Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- pretraining/mathematica/geometry/solids/10668.txt +19 -0
- pretraining/mathematica/geometry/solids/11037.txt +17 -0
- pretraining/mathematica/geometry/solids/11879.txt +19 -0
- pretraining/mathematica/geometry/solids/12094.txt +14 -0
- pretraining/mathematica/geometry/solids/13278.txt +18 -0
- pretraining/mathematica/geometry/solids/14645.txt +13 -0
- pretraining/mathematica/geometry/solids/16212.txt +20 -0
- pretraining/mathematica/geometry/solids/19529.txt +14 -0
- pretraining/mathematica/geometry/solids/21064.txt +18 -0
- pretraining/mathematica/geometry/solids/21085.txt +15 -0
- pretraining/mathematica/geometry/solids/22351.txt +16 -0
- pretraining/mathematica/geometry/solids/23039.txt +19 -0
- pretraining/mathematica/geometry/solids/24086.txt +5 -0
- pretraining/mathematica/geometry/solids/25998.txt +21 -0
- pretraining/mathematica/geometry/solids/26772.txt +17 -0
- pretraining/mathematica/geometry/solids/27895.txt +17 -0
- pretraining/mathematica/geometry/solids/28130.txt +13 -0
- pretraining/mathematica/geometry/solids/2913.txt +14 -0
- pretraining/mathematica/geometry/solids/3021.txt +15 -0
- pretraining/mathematica/geometry/solids/3200.txt +13 -0
- pretraining/mathematica/geometry/solids/32693.txt +19 -0
- pretraining/mathematica/geometry/solids/32973.txt +15 -0
- pretraining/mathematica/geometry/solids/37432.txt +13 -0
- pretraining/mathematica/geometry/solids/37615.txt +15 -0
- pretraining/mathematica/geometry/solids/41968.txt +17 -0
- pretraining/mathematica/geometry/solids/43653.txt +16 -0
- pretraining/mathematica/geometry/solids/44053.txt +17 -0
- pretraining/mathematica/geometry/solids/48581.txt +15 -0
- pretraining/mathematica/geometry/solids/50997.txt +19 -0
- pretraining/mathematica/geometry/solids/53434.txt +25 -0
- pretraining/mathematica/geometry/solids/57106.txt +19 -0
- pretraining/mathematica/geometry/solids/57134.txt +5 -0
- pretraining/mathematica/geometry/solids/57137.txt +16 -0
- pretraining/mathematica/geometry/solids/57142.txt +15 -0
- pretraining/mathematica/geometry/solids/58786.txt +18 -0
- pretraining/mathematica/geometry/solids/59056.txt +16 -0
- pretraining/mathematica/geometry/solids/65769.txt +13 -0
- pretraining/mathematica/geometry/solids/68795.txt +21 -0
- pretraining/mathematica/geometry/solids/69430.txt +57 -0
- pretraining/mathematica/geometry/solids/70413.txt +13 -0
- pretraining/mathematica/geometry/solids/70513.txt +14 -0
- pretraining/mathematica/geometry/solids/71243.txt +18 -0
- pretraining/mathematica/geometry/solids/71837.txt +16 -0
- pretraining/mathematica/geometry/solids/73105.txt +16 -0
- pretraining/mathematica/geometry/solids/73142.txt +16 -0
- pretraining/mathematica/geometry/solids/73287.txt +19 -0
- pretraining/mathematica/geometry/solids/74382.txt +18 -0
- pretraining/mathematica/geometry/solids/74469.txt +13 -0
- pretraining/mathematica/geometry/solids/75003.txt +19 -0
- pretraining/mathematica/geometry/solids/75734.txt +19 -0
pretraining/mathematica/geometry/solids/10668.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.736 & 0.925 & 0.081 \\
|
| 5 |
+
0.106 & 0.104 & 0.262 \\
|
| 6 |
+
0.356 & 0.414 & 0.561 \\
|
| 7 |
+
0.569 & 0.417 & 0.846 \\
|
| 8 |
+
0.894 & 0.081 & 0.297 \\
|
| 9 |
+
0.825 & 0.454 & 0.873 \\
|
| 10 |
+
0.53 & 0.131 & 0.856 \\
|
| 11 |
+
0.191 & 0.586 & 0.078 \\
|
| 12 |
+
0.289 & 0.926 & 0.16 \\
|
| 13 |
+
0.242 & 0.018 & 0.568 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Surface Area: $2.11$
|
| 18 |
+
Volume: $0.2$
|
| 19 |
+
Solid Angle: $1.07$
|
pretraining/mathematica/geometry/solids/11037.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.17 & 0.902 & 0.73 \\
|
| 5 |
+
0.754 & 0.47 & 0.504 \\
|
| 6 |
+
0.843 & 0.487 & 0.276 \\
|
| 7 |
+
0.102 & 0.91 & 0.587 \\
|
| 8 |
+
0.192 & 0.622 & 0.978 \\
|
| 9 |
+
0.32 & 0.282 & 0.046 \\
|
| 10 |
+
0.524 & 0.533 & 0.884 \\
|
| 11 |
+
0.244 & 0.76 & 0.167 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Solid Angle: $2.13$
|
| 16 |
+
Surface Area: $1.34$
|
| 17 |
+
Volume: $0.09$
|
pretraining/mathematica/geometry/solids/11879.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.739 & 0.564 & 0.677 \\
|
| 5 |
+
0.126 & 0.832 & 0.213 \\
|
| 6 |
+
0.777 & 0.836 & 0.194 \\
|
| 7 |
+
0.001 & 0.88 & 0.779 \\
|
| 8 |
+
0.905 & 0.024 & 0.921 \\
|
| 9 |
+
0.215 & 0.223 & 0.033 \\
|
| 10 |
+
0.846 & 0.589 & 0. \\
|
| 11 |
+
0.594 & 0.78 & 0.741 \\
|
| 12 |
+
0.728 & 0.023 & 0.947 \\
|
| 13 |
+
0.136 & 0.204 & 0.156 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Volume: $0.29$
|
