diff --git a/pretraining/mathematica/geometry/solids/10358.txt b/pretraining/mathematica/geometry/solids/10358.txt new file mode 100644 index 0000000000000000000000000000000000000000..16277d794e1d47612b781d6e6be34f0695c1dd5e --- /dev/null +++ b/pretraining/mathematica/geometry/solids/10358.txt @@ -0,0 +1,17 @@ +Problem: +A polyhedron has vertex coordinates $\left( +\begin{array}{ccc} + 0. & -0.5 & 0. \\ + 0. & 0.5 & 0. \\ + -0.853 & 0.5 & 0.522 \\ + -0.5 & 0. & 1.313 \\ + -0.853 & -0.5 & 0.522 \\ + 0.853 & 0.5 & 0.522 \\ + 0.5 & 0. & 1.313 \\ + 0.853 & -0.5 & 0.522 \\ + 0. & 0.789 & 0.957 \\ + 0. & -0.789 & 0.957 \\ +\end{array} +\right)$. Determine the GeneralizedDiameter. +Answer: +$1.98$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/13228.txt b/pretraining/mathematica/geometry/solids/13228.txt new file mode 100644 index 0000000000000000000000000000000000000000..b2a115f41feaa88ebdabb34a2e30f75da0b9f571 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/13228.txt @@ -0,0 +1,14 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.117 & 0.041 & 0.403 \\ + 0.364 & 0.968 & 0.553 \\ + 0.254 & 0.597 & 0.828 \\ + 0.877 & 0.568 & 0.094 \\ + 0.268 & 0.731 & 0.934 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.04$ +Surface Area: $1.13$ +Solid Angle: $0.19$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/14965.txt b/pretraining/mathematica/geometry/solids/14965.txt new file mode 100644 index 0000000000000000000000000000000000000000..e407dd859b6b6306d90341de5a0a9740ef227f1f --- /dev/null +++ b/pretraining/mathematica/geometry/solids/14965.txt @@ -0,0 +1,16 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.394 & 0.806 & 0.616 \\ + 0.79 & 0.368 & 0.435 \\ + 0.475 & 0.979 & 0.201 \\ + 0.167 & 0.61 & 0.552 \\ + 0.671 & 0.928 & 0.099 \\ + 0.79 & 0.992 & 0.55 \\ + 0.09 & 0.056 & 0.873 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.08$ +Solid Angle: $3.68$ +Surface Area: $1.32$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/16444.txt b/pretraining/mathematica/geometry/solids/16444.txt new file mode 100644 index 0000000000000000000000000000000000000000..78ecdb682451c11ae25a211a58334bdb4e483f48 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/16444.txt @@ -0,0 +1,62 @@ +Problem: +A polyhedron has vertex coordinates $\left( +\begin{array}{ccc} + \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} & -\frac{1}{2} & \sqrt{\frac{9}{4}+\frac{9}{2 \sqrt{5}}} \\ + 0 & \frac{1}{2} \left(1+\sqrt{5}\right) & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\ + -\frac{1}{4} \sqrt{2-\frac{2}{\sqrt{5}}} & \frac{1}{4} \left(-1-\sqrt{5}\right) & \sqrt{\frac{9}{4}+\frac{9}{2 \sqrt{5}}} \\ + -\frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{4} \left(3+\sqrt{5}\right) & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\ + \sqrt{\frac{61}{40}+\frac{131}{40 \sqrt{5}}} & \frac{1}{4} \left(1+\sqrt{5}\right) & \frac{1}{10} \sqrt{85+22 \sqrt{5}} \\ + \sqrt{\frac{13}{8}+\frac{29}{8 \sqrt{5}}} & \frac{1}{4} \left(3+\sqrt{5}\right) & -\frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\ + -\frac{3}{2} \sqrt{1+\frac{2}{\sqrt{5}}} & -\frac{1}{2} & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} \\ + -\sqrt{\frac{5}{2}+\frac{11}{2 \sqrt{5}}} & 0 & -\frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\ + \frac{1}{20} \sqrt{610+262 \sqrt{5}} & \frac{1}{4} \left(-1-\sqrt{5}\right) & \frac{1}{10} \sqrt{85+22 \sqrt{5}} \\ + \frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{4} \left(3+\sqrt{5}\right) & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\ + -\frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{4} \left(-3-\sqrt{5}\right) & \frac{1}{2} \sqrt{5+2 \sqrt{5}} \\ + -\frac{1}{2} \sqrt{5+2 \sqrt{5}} & \frac{1}{2} & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\ + \frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{4} \left(-3-\sqrt{5}\right) & \frac{1}{2} \sqrt{5+2 \sqrt{5}} \\ + 0 & \frac{1}{2} \left(-1-\sqrt{5}\right) & \frac{1}{2} \sqrt{5+2 \sqrt{5}} \\ + \frac{7}{10} \sqrt{5+2 \sqrt{5}} & \frac{1}{2} & \frac{1}{10} \sqrt{5+2 \sqrt{5}} \\ + \sqrt{\frac{9}{4}+\frac{9}{2 \sqrt{5}}} & \frac{1}{2} & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\ + -\sqrt{\frac{13}{8}+\frac{29}{8 \sqrt{5}}} & \frac{1}{4} \left(-3-\sqrt{5}\right) & \frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\ + -\sqrt{\frac{17}{8}+\frac{31}{8 \sqrt{5}}} & \frac{1}{4} \left(-1-\sqrt{5}\right) & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\ + -\frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} & \frac{1}{4} \left(1+\sqrt{5}\right) & \sqrt{\frac{9}{4}+\frac{9}{2 \sqrt{5}}} \\ + -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} & \frac{1}{2} \left(2+\sqrt{5}\right) & -\frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\ + \frac{1}{10} \sqrt{130+38 \sqrt{5}} & 0 & \frac{1}{10} \sqrt{145+62 \sqrt{5}} \\ + \sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} & \frac{1}{4} \left(5+\sqrt{5}\right) & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\ + -\frac{1}{2} \sqrt{5+2 \sqrt{5}} & -\frac{1}{2} & \frac{1}{2} \sqrt{5+2 \sqrt{5}} \\ + -\sqrt{\frac{17}{8}+\frac{31}{8 \sqrt{5}}} & \frac{1}{4} \left(1+\sqrt{5}\right) & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\ + \frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{2} \sqrt{5+2 \sqrt{5}} \\ + \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} & \frac{1}{2} \left(2+\sqrt{5}\right) & \frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\ + -\frac{1}{2} \sqrt{5+2 \sqrt{5}} & \frac{1}{2} & \frac{1}{2} \sqrt{5+2 \sqrt{5}} \\ + -\sqrt{\frac{13}{8}+\frac{29}{8 \sqrt{5}}} & \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\ + 0 & \frac{1}{2} \left(1+\sqrt{5}\right) & \frac{1}{2} \sqrt{5+2 \sqrt{5}} \\ + -\frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} & \frac{1}{2} \left(2+\sqrt{5}\right) & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} \\ + -\frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{2} \sqrt{5+2 \sqrt{5}} \\ + -\sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} & \frac{1}{4} \left(5+\sqrt{5}\right) & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} \\ + \sqrt{1+\frac{2}{\sqrt{5}}} & \frac{1}{2} \left(1+\sqrt{5}\right) & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} \\ + \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} & \frac{1}{2} & \sqrt{\frac{9}{4}+\frac{9}{2 \sqrt{5}}} \\ + \frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} & \frac{1}{2} \left(2+\sqrt{5}\right) & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\ + -\sqrt{\frac{1}{10} \left(5+\sqrt{5}\right)} & 0 & \sqrt{\frac{9}{4}+\frac{9}{2 \sqrt{5}}} \\ + -\sqrt{1+\frac{2}{\sqrt{5}}} & \frac{1}{2} \left(1+\sqrt{5}\right) & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\ + -\frac{3}{2} \sqrt{1+\frac{2}{\sqrt{5}}} & \frac{1}{2} & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} \\ + \frac{7}{10} \sqrt{5+2 \sqrt{5}} & -\frac{1}{2} & \frac{1}{10} \sqrt{5+2 \sqrt{5}} \\ + \frac{1}{2} \sqrt{5+2 \sqrt{5}} & \frac{1}{2} & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\ + -\sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} & \frac{1}{4} \left(-5-\sqrt{5}\right) & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} \\ + -\frac{1}{2} \sqrt{5+2 \sqrt{5}} & -\frac{1}{2} & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\ + \sqrt{\frac{13}{8}+\frac{29}{8 \sqrt{5}}} & \frac{1}{\sqrt{5}-3} & -\frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\ + \frac{1}{2} \sqrt{5+2 \sqrt{5}} & -\frac{1}{2} & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\ + -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} & -1-\frac{\sqrt{5}}{2} & -\frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\ + -\frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{4} \left(-3-\sqrt{5}\right) & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\ + \sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} & \frac{1}{4} \left(-5-\sqrt{5}\right) & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\ + \frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{4} \left(-3-\sqrt{5}\right) & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\ + \frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} & -1-\frac{\sqrt{5}}{2} & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\ + 0 & \frac{1}{2} \left(-1-\sqrt{5}\right) & -\frac{1}{2} \sqrt{5+2 \sqrt{5}} \\ + \sqrt{\frac{9}{4}+\frac{9}{2 \sqrt{5}}} & -\frac{1}{2} & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\ + \sqrt{1+\frac{2}{\sqrt{5}}} & \frac{1}{2} \left(-1-\sqrt{5}\right) & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} \\ + -\frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} & -1-\frac{\sqrt{5}}{2} & \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} \\ + -\sqrt{1+\frac{2}{\sqrt{5}}} & \frac{1}{2} \left(-1-\sqrt{5}\right) & -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} \\ + \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} & -1-\frac{\sqrt{5}}{2} & \frac{1}{2} \sqrt{1-\frac{2}{\sqrt{5}}} \\ +\end{array} +\right)$. Determine the GeneralizedDiameter. +Answer: +$\sqrt{11+4 \sqrt{5}}$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/17904.txt b/pretraining/mathematica/geometry/solids/17904.txt new file mode 100644 index 0000000000000000000000000000000000000000..443fcfc58a6d636a2d88aad68e9a6f07342cbc9d --- /dev/null +++ b/pretraining/mathematica/geometry/solids/17904.txt @@ -0,0 +1,15 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.816 & 0.918 & 0.929 \\ + 0.044 & 0.732 & 0.221 \\ + 0.314 & 0.891 & 0.275 \\ + 0.229 & 0.895 & 0.557 \\ + 0.773 & 0.29 & 0.318 \\ + 0.558 & 0.903 & 0.253 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $0.29$ +Surface Area: $1.11$ +Volume: $0.05$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/18426.txt b/pretraining/mathematica/geometry/solids/18426.txt new file mode 100644 index 0000000000000000000000000000000000000000..384b149df0cd6aa007d379ad343608d842173062 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/18426.txt @@ -0,0 +1,20 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.592 & 0.977 & 0.349 \\ + 0.781 & 0.96 & 0.637 \\ + 0.351 & 0.784 & 0.956 \\ + 0.007 & 0.878 & 0.424 \\ + 0.09 & 0.526 & 0.981 \\ + 0.832 & 0.143 & 0.314 \\ + 0.3 & 0.24 & 0.396 \\ + 0.96 & 0.72 & 0.462 \\ + 0.7 & 0.638 & 0.278 \\ + 0.902 & 0.365 & 0.338 \\ + 0.786 & 0.382 & 0.844 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.22$ +Solid Angle: $2.45$ +Surface Area: $2.09$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/19813.txt b/pretraining/mathematica/geometry/solids/19813.txt new file mode 100644 index 0000000000000000000000000000000000000000..c0d65422d6f9ca05a233b5f9ee3ba816d7ab9e09 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/19813.txt @@ -0,0 +1,17 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.606 & 0.728 & 0.128 \\ + 0.196 & 0.651 & 0.875 \\ + 0.389 & 0.84 & 0.955 \\ + 0.934 & 0.503 & 0.053 \\ + 0.3 & 0.522 & 0.837 \\ + 0.641 & 0.053 & 0.643 \\ + 0.863 & 0.491 & 0.901 \\ + 0.073 & 0.275 & 0.036 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.19$ +Solid Angle: $2.47$ +Surface Area: $2.06$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/20280.txt b/pretraining/mathematica/geometry/solids/20280.txt new file mode 100644 index 0000000000000000000000000000000000000000..312a2233f19d54716ca863ee12b73d3361385a1e --- /dev/null +++ b/pretraining/mathematica/geometry/solids/20280.txt @@ -0,0 +1,15 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.623 & 0.019 & 0.423 \\ + 0.769 & 0.542 & 0.009 \\ + 0.951 & 0.913 & 0.885 \\ + 0.478 & 0.986 & 0.105 \\ + 0.213 & 0.474 & 0.441 \\ + 0.658 & 0.078 & 0.659 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.12$ +Solid Angle: $1.23$ +Surface Area: $1.67$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/20369.txt b/pretraining/mathematica/geometry/solids/20369.txt new file mode 100644 index 0000000000000000000000000000000000000000..81f5341882b8e13ada0568d65c7afc7b3727c0d4 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/20369.txt @@ -0,0 +1,14 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.764 & 0.972 & 0.91 \\ + 0.711 & 0.301 & 0.756 \\ + 0.134 & 0.324 & 0.674 \\ + 0.882 & 0.009 & 0.651 \\ + 0.725 & 0.003 & 0.217 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $1.14$ +Volume: $0.05$ +Solid Angle: $0.18$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/23112.txt b/pretraining/mathematica/geometry/solids/23112.txt new file mode 100644 index 0000000000000000000000000000000000000000..c1fcecbda4d666181e0a3c5d60c6c56045ad7369 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/23112.txt @@ -0,0 +1,27 @@ +Problem: +A polyhedron has vertex coordinates $\left( +\begin{array}{ccc} + 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ + 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ + 0 & -\sqrt{\frac{1}{2} \left(2+\sqrt{2}\right)} & -\sqrt{-1-\sqrt{2}+\sqrt{\frac{1}{2} \left(10+7 \sqrt{2}\right)}} \\ + 0 & \sqrt{\frac{1}{2} \left(2+\sqrt{2}\right)} & -\sqrt{-1-\sqrt{2}+\sqrt{\frac{1}{2} \left(10+7 \sqrt{2}\right)}} \\ + -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ + \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ + \frac{1}{2} \left(-1-\sqrt{2}\right) & -\frac{1}{2} & 0 \\ + -\sqrt{\frac{1}{2} \left(2+\sqrt{2}\right)} & 0 & -\sqrt{-1-\sqrt{2}+\sqrt{\frac{1}{2} \left(10+7 \sqrt{2}\right)}} \\ + \sqrt{\frac{1}{2} \left(2+\sqrt{2}\right)} & 0 & -\sqrt{-1-\sqrt{2}+\sqrt{\frac{1}{2} \left(10+7 \sqrt{2}\right)}} \\ + -\frac{1}{2} \sqrt{2+\sqrt{2}} & -\frac{1}{2} \sqrt{2+\sqrt{2}} & -\sqrt{-1-\sqrt{2}+\sqrt{\frac{1}{2} \left(10+7 \sqrt{2}\right)}} \\ + -\frac{1}{2} \sqrt{2+\sqrt{2}} & \frac{\sqrt{2+\sqrt{2}}}{2} & -\sqrt{-1-\sqrt{2}+\sqrt{\frac{1}{2} \left(10+7 \sqrt{2}\right)}} \\ + \frac{\sqrt{2+\sqrt{2}}}{2} & -\frac{1}{2} \sqrt{2+\sqrt{2}} & -\sqrt{-1-\sqrt{2}+\sqrt{\frac{1}{2} \left(10+7 \sqrt{2}\right)}} \\ + \frac{\sqrt{2+\sqrt{2}}}{2} & \frac{\sqrt{2+\sqrt{2}}}{2} & -\sqrt{-1-\sqrt{2}+\sqrt{\frac{1}{2} \left(10+7 \sqrt{2}\right)}} \\ + -\frac{1}{2} & \frac{1}{2} \left(-1-\sqrt{2}\right) & 0 \\ + \frac{1}{2} & \frac{1}{2} \left(1+\sqrt{2}\right) & 0 \\ + \frac{1}{2} & \frac{1}{2} \left(-1-\sqrt{2}\right) & 0 \\ + -\frac{1}{2} & \frac{1}{2} \left(1+\sqrt{2}\right) & 0 \\ + \frac{1}{2} \left(1+\sqrt{2}\right) & -\frac{1}{2} & 0 \\ + \frac{1}{2} \left(-1-\sqrt{2}\right) & \frac{1}{2} & 0 \\ + \frac{1}{2} \left(1+\sqrt{2}\right) & \frac{1}{2} & 0 \\ +\end{array} +\right)$. Determine the Volume. +Answer: +$\text{Root}\left[6561 \text{$\#$1}^8-52488 \text{$\#$1}^7+113724 \text{$\#$1}^6-9720 \text{$\#$1}^5-1616922 \text{$\#$1}^4+396360 \text{$\#$1}^3+1537020 \text{$\#$1}^2-178632 \text{$\#$1}-3391\&,6\right]$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/23170.txt b/pretraining/mathematica/geometry/solids/23170.txt new file mode 100644 index 0000000000000000000000000000000000000000..4eaf17b56e5cbf661a460656a748963f1ddc7007 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/23170.txt @@ -0,0 +1,19 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.965 & 0.141 & 0.074 \\ + 0.589 & 0.516 & 0.891 \\ + 0.316 & 0.189 & 0.289 \\ + 0.399 & 0.614 & 0.396 \\ + 0.59 & 0.917 & 0.453 \\ + 0.6 & 0.501 & 0.165 \\ + 0.008 & 0.468 & 0.975 \\ + 0.476 & 0.034 & 0.339 \\ + 0.419 & 0.087 & 0.283 \\ + 0.936 & 0.8 & 0.126 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $1.91$ +Solid Angle: $0.78$ +Volume: $0.16$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/23766.txt b/pretraining/mathematica/geometry/solids/23766.txt new file mode 100644 index 0000000000000000000000000000000000000000..b9f5af12a9feb8ae41eea2d54f35ca6bc35ca3a7 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/23766.txt @@ -0,0 +1,19 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.16 & 0.548 & 0.703 \\ + 0.108 & 0.804 & 0.302 \\ + 0.912 & 0.136 & 0.655 \\ + 0.583 & 0.536 & 0.011 \\ + 0.288 & 0.364 & 0.769 \\ + 0.826 & 0.176 & 0.362 \\ + 0.974 & 0.921 & 0.691 \\ + 0.459 & 0.593 & 0.836 \\ + 0.597 & 0.837 & 0.749 \\ + 0.157 & 0.404 & 0.746 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $3.89$ +Volume: $0.17$ +Surface Area: $1.83$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/24700.txt b/pretraining/mathematica/geometry/solids/24700.txt new file mode 100644 index 0000000000000000000000000000000000000000..cc10594c6e70ad422d6c82b7a112b7da07fe0bb8 