Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- pretraining/mathematica/geometry/solids/10250.txt +31 -0
- pretraining/mathematica/geometry/solids/11780.txt +17 -0
- pretraining/mathematica/geometry/solids/12777.txt +17 -0
- pretraining/mathematica/geometry/solids/12924.txt +14 -0
- pretraining/mathematica/geometry/solids/13104.txt +14 -0
- pretraining/mathematica/geometry/solids/13587.txt +31 -0
- pretraining/mathematica/geometry/solids/16600.txt +14 -0
- pretraining/mathematica/geometry/solids/16861.txt +18 -0
- pretraining/mathematica/geometry/solids/19538.txt +19 -0
- pretraining/mathematica/geometry/solids/20784.txt +17 -0
- pretraining/mathematica/geometry/solids/2364.txt +15 -0
- pretraining/mathematica/geometry/solids/23885.txt +15 -0
- pretraining/mathematica/geometry/solids/26674.txt +16 -0
- pretraining/mathematica/geometry/solids/27862.txt +16 -0
- pretraining/mathematica/geometry/solids/29361.txt +19 -0
- pretraining/mathematica/geometry/solids/30977.txt +18 -0
- pretraining/mathematica/geometry/solids/33016.txt +14 -0
- pretraining/mathematica/geometry/solids/33845.txt +6 -0
- pretraining/mathematica/geometry/solids/33977.txt +18 -0
- pretraining/mathematica/geometry/solids/35454.txt +18 -0
- pretraining/mathematica/geometry/solids/37501.txt +12 -0
- pretraining/mathematica/geometry/solids/40000.txt +14 -0
- pretraining/mathematica/geometry/solids/43908.txt +16 -0
- pretraining/mathematica/geometry/solids/43929.txt +22 -0
- pretraining/mathematica/geometry/solids/44813.txt +14 -0
- pretraining/mathematica/geometry/solids/45114.txt +13 -0
- pretraining/mathematica/geometry/solids/45125.txt +19 -0
- pretraining/mathematica/geometry/solids/45461.txt +19 -0
- pretraining/mathematica/geometry/solids/4697.txt +14 -0
- pretraining/mathematica/geometry/solids/49755.txt +15 -0
- pretraining/mathematica/geometry/solids/51965.txt +18 -0
- pretraining/mathematica/geometry/solids/53889.txt +17 -0
- pretraining/mathematica/geometry/solids/54215.txt +18 -0
- pretraining/mathematica/geometry/solids/54669.txt +5 -0
- pretraining/mathematica/geometry/solids/54801.txt +19 -0
- pretraining/mathematica/geometry/solids/57410.txt +19 -0
- pretraining/mathematica/geometry/solids/57571.txt +17 -0
- pretraining/mathematica/geometry/solids/58061.txt +15 -0
- pretraining/mathematica/geometry/solids/5850.txt +19 -0
- pretraining/mathematica/geometry/solids/58933.txt +13 -0
- pretraining/mathematica/geometry/solids/59499.txt +21 -0
- pretraining/mathematica/geometry/solids/66114.txt +15 -0
- pretraining/mathematica/geometry/solids/66854.txt +13 -0
- pretraining/mathematica/geometry/solids/67018.txt +17 -0
- pretraining/mathematica/geometry/solids/71412.txt +15 -0
- pretraining/mathematica/geometry/solids/73725.txt +16 -0
- pretraining/mathematica/geometry/solids/73987.txt +17 -0
- pretraining/mathematica/geometry/solids/75967.txt +13 -0
- pretraining/mathematica/geometry/solids/76527.txt +15 -0
- pretraining/mathematica/geometry/solids/76823.txt +16 -0
pretraining/mathematica/geometry/solids/10250.txt
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0 & -\frac{1}{\sqrt{2}} & \text{Root}\left[512 \text{$\#$1}^8-512 \text{$\#$1}^6-1024 \text{$\#$1}^5+256 \text{$\#$1}^4+1408 \text{$\#$1}^3-608 \text{$\#$1}^2-96 \text{$\#$1}+47\&,1\right] \\
|
| 5 |
+
0 & \frac{1}{\sqrt{2}} & \text{Root}\left[512 \text{$\#$1}^8-512 \text{$\#$1}^6-1024 \text{$\#$1}^5+256 \text{$\#$1}^4+1408 \text{$\#$1}^3-608 \text{$\#$1}^2-96 \text{$\#$1}+47\&,1\right] \\