| 18 |
+
Solid Angle: $6.01$
|
| 19 |
+
Surface Area: $2.59$
|
pretraining/mathematica/geometry/solids/12094.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.62 & 0.689 & 0.79 \\
|
| 5 |
+
0.242 & 0.833 & 0.378 \\
|
| 6 |
+
0.921 & 0.69 & 0.418 \\
|
| 7 |
+
0.732 & 0.436 & 0.388 \\
|
| 8 |
+
0.168 & 0.004 & 0.185 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Surface Area: $0.96$
|
| 13 |
+
Solid Angle: $0.94$
|
| 14 |
+
Volume: $0.04$
|
pretraining/mathematica/geometry/solids/13278.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.156 & 0.249 & 0.445 \\
|
| 5 |
+
0.755 & 0.429 & 0.09 \\
|
| 6 |
+
0.409 & 0.339 & 0.574 \\
|
| 7 |
+
0.506 & 0.464 & 0.22 \\
|
| 8 |
+
0.399 & 0.577 & 0.543 \\
|
| 9 |
+
0.118 & 0.003 & 0.165 \\
|
| 10 |
+
0.745 & 0.086 & 0.212 \\
|
| 11 |
+
0.99 & 0.964 & 0.523 \\
|
| 12 |
+
0.949 & 0.681 & 0.32 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Surface Area: $1.27$
|
| 17 |
+
Solid Angle: $1.36$
|
| 18 |
+
Volume: $0.07$
|
pretraining/mathematica/geometry/solids/14645.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.228 & 0.969 & 0.355 \\
|
| 5 |
+
0.522 & 0.006 & 0.568 \\
|
| 6 |
+
0.444 & 0.643 & 0.662 \\
|
| 7 |
+
0.831 & 0.89 & 0.258 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Volume: $0.02$
|
| 12 |
+
Solid Angle: $0.34$
|
| 13 |
+
Surface Area: $0.75$
|
pretraining/mathematica/geometry/solids/16212.txt
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.48 & 0.592 & 0.902 \\
|
| 5 |
+
0.329 & 0.339 & 0.848 \\
|
| 6 |
+
0.7 & 0.245 & 0.945 \\
|
| 7 |
+
0.787 & 0.141 & 0.448 \\
|
| 8 |
+
0.483 & 0.538 & 0.202 \\
|
| 9 |
+
0.177 & 0.313 & 0.029 \\
|
| 10 |
+
0.718 & 0.471 & 0.744 \\
|
| 11 |
+
0.553 & 0.513 & 0.311 \\
|
| 12 |
+
0.687 & 0.232 & 0.351 \\
|
| 13 |
+
0.555 & 0.248 & 0.9 \\
|
| 14 |
+
0.171 & 0.61 & 0.64 \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 17 |
+
Answer:
|
| 18 |
+
Surface Area: $1.24$
|
| 19 |
+
Solid Angle: $1.96$
|
| 20 |
+
Volume: $0.09$
|
pretraining/mathematica/geometry/solids/19529.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.819 & 0.976 & 0.378 \\
|
| 5 |
+
0.895 & 0.63 & 0.878 \\
|
| 6 |
+
0.337 & 0.054 & 0.48 \\
|
| 7 |
+
0.732 & 0.434 & 0.58 \\
|
| 8 |
+
0.747 & 0.577 & 0.894 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Surface Area: $0.65$
|
| 13 |
+
Solid Angle: $0.16$
|
| 14 |
+
Volume: $0.02$
|
pretraining/mathematica/geometry/solids/21064.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.116 & 0.739 & 0.243 \\
|
| 5 |
+
0.199 & 0.641 & 0.226 \\
|
| 6 |
+
0.628 & 0.911 & 0.113 \\
|
| 7 |
+
0.718 & 0.222 & 0.919 \\
|
| 8 |
+
0.328 & 0.782 & 0.951 \\
|
| 9 |
+
0.86 & 0.465 & 0.625 \\
|
| 10 |
+
0.348 & 0.555 & 0.33 \\
|
| 11 |
+
0.719 & 0.971 & 0.607 \\
|
| 12 |
+
0.262 & 0.798 & 0.569 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Surface Area: $1.43$
|
| 17 |
+
Solid Angle: $1.26$
|
| 18 |
+
Volume: $0.1$
|
pretraining/mathematica/geometry/solids/21085.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.814 & 0.614 & 0.448 \\
|
| 5 |
+
0.237 & 0.776 & 0.994 \\
|
| 6 |
+
0.171 & 0.199 & 0.352 \\
|
| 7 |
+
0.169 & 0.494 & 0.465 \\
|
| 8 |
+
0.398 & 0.882 & 0.052 \\
|
| 9 |
+
0.258 & 0.425 & 0.065 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Surface Area: $1.22$
|
| 14 |
+
Solid Angle: $0.95$
|
| 15 |
+
Volume: $0.08$
|
pretraining/mathematica/geometry/solids/22351.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.858 & 0.815 & 0.806 \\
|
| 5 |
+
0.933 & 0.154 & 0.64 \\
|
| 6 |
+
0.833 & 0.906 & 0.606 \\
|
| 7 |
+
0.019 & 0.457 & 0.189 \\
|
| 8 |
+
0.228 & 0.62 & 0.107 \\
|
| 9 |
+
0.156 & 0.949 & 0.238 \\
|
| 10 |
+
0.302 & 0.21 & 0.504 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Solid Angle: $1.18$
|
| 15 |
+
Volume: $0.09$
|
| 16 |
+
Surface Area: $1.55$
|
pretraining/mathematica/geometry/solids/23039.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.224 & 0.718 & 0.856 \\
|
| 5 |
+
0.729 & 0.518 & 0.73 \\
|
| 6 |
+
0.713 & 0.962 & 0.412 \\
|
| 7 |
+
0.311 & 0.474 & 0.633 \\
|
| 8 |
+
0.287 & 0.591 & 0.381 \\
|
| 9 |
+
0.271 & 0.846 & 0.368 \\
|
| 10 |
+
0.332 & 0.793 & 0.311 \\
|
| 11 |
+
0.55 & 0.845 & 0.957 \\
|
| 12 |
+
0.812 & 0.543 & 0.898 \\
|
| 13 |
+
0.36 & 0.352 & 0.495 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Surface Area: $1.03$
|
| 18 |
+
Volume: $0.07$
|
| 19 |
+
Solid Angle: $1.58$
|
pretraining/mathematica/geometry/solids/24086.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A sphere centered at $\{-4.764,-5.611,8.819\}$ has radius $9.292$. Estimate the sphere's surface area and volume.
