agungpambudi commited on
Commit
e2e576f
·
verified ·
1 Parent(s): 61136f9

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. pretraining/mathematica/linear_algebra/multiply_w_steps/1095.txt +549 -0
  2. pretraining/mathematica/linear_algebra/multiply_w_steps/1159.txt +528 -0
  3. pretraining/mathematica/linear_algebra/multiply_w_steps/1226.txt +253 -0
  4. pretraining/mathematica/linear_algebra/multiply_w_steps/1239.txt +231 -0
  5. pretraining/mathematica/linear_algebra/multiply_w_steps/1285.txt +159 -0
  6. pretraining/mathematica/linear_algebra/multiply_w_steps/1485.txt +390 -0
  7. pretraining/mathematica/linear_algebra/multiply_w_steps/1567.txt +362 -0
  8. pretraining/mathematica/linear_algebra/multiply_w_steps/1633.txt +549 -0
  9. pretraining/mathematica/linear_algebra/multiply_w_steps/1703.txt +231 -0
  10. pretraining/mathematica/linear_algebra/multiply_w_steps/1934.txt +264 -0
  11. pretraining/mathematica/linear_algebra/multiply_w_steps/2027.txt +222 -0
  12. pretraining/mathematica/linear_algebra/multiply_w_steps/2119.txt +159 -0
  13. pretraining/mathematica/linear_algebra/multiply_w_steps/2230.txt +390 -0
  14. pretraining/mathematica/linear_algebra/multiply_w_steps/231.txt +390 -0
  15. pretraining/mathematica/linear_algebra/multiply_w_steps/2648.txt +549 -0
  16. pretraining/mathematica/linear_algebra/multiply_w_steps/2680.txt +231 -0
  17. pretraining/mathematica/linear_algebra/multiply_w_steps/2701.txt +253 -0
  18. pretraining/mathematica/linear_algebra/multiply_w_steps/274.txt +253 -0
  19. pretraining/mathematica/linear_algebra/multiply_w_steps/2741.txt +390 -0
  20. pretraining/mathematica/linear_algebra/multiply_w_steps/2863.txt +362 -0
  21. pretraining/mathematica/linear_algebra/multiply_w_steps/3051.txt +159 -0
  22. pretraining/mathematica/linear_algebra/multiply_w_steps/3179.txt +347 -0
  23. pretraining/mathematica/linear_algebra/multiply_w_steps/3347.txt +264 -0
  24. pretraining/mathematica/linear_algebra/multiply_w_steps/3354.txt +347 -0
  25. pretraining/mathematica/linear_algebra/multiply_w_steps/3426.txt +347 -0
  26. pretraining/mathematica/linear_algebra/multiply_w_steps/359.txt +231 -0
  27. pretraining/mathematica/linear_algebra/multiply_w_steps/3665.txt +253 -0
  28. pretraining/mathematica/linear_algebra/multiply_w_steps/3849.txt +253 -0
  29. pretraining/mathematica/linear_algebra/multiply_w_steps/3856.txt +375 -0
  30. pretraining/mathematica/linear_algebra/multiply_w_steps/39.txt +253 -0
  31. pretraining/mathematica/linear_algebra/multiply_w_steps/4014.txt +528 -0
  32. pretraining/mathematica/linear_algebra/multiply_w_steps/4161.txt +347 -0
  33. pretraining/mathematica/linear_algebra/multiply_w_steps/4599.txt +362 -0
  34. pretraining/mathematica/linear_algebra/multiply_w_steps/4613.txt +253 -0
  35. pretraining/mathematica/linear_algebra/multiply_w_steps/4661.txt +375 -0
  36. pretraining/mathematica/linear_algebra/multiply_w_steps/4856.txt +264 -0
  37. pretraining/mathematica/linear_algebra/multiply_w_steps/734.txt +253 -0
  38. pretraining/mathematica/number_theory/multiplicative_order/10331.txt +4 -0
  39. pretraining/mathematica/number_theory/multiplicative_order/10834.txt +4 -0
  40. pretraining/mathematica/number_theory/multiplicative_order/13083.txt +4 -0
  41. pretraining/mathematica/number_theory/multiplicative_order/13232.txt +4 -0
  42. pretraining/mathematica/number_theory/multiplicative_order/13795.txt +4 -0
  43. pretraining/mathematica/number_theory/multiplicative_order/16023.txt +4 -0
  44. pretraining/mathematica/number_theory/multiplicative_order/17927.txt +4 -0
  45. pretraining/mathematica/number_theory/multiplicative_order/17959.txt +4 -0
  46. pretraining/mathematica/number_theory/multiplicative_order/19243.txt +4 -0
  47. pretraining/mathematica/number_theory/multiplicative_order/21365.txt +4 -0
  48. pretraining/mathematica/number_theory/multiplicative_order/23015.txt +4 -0
  49. pretraining/mathematica/number_theory/multiplicative_order/25071.txt +4 -0
  50. pretraining/mathematica/number_theory/multiplicative_order/27174.txt +4 -0
pretraining/mathematica/linear_algebra/multiply_w_steps/1095.txt ADDED
@@ -0,0 +1,549 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{ccc}
5
+ -3 & -1 & -1 \\
6
+ -2 & 2 & 2 \\
7
+ -2 & 1 & -2 \\
8
+ \end{array}
9
+ \right)$ and
10
+ $\left(
11
+ \begin{array}{ccc}
12
+ -1 & -1 & -2 \\
13
+ 0 & -1 & 1 \\
14
+ 1 & -2 & 3 \\
15
+ \end{array}
16
+ \right)$.
17
+ Answer:
18
+ \begin{array}{l}
19
+
20
+ \begin{array}{l}
21
+ \text{Multiply the following matrices}: \\
22
+ \left(
23
+ \begin{array}{ccc}
24
+ -3 & -1 & -1 \\
25
+ -2 & 2 & 2 \\
26
+ -2 & 1 & -2 \\
27
+ \end{array}
28
+ \right).\left(
29
+ \begin{array}{ccc}
30
+ -1 & -1 & -2 \\
31
+ 0 & -1 & 1 \\
32
+ 1 & -2 & 3 \\
33
+ \end{array}
34
+ \right) \\
35
+ \end{array}
36
+ \\
37
+ \hline
38
+
39
+ \begin{array}{l}
40
+
41
+ \begin{array}{l}
42
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 3. \\
43
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 3: \\
44
+ \end{array}
45
+ \\
46
+ \left(
47
+ \begin{array}{ccc}
48
+ -3 & -1 & -1 \\
49
+ -2 & 2 & 2 \\
50
+ -2 & 1 & -2 \\
51
+ \end{array}
52
+ \right).\left(
53
+ \begin{array}{ccc}
54
+ -1 & -1 & -2 \\
55
+ 0 & -1 & 1 \\
56
+ 1 & -2 & 3 \\
57
+ \end{array}
58
+ \right)=\left(
59
+ \begin{array}{ccc}
60
+ \_ & \_ & \_ \\
61
+ \_ & \_ & \_ \\
62
+ \_ & \_ & \_ \\
63
+ \end{array}
64
+ \right) \\
65
+ \end{array}
66
+ \\
67
+
68
+ \begin{array}{l}
69
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
70
+ \left(
71
+ \begin{array}{ccc}
72
+ -3 & -1 & -1 \\
73
+ -2 & 2 & 2 \\
74
+ -2 & 1 & -2 \\
75
+ \end{array}
76
+ \right).\left(
77
+ \begin{array}{ccc}
78
+ -1 & -1 & -2 \\
79
+ 0 & -1 & 1 \\
80
+ 1 & -2 & 3 \\
81
+ \end{array}
82
+ \right)=\left(
83
+ \begin{array}{ccc}
84
+ \_ & \_ & \_ \\
85
+ \_ & \_ & \_ \\
86
+ \_ & \_ & \_ \\
87
+ \end{array}
88
+ \right) \\
89
+ \end{array}
90
+ \\
91
+
92
+ \begin{array}{l}
93
+
94
+ \begin{array}{l}
95
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, (-1)+(-1)\, \times \, 0+(-1)\, \times \, 1=2. \\
96
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
97
+ \end{array}
98
+ \\
99
+ \left(
100
+ \begin{array}{ccc}
101
+ -3 & -1 & -1 \\
102
+ -2 & 2 & 2 \\
103
+ -2 & 1 & -2 \\
104
+ \end{array}
105
+ \right).\left(
106
+ \begin{array}{ccc}
107
+ -1 & -1 & -2 \\
108
+ 0 & -1 & 1 \\
109
+ 1 & -2 & 3 \\
110
+ \end{array}
111
+ \right)=\left(
112
+ \begin{array}{ccc}
113
+ \fbox{$2$} & \_ & \_ \\
114
+ \_ & \_ & \_ \\
115
+ \_ & \_ & \_ \\
116
+ \end{array}
117
+ \right) \\
118
+ \end{array}
119
+ \\
120
+
121
+ \begin{array}{l}
122
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
123
+ \left(
124
+ \begin{array}{ccc}
125
+ -3 & -1 & -1 \\
126
+ -2 & 2 & 2 \\
127
+ -2 & 1 & -2 \\
128
+ \end{array}
129
+ \right).\left(
130
+ \begin{array}{ccc}
131
+ -1 & -1 & -2 \\
132
+ 0 & -1 & 1 \\
133
+ 1 & -2 & 3 \\
134
+ \end{array}
135
+ \right)=\left(
136
+ \begin{array}{ccc}
137
+ 2 & \_ & \_ \\
138
+ \_ & \_ & \_ \\
139
+ \_ & \_ & \_ \\
140
+ \end{array}
141
+ \right) \\
142
+ \end{array}
143
+ \\
144
+
145
+ \begin{array}{l}
146
+
147
+ \begin{array}{l}
148
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, (-1)+(-1)\, (-1)+(-1)\, (-2)=6. \\
149
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
150
+ \end{array}
151
+ \\
152
+ \left(
153
+ \begin{array}{ccc}
154
+ -3 & -1 & -1 \\
155
+ -2 & 2 & 2 \\
156
+ -2 & 1 & -2 \\
157
+ \end{array}
158
+ \right).\left(
159
+ \begin{array}{ccc}
160
+ -1 & -1 & -2 \\
161
+ 0 & -1 & 1 \\
162
+ 1 & -2 & 3 \\
163
+ \end{array}
164
+ \right)=\left(
165
+ \begin{array}{ccc}
166
+ 2 & \fbox{$6$} & \_ \\
167
+ \_ & \_ & \_ \\
168
+ \_ & \_ & \_ \\
169
+ \end{array}
170
+ \right) \\
171
+ \end{array}
172
+ \\
173
+
174
+ \begin{array}{l}
175
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
176
+ \left(
177
+ \begin{array}{ccc}
178
+ -3 & -1 & -1 \\
179
+ -2 & 2 & 2 \\
180
+ -2 & 1 & -2 \\
181
+ \end{array}
182
+ \right).\left(
183
+ \begin{array}{ccc}
184
+ -1 & -1 & -2 \\
185
+ 0 & -1 & 1 \\
186
+ 1 & -2 & 3 \\
187
+ \end{array}
188
+ \right)=\left(
189
+ \begin{array}{ccc}
190
+ 2 & 6 & \_ \\
191
+ \_ & \_ & \_ \\
192
+ \_ & \_ & \_ \\
193
+ \end{array}
194
+ \right) \\
195
+ \end{array}
196
+ \\
197
+
198
+ \begin{array}{l}
199
+
200
+ \begin{array}{l}
201
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, (-2)+(-1)\, \times \, 1+(-1)\, \times \, 3=2. \\
202
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
203
+ \end{array}
204
+ \\
205
+ \left(
206
+ \begin{array}{ccc}
207
+ -3 & -1 & -1 \\
208
+ -2 & 2 & 2 \\
209
+ -2 & 1 & -2 \\
210
+ \end{array}
211
+ \right).\left(
212
+ \begin{array}{ccc}
213
+ -1 & -1 & -2 \\
214
+ 0 & -1 & 1 \\
215
+ 1 & -2 & 3 \\
216
+ \end{array}
217
+ \right)=\left(
218
+ \begin{array}{ccc}
219
+ 2 & 6 & \fbox{$2$} \\
220
+ \_ & \_ & \_ \\
221
+ \_ & \_ & \_ \\
222
+ \end{array}
223
+ \right) \\
224
+ \end{array}
225
+ \\
226
+
227
+ \begin{array}{l}
228
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
229
+ \left(
230
+ \begin{array}{ccc}
231
+ -3 & -1 & -1 \\
232
+ -2 & 2 & 2 \\
233
+ -2 & 1 & -2 \\
234
+ \end{array}
235
+ \right).\left(
236
+ \begin{array}{ccc}
237
+ -1 & -1 & -2 \\
238
+ 0 & -1 & 1 \\
239
+ 1 & -2 & 3 \\
240
+ \end{array}
241
+ \right)=\left(
242
+ \begin{array}{ccc}
243
+ 2 & 6 & 2 \\
244
+ \_ & \_ & \_ \\
245
+ \_ & \_ & \_ \\
246
+ \end{array}
247
+ \right) \\
248
+ \end{array}
249
+ \\
250
+
251
+ \begin{array}{l}
252
+
253
+ \begin{array}{l}
254
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-1)+2\ 0+2\ 1=4. \\
255
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
256
+ \end{array}
257
+ \\
258
+ \left(
259
+ \begin{array}{ccc}
260
+ -3 & -1 & -1 \\
261
+ -2 & 2 & 2 \\
262
+ -2 & 1 & -2 \\
263
+ \end{array}
264
+ \right).\left(
265
+ \begin{array}{ccc}
266
+ -1 & -1 & -2 \\
267
+ 0 & -1 & 1 \\
268
+ 1 & -2 & 3 \\
269
+ \end{array}
270
+ \right)=\left(
271
+ \begin{array}{ccc}
272
+ 2 & 6 & 2 \\
273
+ \fbox{$4$} & \_ & \_ \\
274
+ \_ & \_ & \_ \\
275
+ \end{array}
276
+ \right) \\
277
+ \end{array}
278
+ \\
279
+
280
+ \begin{array}{l}
281
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
282
+ \left(
283
+ \begin{array}{ccc}
284
+ -3 & -1 & -1 \\
285
+ -2 & 2 & 2 \\
286
+ -2 & 1 & -2 \\
287
+ \end{array}
288
+ \right).\left(
289
+ \begin{array}{ccc}
290
+ -1 & -1 & -2 \\
291
+ 0 & -1 & 1 \\
292
+ 1 & -2 & 3 \\
293
+ \end{array}
294
+ \right)=\left(
295
+ \begin{array}{ccc}
296
+ 2 & 6 & 2 \\
297
+ 4 & \_ & \_ \\
298
+ \_ & \_ & \_ \\
299
+ \end{array}
300
+ \right) \\
301
+ \end{array}
302
+ \\
303
+
304
+ \begin{array}{l}
305
+
306
+ \begin{array}{l}
307
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-1)+2 (-1)+2 (-2)=-4. \\
308
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
309
+ \end{array}
310
+ \\
311
+ \left(
312
+ \begin{array}{ccc}
313
+ -3 & -1 & -1 \\
314
+ -2 & 2 & 2 \\
315
+ -2 & 1 & -2 \\
316
+ \end{array}
317
+ \right).\left(
318
+ \begin{array}{ccc}
319
+ -1 & -1 & -2 \\
320
+ 0 & -1 & 1 \\
321
+ 1 & -2 & 3 \\
322
+ \end{array}
323
+ \right)=\left(
324
+ \begin{array}{ccc}
325
+ 2 & 6 & 2 \\
326
+ 4 & \fbox{$-4$} & \_ \\
327
+ \_ & \_ & \_ \\
328
+ \end{array}
329
+ \right) \\
330
+ \end{array}
331
+ \\
332
+
333
+ \begin{array}{l}
334
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
335
+ \left(
336
+ \begin{array}{ccc}
337
+ -3 & -1 & -1 \\
338
+ -2 & 2 & 2 \\
339
+ -2 & 1 & -2 \\
340
+ \end{array}
341
+ \right).\left(
342
+ \begin{array}{ccc}
343
+ -1 & -1 & -2 \\
344
+ 0 & -1 & 1 \\
345
+ 1 & -2 & 3 \\
346
+ \end{array}
347
+ \right)=\left(
348
+ \begin{array}{ccc}
349
+ 2 & 6 & 2 \\
350
+ 4 & -4 & \_ \\
351
+ \_ & \_ & \_ \\
352
+ \end{array}
353
+ \right) \\
354
+ \end{array}
355
+ \\
356
+
357
+ \begin{array}{l}
358
+
359
+ \begin{array}{l}
360
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-2)+2\ 1+2\ 3=12. \\
361
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
362
+ \end{array}
363
+ \\
364
+ \left(
365
+ \begin{array}{ccc}
366
+ -3 & -1 & -1 \\
367
+ -2 & 2 & 2 \\
368
+ -2 & 1 & -2 \\
369
+ \end{array}
370
+ \right).\left(
371
+ \begin{array}{ccc}
372
+ -1 & -1 & -2 \\
373
+ 0 & -1 & 1 \\
374
+ 1 & -2 & 3 \\
375
+ \end{array}
376
+ \right)=\left(
377
+ \begin{array}{ccc}
378
+ 2 & 6 & 2 \\
379
+ 4 & -4 & \fbox{$12$} \\
380
+ \_ & \_ & \_ \\
381
+ \end{array}
382
+ \right) \\
383
+ \end{array}
384
+ \\
385
+
386
+ \begin{array}{l}
387
+ \text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
388
+ \left(
389
+ \begin{array}{ccc}
390
+ -3 & -1 & -1 \\
391
+ -2 & 2 & 2 \\
392
+ -2 & 1 & -2 \\
393
+ \end{array}
394
+ \right).\left(
395
+ \begin{array}{ccc}
396
+ -1 & -1 & -2 \\
397
+ 0 & -1 & 1 \\
398
+ 1 & -2 & 3 \\
399
+ \end{array}
400
+ \right)=\left(
401
+ \begin{array}{ccc}
402
+ 2 & 6 & 2 \\
403
+ 4 & -4 & 12 \\
404
+ \_ & \_ & \_ \\
405
+ \end{array}
406
+ \right) \\
407
+ \end{array}
408
+ \\
409
+
410
+ \begin{array}{l}
411
+
412
+ \begin{array}{l}
413
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-1)+1\ 0+(-2)\, \times \, 1=0. \\
414
+ \text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
415
+ \end{array}
416
+ \\
417
+ \left(
418
+ \begin{array}{ccc}
419
+ -3 & -1 & -1 \\
420
+ -2 & 2 & 2 \\
421
+ -2 & 1 & -2 \\
422
+ \end{array}
423
+ \right).\left(
424
+ \begin{array}{ccc}
425
+ -1 & -1 & -2 \\
426
+ 0 & -1 & 1 \\
427
+ 1 & -2 & 3 \\
428
+ \end{array}
429
+ \right)=\left(
430
+ \begin{array}{ccc}
431
+ 2 & 6 & 2 \\
432
+ 4 & -4 & 12 \\
433
+ \fbox{$0$} & \_ & \_ \\
434
+ \end{array}
435
+ \right) \\
436
+ \end{array}
437
+ \\
438
+
439
+ \begin{array}{l}
440
+ \text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
441
+ \left(
442
+ \begin{array}{ccc}
443
+ -3 & -1 & -1 \\
444
+ -2 & 2 & 2 \\
445
+ -2 & 1 & -2 \\
446
+ \end{array}
447
+ \right).\left(
448
+ \begin{array}{ccc}
449
+ -1 & -1 & -2 \\
450
+ 0 & -1 & 1 \\
451
+ 1 & -2 & 3 \\
452
+ \end{array}
453
+ \right)=\left(
454
+ \begin{array}{ccc}
455
+ 2 & 6 & 2 \\
456
+ 4 & -4 & 12 \\
457
+ 0 & \_ & \_ \\
458
+ \end{array}
459
+ \right) \\
460
+ \end{array}
461
+ \\
462
+
463
+ \begin{array}{l}
464
+
465
+ \begin{array}{l}
466
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-1)+1 (-1)+(-2)\, (-2)=5. \\
467
+ \text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
468
+ \end{array}
469
+ \\
470
+ \left(
471
+ \begin{array}{ccc}
472
+ -3 & -1 & -1 \\
473
+ -2 & 2 & 2 \\
474
+ -2 & 1 & -2 \\
475
+ \end{array}
476
+ \right).\left(
477
+ \begin{array}{ccc}
478
+ -1 & -1 & -2 \\
479
+ 0 & -1 & 1 \\
480
+ 1 & -2 & 3 \\
481
+ \end{array}
482
+ \right)=\left(
483
+ \begin{array}{ccc}
484
+ 2 & 6 & 2 \\
485
+ 4 & -4 & 12 \\
486
+ 0 & \fbox{$5$} & \_ \\
487
+ \end{array}
488
+ \right) \\
489
+ \end{array}
490
+ \\
491
+
492
+ \begin{array}{l}
493
+ \text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
494
+ \left(
495
+ \begin{array}{ccc}
496
+ -3 & -1 & -1 \\
497
+ -2 & 2 & 2 \\
498
+ -2 & 1 & -2 \\
499
+ \end{array}
500
+ \right).\left(
501
+ \begin{array}{ccc}
502
+ -1 & -1 & -2 \\
503
+ 0 & -1 & 1 \\
504
+ 1 & -2 & 3 \\
505
+ \end{array}
506
+ \right)=\left(
507
+ \begin{array}{ccc}
508
+ 2 & 6 & 2 \\
509
+ 4 & -4 & 12 \\
510
+ 0 & 5 & \_ \\
511
+ \end{array}
512
+ \right) \\
513
+ \end{array}
514
+ \\
515
+
516
+ \begin{array}{l}
517
+
518
+ \begin{array}{l}
519
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-2)+1\ 1+(-2)\, \times \, 3=-1. \\
520
+ \text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
521
+ \end{array}
522
+ \\
523
+ \fbox{$
524
+ \begin{array}{ll}
525
+ \text{Answer:} & \\
526
+ \text{} & \left(
527
+ \begin{array}{ccc}
528
+ -3 & -1 & -1 \\
529
+ -2 & 2 & 2 \\
530
+ -2 & 1 & -2 \\
531
+ \end{array}
532
+ \right).\left(
533
+ \begin{array}{ccc}
534
+ -1 & -1 & -2 \\
535
+ 0 & -1 & 1 \\
536
+ 1 & -2 & 3 \\
537
+ \end{array}
538
+ \right)=\left(
539
+ \begin{array}{ccc}
540
+ 2 & 6 & 2 \\
541
+ 4 & -4 & 12 \\
542
+ 0 & 5 & \fbox{$-1$} \\
543
+ \end{array}
544
+ \right) \\
545
+ \end{array}
546
+ $} \\
547
+ \end{array}
548
+ \\
549
+ \end{array}
pretraining/mathematica/linear_algebra/multiply_w_steps/1159.txt ADDED
@@ -0,0 +1,528 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{cc}
5
+ \frac{31}{16} & \frac{21}{8} \\
6
+ \frac{23}{8} & -\frac{39}{16} \\
7
+ \frac{9}{16} & \frac{3}{4} \\
8
+ \end{array}
9
+ \right)$ and
10
+ $\left(
11
+ \begin{array}{ccc}
12
+ \frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
13
+ -\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
14
+ \end{array}
15
+ \right)$.
16
+ Answer:
17
+ \begin{array}{l}
18
+
19
+ \begin{array}{l}
20
+ \text{Multiply the following matrices}: \\
21
+ \left(
22
+ \begin{array}{cc}
23
+ \frac{31}{16} & \frac{21}{8} \\
24
+ \frac{23}{8} & -\frac{39}{16} \\
25
+ \frac{9}{16} & \frac{3}{4} \\
26
+ \end{array}
27
+ \right).\left(
28
+ \begin{array}{ccc}
29
+ \frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
30
+ -\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
31
+ \end{array}
32
+ \right) \\
33
+ \end{array}
34
+ \\
35
+ \hline
36
+
37
+ \begin{array}{l}
38
+
39
+ \begin{array}{l}
40
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 3. \\
41
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 3: \\
42
+ \end{array}
43
+ \\
44
+ \left(
45
+ \begin{array}{cc}
46
+ \frac{31}{16} & \frac{21}{8} \\
47
+ \frac{23}{8} & -\frac{39}{16} \\
48
+ \frac{9}{16} & \frac{3}{4} \\
49
+ \end{array}
50
+ \right).\left(
51
+ \begin{array}{ccc}
52
+ \frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
53
+ -\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
54
+ \end{array}
55
+ \right)=\left(
56
+ \begin{array}{ccc}
57
+ \_ & \_ & \_ \\
58
+ \_ & \_ & \_ \\
59
+ \_ & \_ & \_ \\
60
+ \end{array}
61
+ \right) \\
62
+ \end{array}
63
+ \\
64
+
65
+ \begin{array}{l}
66
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
67
+ \left(
68
+ \begin{array}{cc}
69
+ \frac{31}{16} & \frac{21}{8} \\
70
+ \frac{23}{8} & -\frac{39}{16} \\
71
+ \frac{9}{16} & \frac{3}{4} \\
72
+ \end{array}
73
+ \right).\left(
74
+ \begin{array}{ccc}
75
+ \frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
76
+ -\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
77
+ \end{array}
78
+ \right)=\left(
79
+ \begin{array}{ccc}
80
+ \_ & \_ & \_ \\
81
+ \_ & \_ & \_ \\
82
+ \_ & \_ & \_ \\
83
+ \end{array}
84
+ \right) \\
85
+ \end{array}
86
+ \\
87
+
88
+ \begin{array}{l}
89
+
90
+ \begin{array}{l}
91
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{31\ 15}{16\ 8}+\frac{21 (-43)}{8\ 16}=-\frac{219}{64}. \\
92
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
93
+ \end{array}
94
+ \\
95
+ \left(
96
+ \begin{array}{cc}
97
+ \frac{31}{16} & \frac{21}{8} \\
98
+ \frac{23}{8} & -\frac{39}{16} \\
99
+ \frac{9}{16} & \frac{3}{4} \\
100
+ \end{array}
101
+ \right).\left(
102
+ \begin{array}{ccc}
103
+ \frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
104
+ -\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
105
+ \end{array}
106
+ \right)=\left(
107
+ \begin{array}{ccc}
108
+ \fbox{$-\frac{219}{64}$} & \_ & \_ \\
109
+ \_ & \_ & \_ \\
110
+ \_ & \_ & \_ \\
111
+ \end{array}
112
+ \right) \\
113
+ \end{array}
114
+ \\
115
+
116
+ \begin{array}{l}
117
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
118
+ \left(
119
+ \begin{array}{cc}
120
+ \frac{31}{16} & \frac{21}{8} \\
121
+ \frac{23}{8} & -\frac{39}{16} \\
122
+ \frac{9}{16} & \frac{3}{4} \\
123
+ \end{array}
124
+ \right).\left(
125
+ \begin{array}{ccc}
126
+ \frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
127
+ -\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
128
+ \end{array}
129
+ \right)=\left(
130
+ \begin{array}{ccc}
131
+ -\frac{219}{64} & \_ & \_ \\
132
+ \_ & \_ & \_ \\
133
+ \_ & \_ & \_ \\
134
+ \end{array}
135
+ \right) \\
136
+ \end{array}
137
+ \\
138
+
139
+ \begin{array}{l}
140
+
141
+ \begin{array}{l}
142
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{31\ 45}{16\ 16}+\frac{21 (-25)}{8\ 16}=\frac{345}{256}. \\
143
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
144
+ \end{array}
145
+ \\
146
+ \left(
147
+ \begin{array}{cc}
148
+ \frac{31}{16} & \frac{21}{8} \\
149
+ \frac{23}{8} & -\frac{39}{16} \\
150
+ \frac{9}{16} & \frac{3}{4} \\
151
+ \end{array}
152
+ \right).\left(
153
+ \begin{array}{ccc}
154
+ \frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
155
+ -\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
156
+ \end{array}
157
+ \right)=\left(
158
+ \begin{array}{ccc}
159
+ -\frac{219}{64} & \fbox{$\frac{345}{256}$} & \_ \\
160
+ \_ & \_ & \_ \\
161
+ \_ & \_ & \_ \\
162
+ \end{array}
163
+ \right) \\
164
+ \end{array}
165
+ \\
166
+
167
+ \begin{array}{l}
168
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
169
+ \left(
170
+ \begin{array}{cc}
171
+ \frac{31}{16} & \frac{21}{8} \\
172
+ \frac{23}{8} & -\frac{39}{16} \\
173
+ \frac{9}{16} & \frac{3}{4} \\
174
+ \end{array}
175
+ \right).\left(
176
+ \begin{array}{ccc}
177
+ \frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
178
+ -\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
179
+ \end{array}
180
+ \right)=\left(
181
+ \begin{array}{ccc}
182
+ -\frac{219}{64} & \frac{345}{256} & \_ \\
183
+ \_ & \_ & \_ \\
184
+ \_ & \_ & \_ \\
185
+ \end{array}
186
+ \right) \\
187
+ \end{array}
188
+ \\
189
+
190
+ \begin{array}{l}
191
+
192
+ \begin{array}{l}
193
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{31 (-31)}{16\ 16}+\frac{21 (-3)}{8\ 2}=-\frac{1969}{256}. \\
194
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
195
+ \end{array}
196
+ \\
197
+ \left(
198
+ \begin{array}{cc}
199
+ \frac{31}{16} & \frac{21}{8} \\
200
+ \frac{23}{8} & -\frac{39}{16} \\
201
+ \frac{9}{16} & \frac{3}{4} \\
202
+ \end{array}
203
+ \right).\left(
204
+ \begin{array}{ccc}
205
+ \frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
206
+ -\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
207
+ \end{array}
208
+ \right)=\left(
209
+ \begin{array}{ccc}
210
+ -\frac{219}{64} & \frac{345}{256} & \fbox{$-\frac{1969}{256}$} \\
211
+ \_ & \_ & \_ \\
212
+ \_ & \_ & \_ \\
213
+ \end{array}
214
+ \right) \\
215
+ \end{array}
216
+ \\
217
+
218
+ \begin{array}{l}
219
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
220
+ \left(
221
+ \begin{array}{cc}
222
+ \frac{31}{16} & \frac{21}{8} \\
223
+ \frac{23}{8} & -\frac{39}{16} \\
224
+ \frac{9}{16} & \frac{3}{4} \\
225
+ \end{array}
226
+ \right).\left(
227
+ \begin{array}{ccc}
228
+ \frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
229
+ -\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
230
+ \end{array}
231
+ \right)=\left(
232
+ \begin{array}{ccc}
233
+ -\frac{219}{64} & \frac{345}{256} & -\frac{1969}{256} \\
234
+ \_ & \_ & \_ \\
235
+ \_ & \_ & \_ \\
236
+ \end{array}
237
+ \right) \\
238
+ \end{array}
239
+ \\
240
+
241
+ \begin{array}{l}
242
+
243
+ \begin{array}{l}
244
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{23\ 15}{8\ 8}+\left(-\frac{39}{16}\right)\, \left(-\frac{43}{16}\right)=\frac{3057}{256}. \\
245
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
246
+ \end{array}
247
+ \\
248
+ \left(
249
+ \begin{array}{cc}
250
+ \frac{31}{16} & \frac{21}{8} \\
251
+ \frac{23}{8} & -\frac{39}{16} \\
252
+ \frac{9}{16} & \frac{3}{4} \\
253
+ \end{array}
254
+ \right).\left(
255
+ \begin{array}{ccc}
256
+ \frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
257
+ -\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
258
+ \end{array}
259
+ \right)=\left(
260
+ \begin{array}{ccc}
261
+ -\frac{219}{64} & \frac{345}{256} & -\frac{1969}{256} \\
262
+ \fbox{$\frac{3057}{256}$} & \_ & \_ \\
263
+ \_ & \_ & \_ \\
264
+ \end{array}
265
+ \right) \\
266
+ \end{array}
267
+ \\
268
+
269
+ \begin{array}{l}
270
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
271
+ \left(
272
+ \begin{array}{cc}
273
+ \frac{31}{16} & \frac{21}{8} \\
274
+ \frac{23}{8} & -\frac{39}{16} \\
275
+ \frac{9}{16} & \frac{3}{4} \\
276
+ \end{array}
277
+ \right).\left(
278
+ \begin{array}{ccc}
279
+ \frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
280
+ -\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
281
+ \end{array}
282
+ \right)=\left(
283
+ \begin{array}{ccc}
284
+ -\frac{219}{64} & \frac{345}{256} & -\frac{1969}{256} \\
285
+ \frac{3057}{256} & \_ & \_ \\
286
+ \_ & \_ & \_ \\
287
+ \end{array}
288
+ \right) \\
289
+ \end{array}
290
+ \\
291
+
292
+ \begin{array}{l}
293
+
294
+ \begin{array}{l}
295
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{23\ 45}{8\ 16}+\left(-\frac{39}{16}\right)\, \left(-\frac{25}{16}\right)=\frac{3045}{256}. \\
296
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
297
+ \end{array}
298
+ \\
299
+ \left(
300
+ \begin{array}{cc}
301
+ \frac{31}{16} & \frac{21}{8} \\
302
+ \frac{23}{8} & -\frac{39}{16} \\
303
+ \frac{9}{16} & \frac{3}{4} \\
304
+ \end{array}
305
+ \right).\left(
306
+ \begin{array}{ccc}
307
+ \frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
308
+ -\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
309
+ \end{array}
310
+ \right)=\left(
311
+ \begin{array}{ccc}
312
+ -\frac{219}{64} & \frac{345}{256} & -\frac{1969}{256} \\
313
+ \frac{3057}{256} & \fbox{$\frac{3045}{256}$} & \_ \\
314
+ \_ & \_ & \_ \\
315
+ \end{array}
316
+ \right) \\
317
+ \end{array}
318
+ \\
319
+
320
+ \begin{array}{l}
321
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
322
+ \left(
323
+ \begin{array}{cc}
324
+ \frac{31}{16} & \frac{21}{8} \\
325
+ \frac{23}{8} & -\frac{39}{16} \\
326
+ \frac{9}{16} & \frac{3}{4} \\
327
+ \end{array}
328
+ \right).\left(
329
+ \begin{array}{ccc}
330
+ \frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
331
+ -\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
332
+ \end{array}
333
+ \right)=\left(
334
+ \begin{array}{ccc}
335
+ -\frac{219}{64} & \frac{345}{256} & -\frac{1969}{256} \\
336
+ \frac{3057}{256} & \frac{3045}{256} & \_ \\
337
+ \_ & \_ & \_ \\
338
+ \end{array}
339
+ \right) \\
340
+ \end{array}
341
+ \\
342
+
343
+ \begin{array}{l}
344
+
345
+ \begin{array}{l}
346
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{23 (-31)}{8\ 16}+\left(-\frac{39}{16}\right)\, \left(-\frac{3}{2}\right)=-\frac{245}{128}. \\
347
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
348
+ \end{array}
349
+ \\
350
+ \left(
351
+ \begin{array}{cc}
352
+ \frac{31}{16} & \frac{21}{8} \\
353
+ \frac{23}{8} & -\frac{39}{16} \\
354
+ \frac{9}{16} & \frac{3}{4} \\
355
+ \end{array}
356
+ \right).\left(
357
+ \begin{array}{ccc}
358
+ \frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
359
+ -\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
360
+ \end{array}
361
+ \right)=\left(
362
+ \begin{array}{ccc}
363
+ -\frac{219}{64} & \frac{345}{256} & -\frac{1969}{256} \\
364
+ \frac{3057}{256} & \frac{3045}{256} & \fbox{$-\frac{245}{128}$} \\
365
+ \_ & \_ & \_ \\
366
+ \end{array}
367
+ \right) \\
368
+ \end{array}
369
+ \\
370
+
371
+ \begin{array}{l}
372
+ \text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
373
+ \left(
374
+ \begin{array}{cc}
375
+ \frac{31}{16} & \frac{21}{8} \\
376
+ \frac{23}{8} & -\frac{39}{16} \\
377
+ \frac{9}{16} & \frac{3}{4} \\
378
+ \end{array}
379
+ \right).\left(
380
+ \begin{array}{ccc}
381
+ \frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
382
+ -\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
383
+ \end{array}
384
+ \right)=\left(
385
+ \begin{array}{ccc}
386
+ -\frac{219}{64} & \frac{345}{256} & -\frac{1969}{256} \\
387
+ \frac{3057}{256} & \frac{3045}{256} & -\frac{245}{128} \\
388
+ \_ & \_ & \_ \\
389
+ \end{array}
390
+ \right) \\
391
+ \end{array}
392
+ \\
393
+
394
+ \begin{array}{l}
395
+
396
+ \begin{array}{l}
397
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{9\ 15}{16\ 8}+\frac{3 (-43)}{4\ 16}=-\frac{123}{128}. \\
398
+ \text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
399
+ \end{array}
400
+ \\
401
+ \left(
402
+ \begin{array}{cc}
403
+ \frac{31}{16} & \frac{21}{8} \\
404
+ \frac{23}{8} & -\frac{39}{16} \\
405
+ \frac{9}{16} & \frac{3}{4} \\
406
+ \end{array}
407
+ \right).\left(
408
+ \begin{array}{ccc}
409
+ \frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
410
+ -\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
411
+ \end{array}
412
+ \right)=\left(
413
+ \begin{array}{ccc}
414
+ -\frac{219}{64} & \frac{345}{256} & -\frac{1969}{256} \\
415
+ \frac{3057}{256} & \frac{3045}{256} & -\frac{245}{128} \\
416
+ \fbox{$-\frac{123}{128}$} & \_ & \_ \\
417
+ \end{array}
418
+ \right) \\
419
+ \end{array}
420
+ \\
421
+
422
+ \begin{array}{l}
423
+ \text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
424
+ \left(
425
+ \begin{array}{cc}
426
+ \frac{31}{16} & \frac{21}{8} \\
427
+ \frac{23}{8} & -\frac{39}{16} \\
428
+ \frac{9}{16} & \frac{3}{4} \\
429
+ \end{array}
430
+ \right).\left(
431
+ \begin{array}{ccc}
432
+ \frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
433
+ -\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
434
+ \end{array}
435
+ \right)=\left(
436
+ \begin{array}{ccc}
437
+ -\frac{219}{64} & \frac{345}{256} & -\frac{1969}{256} \\
438
+ \frac{3057}{256} & \frac{3045}{256} & -\frac{245}{128} \\
439
+ -\frac{123}{128} & \_ & \_ \\
440
+ \end{array}
441
+ \right) \\
442
+ \end{array}
443
+ \\
444
+
445
+ \begin{array}{l}
446
+
447
+ \begin{array}{l}
448
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{9\ 45}{16\ 16}+\frac{3 (-25)}{4\ 16}=\frac{105}{256}. \\
449
+ \text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
450
+ \end{array}
451
+ \\
452
+ \left(
453
+ \begin{array}{cc}
454
+ \frac{31}{16} & \frac{21}{8} \\
455
+ \frac{23}{8} & -\frac{39}{16} \\
456
+ \frac{9}{16} & \frac{3}{4} \\
457
+ \end{array}
458
+ \right).\left(
459
+ \begin{array}{ccc}
460
+ \frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
461
+ -\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
462
+ \end{array}
463
+ \right)=\left(
464
+ \begin{array}{ccc}
465
+ -\frac{219}{64} & \frac{345}{256} & -\frac{1969}{256} \\
466
+ \frac{3057}{256} & \frac{3045}{256} & -\frac{245}{128} \\
467
+ -\frac{123}{128} & \fbox{$\frac{105}{256}$} & \_ \\
468
+ \end{array}
469
+ \right) \\
470
+ \end{array}
471
+ \\
472
+
473
+ \begin{array}{l}
474
+ \text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
475
+ \left(
476
+ \begin{array}{cc}
477
+ \frac{31}{16} & \frac{21}{8} \\
478
+ \frac{23}{8} & -\frac{39}{16} \\
479
+ \frac{9}{16} & \frac{3}{4} \\
480
+ \end{array}
481
+ \right).\left(
482
+ \begin{array}{ccc}
483
+ \frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
484
+ -\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
485
+ \end{array}
486
+ \right)=\left(
487
+ \begin{array}{ccc}
488
+ -\frac{219}{64} & \frac{345}{256} & -\frac{1969}{256} \\
489
+ \frac{3057}{256} & \frac{3045}{256} & -\frac{245}{128} \\
490
+ -\frac{123}{128} & \frac{105}{256} & \_ \\
491
+ \end{array}
492
+ \right) \\
493
+ \end{array}
494
+ \\
495
+
496
+ \begin{array}{l}
497
+
498
+ \begin{array}{l}
499
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{9 (-31)}{16\ 16}+\frac{3 (-3)}{4\ 2}=-\frac{567}{256}. \\
500
+ \text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
501
+ \end{array}
502
+ \\
503
+ \fbox{$
504
+ \begin{array}{ll}
505
+ \text{Answer:} & \\
506
+ \text{} & \left(
507
+ \begin{array}{cc}
508
+ \frac{31}{16} & \frac{21}{8} \\
509
+ \frac{23}{8} & -\frac{39}{16} \\
510
+ \frac{9}{16} & \frac{3}{4} \\
511
+ \end{array}
512
+ \right).\left(
513
+ \begin{array}{ccc}
514
+ \frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
515
+ -\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
516
+ \end{array}
517
+ \right)=\left(
518
+ \begin{array}{ccc}
519
+ -\frac{219}{64} & \frac{345}{256} & -\frac{1969}{256} \\
520
+ \frac{3057}{256} & \frac{3045}{256} & -\frac{245}{128} \\
521
+ -\frac{123}{128} & \frac{105}{256} & \fbox{$-\frac{567}{256}$} \\
522
+ \end{array}
523
+ \right) \\
524
+ \end{array}
525
+ $} \\
526
+ \end{array}
527
+ \\
528
+ \end{array}
pretraining/mathematica/linear_algebra/multiply_w_steps/1226.txt ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{cc}
5
+ 2 & 2 \\
6
+ -2 & 1 \\
7
+ \end{array}
8
+ \right)$ and
9
+ $\left(
10
+ \begin{array}{cc}
11
+ -1 & -1 \\
12
+ -2 & 3 \\
13
+ \end{array}
14
+ \right)$.