|
| 6 |
+
0 & -\sqrt{1+\frac{1}{\sqrt{2}}} & \frac{1}{2} \sqrt{-1-\sqrt{2}+\sqrt{5+\frac{7}{\sqrt{2}}}} \\
|
| 7 |
+
0 & \sqrt{1+\frac{1}{\sqrt{2}}} & \frac{1}{2} \sqrt{-1-\sqrt{2}+\sqrt{5+\frac{7}{\sqrt{2}}}} \\
|
| 8 |
+
-\frac{1}{\sqrt{2}} & 0 & \text{Root}\left[512 \text{$\#$1}^8-512 \text{$\#$1}^6-1024 \text{$\#$1}^5+256 \text{$\#$1}^4+1408 \text{$\#$1}^3-608 \text{$\#$1}^2-96 \text{$\#$1}+47\&,1\right] \\
|
| 9 |
+
\frac{1}{\sqrt{2}} & 0 & \text{Root}\left[512 \text{$\#$1}^8-512 \text{$\#$1}^6-1024 \text{$\#$1}^5+256 \text{$\#$1}^4+1408 \text{$\#$1}^3-608 \text{$\#$1}^2-96 \text{$\#$1}+47\&,1\right] \\
|
| 10 |
+
-\frac{1}{2} \sqrt{1+\frac{1}{\sqrt{2}}} & \frac{1}{2} \sqrt{1-\frac{1}{\sqrt{2}}} & \text{Root}\left[512 \text{$\#$1}^8-512 \text{$\#$1}^6+1024 \text{$\#$1}^5+256 \text{$\#$1}^4-1408 \text{$\#$1}^3-608 \text{$\#$1}^2+96 \text{$\#$1}+47\&,6\right] \\
|
| 11 |
+
\frac{1}{2} \sqrt{1+\frac{1}{\sqrt{2}}} & -\frac{1}{2} \sqrt{1-\frac{1}{\sqrt{2}}} & \text{Root}\left[512 \text{$\#$1}^8-512 \text{$\#$1}^6+1024 \text{$\#$1}^5+256 \text{$\#$1}^4-1408 \text{$\#$1}^3-608 \text{$\#$1}^2+96 \text{$\#$1}+47\&,6\right] \\
|
| 12 |
+
\frac{1}{2}+\frac{1}{\sqrt{2}} & \frac{1}{2} & -\frac{1}{2} \sqrt{-1-\sqrt{2}+\sqrt{5+\frac{7}{\sqrt{2}}}} \\
|
| 13 |
+
-\sqrt{1+\frac{1}{\sqrt{2}}} & 0 & \frac{1}{2} \sqrt{-1-\sqrt{2}+\sqrt{5+\frac{7}{\sqrt{2}}}} \\
|
| 14 |
+
\sqrt{1+\frac{1}{\sqrt{2}}} & 0 & \frac{1}{2} \sqrt{-1-\sqrt{2}+\sqrt{5+\frac{7}{\sqrt{2}}}} \\
|
| 15 |
+
-\frac{1}{2} \sqrt{2+\sqrt{2}} & -\frac{1}{2} \sqrt{2+\sqrt{2}} & \frac{1}{2} \sqrt{-1-\sqrt{2}+\sqrt{5+\frac{7}{\sqrt{2}}}} \\
|
| 16 |
+
-\frac{1}{2} \sqrt{2+\sqrt{2}} & \frac{\sqrt{2+\sqrt{2}}}{2} & \frac{1}{2} \sqrt{-1-\sqrt{2}+\sqrt{5+\frac{7}{\sqrt{2}}}} \\
|
| 17 |
+
\frac{\sqrt{2+\sqrt{2}}}{2} & -\frac{1}{2} \sqrt{2+\sqrt{2}} & \frac{1}{2} \sqrt{-1-\sqrt{2}+\sqrt{5+\frac{7}{\sqrt{2}}}} \\
|
| 18 |
+
\frac{\sqrt{2+\sqrt{2}}}{2} & \frac{\sqrt{2+\sqrt{2}}}{2} & \frac{1}{2} \sqrt{-1-\sqrt{2}+\sqrt{5+\frac{7}{\sqrt{2}}}} \\
|
| 19 |
+
-\frac{1}{2} & -\frac{1}{2}-\frac{1}{\sqrt{2}} & -\frac{1}{2} \sqrt{-1-\sqrt{2}+\sqrt{5+\frac{7}{\sqrt{2}}}} \\
|
| 20 |
+
\frac{1}{2} & \frac{1}{2}+\frac{1}{\sqrt{2}} & -\frac{1}{2} \sqrt{-1-\sqrt{2}+\sqrt{5+\frac{7}{\sqrt{2}}}} \\
|
| 21 |
+
\frac{1}{2} & -\frac{1}{2}-\frac{1}{\sqrt{2}} & -\frac{1}{2} \sqrt{-1-\sqrt{2}+\sqrt{5+\frac{7}{\sqrt{2}}}} \\
|
| 22 |
+
-\frac{1}{2} & \frac{1}{2}+\frac{1}{\sqrt{2}} & -\frac{1}{2} \sqrt{-1-\sqrt{2}+\sqrt{5+\frac{7}{\sqrt{2}}}} \\
|
| 23 |
+
\frac{1}{2}+\frac{1}{\sqrt{2}} & -\frac{1}{2} & -\frac{1}{2} \sqrt{-1-\sqrt{2}+\sqrt{5+\frac{7}{\sqrt{2}}}} \\
|
| 24 |
+
-\frac{1}{2}-\frac{1}{\sqrt{2}} & \frac{1}{2} & -\frac{1}{2} \sqrt{-1-\sqrt{2}+\sqrt{5+\frac{7}{\sqrt{2}}}} \\
|
| 25 |
+
-\frac{1}{2}-\frac{1}{\sqrt{2}} & -\frac{1}{2} & -\frac{1}{2} \sqrt{-1-\sqrt{2}+\sqrt{5+\frac{7}{\sqrt{2}}}} \\
|
| 26 |
+
-\frac{1}{2} \sqrt{1-\frac{1}{\sqrt{2}}} & -\frac{1}{2} \sqrt{1+\frac{1}{\sqrt{2}}} & \text{Root}\left[512 \text{$\#$1}^8-512 \text{$\#$1}^6+1024 \text{$\#$1}^5+256 \text{$\#$1}^4-1408 \text{$\#$1}^3-608 \text{$\#$1}^2+96 \text{$\#$1}+47\&,6\right] \\
|
| 27 |
+
\frac{1}{2} \sqrt{1-\frac{1}{\sqrt{2}}} & \frac{1}{2} \sqrt{1+\frac{1}{\sqrt{2}}} & \text{Root}\left[512 \text{$\#$1}^8-512 \text{$\#$1}^6+1024 \text{$\#$1}^5+256 \text{$\#$1}^4-1408 \text{$\#$1}^3-608 \text{$\#$1}^2+96 \text{$\#$1}+47\&,6\right] \\
|
| 28 |
+
\end{array}
|
| 29 |
+
\right)$. Determine the SurfaceArea.