|
| 3 |
+
Answer:
|
| 4 |
+
Volume: $3360.74$
|
| 5 |
+
Surface Area: $1085.03$
|
pretraining/mathematica/geometry/solids/25998.txt
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.733 & 0.972 & 0.788 \\
|
| 5 |
+
0.248 & 0.661 & 0.567 \\
|
| 6 |
+
0.848 & 0.125 & 0.461 \\
|
| 7 |
+
0.206 & 0.789 & 0.009 \\
|
| 8 |
+
0.861 & 0.151 & 0.418 \\
|
| 9 |
+
0.212 & 0.018 & 0.58 \\
|
| 10 |
+
0.948 & 0.107 & 0.77 \\
|
| 11 |
+
0.25 & 0.198 & 0.061 \\
|
| 12 |
+
0.267 & 0.215 & 0.667 \\
|
| 13 |
+
0.756 & 0.183 & 0.278 \\
|
| 14 |
+
0.863 & 0.484 & 0.299 \\
|
| 15 |
+
0.559 & 0.762 & 0.327 \\
|
| 16 |
+
\end{array}
|
| 17 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 18 |
+
Answer:
|
| 19 |
+
Surface Area: $2.21$
|
| 20 |
+
Solid Angle: $0.9$
|
| 21 |
+
Volume: $0.23$
|
pretraining/mathematica/geometry/solids/26772.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.95 & 0.889 & 0.556 \\
|
| 5 |
+
0.825 & 0.27 & 0.063 \\
|
| 6 |
+
0.591 & 0.831 & 0.399 \\
|
| 7 |
+
0.023 & 0.022 & 0.853 \\
|
| 8 |
+
0.101 & 0.482 & 0.285 \\
|
| 9 |
+
0.063 & 0.014 & 0.989 \\
|
| 10 |
+
0.979 & 0.577 & 0.815 \\
|
| 11 |
+
0.558 & 0.987 & 0.202 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Solid Angle: $1.39$
|
| 16 |
+
Surface Area: $2.23$
|
| 17 |
+
Volume: $0.19$
|
pretraining/mathematica/geometry/solids/27895.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.408 & 0.238 & 0.887 \\
|
| 5 |
+
0.165 & 0.409 & 0.634 \\
|
| 6 |
+
0.658 & 0.623 & 0.067 \\
|
| 7 |
+
0.848 & 0.696 & 0.75 \\
|
| 8 |
+
0.693 & 0.965 & 0.81 \\
|
| 9 |
+
0.47 & 0.169 & 0.164 \\
|
| 10 |
+
0.193 & 0.92 & 0.038 \\
|
| 11 |
+
0.672 & 0.212 & 0.776 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Surface Area: $1.87$
|
| 16 |
+
Volume: $0.18$
|
| 17 |
+
Solid Angle: $1.72$
|
pretraining/mathematica/geometry/solids/28130.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.751 & 0.257 & 0.101 \\
|
| 5 |
+
0.325 & 0.121 & 0.358 \\
|
| 6 |
+
0.686 & 0.631 & 0.139 \\
|
| 7 |
+
0.35 & 0.392 & 0.253 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Solid Angle: $0.15$
|
| 12 |
+
Surface Area: $0.28$
|
| 13 |
+
Volume: $0.$
|
pretraining/mathematica/geometry/solids/2913.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.099 & 0.493 & 0.106 \\
|
| 5 |
+
0.927 & 0.376 & 0.684 \\
|
| 6 |
+
0.79 & 0.946 & 0.22 \\
|
| 7 |
+
0.895 & 0.658 & 0.75 \\
|
| 8 |
+
0.201 & 0.911 & 0.714 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Solid Angle: $0.43$
|
| 13 |
+
Volume: $0.08$
|
| 14 |
+
Surface Area: $1.29$
|
pretraining/mathematica/geometry/solids/3021.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.221 & 0.616 & 0.279 \\
|
| 5 |
+
0.312 & 0.956 & 0.001 \\
|
| 6 |
+
0.971 & 0.43 & 0.448 \\
|
| 7 |
+
0.888 & 0.725 & 0.215 \\
|
| 8 |
+
0.225 & 0.279 & 0.084 \\
|
| 9 |
+
0.982 & 0.072 & 0.82 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Solid Angle: $2.41$
|
| 14 |
+
Surface Area: $1.34$
|
| 15 |
+
Volume: $0.06$
|
pretraining/mathematica/geometry/solids/3200.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.795 & 0.305 & 0.258 \\
|
| 5 |
+
0.609 & 0.393 & 0.313 \\
|
| 6 |
+
0.572 & 0.501 & 0.322 \\
|
| 7 |
+
0.916 & 0.449 & 0.342 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Surface Area: $0.08$
|
| 12 |
+
Volume: $0.$
|
| 13 |
+
Solid Angle: $0.16$
|
pretraining/mathematica/geometry/solids/32693.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.716 & 0.974 & 0.969 \\
|
| 5 |
+
0.539 & 0.127 & 0.175 \\
|
| 6 |
+
0.237 & 0.913 & 0.894 \\
|
