left(15+\sqrt{5}\right) \\
|
| 22 |
+
\frac{1}{2} & \frac{1}{2} \left(2+\sqrt{5}\right) & -\frac{1}{2} \\
|
| 23 |
+
0 & \frac{3}{4}+\frac{13}{4 \sqrt{5}} & \frac{1}{20} \left(5+\sqrt{5}\right) \\
|
| 24 |
+
\frac{1}{4} \left(-5-\sqrt{5}\right) & 0 & \frac{1}{\sqrt{5}-3} \\
|
| 25 |
+
\frac{1}{4} \left(-5-\sqrt{5}\right) & 0 & \frac{1}{4} \left(3+\sqrt{5}\right) \\
|
| 26 |
+
\frac{1}{4} \left(-1-\sqrt{5}\right) & \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{\sqrt{5}-3} \\
|
| 27 |
+
\frac{1}{4} \left(-1-\sqrt{5}\right) & -1-\frac{2}{\sqrt{5}} & \frac{1}{20} \left(15+\sqrt{5}\right) \\
|
| 28 |
+
\frac{1}{4} \left(-1-\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{\sqrt{5}-3} \\
|
| 29 |
+
-\frac{1}{2} & \frac{1}{2}+\frac{2}{\sqrt{5}} & 1+\frac{3}{2 \sqrt{5}} \\
|
| 30 |
+
\frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{\sqrt{5}-3} & \frac{1}{4} \left(-1-\sqrt{5}\right) \\
|
| 31 |
+
\frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{\sqrt{5}-3} & \frac{1}{4} \left(1+\sqrt{5}\right) \\
|
| 32 |
+
\frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(-1-\sqrt{5}\right) \\
|
| 33 |
+
\frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(1+\sqrt{5}\right) \\
|
| 34 |
+
-1-\frac{\sqrt{5}}{2} & -\frac{1}{2} & -\frac{1}{2} \\
|
| 35 |
+
-1-\frac{\sqrt{5}}{2} & -\frac{1}{2} & \frac{1}{2} \\
|
| 36 |
+
-1-\frac{\sqrt{5}}{2} & \frac{1}{2} & -\frac{1}{2} \\
|
| 37 |
+
-1-\frac{\sqrt{5}}{2} & \frac{1}{2} & \frac{1}{2} \\
|
| 38 |
+
\frac{1}{\sqrt{5}-3} & \frac{1}{4} \left(-5-\sqrt{5}\right) & 0 \\
|
| 39 |
+
\frac{1}{\sqrt{5}-3} & \frac{1}{4} \left(-1-\sqrt{5}\right) & \frac{1}{2} \left(-1-\sqrt{5}\right) \\
|
| 40 |
+
\frac{1}{\sqrt{5}-3} & \frac{1}{4} \left(-1-\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) \\
|
| 41 |
+
\frac{1}{\sqrt{5}-3} & \frac{1}{4} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(-1-\sqrt{5}\right) \\
|
| 42 |
+
\frac{1}{\sqrt{5}-3} & \frac{1}{4} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) \\
|
| 43 |
+
\frac{1}{\sqrt{5}-3} & \frac{1}{4} \left(5+\sqrt{5}\right) & 0 \\
|
| 44 |
+
\frac{1}{4} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{\sqrt{5}-3} \\
|
| 45 |
+
\frac{1}{2} & -\frac{1}{2}-\frac{2}{\sqrt{5}} & 1+\frac{3}{2 \sqrt{5}} \\
|
| 46 |
+
\frac{1}{4} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{\sqrt{5}-3} \\
|
| 47 |
+
\frac{1}{4} \left(1+\sqrt{5}\right) & 1+\frac{2}{\sqrt{5}} & \frac{1}{20} \left(15+\sqrt{5}\right) \\
|
| 48 |
+
\frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{\sqrt{5}-3} & \frac{1}{4} \left(-1-\sqrt{5}\right) \\
|
| 49 |
+
\frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{\sqrt{5}-3} & \frac{1}{4} \left(1+\sqrt{5}\right) \\
|
| 50 |
+
\frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(-1-\sqrt{5}\right) \\
|
| 51 |
+
\frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(1+\sqrt{5}\right) \\
|
| 52 |
+
\frac{1}{2} \left(2+\sqrt{5}\right) & -\frac{1}{2} & -\frac{1}{2} \\
|
| 53 |
+
\frac{1}{2} \left(2+\sqrt{5}\right) & -\frac{1}{2} & \frac{1}{2} \\
|
| 54 |
+
\frac{1}{2} \left(2+\sqrt{5}\right) & \frac{1}{2} & -\frac{1}{2} \\
|
| 55 |
+
\frac{1}{2} \left(2+\sqrt{5}\right) & \frac{1}{2} & \frac{1}{2} \\
|
| 56 |
+
\frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(-5-\sqrt{5}\right) & 0 \\
|
| 57 |
+
\frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(-1-\sqrt{5}\right) & \frac{1}{2} \left(-1-\sqrt{5}\right) \\
|
| 58 |
+
\frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(-1-\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) \\
|
| 59 |
+
\frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(-1-\sqrt{5}\right) \\
|
| 60 |
+
\frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(1+\sqrt{5}\right) & \frac{1}{2} \left(1+\sqrt{5}\right) \\
|
| 61 |
+
\frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{4} \left(5+\sqrt{5}\right) & 0 \\
|
| 62 |
+
\frac{1}{4} \left(5+\sqrt{5}\right) & 0 & \frac{1}{\sqrt{5}-3} \\
|
| 63 |
+
\frac{1}{4} \left(5+\sqrt{5}\right) & 0 & \frac{1}{4} \left(3+\sqrt{5}\right) \\
|
| 64 |
+
\end{array}
|
| 65 |
+
\right)$. Determine the Volume.