|
| 30 |
+
Answer:
|
| 31 |
+
$10+6 \sqrt{3}$
|
pretraining/mathematica/geometry/solids/11780.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.111 & 0.564 & 0.258 \\
|
| 5 |
+
0.823 & 0.432 & 0.9 \\
|
| 6 |
+
0.967 & 0.259 & 0.694 \\
|
| 7 |
+
0.061 & 0.806 & 0.686 \\
|
| 8 |
+
0.276 & 0.505 & 0.105 \\
|
| 9 |
+
0.799 & 0.97 & 0.664 \\
|
| 10 |
+
0.097 & 0.488 & 0.874 \\
|
| 11 |
+
0.039 & 0.091 & 0.566 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Volume: $0.19$
|
| 16 |
+
Surface Area: $1.94$
|
| 17 |
+
Solid Angle: $2.95$
|
pretraining/mathematica/geometry/solids/12777.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.646 & 0.018 & 0.976 \\
|
| 5 |
+
0.076 & 0.262 & 0.276 \\
|
| 6 |
+
0.696 & 0.672 & 0.723 \\
|
| 7 |
+
0.912 & 0.255 & 0.961 \\
|
| 8 |
+
0.158 & 0.241 & 0.029 \\
|
| 9 |
+
0.193 & 0.994 & 0.838 \\
|
| 10 |
+
0.514 & 0.233 & 0.374 \\
|
| 11 |
+
0.703 & 0.9 & 0.327 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Surface Area: $2.09$
|
| 16 |
+
Volume: $0.19$
|
| 17 |
+
Solid Angle: $1.08$
|
pretraining/mathematica/geometry/solids/12924.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.697 & 0.709 & 0.18 \\
|
| 5 |
+
0.878 & 0.578 & 0.617 \\
|
| 6 |
+
0.546 & 0.863 & 0.643 \\
|
| 7 |
+
0.589 & 0.903 & 0.8 \\
|
| 8 |
+
0.999 & 0.27 & 0.669 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Volume: $0.01$
|
| 13 |
+
Solid Angle: $0.16$
|
| 14 |
+
Surface Area: $0.5$
|
pretraining/mathematica/geometry/solids/13104.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.038 & 0.608 & 0.345 \\
|
| 5 |
+
0.708 & 0.634 & 0.044 \\
|
| 6 |
+
0.5 & 0.001 & 0.629 \\
|
| 7 |
+
0.321 & 0.976 & 0.578 \\
|
| 8 |
+
0.918 & 0.101 & 0.725 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Volume: $0.09$
|
| 13 |
+
Solid Angle: $0.98$
|
| 14 |
+
Surface Area: $1.41$
|
pretraining/mathematica/geometry/solids/13587.txt
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
-0.5 & -0.5 & -1.207 \\
|
| 5 |
+
-0.5 & 0.5 & -1.207 \\
|
| 6 |
+
0. & -0.707 & 1.207 \\
|
| 7 |
+
0. & 0.707 & 1.207 \\
|
| 8 |
+
0.5 & -0.5 & -1.207 \\
|
| 9 |
+
0.5 & 0.5 & -1.207 \\
|
| 10 |
+
-0.707 & 0. & 1.207 \\
|
| 11 |
+
0.707 & 0. & 1.207 \\
|
| 12 |
+
0.5 & 1.207 & -0.5 \\
|
| 13 |
+
0.5 & 1.207 & 0.5 \\
|
| 14 |
+
-0.5 & 1.207 & -0.5 \\
|
| 15 |
+
-0.5 & 1.207 & 0.5 \\
|
| 16 |
+
-1.207 & 0.5 & -0.5 \\
|
| 17 |
+
-1.207 & 0.5 & 0.5 \\
|
| 18 |
+
-1.207 & -0.5 & -0.5 \\
|
| 19 |
+
-1.207 & -0.5 & 0.5 \\
|
| 20 |
+
-0.5 & -1.207 & -0.5 \\
|
| 21 |
+
-0.5 & -1.207 & 0.5 \\
|
| 22 |
+
0.5 & -1.207 & -0.5 \\
|
| 23 |
+
0.5 & -1.207 & 0.5 \\
|
| 24 |
+
1.207 & -0.5 & -0.5 \\
|
| 25 |
+
1.207 & -0.5 & 0.5 \\
|
| 26 |
+
1.207 & 0.5 & -0.5 \\
|
| 27 |
+
1.207 & 0.5 & 0.5 \\
|
| 28 |
+
\end{array}
|
| 29 |
+
\right)$. Determine the Circumdiameter.
|
| 30 |
+
Answer:
|
| 31 |
+
$2.8$
|
pretraining/mathematica/geometry/solids/16600.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.82 & 0.548 & 0.783 \\
|
| 5 |
+
0.722 & 0.697 & 0.369 \\
|
| 6 |
+
0.594 & 0.11 & 0.809 \\
|
| 7 |
+
0.724 & 0.636 & 0.831 \\
|
| 8 |
+
0.51 & 0.799 & 0.324 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Surface Area: $0.46$
|
| 13 |
+
Volume: $0.01$
|
| 14 |
+
Solid Angle: $2.05$
|
pretraining/mathematica/geometry/solids/16861.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.893 & 0.105 & 0.518 \\
|
| 5 |
+
0.396 & 0.486 & 0.82 \\
|
| 6 |
+
0.197 & 0.077 & 0.996 \\
|
| 7 |
+
0.596 & 0.614 & 0.337 \\
|
| 8 |
+
0.518 & 0.775 & 0.46 \\
|
| 9 |
+
0.779 & 0.714 & 0.281 \\
|
| 10 |
+
0.33 & 0.155 & 0.685 \\
|
| 11 |
+
0.657 & 0.479 & 0.337 \\
|
| 12 |
+
0.742 & 0.355 & 0.872 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Surface Area: $1.13$
|
| 17 |
+
Solid Angle: $1.02$
|
| 18 |
+
Volume: $0.08$
|
pretraining/mathematica/geometry/solids/19538.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.471 & 0.04 & 0.231 \\
|
| 5 |
+
0.611 & 0.581 & 0.222 \\
|
| 6 |
+
0.123 & 0.646 & 0.785 \\
|
| 7 |
+
0.415 & 0.814 & 0.578 \\
|
| 8 |
+
0.029 & 0.927 & 0.203 \\
|
| 9 |
+
0.235 & 0.109 & 0.667 \\
|
| 10 |
+
0.965 & 0.418 & 0.951 \\
|
| 11 |
+
0.528 & 0.029 & 0.408 \\
|
| 12 |
+
0.846 & 0.273 & 0.024 \\
|
| 13 |
+