| 7 |
+
0.584 & 0.742 & 0.322 \\
|
| 8 |
+
0.54 & 0.492 & 0.776 \\
|
| 9 |
+
0.747 & 0.151 & 0.635 \\
|
| 10 |
+
0.02 & 0.13 & 0.306 \\
|
| 11 |
+
0.961 & 0.188 & 0.067 \\
|
| 12 |
+
0.336 & 0.751 & 0.065 \\
|
| 13 |
+
0.488 & 0.379 & 0.061 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Surface Area: $2.34$
|
| 18 |
+
Volume: $0.24$
|
| 19 |
+
Solid Angle: $0.86$
|
pretraining/mathematica/geometry/solids/32973.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.571 & 0.715 & 0.063 \\
|
| 5 |
+
0.182 & 0.396 & 0.168 \\
|
| 6 |
+
0.545 & 0.104 & 0.507 \\
|
| 7 |
+
0.009 & 0.117 & 0.614 \\
|
| 8 |
+
0.33 & 0.026 & 0.712 \\
|
| 9 |
+
0.034 & 0.051 & 0.047 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Solid Angle: $0.27$
|
| 14 |
+
Surface Area: $0.98$
|
| 15 |
+
Volume: $0.05$
|
pretraining/mathematica/geometry/solids/37432.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.304 & 0.828 & 0.362 \\
|
| 5 |
+
0.576 & 0.787 & 0.994 \\
|
| 6 |
+
0.495 & 0.063 & 0.481 \\
|
| 7 |
+
0.176 & 0.243 & 0.929 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Volume: $0.04$
|
| 12 |
+
Solid Angle: $0.37$
|
| 13 |
+
Surface Area: $0.9$
|
pretraining/mathematica/geometry/solids/37615.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.086 & 0.631 & 0.237 \\
|
| 5 |
+
0.801 & 0.464 & 0.757 \\
|
| 6 |
+
0.844 & 0.981 & 0.078 \\
|
| 7 |
+
0.789 & 0.22 & 0.761 \\
|
| 8 |
+
0.089 & 0.114 & 0.781 \\
|
| 9 |
+
0.587 & 0.679 & 0.837 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Surface Area: $1.61$
|
| 14 |
+
Solid Angle: $0.59$
|
| 15 |
+
Volume: $0.09$
|
pretraining/mathematica/geometry/solids/41968.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.038 & 0.673 & 0.586 \\
|
| 5 |
+
0.888 & 0.969 & 0.577 \\
|
| 6 |
+
0.767 & 0.244 & 0.576 \\
|
| 7 |
+
0.872 & 0.556 & 0.135 \\
|
| 8 |
+
0.712 & 0.387 & 0.226 \\
|
| 9 |
+
0.893 & 0.995 & 0.719 \\
|
| 10 |
+
0.43 & 0.159 & 0.422 \\
|
| 11 |
+
0.159 & 0.537 & 0.777 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Solid Angle: $1.09$
|
| 16 |
+
Surface Area: $1.44$
|
| 17 |
+
Volume: $0.11$
|
pretraining/mathematica/geometry/solids/43653.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.04 & 0.012 & 0.01 \\
|
| 5 |
+
0.964 & 0.416 & 0.505 \\
|
| 6 |
+
0.459 & 0.842 & 0.833 \\
|
| 7 |
+
0.988 & 0.81 & 0.621 \\
|
| 8 |
+
0.993 & 0.355 & 0.091 \\
|
| 9 |
+
0.889 & 0.354 & 0.292 \\
|
| 10 |
+
0.089 & 0.424 & 0.567 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Solid Angle: $0.15$
|
| 15 |
+
Volume: $0.07$
|
| 16 |
+
Surface Area: $1.76$
|
pretraining/mathematica/geometry/solids/44053.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.941 & 0.117 & 0.787 \\
|
| 5 |
+
0.429 & 0.744 & 0.504 \\
|
| 6 |
+
0.948 & 0.235 & 0.461 \\
|
| 7 |
+
0.023 & 0.378 & 0.456 \\
|
| 8 |
+
0.317 & 0.514 & 0.117 \\
|
| 9 |
+
0.799 & 0.351 & 0.832 \\
|
| 10 |
+
0.16 & 0.342 & 0.801 \\
|
| 11 |
+
0.23 & 0.004 & 0.624 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 14 |
+
Answer:
|
| 15 |
+
Surface Area: $1.47$
|
| 16 |
+
Volume: $0.12$
|
| 17 |
+
Solid Angle: $1.13$
|
pretraining/mathematica/geometry/solids/48581.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0. & 0. & 1.192 \\
|
| 5 |
+
0.607 & 0. & 0.397 \\
|
| 6 |
+
-0.304 & 0.526 & 0.397 \\
|
| 7 |
+
0.304 & 0.526 & -0.397 \\
|
| 8 |
+
-0.304 & -0.526 & 0.397 \\
|
| 9 |
+
0.304 & -0.526 & -0.397 \\
|
| 10 |
+
-0.607 & 0. & -0.397 \\
|
| 11 |
+
0. & 0. & -1.192 \\
|
| 12 |
+
\end{array}
|
| 13 |
+
\right)$. Determine the Inradius.