15
+ Answer:
16
+ \begin{array}{l}
17
+
18
+ \begin{array}{l}
19
+ \text{Multiply the following matrices}: \\
20
+ \left(
21
+ \begin{array}{cc}
22
+ 2 & 2 \\
23
+ -2 & 1 \\
24
+ \end{array}
25
+ \right).\left(
26
+ \begin{array}{cc}
27
+ -1 & -1 \\
28
+ -2 & 3 \\
29
+ \end{array}
30
+ \right) \\
31
+ \end{array}
32
+ \\
33
+ \hline
34
+
35
+ \begin{array}{l}
36
+
37
+ \begin{array}{l}
38
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 2. \\
39
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 2: \\
40
+ \end{array}
41
+ \\
42
+ \left(
43
+ \begin{array}{cc}
44
+ 2 & 2 \\
45
+ -2 & 1 \\
46
+ \end{array}
47
+ \right).\left(
48
+ \begin{array}{cc}
49
+ -1 & -1 \\
50
+ -2 & 3 \\
51
+ \end{array}
52
+ \right)=\left(
53
+ \begin{array}{cc}
54
+ \_ & \_ \\
55
+ \_ & \_ \\
56
+ \end{array}
57
+ \right) \\
58
+ \end{array}
59
+ \\
60
+
61
+ \begin{array}{l}
62
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
63
+ \left(
64
+ \begin{array}{cc}
65
+ 2 & 2 \\
66
+ -2 & 1 \\
67
+ \end{array}
68
+ \right).\left(
69
+ \begin{array}{cc}
70
+ -1 & -1 \\
71
+ -2 & 3 \\
72
+ \end{array}
73
+ \right)=\left(
74
+ \begin{array}{cc}
75
+ \_ & \_ \\
76
+ \_ & \_ \\
77
+ \end{array}
78
+ \right) \\
79
+ \end{array}
80
+ \\
81
+
82
+ \begin{array}{l}
83
+
84
+ \begin{array}{l}
85
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2 (-1)+2 (-2)=-6. \\
86
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
87
+ \end{array}
88
+ \\
89
+ \left(
90
+ \begin{array}{cc}
91
+ 2 & 2 \\
92
+ -2 & 1 \\
93
+ \end{array}
94
+ \right).\left(
95
+ \begin{array}{cc}
96
+ -1 & -1 \\
97
+ -2 & 3 \\
98
+ \end{array}
99
+ \right)=\left(
100
+ \begin{array}{cc}
101
+ \fbox{$-6$} & \_ \\
102
+ \_ & \_ \\
103
+ \end{array}
104
+ \right) \\
105
+ \end{array}
106
+ \\
107
+
108
+ \begin{array}{l}
109
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
110
+ \left(
111
+ \begin{array}{cc}
112
+ 2 & 2 \\
113
+ -2 & 1 \\
114
+ \end{array}
115
+ \right).\left(
116
+ \begin{array}{cc}
117
+ -1 & -1 \\
118
+ -2 & 3 \\
119
+ \end{array}
120
+ \right)=\left(
121
+ \begin{array}{cc}
122
+ -6 & \_ \\
123
+ \_ & \_ \\
124
+ \end{array}
125
+ \right) \\
126
+ \end{array}
127
+ \\
128
+
129
+ \begin{array}{l}
130
+
131
+ \begin{array}{l}
132
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2 (-1)+2\ 3=4. \\
133
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
134
+ \end{array}
135
+ \\
136
+ \left(
137
+ \begin{array}{cc}
138
+ 2 & 2 \\
139
+ -2 & 1 \\
140
+ \end{array}
141
+ \right).\left(
142
+ \begin{array}{cc}
143
+ -1 & -1 \\
144
+ -2 & 3 \\
145
+ \end{array}
146
+ \right)=\left(
147
+ \begin{array}{cc}
148
+ -6 & \fbox{$4$} \\
149
+ \_ & \_ \\
150
+ \end{array}
151
+ \right) \\
152
+ \end{array}
153
+ \\
154
+
155
+ \begin{array}{l}
156
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
157
+ \left(
158
+ \begin{array}{cc}
159
+ 2 & 2 \\
160
+ -2 & 1 \\
161
+ \end{array}
162
+ \right).\left(
163
+ \begin{array}{cc}
164
+ -1 & -1 \\
165
+ -2 & 3 \\
166
+ \end{array}
167
+ \right)=\left(
168
+ \begin{array}{cc}
169
+ -6 & 4 \\
170
+ \_ & \_ \\
171
+ \end{array}
172
+ \right) \\
173
+ \end{array}
174
+ \\
175
+
176
+ \begin{array}{l}
177
+
178
+ \begin{array}{l}
179
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-1)+1 (-2)=0. \\
180
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
181
+ \end{array}
182
+ \\
183
+ \left(
184
+ \begin{array}{cc}
185
+ 2 & 2 \\
186
+ -2 & 1 \\
187
+ \end{array}
188
+ \right).\left(
189
+ \begin{array}{cc}
190
+ -1 & -1 \\
191
+ -2 & 3 \\
192
+ \end{array}
193
+ \right)=\left(
194
+ \begin{array}{cc}
195
+ -6 & 4 \\
196
+ \fbox{$0$} & \_ \\
197
+ \end{array}
198
+ \right) \\
199
+ \end{array}
200
+ \\
201
+
202
+ \begin{array}{l}
203
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
204
+ \left(
205
+ \begin{array}{cc}
206
+ 2 & 2 \\
207
+ -2 & 1 \\
208
+ \end{array}
209
+ \right).\left(
210
+ \begin{array}{cc}
211
+ -1 & -1 \\
212
+ -2 & 3 \\
213
+ \end{array}
214
+ \right)=\left(
215
+ \begin{array}{cc}
216
+ -6 & 4 \\
217
+ 0 & \_ \\
218
+ \end{array}
219
+ \right) \\
220
+ \end{array}
221
+ \\
222
+
223
+ \begin{array}{l}
224
+
225
+ \begin{array}{l}
226
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-1)+1\ 3=5. \\
227
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
228
+ \end{array}
229
+ \\
230
+ \fbox{$
231
+ \begin{array}{ll}
232
+ \text{Answer:} & \\
233
+ \text{} & \left(
234
+ \begin{array}{cc}
235
+ 2 & 2 \\
236
+ -2 & 1 \\
237
+ \end{array}
238
+ \right).\left(
239
+ \begin{array}{cc}
240
+ -1 & -1 \\
241
+ -2 & 3 \\
242
+ \end{array}
243
+ \right)=\left(
244
+ \begin{array}{cc}
245
+ -6 & 4 \\
246
+ 0 & \fbox{$5$} \\
247
+ \end{array}
248
+ \right) \\
249
+ \end{array}
250
+ $} \\
251
+ \end{array}
252
+ \\
253
+ \end{array}
pretraining/mathematica/linear_algebra/multiply_w_steps/1239.txt ADDED
@@ -0,0 +1,231 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{ccc}
5
+ 2 & 3 & 2 \\
6
+ 2 & 0 & 1 \\
7
+ -2 & 2 & 0 \\
8
+ \end{array}
9
+ \right)$ and
10
+ $\left(
11
+ \begin{array}{c}
12
+ 2 \\
13
+ 1 \\
14
+ -2 \\
15
+ \end{array}
16
+ \right)$.
17
+ Answer:
18
+ \begin{array}{l}
19
+
20
+ \begin{array}{l}
21
+ \text{Multiply the following matrices}: \\
22
+ \left(
23
+ \begin{array}{ccc}
24
+ 2 & 3 & 2 \\
25
+ 2 & 0 & 1 \\
26
+ -2 & 2 & 0 \\
27
+ \end{array}
28
+ \right).\left(
29
+ \begin{array}{c}
30
+ 2 \\
31
+ 1 \\
32
+ -2 \\
33
+ \end{array}
34
+ \right) \\
35
+ \end{array}
36
+ \\
37
+ \hline
38
+
39
+ \begin{array}{l}
40
+
41
+ \begin{array}{l}
42
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 1. \\
43
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 1: \\
44
+ \end{array}
45
+ \\
46
+ \left(
47
+ \begin{array}{ccc}
48
+ 2 & 3 & 2 \\
49
+ 2 & 0 & 1 \\
50
+ -2 & 2 & 0 \\
51
+ \end{array}
52
+ \right).\left(
53
+ \begin{array}{c}
54
+ 2 \\
55
+ 1 \\
56
+ -2 \\
57
+ \end{array}
58
+ \right)=\left(
59
+ \begin{array}{c}
60
+ \_ \\
61
+ \_ \\
62
+ \_ \\
63
+ \end{array}
64
+ \right) \\
65
+ \end{array}
66
+ \\
67
+
68
+ \begin{array}{l}
69
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
70
+ \left(
71
+ \begin{array}{ccc}
72
+ 2 & 3 & 2 \\
73
+ 2 & 0 & 1 \\
74
+ -2 & 2 & 0 \\
75
+ \end{array}
76
+ \right).\left(
77
+ \begin{array}{c}
78
+ 2 \\
79
+ 1 \\
80
+ -2 \\
81
+ \end{array}
82
+ \right)=\left(
83
+ \begin{array}{c}
84
+ \_ \\
85
+ \_ \\
86
+ \_ \\
87
+ \end{array}
88
+ \right) \\
89
+ \end{array}
90
+ \\
91
+
92
+ \begin{array}{l}
93
+
94
+ \begin{array}{l}
95
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2\ 2+3\ 1+2 (-2)=3. \\
96
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
97
+ \end{array}
98
+ \\
99
+ \left(
100
+ \begin{array}{ccc}
101
+ 2 & 3 & 2 \\
102
+ 2 & 0 & 1 \\
103
+ -2 & 2 & 0 \\
104
+ \end{array}
105
+ \right).\left(
106
+ \begin{array}{c}
107
+ 2 \\
108
+ 1 \\
109
+ -2 \\
110
+ \end{array}
111
+ \right)=\left(
112
+ \begin{array}{c}
113
+ \fbox{$3$} \\
114
+ \_ \\
115
+ \_ \\
116
+ \end{array}
117
+ \right) \\
118
+ \end{array}
119
+ \\
120
+
121
+ \begin{array}{l}
122
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
123
+ \left(
124
+ \begin{array}{ccc}
125
+ 2 & 3 & 2 \\
126
+ 2 & 0 & 1 \\
127
+ -2 & 2 & 0 \\
128
+ \end{array}
129
+ \right).\left(
130
+ \begin{array}{c}
131
+ 2 \\
132
+ 1 \\
133
+ -2 \\
134
+ \end{array}
135
+ \right)=\left(
136
+ \begin{array}{c}
137
+ 3 \\
138
+ \_ \\
139
+ \_ \\
140
+ \end{array}
141
+ \right) \\
142
+ \end{array}
143
+ \\
144
+
145
+ \begin{array}{l}
146
+
147
+ \begin{array}{l}
148
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2\ 2+0\ 1+1 (-2)=2. \\
149
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
150
+ \end{array}
151
+ \\
152
+ \left(
153
+ \begin{array}{ccc}
154
+ 2 & 3 & 2 \\
155
+ 2 & 0 & 1 \\
156
+ -2 & 2 & 0 \\
157
+ \end{array}
158
+ \right).\left(
159
+ \begin{array}{c}
160
+ 2 \\
161
+ 1 \\
162
+ -2 \\
163
+ \end{array}
164
+ \right)=\left(
165
+ \begin{array}{c}
166
+ 3 \\
167
+ \fbox{$2$} \\
168
+ \_ \\
169
+ \end{array}
170
+ \right) \\
171
+ \end{array}
172
+ \\
173
+
174
+ \begin{array}{l}
175
+ \text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
176
+ \left(
177
+ \begin{array}{ccc}
178
+ 2 & 3 & 2 \\
179
+ 2 & 0 & 1 \\
180
+ -2 & 2 & 0 \\
181
+ \end{array}
182
+ \right).\left(
183
+ \begin{array}{c}
184
+ 2 \\
185
+ 1 \\
186
+ -2 \\
187
+ \end{array}
188
+ \right)=\left(
189
+ \begin{array}{c}
190
+ 3 \\
191
+ 2 \\
192
+ \_ \\
193
+ \end{array}
194
+ \right) \\
195
+ \end{array}
196
+ \\
197
+
198
+ \begin{array}{l}
199
+
200
+ \begin{array}{l}
201
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, \times \, 2+2\ 1+0 (-2)=-2. \\
202
+ \text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
203
+ \end{array}
204
+ \\
205
+ \fbox{$
206
+ \begin{array}{ll}
207
+ \text{Answer:} & \\
208
+ \text{} & \left(
209
+ \begin{array}{ccc}
210
+ 2 & 3 & 2 \\
211
+ 2 & 0 & 1 \\
212
+ -2 & 2 & 0 \\
213
+ \end{array}
214
+ \right).\left(
215
+ \begin{array}{c}
216
+ 2 \\
217
+ 1 \\
218
+ -2 \\
219
+ \end{array}
220
+ \right)=\left(
221
+ \begin{array}{c}
222
+ 3 \\
223
+ 2 \\
224
+ \fbox{$-2$} \\
225
+ \end{array}
226
+ \right) \\
227
+ \end{array}
228
+ $} \\
229
+ \end{array}
230
+ \\
231
+ \end{array}
pretraining/mathematica/linear_algebra/multiply_w_steps/1285.txt ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{cc}
5
+ -1 & -3 \\
6
+ -1 & 2 \\
7
+ \end{array}
8
+ \right)$ and
9
+ $\left(
10
+ \begin{array}{c}
11
+ 1 \\
12
+ 3 \\
13
+ \end{array}
14
+ \right)$.
15
+ Answer:
16
+ \begin{array}{l}
17
+
18
+ \begin{array}{l}
19
+ \text{Multiply the following matrices}: \\
20
+ \left(
21
+ \begin{array}{cc}
22
+ -1 & -3 \\
23
+ -1 & 2 \\
24
+ \end{array}
25
+ \right).\left(
26
+ \begin{array}{c}
27
+ 1 \\
28
+ 3 \\
29
+ \end{array}
30
+ \right) \\
31
+ \end{array}
32
+ \\
33
+ \hline
34
+
35
+ \begin{array}{l}
36
+
37
+ \begin{array}{l}
38
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 1. \\
39
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 1: \\
40
+ \end{array}
41
+ \\
42
+ \left(
43
+ \begin{array}{cc}
44
+ -1 & -3 \\
45
+ -1 & 2 \\
46
+ \end{array}
47
+ \right).\left(
48
+ \begin{array}{c}
49
+ 1 \\
50
+ 3 \\
51
+ \end{array}
52
+ \right)=\left(
53
+ \begin{array}{c}
54
+ \_ \\
55
+ \_ \\
56
+ \end{array}
57
+ \right) \\
58
+ \end{array}
59
+ \\
60
+
61
+ \begin{array}{l}
62
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
63
+ \left(
64
+ \begin{array}{cc}
65
+ -1 & -3 \\
66
+ -1 & 2 \\
67
+ \end{array}
68
+ \right).\left(
69
+ \begin{array}{c}
70
+ 1 \\
71
+ 3 \\
72
+ \end{array}
73
+ \right)=\left(
74
+ \begin{array}{c}
75
+ \_ \\
76
+ \_ \\
77
+ \end{array}
78
+ \right) \\
79
+ \end{array}
80
+ \\
81
+
82
+ \begin{array}{l}
83
+
84
+ \begin{array}{l}
85
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-1)\, \times \, 1+(-3)\, \times \, 3=-10. \\
86
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
87
+ \end{array}
88
+ \\
89
+ \left(
90
+ \begin{array}{cc}
91
+ -1 & -3 \\
92
+ -1 & 2 \\
93
+ \end{array}
94
+ \right).\left(
95
+ \begin{array}{c}
96
+ 1 \\
97
+ 3 \\
98
+ \end{array}
99
+ \right)=\left(
100
+ \begin{array}{c}
101
+ \fbox{$-10$} \\
102
+ \_ \\
103
+ \end{array}
104
+ \right) \\
105
+ \end{array}
106
+ \\
107
+
108
+ \begin{array}{l}
109
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
110
+ \left(
111
+ \begin{array}{cc}
112
+ -1 & -3 \\
113
+ -1 & 2 \\
114
+ \end{array}
115
+ \right).\left(
116
+ \begin{array}{c}
117
+ 1 \\
118
+ 3 \\
119
+ \end{array}
120
+ \right)=\left(
121
+ \begin{array}{c}
122
+ -10 \\
123
+ \_ \\
124
+ \end{array}
125
+ \right) \\
126
+ \end{array}
127
+ \\
128
+
129
+ \begin{array}{l}
130
+
131
+ \begin{array}{l}
132
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-1)\, \times \, 1+2\ 3=5. \\
133
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
134
+ \end{array}
135
+ \\
136
+ \fbox{$
137
+ \begin{array}{ll}
138
+ \text{Answer:} & \\
139
+ \text{} & \left(
140
+ \begin{array}{cc}
141
+ -1 & -3 \\
142
+ -1 & 2 \\
143
+ \end{array}
144
+ \right).\left(
145
+ \begin{array}{c}
146
+ 1 \\
147
+ 3 \\
148
+ \end{array}
149
+ \right)=\left(
150
+ \begin{array}{c}
151
+ -10 \\
152
+ \fbox{$5$} \\
153
+ \end{array}
154
+ \right) \\
155
+ \end{array}
156
+ $} \\
157
+ \end{array}
158
+ \\
159
+ \end{array}
pretraining/mathematica/linear_algebra/multiply_w_steps/1485.txt ADDED
@@ -0,0 +1,390 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{ccc}
5
+ -\frac{15}{8} & \frac{19}{8} & -\frac{29}{16} \\
6
+ 3 & \frac{17}{16} & -\frac{13}{8} \\
7
+ -2 & -\frac{13}{8} & -\frac{5}{4} \\
8
+ \end{array}
9
+ \right)$ and
10
+ $\left(
11
+ \begin{array}{cc}
12
+ \frac{39}{16} & -\frac{7}{8} \\
13
+ \frac{19}{16} & \frac{13}{8} \\
14
+ -\frac{21}{8} & -\frac{3}{2} \\
15
+ \end{array}
16
+ \right)$.
17
+ Answer:
18
+ \begin{array}{l}
19
+
20
+ \begin{array}{l}
21
+ \text{Multiply the following matrices}: \\
22
+ \left(
23
+ \begin{array}{ccc}
24
+ -\frac{15}{8} & \frac{19}{8} & -\frac{29}{16} \\
25
+ 3 & \frac{17}{16} & -\frac{13}{8} \\
26
+ -2 & -\frac{13}{8} & -\frac{5}{4} \\
27
+ \end{array}
28
+ \right).\left(
29
+ \begin{array}{cc}
30
+ \frac{39}{16} & -\frac{7}{8} \\
31
+ \frac{19}{16} & \frac{13}{8} \\
32
+ -\frac{21}{8} & -\frac{3}{2} \\
33
+ \end{array}
34
+ \right) \\
35
+ \end{array}
36
+ \\
37
+ \hline
38
+
39
+ \begin{array}{l}
40
+
41
+ \begin{array}{l}
42
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 2. \\
43
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 2: \\
44
+ \end{array}
45
+ \\
46
+ \left(
47
+ \begin{array}{ccc}
48
+ -\frac{15}{8} & \frac{19}{8} & -\frac{29}{16} \\
49
+ 3 & \frac{17}{16} & -\frac{13}{8} \\
50
+ -2 & -\frac{13}{8} & -\frac{5}{4} \\
51
+ \end{array}
52
+ \right).\left(
53
+ \begin{array}{cc}
54
+ \frac{39}{16} & -\frac{7}{8} \\
55
+ \frac{19}{16} & \frac{13}{8} \\
56
+ -\frac{21}{8} & -\frac{3}{2} \\
57
+ \end{array}
58
+ \right)=\left(
59
+ \begin{array}{cc}
60
+ \_ & \_ \\
61
+ \_ & \_ \\
62
+ \_ & \_ \\
63
+ \end{array}
64
+ \right) \\
65
+ \end{array}
66
+ \\
67
+
68
+ \begin{array}{l}
69
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
70
+ \left(
71
+ \begin{array}{ccc}
72
+ -\frac{15}{8} & \frac{19}{8} & -\frac{29}{16} \\
73
+ 3 & \frac{17}{16} & -\frac{13}{8} \\
74
+ -2 & -\frac{13}{8} & -\frac{5}{4} \\
75
+ \end{array}
76
+ \right).\left(
77
+ \begin{array}{cc}
78
+ \frac{39}{16} & -\frac{7}{8} \\
79
+ \frac{19}{16} & \frac{13}{8} \\
80
+ -\frac{21}{8} & -\frac{3}{2} \\
81
+ \end{array}
82
+ \right)=\left(
83
+ \begin{array}{cc}
84
+ \_ & \_ \\
85
+ \_ & \_ \\
86
+ \_ & \_ \\
87
+ \end{array}
88
+ \right) \\
89
+ \end{array}
90
+ \\
91
+
92
+ \begin{array}{l}
93
+
94
+ \begin{array}{l}
95
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{15}{8}\right)\, \times \, \frac{39}{16}+\frac{19\ 19}{8\ 16}+\left(-\frac{29}{16}\right)\, \left(-\frac{21}{8}\right)=\frac{385}{128}. \\
96
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
97
+ \end{array}
98
+ \\
99
+ \left(
100
+ \begin{array}{ccc}
101
+ -\frac{15}{8} & \frac{19}{8} & -\frac{29}{16} \\
102
+ 3 & \frac{17}{16} & -\frac{13}{8} \\
103
+ -2 & -\frac{13}{8} & -\frac{5}{4} \\
104
+ \end{array}
105
+ \right).\left(
106
+ \begin{array}{cc}
107
+ \frac{39}{16} & -\frac{7}{8} \\
108
+ \frac{19}{16} & \frac{13}{8} \\
109
+ -\frac{21}{8} & -\frac{3}{2} \\
110
+ \end{array}
111
+ \right)=\left(
112
+ \begin{array}{cc}
113
+ \fbox{$\frac{385}{128}$} & \_ \\
114
+ \_ & \_ \\
115
+ \_ & \_ \\
116
+ \end{array}
117
+ \right) \\
118
+ \end{array}
119
+ \\
120
+
121
+ \begin{array}{l}
122
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
123
+ \left(
124
+ \begin{array}{ccc}
125
+ -\frac{15}{8} & \frac{19}{8} & -\frac{29}{16} \\
126
+ 3 & \frac{17}{16} & -\frac{13}{8} \\
127
+ -2 & -\frac{13}{8} & -\frac{5}{4} \\
128
+ \end{array}
129
+ \right).\left(
130
+ \begin{array}{cc}
131
+ \frac{39}{16} & -\frac{7}{8} \\
132
+ \frac{19}{16} & \frac{13}{8} \\
133
+ -\frac{21}{8} & -\frac{3}{2} \\
134
+ \end{array}
135
+ \right)=\left(
136
+ \begin{array}{cc}
137
+ \frac{385}{128} & \_ \\
138
+ \_ & \_ \\
139
+ \_ & \_ \\
140
+ \end{array}
141
+ \right) \\
142
+ \end{array}
143
+ \\
144
+
145
+ \begin{array}{l}
146
+
147
+ \begin{array}{l}
148
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{15}{8}\right)\, \left(-\frac{7}{8}\right)+\frac{19\ 13}{8\ 8}+\left(-\frac{29}{16}\right)\, \left(-\frac{3}{2}\right)=\frac{263}{32}. \\
149
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
150
+ \end{array}
151
+ \\
152
+ \left(
153
+ \begin{array}{ccc}
154
+ -\frac{15}{8} & \frac{19}{8} & -\frac{29}{16} \\
155
+ 3 & \frac{17}{16} & -\frac{13}{8} \\
156
+ -2 & -\frac{13}{8} & -\frac{5}{4} \\
157
+ \end{array}
158
+ \right).\left(
159
+ \begin{array}{cc}
160
+ \frac{39}{16} & -\frac{7}{8} \\
161
+ \frac{19}{16} & \frac{13}{8} \\
162
+ -\frac{21}{8} & -\frac{3}{2} \\
163
+ \end{array}
164
+ \right)=\left(
165
+ \begin{array}{cc}
166
+ \frac{385}{128} & \fbox{$\frac{263}{32}$} \\
167
+ \_ & \_ \\
168
+ \_ & \_ \\
169
+ \end{array}
170
+ \right) \\
171
+ \end{array}
172
+ \\
173
+
174
+ \begin{array}{l}
175
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
176
+ \left(
177
+ \begin{array}{ccc}
178
+ -\frac{15}{8} & \frac{19}{8} & -\frac{29}{16} \\
179
+ 3 & \frac{17}{16} & -\frac{13}{8} \\
180
+ -2 & -\frac{13}{8} & -\frac{5}{4} \\
181
+ \end{array}
182
+ \right).\left(
183
+ \begin{array}{cc}
184
+ \frac{39}{16} & -\frac{7}{8} \\
185
+ \frac{19}{16} & \frac{13}{8} \\
186
+ -\frac{21}{8} & -\frac{3}{2} \\
187
+ \end{array}
188
+ \right)=\left(
189
+ \begin{array}{cc}
190
+ \frac{385}{128} & \frac{263}{32} \\
191
+ \_ & \_ \\
192
+ \_ & \_ \\
193
+ \end{array}
194
+ \right) \\
195
+ \end{array}
196
+ \\
197
+
198
+ \begin{array}{l}
199
+
200
+ \begin{array}{l}
201
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{3\ 39}{16}+\frac{17\ 19}{16\ 16}+\left(-\frac{13}{8}\right)\, \left(-\frac{21}{8}\right)=\frac{3287}{256}. \\
202
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
203
+ \end{array}
204
+ \\
205
+ \left(
206
+ \begin{array}{ccc}
207
+ -\frac{15}{8} & \frac{19}{8} & -\frac{29}{16} \\
208
+ 3 & \frac{17}{16} & -\frac{13}{8} \\
209
+ -2 & -\frac{13}{8} & -\frac{5}{4} \\
210
+ \end{array}
211
+ \right).\left(
212
+ \begin{array}{cc}
213
+ \frac{39}{16} & -\frac{7}{8} \\
214
+ \frac{19}{16} & \frac{13}{8} \\
215
+ -\frac{21}{8} & -\frac{3}{2} \\
216
+ \end{array}
217
+ \right)=\left(
218
+ \begin{array}{cc}
219
+ \frac{385}{128} & \frac{263}{32} \\
220
+ \fbox{$\frac{3287}{256}$} & \_ \\
221
+ \_ & \_ \\
222
+ \end{array}
223
+ \right) \\
224
+ \end{array}
225
+ \\
226
+
227
+ \begin{array}{l}
228
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
229
+ \left(
230
+ \begin{array}{ccc}
231
+ -\frac{15}{8} & \frac{19}{8} & -\frac{29}{16} \\
232
+ 3 & \frac{17}{16} & -\frac{13}{8} \\
233
+ -2 & -\frac{13}{8} & -\frac{5}{4} \\
234
+ \end{array}
235
+ \right).\left(
236
+ \begin{array}{cc}
237
+ \frac{39}{16} & -\frac{7}{8} \\
238
+ \frac{19}{16} & \frac{13}{8} \\
239
+ -\frac{21}{8} & -\frac{3}{2} \\
240
+ \end{array}
241
+ \right)=\left(
242
+ \begin{array}{cc}
243
+ \frac{385}{128} & \frac{263}{32} \\
244
+ \frac{3287}{256} & \_ \\
245
+ \_ & \_ \\
246
+ \end{array}
247
+ \right) \\
248
+ \end{array}
249
+ \\
250
+
251
+ \begin{array}{l}
252
+
253
+ \begin{array}{l}
254
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{3 (-7)}{8}+\frac{17\ 13}{16\ 8}+\left(-\frac{13}{8}\right)\, \left(-\frac{3}{2}\right)=\frac{197}{128}. \\
255
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
256
+ \end{array}
257
+ \\
258
+ \left(
259
+ \begin{array}{ccc}
260
+ -\frac{15}{8} & \frac{19}{8} & -\frac{29}{16} \\
261
+ 3 & \frac{17}{16} & -\frac{13}{8} \\
262
+ -2 & -\frac{13}{8} & -\frac{5}{4} \\
263
+ \end{array}
264
+ \right).\left(
265
+ \begin{array}{cc}
266
+ \frac{39}{16} & -\frac{7}{8} \\
267
+ \frac{19}{16} & \frac{13}{8} \\
268
+ -\frac{21}{8} & -\frac{3}{2} \\
269
+ \end{array}
270
+ \right)=\left(
271
+ \begin{array}{cc}
272
+ \frac{385}{128} & \frac{263}{32} \\
273
+ \frac{3287}{256} & \fbox{$\frac{197}{128}$} \\
274
+ \_ & \_ \\
275
+ \end{array}
276
+ \right) \\
277
+ \end{array}
278
+ \\
279
+
280
+ \begin{array}{l}
281
+ \text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
282
+ \left(
283
+ \begin{array}{ccc}
284
+ -\frac{15}{8} & \frac{19}{8} & -\frac{29}{16} \\
285
+ 3 & \frac{17}{16} & -\frac{13}{8} \\
286
+ -2 & -\frac{13}{8} & -\frac{5}{4} \\
287
+ \end{array}
288
+ \right).\left(
289
+ \begin{array}{cc}
290
+ \frac{39}{16} & -\frac{7}{8} \\
291
+ \frac{19}{16} & \frac{13}{8} \\
292
+ -\frac{21}{8} & -\frac{3}{2} \\
293
+ \end{array}
294
+ \right)=\left(
295
+ \begin{array}{cc}
296
+ \frac{385}{128} & \frac{263}{32} \\
297
+ \frac{3287}{256} & \frac{197}{128} \\
298
+ \_ & \_ \\
299
+ \end{array}
300
+ \right) \\
301
+ \end{array}
302
+ \\
303
+
304
+ \begin{array}{l}
305
+
306
+ \begin{array}{l}
307
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, \times \, \frac{39}{16}+\left(-\frac{13}{8}\right)\, \times \, \frac{19}{16}+\left(-\frac{5}{4}\right)\, \left(-\frac{21}{8}\right)=-\frac{451}{128}. \\
308
+ \text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
309
+ \end{array}
310
+ \\
311
+ \left(
312
+ \begin{array}{ccc}
313
+ -\frac{15}{8} & \frac{19}{8} & -\frac{29}{16} \\
314
+ 3 & \frac{17}{16} & -\frac{13}{8} \\
315
+ -2 & -\frac{13}{8} & -\frac{5}{4} \\
316
+ \end{array}
317
+ \right).\left(
318
+ \begin{array}{cc}
319
+ \frac{39}{16} & -\frac{7}{8} \\
320
+ \frac{19}{16} & \frac{13}{8} \\
321
+ -\frac{21}{8} & -\frac{3}{2} \\
322
+ \end{array}
323
+ \right)=\left(
324
+ \begin{array}{cc}
325
+ \frac{385}{128} & \frac{263}{32} \\
326
+ \frac{3287}{256} & \frac{197}{128} \\
327
+ \fbox{$-\frac{451}{128}$} & \_ \\
328
+ \end{array}
329
+ \right) \\
330
+ \end{array}
331
+ \\
332
+
333
+ \begin{array}{l}
334
+ \text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
335
+ \left(
336
+ \begin{array}{ccc}
337
+ -\frac{15}{8} & \frac{19}{8} & -\frac{29}{16} \\
338
+ 3 & \frac{17}{16} & -\frac{13}{8} \\
339
+ -2 & -\frac{13}{8} & -\frac{5}{4} \\
340
+ \end{array}
341
+ \right).\left(
342
+ \begin{array}{cc}
343
+ \frac{39}{16} & -\frac{7}{8} \\
344
+ \frac{19}{16} & \frac{13}{8} \\
345
+ -\frac{21}{8} & -\frac{3}{2} \\
346
+ \end{array}
347
+ \right)=\left(
348
+ \begin{array}{cc}
349
+ \frac{385}{128} & \frac{263}{32} \\
350
+ \frac{3287}{256} & \frac{197}{128} \\
351
+ -\frac{451}{128} & \_ \\
352
+ \end{array}
353
+ \right) \\
354
+ \end{array}
355
+ \\
356
+
357
+ \begin{array}{l}
358
+
359
+ \begin{array}{l}
360
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, \left(-\frac{7}{8}\right)+\left(-\frac{13}{8}\right)\, \times \, \frac{13}{8}+\left(-\frac{5}{4}\right)\, \left(-\frac{3}{2}\right)=\frac{63}{64}. \\
361
+ \text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
362
+ \end{array}
363
+ \\
364
+ \fbox{$
365
+ \begin{array}{ll}
366
+ \text{Answer:} & \\
367
+ \text{} & \left(
368
+ \begin{array}{ccc}
369
+ -\frac{15}{8} & \frac{19}{8} & -\frac{29}{16} \\
370
+ 3 & \frac{17}{16} & -\frac{13}{8} \\
371
+ -2 & -\frac{13}{8} & -\frac{5}{4} \\
372
+ \end{array}
373
+ \right).\left(
374
+ \begin{array}{cc}
375
+ \frac{39}{16} & -\frac{7}{8} \\
376
+ \frac{19}{16} & \frac{13}{8} \\
377
+ -\frac{21}{8} & -\frac{3}{2} \\
378
+ \end{array}
379
+ \right)=\left(
380
+ \begin{array}{cc}
381
+ \frac{385}{128} & \frac{263}{32} \\
382
+ \frac{3287}{256} & \frac{197}{128} \\
383
+ -\frac{451}{128} & \fbox{$\frac{63}{64}$} \\
384
+ \end{array}
385
+ \right) \\
386
+ \end{array}
387
+ $} \\
388
+ \end{array}
389
+ \\
390
+ \end{array}
pretraining/mathematica/linear_algebra/multiply_w_steps/1567.txt ADDED
@@ -0,0 +1,362 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{ccc}
5
+ -\frac{7}{6} & \frac{8}{3} & -\frac{7}{3} \\
6
+ \frac{2}{3} & -\frac{3}{2} & 1 \\
7
+ \end{array}
8
+ \right)$ and
9
+ $\left(
10
+ \begin{array}{ccc}
11
+ \frac{5}{2} & -\frac{7}{3} & -3 \\
12
+ 3 & -\frac{3}{2} & -2 \\
13
+ \frac{11}{6} & -\frac{4}{3} & \frac{8}{3} \\
14
+ \end{array}
15
+ \right)$.