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/24700.txt @@ -0,0 +1,15 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.209 & 0.486 & 0.518 \\ + 0.141 & 0.457 & 0.815 \\ + 0.599 & 0.255 & 0.095 \\ + 0.028 & 0.998 & 0.379 \\ + 0.969 & 0.254 & 0.395 \\ + 0.684 & 0.941 & 0.783 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.11$ +Solid Angle: $5.17$ +Surface Area: $1.59$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/25168.txt b/pretraining/mathematica/geometry/solids/25168.txt new file mode 100644 index 0000000000000000000000000000000000000000..4aa32ba3db16a3e20b0ae250b6e80bfb919cf3ac --- /dev/null +++ b/pretraining/mathematica/geometry/solids/25168.txt @@ -0,0 +1,19 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.417 & 0.069 & 0.112 \\ + 0.115 & 0.414 & 0.885 \\ + 0.094 & 0.638 & 0.382 \\ + 0.142 & 0.369 & 0.648 \\ + 0.292 & 0.115 & 0.949 \\ + 0.587 & 0.051 & 0.844 \\ + 0.4 & 0.775 & 0.354 \\ + 0.495 & 0.718 & 0.614 \\ + 0.575 & 0.682 & 0.036 \\ + 0.582 & 0.338 & 0.168 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $1.21$ +Volume: $0.13$ +Surface Area: $1.58$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/2613.txt b/pretraining/mathematica/geometry/solids/2613.txt new file mode 100644 index 0000000000000000000000000000000000000000..4fe4b051833df21b708b7a75d5076861edab24d8 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/2613.txt @@ -0,0 +1,17 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.06 & 0.863 & 0.229 \\ + 0.615 & 0.335 & 0.5 \\ + 0.012 & 0.763 & 0.28 \\ + 0.131 & 0.642 & 0.863 \\ + 0.289 & 0.417 & 0.113 \\ + 0.684 & 0.94 & 0.403 \\ + 0.968 & 0.58 & 0.394 \\ + 0.842 & 0.24 & 0.069 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $1.67$ +Volume: $0.13$ +Surface Area: $1.58$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/26747.txt b/pretraining/mathematica/geometry/solids/26747.txt new file mode 100644 index 0000000000000000000000000000000000000000..21b1c3e08d93b05191088ec5cecb38fe78e53f41 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/26747.txt @@ -0,0 +1,17 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.584 & 0.666 & 0.013 \\ + 0.893 & 0.084 & 0.61 \\ + 0.701 & 0.562 & 0.045 \\ + 0.964 & 0.639 & 0.015 \\ + 0.24 & 0.9 & 0.005 \\ + 0.187 & 0.182 & 0.882 \\ + 0.807 & 0.639 & 0.468 \\ + 0.235 & 0.696 & 0.915 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $2.$ +Solid Angle: $4.38$ +Volume: $0.15$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/27191.txt b/pretraining/mathematica/geometry/solids/27191.txt new file mode 100644 index 0000000000000000000000000000000000000000..a90732e752b02101a4b2f2e1a0e4a537e958201f --- /dev/null +++ b/pretraining/mathematica/geometry/solids/27191.txt @@ -0,0 +1,16 @@ +Problem: +A polyhedron has vertex coordinates $\left( +\begin{array}{ccc} + -\frac{1}{2 \sqrt{3}} & -\frac{1}{2} & -\frac{1}{2} \\ + -\frac{1}{2 \sqrt{3}} & -\frac{1}{2} & \frac{1}{2} \\ + -\frac{1}{2 \sqrt{3}} & \frac{1}{2} & -\frac{1}{2} \\ + -\frac{1}{2 \sqrt{3}} & \frac{1}{2} & \frac{1}{2} \\ + \frac{1}{\sqrt{3}} & 0 & -\frac{1}{2} \\ + \frac{1}{\sqrt{3}} & 0 & \frac{1}{2} \\ + -\sqrt{\frac{7}{12}+\frac{1}{\sqrt{6}}} & 0 & 0 \\ + \sqrt{\frac{7}{48}+\frac{1}{4 \sqrt{6}}} & \frac{1}{4} \left(-1-\sqrt{6}\right) & 0 \\ + \sqrt{\frac{7}{48}+\frac{1}{4 \sqrt{6}}} & \frac{1}{4} \left(1+\sqrt{6}\right) & 0 \\ +\end{array} +\right)$. Determine the SurfaceArea. +Answer: +$\frac{7 \sqrt{3}}{2}$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/27839.txt b/pretraining/mathematica/geometry/solids/27839.txt new file mode 100644 index 0000000000000000000000000000000000000000..d0dfbe38704e9e9469caadd87c9fb0f375a3c0f2 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/27839.txt @@ -0,0 +1,14 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.4 & 0.208 & 0.939 \\ + 0.844 & 0.444 & 0.944 \\ + 0.21 & 0.28 & 0.786 \\ + 0.793 & 0.031 & 0.973 \\ + 0.644 & 0.219 & 0.041 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $0.92$ +Volume: $0.04$ +Solid Angle: $2.14$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/29641.txt b/pretraining/mathematica/geometry/solids/29641.txt new file mode 100644 index 0000000000000000000000000000000000000000..8359217868db5ca0f105122f5788bb9c241e1697 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/29641.txt @@ -0,0 +1,17 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.121 & 0.602 & 0.904 \\ + 0.146 & 0.49 & 0.771 \\ + 0.39 & 0.089 & 0.845 \\ + 0.099 & 0.94 & 0.239 \\ + 0.432 & 0.434 & 0.101 \\ + 0.957 & 0.471 & 0.509 \\ + 0.134 & 0.644 & 0.82 \\ + 0.457 & 0.688 & 0.236 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $1.1$ +Surface Area: $1.47$ +Volume: $0.1$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/29780.txt b/pretraining/mathematica/geometry/solids/29780.txt new file mode 100644 index 0000000000000000000000000000000000000000..d3b0cb9a18a754ffcbef76c580619f583ef3f682 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/29780.txt @@ -0,0 +1,13 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.822 & 0.92 & 0.712 \\ + 0.608 & 0.083 & 0.367 \\ + 0.593 & 0.922 & 0.037 \\ + 0.104 & 0.738 & 0.854 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $0.83$ +Surface Area: $1.28$ +Volume: $0.07$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/34068.txt b/pretraining/mathematica/geometry/solids/34068.txt new file mode 100644 index 0000000000000000000000000000000000000000..f628f66d236306823fa59943829b5464962a62a5 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/34068.txt @@ -0,0 +1,17 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.574 & 0.857 & 0.724 \\ + 0.779 & 0.221 & 0.125 \\ + 0.467 & 0.936 & 0.279 \\ + 0.064 & 0.753 & 0.741 \\ + 0.006 & 0.933 & 0.399 \\ + 0.028 & 0.978 & 0.682 \\ + 0.335 & 0.463 & 0.804 \\ + 0.801 & 0.102 & 0.564 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.11$ +Surface Area: $1.57$ +Solid Angle: $2.17$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/34621.txt b/pretraining/mathematica/geometry/solids/34621.txt new file mode 100644 index 0000000000000000000000000000000000000000..aa7badede487bf83b9e95f710de4a69eb3e53682 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/34621.txt @@ -0,0 +1,17 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.133 & 0.482 & 0.234 \\ + 0.396 & 0.993 & 0.426 \\ + 0.888 & 0.849 & 0.928 \\ + 0.385 & 0.873 & 0.456 \\ + 0.135 & 0.436 & 0.263 \\ + 0.769 & 0.879 & 0.824 \\ + 0.784 & 0.539 & 0.407 \\ + 0.773 & 0.602 & 0.676 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.03$ +Surface Area: $0.82$ +Solid Angle: $0.93$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/34626.txt b/pretraining/mathematica/geometry/solids/34626.txt new file mode 100644 index 0000000000000000000000000000000000000000..fc57faba5af97853e715792680eef9cecab7445d --- /dev/null +++ b/pretraining/mathematica/geometry/solids/34626.txt @@ -0,0 +1,5 @@ +Problem: +An ellipsoid centered at $\{3.66,2.09,0.68\}$ has radii $\{4.295,4.738,1.593\}$. Estimate the ellipsoid's surface area and volume. +Answer: +Surface Area: $156.94$ +Volume: $135.79$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/34930.txt b/pretraining/mathematica/geometry/solids/34930.txt new file mode 100644 index 0000000000000000000000000000000000000000..f96d056b5babc3c58e6bcc3a02f201a44a63725c --- /dev/null +++ b/pretraining/mathematica/geometry/solids/34930.txt @@ -0,0 +1,17 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.962 & 0.249 & 0.929 \\ + 0.785 & 0.089 & 0.926 \\ + 0.668 & 0.525 & 0.68 \\ + 0.348 & 0.565 & 0.354 \\ + 0.521 & 0.9 & 0.938 \\ + 0.056 & 0.46 & 0.658 \\ + 0.521 & 0.761 & 0.637 \\ + 0.041 & 0.055 & 0.554 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $0.73$ +Surface Area: $1.41$ +Volume: $0.09$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/37107.txt b/pretraining/mathematica/geometry/solids/37107.txt new file mode 100644 index 0000000000000000000000000000000000000000..89ab836b3c5e8dbf4443fa11d358a7b3b00c02ef --- /dev/null +++ b/pretraining/mathematica/geometry/solids/37107.txt @@ -0,0 +1,13 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.514 & 0.706 & 0.725 \\ + 0.653 & 0.216 & 0.347 \\ + 0.196 & 0.42 & 0.236 \\ + 0.715 & 0.739 & 0.013 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $0.69$ +Solid Angle: $0.39$ +Volume: $0.03$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/43991.txt b/pretraining/mathematica/geometry/solids/43991.txt new file mode 100644 index 0000000000000000000000000000000000000000..e0f6eb45ecdacac0f32f8c2f1b3527149c91547c --- /dev/null +++ b/pretraining/mathematica/geometry/solids/43991.txt @@ -0,0 +1,17 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.431 & 0.808 & 0.203 \\ + 0.038 & 0.355 & 0.957 \\ + 0.565 & 0.413 & 0.206 \\ + 0.189 & 0.676 & 0.814 \\ + 0.053 & 0.571 & 0.099 \\ + 0.968 & 0.635 & 0.842 \\ + 0.722 & 0.779 & 0.956 \\ + 0.173 & 0.126 & 0.564 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $2.