|
| 14 |
+
Answer:
|
| 15 |
+
$0.43$
|
pretraining/mathematica/geometry/solids/50997.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.912 & 0.994 & 0.491 \\
|
| 5 |
+
0.069 & 0.146 & 0.957 \\
|
| 6 |
+
0.344 & 0.895 & 0.339 \\
|
| 7 |
+
0.984 & 0.514 & 0.592 \\
|
| 8 |
+
0.256 & 0.785 & 0.692 \\
|
| 9 |
+
0.742 & 0.045 & 0.102 \\
|
| 10 |
+
0.809 & 0.12 & 0.521 \\
|
| 11 |
+
0.137 & 0.616 & 0.874 \\
|
| 12 |
+
0.508 & 0.95 & 0.863 \\
|
| 13 |
+
0.646 & 0.03 & 0.908 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Solid Angle: $1.36$
|
| 18 |
+
Surface Area: $2.47$
|
| 19 |
+
Volume: $0.27$
|
pretraining/mathematica/geometry/solids/53434.txt
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
-\frac{i \left(1+(-1)^{2/9}\right)}{2 \left((-1)^{2/9}-1\right)} & -\frac{1}{2} & \frac{1}{2} \sqrt{1-\frac{\sqrt[9]{-1}}{\left(1+\sqrt[9]{-1}\right)^2}} \\
|
| 5 |
+
-\frac{i \left(1+(-1)^{2/9}\right)}{2 \left((-1)^{2/9}-1\right)} & \frac{1}{2} & \frac{1}{2} \sqrt{1-\frac{\sqrt[9]{-1}}{\left(1+\sqrt[9]{-1}\right)^2}} \\
|
| 6 |
+
\frac{i \left(1+(-1)^{2/9}\right)}{2 \left((-1)^{2/9}-1\right)} & -\frac{1}{2} & -\frac{1}{2} \sqrt{1-\frac{\sqrt[9]{-1}}{\left(1+\sqrt[9]{-1}\right)^2}} \\
|
| 7 |
+
\frac{i \left(1+(-1)^{2/9}\right)}{2 \left((-1)^{2/9}-1\right)} & \frac{1}{2} & -\frac{1}{2} \sqrt{1-\frac{\sqrt[9]{-1}}{\left(1+\sqrt[9]{-1}\right)^2}} \\
|
| 8 |
+
-\frac{(-1)^{11/18}}{(-1)^{2/9}-1} & 0 & -\frac{1}{2} \sqrt{1-\frac{\sqrt[9]{-1}}{\left(1+\sqrt[9]{-1}\right)^2}} \\
|
| 9 |
+
-\frac{(-1)^{11/18}}{2 \left((-1)^{2/9}-1\right)} & -\frac{(-1)^{11/18} \sqrt{3}}{2 \left((-1)^{2/9}-1\right)} & \frac{1}{2} \sqrt{1-\frac{\sqrt[9]{-1}}{\left(1+\sqrt[9]{-1}\right)^2}} \\
|
| 10 |
+
-\frac{(-1)^{11/18}}{2 \left((-1)^{2/9}-1\right)} & \frac{(-1)^{11/18} \sqrt{3}}{2 \left((-1)^{2/9}-1\right)} & \frac{1}{2} \sqrt{1-\frac{\sqrt[9]{-1}}{\left(1+\sqrt[9]{-1}\right)^2}} \\
|
| 11 |
+
\frac{(-1)^{11/18}}{2 \left((-1)^{2/9}-1\right)} & -\frac{(-1)^{11/18} \sqrt{3}}{2 \left((-1)^{2/9}-1\right)} & -\frac{1}{2} \sqrt{1-\frac{\sqrt[9]{-1}}{\left(1+\sqrt[9]{-1}\right)^2}} \\
|
| 12 |
+
\frac{(-1)^{11/18}}{2 \left((-1)^{2/9}-1\right)} & \frac{(-1)^{11/18} \sqrt{3}}{2 \left((-1)^{2/9}-1\right)} & -\frac{1}{2} \sqrt{1-\frac{\sqrt[9]{-1}}{\left(1+\sqrt[9]{-1}\right)^2}} \\
|
| 13 |
+
\frac{(-1)^{11/18}}{(-1)^{2/9}-1} & 0 & \frac{1}{2} \sqrt{1-\frac{\sqrt[9]{-1}}{\left(1+\sqrt[9]{-1}\right)^2}} \\
|
| 14 |
+
-\frac{(-1)^{7/18} \left(1+(-1)^{4/9}\right)}{2 \left((-1)^{2/9}-1\right)} & \frac{(-1)^{8/9} \left((-1)^{4/9}-1\right)}{2 \left((-1)^{2/9}-1\right)} & -\frac{1}{2} \sqrt{1-\frac{\sqrt[9]{-1}}{\left(1+\sqrt[9]{-1}\right)^2}} \\
|
| 15 |
+
-\frac{(-1)^{7/18} \left(1+(-1)^{4/9}\right)}{2 \left((-1)^{2/9}-1\right)} & -\frac{(-1)^{8/9} \left((-1)^{4/9}-1\right)}{2 \left((-1)^{2/9}-1\right)} & -\frac{1}{2} \sqrt{1-\frac{\sqrt[9]{-1}}{\left(1+\sqrt[9]{-1}\right)^2}} \\
|
| 16 |
+
\frac{(-1)^{7/18} \left(1+(-1)^{4/9}\right)}{2 \left((-1)^{2/9}-1\right)} & \frac{(-1)^{8/9} \left((-1)^{4/9}-1\right)}{2 \left((-1)^{2/9}-1\right)} & \frac{1}{2} \sqrt{1-\frac{\sqrt[9]{-1}}{\left(1+\sqrt[9]{-1}\right)^2}} \\
|
| 17 |
+
\frac{(-1)^{7/18} \left(1+(-1)^{4/9}\right)}{2 \left((-1)^{2/9}-1\right)} & -\frac{(-1)^{8/9} \left((-1)^{4/9}-1\right)}{2 \left((-1)^{2/9}-1\right)} & \frac{1}{2} \sqrt{1-\frac{\sqrt[9]{-1}}{\left(1+\sqrt[9]{-1}\right)^2}} \\
|
| 18 |
+
-\frac{\sqrt[18]{-1} \left(\sqrt[9]{-1}-1\right)}{2 \left((-1)^{2/9}-1\right)} & -\frac{(-1)^{5/9} \left(1+\sqrt[9]{-1}\right)}{2 \left((-1)^{2/9}-1\right)} & -\frac{1}{2} \sqrt{1-\frac{\sqrt[9]{-1}}{\left(1+\sqrt[9]{-1}\right)^2}} \\
|
| 19 |
+
-\frac{\sqrt[18]{-1} \left(\sqrt[9]{-1}-1\right)}{2 \left((-1)^{2/9}-1\right)} & \frac{(-1)^{5/9} \left(1+\sqrt[9]{-1}\right)}{2 \left((-1)^{2/9}-1\right)} & -\frac{1}{2} \sqrt{1-\frac{\sqrt[9]{-1}}{\left(1+\sqrt[9]{-1}\right)^2}} \\
|
| 20 |
+
\frac{\sqrt[18]{-1} \left(\sqrt[9]{-1}-1\right)}{2 \left((-1)^{2/9}-1\right)} & -\frac{(-1)^{5/9} \left(1+\sqrt[9]{-1}\right)}{2 \left((-1)^{2/9}-1\right)} & \frac{1}{2} \sqrt{1-\frac{\sqrt[9]{-1}}{\left(1+\sqrt[9]{-1}\right)^2}} \\
|
| 21 |
+
\frac{\sqrt[18]{-1} \left(\sqrt[9]{-1}-1\right)}{2 \left((-1)^{2/9}-1\right)} & \frac{(-1)^{5/9} \left(1+\sqrt[9]{-1}\right)}{2 \left((-1)^{2/9}-1\right)} & \frac{1}{2} \sqrt{1-\frac{\sqrt[9]{-1}}{\left(1+\sqrt[9]{-1}\right)^2}} \\
|
| 22 |
+
\end{array}
|
| 23 |
+
\right)$. Determine the Volume.