16
+ Answer:
17
+ \begin{array}{l}
18
+
19
+ \begin{array}{l}
20
+ \text{Multiply the following matrices}: \\
21
+ \left(
22
+ \begin{array}{ccc}
23
+ -\frac{7}{6} & \frac{8}{3} & -\frac{7}{3} \\
24
+ \frac{2}{3} & -\frac{3}{2} & 1 \\
25
+ \end{array}
26
+ \right).\left(
27
+ \begin{array}{ccc}
28
+ \frac{5}{2} & -\frac{7}{3} & -3 \\
29
+ 3 & -\frac{3}{2} & -2 \\
30
+ \frac{11}{6} & -\frac{4}{3} & \frac{8}{3} \\
31
+ \end{array}
32
+ \right) \\
33
+ \end{array}
34
+ \\
35
+ \hline
36
+
37
+ \begin{array}{l}
38
+
39
+ \begin{array}{l}
40
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 3. \\
41
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 3: \\
42
+ \end{array}
43
+ \\
44
+ \left(
45
+ \begin{array}{ccc}
46
+ -\frac{7}{6} & \frac{8}{3} & -\frac{7}{3} \\
47
+ \frac{2}{3} & -\frac{3}{2} & 1 \\
48
+ \end{array}
49
+ \right).\left(
50
+ \begin{array}{ccc}
51
+ \frac{5}{2} & -\frac{7}{3} & -3 \\
52
+ 3 & -\frac{3}{2} & -2 \\
53
+ \frac{11}{6} & -\frac{4}{3} & \frac{8}{3} \\
54
+ \end{array}
55
+ \right)=\left(
56
+ \begin{array}{ccc}
57
+ \_ & \_ & \_ \\
58
+ \_ & \_ & \_ \\
59
+ \end{array}
60
+ \right) \\
61
+ \end{array}
62
+ \\
63
+
64
+ \begin{array}{l}
65
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
66
+ \left(
67
+ \begin{array}{ccc}
68
+ -\frac{7}{6} & \frac{8}{3} & -\frac{7}{3} \\
69
+ \frac{2}{3} & -\frac{3}{2} & 1 \\
70
+ \end{array}
71
+ \right).\left(
72
+ \begin{array}{ccc}
73
+ \frac{5}{2} & -\frac{7}{3} & -3 \\
74
+ 3 & -\frac{3}{2} & -2 \\
75
+ \frac{11}{6} & -\frac{4}{3} & \frac{8}{3} \\
76
+ \end{array}
77
+ \right)=\left(
78
+ \begin{array}{ccc}
79
+ \_ & \_ & \_ \\
80
+ \_ & \_ & \_ \\
81
+ \end{array}
82
+ \right) \\
83
+ \end{array}
84
+ \\
85
+
86
+ \begin{array}{l}
87
+
88
+ \begin{array}{l}
89
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{7}{6}\right)\, \times \, \frac{5}{2}+\frac{8\ 3}{3}+\left(-\frac{7}{3}\right)\, \times \, \frac{11}{6}=\frac{29}{36}. \\
90
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
91
+ \end{array}
92
+ \\
93
+ \left(
94
+ \begin{array}{ccc}
95
+ -\frac{7}{6} & \frac{8}{3} & -\frac{7}{3} \\
96
+ \frac{2}{3} & -\frac{3}{2} & 1 \\
97
+ \end{array}
98
+ \right).\left(
99
+ \begin{array}{ccc}
100
+ \frac{5}{2} & -\frac{7}{3} & -3 \\
101
+ 3 & -\frac{3}{2} & -2 \\
102
+ \frac{11}{6} & -\frac{4}{3} & \frac{8}{3} \\
103
+ \end{array}
104
+ \right)=\left(
105
+ \begin{array}{ccc}
106
+ \fbox{$\frac{29}{36}$} & \_ & \_ \\
107
+ \_ & \_ & \_ \\
108
+ \end{array}
109
+ \right) \\
110
+ \end{array}
111
+ \\
112
+
113
+ \begin{array}{l}
114
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
115
+ \left(
116
+ \begin{array}{ccc}
117
+ -\frac{7}{6} & \frac{8}{3} & -\frac{7}{3} \\
118
+ \frac{2}{3} & -\frac{3}{2} & 1 \\
119
+ \end{array}
120
+ \right).\left(
121
+ \begin{array}{ccc}
122
+ \frac{5}{2} & -\frac{7}{3} & -3 \\
123
+ 3 & -\frac{3}{2} & -2 \\
124
+ \frac{11}{6} & -\frac{4}{3} & \frac{8}{3} \\
125
+ \end{array}
126
+ \right)=\left(
127
+ \begin{array}{ccc}
128
+ \frac{29}{36} & \_ & \_ \\
129
+ \_ & \_ & \_ \\
130
+ \end{array}
131
+ \right) \\
132
+ \end{array}
133
+ \\
134
+
135
+ \begin{array}{l}
136
+
137
+ \begin{array}{l}
138
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{7}{6}\right)\, \left(-\frac{7}{3}\right)+\frac{8 (-3)}{3\ 2}+\left(-\frac{7}{3}\right)\, \left(-\frac{4}{3}\right)=\frac{11}{6}. \\
139
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
140
+ \end{array}
141
+ \\
142
+ \left(
143
+ \begin{array}{ccc}
144
+ -\frac{7}{6} & \frac{8}{3} & -\frac{7}{3} \\
145
+ \frac{2}{3} & -\frac{3}{2} & 1 \\
146
+ \end{array}
147
+ \right).\left(
148
+ \begin{array}{ccc}
149
+ \frac{5}{2} & -\frac{7}{3} & -3 \\
150
+ 3 & -\frac{3}{2} & -2 \\
151
+ \frac{11}{6} & -\frac{4}{3} & \frac{8}{3} \\
152
+ \end{array}
153
+ \right)=\left(
154
+ \begin{array}{ccc}
155
+ \frac{29}{36} & \fbox{$\frac{11}{6}$} & \_ \\
156
+ \_ & \_ & \_ \\
157
+ \end{array}
158
+ \right) \\
159
+ \end{array}
160
+ \\
161
+
162
+ \begin{array}{l}
163
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
164
+ \left(
165
+ \begin{array}{ccc}
166
+ -\frac{7}{6} & \frac{8}{3} & -\frac{7}{3} \\
167
+ \frac{2}{3} & -\frac{3}{2} & 1 \\
168
+ \end{array}
169
+ \right).\left(
170
+ \begin{array}{ccc}
171
+ \frac{5}{2} & -\frac{7}{3} & -3 \\
172
+ 3 & -\frac{3}{2} & -2 \\
173
+ \frac{11}{6} & -\frac{4}{3} & \frac{8}{3} \\
174
+ \end{array}
175
+ \right)=\left(
176
+ \begin{array}{ccc}
177
+ \frac{29}{36} & \frac{11}{6} & \_ \\
178
+ \_ & \_ & \_ \\
179
+ \end{array}
180
+ \right) \\
181
+ \end{array}
182
+ \\
183
+
184
+ \begin{array}{l}
185
+
186
+ \begin{array}{l}
187
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{7}{6}\right)\, (-3)+\frac{8 (-2)}{3}+\left(-\frac{7}{3}\right)\, \times \, \frac{8}{3}=-\frac{145}{18}. \\
188
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
189
+ \end{array}
190
+ \\
191
+ \left(
192
+ \begin{array}{ccc}
193
+ -\frac{7}{6} & \frac{8}{3} & -\frac{7}{3} \\
194
+ \frac{2}{3} & -\frac{3}{2} & 1 \\
195
+ \end{array}
196
+ \right).\left(
197
+ \begin{array}{ccc}
198
+ \frac{5}{2} & -\frac{7}{3} & -3 \\
199
+ 3 & -\frac{3}{2} & -2 \\
200
+ \frac{11}{6} & -\frac{4}{3} & \frac{8}{3} \\
201
+ \end{array}
202
+ \right)=\left(
203
+ \begin{array}{ccc}
204
+ \frac{29}{36} & \frac{11}{6} & \fbox{$-\frac{145}{18}$} \\
205
+ \_ & \_ & \_ \\
206
+ \end{array}
207
+ \right) \\
208
+ \end{array}
209
+ \\
210
+
211
+ \begin{array}{l}
212
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
213
+ \left(
214
+ \begin{array}{ccc}
215
+ -\frac{7}{6} & \frac{8}{3} & -\frac{7}{3} \\
216
+ \frac{2}{3} & -\frac{3}{2} & 1 \\
217
+ \end{array}
218
+ \right).\left(
219
+ \begin{array}{ccc}
220
+ \frac{5}{2} & -\frac{7}{3} & -3 \\
221
+ 3 & -\frac{3}{2} & -2 \\
222
+ \frac{11}{6} & -\frac{4}{3} & \frac{8}{3} \\
223
+ \end{array}
224
+ \right)=\left(
225
+ \begin{array}{ccc}
226
+ \frac{29}{36} & \frac{11}{6} & -\frac{145}{18} \\
227
+ \_ & \_ & \_ \\
228
+ \end{array}
229
+ \right) \\
230
+ \end{array}
231
+ \\
232
+
233
+ \begin{array}{l}
234
+
235
+ \begin{array}{l}
236
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{2\ 5}{3\ 2}+\left(-\frac{3}{2}\right)\, \times \, 3+\frac{11}{6}=-1. \\
237
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
238
+ \end{array}
239
+ \\
240
+ \left(
241
+ \begin{array}{ccc}
242
+ -\frac{7}{6} & \frac{8}{3} & -\frac{7}{3} \\
243
+ \frac{2}{3} & -\frac{3}{2} & 1 \\
244
+ \end{array}
245
+ \right).\left(
246
+ \begin{array}{ccc}
247
+ \frac{5}{2} & -\frac{7}{3} & -3 \\
248
+ 3 & -\frac{3}{2} & -2 \\
249
+ \frac{11}{6} & -\frac{4}{3} & \frac{8}{3} \\
250
+ \end{array}
251
+ \right)=\left(
252
+ \begin{array}{ccc}
253
+ \frac{29}{36} & \frac{11}{6} & -\frac{145}{18} \\
254
+ \fbox{$-1$} & \_ & \_ \\
255
+ \end{array}
256
+ \right) \\
257
+ \end{array}
258
+ \\
259
+
260
+ \begin{array}{l}
261
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
262
+ \left(
263
+ \begin{array}{ccc}
264
+ -\frac{7}{6} & \frac{8}{3} & -\frac{7}{3} \\
265
+ \frac{2}{3} & -\frac{3}{2} & 1 \\
266
+ \end{array}
267
+ \right).\left(
268
+ \begin{array}{ccc}
269
+ \frac{5}{2} & -\frac{7}{3} & -3 \\
270
+ 3 & -\frac{3}{2} & -2 \\
271
+ \frac{11}{6} & -\frac{4}{3} & \frac{8}{3} \\
272
+ \end{array}
273
+ \right)=\left(
274
+ \begin{array}{ccc}
275
+ \frac{29}{36} & \frac{11}{6} & -\frac{145}{18} \\
276
+ -1 & \_ & \_ \\
277
+ \end{array}
278
+ \right) \\
279
+ \end{array}
280
+ \\
281
+
282
+ \begin{array}{l}
283
+
284
+ \begin{array}{l}
285
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{2 (-7)}{3\ 3}+\left(-\frac{3}{2}\right)\, \left(-\frac{3}{2}\right)-\frac{4}{3}=-\frac{23}{36}. \\
286
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
287
+ \end{array}
288
+ \\
289
+ \left(
290
+ \begin{array}{ccc}
291
+ -\frac{7}{6} & \frac{8}{3} & -\frac{7}{3} \\
292
+ \frac{2}{3} & -\frac{3}{2} & 1 \\
293
+ \end{array}
294
+ \right).\left(
295
+ \begin{array}{ccc}
296
+ \frac{5}{2} & -\frac{7}{3} & -3 \\
297
+ 3 & -\frac{3}{2} & -2 \\
298
+ \frac{11}{6} & -\frac{4}{3} & \frac{8}{3} \\
299
+ \end{array}
300
+ \right)=\left(
301
+ \begin{array}{ccc}
302
+ \frac{29}{36} & \frac{11}{6} & -\frac{145}{18} \\
303
+ -1 & \fbox{$-\frac{23}{36}$} & \_ \\
304
+ \end{array}
305
+ \right) \\
306
+ \end{array}
307
+ \\
308
+
309
+ \begin{array}{l}
310
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
311
+ \left(
312
+ \begin{array}{ccc}
313
+ -\frac{7}{6} & \frac{8}{3} & -\frac{7}{3} \\
314
+ \frac{2}{3} & -\frac{3}{2} & 1 \\
315
+ \end{array}
316
+ \right).\left(
317
+ \begin{array}{ccc}
318
+ \frac{5}{2} & -\frac{7}{3} & -3 \\
319
+ 3 & -\frac{3}{2} & -2 \\
320
+ \frac{11}{6} & -\frac{4}{3} & \frac{8}{3} \\
321
+ \end{array}
322
+ \right)=\left(
323
+ \begin{array}{ccc}
324
+ \frac{29}{36} & \frac{11}{6} & -\frac{145}{18} \\
325
+ -1 & -\frac{23}{36} & \_ \\
326
+ \end{array}
327
+ \right) \\
328
+ \end{array}
329
+ \\
330
+
331
+ \begin{array}{l}
332
+
333
+ \begin{array}{l}
334
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{2 (-3)}{3}+\left(-\frac{3}{2}\right)\, (-2)+\frac{8}{3}=\frac{11}{3}. \\
335
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
336
+ \end{array}
337
+ \\
338
+ \fbox{$
339
+ \begin{array}{ll}
340
+ \text{Answer:} & \\
341
+ \text{} & \left(
342
+ \begin{array}{ccc}
343
+ -\frac{7}{6} & \frac{8}{3} & -\frac{7}{3} \\
344
+ \frac{2}{3} & -\frac{3}{2} & 1 \\
345
+ \end{array}
346
+ \right).\left(
347
+ \begin{array}{ccc}
348
+ \frac{5}{2} & -\frac{7}{3} & -3 \\
349
+ 3 & -\frac{3}{2} & -2 \\
350
+ \frac{11}{6} & -\frac{4}{3} & \frac{8}{3} \\
351
+ \end{array}
352
+ \right)=\left(
353
+ \begin{array}{ccc}
354
+ \frac{29}{36} & \frac{11}{6} & -\frac{145}{18} \\
355
+ -1 & -\frac{23}{36} & \fbox{$\frac{11}{3}$} \\
356
+ \end{array}
357
+ \right) \\
358
+ \end{array}
359
+ $} \\
360
+ \end{array}
361
+ \\
362
+ \end{array}
pretraining/mathematica/linear_algebra/multiply_w_steps/1633.txt ADDED
@@ -0,0 +1,549 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{ccc}
5
+ 2 & -1 & 2 \\
6
+ 1 & -1 & 0 \\
7
+ 2 & 2 & 0 \\
8
+ \end{array}
9
+ \right)$ and
10
+ $\left(
11
+ \begin{array}{ccc}
12
+ -1 & 3 & -2 \\
13
+ 0 & 2 & 2 \\
14
+ 3 & 1 & -2 \\
15
+ \end{array}
16
+ \right)$.
17
+ Answer:
18
+ \begin{array}{l}
19
+
20
+ \begin{array}{l}
21
+ \text{Multiply the following matrices}: \\
22
+ \left(
23
+ \begin{array}{ccc}
24
+ 2 & -1 & 2 \\
25
+ 1 & -1 & 0 \\
26
+ 2 & 2 & 0 \\
27
+ \end{array}
28
+ \right).\left(
29
+ \begin{array}{ccc}
30
+ -1 & 3 & -2 \\
31
+ 0 & 2 & 2 \\
32
+ 3 & 1 & -2 \\
33
+ \end{array}
34
+ \right) \\
35
+ \end{array}
36
+ \\
37
+ \hline
38
+
39
+ \begin{array}{l}
40
+
41
+ \begin{array}{l}
42
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 3. \\
43
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 3: \\
44
+ \end{array}
45
+ \\
46
+ \left(
47
+ \begin{array}{ccc}
48
+ 2 & -1 & 2 \\
49
+ 1 & -1 & 0 \\
50
+ 2 & 2 & 0 \\
51
+ \end{array}
52
+ \right).\left(
53
+ \begin{array}{ccc}
54
+ -1 & 3 & -2 \\
55
+ 0 & 2 & 2 \\
56
+ 3 & 1 & -2 \\
57
+ \end{array}
58
+ \right)=\left(
59
+ \begin{array}{ccc}
60
+ \_ & \_ & \_ \\
61
+ \_ & \_ & \_ \\
62
+ \_ & \_ & \_ \\
63
+ \end{array}
64
+ \right) \\
65
+ \end{array}
66
+ \\
67
+
68
+ \begin{array}{l}
69
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
70
+ \left(
71
+ \begin{array}{ccc}
72
+ 2 & -1 & 2 \\
73
+ 1 & -1 & 0 \\
74
+ 2 & 2 & 0 \\
75
+ \end{array}
76
+ \right).\left(
77
+ \begin{array}{ccc}
78
+ -1 & 3 & -2 \\
79
+ 0 & 2 & 2 \\
80
+ 3 & 1 & -2 \\
81
+ \end{array}
82
+ \right)=\left(
83
+ \begin{array}{ccc}
84
+ \_ & \_ & \_ \\
85
+ \_ & \_ & \_ \\
86
+ \_ & \_ & \_ \\
87
+ \end{array}
88
+ \right) \\
89
+ \end{array}
90
+ \\
91
+
92
+ \begin{array}{l}
93
+
94
+ \begin{array}{l}
95
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2 (-1)+(-1)\, \times \, 0+2\ 3=4. \\
96
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
97
+ \end{array}
98
+ \\
99
+ \left(
100
+ \begin{array}{ccc}
101
+ 2 & -1 & 2 \\
102
+ 1 & -1 & 0 \\
103
+ 2 & 2 & 0 \\
104
+ \end{array}
105
+ \right).\left(
106
+ \begin{array}{ccc}
107
+ -1 & 3 & -2 \\
108
+ 0 & 2 & 2 \\
109
+ 3 & 1 & -2 \\
110
+ \end{array}
111
+ \right)=\left(
112
+ \begin{array}{ccc}
113
+ \fbox{$4$} & \_ & \_ \\
114
+ \_ & \_ & \_ \\
115
+ \_ & \_ & \_ \\
116
+ \end{array}
117
+ \right) \\
118
+ \end{array}
119
+ \\
120
+
121
+ \begin{array}{l}
122
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
123
+ \left(
124
+ \begin{array}{ccc}
125
+ 2 & -1 & 2 \\
126
+ 1 & -1 & 0 \\
127
+ 2 & 2 & 0 \\
128
+ \end{array}
129
+ \right).\left(
130
+ \begin{array}{ccc}
131
+ -1 & 3 & -2 \\
132
+ 0 & 2 & 2 \\
133
+ 3 & 1 & -2 \\
134
+ \end{array}
135
+ \right)=\left(
136
+ \begin{array}{ccc}
137
+ 4 & \_ & \_ \\
138
+ \_ & \_ & \_ \\
139
+ \_ & \_ & \_ \\
140
+ \end{array}
141
+ \right) \\
142
+ \end{array}
143
+ \\
144
+
145
+ \begin{array}{l}
146
+
147
+ \begin{array}{l}
148
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2\ 3+(-1)\, \times \, 2+2\ 1=6. \\
149
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
150
+ \end{array}
151
+ \\
152
+ \left(
153
+ \begin{array}{ccc}
154
+ 2 & -1 & 2 \\
155
+ 1 & -1 & 0 \\
156
+ 2 & 2 & 0 \\
157
+ \end{array}
158
+ \right).\left(
159
+ \begin{array}{ccc}
160
+ -1 & 3 & -2 \\
161
+ 0 & 2 & 2 \\
162
+ 3 & 1 & -2 \\
163
+ \end{array}
164
+ \right)=\left(
165
+ \begin{array}{ccc}
166
+ 4 & \fbox{$6$} & \_ \\
167
+ \_ & \_ & \_ \\
168
+ \_ & \_ & \_ \\
169
+ \end{array}
170
+ \right) \\
171
+ \end{array}
172
+ \\
173
+
174
+ \begin{array}{l}
175
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
176
+ \left(
177
+ \begin{array}{ccc}
178
+ 2 & -1 & 2 \\
179
+ 1 & -1 & 0 \\
180
+ 2 & 2 & 0 \\
181
+ \end{array}
182
+ \right).\left(
183
+ \begin{array}{ccc}
184
+ -1 & 3 & -2 \\
185
+ 0 & 2 & 2 \\
186
+ 3 & 1 & -2 \\
187
+ \end{array}
188
+ \right)=\left(
189
+ \begin{array}{ccc}
190
+ 4 & 6 & \_ \\
191
+ \_ & \_ & \_ \\
192
+ \_ & \_ & \_ \\
193
+ \end{array}
194
+ \right) \\
195
+ \end{array}
196
+ \\
197
+
198
+ \begin{array}{l}
199
+
200
+ \begin{array}{l}
201
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2 (-2)+(-1)\, \times \, 2+2 (-2)=-10. \\
202
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
203
+ \end{array}
204
+ \\
205
+ \left(
206
+ \begin{array}{ccc}
207
+ 2 & -1 & 2 \\
208
+ 1 & -1 & 0 \\
209
+ 2 & 2 & 0 \\
210
+ \end{array}
211
+ \right).\left(
212
+ \begin{array}{ccc}
213
+ -1 & 3 & -2 \\
214
+ 0 & 2 & 2 \\
215
+ 3 & 1 & -2 \\
216
+ \end{array}
217
+ \right)=\left(
218
+ \begin{array}{ccc}
219
+ 4 & 6 & \fbox{$-10$} \\
220
+ \_ & \_ & \_ \\
221
+ \_ & \_ & \_ \\
222
+ \end{array}
223
+ \right) \\
224
+ \end{array}
225
+ \\
226
+
227
+ \begin{array}{l}
228
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
229
+ \left(
230
+ \begin{array}{ccc}
231
+ 2 & -1 & 2 \\
232
+ 1 & -1 & 0 \\
233
+ 2 & 2 & 0 \\
234
+ \end{array}
235
+ \right).\left(
236
+ \begin{array}{ccc}
237
+ -1 & 3 & -2 \\
238
+ 0 & 2 & 2 \\
239
+ 3 & 1 & -2 \\
240
+ \end{array}
241
+ \right)=\left(
242
+ \begin{array}{ccc}
243
+ 4 & 6 & -10 \\
244
+ \_ & \_ & \_ \\
245
+ \_ & \_ & \_ \\
246
+ \end{array}
247
+ \right) \\
248
+ \end{array}
249
+ \\
250
+
251
+ \begin{array}{l}
252
+
253
+ \begin{array}{l}
254
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1 (-1)+(-1)\, \times \, 0+0\ 3=-1. \\
255
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
256
+ \end{array}
257
+ \\
258
+ \left(
259
+ \begin{array}{ccc}
260
+ 2 & -1 & 2 \\
261
+ 1 & -1 & 0 \\
262
+ 2 & 2 & 0 \\
263
+ \end{array}
264
+ \right).\left(
265
+ \begin{array}{ccc}
266
+ -1 & 3 & -2 \\
267
+ 0 & 2 & 2 \\
268
+ 3 & 1 & -2 \\
269
+ \end{array}
270
+ \right)=\left(
271
+ \begin{array}{ccc}
272
+ 4 & 6 & -10 \\
273
+ \fbox{$-1$} & \_ & \_ \\
274
+ \_ & \_ & \_ \\
275
+ \end{array}
276
+ \right) \\
277
+ \end{array}
278
+ \\
279
+
280
+ \begin{array}{l}
281
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
282
+ \left(
283
+ \begin{array}{ccc}
284
+ 2 & -1 & 2 \\
285
+ 1 & -1 & 0 \\
286
+ 2 & 2 & 0 \\
287
+ \end{array}
288
+ \right).\left(
289
+ \begin{array}{ccc}
290
+ -1 & 3 & -2 \\
291
+ 0 & 2 & 2 \\
292
+ 3 & 1 & -2 \\
293
+ \end{array}
294
+ \right)=\left(
295
+ \begin{array}{ccc}
296
+ 4 & 6 & -10 \\
297
+ -1 & \_ & \_ \\
298
+ \_ & \_ & \_ \\
299
+ \end{array}
300
+ \right) \\
301
+ \end{array}
302
+ \\
303
+
304
+ \begin{array}{l}
305
+
306
+ \begin{array}{l}
307
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1\ 3+(-1)\, \times \, 2+0\ 1=1. \\
308
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
309
+ \end{array}
310
+ \\
311
+ \left(
312
+ \begin{array}{ccc}
313
+ 2 & -1 & 2 \\
314
+ 1 & -1 & 0 \\
315
+ 2 & 2 & 0 \\
316
+ \end{array}
317
+ \right).\left(
318
+ \begin{array}{ccc}
319
+ -1 & 3 & -2 \\
320
+ 0 & 2 & 2 \\
321
+ 3 & 1 & -2 \\
322
+ \end{array}
323
+ \right)=\left(
324
+ \begin{array}{ccc}
325
+ 4 & 6 & -10 \\
326
+ -1 & \fbox{$1$} & \_ \\
327
+ \_ & \_ & \_ \\
328
+ \end{array}
329
+ \right) \\
330
+ \end{array}
331
+ \\
332
+
333
+ \begin{array}{l}
334
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
335
+ \left(
336
+ \begin{array}{ccc}
337
+ 2 & -1 & 2 \\
338
+ 1 & -1 & 0 \\
339
+ 2 & 2 & 0 \\
340
+ \end{array}
341
+ \right).\left(
342
+ \begin{array}{ccc}
343
+ -1 & 3 & -2 \\
344
+ 0 & 2 & 2 \\
345
+ 3 & 1 & -2 \\
346
+ \end{array}
347
+ \right)=\left(
348
+ \begin{array}{ccc}
349
+ 4 & 6 & -10 \\
350
+ -1 & 1 & \_ \\
351
+ \_ & \_ & \_ \\
352
+ \end{array}
353
+ \right) \\
354
+ \end{array}
355
+ \\
356
+
357
+ \begin{array}{l}
358
+
359
+ \begin{array}{l}
360
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1 (-2)+(-1)\, \times \, 2+0 (-2)=-4. \\
361
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
362
+ \end{array}
363
+ \\
364
+ \left(
365
+ \begin{array}{ccc}
366
+ 2 & -1 & 2 \\
367
+ 1 & -1 & 0 \\
368
+ 2 & 2 & 0 \\
369
+ \end{array}
370
+ \right).\left(
371
+ \begin{array}{ccc}
372
+ -1 & 3 & -2 \\
373
+ 0 & 2 & 2 \\
374
+ 3 & 1 & -2 \\
375
+ \end{array}
376
+ \right)=\left(
377
+ \begin{array}{ccc}
378
+ 4 & 6 & -10 \\
379
+ -1 & 1 & \fbox{$-4$} \\
380
+ \_ & \_ & \_ \\
381
+ \end{array}
382
+ \right) \\
383
+ \end{array}
384
+ \\
385
+
386
+ \begin{array}{l}
387
+ \text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
388
+ \left(
389
+ \begin{array}{ccc}
390
+ 2 & -1 & 2 \\
391
+ 1 & -1 & 0 \\
392
+ 2 & 2 & 0 \\
393
+ \end{array}
394
+ \right).\left(
395
+ \begin{array}{ccc}
396
+ -1 & 3 & -2 \\
397
+ 0 & 2 & 2 \\
398
+ 3 & 1 & -2 \\
399
+ \end{array}
400
+ \right)=\left(
401
+ \begin{array}{ccc}
402
+ 4 & 6 & -10 \\
403
+ -1 & 1 & -4 \\
404
+ \_ & \_ & \_ \\
405
+ \end{array}
406
+ \right) \\
407
+ \end{array}
408
+ \\
409
+
410
+ \begin{array}{l}
411
+
412
+ \begin{array}{l}
413
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2 (-1)+2\ 0+0\ 3=-2. \\
414
+ \text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
415
+ \end{array}
416
+ \\
417
+ \left(
418
+ \begin{array}{ccc}
419
+ 2 & -1 & 2 \\
420
+ 1 & -1 & 0 \\
421
+ 2 & 2 & 0 \\
422
+ \end{array}
423
+ \right).\left(
424
+ \begin{array}{ccc}
425
+ -1 & 3 & -2 \\
426
+ 0 & 2 & 2 \\
427
+ 3 & 1 & -2 \\
428
+ \end{array}
429
+ \right)=\left(
430
+ \begin{array}{ccc}
431
+ 4 & 6 & -10 \\
432
+ -1 & 1 & -4 \\
433
+ \fbox{$-2$} & \_ & \_ \\
434
+ \end{array}
435
+ \right) \\
436
+ \end{array}
437
+ \\
438
+
439
+ \begin{array}{l}
440
+ \text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
441
+ \left(
442
+ \begin{array}{ccc}
443
+ 2 & -1 & 2 \\
444
+ 1 & -1 & 0 \\
445
+ 2 & 2 & 0 \\
446
+ \end{array}
447
+ \right).\left(
448
+ \begin{array}{ccc}
449
+ -1 & 3 & -2 \\
450
+ 0 & 2 & 2 \\
451
+ 3 & 1 & -2 \\
452
+ \end{array}
453
+ \right)=\left(
454
+ \begin{array}{ccc}
455
+ 4 & 6 & -10 \\
456
+ -1 & 1 & -4 \\
457
+ -2 & \_ & \_ \\
458
+ \end{array}
459
+ \right) \\
460
+ \end{array}
461
+ \\
462
+
463
+ \begin{array}{l}
464
+
465
+ \begin{array}{l}
466
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2\ 3+2\ 2+0\ 1=10. \\
467
+ \text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
468
+ \end{array}
469
+ \\
470
+ \left(
471
+ \begin{array}{ccc}
472
+ 2 & -1 & 2 \\
473
+ 1 & -1 & 0 \\
474
+ 2 & 2 & 0 \\
475
+ \end{array}
476
+ \right).\left(
477
+ \begin{array}{ccc}
478
+ -1 & 3 & -2 \\
479
+ 0 & 2 & 2 \\
480
+ 3 & 1 & -2 \\
481
+ \end{array}
482
+ \right)=\left(
483
+ \begin{array}{ccc}
484
+ 4 & 6 & -10 \\
485
+ -1 & 1 & -4 \\
486
+ -2 & \fbox{$10$} & \_ \\
487
+ \end{array}
488
+ \right) \\
489
+ \end{array}
490
+ \\
491
+
492
+ \begin{array}{l}
493
+ \text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
494
+ \left(
495
+ \begin{array}{ccc}
496
+ 2 & -1 & 2 \\
497
+ 1 & -1 & 0 \\
498
+ 2 & 2 & 0 \\
499
+ \end{array}
500
+ \right).\left(
501
+ \begin{array}{ccc}
502
+ -1 & 3 & -2 \\
503
+ 0 & 2 & 2 \\
504
+ 3 & 1 & -2 \\
505
+ \end{array}
506
+ \right)=\left(
507
+ \begin{array}{ccc}
508
+ 4 & 6 & -10 \\
509
+ -1 & 1 & -4 \\
510
+ -2 & 10 & \_ \\
511
+ \end{array}
512
+ \right) \\
513
+ \end{array}
514
+ \\
515
+
516
+ \begin{array}{l}
517
+
518
+ \begin{array}{l}
519
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2 (-2)+2\ 2+0 (-2)=0. \\
520
+ \text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
521
+ \end{array}
522
+ \\
523
+ \fbox{$
524
+ \begin{array}{ll}
525
+ \text{Answer:} & \\
526
+ \text{} & \left(
527
+ \begin{array}{ccc}
528
+ 2 & -1 & 2 \\
529
+ 1 & -1 & 0 \\
530
+ 2 & 2 & 0 \\
531
+ \end{array}
532
+ \right).\left(
533
+ \begin{array}{ccc}
534
+ -1 & 3 & -2 \\
535
+ 0 & 2 & 2 \\
536
+ 3 & 1 & -2 \\
537
+ \end{array}
538
+ \right)=\left(
539
+ \begin{array}{ccc}
540
+ 4 & 6 & -10 \\
541
+ -1 & 1 & -4 \\
542
+ -2 & 10 & \fbox{$0$} \\
543
+ \end{array}
544
+ \right) \\
545
+ \end{array}
546
+ $} \\
547
+ \end{array}
548
+ \\
549
+ \end{array}
pretraining/mathematica/linear_algebra/multiply_w_steps/1703.txt ADDED
@@ -0,0 +1,231 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{ccc}
5
+ -\frac{5}{2} & \frac{1}{2} & -\frac{5}{2} \\
6
+ 1 & \frac{3}{2} & 1 \\
7
+ -\frac{5}{4} & \frac{1}{2} & \frac{9}{4} \\
8
+ \end{array}
9
+ \right)$ and
10
+ $\left(
11
+ \begin{array}{c}
12
+ -\frac{3}{4} \\
13
+ \frac{1}{2} \\
14
+ \frac{1}{2} \\
15
+ \end{array}
16
+ \right)$.
17
+ Answer:
18
+ \begin{array}{l}
19
+
20
+ \begin{array}{l}
21
+ \text{Multiply the following matrices}: \\
22
+ \left(
23
+ \begin{array}{ccc}
24
+ -\frac{5}{2} & \frac{1}{2} & -\frac{5}{2} \\
25
+ 1 & \frac{3}{2} & 1 \\
26
+ -\frac{5}{4} & \frac{1}{2} & \frac{9}{4} \\
27
+ \end{array}
28
+ \right).\left(
29
+ \begin{array}{c}
30
+ -\frac{3}{4} \\
31
+ \frac{1}{2} \\
32
+ \frac{1}{2} \\
33
+ \end{array}
34
+ \right) \\
35
+ \end{array}
36
+ \\
37
+ \hline
38
+
39
+ \begin{array}{l}
40
+
41
+ \begin{array}{l}
42
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 1. \\
43
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 1: \\
44
+ \end{array}
45
+ \\
46
+ \left(
47
+ \begin{array}{ccc}
48
+ -\frac{5}{2} & \frac{1}{2} & -\frac{5}{2} \\
49
+ 1 & \frac{3}{2} & 1 \\
50
+ -\frac{5}{4} & \frac{1}{2} & \frac{9}{4} \\
51
+ \end{array}
52
+ \right).\left(
53
+ \begin{array}{c}
54
+ -\frac{3}{4} \\
55
+ \frac{1}{2} \\
56
+ \frac{1}{2} \\
57
+ \end{array}
58
+ \right)=\left(
59
+ \begin{array}{c}
60
+ \_ \\
61
+ \_ \\
62
+ \_ \\
63
+ \end{array}
64
+ \right) \\
65
+ \end{array}
66
+ \\
67
+
68
+ \begin{array}{l}
69
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
70
+ \left(
71
+ \begin{array}{ccc}
72
+ -\frac{5}{2} & \frac{1}{2} & -\frac{5}{2} \\
73
+ 1 & \frac{3}{2} & 1 \\
74
+ -\frac{5}{4} & \frac{1}{2} & \frac{9}{4} \\
75
+ \end{array}
76
+ \right).\left(
77
+ \begin{array}{c}
78
+ -\frac{3}{4} \\
79
+ \frac{1}{2} \\
80
+ \frac{1}{2} \\
81
+ \end{array}
82
+ \right)=\left(
83
+ \begin{array}{c}
84
+ \_ \\
85
+ \_ \\
86
+ \_ \\
87
+ \end{array}
88
+ \right) \\
89
+ \end{array}
90
+ \\
91
+
92
+ \begin{array}{l}
93
+
94
+ \begin{array}{l}
95
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{5}{2}\right)\, \left(-\frac{3}{4}\right)+\frac{1}{2\ 2}+\left(-\frac{5}{2}\right)\, \times \, \frac{1}{2}=\frac{7}{8}. \\
96
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
97
+ \end{array}
98
+ \\
99
+ \left(
100
+ \begin{array}{ccc}
101
+ -\frac{5}{2} & \frac{1}{2} & -\frac{5}{2} \\
102
+ 1 & \frac{3}{2} & 1 \\
103
+ -\frac{5}{4} & \frac{1}{2} & \frac{9}{4} \\
104
+ \end{array}
105
+ \right).\left(
106
+ \begin{array}{c}
107
+ -\frac{3}{4} \\
108
+ \frac{1}{2} \\
109
+ \frac{1}{2} \\
110
+ \end{array}
111
+ \right)=\left(
112
+ \begin{array}{c}
113
+ \fbox{$\frac{7}{8}$} \\
114
+ \_ \\
115
+ \_ \\
116
+ \end{array}
117
+ \right) \\
118
+ \end{array}
119
+ \\
120
+
121
+ \begin{array}{l}
122
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
123
+ \left(
124
+ \begin{array}{ccc}
125
+ -\frac{5}{2} & \frac{1}{2} & -\frac{5}{2} \\
126
+ 1 & \frac{3}{2} & 1 \\
127
+ -\frac{5}{4} & \frac{1}{2} & \frac{9}{4} \\
128
+ \end{array}
129
+ \right).\left(
130
+ \begin{array}{c}
131
+ -\frac{3}{4} \\
132
+ \frac{1}{2} \\
133
+ \frac{1}{2} \\
134
+ \end{array}
135
+ \right)=\left(
136
+ \begin{array}{c}
137
+ \frac{7}{8} \\
138
+ \_ \\
139
+ \_ \\
140
+ \end{array}
141
+ \right) \\
142
+ \end{array}
143
+ \\
144
+
145
+ \begin{array}{l}
146
+
147
+ \begin{array}{l}
148
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }-\frac{3}{4}+\frac{3}{2\ 2}+\frac{1}{2}=\frac{1}{2}. \\
149
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
150
+ \end{array}
151
+ \\
152
+ \left(
153
+ \begin{array}{ccc}
154
+ -\frac{5}{2} & \frac{1}{2} & -\frac{5}{2} \\
155
+ 1 & \frac{3}{2} & 1 \\
156
+ -\frac{5}{4} & \frac{1}{2} & \frac{9}{4} \\
157
+ \end{array}
158
+ \right).\left(
159
+ \begin{array}{c}
160
+ -\frac{3}{4} \\
161
+ \frac{1}{2} \\
162
+ \frac{1}{2} \\
163
+ \end{array}
164
+ \right)=\left(
165
+ \begin{array}{c}
166
+ \frac{7}{8} \\
167
+ \fbox{$\frac{1}{2}$} \\
168
+ \_ \\
169
+ \end{array}
170
+ \right) \\
171
+ \end{array}
172
+ \\
173
+
174
+ \begin{array}{l}
175
+ \text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
176
+ \left(
177
+ \begin{array}{ccc}
178
+ -\frac{5}{2} & \frac{1}{2} & -\frac{5}{2} \\
179
+ 1 & \frac{3}{2} & 1 \\
180
+ -\frac{5}{4} & \frac{1}{2} & \frac{9}{4} \\
181
+ \end{array}
182
+ \right).\left(
183
+ \begin{array}{c}
184
+ -\frac{3}{4} \\
185
+ \frac{1}{2} \\
186
+ \frac{1}{2} \\
187
+ \end{array}
188
+ \right)=\left(
189
+ \begin{array}{c}
190
+ \frac{7}{8} \\
191
+ \frac{1}{2} \\
192
+ \_ \\
193
+ \end{array}
194
+ \right) \\
195
+ \end{array}
196
+ \\
197
+
198
+ \begin{array}{l}
199
+
200
+ \begin{array}{l}
201
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{5}{4}\right)\, \left(-\frac{3}{4}\right)+\frac{1}{2\ 2}+\frac{9}{4\ 2}=\frac{37}{16}. \\
202
+ \text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
203
+ \end{array}
204
+ \\
205
+ \fbox{$
206
+ \begin{array}{ll}
207
+ \text{Answer:} & \\
208
+ \text{} & \left(
209
+ \begin{array}{ccc}
210
+ -\frac{5}{2} & \frac{1}{2} & -\frac{5}{2} \\
211
+ 1 & \frac{3}{2} & 1 \\
212
+ -\frac{5}{4} & \frac{1}{2} & \frac{9}{4} \\
213
+ \end{array}
214
+ \right).\left(
215
+ \begin{array}{c}
216
+ -\frac{3}{4} \\
217
+ \frac{1}{2} \\
218
+ \frac{1}{2} \\
219
+ \end{array}
220
+ \right)=\left(
221
+ \begin{array}{c}
222
+ \frac{7}{8} \\
223
+ \frac{1}{2} \\
224
+ \fbox{$\frac{37}{16}$} \\
225
+ \end{array}
226
+ \right) \\
227
+ \end{array}
228
+ $} \\
229
+ \end{array}
230
+ \\
231
+ \end{array}
pretraining/mathematica/linear_algebra/multiply_w_steps/1934.txt ADDED
@@ -0,0 +1,264 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{ccc}
5
+ 0 & 1 & 2 \\
6
+ -3 & -2 & -2 \\
7
+ \end{array}
8
+ \right)$ and
9
+ $\left(
10
+ \begin{array}{cc}
11
+ -3 & -1 \\
12
+ 1 & -1 \\
13
+ 2 & -2 \\
14
+ \end{array}
15
+ \right)$.
16
+ Answer:
17
+ \begin{array}{l}
18
+
19
+ \begin{array}{l}
20
+ \text{Multiply the following matrices}: \\
21
+ \left(
22
+ \begin{array}{ccc}
23
+ 0 & 1 & 2 \\
24
+ -3 & -2 & -2 \\
25
+ \end{array}
26
+ \right).\left(
27
+ \begin{array}{cc}
28
+ -3 & -1 \\
29
+ 1 & -1 \\
30
+ 2 & -2 \\
31
+ \end{array}
32
+ \right) \\
33
+ \end{array}
34
+ \\
35
+ \hline
36
+
37
+ \begin{array}{l}
38
+
39
+ \begin{array}{l}
40
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 2. \\
41
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 2: \\
42
+ \end{array}
43
+ \\
44
+ \left(
45
+ \begin{array}{ccc}
46
+ 0 & 1 & 2 \\
47
+ -3 & -2 & -2 \\
48
+ \end{array}
49
+ \right).\left(
50
+ \begin{array}{cc}
51
+ -3 & -1 \\
52
+ 1 & -1 \\
53
+ 2 & -2 \\
54
+ \end{array}
55
+ \right)=\left(
56
+ \begin{array}{cc}
57
+ \_ & \_ \\
58
+ \_ & \_ \\
59
+ \end{array}
60
+ \right) \\
61
+ \end{array}
62
+ \\
63
+
64
+ \begin{array}{l}
65
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
66
+ \left(
67
+ \begin{array}{ccc}
68
+ 0 & 1 & 2 \\
69
+ -3 & -2 & -2 \\
70
+ \end{array}
71
+ \right).\left(
72
+ \begin{array}{cc}
73
+ -3 & -1 \\
74
+ 1 & -1 \\
75
+ 2 & -2 \\
76
+ \end{array}
77
+ \right)=\left(
78
+ \begin{array}{cc}
79
+ \_ & \_ \\
80
+ \_ & \_ \\
81
+ \end{array}
82
+ \right) \\
83
+ \end{array}
84
+ \\
85
+
86
+ \begin{array}{l}
87
+
88
+ \begin{array}{l}
89
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }0 (-3)+1\ 1+2\ 2=5. \\
90
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
91
+ \end{array}
92
+ \\
93
+ \left(
94
+ \begin{array}{ccc}
95
+ 0 & 1 & 2 \\
96
+ -3 & -2 & -2 \\
97
+ \end{array}
98
+ \right).\left(
99
+ \begin{array}{cc}
100
+ -3 & -1 \\
101
+ 1 & -1 \\
102
+ 2 & -2 \\
103
+ \end{array}
104
+ \right)=\left(
105
+ \begin{array}{cc}
106
+ \fbox{$5$} & \_ \\
107
+ \_ & \_ \\
108
+ \end{array}
109
+ \right) \\
110
+ \end{array}
111
+ \\
112
+
113
+ \begin{array}{l}
114
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
115
+ \left(
116
+ \begin{array}{ccc}
117
+ 0 & 1 & 2 \\
118
+ -3 & -2 & -2 \\
119
+ \end{array}
120
+ \right).\left(
121
+ \begin{array}{cc}
122
+ -3 & -1 \\
123
+ 1 & -1 \\
124
+ 2 & -2 \\
125
+ \end{array}
126
+ \right)=\left(
127
+ \begin{array}{cc}
128
+ 5 & \_ \\
129
+ \_ & \_ \\
130
+ \end{array}
131
+ \right) \\
132
+ \end{array}
133
+ \\
134
+
135
+ \begin{array}{l}
136
+
137
+ \begin{array}{l}
138
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }0 (-1)+1 (-1)+2 (-2)=-5. \\
139
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
140
+ \end{array}
141
+ \\
142
+ \left(
143
+ \begin{array}{ccc}
144
+ 0 & 1 & 2 \\
145
+ -3 & -2 & -2 \\
146
+ \end{array}
147
+ \right).\left(
148
+ \begin{array}{cc}
149
+ -3 & -1 \\
150
+ 1 & -1 \\
151
+ 2 & -2 \\
152
+ \end{array}
153
+ \right)=\left(
154
+ \begin{array}{cc}
155
+ 5 & \fbox{$-5$} \\
156
+ \_ & \_ \\
157
+ \end{array}
158
+ \right) \\
159
+ \end{array}
160
+ \\
161
+
162
+ \begin{array}{l}
163
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
164
+ \left(
165
+ \begin{array}{ccc}
166
+ 0 & 1 & 2 \\
167
+ -3 & -2 & -2 \\
168
+ \end{array}
169
+ \right).\left(
170
+ \begin{array}{cc}
171
+ -3 & -1 \\
172
+ 1 & -1 \\
173
+ 2 & -2 \\
174
+ \end{array}
175
+ \right)=\left(
176
+ \begin{array}{cc}
177
+ 5 & -5 \\
178
+ \_ & \_ \\
179
+ \end{array}
180
+ \right) \\
181
+ \end{array}
182
+ \\
183
+
184
+ \begin{array}{l}
185
+
186
+ \begin{array}{l}
187
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, (-3)+(-2)\, \times \, 1+(-2)\, \times \, 2=3. \\
188
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
189
+ \end{array}
190
+ \\
191
+ \left(
192
+ \begin{array}{ccc}
193
+ 0 & 1 & 2 \\
194
+ -3 & -2 & -2 \\
195
+ \end{array}
196
+ \right).\left(
197
+ \begin{array}{cc}
198
+ -3 & -1 \\
199
+ 1 & -1 \\
200
+ 2 & -2 \\
201
+ \end{array}
202
+ \right)=\left(
203
+ \begin{array}{cc}
204
+ 5 & -5 \\
205
+ \fbox{$3$} & \_ \\
206
+ \end{array}
207
+ \right) \\
208
+ \end{array}
209
+ \\
210
+
211
+ \begin{array}{l}
212
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
213
+ \left(
214
+ \begin{array}{ccc}
215
+ 0 & 1 & 2 \\
216
+ -3 & -2 & -2 \\
217
+ \end{array}
218
+ \right).\left(
219
+ \begin{array}{cc}
220
+ -3 & -1 \\
221
+ 1 & -1 \\
222
+ 2 & -2 \\
223
+ \end{array}
224
+ \right)=\left(
225
+ \begin{array}{cc}
226
+ 5 & -5 \\
227
+ 3 & \_ \\
228
+ \end{array}
229
+ \right) \\
230
+ \end{array}
231
+ \\
232
+
233
+ \begin{array}{l}
234
+
235
+ \begin{array}{l}
236
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, (-1)+(-2)\, (-1)+(-2)\, (-2)=9. \\
237
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
238
+ \end{array}
239
+ \\
240
+ \fbox{$
241
+ \begin{array}{ll}
242
+ \text{Answer:} & \\
243
+ \text{} & \left(
244
+ \begin{array}{ccc}
245
+ 0 & 1 & 2 \\
246
+ -3 & -2 & -2 \\
247
+ \end{array}
248
+ \right).\left(
249
+ \begin{array}{cc}
250
+ -3 & -1 \\
251
+ 1 & -1 \\
252
+ 2 & -2 \\
253
+ \end{array}
254
+ \right)=\left(
255
+ \begin{array}{cc}
256
+ 5 & -5 \\
257
+ 3 & \fbox{$9$} \\
258
+ \end{array}
259
+ \right) \\
260
+ \end{array}
261
+ $} \\
262
+ \end{array}
263
+ \\
264
+ \end{array}
pretraining/mathematica/linear_algebra/multiply_w_steps/2027.txt ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{cc}
5
+ \frac{9}{16} & -\frac{3}{8} \\
6
+ \frac{1}{16} & \frac{35}{16} \\
7
+ \frac{5}{8} & \frac{7}{8} \\
8
+ \end{array}
9
+ \right)$ and
10
+ $\left(
11
+ \begin{array}{c}
12
+ \frac{3}{8} \\
13
+ -\frac{13}{8} \\
14
+ \end{array}
15
+ \right)$.