$ +Volume: $0.17$ +Surface Area: $1.83$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/45621.txt b/pretraining/mathematica/geometry/solids/45621.txt new file mode 100644 index 0000000000000000000000000000000000000000..2525c199433a54ced65e9f81303c03c7d18fe29b --- /dev/null +++ b/pretraining/mathematica/geometry/solids/45621.txt @@ -0,0 +1,18 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.223 & 0.232 & 0.85 \\ + 0.111 & 0.752 & 0.804 \\ + 0.151 & 1. & 0.002 \\ + 0.215 & 0.088 & 0.728 \\ + 0.6 & 0.636 & 0.607 \\ + 0.061 & 0.755 & 0.83 \\ + 0.664 & 0.539 & 0.196 \\ + 0.078 & 0.943 & 0.367 \\ + 0.234 & 0.648 & 0.242 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $1.82$ +Volume: $0.09$ +Surface Area: $1.42$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/46029.txt b/pretraining/mathematica/geometry/solids/46029.txt new file mode 100644 index 0000000000000000000000000000000000000000..7f9e823225547f063997424c30c69c01362afff0 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/46029.txt @@ -0,0 +1,17 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.6 & 0.08 & 0.746 \\ + 0.926 & 0.865 & 0.44 \\ + 0.097 & 0.984 & 0.154 \\ + 0.736 & 0.087 & 0.313 \\ + 0.92 & 0.252 & 0.708 \\ + 0.238 & 0.79 & 0.614 \\ + 0.535 & 0.298 & 0.818 \\ + 0.301 & 0.104 & 0.039 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.18$ +Solid Angle: $2.09$ +Surface Area: $2.06$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/4659.txt b/pretraining/mathematica/geometry/solids/4659.txt new file mode 100644 index 0000000000000000000000000000000000000000..715980f52d4832a8ea44f3162743ed26639cf0e5 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/4659.txt @@ -0,0 +1,20 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.351 & 0.218 & 0.986 \\ + 0.977 & 0.562 & 0.548 \\ + 0.124 & 0.658 & 0.592 \\ + 0.548 & 0.082 & 0.017 \\ + 0.575 & 0.923 & 0.5 \\ + 0.755 & 0.365 & 0.764 \\ + 0.114 & 0.418 & 0.816 \\ + 0.112 & 0.107 & 0.195 \\ + 0.581 & 0.47 & 0.002 \\ + 0.417 & 0.622 & 0.026 \\ + 0.306 & 0.818 & 0.225 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $2.13$ +Volume: $0.23$ +Solid Angle: $1.26$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/4664.txt b/pretraining/mathematica/geometry/solids/4664.txt new file mode 100644 index 0000000000000000000000000000000000000000..2398b3fcc5f03ea128919cb1d78083c561d39e3b --- /dev/null +++ b/pretraining/mathematica/geometry/solids/4664.txt @@ -0,0 +1,17 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.41 & 0.236 & 0.713 \\ + 0.106 & 0.478 & 0.888 \\ + 0.752 & 0.822 & 0.018 \\ + 0.934 & 0.48 & 0.98 \\ + 0.496 & 0.733 & 0.086 \\ + 0.082 & 0.374 & 0.067 \\ + 0.41 & 0.978 & 0.757 \\ + 0.906 & 0.232 & 0.044 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.27$ +Solid Angle: $3.6$ +Surface Area: $2.45$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/47560.txt b/pretraining/mathematica/geometry/solids/47560.txt new file mode 100644 index 0000000000000000000000000000000000000000..edded1ae225aa22105587c2f256c7ddf2f781451 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/47560.txt @@ -0,0 +1,14 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.134 & 0.986 & 0.814 \\ + 0.011 & 0.97 & 0.188 \\ + 0.257 & 0.163 & 0.543 \\ + 0.721 & 0.415 & 0.704 \\ + 0.379 & 0.657 & 0.338 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $1.06$ +Volume: $0.05$ +Solid Angle: $0.5$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/48275.txt b/pretraining/mathematica/geometry/solids/48275.txt new file mode 100644 index 0000000000000000000000000000000000000000..044b93461bd4f6541aecf44789edb7aacbd1d7b3 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/48275.txt @@ -0,0 +1,16 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.964 & 0.97 & 0.882 \\ + 0.412 & 0.127 & 0.553 \\ + 0.914 & 0.675 & 0.42 \\ + 0.978 & 0.916 & 0.49 \\ + 0.612 & 0.035 & 0.83 \\ + 0.647 & 0.418 & 0.425 \\ + 0.359 & 0.908 & 0.583 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.08$ +Surface Area: $1.29$ +Solid Angle: $0.81$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/48397.txt b/pretraining/mathematica/geometry/solids/48397.txt new file mode 100644 index 0000000000000000000000000000000000000000..28ec59149460090d02302befad63ef36c841ecfe --- /dev/null +++ b/pretraining/mathematica/geometry/solids/48397.txt @@ -0,0 +1,18 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.46 & 0.648 & 0.328 \\ + 0.26 & 0.104 & 0.752 \\ + 0.203 & 0.98 & 0.729 \\ + 0.774 & 0.94 & 0.861 \\ + 0.891 & 0.999 & 0.992 \\ + 0.052 & 0.592 & 0.564 \\ + 0.868 & 0.39 & 0.398 \\ + 0.989 & 0.046 & 0.329 \\ + 0.667 & 0.06 & 0.956 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.21$ +Solid Angle: $2.71$ +Surface Area: $2.23$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/51032.txt b/pretraining/mathematica/geometry/solids/51032.txt new file mode 100644 index 0000000000000000000000000000000000000000..59ad066f6176fff2319ddc215724c8676612a2a2 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/51032.txt @@ -0,0 +1,13 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.808 & 0.941 & 0.566 \\ + 0.39 & 0.891 & 0.501 \\ + 0.956 & 0.602 & 0.518 \\ + 0.343 & 0.476 & 0.099 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.01$ +Solid Angle: $0.4$ +Surface Area: $0.51$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/52299.txt b/pretraining/mathematica/geometry/solids/52299.txt new file mode 100644 index 0000000000000000000000000000000000000000..4cf972aea82290ea700428cce26f15991215ac9a --- /dev/null +++ b/pretraining/mathematica/geometry/solids/52299.txt @@ -0,0 +1,13 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.413 & 0.503 & 0.804 \\ + 0.347 & 0.251 & 0.623 \\ + 0.513 & 0.156 & 0.349 \\ + 0.134 & 0.516 & 0.951 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $0.22$ +Volume: $0.$ +Surface Area: $0.19$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/5231.txt b/pretraining/mathematica/geometry/solids/5231.txt new file mode 100644 index 0000000000000000000000000000000000000000..0e7c356ecc1155c76a0869a3d6d47097e986f6b7 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/5231.txt @@ -0,0 +1,14 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.494 & 0.3 & 0.166 \\ + 0.951 & 0.307 & 0.731 \\ + 0.314 & 0.051 & 0.838 \\ + 0.041 & 0.778 & 0.517 \\ + 0.213 & 0.47 & 0.151 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.06$ +Solid Angle: $1.14$ +Surface Area: $1.18$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/52629.txt b/pretraining/mathematica/geometry/solids/52629.txt new file mode 100644 index 0000000000000000000000000000000000000000..652e3308c6828f72f0d0cb9aef74f1d6e00a6169 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/52629.txt @@ -0,0 +1,17 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.783 & 0.138 & 0.728 \\ + 0.517 & 0.158 & 0.155 \\ + 0.079 & 0.501 & 0.165 \\ + 0.256 & 0.937 & 0.974 \\ + 0.382 & 0.938 & 0.886 \\ + 0.264 & 0.684 & 0.205 \\ + 0.298 & 0.15 & 0.015 \\ + 0.779 & 0.695 & 0.04 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.15$ +Surface Area: $1.89$ +Solid Angle: $0.78$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/53513.txt b/pretraining/mathematica/geometry/solids/53513.txt new file mode 100644 index 0000000000000000000000000000000000000000..5840e9578b2591bb46cecc78754a3316577c5d55 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/53513.txt @@ -0,0 +1,16 