|
| 24 |
+
Answer:
|
| 25 |
+
$\frac{1}{2} \sqrt{\frac{3}{2} \left(26+\frac{70}{\sqrt[3]{\frac{1}{2} \left(37+i \sqrt{3}\right)}}+5\ 2^{2/3} \sqrt[3]{37+i \sqrt{3}}\right)}$
|
pretraining/mathematica/geometry/solids/57106.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.061 & 0.172 & 0.495 \\
|
| 5 |
+
0.004 & 0.627 & 0.704 \\
|
| 6 |
+
0.109 & 0.478 & 0.287 \\
|
| 7 |
+
0.746 & 0.456 & 0.925 \\
|
| 8 |
+
0.931 & 0.647 & 0.074 \\
|
| 9 |
+
0.969 & 0.361 & 0.091 \\
|
| 10 |
+
0.717 & 0.885 & 0.525 \\
|
| 11 |
+
0.073 & 0.743 & 0.673 \\
|
| 12 |
+
0.158 & 0.743 & 0.614 \\
|
| 13 |
+
0.051 & 0.368 & 0.786 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Surface Area: $1.92$
|
| 18 |
+
Volume: $0.18$
|
| 19 |
+
Solid Angle: $1.65$
|
pretraining/mathematica/geometry/solids/57134.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A sphere centered at $\{-3.149,-0.09,-3.843\}$ has radius $7.936$. Estimate the sphere's surface area and volume.
|
| 3 |
+
Answer:
|
| 4 |
+
Surface Area: $791.49$
|
| 5 |
+
Volume: $2093.83$
|
pretraining/mathematica/geometry/solids/57137.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.613 & 0.108 & 0.046 \\
|
| 5 |
+
0.161 & 0.818 & 0.649 \\
|
| 6 |
+
0.811 & 0.845 & 0.927 \\
|
| 7 |
+
0.223 & 0.087 & 0.667 \\
|
| 8 |
+
0.564 & 0.737 & 0.313 \\
|
| 9 |
+
0.577 & 0.415 & 0.035 \\
|
| 10 |
+
0.137 & 0.222 & 0.455 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Surface Area: $1.59$
|
| 15 |
+
Solid Angle: $0.81$
|
| 16 |
+
Volume: $0.13$
|
pretraining/mathematica/geometry/solids/57142.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.832 & 0.955 & 0.35 \\
|
| 5 |
+
0.133 & 0.246 & 0.075 \\
|
| 6 |
+
0.188 & 0.011 & 0.334 \\
|
| 7 |
+
0.035 & 0.98 & 0.352 \\
|
| 8 |
+
0.487 & 0.311 & 0.971 \\
|
| 9 |
+
0.662 & 0.789 & 0.575 \\
|
| 10 |
+
\end{array}
|
| 11 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 12 |
+
Answer:
|
| 13 |
+
Solid Angle: $0.65$
|
| 14 |
+
Surface Area: $1.71$
|
| 15 |
+
Volume: $0.12$
|
pretraining/mathematica/geometry/solids/58786.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.992 & 0.549 & 0.853 \\
|
| 5 |
+
0.303 & 0.435 & 0.005 \\
|
| 6 |
+
0.395 & 0.06 & 0.869 \\
|
| 7 |
+
0.94 & 0.228 & 0.535 \\
|
| 8 |
+
0.175 & 0.414 & 0.957 \\
|
| 9 |
+
0.852 & 0.686 & 0.31 \\
|
| 10 |
+
0.556 & 0.922 & 0.886 \\
|
| 11 |
+
0.775 & 0.021 & 0.498 \\
|
| 12 |
+
0.011 & 0.695 & 0.654 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Surface Area: $2.29$
|
| 17 |
+
Solid Angle: $1.86$
|
| 18 |
+
Volume: $0.25$
|
pretraining/mathematica/geometry/solids/59056.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.277 & 0.754 & 0.27 \\
|
| 5 |
+
0.774 & 0.296 & 0.878 \\
|
| 6 |
+
0.868 & 0.891 & 0.796 \\
|
| 7 |
+
0.748 & 0.646 & 0.954 \\
|
| 8 |
+
0.919 & 0.625 & 0.743 \\
|
| 9 |
+
0.568 & 0.285 & 0.578 \\
|
| 10 |
+
0.028 & 0.476 & 0.997 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Surface Area: $1.31$
|
| 15 |
+
Solid Angle: $0.64$
|
| 16 |
+
Volume: $0.09$
|
pretraining/mathematica/geometry/solids/65769.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.494 & 0.566 & 0.021 \\
|
| 5 |
+
0.8 & 0.263 & 0.772 \\
|
| 6 |
+
0.27 & 0.27 & 0.897 \\
|
| 7 |
+
0.427 & 0.992 & 0.901 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Volume: $0.05$
|
| 12 |
+
Surface Area: $1.1$
|
| 13 |
+
Solid Angle: $0.25$
|
pretraining/mathematica/geometry/solids/68795.txt
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
-1.038 & -0.5 & 0.429 \\
|
| 5 |
+
-1.038 & 0.5 & 0.429 \\
|
| 6 |
+
1.038 & -0.5 & -0.429 \\
|
| 7 |
+
1.038 & 0.5 & -0.429 \\
|
| 8 |
+
-1.152 & 0. & -0.429 \\
|
| 9 |
+
1.152 & 0. & 0.429 \\
|
| 10 |
+
-0.256 & -1.123 & 0.429 \\
|
| 11 |
+
-0.256 & 1.123 & 0.429 \\
|
| 12 |
+
0.256 & -1.123 & -0.429 \\
|
| 13 |
+
0.256 & 1.123 & -0.429 \\
|
| 14 |
+
-0.718 & -0.901 & -0.429 \\
|
| 15 |
+
-0.718 & 0.901 & -0.429 \\
|
| 16 |
+
0.718 & -0.901 & 0.429 \\
|
| 17 |
+
0.718 & 0.901 & 0.429 \\
|
| 18 |
+
\end{array}
|
| 19 |
+
\right)$. Determine the Circumradius.