16
+ Answer:
17
+ \begin{array}{l}
18
+
19
+ \begin{array}{l}
20
+ \text{Multiply the following matrices}: \\
21
+ \left(
22
+ \begin{array}{cc}
23
+ \frac{9}{16} & -\frac{3}{8} \\
24
+ \frac{1}{16} & \frac{35}{16} \\
25
+ \frac{5}{8} & \frac{7}{8} \\
26
+ \end{array}
27
+ \right).\left(
28
+ \begin{array}{c}
29
+ \frac{3}{8} \\
30
+ -\frac{13}{8} \\
31
+ \end{array}
32
+ \right) \\
33
+ \end{array}
34
+ \\
35
+ \hline
36
+
37
+ \begin{array}{l}
38
+
39
+ \begin{array}{l}
40
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 1. \\
41
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 1: \\
42
+ \end{array}
43
+ \\
44
+ \left(
45
+ \begin{array}{cc}
46
+ \frac{9}{16} & -\frac{3}{8} \\
47
+ \frac{1}{16} & \frac{35}{16} \\
48
+ \frac{5}{8} & \frac{7}{8} \\
49
+ \end{array}
50
+ \right).\left(
51
+ \begin{array}{c}
52
+ \frac{3}{8} \\
53
+ -\frac{13}{8} \\
54
+ \end{array}
55
+ \right)=\left(
56
+ \begin{array}{c}
57
+ \_ \\
58
+ \_ \\
59
+ \_ \\
60
+ \end{array}
61
+ \right) \\
62
+ \end{array}
63
+ \\
64
+
65
+ \begin{array}{l}
66
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
67
+ \left(
68
+ \begin{array}{cc}
69
+ \frac{9}{16} & -\frac{3}{8} \\
70
+ \frac{1}{16} & \frac{35}{16} \\
71
+ \frac{5}{8} & \frac{7}{8} \\
72
+ \end{array}
73
+ \right).\left(
74
+ \begin{array}{c}
75
+ \frac{3}{8} \\
76
+ -\frac{13}{8} \\
77
+ \end{array}
78
+ \right)=\left(
79
+ \begin{array}{c}
80
+ \_ \\
81
+ \_ \\
82
+ \_ \\
83
+ \end{array}
84
+ \right) \\
85
+ \end{array}
86
+ \\
87
+
88
+ \begin{array}{l}
89
+
90
+ \begin{array}{l}
91
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{9\ 3}{16\ 8}+\left(-\frac{3}{8}\right)\, \left(-\frac{13}{8}\right)=\frac{105}{128}. \\
92
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
93
+ \end{array}
94
+ \\
95
+ \left(
96
+ \begin{array}{cc}
97
+ \frac{9}{16} & -\frac{3}{8} \\
98
+ \frac{1}{16} & \frac{35}{16} \\
99
+ \frac{5}{8} & \frac{7}{8} \\
100
+ \end{array}
101
+ \right).\left(
102
+ \begin{array}{c}
103
+ \frac{3}{8} \\
104
+ -\frac{13}{8} \\
105
+ \end{array}
106
+ \right)=\left(
107
+ \begin{array}{c}
108
+ \fbox{$\frac{105}{128}$} \\
109
+ \_ \\
110
+ \_ \\
111
+ \end{array}
112
+ \right) \\
113
+ \end{array}
114
+ \\
115
+
116
+ \begin{array}{l}
117
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
118
+ \left(
119
+ \begin{array}{cc}
120
+ \frac{9}{16} & -\frac{3}{8} \\
121
+ \frac{1}{16} & \frac{35}{16} \\
122
+ \frac{5}{8} & \frac{7}{8} \\
123
+ \end{array}
124
+ \right).\left(
125
+ \begin{array}{c}
126
+ \frac{3}{8} \\
127
+ -\frac{13}{8} \\
128
+ \end{array}
129
+ \right)=\left(
130
+ \begin{array}{c}
131
+ \frac{105}{128} \\
132
+ \_ \\
133
+ \_ \\
134
+ \end{array}
135
+ \right) \\
136
+ \end{array}
137
+ \\
138
+
139
+ \begin{array}{l}
140
+
141
+ \begin{array}{l}
142
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{3}{16\ 8}+\frac{35 (-13)}{16\ 8}=-\frac{113}{32}. \\
143
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
144
+ \end{array}
145
+ \\
146
+ \left(
147
+ \begin{array}{cc}
148
+ \frac{9}{16} & -\frac{3}{8} \\
149
+ \frac{1}{16} & \frac{35}{16} \\
150
+ \frac{5}{8} & \frac{7}{8} \\
151
+ \end{array}
152
+ \right).\left(
153
+ \begin{array}{c}
154
+ \frac{3}{8} \\
155
+ -\frac{13}{8} \\
156
+ \end{array}
157
+ \right)=\left(
158
+ \begin{array}{c}
159
+ \frac{105}{128} \\
160
+ \fbox{$-\frac{113}{32}$} \\
161
+ \_ \\
162
+ \end{array}
163
+ \right) \\
164
+ \end{array}
165
+ \\
166
+
167
+ \begin{array}{l}
168
+ \text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
169
+ \left(
170
+ \begin{array}{cc}
171
+ \frac{9}{16} & -\frac{3}{8} \\
172
+ \frac{1}{16} & \frac{35}{16} \\
173
+ \frac{5}{8} & \frac{7}{8} \\
174
+ \end{array}
175
+ \right).\left(
176
+ \begin{array}{c}
177
+ \frac{3}{8} \\
178
+ -\frac{13}{8} \\
179
+ \end{array}
180
+ \right)=\left(
181
+ \begin{array}{c}
182
+ \frac{105}{128} \\
183
+ -\frac{113}{32} \\
184
+ \_ \\
185
+ \end{array}
186
+ \right) \\
187
+ \end{array}
188
+ \\
189
+
190
+ \begin{array}{l}
191
+
192
+ \begin{array}{l}
193
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{5\ 3}{8\ 8}+\frac{7 (-13)}{8\ 8}=-\frac{19}{16}. \\
194
+ \text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
195
+ \end{array}
196
+ \\
197
+ \fbox{$
198
+ \begin{array}{ll}
199
+ \text{Answer:} & \\
200
+ \text{} & \left(
201
+ \begin{array}{cc}
202
+ \frac{9}{16} & -\frac{3}{8} \\
203
+ \frac{1}{16} & \frac{35}{16} \\
204
+ \frac{5}{8} & \frac{7}{8} \\
205
+ \end{array}
206
+ \right).\left(
207
+ \begin{array}{c}
208
+ \frac{3}{8} \\
209
+ -\frac{13}{8} \\
210
+ \end{array}
211
+ \right)=\left(
212
+ \begin{array}{c}
213
+ \frac{105}{128} \\
214
+ -\frac{113}{32} \\
215
+ \fbox{$-\frac{19}{16}$} \\
216
+ \end{array}
217
+ \right) \\
218
+ \end{array}
219
+ $} \\
220
+ \end{array}
221
+ \\
222
+ \end{array}
pretraining/mathematica/linear_algebra/multiply_w_steps/2119.txt ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{cc}
5
+ -1 & 1 \\
6
+ 1 & 2 \\
7
+ \end{array}
8
+ \right)$ and
9
+ $\left(
10
+ \begin{array}{c}
11
+ 3 \\
12
+ 1 \\
13
+ \end{array}
14
+ \right)$.
15
+ Answer:
16
+ \begin{array}{l}
17
+
18
+ \begin{array}{l}
19
+ \text{Multiply the following matrices}: \\
20
+ \left(
21
+ \begin{array}{cc}
22
+ -1 & 1 \\
23
+ 1 & 2 \\
24
+ \end{array}
25
+ \right).\left(
26
+ \begin{array}{c}
27
+ 3 \\
28
+ 1 \\
29
+ \end{array}
30
+ \right) \\
31
+ \end{array}
32
+ \\
33
+ \hline
34
+
35
+ \begin{array}{l}
36
+
37
+ \begin{array}{l}
38
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 1. \\
39
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 1: \\
40
+ \end{array}
41
+ \\
42
+ \left(
43
+ \begin{array}{cc}
44
+ -1 & 1 \\
45
+ 1 & 2 \\
46
+ \end{array}
47
+ \right).\left(
48
+ \begin{array}{c}
49
+ 3 \\
50
+ 1 \\
51
+ \end{array}
52
+ \right)=\left(
53
+ \begin{array}{c}
54
+ \_ \\
55
+ \_ \\
56
+ \end{array}
57
+ \right) \\
58
+ \end{array}
59
+ \\
60
+
61
+ \begin{array}{l}
62
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
63
+ \left(
64
+ \begin{array}{cc}
65
+ -1 & 1 \\
66
+ 1 & 2 \\
67
+ \end{array}
68
+ \right).\left(
69
+ \begin{array}{c}
70
+ 3 \\
71
+ 1 \\
72
+ \end{array}
73
+ \right)=\left(
74
+ \begin{array}{c}
75
+ \_ \\
76
+ \_ \\
77
+ \end{array}
78
+ \right) \\
79
+ \end{array}
80
+ \\
81
+
82
+ \begin{array}{l}
83
+
84
+ \begin{array}{l}
85
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-1)\, \times \, 3+1\ 1=-2. \\
86
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
87
+ \end{array}
88
+ \\
89
+ \left(
90
+ \begin{array}{cc}
91
+ -1 & 1 \\
92
+ 1 & 2 \\
93
+ \end{array}
94
+ \right).\left(
95
+ \begin{array}{c}
96
+ 3 \\
97
+ 1 \\
98
+ \end{array}
99
+ \right)=\left(
100
+ \begin{array}{c}
101
+ \fbox{$-2$} \\
102
+ \_ \\
103
+ \end{array}
104
+ \right) \\
105
+ \end{array}
106
+ \\
107
+
108
+ \begin{array}{l}
109
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
110
+ \left(
111
+ \begin{array}{cc}
112
+ -1 & 1 \\
113
+ 1 & 2 \\
114
+ \end{array}
115
+ \right).\left(
116
+ \begin{array}{c}
117
+ 3 \\
118
+ 1 \\
119
+ \end{array}
120
+ \right)=\left(
121
+ \begin{array}{c}
122
+ -2 \\
123
+ \_ \\
124
+ \end{array}
125
+ \right) \\
126
+ \end{array}
127
+ \\
128
+
129
+ \begin{array}{l}
130
+
131
+ \begin{array}{l}
132
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1\ 3+2\ 1=5. \\
133
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
134
+ \end{array}
135
+ \\
136
+ \fbox{$
137
+ \begin{array}{ll}
138
+ \text{Answer:} & \\
139
+ \text{} & \left(
140
+ \begin{array}{cc}
141
+ -1 & 1 \\
142
+ 1 & 2 \\
143
+ \end{array}
144
+ \right).\left(
145
+ \begin{array}{c}
146
+ 3 \\
147
+ 1 \\
148
+ \end{array}
149
+ \right)=\left(
150
+ \begin{array}{c}
151
+ -2 \\
152
+ \fbox{$5$} \\
153
+ \end{array}
154
+ \right) \\
155
+ \end{array}
156
+ $} \\
157
+ \end{array}
158
+ \\
159
+ \end{array}
pretraining/mathematica/linear_algebra/multiply_w_steps/2230.txt ADDED
@@ -0,0 +1,390 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{ccc}
5
+ -\frac{9}{8} & \frac{3}{2} & \frac{29}{16} \\
6
+ \frac{33}{16} & \frac{1}{8} & \frac{23}{16} \\
7
+ -\frac{5}{2} & \frac{19}{8} & \frac{5}{4} \\
8
+ \end{array}
9
+ \right)$ and
10
+ $\left(
11
+ \begin{array}{cc}
12
+ -\frac{27}{16} & \frac{19}{16} \\
13
+ \frac{3}{2} & \frac{43}{16} \\
14
+ \frac{27}{16} & \frac{3}{2} \\
15
+ \end{array}
16
+ \right)$.
17
+ Answer:
18
+ \begin{array}{l}
19
+
20
+ \begin{array}{l}
21
+ \text{Multiply the following matrices}: \\
22
+ \left(
23
+ \begin{array}{ccc}
24
+ -\frac{9}{8} & \frac{3}{2} & \frac{29}{16} \\
25
+ \frac{33}{16} & \frac{1}{8} & \frac{23}{16} \\
26
+ -\frac{5}{2} & \frac{19}{8} & \frac{5}{4} \\
27
+ \end{array}
28
+ \right).\left(
29
+ \begin{array}{cc}
30
+ -\frac{27}{16} & \frac{19}{16} \\
31
+ \frac{3}{2} & \frac{43}{16} \\
32
+ \frac{27}{16} & \frac{3}{2} \\
33
+ \end{array}
34
+ \right) \\
35
+ \end{array}
36
+ \\
37
+ \hline
38
+
39
+ \begin{array}{l}
40
+
41
+ \begin{array}{l}
42
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 2. \\
43
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 2: \\
44
+ \end{array}
45
+ \\
46
+ \left(
47
+ \begin{array}{ccc}
48
+ -\frac{9}{8} & \frac{3}{2} & \frac{29}{16} \\
49
+ \frac{33}{16} & \frac{1}{8} & \frac{23}{16} \\
50
+ -\frac{5}{2} & \frac{19}{8} & \frac{5}{4} \\
51
+ \end{array}
52
+ \right).\left(
53
+ \begin{array}{cc}
54
+ -\frac{27}{16} & \frac{19}{16} \\
55
+ \frac{3}{2} & \frac{43}{16} \\
56
+ \frac{27}{16} & \frac{3}{2} \\
57
+ \end{array}
58
+ \right)=\left(
59
+ \begin{array}{cc}
60
+ \_ & \_ \\
61
+ \_ & \_ \\
62
+ \_ & \_ \\
63
+ \end{array}
64
+ \right) \\
65
+ \end{array}
66
+ \\
67
+
68
+ \begin{array}{l}
69
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
70
+ \left(
71
+ \begin{array}{ccc}
72
+ -\frac{9}{8} & \frac{3}{2} & \frac{29}{16} \\
73
+ \frac{33}{16} & \frac{1}{8} & \frac{23}{16} \\
74
+ -\frac{5}{2} & \frac{19}{8} & \frac{5}{4} \\
75
+ \end{array}
76
+ \right).\left(
77
+ \begin{array}{cc}
78
+ -\frac{27}{16} & \frac{19}{16} \\
79
+ \frac{3}{2} & \frac{43}{16} \\
80
+ \frac{27}{16} & \frac{3}{2} \\
81
+ \end{array}
82
+ \right)=\left(
83
+ \begin{array}{cc}
84
+ \_ & \_ \\
85
+ \_ & \_ \\
86
+ \_ & \_ \\
87
+ \end{array}
88
+ \right) \\
89
+ \end{array}
90
+ \\
91
+
92
+ \begin{array}{l}
93
+
94
+ \begin{array}{l}
95
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{9}{8}\right)\, \left(-\frac{27}{16}\right)+\frac{3\ 3}{2\ 2}+\frac{29\ 27}{16\ 16}=\frac{1845}{256}. \\
96
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
97
+ \end{array}
98
+ \\
99
+ \left(
100
+ \begin{array}{ccc}
101
+ -\frac{9}{8} & \frac{3}{2} & \frac{29}{16} \\
102
+ \frac{33}{16} & \frac{1}{8} & \frac{23}{16} \\
103
+ -\frac{5}{2} & \frac{19}{8} & \frac{5}{4} \\
104
+ \end{array}
105
+ \right).\left(
106
+ \begin{array}{cc}
107
+ -\frac{27}{16} & \frac{19}{16} \\
108
+ \frac{3}{2} & \frac{43}{16} \\
109
+ \frac{27}{16} & \frac{3}{2} \\
110
+ \end{array}
111
+ \right)=\left(
112
+ \begin{array}{cc}
113
+ \fbox{$\frac{1845}{256}$} & \_ \\
114
+ \_ & \_ \\
115
+ \_ & \_ \\
116
+ \end{array}
117
+ \right) \\
118
+ \end{array}
119
+ \\
120
+
121
+ \begin{array}{l}
122
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
123
+ \left(
124
+ \begin{array}{ccc}
125
+ -\frac{9}{8} & \frac{3}{2} & \frac{29}{16} \\
126
+ \frac{33}{16} & \frac{1}{8} & \frac{23}{16} \\
127
+ -\frac{5}{2} & \frac{19}{8} & \frac{5}{4} \\
128
+ \end{array}
129
+ \right).\left(
130
+ \begin{array}{cc}
131
+ -\frac{27}{16} & \frac{19}{16} \\
132
+ \frac{3}{2} & \frac{43}{16} \\
133
+ \frac{27}{16} & \frac{3}{2} \\
134
+ \end{array}
135
+ \right)=\left(
136
+ \begin{array}{cc}
137
+ \frac{1845}{256} & \_ \\
138
+ \_ & \_ \\
139
+ \_ & \_ \\
140
+ \end{array}
141
+ \right) \\
142
+ \end{array}
143
+ \\
144
+
145
+ \begin{array}{l}
146
+
147
+ \begin{array}{l}
148
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{9}{8}\right)\, \times \, \frac{19}{16}+\frac{3\ 43}{2\ 16}+\frac{29\ 3}{16\ 2}=\frac{693}{128}. \\
149
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
150
+ \end{array}
151
+ \\
152
+ \left(
153
+ \begin{array}{ccc}
154
+ -\frac{9}{8} & \frac{3}{2} & \frac{29}{16} \\
155
+ \frac{33}{16} & \frac{1}{8} & \frac{23}{16} \\
156
+ -\frac{5}{2} & \frac{19}{8} & \frac{5}{4} \\
157
+ \end{array}
158
+ \right).\left(
159
+ \begin{array}{cc}
160
+ -\frac{27}{16} & \frac{19}{16} \\
161
+ \frac{3}{2} & \frac{43}{16} \\
162
+ \frac{27}{16} & \frac{3}{2} \\
163
+ \end{array}
164
+ \right)=\left(
165
+ \begin{array}{cc}
166
+ \frac{1845}{256} & \fbox{$\frac{693}{128}$} \\
167
+ \_ & \_ \\
168
+ \_ & \_ \\
169
+ \end{array}
170
+ \right) \\
171
+ \end{array}
172
+ \\
173
+
174
+ \begin{array}{l}
175
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
176
+ \left(
177
+ \begin{array}{ccc}
178
+ -\frac{9}{8} & \frac{3}{2} & \frac{29}{16} \\
179
+ \frac{33}{16} & \frac{1}{8} & \frac{23}{16} \\
180
+ -\frac{5}{2} & \frac{19}{8} & \frac{5}{4} \\
181
+ \end{array}
182
+ \right).\left(
183
+ \begin{array}{cc}
184
+ -\frac{27}{16} & \frac{19}{16} \\
185
+ \frac{3}{2} & \frac{43}{16} \\
186
+ \frac{27}{16} & \frac{3}{2} \\
187
+ \end{array}
188
+ \right)=\left(
189
+ \begin{array}{cc}
190
+ \frac{1845}{256} & \frac{693}{128} \\
191
+ \_ & \_ \\
192
+ \_ & \_ \\
193
+ \end{array}
194
+ \right) \\
195
+ \end{array}
196
+ \\
197
+
198
+ \begin{array}{l}
199
+
200
+ \begin{array}{l}
201
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{33 (-27)}{16\ 16}+\frac{3}{8\ 2}+\frac{23\ 27}{16\ 16}=-\frac{111}{128}. \\
202
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
203
+ \end{array}
204
+ \\
205
+ \left(
206
+ \begin{array}{ccc}
207
+ -\frac{9}{8} & \frac{3}{2} & \frac{29}{16} \\
208
+ \frac{33}{16} & \frac{1}{8} & \frac{23}{16} \\
209
+ -\frac{5}{2} & \frac{19}{8} & \frac{5}{4} \\
210
+ \end{array}
211
+ \right).\left(
212
+ \begin{array}{cc}
213
+ -\frac{27}{16} & \frac{19}{16} \\
214
+ \frac{3}{2} & \frac{43}{16} \\
215
+ \frac{27}{16} & \frac{3}{2} \\
216
+ \end{array}
217
+ \right)=\left(
218
+ \begin{array}{cc}
219
+ \frac{1845}{256} & \frac{693}{128} \\
220
+ \fbox{$-\frac{111}{128}$} & \_ \\
221
+ \_ & \_ \\
222
+ \end{array}
223
+ \right) \\
224
+ \end{array}
225
+ \\
226
+
227
+ \begin{array}{l}
228
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
229
+ \left(
230
+ \begin{array}{ccc}
231
+ -\frac{9}{8} & \frac{3}{2} & \frac{29}{16} \\
232
+ \frac{33}{16} & \frac{1}{8} & \frac{23}{16} \\
233
+ -\frac{5}{2} & \frac{19}{8} & \frac{5}{4} \\
234
+ \end{array}
235
+ \right).\left(
236
+ \begin{array}{cc}
237
+ -\frac{27}{16} & \frac{19}{16} \\
238
+ \frac{3}{2} & \frac{43}{16} \\
239
+ \frac{27}{16} & \frac{3}{2} \\
240
+ \end{array}
241
+ \right)=\left(
242
+ \begin{array}{cc}
243
+ \frac{1845}{256} & \frac{693}{128} \\
244
+ -\frac{111}{128} & \_ \\
245
+ \_ & \_ \\
246
+ \end{array}
247
+ \right) \\
248
+ \end{array}
249
+ \\
250
+
251
+ \begin{array}{l}
252
+
253
+ \begin{array}{l}
254
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{33\ 19}{16\ 16}+\frac{43}{8\ 16}+\frac{23\ 3}{16\ 2}=\frac{1265}{256}. \\
255
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
256
+ \end{array}
257
+ \\
258
+ \left(
259
+ \begin{array}{ccc}
260
+ -\frac{9}{8} & \frac{3}{2} & \frac{29}{16} \\
261
+ \frac{33}{16} & \frac{1}{8} & \frac{23}{16} \\
262
+ -\frac{5}{2} & \frac{19}{8} & \frac{5}{4} \\
263
+ \end{array}
264
+ \right).\left(
265
+ \begin{array}{cc}
266
+ -\frac{27}{16} & \frac{19}{16} \\
267
+ \frac{3}{2} & \frac{43}{16} \\
268
+ \frac{27}{16} & \frac{3}{2} \\
269
+ \end{array}
270
+ \right)=\left(
271
+ \begin{array}{cc}
272
+ \frac{1845}{256} & \frac{693}{128} \\
273
+ -\frac{111}{128} & \fbox{$\frac{1265}{256}$} \\
274
+ \_ & \_ \\
275
+ \end{array}
276
+ \right) \\
277
+ \end{array}
278
+ \\
279
+
280
+ \begin{array}{l}
281
+ \text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
282
+ \left(
283
+ \begin{array}{ccc}
284
+ -\frac{9}{8} & \frac{3}{2} & \frac{29}{16} \\
285
+ \frac{33}{16} & \frac{1}{8} & \frac{23}{16} \\
286
+ -\frac{5}{2} & \frac{19}{8} & \frac{5}{4} \\
287
+ \end{array}
288
+ \right).\left(
289
+ \begin{array}{cc}
290
+ -\frac{27}{16} & \frac{19}{16} \\
291
+ \frac{3}{2} & \frac{43}{16} \\
292
+ \frac{27}{16} & \frac{3}{2} \\
293
+ \end{array}
294
+ \right)=\left(
295
+ \begin{array}{cc}
296
+ \frac{1845}{256} & \frac{693}{128} \\
297
+ -\frac{111}{128} & \frac{1265}{256} \\
298
+ \_ & \_ \\
299
+ \end{array}
300
+ \right) \\
301
+ \end{array}
302
+ \\
303
+
304
+ \begin{array}{l}
305
+
306
+ \begin{array}{l}
307
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{5}{2}\right)\, \left(-\frac{27}{16}\right)+\frac{19\ 3}{8\ 2}+\frac{5\ 27}{4\ 16}=\frac{633}{64}. \\
308
+ \text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
309
+ \end{array}
310
+ \\
311
+ \left(
312
+ \begin{array}{ccc}
313
+ -\frac{9}{8} & \frac{3}{2} & \frac{29}{16} \\
314
+ \frac{33}{16} & \frac{1}{8} & \frac{23}{16} \\
315
+ -\frac{5}{2} & \frac{19}{8} & \frac{5}{4} \\
316
+ \end{array}
317
+ \right).\left(
318
+ \begin{array}{cc}
319
+ -\frac{27}{16} & \frac{19}{16} \\
320
+ \frac{3}{2} & \frac{43}{16} \\
321
+ \frac{27}{16} & \frac{3}{2} \\
322
+ \end{array}
323
+ \right)=\left(
324
+ \begin{array}{cc}
325
+ \frac{1845}{256} & \frac{693}{128} \\
326
+ -\frac{111}{128} & \frac{1265}{256} \\
327
+ \fbox{$\frac{633}{64}$} & \_ \\
328
+ \end{array}
329
+ \right) \\
330
+ \end{array}
331
+ \\
332
+
333
+ \begin{array}{l}
334
+ \text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
335
+ \left(
336
+ \begin{array}{ccc}
337
+ -\frac{9}{8} & \frac{3}{2} & \frac{29}{16} \\
338
+ \frac{33}{16} & \frac{1}{8} & \frac{23}{16} \\
339
+ -\frac{5}{2} & \frac{19}{8} & \frac{5}{4} \\
340
+ \end{array}
341
+ \right).\left(
342
+ \begin{array}{cc}
343
+ -\frac{27}{16} & \frac{19}{16} \\
344
+ \frac{3}{2} & \frac{43}{16} \\
345
+ \frac{27}{16} & \frac{3}{2} \\
346
+ \end{array}
347
+ \right)=\left(
348
+ \begin{array}{cc}
349
+ \frac{1845}{256} & \frac{693}{128} \\
350
+ -\frac{111}{128} & \frac{1265}{256} \\
351
+ \frac{633}{64} & \_ \\
352
+ \end{array}
353
+ \right) \\
354
+ \end{array}
355
+ \\
356
+
357
+ \begin{array}{l}
358
+
359
+ \begin{array}{l}
360
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{5}{2}\right)\, \times \, \frac{19}{16}+\frac{19\ 43}{8\ 16}+\frac{5\ 3}{4\ 2}=\frac{677}{128}. \\
361
+ \text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
362
+ \end{array}
363
+ \\
364
+ \fbox{$
365
+ \begin{array}{ll}
366
+ \text{Answer:} & \\
367
+ \text{} & \left(
368
+ \begin{array}{ccc}
369
+ -\frac{9}{8} & \frac{3}{2} & \frac{29}{16} \\
370
+ \frac{33}{16} & \frac{1}{8} & \frac{23}{16} \\
371
+ -\frac{5}{2} & \frac{19}{8} & \frac{5}{4} \\
372
+ \end{array}
373
+ \right).\left(
374
+ \begin{array}{cc}
375
+ -\frac{27}{16} & \frac{19}{16} \\
376
+ \frac{3}{2} & \frac{43}{16} \\
377
+ \frac{27}{16} & \frac{3}{2} \\
378
+ \end{array}
379
+ \right)=\left(
380
+ \begin{array}{cc}
381
+ \frac{1845}{256} & \frac{693}{128} \\
382
+ -\frac{111}{128} & \frac{1265}{256} \\
383
+ \frac{633}{64} & \fbox{$\frac{677}{128}$} \\
384
+ \end{array}
385
+ \right) \\
386
+ \end{array}
387
+ $} \\
388
+ \end{array}
389
+ \\
390
+ \end{array}
pretraining/mathematica/linear_algebra/multiply_w_steps/231.txt ADDED
@@ -0,0 +1,390 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{ccc}
5
+ -2 & -2 & -3 \\
6
+ -1 & 1 & 0 \\
7
+ -2 & 2 & -1 \\
8
+ \end{array}
9
+ \right)$ and
10
+ $\left(
11
+ \begin{array}{cc}
12
+ -2 & 0 \\
13
+ 2 & 0 \\
14
+ 2 & 0 \\
15
+ \end{array}
16
+ \right)$.
17
+ Answer:
18
+ \begin{array}{l}
19
+
20
+ \begin{array}{l}
21
+ \text{Multiply the following matrices}: \\
22
+ \left(
23
+ \begin{array}{ccc}
24
+ -2 & -2 & -3 \\
25
+ -1 & 1 & 0 \\
26
+ -2 & 2 & -1 \\
27
+ \end{array}
28
+ \right).\left(
29
+ \begin{array}{cc}
30
+ -2 & 0 \\
31
+ 2 & 0 \\
32
+ 2 & 0 \\
33
+ \end{array}
34
+ \right) \\
35
+ \end{array}
36
+ \\
37
+ \hline
38
+
39
+ \begin{array}{l}
40
+
41
+ \begin{array}{l}
42
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 2. \\
43
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 2: \\
44
+ \end{array}
45
+ \\
46
+ \left(
47
+ \begin{array}{ccc}
48
+ -2 & -2 & -3 \\
49
+ -1 & 1 & 0 \\
50
+ -2 & 2 & -1 \\
51
+ \end{array}
52
+ \right).\left(
53
+ \begin{array}{cc}
54
+ -2 & 0 \\
55
+ 2 & 0 \\
56
+ 2 & 0 \\
57
+ \end{array}
58
+ \right)=\left(
59
+ \begin{array}{cc}
60
+ \_ & \_ \\
61
+ \_ & \_ \\
62
+ \_ & \_ \\
63
+ \end{array}
64
+ \right) \\
65
+ \end{array}
66
+ \\
67
+
68
+ \begin{array}{l}
69
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
70
+ \left(
71
+ \begin{array}{ccc}
72
+ -2 & -2 & -3 \\
73
+ -1 & 1 & 0 \\
74
+ -2 & 2 & -1 \\
75
+ \end{array}
76
+ \right).\left(
77
+ \begin{array}{cc}
78
+ -2 & 0 \\
79
+ 2 & 0 \\
80
+ 2 & 0 \\
81
+ \end{array}
82
+ \right)=\left(
83
+ \begin{array}{cc}
84
+ \_ & \_ \\
85
+ \_ & \_ \\
86
+ \_ & \_ \\
87
+ \end{array}
88
+ \right) \\
89
+ \end{array}
90
+ \\
91
+
92
+ \begin{array}{l}
93
+
94
+ \begin{array}{l}
95
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-2)+(-2)\, \times \, 2+(-3)\, \times \, 2=-6. \\
96
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
97
+ \end{array}
98
+ \\
99
+ \left(
100
+ \begin{array}{ccc}
101
+ -2 & -2 & -3 \\
102
+ -1 & 1 & 0 \\
103
+ -2 & 2 & -1 \\
104
+ \end{array}
105
+ \right).\left(
106
+ \begin{array}{cc}
107
+ -2 & 0 \\
108
+ 2 & 0 \\
109
+ 2 & 0 \\
110
+ \end{array}
111
+ \right)=\left(
112
+ \begin{array}{cc}
113
+ \fbox{$-6$} & \_ \\
114
+ \_ & \_ \\
115
+ \_ & \_ \\
116
+ \end{array}
117
+ \right) \\
118
+ \end{array}
119
+ \\
120
+
121
+ \begin{array}{l}
122
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
123
+ \left(
124
+ \begin{array}{ccc}
125
+ -2 & -2 & -3 \\
126
+ -1 & 1 & 0 \\
127
+ -2 & 2 & -1 \\
128
+ \end{array}
129
+ \right).\left(
130
+ \begin{array}{cc}
131
+ -2 & 0 \\
132
+ 2 & 0 \\
133
+ 2 & 0 \\
134
+ \end{array}
135
+ \right)=\left(
136
+ \begin{array}{cc}
137
+ -6 & \_ \\
138
+ \_ & \_ \\
139
+ \_ & \_ \\
140
+ \end{array}
141
+ \right) \\
142
+ \end{array}
143
+ \\
144
+
145
+ \begin{array}{l}
146
+
147
+ \begin{array}{l}
148
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, \times \, 0+(-2)\, \times \, 0+(-3)\, \times \, 0=0. \\
149
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
150
+ \end{array}
151
+ \\
152
+ \left(
153
+ \begin{array}{ccc}
154
+ -2 & -2 & -3 \\
155
+ -1 & 1 & 0 \\
156
+ -2 & 2 & -1 \\
157
+ \end{array}
158
+ \right).\left(
159
+ \begin{array}{cc}
160
+ -2 & 0 \\
161
+ 2 & 0 \\
162
+ 2 & 0 \\
163
+ \end{array}
164
+ \right)=\left(
165
+ \begin{array}{cc}
166
+ -6 & \fbox{$0$} \\
167
+ \_ & \_ \\
168
+ \_ & \_ \\
169
+ \end{array}
170
+ \right) \\
171
+ \end{array}
172
+ \\
173
+
174
+ \begin{array}{l}
175
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
176
+ \left(
177
+ \begin{array}{ccc}
178
+ -2 & -2 & -3 \\
179
+ -1 & 1 & 0 \\
180
+ -2 & 2 & -1 \\
181
+ \end{array}
182
+ \right).\left(
183
+ \begin{array}{cc}
184
+ -2 & 0 \\
185
+ 2 & 0 \\
186
+ 2 & 0 \\
187
+ \end{array}
188
+ \right)=\left(
189
+ \begin{array}{cc}
190
+ -6 & 0 \\
191
+ \_ & \_ \\
192
+ \_ & \_ \\
193
+ \end{array}
194
+ \right) \\
195
+ \end{array}
196
+ \\
197
+
198
+ \begin{array}{l}
199
+
200
+ \begin{array}{l}
201
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-1)\, (-2)+1\ 2+0\ 2=4. \\
202
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
203
+ \end{array}
204
+ \\
205
+ \left(
206
+ \begin{array}{ccc}
207
+ -2 & -2 & -3 \\
208
+ -1 & 1 & 0 \\
209
+ -2 & 2 & -1 \\
210
+ \end{array}
211
+ \right).\left(
212
+ \begin{array}{cc}
213
+ -2 & 0 \\
214
+ 2 & 0 \\
215
+ 2 & 0 \\
216
+ \end{array}
217
+ \right)=\left(
218
+ \begin{array}{cc}
219
+ -6 & 0 \\
220
+ \fbox{$4$} & \_ \\
221
+ \_ & \_ \\
222
+ \end{array}
223
+ \right) \\
224
+ \end{array}
225
+ \\
226
+
227
+ \begin{array}{l}
228
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
229
+ \left(
230
+ \begin{array}{ccc}
231
+ -2 & -2 & -3 \\
232
+ -1 & 1 & 0 \\
233
+ -2 & 2 & -1 \\
234
+ \end{array}
235
+ \right).\left(
236
+ \begin{array}{cc}
237
+ -2 & 0 \\
238
+ 2 & 0 \\
239
+ 2 & 0 \\
240
+ \end{array}
241
+ \right)=\left(
242
+ \begin{array}{cc}
243
+ -6 & 0 \\
244
+ 4 & \_ \\
245
+ \_ & \_ \\
246
+ \end{array}
247
+ \right) \\
248
+ \end{array}
249
+ \\
250
+
251
+ \begin{array}{l}
252
+
253
+ \begin{array}{l}
254
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-1)\, \times \, 0+1\ 0+0\ 0=0. \\
255
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
256
+ \end{array}
257
+ \\
258
+ \left(
259
+ \begin{array}{ccc}
260
+ -2 & -2 & -3 \\
261
+ -1 & 1 & 0 \\
262
+ -2 & 2 & -1 \\
263
+ \end{array}
264
+ \right).\left(
265
+ \begin{array}{cc}
266
+ -2 & 0 \\
267
+ 2 & 0 \\
268
+ 2 & 0 \\
269
+ \end{array}
270
+ \right)=\left(
271
+ \begin{array}{cc}
272
+ -6 & 0 \\
273
+ 4 & \fbox{$0$} \\
274
+ \_ & \_ \\
275
+ \end{array}
276
+ \right) \\
277
+ \end{array}
278
+ \\
279
+
280
+ \begin{array}{l}
281
+ \text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
282
+ \left(
283
+ \begin{array}{ccc}
284
+ -2 & -2 & -3 \\
285
+ -1 & 1 & 0 \\
286
+ -2 & 2 & -1 \\
287
+ \end{array}
288
+ \right).\left(
289
+ \begin{array}{cc}
290
+ -2 & 0 \\
291
+ 2 & 0 \\
292
+ 2 & 0 \\
293
+ \end{array}
294
+ \right)=\left(
295
+ \begin{array}{cc}
296
+ -6 & 0 \\
297
+ 4 & 0 \\
298
+ \_ & \_ \\
299
+ \end{array}
300
+ \right) \\
301
+ \end{array}
302
+ \\
303
+
304
+ \begin{array}{l}
305
+
306
+ \begin{array}{l}
307
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-2)+2\ 2+(-1)\, \times \, 2=6. \\
308
+ \text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
309
+ \end{array}
310
+ \\
311
+ \left(
312
+ \begin{array}{ccc}
313
+ -2 & -2 & -3 \\
314
+ -1 & 1 & 0 \\
315
+ -2 & 2 & -1 \\
316
+ \end{array}
317
+ \right).\left(
318
+ \begin{array}{cc}
319
+ -2 & 0 \\
320
+ 2 & 0 \\
321
+ 2 & 0 \\
322
+ \end{array}
323
+ \right)=\left(
324
+ \begin{array}{cc}
325
+ -6 & 0 \\
326
+ 4 & 0 \\
327
+ \fbox{$6$} & \_ \\
328
+ \end{array}
329
+ \right) \\
330
+ \end{array}
331
+ \\
332
+
333
+ \begin{array}{l}
334
+ \text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
335
+ \left(
336
+ \begin{array}{ccc}
337
+ -2 & -2 & -3 \\
338
+ -1 & 1 & 0 \\
339
+ -2 & 2 & -1 \\
340
+ \end{array}
341
+ \right).\left(
342
+ \begin{array}{cc}
343
+ -2 & 0 \\
344
+ 2 & 0 \\
345
+ 2 & 0 \\
346
+ \end{array}
347
+ \right)=\left(
348
+ \begin{array}{cc}
349
+ -6 & 0 \\
350
+ 4 & 0 \\
351
+ 6 & \_ \\
352
+ \end{array}
353
+ \right) \\
354
+ \end{array}
355
+ \\
356
+
357
+ \begin{array}{l}
358
+
359
+ \begin{array}{l}
360
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, \times \, 0+2\ 0+(-1)\, \times \, 0=0. \\
361
+ \text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
362
+ \end{array}
363
+ \\
364
+ \fbox{$
365
+ \begin{array}{ll}
366
+ \text{Answer:} & \\
367
+ \text{} & \left(
368
+ \begin{array}{ccc}
369
+ -2 & -2 & -3 \\
370
+ -1 & 1 & 0 \\
371
+ -2 & 2 & -1 \\
372
+ \end{array}
373
+ \right).\left(
374
+ \begin{array}{cc}
375
+ -2 & 0 \\
376
+ 2 & 0 \\
377
+ 2 & 0 \\
378
+ \end{array}
379
+ \right)=\left(
380
+ \begin{array}{cc}
381
+ -6 & 0 \\
382
+ 4 & 0 \\
383
+ 6 & \fbox{$0$} \\
384
+ \end{array}
385
+ \right) \\
386
+ \end{array}
387
+ $} \\
388
+ \end{array}
389
+ \\
390
+ \end{array}
pretraining/mathematica/linear_algebra/multiply_w_steps/2648.txt ADDED
@@ -0,0 +1,549 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{ccc}
5
+ 0 & 2 & -1 \\
6
+ -3 & 0 & -1 \\
7
+ 3 & -1 & 1 \\
8
+ \end{array}
9
+ \right)$ and
10
+ $\left(
11
+ \begin{array}{ccc}
12
+ 0 & 2 & 1 \\
13
+ 0 & -1 & -1 \\
14
+ 0 & -1 & 0 \\
15
+ \end{array}
16
+ \right)$.