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.003 & 0.795 & 0.124 \\ + 0.677 & 0.429 & 0.79 \\ + 0.071 & 0.398 & 0.186 \\ + 0.515 & 0.229 & 0.602 \\ + 0.264 & 0.669 & 0.062 \\ + 0.119 & 0.43 & 0.098 \\ + 0.764 & 0.147 & 0.949 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.03$ +Surface Area: $0.8$ +Solid Angle: $0.57$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/55617.txt b/pretraining/mathematica/geometry/solids/55617.txt new file mode 100644 index 0000000000000000000000000000000000000000..a788b731b3c36b39d17f349623c4e84e34bff762 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/55617.txt @@ -0,0 +1,15 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.439 & 0.21 & 0.379 \\ + 0.364 & 0.635 & 0.529 \\ + 0.931 & 0.292 & 0.253 \\ + 0.58 & 0.228 & 0.142 \\ + 0.945 & 0.195 & 0.914 \\ + 0.527 & 0.612 & 0.44 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $0.82$ +Volume: $0.04$ +Solid Angle: $2.1$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/56110.txt b/pretraining/mathematica/geometry/solids/56110.txt new file mode 100644 index 0000000000000000000000000000000000000000..d6088c5850ef866a916dc43999e4d4875d5dfce7 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/56110.txt @@ -0,0 +1,17 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.88 & 0.133 & 0.015 \\ + 0.806 & 0.311 & 0.595 \\ + 0.78 & 0.636 & 0.557 \\ + 0.374 & 0.458 & 0.405 \\ + 0.634 & 0.883 & 0.448 \\ + 0.139 & 0.542 & 0.179 \\ + 0.252 & 0.613 & 0.878 \\ + 0.575 & 0.81 & 0.64 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $0.37$ +Volume: $0.09$ +Surface Area: $1.35$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/56371.txt b/pretraining/mathematica/geometry/solids/56371.txt new file mode 100644 index 0000000000000000000000000000000000000000..1e6a763620f9f464b87cd0db1383b756de8ddd02 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/56371.txt @@ -0,0 +1,16 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.247 & 0.175 & 0.191 \\ + 0.478 & 0.735 & 0.003 \\ + 0.431 & 0.024 & 0.923 \\ + 0.052 & 0.604 & 0.758 \\ + 0.288 & 0.907 & 0.395 \\ + 0.047 & 0.768 & 0.112 \\ + 0.697 & 0.855 & 0.448 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $1.7$ +Volume: $0.13$ +Solid Angle: $1.31$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/56972.txt b/pretraining/mathematica/geometry/solids/56972.txt new file mode 100644 index 0000000000000000000000000000000000000000..5e9cc77fddbd28d5f9018aebc0f898ec7cae7e6c --- /dev/null +++ b/pretraining/mathematica/geometry/solids/56972.txt @@ -0,0 +1,5 @@ +Problem: +An ellipsoid centered at $\{3.357,-9.861,-3.373\}$ has radii $\{3.997,3.673,3.524\}$. Estimate the ellipsoid's surface area and volume. +Answer: +Volume: $216.69$ +Surface Area: $174.84$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/58630.txt b/pretraining/mathematica/geometry/solids/58630.txt new file mode 100644 index 0000000000000000000000000000000000000000..20216c05d9420c74c04a40c2133f6373ba30aad2 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/58630.txt @@ -0,0 +1,13 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.436 & 0.473 & 0.028 \\ + 0.43 & 0.825 & 0.503 \\ + 0.196 & 0.607 & 0.307 \\ + 0.005 & 0.149 & 0.7 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $0.27$ +Surface Area: $0.53$ +Volume: $0.01$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/64144.txt b/pretraining/mathematica/geometry/solids/64144.txt new file mode 100644 index 0000000000000000000000000000000000000000..66c771e67d5dec701815182e763043ca9774f706 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/64144.txt @@ -0,0 +1,16 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.637 & 0.346 & 0.376 \\ + 0.439 & 0.374 & 0.894 \\ + 0.067 & 0.743 & 0.522 \\ + 0.54 & 0.483 & 0.354 \\ + 0.565 & 0.365 & 0.321 \\ + 0.381 & 0.12 & 0.059 \\ + 0.309 & 0.061 & 0.905 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.06$ +Surface Area: $1.03$ +Solid Angle: $2.24$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/64789.txt b/pretraining/mathematica/geometry/solids/64789.txt new file mode 100644 index 0000000000000000000000000000000000000000..6accb0ff096bfb3c5513b0a13ef00331f9b37527 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/64789.txt @@ -0,0 +1,13 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.355 & 0.337 & 0.468 \\ + 0.477 & 0.09 & 0.157 \\ + 0.441 & 0.132 & 0.787 \\ + 0.717 & 0.073 & 0.594 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.01$ +Surface Area: $0.32$ +Solid Angle: $0.5$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/66810.txt b/pretraining/mathematica/geometry/solids/66810.txt new file mode 100644 index 0000000000000000000000000000000000000000..f4b985a857e541dd73ab65b9586d6d77b1c2c508 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/66810.txt @@ -0,0 +1,6 @@ +Problem: +A cylinder with radius $5.857$ is around the line from $\{8.658,-4.438,7.692\}$ to $\{5.723,-9.579,-0.16\}$. Estimate the cylinder's surface area, volume, and centroid. +Answer: +Centroid: $\{7.19,-7.01,3.77\}$ +Surface Area: $577.38$ +Volume: $1059.65$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/67661.txt b/pretraining/mathematica/geometry/solids/67661.txt new file mode 100644 index 0000000000000000000000000000000000000000..7c4f3cc0401f00d5a63ba94fc2efa0aafcd1f0d2 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/67661.txt @@ -0,0 +1,14 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.088 & 0.202 & 0.015 \\ + 0.505 & 0.06 & 0.026 \\ + 0.7 & 0.398 & 0.939 \\ + 0.876 & 0.254 & 0.074 \\ + 0.611 & 0.447 & 0.226 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.04$ +Surface Area: $0.91$ +Solid Angle: $0.33$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/7026.txt b/pretraining/mathematica/geometry/solids/7026.txt new file mode 100644 index 0000000000000000000000000000000000000000..417af1ebb9e3f04a8295acb6b8d2c45eb321bb35 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/7026.txt @@ -0,0 +1,15 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.052 & 0.676 & 0.411 \\ + 0.869 & 0.413 & 0.927 \\ + 0.849 & 0.326 & 0.265 \\ + 0.587 & 0.826 & 0.23 \\ + 0.023 & 0.666 & 0.016 \\ + 0.495 & 0.187 & 0.539 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $1.47$ +Volume: $0.1$ +Surface Area: $1.38$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/70330.txt b/pretraining/mathematica/geometry/solids/70330.txt new file mode 100644 index 0000000000000000000000000000000000000000..2c2bbb6aad9d41d6d900ea8bc358e44b52e15ecc --- /dev/null +++ b/pretraining/mathematica/geometry/solids/70330.txt @@ -0,0 +1,14 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.172 & 0.392 & 0.32 \\ + 0.295 & 0.785 & 0.133 \\ + 0.734 & 0.894 & 0.926 \\ + 0.45 & 0.289 & 0.13 \\ + 0.031 & 0.519 & 0.562 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.04$ +Surface Area: $0.93$ +Solid Angle: $2.29$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/70624.txt b/pretraining/mathematica/geometry/solids/70624.txt new file mode 100644 index 0000000000000000000000000000000000000000..4371232006031705045bdac33c7002d9e0d1892c --- /dev/null +++ b/pretraining/mathematica/geometry/solids/70624.txt @@ -0,0 +1,16 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.208 & 0.345 & 0.279 \\ + 0.705 & 0.908 & 0.881 \\ + 0.272 & 0.086 & 0.082 \\ + 0.387 & 0.973 & 0.626 \\ + 0.697 & 0.888 & 0.153 \\ + 0.818 & 0.946 & 0.899 \\ + 0.022 & 0.353 & 0.489 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.08$ +Solid Angle: $5.85$ +Surface Area: $1.4$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/71613.txt b/pretraining/mathematica/geometry/solids/71613.txt new file mode 100644 index 0000000000000000000000000000000000000000..6115cb1ea0c17d9722750c3ed6585db5bb87a6c1 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/71613.txt @@ -0,0 +1,16 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.262 & 0.286 & 0.265 \\ + 0.385 & 0.925 & 0.837 \\ + 0.927 & 0.522 & 0.613 \\ + 0.795 & 0.985 & 0.27 \\ + 0.8 & 0.512 & 0.408 \\ + 0.201 & 0.96 & 0.724 \\ + 0.346 & 0.524 & 0.561 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $0.55$ +Surface Area: $1.17$ +Volume: $0.08$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/72661.txt b/pretraining/mathematica/geometry/solids/72661.txt new file mode 100644 index 0000000000000000000000000000000000000000..65da4069f6823301b52a4d04b2457e456cb2c655 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/72661.txt @@ -0,0 +1,17 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.538 & 0.8 & 0.142 \\ + 0.984 & 0.134 & 0.282 \\ + 0.988 & 0.118 & 0.992 \\ + 0.512 & 0.127 & 0.391 \\ + 0.035 & 0.923 & 0.391 \\ + 0.167 & 0.157 & 0.016 \\ + 0.27 & 0.605 & 0.837 \\ + 0.126 & 0.646 & 0.099 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $2.