|
| 20 |
+
Answer:
|
| 21 |
+
$1.23$
|
pretraining/mathematica/geometry/solids/69430.txt
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertex coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
-1.633 & -0.816 & -0.577 \\
|
| 5 |
+
-1.633 & -0.816 & 0.577 \\
|
| 6 |
+
-1.633 & 0. & 0. \\
|
| 7 |
+
-1.633 & 0.816 & -0.577 \\
|
| 8 |
+
-1.633 & 0.816 & 0.577 \\
|
| 9 |
+
-0.816 & -1.633 & -0.577 \\
|
| 10 |
+
-0.816 & -1.633 & 0.577 \\
|
| 11 |
+
-0.816 & -0.816 & -1.155 \\
|
| 12 |
+
-0.816 & -0.816 & 0. \\
|
| 13 |
+
-0.816 & -0.816 & 1.155 \\
|
| 14 |
+
-0.816 & 0. & -1.732 \\
|
| 15 |
+
-0.816 & 0. & -0.577 \\
|
| 16 |
+
-0.816 & 0. & 0.577 \\
|
| 17 |
+
-0.816 & 0. & 1.732 \\
|
| 18 |
+
-0.816 & 0.816 & -1.155 \\
|
| 19 |
+
-0.816 & 0.816 & 0. \\
|
| 20 |
+
-0.816 & 0.816 & 1.155 \\
|
| 21 |
+
-0.816 & 1.633 & -0.577 \\
|
| 22 |
+
-0.816 & 1.633 & 0.577 \\
|
| 23 |
+
0. & -1.633 & 0. \\
|
| 24 |
+
0. & -0.816 & -1.732 \\
|
| 25 |
+
0. & -0.816 & -0.577 \\
|
| 26 |
+
0. & -0.816 & 0.577 \\
|
| 27 |
+
0. & -0.816 & 1.732 \\
|
| 28 |
+
0. & 0. & -1.155 \\
|
| 29 |
+
0. & 0. & 1.155 \\
|
| 30 |
+
0. & 0.816 & -1.732 \\
|
| 31 |
+
0. & 0.816 & -0.577 \\
|
| 32 |
+
0. & 0.816 & 0.577 \\
|
| 33 |
+
0. & 0.816 & 1.732 \\
|
| 34 |
+
0. & 1.633 & 0. \\
|
| 35 |
+
0.816 & -1.633 & -0.577 \\
|
| 36 |
+
0.816 & -1.633 & 0.577 \\
|
| 37 |
+
0.816 & -0.816 & -1.155 \\
|
| 38 |
+
0.816 & -0.816 & 0. \\
|
| 39 |
+
0.816 & -0.816 & 1.155 \\
|
| 40 |
+
0.816 & 0. & -1.732 \\
|
| 41 |
+
0.816 & 0. & -0.577 \\
|
| 42 |
+
0.816 & 0. & 0.577 \\
|
| 43 |
+
0.816 & 0. & 1.732 \\
|
| 44 |
+
0.816 & 0.816 & -1.155 \\
|
| 45 |
+
0.816 & 0.816 & 0. \\
|
| 46 |
+
0.816 & 0.816 & 1.155 \\
|
| 47 |
+
0.816 & 1.633 & -0.577 \\
|
| 48 |
+
0.816 & 1.633 & 0.577 \\
|
| 49 |
+
1.633 & -0.816 & -0.577 \\
|
| 50 |
+
1.633 & -0.816 & 0.577 \\
|
| 51 |
+
1.633 & 0. & 0. \\
|
| 52 |
+
1.633 & 0.816 & -0.577 \\
|
| 53 |
+
1.633 & 0.816 & 0.577 \\
|
| 54 |
+
\end{array}
|
| 55 |
+
\right)$. Determine the EdgeCount.
|
| 56 |
+
Answer:
|
| 57 |
+
$120.$
|
pretraining/mathematica/geometry/solids/70413.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.942 & 0.026 & 0.867 \\
|
| 5 |
+
0.738 & 0.574 & 0.044 \\
|
| 6 |
+
0.125 & 0.568 & 0.203 \\
|
| 7 |
+
0.753 & 0.57 & 0.282 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Solid Angle: $0.04$
|
| 12 |
+
Surface Area: $0.71$
|
| 13 |
+
Volume: $0.01$
|
pretraining/mathematica/geometry/solids/70513.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.111 & 0.004 & 0.158 \\
|
| 5 |
+
0.454 & 0.242 & 0.176 \\
|
| 6 |
+
0.235 & 0.594 & 0.295 \\
|
| 7 |
+
0.341 & 0.625 & 0.742 \\
|
| 8 |
+
0.056 & 0.838 & 0.564 \\
|
| 9 |
+
\end{array}
|
| 10 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 11 |
+
Answer:
|
| 12 |
+
Surface Area: $0.68$
|
| 13 |
+
Solid Angle: $0.29$
|
| 14 |
+
Volume: $0.03$
|
pretraining/mathematica/geometry/solids/71243.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.317 & 0.77 & 0.519 \\
|
| 5 |
+
0.954 & 0.014 & 0.867 \\
|
| 6 |
+
0.551 & 0.345 & 0.217 \\
|
| 7 |
+
0.947 & 0.463 & 0.624 \\
|
| 8 |
+
0.126 & 0.012 & 0.635 \\
|
| 9 |
+
0.824 & 0.484 & 0.82 \\
|
| 10 |
+
0.579 & 0.736 & 0.666 \\
|
| 11 |
+
0.596 & 0.744 & 0.219 \\
|
| 12 |
+
0.308 & 0.199 & 0.734 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Volume: $0.12$
|
| 17 |
+
Surface Area: $1.55$
|
| 18 |
+
Solid Angle: $1.6$
|
pretraining/mathematica/geometry/solids/71837.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.064 & 0.687 & 0.305 \\
|
| 5 |
+
0.684 & 0.916 & 0.827 \\
|
| 6 |
+
0.449 & 0.688 & 0.866 \\
|
| 7 |
+
0.321 & 0.887 & 0.317 \\
|
| 8 |
+
0.259 & 0.176 & 0.756 \\
|
| 9 |
+
0.084 & 0.007 & 0.508 \\
|
| 10 |
+
0.735 & 0.705 & 0.715 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Volume: $0.05$
|
| 15 |
+