17
+ Answer:
18
+ \begin{array}{l}
19
+
20
+ \begin{array}{l}
21
+ \text{Multiply the following matrices}: \\
22
+ \left(
23
+ \begin{array}{ccc}
24
+ 0 & 2 & -1 \\
25
+ -3 & 0 & -1 \\
26
+ 3 & -1 & 1 \\
27
+ \end{array}
28
+ \right).\left(
29
+ \begin{array}{ccc}
30
+ 0 & 2 & 1 \\
31
+ 0 & -1 & -1 \\
32
+ 0 & -1 & 0 \\
33
+ \end{array}
34
+ \right) \\
35
+ \end{array}
36
+ \\
37
+ \hline
38
+
39
+ \begin{array}{l}
40
+
41
+ \begin{array}{l}
42
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 3. \\
43
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 3: \\
44
+ \end{array}
45
+ \\
46
+ \left(
47
+ \begin{array}{ccc}
48
+ 0 & 2 & -1 \\
49
+ -3 & 0 & -1 \\
50
+ 3 & -1 & 1 \\
51
+ \end{array}
52
+ \right).\left(
53
+ \begin{array}{ccc}
54
+ 0 & 2 & 1 \\
55
+ 0 & -1 & -1 \\
56
+ 0 & -1 & 0 \\
57
+ \end{array}
58
+ \right)=\left(
59
+ \begin{array}{ccc}
60
+ \_ & \_ & \_ \\
61
+ \_ & \_ & \_ \\
62
+ \_ & \_ & \_ \\
63
+ \end{array}
64
+ \right) \\
65
+ \end{array}
66
+ \\
67
+
68
+ \begin{array}{l}
69
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
70
+ \left(
71
+ \begin{array}{ccc}
72
+ 0 & 2 & -1 \\
73
+ -3 & 0 & -1 \\
74
+ 3 & -1 & 1 \\
75
+ \end{array}
76
+ \right).\left(
77
+ \begin{array}{ccc}
78
+ 0 & 2 & 1 \\
79
+ 0 & -1 & -1 \\
80
+ 0 & -1 & 0 \\
81
+ \end{array}
82
+ \right)=\left(
83
+ \begin{array}{ccc}
84
+ \_ & \_ & \_ \\
85
+ \_ & \_ & \_ \\
86
+ \_ & \_ & \_ \\
87
+ \end{array}
88
+ \right) \\
89
+ \end{array}
90
+ \\
91
+
92
+ \begin{array}{l}
93
+
94
+ \begin{array}{l}
95
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }0\ 0+2\ 0+(-1)\, \times \, 0=0. \\
96
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
97
+ \end{array}
98
+ \\
99
+ \left(
100
+ \begin{array}{ccc}
101
+ 0 & 2 & -1 \\
102
+ -3 & 0 & -1 \\
103
+ 3 & -1 & 1 \\
104
+ \end{array}
105
+ \right).\left(
106
+ \begin{array}{ccc}
107
+ 0 & 2 & 1 \\
108
+ 0 & -1 & -1 \\
109
+ 0 & -1 & 0 \\
110
+ \end{array}
111
+ \right)=\left(
112
+ \begin{array}{ccc}
113
+ \fbox{$0$} & \_ & \_ \\
114
+ \_ & \_ & \_ \\
115
+ \_ & \_ & \_ \\
116
+ \end{array}
117
+ \right) \\
118
+ \end{array}
119
+ \\
120
+
121
+ \begin{array}{l}
122
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
123
+ \left(
124
+ \begin{array}{ccc}
125
+ 0 & 2 & -1 \\
126
+ -3 & 0 & -1 \\
127
+ 3 & -1 & 1 \\
128
+ \end{array}
129
+ \right).\left(
130
+ \begin{array}{ccc}
131
+ 0 & 2 & 1 \\
132
+ 0 & -1 & -1 \\
133
+ 0 & -1 & 0 \\
134
+ \end{array}
135
+ \right)=\left(
136
+ \begin{array}{ccc}
137
+ 0 & \_ & \_ \\
138
+ \_ & \_ & \_ \\
139
+ \_ & \_ & \_ \\
140
+ \end{array}
141
+ \right) \\
142
+ \end{array}
143
+ \\
144
+
145
+ \begin{array}{l}
146
+
147
+ \begin{array}{l}
148
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }0\ 2+2 (-1)+(-1)\, (-1)=-1. \\
149
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
150
+ \end{array}
151
+ \\
152
+ \left(
153
+ \begin{array}{ccc}
154
+ 0 & 2 & -1 \\
155
+ -3 & 0 & -1 \\
156
+ 3 & -1 & 1 \\
157
+ \end{array}
158
+ \right).\left(
159
+ \begin{array}{ccc}
160
+ 0 & 2 & 1 \\
161
+ 0 & -1 & -1 \\
162
+ 0 & -1 & 0 \\
163
+ \end{array}
164
+ \right)=\left(
165
+ \begin{array}{ccc}
166
+ 0 & \fbox{$-1$} & \_ \\
167
+ \_ & \_ & \_ \\
168
+ \_ & \_ & \_ \\
169
+ \end{array}
170
+ \right) \\
171
+ \end{array}
172
+ \\
173
+
174
+ \begin{array}{l}
175
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
176
+ \left(
177
+ \begin{array}{ccc}
178
+ 0 & 2 & -1 \\
179
+ -3 & 0 & -1 \\
180
+ 3 & -1 & 1 \\
181
+ \end{array}
182
+ \right).\left(
183
+ \begin{array}{ccc}
184
+ 0 & 2 & 1 \\
185
+ 0 & -1 & -1 \\
186
+ 0 & -1 & 0 \\
187
+ \end{array}
188
+ \right)=\left(
189
+ \begin{array}{ccc}
190
+ 0 & -1 & \_ \\
191
+ \_ & \_ & \_ \\
192
+ \_ & \_ & \_ \\
193
+ \end{array}
194
+ \right) \\
195
+ \end{array}
196
+ \\
197
+
198
+ \begin{array}{l}
199
+
200
+ \begin{array}{l}
201
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }0\ 1+2 (-1)+(-1)\, \times \, 0=-2. \\
202
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
203
+ \end{array}
204
+ \\
205
+ \left(
206
+ \begin{array}{ccc}
207
+ 0 & 2 & -1 \\
208
+ -3 & 0 & -1 \\
209
+ 3 & -1 & 1 \\
210
+ \end{array}
211
+ \right).\left(
212
+ \begin{array}{ccc}
213
+ 0 & 2 & 1 \\
214
+ 0 & -1 & -1 \\
215
+ 0 & -1 & 0 \\
216
+ \end{array}
217
+ \right)=\left(
218
+ \begin{array}{ccc}
219
+ 0 & -1 & \fbox{$-2$} \\
220
+ \_ & \_ & \_ \\
221
+ \_ & \_ & \_ \\
222
+ \end{array}
223
+ \right) \\
224
+ \end{array}
225
+ \\
226
+
227
+ \begin{array}{l}
228
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
229
+ \left(
230
+ \begin{array}{ccc}
231
+ 0 & 2 & -1 \\
232
+ -3 & 0 & -1 \\
233
+ 3 & -1 & 1 \\
234
+ \end{array}
235
+ \right).\left(
236
+ \begin{array}{ccc}
237
+ 0 & 2 & 1 \\
238
+ 0 & -1 & -1 \\
239
+ 0 & -1 & 0 \\
240
+ \end{array}
241
+ \right)=\left(
242
+ \begin{array}{ccc}
243
+ 0 & -1 & -2 \\
244
+ \_ & \_ & \_ \\
245
+ \_ & \_ & \_ \\
246
+ \end{array}
247
+ \right) \\
248
+ \end{array}
249
+ \\
250
+
251
+ \begin{array}{l}
252
+
253
+ \begin{array}{l}
254
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, \times \, 0+0\ 0+(-1)\, \times \, 0=0. \\
255
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
256
+ \end{array}
257
+ \\
258
+ \left(
259
+ \begin{array}{ccc}
260
+ 0 & 2 & -1 \\
261
+ -3 & 0 & -1 \\
262
+ 3 & -1 & 1 \\
263
+ \end{array}
264
+ \right).\left(
265
+ \begin{array}{ccc}
266
+ 0 & 2 & 1 \\
267
+ 0 & -1 & -1 \\
268
+ 0 & -1 & 0 \\
269
+ \end{array}
270
+ \right)=\left(
271
+ \begin{array}{ccc}
272
+ 0 & -1 & -2 \\
273
+ \fbox{$0$} & \_ & \_ \\
274
+ \_ & \_ & \_ \\
275
+ \end{array}
276
+ \right) \\
277
+ \end{array}
278
+ \\
279
+
280
+ \begin{array}{l}
281
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
282
+ \left(
283
+ \begin{array}{ccc}
284
+ 0 & 2 & -1 \\
285
+ -3 & 0 & -1 \\
286
+ 3 & -1 & 1 \\
287
+ \end{array}
288
+ \right).\left(
289
+ \begin{array}{ccc}
290
+ 0 & 2 & 1 \\
291
+ 0 & -1 & -1 \\
292
+ 0 & -1 & 0 \\
293
+ \end{array}
294
+ \right)=\left(
295
+ \begin{array}{ccc}
296
+ 0 & -1 & -2 \\
297
+ 0 & \_ & \_ \\
298
+ \_ & \_ & \_ \\
299
+ \end{array}
300
+ \right) \\
301
+ \end{array}
302
+ \\
303
+
304
+ \begin{array}{l}
305
+
306
+ \begin{array}{l}
307
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, \times \, 2+0 (-1)+(-1)\, (-1)=-5. \\
308
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
309
+ \end{array}
310
+ \\
311
+ \left(
312
+ \begin{array}{ccc}
313
+ 0 & 2 & -1 \\
314
+ -3 & 0 & -1 \\
315
+ 3 & -1 & 1 \\
316
+ \end{array}
317
+ \right).\left(
318
+ \begin{array}{ccc}
319
+ 0 & 2 & 1 \\
320
+ 0 & -1 & -1 \\
321
+ 0 & -1 & 0 \\
322
+ \end{array}
323
+ \right)=\left(
324
+ \begin{array}{ccc}
325
+ 0 & -1 & -2 \\
326
+ 0 & \fbox{$-5$} & \_ \\
327
+ \_ & \_ & \_ \\
328
+ \end{array}
329
+ \right) \\
330
+ \end{array}
331
+ \\
332
+
333
+ \begin{array}{l}
334
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
335
+ \left(
336
+ \begin{array}{ccc}
337
+ 0 & 2 & -1 \\
338
+ -3 & 0 & -1 \\
339
+ 3 & -1 & 1 \\
340
+ \end{array}
341
+ \right).\left(
342
+ \begin{array}{ccc}
343
+ 0 & 2 & 1 \\
344
+ 0 & -1 & -1 \\
345
+ 0 & -1 & 0 \\
346
+ \end{array}
347
+ \right)=\left(
348
+ \begin{array}{ccc}
349
+ 0 & -1 & -2 \\
350
+ 0 & -5 & \_ \\
351
+ \_ & \_ & \_ \\
352
+ \end{array}
353
+ \right) \\
354
+ \end{array}
355
+ \\
356
+
357
+ \begin{array}{l}
358
+
359
+ \begin{array}{l}
360
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, \times \, 1+0 (-1)+(-1)\, \times \, 0=-3. \\
361
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
362
+ \end{array}
363
+ \\
364
+ \left(
365
+ \begin{array}{ccc}
366
+ 0 & 2 & -1 \\
367
+ -3 & 0 & -1 \\
368
+ 3 & -1 & 1 \\
369
+ \end{array}
370
+ \right).\left(
371
+ \begin{array}{ccc}
372
+ 0 & 2 & 1 \\
373
+ 0 & -1 & -1 \\
374
+ 0 & -1 & 0 \\
375
+ \end{array}
376
+ \right)=\left(
377
+ \begin{array}{ccc}
378
+ 0 & -1 & -2 \\
379
+ 0 & -5 & \fbox{$-3$} \\
380
+ \_ & \_ & \_ \\
381
+ \end{array}
382
+ \right) \\
383
+ \end{array}
384
+ \\
385
+
386
+ \begin{array}{l}
387
+ \text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
388
+ \left(
389
+ \begin{array}{ccc}
390
+ 0 & 2 & -1 \\
391
+ -3 & 0 & -1 \\
392
+ 3 & -1 & 1 \\
393
+ \end{array}
394
+ \right).\left(
395
+ \begin{array}{ccc}
396
+ 0 & 2 & 1 \\
397
+ 0 & -1 & -1 \\
398
+ 0 & -1 & 0 \\
399
+ \end{array}
400
+ \right)=\left(
401
+ \begin{array}{ccc}
402
+ 0 & -1 & -2 \\
403
+ 0 & -5 & -3 \\
404
+ \_ & \_ & \_ \\
405
+ \end{array}
406
+ \right) \\
407
+ \end{array}
408
+ \\
409
+
410
+ \begin{array}{l}
411
+
412
+ \begin{array}{l}
413
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }3\ 0+(-1)\, \times \, 0+1\ 0=0. \\
414
+ \text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
415
+ \end{array}
416
+ \\
417
+ \left(
418
+ \begin{array}{ccc}
419
+ 0 & 2 & -1 \\
420
+ -3 & 0 & -1 \\
421
+ 3 & -1 & 1 \\
422
+ \end{array}
423
+ \right).\left(
424
+ \begin{array}{ccc}
425
+ 0 & 2 & 1 \\
426
+ 0 & -1 & -1 \\
427
+ 0 & -1 & 0 \\
428
+ \end{array}
429
+ \right)=\left(
430
+ \begin{array}{ccc}
431
+ 0 & -1 & -2 \\
432
+ 0 & -5 & -3 \\
433
+ \fbox{$0$} & \_ & \_ \\
434
+ \end{array}
435
+ \right) \\
436
+ \end{array}
437
+ \\
438
+
439
+ \begin{array}{l}
440
+ \text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
441
+ \left(
442
+ \begin{array}{ccc}
443
+ 0 & 2 & -1 \\
444
+ -3 & 0 & -1 \\
445
+ 3 & -1 & 1 \\
446
+ \end{array}
447
+ \right).\left(
448
+ \begin{array}{ccc}
449
+ 0 & 2 & 1 \\
450
+ 0 & -1 & -1 \\
451
+ 0 & -1 & 0 \\
452
+ \end{array}
453
+ \right)=\left(
454
+ \begin{array}{ccc}
455
+ 0 & -1 & -2 \\
456
+ 0 & -5 & -3 \\
457
+ 0 & \_ & \_ \\
458
+ \end{array}
459
+ \right) \\
460
+ \end{array}
461
+ \\
462
+
463
+ \begin{array}{l}
464
+
465
+ \begin{array}{l}
466
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }3\ 2+(-1)\, (-1)+1 (-1)=6. \\
467
+ \text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
468
+ \end{array}
469
+ \\
470
+ \left(
471
+ \begin{array}{ccc}
472
+ 0 & 2 & -1 \\
473
+ -3 & 0 & -1 \\
474
+ 3 & -1 & 1 \\
475
+ \end{array}
476
+ \right).\left(
477
+ \begin{array}{ccc}
478
+ 0 & 2 & 1 \\
479
+ 0 & -1 & -1 \\
480
+ 0 & -1 & 0 \\
481
+ \end{array}
482
+ \right)=\left(
483
+ \begin{array}{ccc}
484
+ 0 & -1 & -2 \\
485
+ 0 & -5 & -3 \\
486
+ 0 & \fbox{$6$} & \_ \\
487
+ \end{array}
488
+ \right) \\
489
+ \end{array}
490
+ \\
491
+
492
+ \begin{array}{l}
493
+ \text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
494
+ \left(
495
+ \begin{array}{ccc}
496
+ 0 & 2 & -1 \\
497
+ -3 & 0 & -1 \\
498
+ 3 & -1 & 1 \\
499
+ \end{array}
500
+ \right).\left(
501
+ \begin{array}{ccc}
502
+ 0 & 2 & 1 \\
503
+ 0 & -1 & -1 \\
504
+ 0 & -1 & 0 \\
505
+ \end{array}
506
+ \right)=\left(
507
+ \begin{array}{ccc}
508
+ 0 & -1 & -2 \\
509
+ 0 & -5 & -3 \\
510
+ 0 & 6 & \_ \\
511
+ \end{array}
512
+ \right) \\
513
+ \end{array}
514
+ \\
515
+
516
+ \begin{array}{l}
517
+
518
+ \begin{array}{l}
519
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }3\ 1+(-1)\, (-1)+1\ 0=4. \\
520
+ \text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
521
+ \end{array}
522
+ \\
523
+ \fbox{$
524
+ \begin{array}{ll}
525
+ \text{Answer:} & \\
526
+ \text{} & \left(
527
+ \begin{array}{ccc}
528
+ 0 & 2 & -1 \\
529
+ -3 & 0 & -1 \\
530
+ 3 & -1 & 1 \\
531
+ \end{array}
532
+ \right).\left(
533
+ \begin{array}{ccc}
534
+ 0 & 2 & 1 \\
535
+ 0 & -1 & -1 \\
536
+ 0 & -1 & 0 \\
537
+ \end{array}
538
+ \right)=\left(
539
+ \begin{array}{ccc}
540
+ 0 & -1 & -2 \\
541
+ 0 & -5 & -3 \\
542
+ 0 & 6 & \fbox{$4$} \\
543
+ \end{array}
544
+ \right) \\
545
+ \end{array}
546
+ $} \\
547
+ \end{array}
548
+ \\
549
+ \end{array}
pretraining/mathematica/linear_algebra/multiply_w_steps/2680.txt ADDED
@@ -0,0 +1,231 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{ccc}
5
+ 3 & -2 & -1 \\
6
+ -2 & 3 & -3 \\
7
+ -2 & 1 & -1 \\
8
+ \end{array}
9
+ \right)$ and
10
+ $\left(
11
+ \begin{array}{c}
12
+ 2 \\
13
+ 0 \\
14
+ -2 \\
15
+ \end{array}
16
+ \right)$.
17
+ Answer:
18
+ \begin{array}{l}
19
+
20
+ \begin{array}{l}
21
+ \text{Multiply the following matrices}: \\
22
+ \left(
23
+ \begin{array}{ccc}
24
+ 3 & -2 & -1 \\
25
+ -2 & 3 & -3 \\
26
+ -2 & 1 & -1 \\
27
+ \end{array}
28
+ \right).\left(
29
+ \begin{array}{c}
30
+ 2 \\
31
+ 0 \\
32
+ -2 \\
33
+ \end{array}
34
+ \right) \\
35
+ \end{array}
36
+ \\
37
+ \hline
38
+
39
+ \begin{array}{l}
40
+
41
+ \begin{array}{l}
42
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 1. \\
43
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 1: \\
44
+ \end{array}
45
+ \\
46
+ \left(
47
+ \begin{array}{ccc}
48
+ 3 & -2 & -1 \\
49
+ -2 & 3 & -3 \\
50
+ -2 & 1 & -1 \\
51
+ \end{array}
52
+ \right).\left(
53
+ \begin{array}{c}
54
+ 2 \\
55
+ 0 \\
56
+ -2 \\
57
+ \end{array}
58
+ \right)=\left(
59
+ \begin{array}{c}
60
+ \_ \\
61
+ \_ \\
62
+ \_ \\
63
+ \end{array}
64
+ \right) \\
65
+ \end{array}
66
+ \\
67
+
68
+ \begin{array}{l}
69
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
70
+ \left(
71
+ \begin{array}{ccc}
72
+ 3 & -2 & -1 \\
73
+ -2 & 3 & -3 \\
74
+ -2 & 1 & -1 \\
75
+ \end{array}
76
+ \right).\left(
77
+ \begin{array}{c}
78
+ 2 \\
79
+ 0 \\
80
+ -2 \\
81
+ \end{array}
82
+ \right)=\left(
83
+ \begin{array}{c}
84
+ \_ \\
85
+ \_ \\
86
+ \_ \\
87
+ \end{array}
88
+ \right) \\
89
+ \end{array}
90
+ \\
91
+
92
+ \begin{array}{l}
93
+
94
+ \begin{array}{l}
95
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }3\ 2+(-2)\, \times \, 0+(-1)\, (-2)=8. \\
96
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
97
+ \end{array}
98
+ \\
99
+ \left(
100
+ \begin{array}{ccc}
101
+ 3 & -2 & -1 \\
102
+ -2 & 3 & -3 \\
103
+ -2 & 1 & -1 \\
104
+ \end{array}
105
+ \right).\left(
106
+ \begin{array}{c}
107
+ 2 \\
108
+ 0 \\
109
+ -2 \\
110
+ \end{array}
111
+ \right)=\left(
112
+ \begin{array}{c}
113
+ \fbox{$8$} \\
114
+ \_ \\
115
+ \_ \\
116
+ \end{array}
117
+ \right) \\
118
+ \end{array}
119
+ \\
120
+
121
+ \begin{array}{l}
122
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
123
+ \left(
124
+ \begin{array}{ccc}
125
+ 3 & -2 & -1 \\
126
+ -2 & 3 & -3 \\
127
+ -2 & 1 & -1 \\
128
+ \end{array}
129
+ \right).\left(
130
+ \begin{array}{c}
131
+ 2 \\
132
+ 0 \\
133
+ -2 \\
134
+ \end{array}
135
+ \right)=\left(
136
+ \begin{array}{c}
137
+ 8 \\
138
+ \_ \\
139
+ \_ \\
140
+ \end{array}
141
+ \right) \\
142
+ \end{array}
143
+ \\
144
+
145
+ \begin{array}{l}
146
+
147
+ \begin{array}{l}
148
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, \times \, 2+3\ 0+(-3)\, (-2)=2. \\
149
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
150
+ \end{array}
151
+ \\
152
+ \left(
153
+ \begin{array}{ccc}
154
+ 3 & -2 & -1 \\
155
+ -2 & 3 & -3 \\
156
+ -2 & 1 & -1 \\
157
+ \end{array}
158
+ \right).\left(
159
+ \begin{array}{c}
160
+ 2 \\
161
+ 0 \\
162
+ -2 \\
163
+ \end{array}
164
+ \right)=\left(
165
+ \begin{array}{c}
166
+ 8 \\
167
+ \fbox{$2$} \\
168
+ \_ \\
169
+ \end{array}
170
+ \right) \\
171
+ \end{array}
172
+ \\
173
+
174
+ \begin{array}{l}
175
+ \text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
176
+ \left(
177
+ \begin{array}{ccc}
178
+ 3 & -2 & -1 \\
179
+ -2 & 3 & -3 \\
180
+ -2 & 1 & -1 \\
181
+ \end{array}
182
+ \right).\left(
183
+ \begin{array}{c}
184
+ 2 \\
185
+ 0 \\
186
+ -2 \\
187
+ \end{array}
188
+ \right)=\left(
189
+ \begin{array}{c}
190
+ 8 \\
191
+ 2 \\
192
+ \_ \\
193
+ \end{array}
194
+ \right) \\
195
+ \end{array}
196
+ \\
197
+
198
+ \begin{array}{l}
199
+
200
+ \begin{array}{l}
201
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, \times \, 2+1\ 0+(-1)\, (-2)=-2. \\
202
+ \text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
203
+ \end{array}
204
+ \\
205
+ \fbox{$
206
+ \begin{array}{ll}
207
+ \text{Answer:} & \\
208
+ \text{} & \left(
209
+ \begin{array}{ccc}
210
+ 3 & -2 & -1 \\
211
+ -2 & 3 & -3 \\
212
+ -2 & 1 & -1 \\
213
+ \end{array}
214
+ \right).\left(
215
+ \begin{array}{c}
216
+ 2 \\
217
+ 0 \\
218
+ -2 \\
219
+ \end{array}
220
+ \right)=\left(
221
+ \begin{array}{c}
222
+ 8 \\
223
+ 2 \\
224
+ \fbox{$-2$} \\
225
+ \end{array}
226
+ \right) \\
227
+ \end{array}
228
+ $} \\
229
+ \end{array}
230
+ \\
231
+ \end{array}
pretraining/mathematica/linear_algebra/multiply_w_steps/2701.txt ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{cc}
5
+ 1 & -2 \\
6
+ -2 & 3 \\
7
+ \end{array}
8
+ \right)$ and
9
+ $\left(
10
+ \begin{array}{cc}
11
+ 1 & 0 \\
12
+ 2 & -3 \\
13
+ \end{array}
14
+ \right)$.
15
+ Answer:
16
+ \begin{array}{l}
17
+
18
+ \begin{array}{l}
19
+ \text{Multiply the following matrices}: \\
20
+ \left(
21
+ \begin{array}{cc}
22
+ 1 & -2 \\
23
+ -2 & 3 \\
24
+ \end{array}
25
+ \right).\left(
26
+ \begin{array}{cc}
27
+ 1 & 0 \\
28
+ 2 & -3 \\
29
+ \end{array}
30
+ \right) \\
31
+ \end{array}
32
+ \\
33
+ \hline
34
+
35
+ \begin{array}{l}
36
+
37
+ \begin{array}{l}
38
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 2. \\
39
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 2: \\
40
+ \end{array}
41
+ \\
42
+ \left(
43
+ \begin{array}{cc}
44
+ 1 & -2 \\
45
+ -2 & 3 \\
46
+ \end{array}
47
+ \right).\left(
48
+ \begin{array}{cc}
49
+ 1 & 0 \\
50
+ 2 & -3 \\
51
+ \end{array}
52
+ \right)=\left(
53
+ \begin{array}{cc}
54
+ \_ & \_ \\
55
+ \_ & \_ \\
56
+ \end{array}
57
+ \right) \\
58
+ \end{array}
59
+ \\
60
+
61
+ \begin{array}{l}
62
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
63
+ \left(
64
+ \begin{array}{cc}
65
+ 1 & -2 \\
66
+ -2 & 3 \\
67
+ \end{array}
68
+ \right).\left(
69
+ \begin{array}{cc}
70
+ 1 & 0 \\
71
+ 2 & -3 \\
72
+ \end{array}
73
+ \right)=\left(
74
+ \begin{array}{cc}
75
+ \_ & \_ \\
76
+ \_ & \_ \\
77
+ \end{array}
78
+ \right) \\
79
+ \end{array}
80
+ \\
81
+
82
+ \begin{array}{l}
83
+
84
+ \begin{array}{l}
85
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1\ 1+(-2)\, \times \, 2=-3. \\
86
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
87
+ \end{array}
88
+ \\
89
+ \left(
90
+ \begin{array}{cc}
91
+ 1 & -2 \\
92
+ -2 & 3 \\
93
+ \end{array}
94
+ \right).\left(
95
+ \begin{array}{cc}
96
+ 1 & 0 \\
97
+ 2 & -3 \\
98
+ \end{array}
99
+ \right)=\left(
100
+ \begin{array}{cc}
101
+ \fbox{$-3$} & \_ \\
102
+ \_ & \_ \\
103
+ \end{array}
104
+ \right) \\
105
+ \end{array}
106
+ \\
107
+
108
+ \begin{array}{l}
109
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
110
+ \left(
111
+ \begin{array}{cc}
112
+ 1 & -2 \\
113
+ -2 & 3 \\
114
+ \end{array}
115
+ \right).\left(
116
+ \begin{array}{cc}
117
+ 1 & 0 \\
118
+ 2 & -3 \\
119
+ \end{array}
120
+ \right)=\left(
121
+ \begin{array}{cc}
122
+ -3 & \_ \\
123
+ \_ & \_ \\
124
+ \end{array}
125
+ \right) \\
126
+ \end{array}
127
+ \\
128
+
129
+ \begin{array}{l}
130
+
131
+ \begin{array}{l}
132
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1\ 0+(-2)\, (-3)=6. \\
133
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
134
+ \end{array}
135
+ \\
136
+ \left(
137
+ \begin{array}{cc}
138
+ 1 & -2 \\
139
+ -2 & 3 \\
140
+ \end{array}
141
+ \right).\left(
142
+ \begin{array}{cc}
143
+ 1 & 0 \\
144
+ 2 & -3 \\
145
+ \end{array}
146
+ \right)=\left(
147
+ \begin{array}{cc}
148
+ -3 & \fbox{$6$} \\
149
+ \_ & \_ \\
150
+ \end{array}
151
+ \right) \\
152
+ \end{array}
153
+ \\
154
+
155
+ \begin{array}{l}
156
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
157
+ \left(
158
+ \begin{array}{cc}
159
+ 1 & -2 \\
160
+ -2 & 3 \\
161
+ \end{array}
162
+ \right).\left(
163
+ \begin{array}{cc}
164
+ 1 & 0 \\
165
+ 2 & -3 \\
166
+ \end{array}
167
+ \right)=\left(
168
+ \begin{array}{cc}
169
+ -3 & 6 \\
170
+ \_ & \_ \\
171
+ \end{array}
172
+ \right) \\
173
+ \end{array}
174
+ \\
175
+
176
+ \begin{array}{l}
177
+
178
+ \begin{array}{l}
179
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, \times \, 1+3\ 2=4. \\
180
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
181
+ \end{array}
182
+ \\
183
+ \left(
184
+ \begin{array}{cc}
185
+ 1 & -2 \\
186
+ -2 & 3 \\
187
+ \end{array}
188
+ \right).\left(
189
+ \begin{array}{cc}
190
+ 1 & 0 \\
191
+ 2 & -3 \\
192
+ \end{array}
193
+ \right)=\left(
194
+ \begin{array}{cc}
195
+ -3 & 6 \\
196
+ \fbox{$4$} & \_ \\
197
+ \end{array}
198
+ \right) \\
199
+ \end{array}
200
+ \\
201
+
202
+ \begin{array}{l}
203
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
204
+ \left(
205
+ \begin{array}{cc}
206
+ 1 & -2 \\
207
+ -2 & 3 \\
208
+ \end{array}
209
+ \right).\left(
210
+ \begin{array}{cc}
211
+ 1 & 0 \\
212
+ 2 & -3 \\
213
+ \end{array}
214
+ \right)=\left(
215
+ \begin{array}{cc}
216
+ -3 & 6 \\
217
+ 4 & \_ \\
218
+ \end{array}
219
+ \right) \\
220
+ \end{array}
221
+ \\
222
+
223
+ \begin{array}{l}
224
+
225
+ \begin{array}{l}
226
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, \times \, 0+3 (-3)=-9. \\
227
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
228
+ \end{array}
229
+ \\
230
+ \fbox{$
231
+ \begin{array}{ll}
232
+ \text{Answer:} & \\
233
+ \text{} & \left(
234
+ \begin{array}{cc}
235
+ 1 & -2 \\
236
+ -2 & 3 \\
237
+ \end{array}
238
+ \right).\left(
239
+ \begin{array}{cc}
240
+ 1 & 0 \\
241
+ 2 & -3 \\
242
+ \end{array}
243
+ \right)=\left(
244
+ \begin{array}{cc}
245
+ -3 & 6 \\
246
+ 4 & \fbox{$-9$} \\
247
+ \end{array}
248
+ \right) \\
249
+ \end{array}
250
+ $} \\
251
+ \end{array}
252
+ \\
253
+ \end{array}
pretraining/mathematica/linear_algebra/multiply_w_steps/274.txt ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{cc}
5
+ \frac{3}{2} & -\frac{1}{4} \\
6
+ \frac{7}{4} & -\frac{9}{4} \\
7
+ \end{array}
8
+ \right)$ and
9
+ $\left(
10
+ \begin{array}{cc}
11
+ -\frac{11}{4} & -\frac{1}{4} \\
12
+ -\frac{9}{4} & -1 \\
13
+ \end{array}
14
+ \right)$.
15
+ Answer:
16
+ \begin{array}{l}
17
+
18
+ \begin{array}{l}
19
+ \text{Multiply the following matrices}: \\
20
+ \left(
21
+ \begin{array}{cc}
22
+ \frac{3}{2} & -\frac{1}{4} \\
23
+ \frac{7}{4} & -\frac{9}{4} \\
24
+ \end{array}
25
+ \right).\left(
26
+ \begin{array}{cc}
27
+ -\frac{11}{4} & -\frac{1}{4} \\
28
+ -\frac{9}{4} & -1 \\
29
+ \end{array}
30
+ \right) \\
31
+ \end{array}
32
+ \\
33
+ \hline
34
+
35
+ \begin{array}{l}
36
+
37
+ \begin{array}{l}
38
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 2. \\
39
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 2: \\
40
+ \end{array}
41
+ \\
42
+ \left(
43
+ \begin{array}{cc}
44
+ \frac{3}{2} & -\frac{1}{4} \\
45
+ \frac{7}{4} & -\frac{9}{4} \\
46
+ \end{array}
47
+ \right).\left(
48
+ \begin{array}{cc}
49
+ -\frac{11}{4} & -\frac{1}{4} \\
50
+ -\frac{9}{4} & -1 \\
51
+ \end{array}
52
+ \right)=\left(
53
+ \begin{array}{cc}
54
+ \_ & \_ \\
55
+ \_ & \_ \\
56
+ \end{array}
57
+ \right) \\
58
+ \end{array}
59
+ \\
60
+
61
+ \begin{array}{l}
62
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
63
+ \left(
64
+ \begin{array}{cc}
65
+ \frac{3}{2} & -\frac{1}{4} \\
66
+ \frac{7}{4} & -\frac{9}{4} \\
67
+ \end{array}
68
+ \right).\left(
69
+ \begin{array}{cc}
70
+ -\frac{11}{4} & -\frac{1}{4} \\
71
+ -\frac{9}{4} & -1 \\
72
+ \end{array}
73
+ \right)=\left(
74
+ \begin{array}{cc}
75
+ \_ & \_ \\
76
+ \_ & \_ \\
77
+ \end{array}
78
+ \right) \\
79
+ \end{array}
80
+ \\
81
+
82
+ \begin{array}{l}
83
+
84
+ \begin{array}{l}
85
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{3 (-11)}{2\ 4}+\frac{9}{4\ 4}=-\frac{57}{16}. \\
86
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
87
+ \end{array}
88
+ \\
89
+ \left(
90
+ \begin{array}{cc}
91
+ \frac{3}{2} & -\frac{1}{4} \\
92
+ \frac{7}{4} & -\frac{9}{4} \\
93
+ \end{array}
94
+ \right).\left(
95
+ \begin{array}{cc}
96
+ -\frac{11}{4} & -\frac{1}{4} \\
97
+ -\frac{9}{4} & -1 \\
98
+ \end{array}
99
+ \right)=\left(
100
+ \begin{array}{cc}
101
+ \fbox{$-\frac{57}{16}$} & \_ \\
102
+ \_ & \_ \\
103
+ \end{array}
104
+ \right) \\
105
+ \end{array}
106
+ \\
107
+
108
+ \begin{array}{l}
109
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
110
+ \left(
111
+ \begin{array}{cc}
112
+ \frac{3}{2} & -\frac{1}{4} \\
113
+ \frac{7}{4} & -\frac{9}{4} \\
114
+ \end{array}
115
+ \right).\left(
116
+ \begin{array}{cc}
117
+ -\frac{11}{4} & -\frac{1}{4} \\
118
+ -\frac{9}{4} & -1 \\
119
+ \end{array}
120
+ \right)=\left(
121
+ \begin{array}{cc}
122
+ -\frac{57}{16} & \_ \\
123
+ \_ & \_ \\
124
+ \end{array}
125
+ \right) \\
126
+ \end{array}
127
+ \\
128
+
129
+ \begin{array}{l}
130
+
131
+ \begin{array}{l}
132
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{1}{4} \left(-\frac{3}{2}\right)+\frac{1}{4}=-\frac{1}{8}. \\
133
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
134
+ \end{array}
135
+ \\
136
+ \left(
137
+ \begin{array}{cc}
138
+ \frac{3}{2} & -\frac{1}{4} \\
139
+ \frac{7}{4} & -\frac{9}{4} \\
140
+ \end{array}
141
+ \right).\left(
142
+ \begin{array}{cc}
143
+ -\frac{11}{4} & -\frac{1}{4} \\
144
+ -\frac{9}{4} & -1 \\
145
+ \end{array}
146
+ \right)=\left(
147
+ \begin{array}{cc}
148
+ -\frac{57}{16} & \fbox{$-\frac{1}{8}$} \\
149
+ \_ & \_ \\
150
+ \end{array}
151
+ \right) \\
152
+ \end{array}
153
+ \\
154
+
155
+ \begin{array}{l}
156
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
157
+ \left(
158
+ \begin{array}{cc}
159
+ \frac{3}{2} & -\frac{1}{4} \\
160
+ \frac{7}{4} & -\frac{9}{4} \\
161
+ \end{array}
162
+ \right).\left(
163
+ \begin{array}{cc}
164
+ -\frac{11}{4} & -\frac{1}{4} \\
165
+ -\frac{9}{4} & -1 \\
166
+ \end{array}
167
+ \right)=\left(
168
+ \begin{array}{cc}
169
+ -\frac{57}{16} & -\frac{1}{8} \\
170
+ \_ & \_ \\
171
+ \end{array}
172
+ \right) \\
173
+ \end{array}
174
+ \\
175
+
176
+ \begin{array}{l}
177
+
178
+ \begin{array}{l}
179
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{7 (-11)}{4\ 4}+\left(-\frac{9}{4}\right)\, \left(-\frac{9}{4}\right)=\frac{1}{4}. \\
180
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
181
+ \end{array}
182
+ \\
183
+ \left(
184
+ \begin{array}{cc}
185
+ \frac{3}{2} & -\frac{1}{4} \\
186
+ \frac{7}{4} & -\frac{9}{4} \\
187
+ \end{array}
188
+ \right).\left(
189
+ \begin{array}{cc}
190
+ -\frac{11}{4} & -\frac{1}{4} \\
191
+ -\frac{9}{4} & -1 \\
192
+ \end{array}
193
+ \right)=\left(
194
+ \begin{array}{cc}
195
+ -\frac{57}{16} & -\frac{1}{8} \\
196
+ \fbox{$\frac{1}{4}$} & \_ \\
197
+ \end{array}
198
+ \right) \\
199
+ \end{array}
200
+ \\
201
+
202
+ \begin{array}{l}
203
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
204
+ \left(
205
+ \begin{array}{cc}
206
+ \frac{3}{2} & -\frac{1}{4} \\
207
+ \frac{7}{4} & -\frac{9}{4} \\
208
+ \end{array}
209
+ \right).\left(
210
+ \begin{array}{cc}
211
+ -\frac{11}{4} & -\frac{1}{4} \\
212
+ -\frac{9}{4} & -1 \\
213
+ \end{array}
214
+ \right)=\left(
215
+ \begin{array}{cc}
216
+ -\frac{57}{16} & -\frac{1}{8} \\
217
+ \frac{1}{4} & \_ \\
218
+ \end{array}
219
+ \right) \\
220
+ \end{array}
221
+ \\
222
+
223
+ \begin{array}{l}
224
+
225
+ \begin{array}{l}
226
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{1}{4} \left(-\frac{7}{4}\right)+\left(-\frac{9}{4}\right)\, (-1)=\frac{29}{16}. \\
227
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
228
+ \end{array}
229
+ \\
230
+ \fbox{$
231
+ \begin{array}{ll}
232
+ \text{Answer:} & \\
233
+ \text{} & \left(
234
+ \begin{array}{cc}
235
+ \frac{3}{2} & -\frac{1}{4} \\
236
+ \frac{7}{4} & -\frac{9}{4} \\
237
+ \end{array}
238
+ \right).\left(
239
+ \begin{array}{cc}
240
+ -\frac{11}{4} & -\frac{1}{4} \\
241
+ -\frac{9}{4} & -1 \\
242
+ \end{array}
243
+ \right)=\left(
244
+ \begin{array}{cc}
245
+ -\frac{57}{16} & -\frac{1}{8} \\
246
+ \frac{1}{4} & \fbox{$\frac{29}{16}$} \\
247
+ \end{array}
248
+ \right) \\
249
+ \end{array}
250
+ $} \\
251
+ \end{array}
252
+ \\
253
+ \end{array}
pretraining/mathematica/linear_algebra/multiply_w_steps/2741.txt ADDED
@@ -0,0 +1,390 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{ccc}
5
+ 2 & -1 & 1 \\
6
+ -1 & 3 & -1 \\
7
+ -1 & 1 & 3 \\
8
+ \end{array}
9
+ \right)$ and
10
+ $\left(
11
+ \begin{array}{cc}
12
+ 1 & -2 \\
13
+ 0 & 0 \\
14
+ -2 & 1 \\
15
+ \end{array}
16
+ \right)$.