$ +Volume: $0.2$ +Surface Area: $2.29$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/73219.txt b/pretraining/mathematica/geometry/solids/73219.txt new file mode 100644 index 0000000000000000000000000000000000000000..c7e8dc37bb400baaf4026a788f1b7ae4b469d1e4 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/73219.txt @@ -0,0 +1,17 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.45 & 0.431 & 0.412 \\ + 0.802 & 0.566 & 0.292 \\ + 0.005 & 0.476 & 0.787 \\ + 0.651 & 0.228 & 0.809 \\ + 0.76 & 0.829 & 0.345 \\ + 0.599 & 0.744 & 0.807 \\ + 0.771 & 0.174 & 0.617 \\ + 0.258 & 0.039 & 0.642 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $1.25$ +Volume: $0.09$ +Solid Angle: $4.18$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/73664.txt b/pretraining/mathematica/geometry/solids/73664.txt new file mode 100644 index 0000000000000000000000000000000000000000..03dfe3b7c752cb370b8d717bd86432a38cc015e1 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/73664.txt @@ -0,0 +1,14 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.085 & 0.906 & 0.175 \\ + 0.837 & 0.781 & 0.817 \\ + 0.575 & 0.19 & 0.736 \\ + 0.011 & 0.433 & 0.688 \\ + 0.718 & 0.905 & 0.568 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.05$ +Surface Area: $1.17$ +Solid Angle: $0.24$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/73666.txt b/pretraining/mathematica/geometry/solids/73666.txt new file mode 100644 index 0000000000000000000000000000000000000000..fc0e3235e72dbc5c26648c621acab3280a0f3ccb --- /dev/null +++ b/pretraining/mathematica/geometry/solids/73666.txt @@ -0,0 +1,19 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.731 & 0.047 & 0.095 \\ + 0.071 & 0.81 & 0.302 \\ + 0.183 & 0.677 & 0.667 \\ + 0.069 & 0.152 & 0.363 \\ + 0.095 & 0.872 & 0.518 \\ + 0.762 & 0.834 & 0.364 \\ + 0.954 & 0.74 & 0.842 \\ + 0.647 & 0.47 & 0.968 \\ + 0.106 & 0.83 & 0.63 \\ + 0.406 & 0.808 & 0.012 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.25$ +Surface Area: $2.29$ +Solid Angle: $1.$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/740.txt b/pretraining/mathematica/geometry/solids/740.txt new file mode 100644 index 0000000000000000000000000000000000000000..aa83fb851f939a0eceefec47dbb07742e3f5ced1 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/740.txt @@ -0,0 +1,15 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.497 & 0.063 & 0.003 \\ + 0.052 & 0.224 & 0.829 \\ + 0.097 & 0.537 & 0.528 \\ + 0.93 & 0.028 & 0.899 \\ + 0.035 & 0.929 & 0.876 \\ + 0.017 & 0.469 & 0.611 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $0.35$ +Volume: $0.11$ +Surface Area: $1.69$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/74698.txt b/pretraining/mathematica/geometry/solids/74698.txt new file mode 100644 index 0000000000000000000000000000000000000000..429d050a643c70ac39ee58a9e45b76d401a51b53 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/74698.txt @@ -0,0 +1,18 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.488 & 0.562 & 0.071 \\ + 0.288 & 0.124 & 0.006 \\ + 0.09 & 0.889 & 0.106 \\ + 0.476 & 0.069 & 0.837 \\ + 0.533 & 0.457 & 0.071 \\ + 0.183 & 0.993 & 0.468 \\ + 0.446 & 0.047 & 0.461 \\ + 0.557 & 0.702 & 0.284 \\ + 0.884 & 0.676 & 0.787 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.14$ +Solid Angle: $3.97$ +Surface Area: $1.88$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/74844.txt b/pretraining/mathematica/geometry/solids/74844.txt new file mode 100644 index 0000000000000000000000000000000000000000..07ceb03a0c7e557dba5cbf3582220857f24e3373 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/74844.txt @@ -0,0 +1,18 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.256 & 0.964 & 0.153 \\ + 0.302 & 0.934 & 0.679 \\ + 0.201 & 0.801 & 0.906 \\ + 0.618 & 0.383 & 0.298 \\ + 0.45 & 0.2 & 0.373 \\ + 0.823 & 0.835 & 0.261 \\ + 0.069 & 0.956 & 0.757 \\ + 0.265 & 0.187 & 0.361 \\ + 0.664 & 0.112 & 0.017 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $1.48$ +Volume: $0.13$ +Surface Area: $1.66$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/76203.txt b/pretraining/mathematica/geometry/solids/76203.txt new file mode 100644 index 0000000000000000000000000000000000000000..bf61c220732c09c9d648bb984a4c8acaeda51019 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/76203.txt @@ -0,0 +1,16 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.999 & 0.28 & 0.955 \\ + 0.939 & 0.774 & 0.337 \\ + 0.748 & 0.927 & 0.362 \\ + 0.978 & 0.926 & 0.783 \\ + 0.896 & 0.261 & 0.492 \\ + 0.379 & 0.794 & 0.814 \\ + 0.467 & 0.068 & 0.034 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $1.74$ +Volume: $0.15$ +Solid Angle: $0.9$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/76783.txt b/pretraining/mathematica/geometry/solids/76783.txt new file mode 100644 index 0000000000000000000000000000000000000000..3c31cda3f0c94961a8d240f374eb6cbaa7f51ffa --- /dev/null +++ b/pretraining/mathematica/geometry/solids/76783.txt @@ -0,0 +1,14 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.307 & 0.212 & 0.686 \\ + 0.935 & 0.671 & 0.52 \\ + 0.363 & 0.019 & 0.885 \\ + 0.861 & 0.308 & 0.65 \\ + 0.919 & 0.132 & 0.259 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $1.02$ +Surface Area: $0.72$ +Volume: $0.03$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/79390.txt b/pretraining/mathematica/geometry/solids/79390.txt new file mode 100644 index 0000000000000000000000000000000000000000..377e85fec63320d26472fad28fc1b5bff862c7df --- /dev/null +++ b/pretraining/mathematica/geometry/solids/79390.txt @@ -0,0 +1,17 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.603 & 0.919 & 0.296 \\ + 0.332 & 0.575 & 0.203 \\ + 0.259 & 0.85 & 0.968 \\ + 0.763 & 0.342 & 0.978 \\ + 0.951 & 0.119 & 0.218 \\ + 0.054 & 0.5 & 0.308 \\ + 0.568 & 0.445 & 0.111 \\ + 0.954 & 0.639 & 0.239 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $1.97$ +Solid Angle: $1.94$ +Volume: $0.17$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/82349.txt b/pretraining/mathematica/geometry/solids/82349.txt new file mode 100644 index 0000000000000000000000000000000000000000..336693dd8ccf222123f321fd9ba4b46d8c17f85d --- /dev/null +++ b/pretraining/mathematica/geometry/solids/82349.txt @@ -0,0 +1,13 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.806 & 0.869 & 0.658 \\ + 0.05 & 0.784 & 0.259 \\ + 0.779 & 0.879 & 0.14 \\ + 0.863 & 0.283 & 0.234 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $0.87$ +Volume: $0.04$ +Solid Angle: $0.59$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/82855.txt b/pretraining/mathematica/geometry/solids/82855.txt new file mode 100644 index 0000000000000000000000000000000000000000..93921ad1c0e9991d7df3d52181e6e2a61e0a6518 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/82855.txt @@ -0,0 +1,16 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.102 & 0.241 & 0.338 \\ + 0.768 & 0.236 & 0.966 \\ + 0.434 & 0.067 & 0.805 \\ + 0.761 & 0.444 & 0.96 \\ + 0.757 & 0.572 & 0.798 \\ + 0.979 & 0.612 & 0.221 \\ + 0.685 & 0.239 & 0.028 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $0.67$ +Volume: $0.09$ +Surface Area: $1.4$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/82863.txt b/pretraining/mathematica/geometry/solids/82863.txt new file mode 100644 index 0000000000000000000000000000000000000000..253a539c0f095d92ffc94c4a1b195ce50a0adbe0 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/82863.txt @@ -0,0 +1,14 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.411 & 0.998 & 0.086 \\ + 0.147 & 0.149 & 0.278 \\ + 0.039 & 0.076 & 0.77 \\ + 0.802 & 0.973 & 0.109 \\ + 0.746 & 0.649 & 0.311 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.04$ +Surface Area: $1.04$ +Solid Angle: $0.5$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/90482.txt b/pretraining/mathematica/geometry/solids/90482.txt new file mode 100644 index 0000000000000000000000000000000000000000..2092b9a77533d3be5e6aad6826b28fe57121d674 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/90482.txt @@ -0,0 +1,18 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.964 & 0.604 & 0.696 \\ + 0.908 & 0.753 & 0.036 \\ + 0.524 & 0.728 & 0.843 \\ + 0.572 & 0.062 & 0.327 \\ + 0.399 & 0.151 & 0.044 \\ + 0.903 & 0.115 & 0.675 \\ + 0.34 & 0.746 & 0.208 \\ + 0.473 & 0.991 & 0.137 \\ + 0.195 & 0.125 & 0.353 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $2.04$ +Volume: $0.21$ +Solid Angle: $2.27$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/91547.txt b/pretraining/mathematica/geometry/solids/91547.txt new file mode 100644 index 0000000000000000000000000000000000000000..cc75bc5d1b3dc5e0b0242682b4c7c0a1d2ad25e4 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/91547.txt @@ -0,0 +1,18 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.057 & 0.887 & 0.594 \\ + 0.701 & 0.558 & 0.846 \\ + 0.784 & 0.844 & 0.682 \\ + 0.046 & 0.264 & 0.967 \\ + 0.282 & 0.904 & 0.853 \\ + 0.053 & 0.883 & 0.662 \\ + 0.792 & 0.537 & 0.161 \\ + 0.945 & 0.351 & 0.707 \\ + 0.875 & 0.025 & 0.136 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $2.1$ +Solid Angle: $1.75$ +Volume: $0.2$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/9250.txt b/pretraining/mathematica/geometry/solids/9250.txt new file mode 100644 index 0000000000000000000000000000000000000000..85262a29338f288682ccf1741e6303e713d3ab3c --- /dev/null +++ b/pretraining/mathematica/geometry/solids/9250.txt @@ -0,0 +1,19 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.756 & 0.653 & 0.87 \\ + 0.124 & 0.18 & 0.426 \\ + 0.881 & 0.469 & 0.083 \\ + 0.264 & 0.79 & 0.539 \\ + 0.102 & 0.069 & 0.794 \\ + 0.595 & 0.776 & 0.894 \\ + 0.935 & 0.851 & 0.791 \\ + 0.695 & 0.095 & 0.765 \\ + 0.377 & 0.274 & 0.099 \\ + 0.335 & 0.194 & 0.155 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $2.06$ +Volume: $0.21$ +Solid Angle: $4.77$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/93731.txt b/pretraining/mathematica/geometry/solids/93731.txt new file mode 100644 index 0000000000000000000000000000000000000000..8bfdafe1e8ae02f8b08624324573c5187d6010af --- /dev/null +++ b/pretraining/mathematica/geometry/solids/93731.txt @@ -0,0 +1,13 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.084 & 0.861 & 0.323 \\ + 0.062 & 0.163 & 0.746 \\ + 0.654 & 0.412 & 0.559 \\ + 0.721 & 0.262 & 0.49 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Volume: $0.01$ +Surface Area: $0.62$ +Solid Angle: $0.07$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/95114.txt b/pretraining/mathematica/geometry/solids/95114.txt new file mode 100644 index 0000000000000000000000000000000000000000..72da86ac54aa79040f92c5faccddd7e2bfe46cb8 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/95114.txt @@ -0,0 +1,77 @@ +Problem: +A polyhedron has vertex coordinates $\left( +\begin{array}{ccc} + 0 & \frac{1}{2} \left(-1-\sqrt{5}\right) & \sqrt{\frac{25}{8}+\frac{11 \sqrt{5}}{8}} \\ + 0 & \frac{1}{2} \left(-1-\sqrt{5}\right) & -\sqrt{\frac{25}{8}+\frac{11 \sqrt{5}}{8}} \\ + 0 & \frac{1}{2} \left(1+\sqrt{5}\right) & \sqrt{\frac{25}{8}+\frac{11 \sqrt{5}}{8}} \\ + 0 & \frac{1}{2} \left(1+\sqrt{5}\right) & -\sqrt{\frac{25}{8}+\frac{11 \sqrt{5}}{8}} \\ + \sqrt{\frac{1}{8}+\frac{1}{8 \sqrt{5}}} & \frac{1}{4} \left(-5-3 \sqrt{5}\right) & \frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} \\ + \sqrt{\frac{1}{8}+\frac{1}{8 \sqrt{5}}} & \frac{1}{4} \left(5+3 \sqrt{5}\right) & \frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} \\ + \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} & -1-\frac{\sqrt{5}}{2} & \sqrt{\frac{17}{8}+\frac{31}{8 \sqrt{5}}} \\ + \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} & \frac{1}{2} \left(2+\sqrt{5}\right) & \sqrt{\frac{17}{8}+\frac{31}{8 \sqrt{5}}} \\ + -2 \sqrt{1+\frac{2}{\sqrt{5}}} & 0 & -\sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} \\ + -\frac{3}{2} \sqrt{1+\frac{2}{\sqrt{5}}} & -1-\frac{\sqrt{5}}{2} & \frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} \\ + -\frac{3}{2} \sqrt{1+\frac{2}{\sqrt{5}}} & \frac{1}{2} \left(2+\sqrt{5}\right) & \frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} \\ + -\sqrt{1+\frac{2}{\sqrt{5}}} & \frac{1}{2} \left(-3-\sqrt{5}\right) & -\frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} \\ + -\sqrt{1+\frac{2}{\sqrt{5}}} & \frac{1}{2} \left(3+\sqrt{5}\right) & -\frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} \\ + -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} & -1-\frac{\sqrt{5}}{2} & -\sqrt{\frac{17}{8}+\frac{31}{8 \sqrt{5}}} \\ + -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} & \frac{1}{2} \left(2+\sqrt{5}\right) & -\sqrt{\frac{17}{8}+\frac{31}{8 \sqrt{5}}} \\ + \sqrt{1+\frac{2}{\sqrt{5}}} & \frac{1}{2} \left(-3-\sqrt{5}\right) & \frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} \\ + \sqrt{1+\frac{2}{\sqrt{5}}} & \frac{1}{2} \left(3+\sqrt{5}\right) & \frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} \\ + 2 \sqrt{1+\frac{2}{\sqrt{5}}} & 0 & \sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} \\ + \sqrt{\frac{13}{8}+\frac{29}{8 \sqrt{5}}} & \frac{1}{4} \left(-3-\sqrt{5}\right) & -\sqrt{\frac{17}{8}+\frac{31}{8 \sqrt{5}}} \\ + \sqrt{\frac{13}{8}+\frac{29}{8 \sqrt{5}}} & \frac{1}{4} \left(3+\sqrt{5}\right) & -\sqrt{\frac{17}{8}+\frac{31}{8 \sqrt{5}}} \\ + \sqrt{\frac{9}{4}+\frac{9}{2 \sqrt{5}}} & -1-\frac{\sqrt{5}}{2} & -\frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} \\ + \sqrt{\frac{9}{4}+\frac{9}{2 \sqrt{5}}} & \frac{1}{2} \left(2+\sqrt{5}\right) & -\frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} \\ + \sqrt{\frac{5}{2}+\frac{11}{2 \sqrt{5}}} & 0 & \sqrt{\frac{17}{8}+\frac{31}{8 \sqrt{5}}} \\ + \sqrt{\frac{5}{2}+\frac{11}{2 \sqrt{5}}} & \frac{1}{2} \left(-1-\sqrt{5}\right) & -\sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} \\ + \sqrt{\frac{5}{2}+\frac{11}{2 \sqrt{5}}} & \frac{1}{2} \left(1+\sqrt{5}\right) & -\sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} \\ + -\sqrt{\frac{29}{8}+\frac{61}{8 \sqrt{5}}} & \frac{1}{4} \left(-3-\sqrt{5}\right) & \frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} \\ + -\sqrt{\frac{29}{8}+\frac{61}{8 \sqrt{5}}} & \frac{1}{4} \left(3+\sqrt{5}\right) & \frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} \\ + \sqrt{\frac{29}{8}+\frac{61}{8 \sqrt{5}}} & \frac{1}{4} \left(-3-\sqrt{5}\right) & -\frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} \\ + \sqrt{\frac{29}{8}+\frac{61}{8 \sqrt{5}}} & \frac{1}{4} \left(3+\sqrt{5}\right) & -\frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} \\ + \sqrt{\frac{17}{4}+\frac{19}{2 \sqrt{5}}} & -\frac{1}{2} & \frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} \\ + \sqrt{\frac{17}{4}+\frac{19}{2 \sqrt{5}}} & \frac{1}{2} & \frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} \\ + -\frac{1}{2} \sqrt{17+\frac{38}{\sqrt{5}}} & -\frac{1}{2} & -\frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} \\ + -\frac{1}{2} \sqrt{17+\frac{38}{\sqrt{5}}} & \frac{1}{2} & -\frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} \\ + \sqrt{\frac{5}{8}+\frac{\sqrt{5}}{8}} & \frac{1}{4} \left(-3-\sqrt{5}\right) & \sqrt{\frac{25}{8}+\frac{11 \sqrt{5}}{8}} \\ + \sqrt{\frac{5}{8}+\frac{\sqrt{5}}{8}} & \frac{1}{4} \left(-3-\sqrt{5}\right) & -\sqrt{\frac{25}{8}+\frac{11 \sqrt{5}}{8}} \\ + \sqrt{\frac{5}{8}+\frac{\sqrt{5}}{8}} & \frac{1}{4} \left(3+\sqrt{5}\right) & \sqrt{\frac{25}{8}+\frac{11 \sqrt{5}}{8}} \\ + \sqrt{\frac{5}{8}+\frac{\sqrt{5}}{8}} & \frac{1}{4} \left(3+\sqrt{5}\right) & -\sqrt{\frac{25}{8}+\frac{11 \sqrt{5}}{8}} \\ + \sqrt{\frac{1}{10} \left(5+\sqrt{5}\right)} & \frac{1}{2} \left(-3-\sqrt{5}\right) & \sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} \\ + \sqrt{\frac{1}{10} \left(5+\sqrt{5}\right)} & \frac{1}{2} \left(3+\sqrt{5}\right) & \sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} \\ + -\frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{4} \left(-3-\sqrt{5}\right) & \sqrt{\frac{25}{8}+\frac{11 \sqrt{5}}{8}} \\ + -\frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{4} \left(-3-\sqrt{5}\right) & -\sqrt{\frac{25}{8}+\frac{11 \sqrt{5}}{8}} \\ + -\frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{4} \left(3+\sqrt{5}\right) & \sqrt{\frac{25}{8}+\frac{11 \sqrt{5}}{8}} \\ + -\frac{1}{2} \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} & \frac{1}{4} \left(3+\sqrt{5}\right) & -\sqrt{\frac{25}{8}+\frac{11 \sqrt{5}}{8}} \\ + -\frac{1}{2} \sqrt{5+2 \sqrt{5}} & -\frac{1}{2} & \sqrt{\frac{25}{8}+\frac{11 \sqrt{5}}{8}} \\ + -\frac{1}{2} \sqrt{5+2 \sqrt{5}} & -\frac{1}{2} & -\sqrt{\frac{25}{8}+\frac{11 \sqrt{5}}{8}} \\ + -\frac{1}{2} \sqrt{5+2 \sqrt{5}} & \frac{1}{2} & \sqrt{\frac{25}{8}+\frac{11 \sqrt{5}}{8}} \\ + -\frac{1}{2} \sqrt{5+2 \sqrt{5}} & \frac{1}{2} & -\sqrt{\frac{25}{8}+\frac{11 \sqrt{5}}{8}} \\ + \frac{1}{2} \sqrt{5+2 \sqrt{5}} & -\frac{1}{2} & \sqrt{\frac{25}{8}+\frac{11 \sqrt{5}}{8}} \\ + \frac{1}{2} \sqrt{5+2 \sqrt{5}} & -\frac{1}{2} & -\sqrt{\frac{25}{8}+\frac{11 \sqrt{5}}{8}} \\ + \frac{1}{2} \sqrt{5+2 \sqrt{5}} & \frac{1}{2} & \sqrt{\frac{25}{8}+\frac{11 \sqrt{5}}{8}} \\ + \frac{1}{2} \sqrt{5+2 \sqrt{5}} & \frac{1}{2} & -\sqrt{\frac{25}{8}+\frac{11 \sqrt{5}}{8}} \\ + -\sqrt{\frac{5}{2}+\frac{11}{2 \sqrt{5}}} & 0 & -\sqrt{\frac{17}{8}+\frac{31}{8 \sqrt{5}}} \\ + -\sqrt{\frac{5}{2}+\frac{11}{2 \sqrt{5}}} & \frac{1}{2} \left(-1-\sqrt{5}\right) & \sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} \\ + -\sqrt{\frac{5}{2}+\frac{11}{2 \sqrt{5}}} & \frac{1}{2} \left(1+\sqrt{5}\right) & \sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} \\ + -\sqrt{\frac{1}{10} \left(5+\sqrt{5}\right)} & \frac{1}{2} \left(-3-\sqrt{5}\right) & -\sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} \\ + -\sqrt{\frac{1}{10} \left(5+\sqrt{5}\right)} & \frac{1}{2} \left(3+\sqrt{5}\right) & -\sqrt{\frac{5}{8}+\frac{11}{8 \sqrt{5}}} \\ + -\sqrt{\frac{13}{8}+\frac{29}{8 \sqrt{5}}} & \frac{1}{4} \left(-3-\sqrt{5}\right) & \sqrt{\frac{17}{8}+\frac{31}{8 \sqrt{5}}} \\ + -\sqrt{\frac{13}{8}+\frac{29}{8 \sqrt{5}}} & \frac{1}{4} \left(3+\sqrt{5}\right) & \sqrt{\frac{17}{8}+\frac{31}{8 \sqrt{5}}} \\ + -\frac{1}{2} \sqrt{\frac{1}{10} \left(5+\sqrt{5}\right)} & \frac{1}{4} \left(-5-3 \sqrt{5}\right) & -\frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} \\ + -\frac{1}{2} \sqrt{\frac{1}{10} \left(5+\sqrt{5}\right)} & \frac{1}{4} \left(5+3 \sqrt{5}\right) & -\frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} \\ + -\frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} & \frac{1}{4} \left(1+\sqrt{5}\right) & \sqrt{\frac{41}{8}+\frac{71}{8 \sqrt{5}}} \\ + -\sqrt{\frac{1}{10} \left(5+\sqrt{5}\right)} & 0 & \sqrt{\frac{41}{8}+\frac{71}{8 \sqrt{5}}} \\ + -\frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} & \frac{1}{4} \left(-1-\sqrt{5}\right) & \sqrt{\frac{41}{8}+\frac{71}{8 \sqrt{5}}} \\ + \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} & -\frac{1}{2} & \sqrt{\frac{41}{8}+\frac{71}{8 \sqrt{5}}} \\ + \sqrt{\frac{1}{4}+\frac{1}{2 \sqrt{5}}} & \frac{1}{2} & \sqrt{\frac{41}{8}+\frac{71}{8 \sqrt{5}}} \\ + \frac{1}{4} \sqrt{2-\frac{2}{\sqrt{5}}} & \frac{1}{4} \left(1+\sqrt{5}\right) & -\sqrt{\frac{41}{8}+\frac{71}{8 \sqrt{5}}} \\ + -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} & \frac{1}{2} & -\sqrt{\frac{41}{8}+\frac{71}{8 \sqrt{5}}} \\ + -\frac{1}{2} \sqrt{1+\frac{2}{\sqrt{5}}} & -\frac{1}{2} & -\sqrt{\frac{41}{8}+\frac{71}{8 \sqrt{5}}} \\ + \frac{1}{2} \sqrt{\frac{1}{10} \left(5-\sqrt{5}\right)} & \frac{1}{4} \left(-1-\sqrt{5}\right) & -\sqrt{\frac{41}{8}+\frac{71}{8 \sqrt{5}}} \\ + \sqrt{\frac{1}{10} \left(5+\sqrt{5}\right)} & 0 & -\sqrt{\frac{41}{8}+\frac{71}{8 \sqrt{5}}} \\ +\end{array} +\right)$. Determine the FaceCount. +Answer: +$52$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/95399.txt b/pretraining/mathematica/geometry/solids/95399.txt new file mode 100644 index 0000000000000000000000000000000000000000..143af4713b46187d790a9ece81f055989e46fbdd --- /dev/null +++ b/pretraining/mathematica/geometry/solids/95399.txt @@ -0,0 +1,17 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.892 & 0.677 & 0.676 \\ + 0.732 & 0.216 & 0.671 \\ + 0.373 & 0.4 & 0.86 \\ + 0.611 & 0.053 & 0.715 \\ + 0.149 & 0.975 & 0.203 \\ + 0.006 & 0.867 & 0.161 \\ + 0.077 & 0.21 & 0.408 \\ + 0.534 & 0.35 & 0.86 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $1.47$ +Solid Angle: $0.62$ +Volume: $0.08$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/95533.txt b/pretraining/mathematica/geometry/solids/95533.txt new file mode 100644 index 0000000000000000000000000000000000000000..5ad7654bc6ed5ff88acf897654f8b62637ad6a87 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/95533.txt @@ -0,0 +1,18 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.224 & 0.471 & 0.188 \\ + 0.806 & 0.926 & 0.645 \\ + 0.767 & 0.028 & 0.727 \\ + 0.908 & 0.535 & 0.683 \\ + 0.66 & 0.233 & 0.3 \\ + 0.008 & 0.176 & 0.75 \\ + 0.542 & 0.748 & 0.845 \\ + 0.881 & 0.804 & 0.961 \\ + 0.927 & 0.098 & 0.581 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $1.84$ +Solid Angle: $1.12$ +Volume: $0.16$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/96493.txt b/pretraining/mathematica/geometry/solids/96493.txt new file mode 100644 index 0000000000000000000000000000000000000000..e4e15c9a52ca85c4a8cc45fcc7141e240f0bf327 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/96493.txt @@ -0,0 +1,13 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.774 & 0.56 & 0.492 \\ + 0.428 & 0.83 & 0.241 \\ + 0.999 & 0.116 & 0.534 \\ + 0.853 & 0.691 & 0.875 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $5.22$ +Surface Area: $0.53$ +Volume: $0.$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/98427.txt b/pretraining/mathematica/geometry/solids/98427.txt new file mode 100644 index 0000000000000000000000000000000000000000..2f1367b36b177e4a33bfd83eb4a67acbdb275ecf --- /dev/null +++ b/pretraining/mathematica/geometry/solids/98427.txt @@ -0,0 +1,18 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.966 & 0.218 & 0.386 \\ + 0.432 & 0.194 & 0.153 \\ + 0.881 & 0.997 & 0.201 \\ + 0.812 & 0.748 & 0.141 \\ + 0.978 & 0.075 & 0.62 \\ + 0.009 & 0.41 & 0.068 \\ + 0.662 & 0.011 & 0.573 \\ + 0.259 & 0.673 & 0.729 \\ + 0.953 & 0.56 & 0.38 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Solid Angle: $3.12$ +Volume: $0.17$ +Surface Area: $1.92$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/99103.txt b/pretraining/mathematica/geometry/solids/99103.txt new file mode 100644 index 0000000000000000000000000000000000000000..ac20ceed3cdc9a3c6eebca6f4cca83b73865d816 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/99103.txt @@ -0,0 +1,20 @@ +Problem: +A polyhedron has vertices with the coordinates $\left( +\begin{array}{ccc} + 0.96 & 0.132 & 0.867 \\ + 0.659 & 0.021 & 0.025 \\ + 0.98 & 0.388 & 0.121 \\ + 0.179 & 0.882 & 0.836 \\ + 0.97 & 0.671 & 0.257 \\ + 0.188 & 0.807 & 0.814 \\ + 0.082 & 0.268 & 0.371 \\ + 0.963 & 0.617 & 0.355 \\ + 0.491 & 0.027 & 0.151 \\ + 0.626 & 0.85 & 0.523 \\ + 0.771 & 0.53 & 0.032 \\ +\end{array} +\right)$. Estimate the polyhedron's surface area, volume, and the solid angle at the first listed point p spanned by edges with common point p. +Answer: +Surface Area: $2.26$ +Solid Angle: $0.99$ +Volume: $0.23$ \ No newline at end of file diff --git a/pretraining/mathematica/geometry/solids/99995.txt b/pretraining/mathematica/geometry/solids/99995.txt new file mode 100644 index 0000000000000000000000000000000000000000..81aff9d11f37b8a1d7b2b07e7d0a13a1f0842658 --- /dev/null +++ b/pretraining/mathematica/geometry/solids/99995.txt @@ -0,0 +1,21 @@ +Problem: +A polyhedron has vertex coordinates $\left( +\begin{array}{ccc} + -0.5 & -0.5 & 0.976 \\ + -0.5 & 0. & -0.838 \\ + -0.5 & 0.5 & 0.976 \\ + 0. & -1.101 & 0.353 \\ + 0. & 1.101 & 0.353 \\ + 0. & -0.836 & -0.611 \\ + 0. & 0.836 & -0.611 \\ + 0.5 & -0.5 & 0.976 \\ + 0.5 & 0. & -0.838 \\ + 0.5 & 0.5 & 0.976 \\ + -0.717 & -0.5 & 0. \\ + -0.717 & 0.5 & 0. \\ + 0.717 & -0.5 & 0. \\ + 0.717 & 0.5 & 0. \\ +\end{array} +\right)$. Determine the Volume. +Answer: +$2.91$ \ No newline at end of file