0.082 & 0.999 & 0.626 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Surface Area: $2.32$
|
| 18 |
+
Solid Angle: $2.51$
|
| 19 |
+
Volume: $0.24$
|
pretraining/mathematica/geometry/solids/20784.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.98 & 0.975 & 0.313 \\
|
| 5 |
+
0.823 & 0.678 & 0.087 \\
|
| 6 |
+
0.633 & 0.202 & 0.982 \\
|
| 7 |
+
0.969 & 0.636 & 0.134 \\
|
| 8 |
+
0.975 & 0.89 & 0.677 \\
|
| 9 |
+
0.93 & 0.955 & 0.929 \\
|
| 10 |
+
0.275 & 0.257 & 0.277 \\
|
| 11 |
+
0.068 & 0.976 & 0.545 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Volume: $0.23$
|
| 16 |
+
Solid Angle: $1.96$
|
| 17 |
+
Surface Area: $2.26$
|
pretraining/mathematica/geometry/solids/2364.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.334 & 0.834 & 0.957 \\
|
| 5 |
+
0.883 & 0.788 & 0.307 \\
|
| 6 |
+
0.756 & 0.759 & 0.992 \\
|
| 7 |
+
0.051 & 0.693 & 0.474 \\
|
| 8 |
+
0.795 & 0.842 & 0.584 \\
|
| 9 |
+
0.836 & 0.538 & 0.604 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Solid Angle: $0.57$
|
| 14 |
+
Volume: $0.04$
|
| 15 |
+
Surface Area: $0.93$
|
pretraining/mathematica/geometry/solids/23885.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.765 & 0.834 & 0.127 \\
|
| 5 |
+
0.889 & 0.107 & 0.118 \\
|
| 6 |
+
0.894 & 0.46 & 0.876 \\
|
| 7 |
+
0.929 & 0.842 & 0.175 \\
|
| 8 |
+
0.821 & 0.858 & 0.331 \\
|
| 9 |
+
0.83 & 0.652 & 0.937 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Surface Area: $0.87$
|
| 14 |
+
Volume: $0.02$
|
| 15 |
+
Solid Angle: $1.21$
|
pretraining/mathematica/geometry/solids/26674.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.563 & 0.956 & 0.352 \\
|
| 5 |
+
0.36 & 0.608 & 0.813 \\
|
| 6 |
+
0.319 & 0.967 & 0.44 \\
|
| 7 |
+
0.055 & 0.953 & 0.826 \\
|
| 8 |
+
0.312 & 0.165 & 0.318 \\
|
| 9 |
+
0.752 & 0.682 & 0.335 \\
|
| 10 |
+
0.619 & 0.084 & 0.762 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Surface Area: $1.33$
|
| 15 |
+
Solid Angle: $1.15$
|
| 16 |
+
Volume: $0.09$
|
pretraining/mathematica/geometry/solids/27862.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.51 & 0.784 & 0.346 \\
|
| 5 |
+
0.108 & 0.009 & 0.191 \\
|
| 6 |
+
0.628 & 0.471 & 0.427 \\
|
| 7 |
+
0.902 & 0.802 & 0.774 \\
|
| 8 |
+
0.186 & 0.264 & 0.602 \\
|
| 9 |
+
0.27 & 0.82 & 0.825 \\
|
| 10 |
+
0.008 & 0.872 & 0.141 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Volume: $0.11$
|
| 15 |
+
Surface Area: $1.59$
|
| 16 |
+
Solid Angle: $3.56$
|
pretraining/mathematica/geometry/solids/29361.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.985 & 0.498 & 0.113 \\
|
| 5 |
+
0.063 & 0.783 & 0.62 \\
|
| 6 |
+
0.653 & 0.366 & 0.279 \\
|
| 7 |
+
0.419 & 0.486 & 0.173 \\
|
| 8 |
+
0.01 & 0.986 & 0.193 \\
|
| 9 |
+
0.565 & 0.363 & 0.347 \\
|
| 10 |
+
0.967 & 0.903 & 0.452 \\
|
| 11 |
+
0.029 & 0.777 & 0.169 \\
|
| 12 |
+
0.528 & 0.261 & 0.829 \\
|
| 13 |
+
0.525 & 0.948 & 0.479 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Solid Angle: $1.06$
|
| 18 |
+
Volume: $0.16$
|
| 19 |
+
Surface Area: $1.79$
|
pretraining/mathematica/geometry/solids/30977.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.458 & 0.575 & 0.345 \\
|
| 5 |
+
0.752 & 0.929 & 0.61 \\
|
| 6 |
+
0.153 & 0.971 & 0.842 \\
|
| 7 |
+
0.908 & 0.319 & 0.254 \\
|
| 8 |
+
0.35 & 0.119 & 0.909 \\
|
| 9 |
+
0.975 & 0.661 & 0.23 \\
|
| 10 |
+
0.875 & 0.924 & 0.744 \\
|
| 11 |
+
0.526 & 0.345 & 0.429 \\
|
| 12 |
+
0.023 & 0.894 & 0.957 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Volume: $0.14$
|
| 17 |
+
Solid Angle: $3.15$
|
| 18 |
+
Surface Area: $1.82$
|
pretraining/mathematica/geometry/solids/33016.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.844 & 0.257 & 0.299 \\
|
| 5 |
+
0.595 & 0.749 & 0.784 \\
|
| 6 |
+
0.177 & 0.447 & 0.384 \\
|
| 7 |
+
0.727 & 0.812 & 0.543 \\
|
| 8 |
+
0.482 & 0.889 & 0.144 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Solid Angle: $0.51$
|
| 13 |
+
Surface Area: $0.86$
|
| 14 |
+
Volume: $0.05$
|
pretraining/mathematica/geometry/solids/33845.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A cylinder with radius $4.49$ is around the line from $\{7.092,-4.86,7.739\}$ to $\{5.145,-1.525,-5.018\}$. Estimate the cylinder's surface area, volume, and centroid.