Surface Area: $1.15$
|
| 16 |
+
Solid Angle: $0.86$
|
pretraining/mathematica/geometry/solids/73105.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.979 & 0.234 & 0.099 \\
|
| 5 |
+
0.303 & 0.643 & 0.636 \\
|
| 6 |
+
0.788 & 0.873 & 0.467 \\
|
| 7 |
+
0.918 & 0.59 & 0.627 \\
|
| 8 |
+
0.275 & 0.084 & 0.612 \\
|
| 9 |
+
0.459 & 0.819 & 0.103 \\
|
| 10 |
+
0.766 & 0.187 & 0.959 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Surface Area: $1.75$
|
| 15 |
+
Volume: $0.16$
|
| 16 |
+
Solid Angle: $0.97$
|
pretraining/mathematica/geometry/solids/73142.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.91 & 0.117 & 0.666 \\
|
| 5 |
+
0.288 & 0.147 & 0.333 \\
|
| 6 |
+
0.489 & 0.115 & 0.256 \\
|
| 7 |
+
0.872 & 0.929 & 0.775 \\
|
| 8 |
+
0.809 & 0.478 & 0.902 \\
|
| 9 |
+
0.157 & 0.581 & 0.187 \\
|
| 10 |
+
0.208 & 0.778 & 0.597 \\
|
| 11 |
+
\end{array}
|
| 12 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 13 |
+
Answer:
|
| 14 |
+
Surface Area: $1.52$
|
| 15 |
+
Volume: $0.1$
|
| 16 |
+
Solid Angle: $0.75$
|
pretraining/mathematica/geometry/solids/73287.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.49 & 0.06 & 0.369 \\
|
| 5 |
+
0.263 & 0.548 & 0.127 \\
|
| 6 |
+
0.912 & 0.984 & 0. \\
|
| 7 |
+
0.923 & 0.857 & 0.141 \\
|
| 8 |
+
0.484 & 0.659 & 0.996 \\
|
| 9 |
+
0.914 & 0.686 & 0.435 \\
|
| 10 |
+
0.749 & 0.556 & 0.19 \\
|
| 11 |
+
0.042 & 0.079 & 0.421 \\
|
| 12 |
+
0.496 & 0.622 & 0.11 \\
|
| 13 |
+
0.433 & 0.114 & 0.886 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Volume: $0.17$
|
| 18 |
+
Solid Angle: $2.48$
|
| 19 |
+
Surface Area: $1.97$
|
pretraining/mathematica/geometry/solids/74382.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.095 & 0.477 & 0.138 \\
|
| 5 |
+
0.346 & 0.56 & 0.881 \\
|
| 6 |
+
0.964 & 0.402 & 0.465 \\
|
| 7 |
+
0.542 & 0.091 & 0.022 \\
|
| 8 |
+
0.087 & 0.316 & 0.413 \\
|
| 9 |
+
0.018 & 0.431 & 0.501 \\
|
| 10 |
+
0.877 & 0.432 & 0.475 \\
|
| 11 |
+
0.192 & 0.674 & 0.958 \\
|
| 12 |
+
0.778 & 0.216 & 0.501 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 15 |
+
Answer:
|
| 16 |
+
Volume: $0.08$
|
| 17 |
+
Solid Angle: $1.24$
|
| 18 |
+
Surface Area: $1.39$
|
pretraining/mathematica/geometry/solids/74469.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.791 & 0.203 & 0.029 \\
|
| 5 |
+
0.926 & 0.592 & 0.058 \\
|
| 6 |
+
0.566 & 0.103 & 0.057 \\
|
| 7 |
+
0.319 & 0.002 & 0.535 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 10 |
+
Answer:
|
| 11 |
+
Volume: $0.01$
|
| 12 |
+
Surface Area: $0.38$
|
| 13 |
+
Solid Angle: $1.15$
|
pretraining/mathematica/geometry/solids/75003.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.552 & 0.376 & 0.73 \\
|
| 5 |
+
0.167 & 0.133 & 0.826 \\
|
| 6 |
+
0.572 & 0.97 & 0.612 \\
|
| 7 |
+
0.046 & 0.991 & 0.733 \\
|
| 8 |
+
0.168 & 0.309 & 0.174 \\
|
| 9 |
+
0.913 & 0.481 & 0.336 \\
|
| 10 |
+
0.749 & 0.845 & 0.286 \\
|
| 11 |
+
0.827 & 0.679 & 0.243 \\
|
| 12 |
+
0.888 & 0.948 & 0.713 \\
|
| 13 |
+
0.387 & 0.178 & 0.495 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Volume: $0.2$
|
| 18 |
+
Solid Angle: $4.31$
|
| 19 |
+
Surface Area: $2.$
|
pretraining/mathematica/geometry/solids/75734.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
A polyhedron has vertices with the coordinates $\left(
|
| 3 |
+
\begin{array}{ccc}
|
| 4 |
+
0.839 & 0.925 & 0.621 \\
|
| 5 |
+
0.248 & 0.129 & 0.801 \\
|
| 6 |
+
0.791 & 0.001 & 0.018 \\
|
| 7 |
+
0.071 & 0.993 & 0.672 \\
|
| 8 |
+
0.874 & 0.949 & 0.556 \\
|
| 9 |
+
0.015 & 0.945 & 0.834 \\
|
| 10 |
+
0.014 & 0.964 & 0.465 \\
|
| 11 |
+
0.979 & 0.582 & 0.909 \\
|
| 12 |
+
0.76 & 0.962 & 0.228 \\
|
| 13 |
+
0.031 & 0.334 & 0.436 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p.
|
| 16 |
+
Answer:
|
| 17 |
+
Volume: $0.35$
|
| 18 |
+
Solid Angle: $4.99$
|
| 19 |
+
Surface Area: $2.89$
|