|
| 66 |
+
Answer:
|
| 67 |
+
$20+\frac{29 \sqrt{5}}{3}$
|
pretraining/mathematica/geometry/solids/90387.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.465 & 0.274 & 0.655 \\
|
| 5 |
+
0.202 & 0.106 & 0.067 \\
|
| 6 |
+
0.763 & 0.37 & 0.308 \\
|
| 7 |
+
0.346 & 0.166 & 0.476 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Solid Angle: $0.11$
|
| 12 |
+
Surface Area: $0.33$
|
| 13 |
+
Volume: $0.$
|
pretraining/mathematica/geometry/solids/93420.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.882 & 0.754 & 0.5 \\
|
| 5 |
+
0.768 & 0.267 & 0.612 \\
|
| 6 |
+
0.087 & 0.091 & 0.477 \\
|
| 7 |
+
0.106 & 0.031 & 0.624 \\
|
| 8 |
+
0.754 & 0.435 & 0.274 \\
|
| 9 |
+
0.187 & 0.088 & 0.13 \\
|
| 10 |
+
0.127 & 0.995 & 0.348 \\
|
| 11 |
+
0.199 & 0.001 & 0.781 \\
|
| 12 |
+
0.691 & 0.011 & 0.157 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Surface Area: $1.94$
|
| 17 |
+
Volume: $0.17$
|
| 18 |
+
Solid Angle: $0.93$
|
pretraining/mathematica/geometry/solids/94880.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.443 & 0.18 & 0.776 \\
|
| 5 |
+
0.053 & 0.558 & 0.483 \\
|
| 6 |
+
0.418 & 0.48 & 0.881 \\
|
| 7 |
+
0.934 & 0.102 & 0.723 \\
|
| 8 |
+
0.952 & 0.53 & 0.939 \\
|
| 9 |
+
0.265 & 0.902 & 0.744 \\
|
| 10 |
+
0.783 & 0.768 & 0.971 \\
|
| 11 |
+
0.59 & 0.987 & 0.832 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Volume: $0.06$
|
| 16 |
+
Solid Angle: $1.86$
|
| 17 |
+
Surface Area: $1.29$
|
pretraining/mathematica/geometry/solids/96125.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.97 & 0.094 & 0.294 \\
|
| 5 |
+
0.34 & 0.297 & 0.646 \\
|
| 6 |
+
0.413 & 0.636 & 0.758 \\
|
| 7 |
+
0.749 & 0.143 & 0.522 \\
|
| 8 |
+
0.593 & 0.068 & 0.201 \\
|
| 9 |
+
0.885 & 0.129 & 0.159 \\
|
| 10 |
+
0.379 & 0.391 & 0.506 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Surface Area: $0.62$
|
| 15 |
+
Solid Angle: $0.83$
|
| 16 |
+
Volume: $0.03$
|
pretraining/mathematica/geometry/solids/97386.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.271 & 0.005 & 0.912 \\
|
| 5 |
+
0.119 & 0.296 & 0.018 \\
|
| 6 |
+
0.298 & 0.942 & 0.372 \\
|
| 7 |
+
0.447 & 0.151 & 0.495 \\
|
| 8 |
+
0.767 & 0.183 & 0.932 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Surface Area: $1.29$
|
| 13 |
+
Volume: $0.06$
|
| 14 |
+
Solid Angle: $0.72$
|
pretraining/mathematica/number_theory/relatively_prime/10562.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Are the following numbers relatively prime (coprime)? $\{-862,-749\}$.
|
| 3 |
+
Answer:
|
| 4 |
+
$\text{True}$
|
pretraining/mathematica/number_theory/relatively_prime/12944.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Are the following numbers relatively prime (coprime)? $\{-338,981\}$.
|
| 3 |
+
Answer:
|
| 4 |
+
$\text{True}$
|
pretraining/mathematica/number_theory/relatively_prime/14118.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Are the following numbers relatively prime (coprime)? $\{-423,29,54\}$.
|
| 3 |
+
Answer:
|
| 4 |
+
$\text{False}$
|
pretraining/mathematica/number_theory/relatively_prime/14590.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Are the following numbers relatively prime (coprime)? $\{673,760,-304\}$.
|
| 3 |
+
Answer:
|
| 4 |
+
$\text{False}$
|
pretraining/mathematica/number_theory/relatively_prime/14889.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Are the following numbers relatively prime (coprime)? $\{-113,100\}$.
|
| 3 |
+
Answer:
|
| 4 |
+
$\text{True}$
|
pretraining/mathematica/number_theory/relatively_prime/17101.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Are the following numbers relatively prime (coprime)? $\{334,988\}$.
|
| 3 |
+
Answer:
|
| 4 |
+
$\text{False}$
|
pretraining/mathematica/number_theory/relatively_prime/18194.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Are the following numbers relatively prime (coprime)? $\{30,393\}$.
|
| 3 |
+
Answer:
|
| 4 |
+
$\text{False}$
|
pretraining/mathematica/number_theory/relatively_prime/20569.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Are the following numbers relatively prime (coprime)? $\{649,675\}$.
|
| 3 |
+
Answer:
|
| 4 |
+
$\text{True}$
|
pretraining/mathematica/number_theory/relatively_prime/22099.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Are the following numbers relatively prime (coprime)? $\{-750,253,-265\}$.
|
| 3 |
+
Answer:
|
| 4 |
+
$\text{False}$
|
pretraining/mathematica/number_theory/relatively_prime/24439.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Are the following numbers relatively prime (coprime)? $\{571,-704\}$.
|
| 3 |
+
Answer:
|
| 4 |
+
$\text{True}$
|