|
| 3 |
+
Answer:
|
| 4 |
+
Centroid: $\{6.12,-3.19,1.36\}$
|
| 5 |
+
Surface Area: $502.64$
|
| 6 |
+
Volume: $844.04$
|
pretraining/mathematica/geometry/solids/33977.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.044 & 0.168 & 0.957 \\
|
| 5 |
+
0.452 & 0.563 & 0.018 \\
|
| 6 |
+
0.05 & 0.96 & 0.905 \\
|
| 7 |
+
0.609 & 0.036 & 0.035 \\
|
| 8 |
+
0.016 & 0.419 & 0.036 \\
|
| 9 |
+
0.944 & 0.752 & 0.932 \\
|
| 10 |
+
0.846 & 0.18 & 0.845 \\
|
| 11 |
+
0.924 & 0.658 & 0.459 \\
|
| 12 |
+
0.545 & 0.138 & 0.766 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Solid Angle: $1.52$
|
| 17 |
+
Volume: $0.39$
|
| 18 |
+
Surface Area: $3.08$
|
pretraining/mathematica/geometry/solids/35454.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.299 & 0.068 & 0.264 \\
|
| 5 |
+
0.691 & 0.055 & 0.241 \\
|
| 6 |
+
0.746 & 0.444 & 0.861 \\
|
| 7 |
+
0.223 & 0.555 & 0.376 \\
|
| 8 |
+
0.286 & 0.127 & 0.139 \\
|
| 9 |
+
0.902 & 0.769 & 0.172 \\
|
| 10 |
+
0.732 & 0.869 & 0.962 \\
|
| 11 |
+
0.231 & 0.834 & 0.01 \\
|
| 12 |
+
0.926 & 0.578 & 0.718 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Solid Angle: $2.2$
|
| 17 |
+
Surface Area: $1.99$
|
| 18 |
+
Volume: $0.19$
|
pretraining/mathematica/geometry/solids/37501.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0 & 0 & -\sqrt{\frac{2}{3}} \\
|
| 5 |
+
0 & 0 & \sqrt{\frac{2}{3}} \\
|
| 6 |
+
-\frac{1}{2 \sqrt{3}} & -\frac{1}{2} & 0 \\
|
| 7 |
+
-\frac{1}{2 \sqrt{3}} & \frac{1}{2} & 0 \\
|
| 8 |
+
\frac{1}{\sqrt{3}} & 0 & 0 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Determine the EdgeCount.
|
| 11 |
+
Answer:
|
| 12 |
+
$9$
|
pretraining/mathematica/geometry/solids/40000.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.526 & 0.384 & 0.478 \\
|
| 5 |
+
0.153 & 0.181 & 0.253 \\
|
| 6 |
+
0.187 & 0.646 & 0.649 \\
|
| 7 |
+
0.071 & 0.896 & 0.564 \\
|
| 8 |
+
0.527 & 0.364 & 0.118 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Surface Area: $0.6$
|
| 13 |
+
Volume: $0.02$
|
| 14 |
+
Solid Angle: $1.3$
|
pretraining/mathematica/geometry/solids/43908.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.526 & 0.216 & 0.839 \\
|
| 5 |
+
0.116 & 0.941 & 0.924 \\
|
| 6 |
+
0.092 & 0.004 & 0.9 \\
|
| 7 |
+
0.007 & 0.99 & 0.864 \\
|
| 8 |
+
0.382 & 0.526 & 0.102 \\
|
| 9 |
+
0.419 & 0.53 & 0.121 \\
|
| 10 |
+
0.881 & 0.013 & 0.655 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Volume: $0.12$
|
| 15 |
+
Solid Angle: $4.84$
|
| 16 |
+
Surface Area: $1.74$
|
pretraining/mathematica/geometry/solids/43929.txt
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
-1 & 0 & -\sqrt{\sqrt{3}-1} \\
|
| 5 |
+
-\frac{1}{2} & -\frac{\sqrt{3}}{2} & -\sqrt{\sqrt{3}-1} \\
|
| 6 |
+
-\frac{1}{2} & \frac{\sqrt{3}}{2} & -\sqrt{\sqrt{3}-1} \\
|
| 7 |
+
0 & -1 & 0 \\
|
| 8 |
+
0 & 1 & 0 \\
|
| 9 |
+
\frac{1}{2} & -\frac{\sqrt{3}}{2} & -\sqrt{\sqrt{3}-1} \\
|
| 10 |
+
\frac{1}{2} & \frac{\sqrt{3}}{2} & -\sqrt{\sqrt{3}-1} \\
|
| 11 |
+
1 & 0 & -\sqrt{\sqrt{3}-1} \\
|
| 12 |
+
-\frac{1}{2 \sqrt{3}} & -\frac{1}{2} & \sqrt{\frac{2}{3}} \\
|
| 13 |
+
-\frac{1}{2 \sqrt{3}} & \frac{1}{2} & \sqrt{\frac{2}{3}} \\
|
| 14 |
+
\frac{1}{\sqrt{3}} & 0 & \sqrt{\frac{2}{3}} \\
|
| 15 |
+
-\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
|
| 16 |
+
-\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\
|
| 17 |
+
\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
|
| 18 |
+
\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\
|
| 19 |
+
\end{array}
|
| 20 |
+
\right)$. Determine the Centroid.