17
+ Answer:
18
+ \begin{array}{l}
19
+
20
+ \begin{array}{l}
21
+ \text{Multiply the following matrices}: \\
22
+ \left(
23
+ \begin{array}{ccc}
24
+ 2 & -1 & 1 \\
25
+ -1 & 3 & -1 \\
26
+ -1 & 1 & 3 \\
27
+ \end{array}
28
+ \right).\left(
29
+ \begin{array}{cc}
30
+ 1 & -2 \\
31
+ 0 & 0 \\
32
+ -2 & 1 \\
33
+ \end{array}
34
+ \right) \\
35
+ \end{array}
36
+ \\
37
+ \hline
38
+
39
+ \begin{array}{l}
40
+
41
+ \begin{array}{l}
42
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 2. \\
43
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 2: \\
44
+ \end{array}
45
+ \\
46
+ \left(
47
+ \begin{array}{ccc}
48
+ 2 & -1 & 1 \\
49
+ -1 & 3 & -1 \\
50
+ -1 & 1 & 3 \\
51
+ \end{array}
52
+ \right).\left(
53
+ \begin{array}{cc}
54
+ 1 & -2 \\
55
+ 0 & 0 \\
56
+ -2 & 1 \\
57
+ \end{array}
58
+ \right)=\left(
59
+ \begin{array}{cc}
60
+ \_ & \_ \\
61
+ \_ & \_ \\
62
+ \_ & \_ \\
63
+ \end{array}
64
+ \right) \\
65
+ \end{array}
66
+ \\
67
+
68
+ \begin{array}{l}
69
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
70
+ \left(
71
+ \begin{array}{ccc}
72
+ 2 & -1 & 1 \\
73
+ -1 & 3 & -1 \\
74
+ -1 & 1 & 3 \\
75
+ \end{array}
76
+ \right).\left(
77
+ \begin{array}{cc}
78
+ 1 & -2 \\
79
+ 0 & 0 \\
80
+ -2 & 1 \\
81
+ \end{array}
82
+ \right)=\left(
83
+ \begin{array}{cc}
84
+ \_ & \_ \\
85
+ \_ & \_ \\
86
+ \_ & \_ \\
87
+ \end{array}
88
+ \right) \\
89
+ \end{array}
90
+ \\
91
+
92
+ \begin{array}{l}
93
+
94
+ \begin{array}{l}
95
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2\ 1+(-1)\, \times \, 0+1 (-2)=0. \\
96
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
97
+ \end{array}
98
+ \\
99
+ \left(
100
+ \begin{array}{ccc}
101
+ 2 & -1 & 1 \\
102
+ -1 & 3 & -1 \\
103
+ -1 & 1 & 3 \\
104
+ \end{array}
105
+ \right).\left(
106
+ \begin{array}{cc}
107
+ 1 & -2 \\
108
+ 0 & 0 \\
109
+ -2 & 1 \\
110
+ \end{array}
111
+ \right)=\left(
112
+ \begin{array}{cc}
113
+ \fbox{$0$} & \_ \\
114
+ \_ & \_ \\
115
+ \_ & \_ \\
116
+ \end{array}
117
+ \right) \\
118
+ \end{array}
119
+ \\
120
+
121
+ \begin{array}{l}
122
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
123
+ \left(
124
+ \begin{array}{ccc}
125
+ 2 & -1 & 1 \\
126
+ -1 & 3 & -1 \\
127
+ -1 & 1 & 3 \\
128
+ \end{array}
129
+ \right).\left(
130
+ \begin{array}{cc}
131
+ 1 & -2 \\
132
+ 0 & 0 \\
133
+ -2 & 1 \\
134
+ \end{array}
135
+ \right)=\left(
136
+ \begin{array}{cc}
137
+ 0 & \_ \\
138
+ \_ & \_ \\
139
+ \_ & \_ \\
140
+ \end{array}
141
+ \right) \\
142
+ \end{array}
143
+ \\
144
+
145
+ \begin{array}{l}
146
+
147
+ \begin{array}{l}
148
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2 (-2)+(-1)\, \times \, 0+1\ 1=-3. \\
149
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
150
+ \end{array}
151
+ \\
152
+ \left(
153
+ \begin{array}{ccc}
154
+ 2 & -1 & 1 \\
155
+ -1 & 3 & -1 \\
156
+ -1 & 1 & 3 \\
157
+ \end{array}
158
+ \right).\left(
159
+ \begin{array}{cc}
160
+ 1 & -2 \\
161
+ 0 & 0 \\
162
+ -2 & 1 \\
163
+ \end{array}
164
+ \right)=\left(
165
+ \begin{array}{cc}
166
+ 0 & \fbox{$-3$} \\
167
+ \_ & \_ \\
168
+ \_ & \_ \\
169
+ \end{array}
170
+ \right) \\
171
+ \end{array}
172
+ \\
173
+
174
+ \begin{array}{l}
175
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
176
+ \left(
177
+ \begin{array}{ccc}
178
+ 2 & -1 & 1 \\
179
+ -1 & 3 & -1 \\
180
+ -1 & 1 & 3 \\
181
+ \end{array}
182
+ \right).\left(
183
+ \begin{array}{cc}
184
+ 1 & -2 \\
185
+ 0 & 0 \\
186
+ -2 & 1 \\
187
+ \end{array}
188
+ \right)=\left(
189
+ \begin{array}{cc}
190
+ 0 & -3 \\
191
+ \_ & \_ \\
192
+ \_ & \_ \\
193
+ \end{array}
194
+ \right) \\
195
+ \end{array}
196
+ \\
197
+
198
+ \begin{array}{l}
199
+
200
+ \begin{array}{l}
201
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-1)\, \times \, 1+3\ 0+(-1)\, (-2)=1. \\
202
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
203
+ \end{array}
204
+ \\
205
+ \left(
206
+ \begin{array}{ccc}
207
+ 2 & -1 & 1 \\
208
+ -1 & 3 & -1 \\
209
+ -1 & 1 & 3 \\
210
+ \end{array}
211
+ \right).\left(
212
+ \begin{array}{cc}
213
+ 1 & -2 \\
214
+ 0 & 0 \\
215
+ -2 & 1 \\
216
+ \end{array}
217
+ \right)=\left(
218
+ \begin{array}{cc}
219
+ 0 & -3 \\
220
+ \fbox{$1$} & \_ \\
221
+ \_ & \_ \\
222
+ \end{array}
223
+ \right) \\
224
+ \end{array}
225
+ \\
226
+
227
+ \begin{array}{l}
228
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
229
+ \left(
230
+ \begin{array}{ccc}
231
+ 2 & -1 & 1 \\
232
+ -1 & 3 & -1 \\
233
+ -1 & 1 & 3 \\
234
+ \end{array}
235
+ \right).\left(
236
+ \begin{array}{cc}
237
+ 1 & -2 \\
238
+ 0 & 0 \\
239
+ -2 & 1 \\
240
+ \end{array}
241
+ \right)=\left(
242
+ \begin{array}{cc}
243
+ 0 & -3 \\
244
+ 1 & \_ \\
245
+ \_ & \_ \\
246
+ \end{array}
247
+ \right) \\
248
+ \end{array}
249
+ \\
250
+
251
+ \begin{array}{l}
252
+
253
+ \begin{array}{l}
254
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-1)\, (-2)+3\ 0+(-1)\, \times \, 1=1. \\
255
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
256
+ \end{array}
257
+ \\
258
+ \left(
259
+ \begin{array}{ccc}
260
+ 2 & -1 & 1 \\
261
+ -1 & 3 & -1 \\
262
+ -1 & 1 & 3 \\
263
+ \end{array}
264
+ \right).\left(
265
+ \begin{array}{cc}
266
+ 1 & -2 \\
267
+ 0 & 0 \\
268
+ -2 & 1 \\
269
+ \end{array}
270
+ \right)=\left(
271
+ \begin{array}{cc}
272
+ 0 & -3 \\
273
+ 1 & \fbox{$1$} \\
274
+ \_ & \_ \\
275
+ \end{array}
276
+ \right) \\
277
+ \end{array}
278
+ \\
279
+
280
+ \begin{array}{l}
281
+ \text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
282
+ \left(
283
+ \begin{array}{ccc}
284
+ 2 & -1 & 1 \\
285
+ -1 & 3 & -1 \\
286
+ -1 & 1 & 3 \\
287
+ \end{array}
288
+ \right).\left(
289
+ \begin{array}{cc}
290
+ 1 & -2 \\
291
+ 0 & 0 \\
292
+ -2 & 1 \\
293
+ \end{array}
294
+ \right)=\left(
295
+ \begin{array}{cc}
296
+ 0 & -3 \\
297
+ 1 & 1 \\
298
+ \_ & \_ \\
299
+ \end{array}
300
+ \right) \\
301
+ \end{array}
302
+ \\
303
+
304
+ \begin{array}{l}
305
+
306
+ \begin{array}{l}
307
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-1)\, \times \, 1+1\ 0+3 (-2)=-7. \\
308
+ \text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
309
+ \end{array}
310
+ \\
311
+ \left(
312
+ \begin{array}{ccc}
313
+ 2 & -1 & 1 \\
314
+ -1 & 3 & -1 \\
315
+ -1 & 1 & 3 \\
316
+ \end{array}
317
+ \right).\left(
318
+ \begin{array}{cc}
319
+ 1 & -2 \\
320
+ 0 & 0 \\
321
+ -2 & 1 \\
322
+ \end{array}
323
+ \right)=\left(
324
+ \begin{array}{cc}
325
+ 0 & -3 \\
326
+ 1 & 1 \\
327
+ \fbox{$-7$} & \_ \\
328
+ \end{array}
329
+ \right) \\
330
+ \end{array}
331
+ \\
332
+
333
+ \begin{array}{l}
334
+ \text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
335
+ \left(
336
+ \begin{array}{ccc}
337
+ 2 & -1 & 1 \\
338
+ -1 & 3 & -1 \\
339
+ -1 & 1 & 3 \\
340
+ \end{array}
341
+ \right).\left(
342
+ \begin{array}{cc}
343
+ 1 & -2 \\
344
+ 0 & 0 \\
345
+ -2 & 1 \\
346
+ \end{array}
347
+ \right)=\left(
348
+ \begin{array}{cc}
349
+ 0 & -3 \\
350
+ 1 & 1 \\
351
+ -7 & \_ \\
352
+ \end{array}
353
+ \right) \\
354
+ \end{array}
355
+ \\
356
+
357
+ \begin{array}{l}
358
+
359
+ \begin{array}{l}
360
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-1)\, (-2)+1\ 0+3\ 1=5. \\
361
+ \text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
362
+ \end{array}
363
+ \\
364
+ \fbox{$
365
+ \begin{array}{ll}
366
+ \text{Answer:} & \\
367
+ \text{} & \left(
368
+ \begin{array}{ccc}
369
+ 2 & -1 & 1 \\
370
+ -1 & 3 & -1 \\
371
+ -1 & 1 & 3 \\
372
+ \end{array}
373
+ \right).\left(
374
+ \begin{array}{cc}
375
+ 1 & -2 \\
376
+ 0 & 0 \\
377
+ -2 & 1 \\
378
+ \end{array}
379
+ \right)=\left(
380
+ \begin{array}{cc}
381
+ 0 & -3 \\
382
+ 1 & 1 \\
383
+ -7 & \fbox{$5$} \\
384
+ \end{array}
385
+ \right) \\
386
+ \end{array}
387
+ $} \\
388
+ \end{array}
389
+ \\
390
+ \end{array}
pretraining/mathematica/linear_algebra/multiply_w_steps/2863.txt ADDED
@@ -0,0 +1,362 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{ccc}
5
+ 2 & -3 & 0 \\
6
+ -2 & 2 & 0 \\
7
+ \end{array}
8
+ \right)$ and
9
+ $\left(
10
+ \begin{array}{ccc}
11
+ -2 & 1 & -2 \\
12
+ 3 & -2 & 1 \\
13
+ -1 & -1 & -2 \\
14
+ \end{array}
15
+ \right)$.
16
+ Answer:
17
+ \begin{array}{l}
18
+
19
+ \begin{array}{l}
20
+ \text{Multiply the following matrices}: \\
21
+ \left(
22
+ \begin{array}{ccc}
23
+ 2 & -3 & 0 \\
24
+ -2 & 2 & 0 \\
25
+ \end{array}
26
+ \right).\left(
27
+ \begin{array}{ccc}
28
+ -2 & 1 & -2 \\
29
+ 3 & -2 & 1 \\
30
+ -1 & -1 & -2 \\
31
+ \end{array}
32
+ \right) \\
33
+ \end{array}
34
+ \\
35
+ \hline
36
+
37
+ \begin{array}{l}
38
+
39
+ \begin{array}{l}
40
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 3. \\
41
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 3: \\
42
+ \end{array}
43
+ \\
44
+ \left(
45
+ \begin{array}{ccc}
46
+ 2 & -3 & 0 \\
47
+ -2 & 2 & 0 \\
48
+ \end{array}
49
+ \right).\left(
50
+ \begin{array}{ccc}
51
+ -2 & 1 & -2 \\
52
+ 3 & -2 & 1 \\
53
+ -1 & -1 & -2 \\
54
+ \end{array}
55
+ \right)=\left(
56
+ \begin{array}{ccc}
57
+ \_ & \_ & \_ \\
58
+ \_ & \_ & \_ \\
59
+ \end{array}
60
+ \right) \\
61
+ \end{array}
62
+ \\
63
+
64
+ \begin{array}{l}
65
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
66
+ \left(
67
+ \begin{array}{ccc}
68
+ 2 & -3 & 0 \\
69
+ -2 & 2 & 0 \\
70
+ \end{array}
71
+ \right).\left(
72
+ \begin{array}{ccc}
73
+ -2 & 1 & -2 \\
74
+ 3 & -2 & 1 \\
75
+ -1 & -1 & -2 \\
76
+ \end{array}
77
+ \right)=\left(
78
+ \begin{array}{ccc}
79
+ \_ & \_ & \_ \\
80
+ \_ & \_ & \_ \\
81
+ \end{array}
82
+ \right) \\
83
+ \end{array}
84
+ \\
85
+
86
+ \begin{array}{l}
87
+
88
+ \begin{array}{l}
89
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2 (-2)+(-3)\, \times \, 3+0 (-1)=-13. \\
90
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
91
+ \end{array}
92
+ \\
93
+ \left(
94
+ \begin{array}{ccc}
95
+ 2 & -3 & 0 \\
96
+ -2 & 2 & 0 \\
97
+ \end{array}
98
+ \right).\left(
99
+ \begin{array}{ccc}
100
+ -2 & 1 & -2 \\
101
+ 3 & -2 & 1 \\
102
+ -1 & -1 & -2 \\
103
+ \end{array}
104
+ \right)=\left(
105
+ \begin{array}{ccc}
106
+ \fbox{$-13$} & \_ & \_ \\
107
+ \_ & \_ & \_ \\
108
+ \end{array}
109
+ \right) \\
110
+ \end{array}
111
+ \\
112
+
113
+ \begin{array}{l}
114
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
115
+ \left(
116
+ \begin{array}{ccc}
117
+ 2 & -3 & 0 \\
118
+ -2 & 2 & 0 \\
119
+ \end{array}
120
+ \right).\left(
121
+ \begin{array}{ccc}
122
+ -2 & 1 & -2 \\
123
+ 3 & -2 & 1 \\
124
+ -1 & -1 & -2 \\
125
+ \end{array}
126
+ \right)=\left(
127
+ \begin{array}{ccc}
128
+ -13 & \_ & \_ \\
129
+ \_ & \_ & \_ \\
130
+ \end{array}
131
+ \right) \\
132
+ \end{array}
133
+ \\
134
+
135
+ \begin{array}{l}
136
+
137
+ \begin{array}{l}
138
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2\ 1+(-3)\, (-2)+0 (-1)=8. \\
139
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
140
+ \end{array}
141
+ \\
142
+ \left(
143
+ \begin{array}{ccc}
144
+ 2 & -3 & 0 \\
145
+ -2 & 2 & 0 \\
146
+ \end{array}
147
+ \right).\left(
148
+ \begin{array}{ccc}
149
+ -2 & 1 & -2 \\
150
+ 3 & -2 & 1 \\
151
+ -1 & -1 & -2 \\
152
+ \end{array}
153
+ \right)=\left(
154
+ \begin{array}{ccc}
155
+ -13 & \fbox{$8$} & \_ \\
156
+ \_ & \_ & \_ \\
157
+ \end{array}
158
+ \right) \\
159
+ \end{array}
160
+ \\
161
+
162
+ \begin{array}{l}
163
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
164
+ \left(
165
+ \begin{array}{ccc}
166
+ 2 & -3 & 0 \\
167
+ -2 & 2 & 0 \\
168
+ \end{array}
169
+ \right).\left(
170
+ \begin{array}{ccc}
171
+ -2 & 1 & -2 \\
172
+ 3 & -2 & 1 \\
173
+ -1 & -1 & -2 \\
174
+ \end{array}
175
+ \right)=\left(
176
+ \begin{array}{ccc}
177
+ -13 & 8 & \_ \\
178
+ \_ & \_ & \_ \\
179
+ \end{array}
180
+ \right) \\
181
+ \end{array}
182
+ \\
183
+
184
+ \begin{array}{l}
185
+
186
+ \begin{array}{l}
187
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2 (-2)+(-3)\, \times \, 1+0 (-2)=-7. \\
188
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
189
+ \end{array}
190
+ \\
191
+ \left(
192
+ \begin{array}{ccc}
193
+ 2 & -3 & 0 \\
194
+ -2 & 2 & 0 \\
195
+ \end{array}
196
+ \right).\left(
197
+ \begin{array}{ccc}
198
+ -2 & 1 & -2 \\
199
+ 3 & -2 & 1 \\
200
+ -1 & -1 & -2 \\
201
+ \end{array}
202
+ \right)=\left(
203
+ \begin{array}{ccc}
204
+ -13 & 8 & \fbox{$-7$} \\
205
+ \_ & \_ & \_ \\
206
+ \end{array}
207
+ \right) \\
208
+ \end{array}
209
+ \\
210
+
211
+ \begin{array}{l}
212
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
213
+ \left(
214
+ \begin{array}{ccc}
215
+ 2 & -3 & 0 \\
216
+ -2 & 2 & 0 \\
217
+ \end{array}
218
+ \right).\left(
219
+ \begin{array}{ccc}
220
+ -2 & 1 & -2 \\
221
+ 3 & -2 & 1 \\
222
+ -1 & -1 & -2 \\
223
+ \end{array}
224
+ \right)=\left(
225
+ \begin{array}{ccc}
226
+ -13 & 8 & -7 \\
227
+ \_ & \_ & \_ \\
228
+ \end{array}
229
+ \right) \\
230
+ \end{array}
231
+ \\
232
+
233
+ \begin{array}{l}
234
+
235
+ \begin{array}{l}
236
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-2)+2\ 3+0 (-1)=10. \\
237
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
238
+ \end{array}
239
+ \\
240
+ \left(
241
+ \begin{array}{ccc}
242
+ 2 & -3 & 0 \\
243
+ -2 & 2 & 0 \\
244
+ \end{array}
245
+ \right).\left(
246
+ \begin{array}{ccc}
247
+ -2 & 1 & -2 \\
248
+ 3 & -2 & 1 \\
249
+ -1 & -1 & -2 \\
250
+ \end{array}
251
+ \right)=\left(
252
+ \begin{array}{ccc}
253
+ -13 & 8 & -7 \\
254
+ \fbox{$10$} & \_ & \_ \\
255
+ \end{array}
256
+ \right) \\
257
+ \end{array}
258
+ \\
259
+
260
+ \begin{array}{l}
261
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
262
+ \left(
263
+ \begin{array}{ccc}
264
+ 2 & -3 & 0 \\
265
+ -2 & 2 & 0 \\
266
+ \end{array}
267
+ \right).\left(
268
+ \begin{array}{ccc}
269
+ -2 & 1 & -2 \\
270
+ 3 & -2 & 1 \\
271
+ -1 & -1 & -2 \\
272
+ \end{array}
273
+ \right)=\left(
274
+ \begin{array}{ccc}
275
+ -13 & 8 & -7 \\
276
+ 10 & \_ & \_ \\
277
+ \end{array}
278
+ \right) \\
279
+ \end{array}
280
+ \\
281
+
282
+ \begin{array}{l}
283
+
284
+ \begin{array}{l}
285
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, \times \, 1+2 (-2)+0 (-1)=-6. \\
286
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
287
+ \end{array}
288
+ \\
289
+ \left(
290
+ \begin{array}{ccc}
291
+ 2 & -3 & 0 \\
292
+ -2 & 2 & 0 \\
293
+ \end{array}
294
+ \right).\left(
295
+ \begin{array}{ccc}
296
+ -2 & 1 & -2 \\
297
+ 3 & -2 & 1 \\
298
+ -1 & -1 & -2 \\
299
+ \end{array}
300
+ \right)=\left(
301
+ \begin{array}{ccc}
302
+ -13 & 8 & -7 \\
303
+ 10 & \fbox{$-6$} & \_ \\
304
+ \end{array}
305
+ \right) \\
306
+ \end{array}
307
+ \\
308
+
309
+ \begin{array}{l}
310
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
311
+ \left(
312
+ \begin{array}{ccc}
313
+ 2 & -3 & 0 \\
314
+ -2 & 2 & 0 \\
315
+ \end{array}
316
+ \right).\left(
317
+ \begin{array}{ccc}
318
+ -2 & 1 & -2 \\
319
+ 3 & -2 & 1 \\
320
+ -1 & -1 & -2 \\
321
+ \end{array}
322
+ \right)=\left(
323
+ \begin{array}{ccc}
324
+ -13 & 8 & -7 \\
325
+ 10 & -6 & \_ \\
326
+ \end{array}
327
+ \right) \\
328
+ \end{array}
329
+ \\
330
+
331
+ \begin{array}{l}
332
+
333
+ \begin{array}{l}
334
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-2)+2\ 1+0 (-2)=6. \\
335
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
336
+ \end{array}
337
+ \\
338
+ \fbox{$
339
+ \begin{array}{ll}
340
+ \text{Answer:} & \\
341
+ \text{} & \left(
342
+ \begin{array}{ccc}
343
+ 2 & -3 & 0 \\
344
+ -2 & 2 & 0 \\
345
+ \end{array}
346
+ \right).\left(
347
+ \begin{array}{ccc}
348
+ -2 & 1 & -2 \\
349
+ 3 & -2 & 1 \\
350
+ -1 & -1 & -2 \\
351
+ \end{array}
352
+ \right)=\left(
353
+ \begin{array}{ccc}
354
+ -13 & 8 & -7 \\
355
+ 10 & -6 & \fbox{$6$} \\
356
+ \end{array}
357
+ \right) \\
358
+ \end{array}
359
+ $} \\
360
+ \end{array}
361
+ \\
362
+ \end{array}
pretraining/mathematica/linear_algebra/multiply_w_steps/3051.txt ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{cc}
5
+ 1 & 2 \\
6
+ 1 & -2 \\
7
+ \end{array}
8
+ \right)$ and
9
+ $\left(
10
+ \begin{array}{c}
11
+ -1 \\
12
+ 3 \\
13
+ \end{array}
14
+ \right)$.
15
+ Answer:
16
+ \begin{array}{l}
17
+
18
+ \begin{array}{l}
19
+ \text{Multiply the following matrices}: \\
20
+ \left(
21
+ \begin{array}{cc}
22
+ 1 & 2 \\
23
+ 1 & -2 \\
24
+ \end{array}
25
+ \right).\left(
26
+ \begin{array}{c}
27
+ -1 \\
28
+ 3 \\
29
+ \end{array}
30
+ \right) \\
31
+ \end{array}
32
+ \\
33
+ \hline
34
+
35
+ \begin{array}{l}
36
+
37
+ \begin{array}{l}
38
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 1. \\
39
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 1: \\
40
+ \end{array}
41
+ \\
42
+ \left(
43
+ \begin{array}{cc}
44
+ 1 & 2 \\
45
+ 1 & -2 \\
46
+ \end{array}
47
+ \right).\left(
48
+ \begin{array}{c}
49
+ -1 \\
50
+ 3 \\
51
+ \end{array}
52
+ \right)=\left(
53
+ \begin{array}{c}
54
+ \_ \\
55
+ \_ \\
56
+ \end{array}
57
+ \right) \\
58
+ \end{array}
59
+ \\
60
+
61
+ \begin{array}{l}
62
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
63
+ \left(
64
+ \begin{array}{cc}
65
+ 1 & 2 \\
66
+ 1 & -2 \\
67
+ \end{array}
68
+ \right).\left(
69
+ \begin{array}{c}
70
+ -1 \\
71
+ 3 \\
72
+ \end{array}
73
+ \right)=\left(
74
+ \begin{array}{c}
75
+ \_ \\
76
+ \_ \\
77
+ \end{array}
78
+ \right) \\
79
+ \end{array}
80
+ \\
81
+
82
+ \begin{array}{l}
83
+
84
+ \begin{array}{l}
85
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1 (-1)+2\ 3=5. \\
86
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
87
+ \end{array}
88
+ \\
89
+ \left(
90
+ \begin{array}{cc}
91
+ 1 & 2 \\
92
+ 1 & -2 \\
93
+ \end{array}
94
+ \right).\left(
95
+ \begin{array}{c}
96
+ -1 \\
97
+ 3 \\
98
+ \end{array}
99
+ \right)=\left(
100
+ \begin{array}{c}
101
+ \fbox{$5$} \\
102
+ \_ \\
103
+ \end{array}
104
+ \right) \\
105
+ \end{array}
106
+ \\
107
+
108
+ \begin{array}{l}
109
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
110
+ \left(
111
+ \begin{array}{cc}
112
+ 1 & 2 \\
113
+ 1 & -2 \\
114
+ \end{array}
115
+ \right).\left(
116
+ \begin{array}{c}
117
+ -1 \\
118
+ 3 \\
119
+ \end{array}
120
+ \right)=\left(
121
+ \begin{array}{c}
122
+ 5 \\
123
+ \_ \\
124
+ \end{array}
125
+ \right) \\
126
+ \end{array}
127
+ \\
128
+
129
+ \begin{array}{l}
130
+
131
+ \begin{array}{l}
132
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1 (-1)+(-2)\, \times \, 3=-7. \\
133
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
134
+ \end{array}
135
+ \\
136
+ \fbox{$
137
+ \begin{array}{ll}
138
+ \text{Answer:} & \\
139
+ \text{} & \left(
140
+ \begin{array}{cc}
141
+ 1 & 2 \\
142
+ 1 & -2 \\
143
+ \end{array}
144
+ \right).\left(
145
+ \begin{array}{c}
146
+ -1 \\
147
+ 3 \\
148
+ \end{array}
149
+ \right)=\left(
150
+ \begin{array}{c}
151
+ 5 \\
152
+ \fbox{$-7$} \\
153
+ \end{array}
154
+ \right) \\
155
+ \end{array}
156
+ $} \\
157
+ \end{array}
158
+ \\
159
+ \end{array}
pretraining/mathematica/linear_algebra/multiply_w_steps/3179.txt ADDED
@@ -0,0 +1,347 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{cc}
5
+ \frac{43}{16} & \frac{3}{2} \\
6
+ -\frac{45}{16} & \frac{11}{4} \\
7
+ \end{array}
8
+ \right)$ and
9
+ $\left(
10
+ \begin{array}{ccc}
11
+ -\frac{3}{4} & -\frac{41}{16} & \frac{7}{8} \\
12
+ -\frac{7}{4} & -\frac{23}{8} & \frac{23}{16} \\
13
+ \end{array}
14
+ \right)$.
15
+ Answer:
16
+ \begin{array}{l}
17
+
18
+ \begin{array}{l}
19
+ \text{Multiply the following matrices}: \\
20
+ \left(
21
+ \begin{array}{cc}
22
+ \frac{43}{16} & \frac{3}{2} \\
23
+ -\frac{45}{16} & \frac{11}{4} \\
24
+ \end{array}
25
+ \right).\left(
26
+ \begin{array}{ccc}
27
+ -\frac{3}{4} & -\frac{41}{16} & \frac{7}{8} \\
28
+ -\frac{7}{4} & -\frac{23}{8} & \frac{23}{16} \\
29
+ \end{array}
30
+ \right) \\
31
+ \end{array}
32
+ \\
33
+ \hline
34
+
35
+ \begin{array}{l}
36
+
37
+ \begin{array}{l}
38
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 3. \\
39
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 3: \\
40
+ \end{array}
41
+ \\
42
+ \left(
43
+ \begin{array}{cc}
44
+ \frac{43}{16} & \frac{3}{2} \\
45
+ -\frac{45}{16} & \frac{11}{4} \\
46
+ \end{array}
47
+ \right).\left(
48
+ \begin{array}{ccc}
49
+ -\frac{3}{4} & -\frac{41}{16} & \frac{7}{8} \\
50
+ -\frac{7}{4} & -\frac{23}{8} & \frac{23}{16} \\
51
+ \end{array}
52
+ \right)=\left(
53
+ \begin{array}{ccc}
54
+ \_ & \_ & \_ \\
55
+ \_ & \_ & \_ \\
56
+ \end{array}
57
+ \right) \\
58
+ \end{array}
59
+ \\
60
+
61
+ \begin{array}{l}
62
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
63
+ \left(
64
+ \begin{array}{cc}
65
+ \frac{43}{16} & \frac{3}{2} \\
66
+ -\frac{45}{16} & \frac{11}{4} \\
67
+ \end{array}
68
+ \right).\left(
69
+ \begin{array}{ccc}
70
+ -\frac{3}{4} & -\frac{41}{16} & \frac{7}{8} \\
71
+ -\frac{7}{4} & -\frac{23}{8} & \frac{23}{16} \\
72
+ \end{array}
73
+ \right)=\left(
74
+ \begin{array}{ccc}
75
+ \_ & \_ & \_ \\
76
+ \_ & \_ & \_ \\
77
+ \end{array}
78
+ \right) \\
79
+ \end{array}
80
+ \\
81
+
82
+ \begin{array}{l}
83
+
84
+ \begin{array}{l}
85
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{43 (-3)}{16\ 4}+\frac{3 (-7)}{2\ 4}=-\frac{297}{64}. \\
86
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
87
+ \end{array}
88
+ \\
89
+ \left(
90
+ \begin{array}{cc}
91
+ \frac{43}{16} & \frac{3}{2} \\
92
+ -\frac{45}{16} & \frac{11}{4} \\
93
+ \end{array}
94
+ \right).\left(
95
+ \begin{array}{ccc}
96
+ -\frac{3}{4} & -\frac{41}{16} & \frac{7}{8} \\
97
+ -\frac{7}{4} & -\frac{23}{8} & \frac{23}{16} \\
98
+ \end{array}
99
+ \right)=\left(
100
+ \begin{array}{ccc}
101
+ \fbox{$-\frac{297}{64}$} & \_ & \_ \\
102
+ \_ & \_ & \_ \\
103
+ \end{array}
104
+ \right) \\
105
+ \end{array}
106
+ \\
107
+
108
+ \begin{array}{l}
109
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
110
+ \left(
111
+ \begin{array}{cc}
112
+ \frac{43}{16} & \frac{3}{2} \\
113
+ -\frac{45}{16} & \frac{11}{4} \\
114
+ \end{array}
115
+ \right).\left(
116
+ \begin{array}{ccc}
117
+ -\frac{3}{4} & -\frac{41}{16} & \frac{7}{8} \\
118
+ -\frac{7}{4} & -\frac{23}{8} & \frac{23}{16} \\
119
+ \end{array}
120
+ \right)=\left(
121
+ \begin{array}{ccc}
122
+ -\frac{297}{64} & \_ & \_ \\
123
+ \_ & \_ & \_ \\
124
+ \end{array}
125
+ \right) \\
126
+ \end{array}
127
+ \\
128
+
129
+ \begin{array}{l}
130
+
131
+ \begin{array}{l}
132
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{43 (-41)}{16\ 16}+\frac{3 (-23)}{2\ 8}=-\frac{2867}{256}. \\
133
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
134
+ \end{array}
135
+ \\
136
+ \left(
137
+ \begin{array}{cc}
138
+ \frac{43}{16} & \frac{3}{2} \\
139
+ -\frac{45}{16} & \frac{11}{4} \\
140
+ \end{array}
141
+ \right).\left(
142
+ \begin{array}{ccc}
143
+ -\frac{3}{4} & -\frac{41}{16} & \frac{7}{8} \\
144
+ -\frac{7}{4} & -\frac{23}{8} & \frac{23}{16} \\
145
+ \end{array}
146
+ \right)=\left(
147
+ \begin{array}{ccc}
148
+ -\frac{297}{64} & \fbox{$-\frac{2867}{256}$} & \_ \\
149
+ \_ & \_ & \_ \\
150
+ \end{array}
151
+ \right) \\
152
+ \end{array}
153
+ \\
154
+
155
+ \begin{array}{l}
156
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
157
+ \left(
158
+ \begin{array}{cc}
159
+ \frac{43}{16} & \frac{3}{2} \\
160
+ -\frac{45}{16} & \frac{11}{4} \\
161
+ \end{array}
162
+ \right).\left(
163
+ \begin{array}{ccc}
164
+ -\frac{3}{4} & -\frac{41}{16} & \frac{7}{8} \\
165
+ -\frac{7}{4} & -\frac{23}{8} & \frac{23}{16} \\
166
+ \end{array}
167
+ \right)=\left(
168
+ \begin{array}{ccc}
169
+ -\frac{297}{64} & -\frac{2867}{256} & \_ \\
170
+ \_ & \_ & \_ \\
171
+ \end{array}
172
+ \right) \\
173
+ \end{array}
174
+ \\
175
+
176
+ \begin{array}{l}
177
+
178
+ \begin{array}{l}
179
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{43\ 7}{16\ 8}+\frac{3\ 23}{2\ 16}=\frac{577}{128}. \\
180
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
181
+ \end{array}
182
+ \\
183
+ \left(
184
+ \begin{array}{cc}
185
+ \frac{43}{16} & \frac{3}{2} \\
186
+ -\frac{45}{16} & \frac{11}{4} \\
187
+ \end{array}
188
+ \right).\left(
189
+ \begin{array}{ccc}
190
+ -\frac{3}{4} & -\frac{41}{16} & \frac{7}{8} \\
191
+ -\frac{7}{4} & -\frac{23}{8} & \frac{23}{16} \\
192
+ \end{array}
193
+ \right)=\left(
194
+ \begin{array}{ccc}
195
+ -\frac{297}{64} & -\frac{2867}{256} & \fbox{$\frac{577}{128}$} \\
196
+ \_ & \_ & \_ \\
197
+ \end{array}
198
+ \right) \\
199
+ \end{array}
200
+ \\
201
+
202
+ \begin{array}{l}
203
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
204
+ \left(
205
+ \begin{array}{cc}
206
+ \frac{43}{16} & \frac{3}{2} \\
207
+ -\frac{45}{16} & \frac{11}{4} \\
208
+ \end{array}
209
+ \right).\left(
210
+ \begin{array}{ccc}
211
+ -\frac{3}{4} & -\frac{41}{16} & \frac{7}{8} \\
212
+ -\frac{7}{4} & -\frac{23}{8} & \frac{23}{16} \\
213
+ \end{array}
214
+ \right)=\left(
215
+ \begin{array}{ccc}
216
+ -\frac{297}{64} & -\frac{2867}{256} & \frac{577}{128} \\
217
+ \_ & \_ & \_ \\
218
+ \end{array}
219
+ \right) \\
220
+ \end{array}
221
+ \\
222
+
223
+ \begin{array}{l}
224
+
225
+ \begin{array}{l}
226
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{45}{16}\right)\, \left(-\frac{3}{4}\right)+\frac{11 (-7)}{4\ 4}=-\frac{173}{64}. \\
227
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
228
+ \end{array}
229
+ \\
230
+ \left(
231
+ \begin{array}{cc}
232
+ \frac{43}{16} & \frac{3}{2} \\
233
+ -\frac{45}{16} & \frac{11}{4} \\
234
+ \end{array}
235
+ \right).\left(
236
+ \begin{array}{ccc}
237
+ -\frac{3}{4} & -\frac{41}{16} & \frac{7}{8} \\
238
+ -\frac{7}{4} & -\frac{23}{8} & \frac{23}{16} \\
239
+ \end{array}
240
+ \right)=\left(
241
+ \begin{array}{ccc}
242
+ -\frac{297}{64} & -\frac{2867}{256} & \frac{577}{128} \\
243
+ \fbox{$-\frac{173}{64}$} & \_ & \_ \\
244
+ \end{array}
245
+ \right) \\
246
+ \end{array}
247
+ \\
248
+
249
+ \begin{array}{l}
250
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
251
+ \left(
252
+ \begin{array}{cc}
253
+ \frac{43}{16} & \frac{3}{2} \\
254
+ -\frac{45}{16} & \frac{11}{4} \\
255
+ \end{array}
256
+ \right).\left(
257
+ \begin{array}{ccc}
258
+ -\frac{3}{4} & -\frac{41}{16} & \frac{7}{8} \\
259
+ -\frac{7}{4} & -\frac{23}{8} & \frac{23}{16} \\
260
+ \end{array}
261
+ \right)=\left(
262
+ \begin{array}{ccc}
263
+ -\frac{297}{64} & -\frac{2867}{256} & \frac{577}{128} \\
264
+ -\frac{173}{64} & \_ & \_ \\
265
+ \end{array}
266
+ \right) \\
267
+ \end{array}
268
+ \\
269
+
270
+ \begin{array}{l}
271
+
272
+ \begin{array}{l}
273
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{45}{16}\right)\, \left(-\frac{41}{16}\right)+\frac{11 (-23)}{4\ 8}=-\frac{179}{256}. \\
274
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
275
+ \end{array}
276
+ \\
277
+ \left(
278
+ \begin{array}{cc}
279
+ \frac{43}{16} & \frac{3}{2} \\
280
+ -\frac{45}{16} & \frac{11}{4} \\
281
+ \end{array}
282
+ \right).\left(
283
+ \begin{array}{ccc}
284
+ -\frac{3}{4} & -\frac{41}{16} & \frac{7}{8} \\
285
+ -\frac{7}{4} & -\frac{23}{8} & \frac{23}{16} \\
286
+ \end{array}
287
+ \right)=\left(
288
+ \begin{array}{ccc}
289
+ -\frac{297}{64} & -\frac{2867}{256} & \frac{577}{128} \\
290
+ -\frac{173}{64} & \fbox{$-\frac{179}{256}$} & \_ \\
291
+ \end{array}
292
+ \right) \\
293
+ \end{array}
294
+ \\
295
+
296
+ \begin{array}{l}
297
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
298
+ \left(
299
+ \begin{array}{cc}
300
+ \frac{43}{16} & \frac{3}{2} \\
301
+ -\frac{45}{16} & \frac{11}{4} \\
302
+ \end{array}
303
+ \right).\left(
304
+ \begin{array}{ccc}
305
+ -\frac{3}{4} & -\frac{41}{16} & \frac{7}{8} \\
306
+ -\frac{7}{4} & -\frac{23}{8} & \frac{23}{16} \\
307
+ \end{array}
308
+ \right)=\left(
309
+ \begin{array}{ccc}
310
+ -\frac{297}{64} & -\frac{2867}{256} & \frac{577}{128} \\
311
+ -\frac{173}{64} & -\frac{179}{256} & \_ \\
312
+ \end{array}
313
+ \right) \\
314
+ \end{array}
315
+ \\
316
+
317
+ \begin{array}{l}
318
+
319
+ \begin{array}{l}
320
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{45}{16}\right)\, \times \, \frac{7}{8}+\frac{11\ 23}{4\ 16}=\frac{191}{128}. \\
321
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
322
+ \end{array}
323
+ \\
324
+ \fbox{$
325
+ \begin{array}{ll}
326
+ \text{Answer:} & \\
327
+ \text{} & \left(
328
+ \begin{array}{cc}
329
+ \frac{43}{16} & \frac{3}{2} \\
330
+ -\frac{45}{16} & \frac{11}{4} \\
331
+ \end{array}
332
+ \right).\left(
333
+ \begin{array}{ccc}
334
+ -\frac{3}{4} & -\frac{41}{16} & \frac{7}{8} \\
335
+ -\frac{7}{4} & -\frac{23}{8} & \frac{23}{16} \\
336
+ \end{array}
337
+ \right)=\left(
338
+ \begin{array}{ccc}
339
+ -\frac{297}{64} & -\frac{2867}{256} & \frac{577}{128} \\
340
+ -\frac{173}{64} & -\frac{179}{256} & \fbox{$\frac{191}{128}$} \\
341
+ \end{array}
342
+ \right) \\
343
+ \end{array}
344
+ $} \\
345
+ \end{array}
346
+ \\
347
+ \end{array}
pretraining/mathematica/linear_algebra/multiply_w_steps/3347.txt ADDED
@@ -0,0 +1,264 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{ccc}
5
+ -\frac{7}{6} & -\frac{8}{3} & \frac{1}{2} \\
6
+ -\frac{1}{6} & \frac{1}{3} & \frac{1}{6} \\
7
+ \end{array}
8
+ \right)$ and
9
+ $\left(
10
+ \begin{array}{cc}
11
+ 2 & -\frac{5}{6} \\
12
+ -\frac{7}{6} & -2 \\
13
+ \frac{4}{3} & -\frac{5}{3} \\
14
+ \end{array}
15
+ \right)$.