|
| 21 |
+
Answer:
|
| 22 |
+
$\left\{0,0,-\frac{\sqrt{\frac{34388823}{2}+12170346 \sqrt{3}-90 \sqrt{807276361713 \sqrt{3}-1281344819375}}}{15068}\right\}$
|
pretraining/mathematica/geometry/solids/44813.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.921 & 0.883 & 0.667 \\
|
| 5 |
+
0.53 & 0.651 & 0.203 \\
|
| 6 |
+
0.592 & 0.844 & 0.445 \\
|
| 7 |
+
0.408 & 0.005 & 0.1 \\
|
| 8 |
+
0.833 & 0.449 & 0.599 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Volume: $0.01$
|
| 13 |
+
Solid Angle: $0.17$
|
| 14 |
+
Surface Area: $0.69$
|
pretraining/mathematica/geometry/solids/45114.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.086 & 0.448 & 0.635 \\
|
| 5 |
+
0.561 & 0.393 & 0.359 \\
|
| 6 |
+
0.18 & 0.11 & 0.601 \\
|
| 7 |
+
0.289 & 0.217 & 0.397 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Solid Angle: $0.18$
|
| 12 |
+
Volume: $0.$
|
| 13 |
+
Surface Area: $0.23$
|
pretraining/mathematica/geometry/solids/45125.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.108 & 0.985 & 0.388 \\
|
| 5 |
+
0.714 & 0.079 & 0.836 \\
|
| 6 |
+
0.697 & 0.032 & 0.998 \\
|
| 7 |
+
0.91 & 0.529 & 0.47 \\
|
| 8 |
+
0.268 & 0.912 & 0.806 \\
|
| 9 |
+
0.33 & 0.852 & 0.21 \\
|
| 10 |
+
0.669 & 0.14 & 0.201 \\
|
| 11 |
+
0.146 & 0.543 & 0.303 \\
|
| 12 |
+
0.798 & 0.875 & 0.384 \\
|
| 13 |
+
0.091 & 0.868 & 0.695 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Surface Area: $2.03$
|
| 18 |
+
Solid Angle: $1.77$
|
| 19 |
+
Volume: $0.2$
|
pretraining/mathematica/geometry/solids/45461.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0 & -1 & -\frac{\sqrt{\frac{3}{2}}}{2} \\
|
| 5 |
+
0 & 1 & -\frac{\sqrt{\frac{3}{2}}}{2} \\
|
| 6 |
+
-\frac{1}{\sqrt{3}} & -1 & \frac{1}{2 \sqrt{6}} \\
|
| 7 |
+
-\frac{1}{\sqrt{3}} & 1 & \frac{1}{2 \sqrt{6}} \\
|
| 8 |
+
-\frac{1}{2 \sqrt{3}} & -\frac{1}{2} & \frac{5}{2 \sqrt{6}} \\
|
| 9 |
+
-\frac{1}{2 \sqrt{3}} & \frac{1}{2} & \frac{5}{2 \sqrt{6}} \\
|
| 10 |
+
\frac{1}{\sqrt{3}} & 0 & \frac{5}{2 \sqrt{6}} \\
|
| 11 |
+
\frac{2}{\sqrt{3}} & 0 & \frac{1}{2 \sqrt{6}} \\
|
| 12 |
+
-\frac{\sqrt{3}}{2} & -\frac{1}{2} & -\frac{\sqrt{\frac{3}{2}}}{2} \\
|
| 13 |
+
-\frac{\sqrt{3}}{2} & \frac{1}{2} & -\frac{\sqrt{\frac{3}{2}}}{2} \\
|
| 14 |
+
\frac{\sqrt{3}}{2} & -\frac{1}{2} & -\frac{\sqrt{\frac{3}{2}}}{2} \\
|
| 15 |
+
\frac{\sqrt{3}}{2} & \frac{1}{2} & -\frac{\sqrt{\frac{3}{2}}}{2} \\
|
| 16 |
+
\end{array}
|
| 17 |
+
\right)$. Determine the Circumcenter.
|
| 18 |
+
Answer:
|
| 19 |
+
$\{0,0,0\}$
|
pretraining/mathematica/geometry/solids/4697.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.944 & 0.299 & 0.66 \\
|
| 5 |
+
0.805 & 0.91 & 0.753 \\
|
| 6 |
+
0.146 & 0.313 & 0.878 \\
|
| 7 |
+
0.779 & 0.89 & 0.884 \\
|
| 8 |
+
0.531 & 0.734 & 0.756 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Surface Area: $0.65$
|
| 13 |
+
Solid Angle: $0.2$
|
| 14 |
+
Volume: $0.02$
|
pretraining/mathematica/geometry/solids/49755.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.663 & 0.852 & 0.895 \\
|
| 5 |
+
0.484 & 0.261 & 0.844 \\
|
| 6 |
+
0.89 & 0.254 & 0.968 \\
|
| 7 |
+
0.418 & 0.832 & 0.957 \\
|
| 8 |
+
0.372 & 0.207 & 0.071 \\
|
| 9 |
+
0.653 & 0.908 & 0.022 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Solid Angle: $2.42$
|
| 14 |
+
Surface Area: $1.7$
|
| 15 |
+
Volume: $0.13$
|
pretraining/mathematica/geometry/solids/51965.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.327 & 0.001 & 0.516 \\
|
| 5 |
+
0.31 & 0.047 & 0.005 \\
|
| 6 |
+
0.771 & 0.518 & 0.332 \\
|
| 7 |
+
0.954 & 0.623 & 0.632 \\
|
| 8 |
+
0.083 & 0.311 & 0.622 \\
|
| 9 |
+
0.463 & 0.926 & 0.282 \\
|
| 10 |
+
0.261 & 0.937 & 0.984 \\
|
| 11 |
+
0.676 & 0.039 & 0.781 \\
|
| 12 |
+
0.274 & 0.849 & 0.107 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Volume: $0.26$
|
| 17 |
+
Solid Angle: $3.26$
|
| 18 |
+
Surface Area: $2.39$
|
pretraining/mathematica/geometry/solids/53889.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.154 & 0.075 & 0.561 \\
|
| 5 |
+
0.362 & 0.279 & 0.996 \\
|
| 6 |
+
0.906 & 0.602 & 0.332 \\
|
| 7 |
+
0.697 & 0.703 & 0.793 \\
|
| 8 |
+
0.74 & 0.172 & 0.827 \\
|
| 9 |
+
0.068 & 0.77 & 0.425 \\
|
| 10 |
+
0.058 & 0.398 & 0.008 \\
|
| 11 |
+
0.433 & 0.615 & 0.877 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Surface Area: $1.87$
|
| 16 |
+
Volume: $0.17$
|
| 17 |
+
Solid Angle: $1.61$
|
pretraining/mathematica/geometry/solids/54215.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.174 & 0.285 & 0.822 \\
|
| 5 |
+
0.371 & 0.642 & 0.953 \\
|
| 6 |
+
0.823 & 0.07 & 0.016 \\
|
| 7 |
+
0.542 & 0.156 & 0.231 \\
|
| 8 |
+
0.961 & 0.475 & 0.92 \\
|
| 9 |
+
0.782 & 0.589 & 0.142 \\
|
| 10 |
+
0.993 & 0.667 & 0.973 \\
|
| 11 |
+
0.874 & 0.077 & 0.997 \\
|
| 12 |
+
0.438 & 0.256 & 0.016 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Volume: $0.2$
|
| 17 |
+
Solid Angle: $1.42$
|
| 18 |
+
Surface Area: $2.14$
|
pretraining/mathematica/geometry/solids/54669.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A sphere centered at $\{7.036,4.515,-0.259\}$ has radius $0.705$. Estimate the sphere's surface area and volume.
|
| 3 |
+
Answer:
|
| 4 |
+
Volume: $1.47$
|
| 5 |
+
Surface Area: $6.24$
|
pretraining/mathematica/geometry/solids/54801.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.327 & 0.803 & 0.44 \\
|
| 5 |
+
0.565 & 0.793 & 0.687 \\
|
| 6 |
+
0.325 & 0.733 & 0.9 \\
|
| 7 |
+
0.142 & 0.603 & 0.81 \\
|
| 8 |
+
0.373 & 0.106 & 0.545 \\
|
| 9 |
+
0.731 & 0.147 & 0.341 \\
|
| 10 |
+
0.8 & 0.07 & 0.601 \\
|
| 11 |
+
0.449 & 0.712 & 0.047 \\
|
| 12 |
+
0.825 & 0.209 & 0.621 \\
|
| 13 |
+
0.684 & 0.651 & 0.968 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Surface Area: $1.52$
|
| 18 |
+
Solid Angle: $3.$
|
| 19 |
+
Volume: $0.12$
|
pretraining/mathematica/geometry/solids/57410.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.995 & 0.514 & 0.578 \\
|
| 5 |
+
0.534 & 0.709 & 0.931 \\
|
| 6 |
+
0.682 & 0.022 & 0.895 \\
|
| 7 |
+
0.87 & 0.562 & 0.181 \\
|
| 8 |
+
0.432 & 0.213 & 0.085 \\
|
| 9 |
+
0.005 & 0.55 & 0.686 \\
|
| 10 |
+
0.782 & 0.193 & 0.749 \\
|
| 11 |
+
0.609 & 0.395 & 0.003 \\
|
| 12 |
+
0.778 & 0.91 & 0.944 \\
|
| 13 |
+
0.641 & 0.011 & 0.818 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Volume: $0.19$
|
| 18 |
+
Surface Area: $2.02$
|
| 19 |
+
Solid Angle: $2.75$
|
pretraining/mathematica/geometry/solids/57571.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.022 & 0.043 & 0.275 \\
|
| 5 |
+
0.552 & 0.943 & 0.35 \\
|
| 6 |
+
0.742 & 0.589 & 0.966 \\
|
| 7 |
+
0.211 & 0.566 & 0.693 \\
|
| 8 |
+
0.708 & 0.051 & 0.633 \\
|
| 9 |
+
0.013 & 0.804 & 0.594 \\
|
| 10 |
+
0.803 & 0.771 & 0.974 \\
|
| 11 |
+
0.059 & 0.84 & 0.215 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Volume: $0.15$
|
| 16 |
+
Surface Area: $2.$
|
| 17 |
+
Solid Angle: $0.57$
|
pretraining/mathematica/geometry/solids/58061.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.191 & 0.17 & 0.724 \\
|
| 5 |
+
0.284 & 0.593 & 0.997 \\
|
| 6 |
+
0.104 & 0.809 & 0.638 \\
|
| 7 |
+
0.689 & 0.68 & 0.902 \\
|
| 8 |
+
0.42 & 0.745 & 0.333 \\
|
| 9 |
+
0.227 & 0.144 & 0.675 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Volume: $0.05$
|
| 14 |
+
Surface Area: $0.85$
|
| 15 |
+
Solid Angle: $1.45$
|
pretraining/mathematica/geometry/solids/5850.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.962 & 0.285 & 0.518 \\
|
| 5 |
+
0.335 & 0.872 & 0.916 \\
|
| 6 |
+
0.627 & 0.347 & 0.726 \\
|
| 7 |
+
0.125 & 0.357 & 0.11 \\
|
| 8 |
+
0.132 & 0.828 & 0.483 \\
|
| 9 |
+
0.263 & 0.323 & 0.909 \\
|
| 10 |
+
0.04 & 0.227 & 0.58 \\
|
| 11 |
+
0.813 & 0.372 & 0.137 \\
|
| 12 |
+
0.562 & 0.876 & 0.902 \\
|
| 13 |
+
0.024 & 0.629 & 0.973 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Surface Area: $2.03$
|
| 18 |
+
Volume: $0.19$
|
| 19 |
+
Solid Angle: $1.1$
|
pretraining/mathematica/geometry/solids/58933.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.937 & 0.583 & 0.334 \\
|
| 5 |
+
0.389 & 0.529 & 0.95 \\
|
| 6 |
+
0.233 & 0.862 & 0.807 \\
|
| 7 |
+
0.58 & 0.095 & 0.649 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Surface Area: $0.72$
|
| 12 |
+
Solid Angle: $0.12$
|
| 13 |
+
Volume: $0.02$
|
pretraining/mathematica/geometry/solids/59499.txt
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.818 & 0.206 & 0.509 \\
|
| 5 |
+
0.253 & 0.661 & 0.849 \\
|
| 6 |
+
0.896 & 0.74 & 0.629 \\
|
| 7 |
+
0.108 & 0.867 & 0.446 \\
|
| 8 |
+
0.33 & 0.359 & 0.056 \\
|
| 9 |
+
0.474 & 0.902 & 0.033 \\
|
| 10 |
+
0.416 & 0.238 & 0.95 \\
|
| 11 |
+
0.109 & 0.588 & 0.25 \\
|
| 12 |
+
0.186 & 0.133 & 0.544 \\
|
| 13 |
+
0.722 & 0.505 & 0.008 \\
|
| 14 |
+
0.389 & 0.966 & 0.24 \\
|
| 15 |
+
0.723 & 0.686 & 0.004 \\
|
| 16 |
+
\end{array}
|
| 17 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 18 |
+
Answer:
|
| 19 |
+
Volume: $0.25$
|
| 20 |
+
Solid Angle: $2.24$
|
| 21 |
+
Surface Area: $2.2$
|
pretraining/mathematica/geometry/solids/66114.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.274 & 0.743 & 0.957 \\