16
+ Answer:
17
+ \begin{array}{l}
18
+
19
+ \begin{array}{l}
20
+ \text{Multiply the following matrices}: \\
21
+ \left(
22
+ \begin{array}{ccc}
23
+ -\frac{7}{6} & -\frac{8}{3} & \frac{1}{2} \\
24
+ -\frac{1}{6} & \frac{1}{3} & \frac{1}{6} \\
25
+ \end{array}
26
+ \right).\left(
27
+ \begin{array}{cc}
28
+ 2 & -\frac{5}{6} \\
29
+ -\frac{7}{6} & -2 \\
30
+ \frac{4}{3} & -\frac{5}{3} \\
31
+ \end{array}
32
+ \right) \\
33
+ \end{array}
34
+ \\
35
+ \hline
36
+
37
+ \begin{array}{l}
38
+
39
+ \begin{array}{l}
40
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 2. \\
41
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 2: \\
42
+ \end{array}
43
+ \\
44
+ \left(
45
+ \begin{array}{ccc}
46
+ -\frac{7}{6} & -\frac{8}{3} & \frac{1}{2} \\
47
+ -\frac{1}{6} & \frac{1}{3} & \frac{1}{6} \\
48
+ \end{array}
49
+ \right).\left(
50
+ \begin{array}{cc}
51
+ 2 & -\frac{5}{6} \\
52
+ -\frac{7}{6} & -2 \\
53
+ \frac{4}{3} & -\frac{5}{3} \\
54
+ \end{array}
55
+ \right)=\left(
56
+ \begin{array}{cc}
57
+ \_ & \_ \\
58
+ \_ & \_ \\
59
+ \end{array}
60
+ \right) \\
61
+ \end{array}
62
+ \\
63
+
64
+ \begin{array}{l}
65
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
66
+ \left(
67
+ \begin{array}{ccc}
68
+ -\frac{7}{6} & -\frac{8}{3} & \frac{1}{2} \\
69
+ -\frac{1}{6} & \frac{1}{3} & \frac{1}{6} \\
70
+ \end{array}
71
+ \right).\left(
72
+ \begin{array}{cc}
73
+ 2 & -\frac{5}{6} \\
74
+ -\frac{7}{6} & -2 \\
75
+ \frac{4}{3} & -\frac{5}{3} \\
76
+ \end{array}
77
+ \right)=\left(
78
+ \begin{array}{cc}
79
+ \_ & \_ \\
80
+ \_ & \_ \\
81
+ \end{array}
82
+ \right) \\
83
+ \end{array}
84
+ \\
85
+
86
+ \begin{array}{l}
87
+
88
+ \begin{array}{l}
89
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{7}{6}\right)\, \times \, 2+\left(-\frac{8}{3}\right)\, \left(-\frac{7}{6}\right)+\frac{4}{2\ 3}=\frac{13}{9}. \\
90
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
91
+ \end{array}
92
+ \\
93
+ \left(
94
+ \begin{array}{ccc}
95
+ -\frac{7}{6} & -\frac{8}{3} & \frac{1}{2} \\
96
+ -\frac{1}{6} & \frac{1}{3} & \frac{1}{6} \\
97
+ \end{array}
98
+ \right).\left(
99
+ \begin{array}{cc}
100
+ 2 & -\frac{5}{6} \\
101
+ -\frac{7}{6} & -2 \\
102
+ \frac{4}{3} & -\frac{5}{3} \\
103
+ \end{array}
104
+ \right)=\left(
105
+ \begin{array}{cc}
106
+ \fbox{$\frac{13}{9}$} & \_ \\
107
+ \_ & \_ \\
108
+ \end{array}
109
+ \right) \\
110
+ \end{array}
111
+ \\
112
+
113
+ \begin{array}{l}
114
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
115
+ \left(
116
+ \begin{array}{ccc}
117
+ -\frac{7}{6} & -\frac{8}{3} & \frac{1}{2} \\
118
+ -\frac{1}{6} & \frac{1}{3} & \frac{1}{6} \\
119
+ \end{array}
120
+ \right).\left(
121
+ \begin{array}{cc}
122
+ 2 & -\frac{5}{6} \\
123
+ -\frac{7}{6} & -2 \\
124
+ \frac{4}{3} & -\frac{5}{3} \\
125
+ \end{array}
126
+ \right)=\left(
127
+ \begin{array}{cc}
128
+ \frac{13}{9} & \_ \\
129
+ \_ & \_ \\
130
+ \end{array}
131
+ \right) \\
132
+ \end{array}
133
+ \\
134
+
135
+ \begin{array}{l}
136
+
137
+ \begin{array}{l}
138
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{7}{6}\right)\, \left(-\frac{5}{6}\right)+\left(-\frac{8}{3}\right)\, (-2)-\frac{5}{2\ 3}=\frac{197}{36}. \\
139
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
140
+ \end{array}
141
+ \\
142
+ \left(
143
+ \begin{array}{ccc}
144
+ -\frac{7}{6} & -\frac{8}{3} & \frac{1}{2} \\
145
+ -\frac{1}{6} & \frac{1}{3} & \frac{1}{6} \\
146
+ \end{array}
147
+ \right).\left(
148
+ \begin{array}{cc}
149
+ 2 & -\frac{5}{6} \\
150
+ -\frac{7}{6} & -2 \\
151
+ \frac{4}{3} & -\frac{5}{3} \\
152
+ \end{array}
153
+ \right)=\left(
154
+ \begin{array}{cc}
155
+ \frac{13}{9} & \fbox{$\frac{197}{36}$} \\
156
+ \_ & \_ \\
157
+ \end{array}
158
+ \right) \\
159
+ \end{array}
160
+ \\
161
+
162
+ \begin{array}{l}
163
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
164
+ \left(
165
+ \begin{array}{ccc}
166
+ -\frac{7}{6} & -\frac{8}{3} & \frac{1}{2} \\
167
+ -\frac{1}{6} & \frac{1}{3} & \frac{1}{6} \\
168
+ \end{array}
169
+ \right).\left(
170
+ \begin{array}{cc}
171
+ 2 & -\frac{5}{6} \\
172
+ -\frac{7}{6} & -2 \\
173
+ \frac{4}{3} & -\frac{5}{3} \\
174
+ \end{array}
175
+ \right)=\left(
176
+ \begin{array}{cc}
177
+ \frac{13}{9} & \frac{197}{36} \\
178
+ \_ & \_ \\
179
+ \end{array}
180
+ \right) \\
181
+ \end{array}
182
+ \\
183
+
184
+ \begin{array}{l}
185
+
186
+ \begin{array}{l}
187
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{1}{6} (-2)-\frac{7}{3\ 6}+\frac{4}{6\ 3}=-\frac{1}{2}. \\
188
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
189
+ \end{array}
190
+ \\
191
+ \left(
192
+ \begin{array}{ccc}
193
+ -\frac{7}{6} & -\frac{8}{3} & \frac{1}{2} \\
194
+ -\frac{1}{6} & \frac{1}{3} & \frac{1}{6} \\
195
+ \end{array}
196
+ \right).\left(
197
+ \begin{array}{cc}
198
+ 2 & -\frac{5}{6} \\
199
+ -\frac{7}{6} & -2 \\
200
+ \frac{4}{3} & -\frac{5}{3} \\
201
+ \end{array}
202
+ \right)=\left(
203
+ \begin{array}{cc}
204
+ \frac{13}{9} & \frac{197}{36} \\
205
+ \fbox{$-\frac{1}{2}$} & \_ \\
206
+ \end{array}
207
+ \right) \\
208
+ \end{array}
209
+ \\
210
+
211
+ \begin{array}{l}
212
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
213
+ \left(
214
+ \begin{array}{ccc}
215
+ -\frac{7}{6} & -\frac{8}{3} & \frac{1}{2} \\
216
+ -\frac{1}{6} & \frac{1}{3} & \frac{1}{6} \\
217
+ \end{array}
218
+ \right).\left(
219
+ \begin{array}{cc}
220
+ 2 & -\frac{5}{6} \\
221
+ -\frac{7}{6} & -2 \\
222
+ \frac{4}{3} & -\frac{5}{3} \\
223
+ \end{array}
224
+ \right)=\left(
225
+ \begin{array}{cc}
226
+ \frac{13}{9} & \frac{197}{36} \\
227
+ -\frac{1}{2} & \_ \\
228
+ \end{array}
229
+ \right) \\
230
+ \end{array}
231
+ \\
232
+
233
+ \begin{array}{l}
234
+
235
+ \begin{array}{l}
236
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{5}{6\ 6}-\frac{2}{3}-\frac{5}{6\ 3}=-\frac{29}{36}. \\
237
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
238
+ \end{array}
239
+ \\
240
+ \fbox{$
241
+ \begin{array}{ll}
242
+ \text{Answer:} & \\
243
+ \text{} & \left(
244
+ \begin{array}{ccc}
245
+ -\frac{7}{6} & -\frac{8}{3} & \frac{1}{2} \\
246
+ -\frac{1}{6} & \frac{1}{3} & \frac{1}{6} \\
247
+ \end{array}
248
+ \right).\left(
249
+ \begin{array}{cc}
250
+ 2 & -\frac{5}{6} \\
251
+ -\frac{7}{6} & -2 \\
252
+ \frac{4}{3} & -\frac{5}{3} \\
253
+ \end{array}
254
+ \right)=\left(
255
+ \begin{array}{cc}
256
+ \frac{13}{9} & \frac{197}{36} \\
257
+ -\frac{1}{2} & \fbox{$-\frac{29}{36}$} \\
258
+ \end{array}
259
+ \right) \\
260
+ \end{array}
261
+ $} \\
262
+ \end{array}
263
+ \\
264
+ \end{array}
pretraining/mathematica/linear_algebra/multiply_w_steps/3354.txt ADDED
@@ -0,0 +1,347 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{cc}
5
+ 2 & 1 \\
6
+ -2 & -1 \\
7
+ \end{array}
8
+ \right)$ and
9
+ $\left(
10
+ \begin{array}{ccc}
11
+ -1 & 1 & -1 \\
12
+ 1 & 1 & 1 \\
13
+ \end{array}
14
+ \right)$.
15
+ Answer:
16
+ \begin{array}{l}
17
+
18
+ \begin{array}{l}
19
+ \text{Multiply the following matrices}: \\
20
+ \left(
21
+ \begin{array}{cc}
22
+ 2 & 1 \\
23
+ -2 & -1 \\
24
+ \end{array}
25
+ \right).\left(
26
+ \begin{array}{ccc}
27
+ -1 & 1 & -1 \\
28
+ 1 & 1 & 1 \\
29
+ \end{array}
30
+ \right) \\
31
+ \end{array}
32
+ \\
33
+ \hline
34
+
35
+ \begin{array}{l}
36
+
37
+ \begin{array}{l}
38
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 3. \\
39
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 3: \\
40
+ \end{array}
41
+ \\
42
+ \left(
43
+ \begin{array}{cc}
44
+ 2 & 1 \\
45
+ -2 & -1 \\
46
+ \end{array}
47
+ \right).\left(
48
+ \begin{array}{ccc}
49
+ -1 & 1 & -1 \\
50
+ 1 & 1 & 1 \\
51
+ \end{array}
52
+ \right)=\left(
53
+ \begin{array}{ccc}
54
+ \_ & \_ & \_ \\
55
+ \_ & \_ & \_ \\
56
+ \end{array}
57
+ \right) \\
58
+ \end{array}
59
+ \\
60
+
61
+ \begin{array}{l}
62
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
63
+ \left(
64
+ \begin{array}{cc}
65
+ 2 & 1 \\
66
+ -2 & -1 \\
67
+ \end{array}
68
+ \right).\left(
69
+ \begin{array}{ccc}
70
+ -1 & 1 & -1 \\
71
+ 1 & 1 & 1 \\
72
+ \end{array}
73
+ \right)=\left(
74
+ \begin{array}{ccc}
75
+ \_ & \_ & \_ \\
76
+ \_ & \_ & \_ \\
77
+ \end{array}
78
+ \right) \\
79
+ \end{array}
80
+ \\
81
+
82
+ \begin{array}{l}
83
+
84
+ \begin{array}{l}
85
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2 (-1)+1\ 1=-1. \\
86
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
87
+ \end{array}
88
+ \\
89
+ \left(
90
+ \begin{array}{cc}
91
+ 2 & 1 \\
92
+ -2 & -1 \\
93
+ \end{array}
94
+ \right).\left(
95
+ \begin{array}{ccc}
96
+ -1 & 1 & -1 \\
97
+ 1 & 1 & 1 \\
98
+ \end{array}
99
+ \right)=\left(
100
+ \begin{array}{ccc}
101
+ \fbox{$-1$} & \_ & \_ \\
102
+ \_ & \_ & \_ \\
103
+ \end{array}
104
+ \right) \\
105
+ \end{array}
106
+ \\
107
+
108
+ \begin{array}{l}
109
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
110
+ \left(
111
+ \begin{array}{cc}
112
+ 2 & 1 \\
113
+ -2 & -1 \\
114
+ \end{array}
115
+ \right).\left(
116
+ \begin{array}{ccc}
117
+ -1 & 1 & -1 \\
118
+ 1 & 1 & 1 \\
119
+ \end{array}
120
+ \right)=\left(
121
+ \begin{array}{ccc}
122
+ -1 & \_ & \_ \\
123
+ \_ & \_ & \_ \\
124
+ \end{array}
125
+ \right) \\
126
+ \end{array}
127
+ \\
128
+
129
+ \begin{array}{l}
130
+
131
+ \begin{array}{l}
132
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2\ 1+1\ 1=3. \\
133
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
134
+ \end{array}
135
+ \\
136
+ \left(
137
+ \begin{array}{cc}
138
+ 2 & 1 \\
139
+ -2 & -1 \\
140
+ \end{array}
141
+ \right).\left(
142
+ \begin{array}{ccc}
143
+ -1 & 1 & -1 \\
144
+ 1 & 1 & 1 \\
145
+ \end{array}
146
+ \right)=\left(
147
+ \begin{array}{ccc}
148
+ -1 & \fbox{$3$} & \_ \\
149
+ \_ & \_ & \_ \\
150
+ \end{array}
151
+ \right) \\
152
+ \end{array}
153
+ \\
154
+
155
+ \begin{array}{l}
156
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
157
+ \left(
158
+ \begin{array}{cc}
159
+ 2 & 1 \\
160
+ -2 & -1 \\
161
+ \end{array}
162
+ \right).\left(
163
+ \begin{array}{ccc}
164
+ -1 & 1 & -1 \\
165
+ 1 & 1 & 1 \\
166
+ \end{array}
167
+ \right)=\left(
168
+ \begin{array}{ccc}
169
+ -1 & 3 & \_ \\
170
+ \_ & \_ & \_ \\
171
+ \end{array}
172
+ \right) \\
173
+ \end{array}
174
+ \\
175
+
176
+ \begin{array}{l}
177
+
178
+ \begin{array}{l}
179
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2 (-1)+1\ 1=-1. \\
180
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
181
+ \end{array}
182
+ \\
183
+ \left(
184
+ \begin{array}{cc}
185
+ 2 & 1 \\
186
+ -2 & -1 \\
187
+ \end{array}
188
+ \right).\left(
189
+ \begin{array}{ccc}
190
+ -1 & 1 & -1 \\
191
+ 1 & 1 & 1 \\
192
+ \end{array}
193
+ \right)=\left(
194
+ \begin{array}{ccc}
195
+ -1 & 3 & \fbox{$-1$} \\
196
+ \_ & \_ & \_ \\
197
+ \end{array}
198
+ \right) \\
199
+ \end{array}
200
+ \\
201
+
202
+ \begin{array}{l}
203
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
204
+ \left(
205
+ \begin{array}{cc}
206
+ 2 & 1 \\
207
+ -2 & -1 \\
208
+ \end{array}
209
+ \right).\left(
210
+ \begin{array}{ccc}
211
+ -1 & 1 & -1 \\
212
+ 1 & 1 & 1 \\
213
+ \end{array}
214
+ \right)=\left(
215
+ \begin{array}{ccc}
216
+ -1 & 3 & -1 \\
217
+ \_ & \_ & \_ \\
218
+ \end{array}
219
+ \right) \\
220
+ \end{array}
221
+ \\
222
+
223
+ \begin{array}{l}
224
+
225
+ \begin{array}{l}
226
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-1)+(-1)\, \times \, 1=1. \\
227
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
228
+ \end{array}
229
+ \\
230
+ \left(
231
+ \begin{array}{cc}
232
+ 2 & 1 \\
233
+ -2 & -1 \\
234
+ \end{array}
235
+ \right).\left(
236
+ \begin{array}{ccc}
237
+ -1 & 1 & -1 \\
238
+ 1 & 1 & 1 \\
239
+ \end{array}
240
+ \right)=\left(
241
+ \begin{array}{ccc}
242
+ -1 & 3 & -1 \\
243
+ \fbox{$1$} & \_ & \_ \\
244
+ \end{array}
245
+ \right) \\
246
+ \end{array}
247
+ \\
248
+
249
+ \begin{array}{l}
250
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
251
+ \left(
252
+ \begin{array}{cc}
253
+ 2 & 1 \\
254
+ -2 & -1 \\
255
+ \end{array}
256
+ \right).\left(
257
+ \begin{array}{ccc}
258
+ -1 & 1 & -1 \\
259
+ 1 & 1 & 1 \\
260
+ \end{array}
261
+ \right)=\left(
262
+ \begin{array}{ccc}
263
+ -1 & 3 & -1 \\
264
+ 1 & \_ & \_ \\
265
+ \end{array}
266
+ \right) \\
267
+ \end{array}
268
+ \\
269
+
270
+ \begin{array}{l}
271
+
272
+ \begin{array}{l}
273
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, \times \, 1+(-1)\, \times \, 1=-3. \\
274
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
275
+ \end{array}
276
+ \\
277
+ \left(
278
+ \begin{array}{cc}
279
+ 2 & 1 \\
280
+ -2 & -1 \\
281
+ \end{array}
282
+ \right).\left(
283
+ \begin{array}{ccc}
284
+ -1 & 1 & -1 \\
285
+ 1 & 1 & 1 \\
286
+ \end{array}
287
+ \right)=\left(
288
+ \begin{array}{ccc}
289
+ -1 & 3 & -1 \\
290
+ 1 & \fbox{$-3$} & \_ \\
291
+ \end{array}
292
+ \right) \\
293
+ \end{array}
294
+ \\
295
+
296
+ \begin{array}{l}
297
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
298
+ \left(
299
+ \begin{array}{cc}
300
+ 2 & 1 \\
301
+ -2 & -1 \\
302
+ \end{array}
303
+ \right).\left(
304
+ \begin{array}{ccc}
305
+ -1 & 1 & -1 \\
306
+ 1 & 1 & 1 \\
307
+ \end{array}
308
+ \right)=\left(
309
+ \begin{array}{ccc}
310
+ -1 & 3 & -1 \\
311
+ 1 & -3 & \_ \\
312
+ \end{array}
313
+ \right) \\
314
+ \end{array}
315
+ \\
316
+
317
+ \begin{array}{l}
318
+
319
+ \begin{array}{l}
320
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-1)+(-1)\, \times \, 1=1. \\
321
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
322
+ \end{array}
323
+ \\
324
+ \fbox{$
325
+ \begin{array}{ll}
326
+ \text{Answer:} & \\
327
+ \text{} & \left(
328
+ \begin{array}{cc}
329
+ 2 & 1 \\
330
+ -2 & -1 \\
331
+ \end{array}
332
+ \right).\left(
333
+ \begin{array}{ccc}
334
+ -1 & 1 & -1 \\
335
+ 1 & 1 & 1 \\
336
+ \end{array}
337
+ \right)=\left(
338
+ \begin{array}{ccc}
339
+ -1 & 3 & -1 \\
340
+ 1 & -3 & \fbox{$1$} \\
341
+ \end{array}
342
+ \right) \\
343
+ \end{array}
344
+ $} \\
345
+ \end{array}
346
+ \\
347
+ \end{array}
pretraining/mathematica/linear_algebra/multiply_w_steps/3426.txt ADDED
@@ -0,0 +1,347 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{cc}
5
+ \frac{4}{3} & \frac{2}{3} \\
6
+ -\frac{7}{3} & 1 \\
7
+ \end{array}
8
+ \right)$ and
9
+ $\left(
10
+ \begin{array}{ccc}
11
+ -\frac{2}{3} & -2 & \frac{7}{3} \\
12
+ -2 & 3 & -\frac{2}{3} \\
13
+ \end{array}
14
+ \right)$.
15
+ Answer:
16
+ \begin{array}{l}
17
+
18
+ \begin{array}{l}
19
+ \text{Multiply the following matrices}: \\
20
+ \left(
21
+ \begin{array}{cc}
22
+ \frac{4}{3} & \frac{2}{3} \\
23
+ -\frac{7}{3} & 1 \\
24
+ \end{array}
25
+ \right).\left(
26
+ \begin{array}{ccc}
27
+ -\frac{2}{3} & -2 & \frac{7}{3} \\
28
+ -2 & 3 & -\frac{2}{3} \\
29
+ \end{array}
30
+ \right) \\
31
+ \end{array}
32
+ \\
33
+ \hline
34
+
35
+ \begin{array}{l}
36
+
37
+ \begin{array}{l}
38
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 3. \\
39
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 3: \\
40
+ \end{array}
41
+ \\
42
+ \left(
43
+ \begin{array}{cc}
44
+ \frac{4}{3} & \frac{2}{3} \\
45
+ -\frac{7}{3} & 1 \\
46
+ \end{array}
47
+ \right).\left(
48
+ \begin{array}{ccc}
49
+ -\frac{2}{3} & -2 & \frac{7}{3} \\
50
+ -2 & 3 & -\frac{2}{3} \\
51
+ \end{array}
52
+ \right)=\left(
53
+ \begin{array}{ccc}
54
+ \_ & \_ & \_ \\
55
+ \_ & \_ & \_ \\
56
+ \end{array}
57
+ \right) \\
58
+ \end{array}
59
+ \\
60
+
61
+ \begin{array}{l}
62
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
63
+ \left(
64
+ \begin{array}{cc}
65
+ \frac{4}{3} & \frac{2}{3} \\
66
+ -\frac{7}{3} & 1 \\
67
+ \end{array}
68
+ \right).\left(
69
+ \begin{array}{ccc}
70
+ -\frac{2}{3} & -2 & \frac{7}{3} \\
71
+ -2 & 3 & -\frac{2}{3} \\
72
+ \end{array}
73
+ \right)=\left(
74
+ \begin{array}{ccc}
75
+ \_ & \_ & \_ \\
76
+ \_ & \_ & \_ \\
77
+ \end{array}
78
+ \right) \\
79
+ \end{array}
80
+ \\
81
+
82
+ \begin{array}{l}
83
+
84
+ \begin{array}{l}
85
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{4 (-2)}{3\ 3}+\frac{2 (-2)}{3}=-\frac{20}{9}. \\
86
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
87
+ \end{array}
88
+ \\
89
+ \left(
90
+ \begin{array}{cc}
91
+ \frac{4}{3} & \frac{2}{3} \\
92
+ -\frac{7}{3} & 1 \\
93
+ \end{array}
94
+ \right).\left(
95
+ \begin{array}{ccc}
96
+ -\frac{2}{3} & -2 & \frac{7}{3} \\
97
+ -2 & 3 & -\frac{2}{3} \\
98
+ \end{array}
99
+ \right)=\left(
100
+ \begin{array}{ccc}
101
+ \fbox{$-\frac{20}{9}$} & \_ & \_ \\
102
+ \_ & \_ & \_ \\
103
+ \end{array}
104
+ \right) \\
105
+ \end{array}
106
+ \\
107
+
108
+ \begin{array}{l}
109
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
110
+ \left(
111
+ \begin{array}{cc}
112
+ \frac{4}{3} & \frac{2}{3} \\
113
+ -\frac{7}{3} & 1 \\
114
+ \end{array}
115
+ \right).\left(
116
+ \begin{array}{ccc}
117
+ -\frac{2}{3} & -2 & \frac{7}{3} \\
118
+ -2 & 3 & -\frac{2}{3} \\
119
+ \end{array}
120
+ \right)=\left(
121
+ \begin{array}{ccc}
122
+ -\frac{20}{9} & \_ & \_ \\
123
+ \_ & \_ & \_ \\
124
+ \end{array}
125
+ \right) \\
126
+ \end{array}
127
+ \\
128
+
129
+ \begin{array}{l}
130
+
131
+ \begin{array}{l}
132
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{4 (-2)}{3}+\frac{2\ 3}{3}=-\frac{2}{3}. \\
133
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
134
+ \end{array}
135
+ \\
136
+ \left(
137
+ \begin{array}{cc}
138
+ \frac{4}{3} & \frac{2}{3} \\
139
+ -\frac{7}{3} & 1 \\
140
+ \end{array}
141
+ \right).\left(
142
+ \begin{array}{ccc}
143
+ -\frac{2}{3} & -2 & \frac{7}{3} \\
144
+ -2 & 3 & -\frac{2}{3} \\
145
+ \end{array}
146
+ \right)=\left(
147
+ \begin{array}{ccc}
148
+ -\frac{20}{9} & \fbox{$-\frac{2}{3}$} & \_ \\
149
+ \_ & \_ & \_ \\
150
+ \end{array}
151
+ \right) \\
152
+ \end{array}
153
+ \\
154
+
155
+ \begin{array}{l}
156
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
157
+ \left(
158
+ \begin{array}{cc}
159
+ \frac{4}{3} & \frac{2}{3} \\
160
+ -\frac{7}{3} & 1 \\
161
+ \end{array}
162
+ \right).\left(
163
+ \begin{array}{ccc}
164
+ -\frac{2}{3} & -2 & \frac{7}{3} \\
165
+ -2 & 3 & -\frac{2}{3} \\
166
+ \end{array}
167
+ \right)=\left(
168
+ \begin{array}{ccc}
169
+ -\frac{20}{9} & -\frac{2}{3} & \_ \\
170
+ \_ & \_ & \_ \\
171
+ \end{array}
172
+ \right) \\
173
+ \end{array}
174
+ \\
175
+
176
+ \begin{array}{l}
177
+
178
+ \begin{array}{l}
179
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{4\ 7}{3\ 3}+\frac{2 (-2)}{3\ 3}=\frac{8}{3}. \\
180
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
181
+ \end{array}
182
+ \\
183
+ \left(
184
+ \begin{array}{cc}
185
+ \frac{4}{3} & \frac{2}{3} \\
186
+ -\frac{7}{3} & 1 \\
187
+ \end{array}
188
+ \right).\left(
189
+ \begin{array}{ccc}
190
+ -\frac{2}{3} & -2 & \frac{7}{3} \\
191
+ -2 & 3 & -\frac{2}{3} \\
192
+ \end{array}
193
+ \right)=\left(
194
+ \begin{array}{ccc}
195
+ -\frac{20}{9} & -\frac{2}{3} & \fbox{$\frac{8}{3}$} \\
196
+ \_ & \_ & \_ \\
197
+ \end{array}
198
+ \right) \\
199
+ \end{array}
200
+ \\
201
+
202
+ \begin{array}{l}
203
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
204
+ \left(
205
+ \begin{array}{cc}
206
+ \frac{4}{3} & \frac{2}{3} \\
207
+ -\frac{7}{3} & 1 \\
208
+ \end{array}
209
+ \right).\left(
210
+ \begin{array}{ccc}
211
+ -\frac{2}{3} & -2 & \frac{7}{3} \\
212
+ -2 & 3 & -\frac{2}{3} \\
213
+ \end{array}
214
+ \right)=\left(
215
+ \begin{array}{ccc}
216
+ -\frac{20}{9} & -\frac{2}{3} & \frac{8}{3} \\
217
+ \_ & \_ & \_ \\
218
+ \end{array}
219
+ \right) \\
220
+ \end{array}
221
+ \\
222
+
223
+ \begin{array}{l}
224
+
225
+ \begin{array}{l}
226
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{7}{3}\right)\, \left(-\frac{2}{3}\right)+1 (-2)=-\frac{4}{9}. \\
227
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
228
+ \end{array}
229
+ \\
230
+ \left(
231
+ \begin{array}{cc}
232
+ \frac{4}{3} & \frac{2}{3} \\
233
+ -\frac{7}{3} & 1 \\
234
+ \end{array}
235
+ \right).\left(
236
+ \begin{array}{ccc}
237
+ -\frac{2}{3} & -2 & \frac{7}{3} \\
238
+ -2 & 3 & -\frac{2}{3} \\
239
+ \end{array}
240
+ \right)=\left(
241
+ \begin{array}{ccc}
242
+ -\frac{20}{9} & -\frac{2}{3} & \frac{8}{3} \\
243
+ \fbox{$-\frac{4}{9}$} & \_ & \_ \\
244
+ \end{array}
245
+ \right) \\
246
+ \end{array}
247
+ \\
248
+
249
+ \begin{array}{l}
250
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
251
+ \left(
252
+ \begin{array}{cc}
253
+ \frac{4}{3} & \frac{2}{3} \\
254
+ -\frac{7}{3} & 1 \\
255
+ \end{array}
256
+ \right).\left(
257
+ \begin{array}{ccc}
258
+ -\frac{2}{3} & -2 & \frac{7}{3} \\
259
+ -2 & 3 & -\frac{2}{3} \\
260
+ \end{array}
261
+ \right)=\left(
262
+ \begin{array}{ccc}
263
+ -\frac{20}{9} & -\frac{2}{3} & \frac{8}{3} \\
264
+ -\frac{4}{9} & \_ & \_ \\
265
+ \end{array}
266
+ \right) \\
267
+ \end{array}
268
+ \\
269
+
270
+ \begin{array}{l}
271
+
272
+ \begin{array}{l}
273
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{7}{3}\right)\, (-2)+1\ 3=\frac{23}{3}. \\
274
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
275
+ \end{array}
276
+ \\
277
+ \left(
278
+ \begin{array}{cc}
279
+ \frac{4}{3} & \frac{2}{3} \\
280
+ -\frac{7}{3} & 1 \\
281
+ \end{array}
282
+ \right).\left(
283
+ \begin{array}{ccc}
284
+ -\frac{2}{3} & -2 & \frac{7}{3} \\
285
+ -2 & 3 & -\frac{2}{3} \\
286
+ \end{array}
287
+ \right)=\left(
288
+ \begin{array}{ccc}
289
+ -\frac{20}{9} & -\frac{2}{3} & \frac{8}{3} \\
290
+ -\frac{4}{9} & \fbox{$\frac{23}{3}$} & \_ \\
291
+ \end{array}
292
+ \right) \\
293
+ \end{array}
294
+ \\
295
+
296
+ \begin{array}{l}
297
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
298
+ \left(
299
+ \begin{array}{cc}
300
+ \frac{4}{3} & \frac{2}{3} \\
301
+ -\frac{7}{3} & 1 \\
302
+ \end{array}
303
+ \right).\left(
304
+ \begin{array}{ccc}
305
+ -\frac{2}{3} & -2 & \frac{7}{3} \\
306
+ -2 & 3 & -\frac{2}{3} \\
307
+ \end{array}
308
+ \right)=\left(
309
+ \begin{array}{ccc}
310
+ -\frac{20}{9} & -\frac{2}{3} & \frac{8}{3} \\
311
+ -\frac{4}{9} & \frac{23}{3} & \_ \\
312
+ \end{array}
313
+ \right) \\
314
+ \end{array}
315
+ \\
316
+
317
+ \begin{array}{l}
318
+
319
+ \begin{array}{l}
320
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{7}{3}\right)\, \times \, \frac{7}{3}-\frac{2}{3}=-\frac{55}{9}. \\
321
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
322
+ \end{array}
323
+ \\
324
+ \fbox{$
325
+ \begin{array}{ll}
326
+ \text{Answer:} & \\
327
+ \text{} & \left(
328
+ \begin{array}{cc}
329
+ \frac{4}{3} & \frac{2}{3} \\
330
+ -\frac{7}{3} & 1 \\
331
+ \end{array}
332
+ \right).\left(
333
+ \begin{array}{ccc}
334
+ -\frac{2}{3} & -2 & \frac{7}{3} \\
335
+ -2 & 3 & -\frac{2}{3} \\
336
+ \end{array}
337
+ \right)=\left(
338
+ \begin{array}{ccc}
339
+ -\frac{20}{9} & -\frac{2}{3} & \frac{8}{3} \\
340
+ -\frac{4}{9} & \frac{23}{3} & \fbox{$-\frac{55}{9}$} \\
341
+ \end{array}
342
+ \right) \\
343
+ \end{array}
344
+ $} \\
345
+ \end{array}
346
+ \\
347
+ \end{array}
pretraining/mathematica/linear_algebra/multiply_w_steps/359.txt ADDED
@@ -0,0 +1,231 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{ccc}
5
+ -\frac{1}{2} & -\frac{3}{2} & 0 \\
6
+ 3 & 3 & -2 \\
7
+ 0 & -\frac{5}{2} & -1 \\
8
+ \end{array}
9
+ \right)$ and
10
+ $\left(
11
+ \begin{array}{c}
12
+ 0 \\
13
+ -\frac{1}{2} \\
14
+ 0 \\
15
+ \end{array}
16
+ \right)$.
17
+ Answer:
18
+ \begin{array}{l}
19
+
20
+ \begin{array}{l}
21
+ \text{Multiply the following matrices}: \\
22
+ \left(
23
+ \begin{array}{ccc}
24
+ -\frac{1}{2} & -\frac{3}{2} & 0 \\
25
+ 3 & 3 & -2 \\
26
+ 0 & -\frac{5}{2} & -1 \\
27
+ \end{array}
28
+ \right).\left(
29
+ \begin{array}{c}
30
+ 0 \\
31
+ -\frac{1}{2} \\
32
+ 0 \\
33
+ \end{array}
34
+ \right) \\
35
+ \end{array}
36
+ \\
37
+ \hline
38
+
39
+ \begin{array}{l}
40
+
41
+ \begin{array}{l}
42
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 1. \\
43
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 1: \\
44
+ \end{array}
45
+ \\
46
+ \left(
47
+ \begin{array}{ccc}
48
+ -\frac{1}{2} & -\frac{3}{2} & 0 \\
49
+ 3 & 3 & -2 \\
50
+ 0 & -\frac{5}{2} & -1 \\
51
+ \end{array}
52
+ \right).\left(
53
+ \begin{array}{c}
54
+ 0 \\
55
+ -\frac{1}{2} \\
56
+ 0 \\
57
+ \end{array}
58
+ \right)=\left(
59
+ \begin{array}{c}
60
+ \_ \\
61
+ \_ \\
62
+ \_ \\
63
+ \end{array}
64
+ \right) \\
65
+ \end{array}
66
+ \\
67
+
68
+ \begin{array}{l}
69
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
70
+ \left(
71
+ \begin{array}{ccc}
72
+ -\frac{1}{2} & -\frac{3}{2} & 0 \\
73
+ 3 & 3 & -2 \\
74
+ 0 & -\frac{5}{2} & -1 \\
75
+ \end{array}
76
+ \right).\left(
77
+ \begin{array}{c}
78
+ 0 \\
79
+ -\frac{1}{2} \\
80
+ 0 \\
81
+ \end{array}
82
+ \right)=\left(
83
+ \begin{array}{c}
84
+ \_ \\
85
+ \_ \\
86
+ \_ \\
87
+ \end{array}
88
+ \right) \\
89
+ \end{array}
90
+ \\
91
+
92
+ \begin{array}{l}
93
+
94
+ \begin{array}{l}
95
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{1}{2} (-0)+\frac{3}{2\ 2}+0\ 0=\frac{3}{4}. \\
96
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
97
+ \end{array}
98
+ \\
99
+ \left(
100
+ \begin{array}{ccc}
101
+ -\frac{1}{2} & -\frac{3}{2} & 0 \\
102
+ 3 & 3 & -2 \\
103
+ 0 & -\frac{5}{2} & -1 \\
104
+ \end{array}
105
+ \right).\left(
106
+ \begin{array}{c}
107
+ 0 \\
108
+ -\frac{1}{2} \\
109
+ 0 \\
110
+ \end{array}
111
+ \right)=\left(
112
+ \begin{array}{c}
113
+ \fbox{$\frac{3}{4}$} \\
114
+ \_ \\
115
+ \_ \\
116
+ \end{array}
117
+ \right) \\
118
+ \end{array}
119
+ \\
120
+
121
+ \begin{array}{l}
122
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
123
+ \left(
124
+ \begin{array}{ccc}
125
+ -\frac{1}{2} & -\frac{3}{2} & 0 \\
126
+ 3 & 3 & -2 \\
127
+ 0 & -\frac{5}{2} & -1 \\
128
+ \end{array}
129
+ \right).\left(
130
+ \begin{array}{c}
131
+ 0 \\
132
+ -\frac{1}{2} \\
133
+ 0 \\
134
+ \end{array}
135
+ \right)=\left(
136
+ \begin{array}{c}
137
+ \frac{3}{4} \\
138
+ \_ \\
139
+ \_ \\
140
+ \end{array}
141
+ \right) \\
142
+ \end{array}
143
+ \\
144
+
145
+ \begin{array}{l}
146
+
147
+ \begin{array}{l}
148
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }3\ 0+\frac{1}{2} (-3)+(-2)\, \times \, 0=-\frac{3}{2}. \\
149
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
150
+ \end{array}
151
+ \\
152
+ \left(
153
+ \begin{array}{ccc}
154
+ -\frac{1}{2} & -\frac{3}{2} & 0 \\
155
+ 3 & 3 & -2 \\
156
+ 0 & -\frac{5}{2} & -1 \\
157
+ \end{array}
158
+ \right).\left(
159
+ \begin{array}{c}
160
+ 0 \\
161
+ -\frac{1}{2} \\
162
+ 0 \\
163
+ \end{array}
164
+ \right)=\left(
165
+ \begin{array}{c}
166
+ \frac{3}{4} \\
167
+ \fbox{$-\frac{3}{2}$} \\
168
+ \_ \\
169
+ \end{array}
170
+ \right) \\
171
+ \end{array}
172
+ \\
173
+
174
+ \begin{array}{l}
175
+ \text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
176
+ \left(
177
+ \begin{array}{ccc}
178
+ -\frac{1}{2} & -\frac{3}{2} & 0 \\
179
+ 3 & 3 & -2 \\
180
+ 0 & -\frac{5}{2} & -1 \\
181
+ \end{array}
182
+ \right).\left(
183
+ \begin{array}{c}
184
+ 0 \\
185
+ -\frac{1}{2} \\
186
+ 0 \\
187
+ \end{array}
188
+ \right)=\left(
189
+ \begin{array}{c}
190
+ \frac{3}{4} \\
191
+ -\frac{3}{2} \\
192
+ \_ \\
193
+ \end{array}
194
+ \right) \\
195
+ \end{array}
196
+ \\
197
+
198
+ \begin{array}{l}
199
+
200
+ \begin{array}{l}
201
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }0\ 0+\frac{5}{2\ 2}+(-1)\, \times \, 0=\frac{5}{4}. \\
202
+ \text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
203
+ \end{array}
204
+ \\
205
+ \fbox{$
206
+ \begin{array}{ll}
207
+ \text{Answer:} & \\
208
+ \text{} & \left(
209
+ \begin{array}{ccc}
210
+ -\frac{1}{2} & -\frac{3}{2} & 0 \\
211
+ 3 & 3 & -2 \\
212
+ 0 & -\frac{5}{2} & -1 \\
213
+ \end{array}
214
+ \right).\left(
215
+ \begin{array}{c}
216
+ 0 \\
217
+ -\frac{1}{2} \\
218
+ 0 \\
219
+ \end{array}
220
+ \right)=\left(
221
+ \begin{array}{c}
222
+ \frac{3}{4} \\
223
+ -\frac{3}{2} \\
224
+ \fbox{$\frac{5}{4}$} \\
225
+ \end{array}
226
+ \right) \\
227
+ \end{array}
228
+ $} \\
229
+ \end{array}
230
+ \\
231
+ \end{array}
pretraining/mathematica/linear_algebra/multiply_w_steps/3665.txt ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{cc}
5
+ \frac{13}{5} & \frac{12}{5} \\
6
+ \frac{7}{5} & -\frac{11}{5} \\
7
+ \end{array}
8
+ \right)$ and
9
+ $\left(
10
+ \begin{array}{cc}
11
+ \frac{2}{5} & 2 \\
12
+ -\frac{4}{5} & \frac{12}{5} \\
13
+ \end{array}
14
+ \right)$.