|
| 5 |
+
0.478 & 0.105 & 0.386 \\
|
| 6 |
+
0.435 & 0.312 & 0.147 \\
|
| 7 |
+
0.021 & 0.147 & 0.793 \\
|
| 8 |
+
0.955 & 0.16 & 0.318 \\
|
| 9 |
+
0.195 & 0.567 & 0.331 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Surface Area: $1.28$
|
| 14 |
+
Volume: $0.08$
|
| 15 |
+
Solid Angle: $0.52$
|
pretraining/mathematica/geometry/solids/66854.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.208 & 0.444 & 0.742 \\
|
| 5 |
+
0.142 & 0.209 & 0.966 \\
|
| 6 |
+
0.095 & 0.008 & 0.669 \\
|
| 7 |
+
0.381 & 0.206 & 0.379 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Solid Angle: $0.39$
|
| 12 |
+
Surface Area: $0.31$
|
| 13 |
+
Volume: $0.$
|
pretraining/mathematica/geometry/solids/67018.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.162 & 0.941 & 0.265 \\
|
| 5 |
+
0.404 & 0.615 & 0.93 \\
|
| 6 |
+
0.749 & 0.223 & 0.725 \\
|
| 7 |
+
0.455 & 0.064 & 0.063 \\
|
| 8 |
+
0.874 & 0.282 & 0.574 \\
|
| 9 |
+
0.951 & 0.753 & 0.451 \\
|
| 10 |
+
0.909 & 0.267 & 0.203 \\
|
| 11 |
+
0.687 & 0.644 & 0.81 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Surface Area: $1.79$
|
| 16 |
+
Volume: $0.15$
|
| 17 |
+
Solid Angle: $0.65$
|
pretraining/mathematica/geometry/solids/71412.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.548 & 0.039 & 0.374 \\
|
| 5 |
+
0.69 & 0.885 & 0.286 \\
|
| 6 |
+
0.558 & 0.655 & 0.417 \\
|
| 7 |
+
0.254 & 0.165 & 0.942 \\
|
| 8 |
+
0.805 & 0.742 & 0.756 \\
|
| 9 |
+
0.884 & 0.13 & 0.562 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Solid Angle: $1.22$
|
| 14 |
+
Surface Area: $1.17$
|
| 15 |
+
Volume: $0.07$
|
pretraining/mathematica/geometry/solids/73725.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.022 & 0.239 & 0.698 \\
|
| 5 |
+
0.812 & 0.361 & 0.9 \\
|
| 6 |
+
0.724 & 0.789 & 0.101 \\
|
| 7 |
+
0.499 & 0.938 & 0.326 \\
|
| 8 |
+
0.889 & 0.062 & 0.846 \\
|
| 9 |
+
0.472 & 0.093 & 0.171 \\
|
| 10 |
+
0.049 & 0.283 & 0.674 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Volume: $0.14$
|
| 15 |
+
Surface Area: $1.73$
|
| 16 |
+
Solid Angle: $0.83$
|
pretraining/mathematica/geometry/solids/73987.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.609 & 0.158 & 0.958 \\
|
| 5 |
+
0.661 & 0.21 & 0.83 \\
|
| 6 |
+
0.741 & 0.754 & 0.559 \\
|
| 7 |
+
0.675 & 0.069 & 0.636 \\
|
| 8 |
+
0.146 & 0.758 & 0.939 \\
|
| 9 |
+
0.184 & 0.575 & 0.389 \\
|
| 10 |
+
0.775 & 0.838 & 0.038 \\
|
| 11 |
+
0.476 & 0.326 & 0.414 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Volume: $0.11$
|
| 16 |
+
Solid Angle: $0.92$
|
| 17 |
+
Surface Area: $1.5$
|
pretraining/mathematica/geometry/solids/75967.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.004 & 0.114 & 0.611 \\
|
| 5 |
+
0.438 & 0.76 & 0.378 \\
|
| 6 |
+
0.358 & 0.599 & 0.359 \\
|
| 7 |
+
0.049 & 0.723 & 0.187 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Surface Area: $0.35$
|
| 12 |
+
Solid Angle: $0.03$
|
| 13 |
+
Volume: $0.$
|
pretraining/mathematica/geometry/solids/76527.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.865 & 0.638 & 0.927 \\
|
| 5 |
+
0.206 & 0.79 & 0.515 \\
|
| 6 |
+
0.928 & 0.637 & 0.751 \\
|
| 7 |
+
0.48 & 0.233 & 0.639 \\
|
| 8 |
+
0.342 & 0.583 & 0.194 \\
|
| 9 |
+
0.19 & 0.863 & 0.636 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Surface Area: $0.88$
|
| 14 |
+
Volume: $0.04$
|
| 15 |
+
Solid Angle: $0.86$
|
pretraining/mathematica/geometry/solids/76823.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.281 & 0.985 & 0.259 \\
|
| 5 |
+
0.909 & 0.729 & 0.362 \\
|
| 6 |
+
0.841 & 0.592 & 0.544 \\
|
| 7 |
+
0.986 & 0.271 & 0.186 \\
|
| 8 |
+
0.349 & 0.857 & 0.99 \\
|
| 9 |
+
0.727 & 0.417 & 0.225 \\
|
| 10 |
+
0.12 & 0.137 & 0.803 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Solid Angle: $0.95$
|
| 15 |
+
Surface Area: $1.78$
|
| 16 |
+
Volume: $0.14$
|