15
+ Answer:
16
+ \begin{array}{l}
17
+
18
+ \begin{array}{l}
19
+ \text{Multiply the following matrices}: \\
20
+ \left(
21
+ \begin{array}{cc}
22
+ \frac{13}{5} & \frac{12}{5} \\
23
+ \frac{7}{5} & -\frac{11}{5} \\
24
+ \end{array}
25
+ \right).\left(
26
+ \begin{array}{cc}
27
+ \frac{2}{5} & 2 \\
28
+ -\frac{4}{5} & \frac{12}{5} \\
29
+ \end{array}
30
+ \right) \\
31
+ \end{array}
32
+ \\
33
+ \hline
34
+
35
+ \begin{array}{l}
36
+
37
+ \begin{array}{l}
38
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 2. \\
39
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 2: \\
40
+ \end{array}
41
+ \\
42
+ \left(
43
+ \begin{array}{cc}
44
+ \frac{13}{5} & \frac{12}{5} \\
45
+ \frac{7}{5} & -\frac{11}{5} \\
46
+ \end{array}
47
+ \right).\left(
48
+ \begin{array}{cc}
49
+ \frac{2}{5} & 2 \\
50
+ -\frac{4}{5} & \frac{12}{5} \\
51
+ \end{array}
52
+ \right)=\left(
53
+ \begin{array}{cc}
54
+ \_ & \_ \\
55
+ \_ & \_ \\
56
+ \end{array}
57
+ \right) \\
58
+ \end{array}
59
+ \\
60
+
61
+ \begin{array}{l}
62
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
63
+ \left(
64
+ \begin{array}{cc}
65
+ \frac{13}{5} & \frac{12}{5} \\
66
+ \frac{7}{5} & -\frac{11}{5} \\
67
+ \end{array}
68
+ \right).\left(
69
+ \begin{array}{cc}
70
+ \frac{2}{5} & 2 \\
71
+ -\frac{4}{5} & \frac{12}{5} \\
72
+ \end{array}
73
+ \right)=\left(
74
+ \begin{array}{cc}
75
+ \_ & \_ \\
76
+ \_ & \_ \\
77
+ \end{array}
78
+ \right) \\
79
+ \end{array}
80
+ \\
81
+
82
+ \begin{array}{l}
83
+
84
+ \begin{array}{l}
85
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{13\ 2}{5\ 5}+\frac{12 (-4)}{5\ 5}=-\frac{22}{25}. \\
86
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
87
+ \end{array}
88
+ \\
89
+ \left(
90
+ \begin{array}{cc}
91
+ \frac{13}{5} & \frac{12}{5} \\
92
+ \frac{7}{5} & -\frac{11}{5} \\
93
+ \end{array}
94
+ \right).\left(
95
+ \begin{array}{cc}
96
+ \frac{2}{5} & 2 \\
97
+ -\frac{4}{5} & \frac{12}{5} \\
98
+ \end{array}
99
+ \right)=\left(
100
+ \begin{array}{cc}
101
+ \fbox{$-\frac{22}{25}$} & \_ \\
102
+ \_ & \_ \\
103
+ \end{array}
104
+ \right) \\
105
+ \end{array}
106
+ \\
107
+
108
+ \begin{array}{l}
109
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
110
+ \left(
111
+ \begin{array}{cc}
112
+ \frac{13}{5} & \frac{12}{5} \\
113
+ \frac{7}{5} & -\frac{11}{5} \\
114
+ \end{array}
115
+ \right).\left(
116
+ \begin{array}{cc}
117
+ \frac{2}{5} & 2 \\
118
+ -\frac{4}{5} & \frac{12}{5} \\
119
+ \end{array}
120
+ \right)=\left(
121
+ \begin{array}{cc}
122
+ -\frac{22}{25} & \_ \\
123
+ \_ & \_ \\
124
+ \end{array}
125
+ \right) \\
126
+ \end{array}
127
+ \\
128
+
129
+ \begin{array}{l}
130
+
131
+ \begin{array}{l}
132
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{13\ 2}{5}+\frac{12\ 12}{5\ 5}=\frac{274}{25}. \\
133
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
134
+ \end{array}
135
+ \\
136
+ \left(
137
+ \begin{array}{cc}
138
+ \frac{13}{5} & \frac{12}{5} \\
139
+ \frac{7}{5} & -\frac{11}{5} \\
140
+ \end{array}
141
+ \right).\left(
142
+ \begin{array}{cc}
143
+ \frac{2}{5} & 2 \\
144
+ -\frac{4}{5} & \frac{12}{5} \\
145
+ \end{array}
146
+ \right)=\left(
147
+ \begin{array}{cc}
148
+ -\frac{22}{25} & \fbox{$\frac{274}{25}$} \\
149
+ \_ & \_ \\
150
+ \end{array}
151
+ \right) \\
152
+ \end{array}
153
+ \\
154
+
155
+ \begin{array}{l}
156
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
157
+ \left(
158
+ \begin{array}{cc}
159
+ \frac{13}{5} & \frac{12}{5} \\
160
+ \frac{7}{5} & -\frac{11}{5} \\
161
+ \end{array}
162
+ \right).\left(
163
+ \begin{array}{cc}
164
+ \frac{2}{5} & 2 \\
165
+ -\frac{4}{5} & \frac{12}{5} \\
166
+ \end{array}
167
+ \right)=\left(
168
+ \begin{array}{cc}
169
+ -\frac{22}{25} & \frac{274}{25} \\
170
+ \_ & \_ \\
171
+ \end{array}
172
+ \right) \\
173
+ \end{array}
174
+ \\
175
+
176
+ \begin{array}{l}
177
+
178
+ \begin{array}{l}
179
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{7\ 2}{5\ 5}+\left(-\frac{11}{5}\right)\, \left(-\frac{4}{5}\right)=\frac{58}{25}. \\
180
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
181
+ \end{array}
182
+ \\
183
+ \left(
184
+ \begin{array}{cc}
185
+ \frac{13}{5} & \frac{12}{5} \\
186
+ \frac{7}{5} & -\frac{11}{5} \\
187
+ \end{array}
188
+ \right).\left(
189
+ \begin{array}{cc}
190
+ \frac{2}{5} & 2 \\
191
+ -\frac{4}{5} & \frac{12}{5} \\
192
+ \end{array}
193
+ \right)=\left(
194
+ \begin{array}{cc}
195
+ -\frac{22}{25} & \frac{274}{25} \\
196
+ \fbox{$\frac{58}{25}$} & \_ \\
197
+ \end{array}
198
+ \right) \\
199
+ \end{array}
200
+ \\
201
+
202
+ \begin{array}{l}
203
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
204
+ \left(
205
+ \begin{array}{cc}
206
+ \frac{13}{5} & \frac{12}{5} \\
207
+ \frac{7}{5} & -\frac{11}{5} \\
208
+ \end{array}
209
+ \right).\left(
210
+ \begin{array}{cc}
211
+ \frac{2}{5} & 2 \\
212
+ -\frac{4}{5} & \frac{12}{5} \\
213
+ \end{array}
214
+ \right)=\left(
215
+ \begin{array}{cc}
216
+ -\frac{22}{25} & \frac{274}{25} \\
217
+ \frac{58}{25} & \_ \\
218
+ \end{array}
219
+ \right) \\
220
+ \end{array}
221
+ \\
222
+
223
+ \begin{array}{l}
224
+
225
+ \begin{array}{l}
226
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{7\ 2}{5}+\left(-\frac{11}{5}\right)\, \times \, \frac{12}{5}=-\frac{62}{25}. \\
227
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
228
+ \end{array}
229
+ \\
230
+ \fbox{$
231
+ \begin{array}{ll}
232
+ \text{Answer:} & \\
233
+ \text{} & \left(
234
+ \begin{array}{cc}
235
+ \frac{13}{5} & \frac{12}{5} \\
236
+ \frac{7}{5} & -\frac{11}{5} \\
237
+ \end{array}
238
+ \right).\left(
239
+ \begin{array}{cc}
240
+ \frac{2}{5} & 2 \\
241
+ -\frac{4}{5} & \frac{12}{5} \\
242
+ \end{array}
243
+ \right)=\left(
244
+ \begin{array}{cc}
245
+ -\frac{22}{25} & \frac{274}{25} \\
246
+ \frac{58}{25} & \fbox{$-\frac{62}{25}$} \\
247
+ \end{array}
248
+ \right) \\
249
+ \end{array}
250
+ $} \\
251
+ \end{array}
252
+ \\
253
+ \end{array}
pretraining/mathematica/linear_algebra/multiply_w_steps/3849.txt ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{cc}
5
+ -1 & 2 \\
6
+ 1 & 3 \\
7
+ \end{array}
8
+ \right)$ and
9
+ $\left(
10
+ \begin{array}{cc}
11
+ 2 & 2 \\
12
+ 0 & -2 \\
13
+ \end{array}
14
+ \right)$.
15
+ Answer:
16
+ \begin{array}{l}
17
+
18
+ \begin{array}{l}
19
+ \text{Multiply the following matrices}: \\
20
+ \left(
21
+ \begin{array}{cc}
22
+ -1 & 2 \\
23
+ 1 & 3 \\
24
+ \end{array}
25
+ \right).\left(
26
+ \begin{array}{cc}
27
+ 2 & 2 \\
28
+ 0 & -2 \\
29
+ \end{array}
30
+ \right) \\
31
+ \end{array}
32
+ \\
33
+ \hline
34
+
35
+ \begin{array}{l}
36
+
37
+ \begin{array}{l}
38
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 2. \\
39
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 2: \\
40
+ \end{array}
41
+ \\
42
+ \left(
43
+ \begin{array}{cc}
44
+ -1 & 2 \\
45
+ 1 & 3 \\
46
+ \end{array}
47
+ \right).\left(
48
+ \begin{array}{cc}
49
+ 2 & 2 \\
50
+ 0 & -2 \\
51
+ \end{array}
52
+ \right)=\left(
53
+ \begin{array}{cc}
54
+ \_ & \_ \\
55
+ \_ & \_ \\
56
+ \end{array}
57
+ \right) \\
58
+ \end{array}
59
+ \\
60
+
61
+ \begin{array}{l}
62
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
63
+ \left(
64
+ \begin{array}{cc}
65
+ -1 & 2 \\
66
+ 1 & 3 \\
67
+ \end{array}
68
+ \right).\left(
69
+ \begin{array}{cc}
70
+ 2 & 2 \\
71
+ 0 & -2 \\
72
+ \end{array}
73
+ \right)=\left(
74
+ \begin{array}{cc}
75
+ \_ & \_ \\
76
+ \_ & \_ \\
77
+ \end{array}
78
+ \right) \\
79
+ \end{array}
80
+ \\
81
+
82
+ \begin{array}{l}
83
+
84
+ \begin{array}{l}
85
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-1)\, \times \, 2+2\ 0=-2. \\
86
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
87
+ \end{array}
88
+ \\
89
+ \left(
90
+ \begin{array}{cc}
91
+ -1 & 2 \\
92
+ 1 & 3 \\
93
+ \end{array}
94
+ \right).\left(
95
+ \begin{array}{cc}
96
+ 2 & 2 \\
97
+ 0 & -2 \\
98
+ \end{array}
99
+ \right)=\left(
100
+ \begin{array}{cc}
101
+ \fbox{$-2$} & \_ \\
102
+ \_ & \_ \\
103
+ \end{array}
104
+ \right) \\
105
+ \end{array}
106
+ \\
107
+
108
+ \begin{array}{l}
109
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
110
+ \left(
111
+ \begin{array}{cc}
112
+ -1 & 2 \\
113
+ 1 & 3 \\
114
+ \end{array}
115
+ \right).\left(
116
+ \begin{array}{cc}
117
+ 2 & 2 \\
118
+ 0 & -2 \\
119
+ \end{array}
120
+ \right)=\left(
121
+ \begin{array}{cc}
122
+ -2 & \_ \\
123
+ \_ & \_ \\
124
+ \end{array}
125
+ \right) \\
126
+ \end{array}
127
+ \\
128
+
129
+ \begin{array}{l}
130
+
131
+ \begin{array}{l}
132
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-1)\, \times \, 2+2 (-2)=-6. \\
133
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
134
+ \end{array}
135
+ \\
136
+ \left(
137
+ \begin{array}{cc}
138
+ -1 & 2 \\
139
+ 1 & 3 \\
140
+ \end{array}
141
+ \right).\left(
142
+ \begin{array}{cc}
143
+ 2 & 2 \\
144
+ 0 & -2 \\
145
+ \end{array}
146
+ \right)=\left(
147
+ \begin{array}{cc}
148
+ -2 & \fbox{$-6$} \\
149
+ \_ & \_ \\
150
+ \end{array}
151
+ \right) \\
152
+ \end{array}
153
+ \\
154
+
155
+ \begin{array}{l}
156
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
157
+ \left(
158
+ \begin{array}{cc}
159
+ -1 & 2 \\
160
+ 1 & 3 \\
161
+ \end{array}
162
+ \right).\left(
163
+ \begin{array}{cc}
164
+ 2 & 2 \\
165
+ 0 & -2 \\
166
+ \end{array}
167
+ \right)=\left(
168
+ \begin{array}{cc}
169
+ -2 & -6 \\
170
+ \_ & \_ \\
171
+ \end{array}
172
+ \right) \\
173
+ \end{array}
174
+ \\
175
+
176
+ \begin{array}{l}
177
+
178
+ \begin{array}{l}
179
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1\ 2+3\ 0=2. \\
180
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
181
+ \end{array}
182
+ \\
183
+ \left(
184
+ \begin{array}{cc}
185
+ -1 & 2 \\
186
+ 1 & 3 \\
187
+ \end{array}
188
+ \right).\left(
189
+ \begin{array}{cc}
190
+ 2 & 2 \\
191
+ 0 & -2 \\
192
+ \end{array}
193
+ \right)=\left(
194
+ \begin{array}{cc}
195
+ -2 & -6 \\
196
+ \fbox{$2$} & \_ \\
197
+ \end{array}
198
+ \right) \\
199
+ \end{array}
200
+ \\
201
+
202
+ \begin{array}{l}
203
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
204
+ \left(
205
+ \begin{array}{cc}
206
+ -1 & 2 \\
207
+ 1 & 3 \\
208
+ \end{array}
209
+ \right).\left(
210
+ \begin{array}{cc}
211
+ 2 & 2 \\
212
+ 0 & -2 \\
213
+ \end{array}
214
+ \right)=\left(
215
+ \begin{array}{cc}
216
+ -2 & -6 \\
217
+ 2 & \_ \\
218
+ \end{array}
219
+ \right) \\
220
+ \end{array}
221
+ \\
222
+
223
+ \begin{array}{l}
224
+
225
+ \begin{array}{l}
226
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1\ 2+3 (-2)=-4. \\
227
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
228
+ \end{array}
229
+ \\
230
+ \fbox{$
231
+ \begin{array}{ll}
232
+ \text{Answer:} & \\
233
+ \text{} & \left(
234
+ \begin{array}{cc}
235
+ -1 & 2 \\
236
+ 1 & 3 \\
237
+ \end{array}
238
+ \right).\left(
239
+ \begin{array}{cc}
240
+ 2 & 2 \\
241
+ 0 & -2 \\
242
+ \end{array}
243
+ \right)=\left(
244
+ \begin{array}{cc}
245
+ -2 & -6 \\
246
+ 2 & \fbox{$-4$} \\
247
+ \end{array}
248
+ \right) \\
249
+ \end{array}
250
+ $} \\
251
+ \end{array}
252
+ \\
253
+ \end{array}
pretraining/mathematica/linear_algebra/multiply_w_steps/3856.txt ADDED
@@ -0,0 +1,375 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{cc}
5
+ -2 & 0 \\
6
+ 1 & 1 \\
7
+ -2 & 0 \\
8
+ \end{array}
9
+ \right)$ and
10
+ $\left(
11
+ \begin{array}{cc}
12
+ -1 & -2 \\
13
+ 2 & -2 \\
14
+ \end{array}
15
+ \right)$.
16
+ Answer:
17
+ \begin{array}{l}
18
+
19
+ \begin{array}{l}
20
+ \text{Multiply the following matrices}: \\
21
+ \left(
22
+ \begin{array}{cc}
23
+ -2 & 0 \\
24
+ 1 & 1 \\
25
+ -2 & 0 \\
26
+ \end{array}
27
+ \right).\left(
28
+ \begin{array}{cc}
29
+ -1 & -2 \\
30
+ 2 & -2 \\
31
+ \end{array}
32
+ \right) \\
33
+ \end{array}
34
+ \\
35
+ \hline
36
+
37
+ \begin{array}{l}
38
+
39
+ \begin{array}{l}
40
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 2. \\
41
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 2: \\
42
+ \end{array}
43
+ \\
44
+ \left(
45
+ \begin{array}{cc}
46
+ -2 & 0 \\
47
+ 1 & 1 \\
48
+ -2 & 0 \\
49
+ \end{array}
50
+ \right).\left(
51
+ \begin{array}{cc}
52
+ -1 & -2 \\
53
+ 2 & -2 \\
54
+ \end{array}
55
+ \right)=\left(
56
+ \begin{array}{cc}
57
+ \_ & \_ \\
58
+ \_ & \_ \\
59
+ \_ & \_ \\
60
+ \end{array}
61
+ \right) \\
62
+ \end{array}
63
+ \\
64
+
65
+ \begin{array}{l}
66
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
67
+ \left(
68
+ \begin{array}{cc}
69
+ -2 & 0 \\
70
+ 1 & 1 \\
71
+ -2 & 0 \\
72
+ \end{array}
73
+ \right).\left(
74
+ \begin{array}{cc}
75
+ -1 & -2 \\
76
+ 2 & -2 \\
77
+ \end{array}
78
+ \right)=\left(
79
+ \begin{array}{cc}
80
+ \_ & \_ \\
81
+ \_ & \_ \\
82
+ \_ & \_ \\
83
+ \end{array}
84
+ \right) \\
85
+ \end{array}
86
+ \\
87
+
88
+ \begin{array}{l}
89
+
90
+ \begin{array}{l}
91
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-1)+0\ 2=2. \\
92
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
93
+ \end{array}
94
+ \\
95
+ \left(
96
+ \begin{array}{cc}
97
+ -2 & 0 \\
98
+ 1 & 1 \\
99
+ -2 & 0 \\
100
+ \end{array}
101
+ \right).\left(
102
+ \begin{array}{cc}
103
+ -1 & -2 \\
104
+ 2 & -2 \\
105
+ \end{array}
106
+ \right)=\left(
107
+ \begin{array}{cc}
108
+ \fbox{$2$} & \_ \\
109
+ \_ & \_ \\
110
+ \_ & \_ \\
111
+ \end{array}
112
+ \right) \\
113
+ \end{array}
114
+ \\
115
+
116
+ \begin{array}{l}
117
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
118
+ \left(
119
+ \begin{array}{cc}
120
+ -2 & 0 \\
121
+ 1 & 1 \\
122
+ -2 & 0 \\
123
+ \end{array}
124
+ \right).\left(
125
+ \begin{array}{cc}
126
+ -1 & -2 \\
127
+ 2 & -2 \\
128
+ \end{array}
129
+ \right)=\left(
130
+ \begin{array}{cc}
131
+ 2 & \_ \\
132
+ \_ & \_ \\
133
+ \_ & \_ \\
134
+ \end{array}
135
+ \right) \\
136
+ \end{array}
137
+ \\
138
+
139
+ \begin{array}{l}
140
+
141
+ \begin{array}{l}
142
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-2)+0 (-2)=4. \\
143
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
144
+ \end{array}
145
+ \\
146
+ \left(
147
+ \begin{array}{cc}
148
+ -2 & 0 \\
149
+ 1 & 1 \\
150
+ -2 & 0 \\
151
+ \end{array}
152
+ \right).\left(
153
+ \begin{array}{cc}
154
+ -1 & -2 \\
155
+ 2 & -2 \\
156
+ \end{array}
157
+ \right)=\left(
158
+ \begin{array}{cc}
159
+ 2 & \fbox{$4$} \\
160
+ \_ & \_ \\
161
+ \_ & \_ \\
162
+ \end{array}
163
+ \right) \\
164
+ \end{array}
165
+ \\
166
+
167
+ \begin{array}{l}
168
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
169
+ \left(
170
+ \begin{array}{cc}
171
+ -2 & 0 \\
172
+ 1 & 1 \\
173
+ -2 & 0 \\
174
+ \end{array}
175
+ \right).\left(
176
+ \begin{array}{cc}
177
+ -1 & -2 \\
178
+ 2 & -2 \\
179
+ \end{array}
180
+ \right)=\left(
181
+ \begin{array}{cc}
182
+ 2 & 4 \\
183
+ \_ & \_ \\
184
+ \_ & \_ \\
185
+ \end{array}
186
+ \right) \\
187
+ \end{array}
188
+ \\
189
+
190
+ \begin{array}{l}
191
+
192
+ \begin{array}{l}
193
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1 (-1)+1\ 2=1. \\
194
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
195
+ \end{array}
196
+ \\
197
+ \left(
198
+ \begin{array}{cc}
199
+ -2 & 0 \\
200
+ 1 & 1 \\
201
+ -2 & 0 \\
202
+ \end{array}
203
+ \right).\left(
204
+ \begin{array}{cc}
205
+ -1 & -2 \\
206
+ 2 & -2 \\
207
+ \end{array}
208
+ \right)=\left(
209
+ \begin{array}{cc}
210
+ 2 & 4 \\
211
+ \fbox{$1$} & \_ \\
212
+ \_ & \_ \\
213
+ \end{array}
214
+ \right) \\
215
+ \end{array}
216
+ \\
217
+
218
+ \begin{array}{l}
219
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
220
+ \left(
221
+ \begin{array}{cc}
222
+ -2 & 0 \\
223
+ 1 & 1 \\
224
+ -2 & 0 \\
225
+ \end{array}
226
+ \right).\left(
227
+ \begin{array}{cc}
228
+ -1 & -2 \\
229
+ 2 & -2 \\
230
+ \end{array}
231
+ \right)=\left(
232
+ \begin{array}{cc}
233
+ 2 & 4 \\
234
+ 1 & \_ \\
235
+ \_ & \_ \\
236
+ \end{array}
237
+ \right) \\
238
+ \end{array}
239
+ \\
240
+
241
+ \begin{array}{l}
242
+
243
+ \begin{array}{l}
244
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1 (-2)+1 (-2)=-4. \\
245
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
246
+ \end{array}
247
+ \\
248
+ \left(
249
+ \begin{array}{cc}
250
+ -2 & 0 \\
251
+ 1 & 1 \\
252
+ -2 & 0 \\
253
+ \end{array}
254
+ \right).\left(
255
+ \begin{array}{cc}
256
+ -1 & -2 \\
257
+ 2 & -2 \\
258
+ \end{array}
259
+ \right)=\left(
260
+ \begin{array}{cc}
261
+ 2 & 4 \\
262
+ 1 & \fbox{$-4$} \\
263
+ \_ & \_ \\
264
+ \end{array}
265
+ \right) \\
266
+ \end{array}
267
+ \\
268
+
269
+ \begin{array}{l}
270
+ \text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
271
+ \left(
272
+ \begin{array}{cc}
273
+ -2 & 0 \\
274
+ 1 & 1 \\
275
+ -2 & 0 \\
276
+ \end{array}
277
+ \right).\left(
278
+ \begin{array}{cc}
279
+ -1 & -2 \\
280
+ 2 & -2 \\
281
+ \end{array}
282
+ \right)=\left(
283
+ \begin{array}{cc}
284
+ 2 & 4 \\
285
+ 1 & -4 \\
286
+ \_ & \_ \\
287
+ \end{array}
288
+ \right) \\
289
+ \end{array}
290
+ \\
291
+
292
+ \begin{array}{l}
293
+
294
+ \begin{array}{l}
295
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-1)+0\ 2=2. \\
296
+ \text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
297
+ \end{array}
298
+ \\
299
+ \left(
300
+ \begin{array}{cc}
301
+ -2 & 0 \\
302
+ 1 & 1 \\
303
+ -2 & 0 \\
304
+ \end{array}
305
+ \right).\left(
306
+ \begin{array}{cc}
307
+ -1 & -2 \\
308
+ 2 & -2 \\
309
+ \end{array}
310
+ \right)=\left(
311
+ \begin{array}{cc}
312
+ 2 & 4 \\
313
+ 1 & -4 \\
314
+ \fbox{$2$} & \_ \\
315
+ \end{array}
316
+ \right) \\
317
+ \end{array}
318
+ \\
319
+
320
+ \begin{array}{l}
321
+ \text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
322
+ \left(
323
+ \begin{array}{cc}
324
+ -2 & 0 \\
325
+ 1 & 1 \\
326
+ -2 & 0 \\
327
+ \end{array}
328
+ \right).\left(
329
+ \begin{array}{cc}
330
+ -1 & -2 \\
331
+ 2 & -2 \\
332
+ \end{array}
333
+ \right)=\left(
334
+ \begin{array}{cc}
335
+ 2 & 4 \\
336
+ 1 & -4 \\
337
+ 2 & \_ \\
338
+ \end{array}
339
+ \right) \\
340
+ \end{array}
341
+ \\
342
+
343
+ \begin{array}{l}
344
+
345
+ \begin{array}{l}
346
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-2)+0 (-2)=4. \\
347
+ \text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
348
+ \end{array}
349
+ \\
350
+ \fbox{$
351
+ \begin{array}{ll}
352
+ \text{Answer:} & \\
353
+ \text{} & \left(
354
+ \begin{array}{cc}
355
+ -2 & 0 \\
356
+ 1 & 1 \\
357
+ -2 & 0 \\
358
+ \end{array}
359
+ \right).\left(
360
+ \begin{array}{cc}
361
+ -1 & -2 \\
362
+ 2 & -2 \\
363
+ \end{array}
364
+ \right)=\left(
365
+ \begin{array}{cc}
366
+ 2 & 4 \\
367
+ 1 & -4 \\
368
+ 2 & \fbox{$4$} \\
369
+ \end{array}
370
+ \right) \\
371
+ \end{array}
372
+ $} \\
373
+ \end{array}
374
+ \\
375
+ \end{array}
pretraining/mathematica/linear_algebra/multiply_w_steps/39.txt ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{cc}
5
+ -2 & -2 \\
6
+ 2 & 3 \\
7
+ \end{array}
8
+ \right)$ and
9
+ $\left(
10
+ \begin{array}{cc}
11
+ -1 & -2 \\
12
+ 3 & 3 \\
13
+ \end{array}
14
+ \right)$.
15
+ Answer:
16
+ \begin{array}{l}
17
+
18
+ \begin{array}{l}
19
+ \text{Multiply the following matrices}: \\
20
+ \left(
21
+ \begin{array}{cc}
22
+ -2 & -2 \\
23
+ 2 & 3 \\
24
+ \end{array}
25
+ \right).\left(
26
+ \begin{array}{cc}
27
+ -1 & -2 \\
28
+ 3 & 3 \\
29
+ \end{array}
30
+ \right) \\
31
+ \end{array}
32
+ \\
33
+ \hline
34
+
35
+ \begin{array}{l}
36
+
37
+ \begin{array}{l}
38
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 2. \\
39
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 2: \\
40
+ \end{array}
41
+ \\
42
+ \left(
43
+ \begin{array}{cc}
44
+ -2 & -2 \\
45
+ 2 & 3 \\
46
+ \end{array}
47
+ \right).\left(
48
+ \begin{array}{cc}
49
+ -1 & -2 \\
50
+ 3 & 3 \\
51
+ \end{array}
52
+ \right)=\left(
53
+ \begin{array}{cc}
54
+ \_ & \_ \\
55
+ \_ & \_ \\
56
+ \end{array}
57
+ \right) \\
58
+ \end{array}
59
+ \\
60
+
61
+ \begin{array}{l}
62
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
63
+ \left(
64
+ \begin{array}{cc}
65
+ -2 & -2 \\
66
+ 2 & 3 \\
67
+ \end{array}
68
+ \right).\left(
69
+ \begin{array}{cc}
70
+ -1 & -2 \\
71
+ 3 & 3 \\
72
+ \end{array}
73
+ \right)=\left(
74
+ \begin{array}{cc}
75
+ \_ & \_ \\
76
+ \_ & \_ \\
77
+ \end{array}
78
+ \right) \\
79
+ \end{array}
80
+ \\
81
+
82
+ \begin{array}{l}
83
+
84
+ \begin{array}{l}
85
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-1)+(-2)\, \times \, 3=-4. \\
86
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
87
+ \end{array}
88
+ \\
89
+ \left(
90
+ \begin{array}{cc}
91
+ -2 & -2 \\
92
+ 2 & 3 \\
93
+ \end{array}
94
+ \right).\left(
95
+ \begin{array}{cc}
96
+ -1 & -2 \\
97
+ 3 & 3 \\
98
+ \end{array}
99
+ \right)=\left(
100
+ \begin{array}{cc}
101
+ \fbox{$-4$} & \_ \\
102
+ \_ & \_ \\
103
+ \end{array}
104
+ \right) \\
105
+ \end{array}
106
+ \\
107
+
108
+ \begin{array}{l}
109
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
110
+ \left(
111
+ \begin{array}{cc}
112
+ -2 & -2 \\
113
+ 2 & 3 \\
114
+ \end{array}
115
+ \right).\left(
116
+ \begin{array}{cc}
117
+ -1 & -2 \\
118
+ 3 & 3 \\
119
+ \end{array}
120
+ \right)=\left(
121
+ \begin{array}{cc}
122
+ -4 & \_ \\
123
+ \_ & \_ \\
124
+ \end{array}
125
+ \right) \\
126
+ \end{array}
127
+ \\
128
+
129
+ \begin{array}{l}
130
+
131
+ \begin{array}{l}
132
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-2)+(-2)\, \times \, 3=-2. \\
133
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
134
+ \end{array}
135
+ \\
136
+ \left(
137
+ \begin{array}{cc}
138
+ -2 & -2 \\
139
+ 2 & 3 \\
140
+ \end{array}
141
+ \right).\left(
142
+ \begin{array}{cc}
143
+ -1 & -2 \\
144
+ 3 & 3 \\
145
+ \end{array}
146
+ \right)=\left(
147
+ \begin{array}{cc}
148
+ -4 & \fbox{$-2$} \\
149
+ \_ & \_ \\
150
+ \end{array}
151
+ \right) \\
152
+ \end{array}
153
+ \\
154
+
155
+ \begin{array}{l}
156
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
157
+ \left(
158
+ \begin{array}{cc}
159
+ -2 & -2 \\
160
+ 2 & 3 \\
161
+ \end{array}
162
+ \right).\left(
163
+ \begin{array}{cc}
164
+ -1 & -2 \\
165
+ 3 & 3 \\
166
+ \end{array}
167
+ \right)=\left(
168
+ \begin{array}{cc}
169
+ -4 & -2 \\
170
+ \_ & \_ \\
171
+ \end{array}
172
+ \right) \\
173
+ \end{array}
174
+ \\
175
+
176
+ \begin{array}{l}
177
+
178
+ \begin{array}{l}
179
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2 (-1)+3\ 3=7. \\
180
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
181
+ \end{array}
182
+ \\
183
+ \left(
184
+ \begin{array}{cc}
185
+ -2 & -2 \\
186
+ 2 & 3 \\
187
+ \end{array}
188
+ \right).\left(
189
+ \begin{array}{cc}
190
+ -1 & -2 \\
191
+ 3 & 3 \\
192
+ \end{array}
193
+ \right)=\left(
194
+ \begin{array}{cc}
195
+ -4 & -2 \\
196
+ \fbox{$7$} & \_ \\
197
+ \end{array}
198
+ \right) \\
199
+ \end{array}
200
+ \\
201
+
202
+ \begin{array}{l}
203
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
204
+ \left(
205
+ \begin{array}{cc}
206
+ -2 & -2 \\
207
+ 2 & 3 \\
208
+ \end{array}
209
+ \right).\left(
210
+ \begin{array}{cc}
211
+ -1 & -2 \\
212
+ 3 & 3 \\
213
+ \end{array}
214
+ \right)=\left(
215
+ \begin{array}{cc}
216
+ -4 & -2 \\
217
+ 7 & \_ \\
218
+ \end{array}
219
+ \right) \\
220
+ \end{array}
221
+ \\
222
+
223
+ \begin{array}{l}
224
+
225
+ \begin{array}{l}
226
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2 (-2)+3\ 3=5. \\
227
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
228
+ \end{array}
229
+ \\
230
+ \fbox{$
231
+ \begin{array}{ll}
232
+ \text{Answer:} & \\
233
+ \text{} & \left(
234
+ \begin{array}{cc}
235
+ -2 & -2 \\
236
+ 2 & 3 \\
237
+ \end{array}
238
+ \right).\left(
239
+ \begin{array}{cc}
240
+ -1 & -2 \\
241
+ 3 & 3 \\
242
+ \end{array}
243
+ \right)=\left(
244
+ \begin{array}{cc}
245
+ -4 & -2 \\
246
+ 7 & \fbox{$5$} \\
247
+ \end{array}
248
+ \right) \\
249
+ \end{array}
250
+ $} \\
251
+ \end{array}
252
+ \\
253
+ \end{array}
pretraining/mathematica/linear_algebra/multiply_w_steps/4014.txt ADDED
@@ -0,0 +1,528 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{cc}
5
+ -\frac{6}{7} & -\frac{4}{7} \\
6
+ \frac{18}{7} & -\frac{8}{7} \\
7
+ -\frac{19}{7} & \frac{20}{7} \\
8
+ \end{array}
9
+ \right)$ and
10
+ $\left(
11
+ \begin{array}{ccc}
12
+ -1 & 0 & -\frac{12}{7} \\
13
+ \frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
14
+ \end{array}
15
+ \right)$.
16
+ Answer:
17
+ \begin{array}{l}
18
+
19
+ \begin{array}{l}
20
+ \text{Multiply the following matrices}: \\
21
+ \left(
22
+ \begin{array}{cc}
23
+ -\frac{6}{7} & -\frac{4}{7} \\
24
+ \frac{18}{7} & -\frac{8}{7} \\
25
+ -\frac{19}{7} & \frac{20}{7} \\
26
+ \end{array}
27
+ \right).\left(
28
+ \begin{array}{ccc}
29
+ -1 & 0 & -\frac{12}{7} \\
30
+ \frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
31
+ \end{array}
32
+ \right) \\
33
+ \end{array}
34
+ \\
35
+ \hline
36
+
37
+ \begin{array}{l}
38
+
39
+ \begin{array}{l}
40
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 3. \\
41
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 3: \\
42
+ \end{array}
43
+ \\
44
+ \left(
45
+ \begin{array}{cc}
46
+ -\frac{6}{7} & -\frac{4}{7} \\
47
+ \frac{18}{7} & -\frac{8}{7} \\
48
+ -\frac{19}{7} & \frac{20}{7} \\
49
+ \end{array}
50
+ \right).\left(
51
+ \begin{array}{ccc}
52
+ -1 & 0 & -\frac{12}{7} \\
53
+ \frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
54
+ \end{array}
55
+ \right)=\left(
56
+ \begin{array}{ccc}
57
+ \_ & \_ & \_ \\
58
+ \_ & \_ & \_ \\
59
+ \_ & \_ & \_ \\
60
+ \end{array}
61
+ \right) \\
62
+ \end{array}
63
+ \\
64
+
65
+ \begin{array}{l}
66
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
67
+ \left(
68
+ \begin{array}{cc}
69
+ -\frac{6}{7} & -\frac{4}{7} \\
70
+ \frac{18}{7} & -\frac{8}{7} \\
71
+ -\frac{19}{7} & \frac{20}{7} \\
72
+ \end{array}
73
+ \right).\left(
74
+ \begin{array}{ccc}
75
+ -1 & 0 & -\frac{12}{7} \\
76
+ \frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
77
+ \end{array}
78
+ \right)=\left(
79
+ \begin{array}{ccc}
80
+ \_ & \_ & \_ \\
81
+ \_ & \_ & \_ \\
82
+ \_ & \_ & \_ \\
83
+ \end{array}
84
+ \right) \\
85
+ \end{array}
86
+ \\
87
+
88
+ \begin{array}{l}
89
+
90
+ \begin{array}{l}
91
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{6}{7}\right)\, (-1)+\left(-\frac{4}{7}\right)\, \times \, \frac{8}{7}=\frac{10}{49}. \\
92
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
93
+ \end{array}
94
+ \\
95
+ \left(
96
+ \begin{array}{cc}
97
+ -\frac{6}{7} & -\frac{4}{7} \\
98
+ \frac{18}{7} & -\frac{8}{7} \\
99
+ -\frac{19}{7} & \frac{20}{7} \\
100
+ \end{array}
101
+ \right).\left(
102
+ \begin{array}{ccc}
103
+ -1 & 0 & -\frac{12}{7} \\
104
+ \frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
105
+ \end{array}
106
+ \right)=\left(
107
+ \begin{array}{ccc}
108
+ \fbox{$\frac{10}{49}$} & \_ & \_ \\
109
+ \_ & \_ & \_ \\
110
+ \_ & \_ & \_ \\
111
+ \end{array}
112
+ \right) \\
113
+ \end{array}
114
+ \\
115
+
116
+ \begin{array}{l}
117
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
118
+ \left(
119
+ \begin{array}{cc}
120
+ -\frac{6}{7} & -\frac{4}{7} \\
121
+ \frac{18}{7} & -\frac{8}{7} \\
122
+ -\frac{19}{7} & \frac{20}{7} \\
123
+ \end{array}
124
+ \right).\left(
125
+ \begin{array}{ccc}
126
+ -1 & 0 & -\frac{12}{7} \\
127
+ \frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
128
+ \end{array}
129
+ \right)=\left(
130
+ \begin{array}{ccc}
131
+ \frac{10}{49} & \_ & \_ \\
132
+ \_ & \_ & \_ \\
133
+ \_ & \_ & \_ \\
134
+ \end{array}
135
+ \right) \\
136
+ \end{array}
137
+ \\
138
+
139
+ \begin{array}{l}
140
+
141
+ \begin{array}{l}
142
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{6}{7}\right)\, \times \, 0+\left(-\frac{4}{7}\right)\, \left(-\frac{8}{7}\right)=\frac{32}{49}. \\
143
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
144
+ \end{array}
145
+ \\
146
+ \left(
147
+ \begin{array}{cc}
148
+ -\frac{6}{7} & -\frac{4}{7} \\
149
+ \frac{18}{7} & -\frac{8}{7} \\
150
+ -\frac{19}{7} & \frac{20}{7} \\
151
+ \end{array}
152
+ \right).\left(
153
+ \begin{array}{ccc}
154
+ -1 & 0 & -\frac{12}{7} \\
155
+ \frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
156
+ \end{array}
157
+ \right)=\left(
158
+ \begin{array}{ccc}
159
+ \frac{10}{49} & \fbox{$\frac{32}{49}$} & \_ \\
160
+ \_ & \_ & \_ \\
161
+ \_ & \_ & \_ \\
162
+ \end{array}
163
+ \right) \\
164
+ \end{array}
165
+ \\
166
+
167
+ \begin{array}{l}
168
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
169
+ \left(
170
+ \begin{array}{cc}
171
+ -\frac{6}{7} & -\frac{4}{7} \\
172
+ \frac{18}{7} & -\frac{8}{7} \\
173
+ -\frac{19}{7} & \frac{20}{7} \\
174
+ \end{array}
175
+ \right).\left(
176
+ \begin{array}{ccc}
177
+ -1 & 0 & -\frac{12}{7} \\
178
+ \frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
179
+ \end{array}
180
+ \right)=\left(
181
+ \begin{array}{ccc}
182
+ \frac{10}{49} & \frac{32}{49} & \_ \\
183
+ \_ & \_ & \_ \\
184
+ \_ & \_ & \_ \\
185
+ \end{array}
186
+ \right) \\
187
+ \end{array}
188
+ \\
189
+
190
+ \begin{array}{l}
191
+
192
+ \begin{array}{l}
193
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{6}{7}\right)\, \left(-\frac{12}{7}\right)+\left(-\frac{4}{7}\right)\, \times \, \frac{20}{7}=-\frac{8}{49}. \\
194
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
195
+ \end{array}
196
+ \\
197
+ \left(
198
+ \begin{array}{cc}
199
+ -\frac{6}{7} & -\frac{4}{7} \\
200
+ \frac{18}{7} & -\frac{8}{7} \\
201
+ -\frac{19}{7} & \frac{20}{7} \\
202
+ \end{array}
203
+ \right).\left(
204
+ \begin{array}{ccc}
205
+ -1 & 0 & -\frac{12}{7} \\
206
+ \frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
207
+ \end{array}
208
+ \right)=\left(
209
+ \begin{array}{ccc}
210
+ \frac{10}{49} & \frac{32}{49} & \fbox{$-\frac{8}{49}$} \\
211
+ \_ & \_ & \_ \\
212
+ \_ & \_ & \_ \\
213
+ \end{array}
214
+ \right) \\
215
+ \end{array}
216
+ \\
217
+
218
+ \begin{array}{l}
219
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
220
+ \left(
221
+ \begin{array}{cc}
222
+ -\frac{6}{7} & -\frac{4}{7} \\
223
+ \frac{18}{7} & -\frac{8}{7} \\
224
+ -\frac{19}{7} & \frac{20}{7} \\
225
+ \end{array}
226
+ \right).\left(
227
+ \begin{array}{ccc}
228
+ -1 & 0 & -\frac{12}{7} \\
229
+ \frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
230
+ \end{array}
231
+ \right)=\left(
232
+ \begin{array}{ccc}
233
+ \frac{10}{49} & \frac{32}{49} & -\frac{8}{49} \\
234
+ \_ & \_ & \_ \\
235
+ \_ & \_ & \_ \\
236
+ \end{array}
237
+ \right) \\
238
+ \end{array}
239
+ \\
240
+
241
+ \begin{array}{l}
242
+
243
+ \begin{array}{l}
244
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{18 (-1)}{7}+\left(-\frac{8}{7}\right)\, \times \, \frac{8}{7}=-\frac{190}{49}. \\
245
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
246
+ \end{array}
247
+ \\
248
+ \left(
249
+ \begin{array}{cc}
250
+ -\frac{6}{7} & -\frac{4}{7} \\
251
+ \frac{18}{7} & -\frac{8}{7} \\
252
+ -\frac{19}{7} & \frac{20}{7} \\
253
+ \end{array}
254
+ \right).\left(
255
+ \begin{array}{ccc}
256
+ -1 & 0 & -\frac{12}{7} \\
257
+ \frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
258
+ \end{array}
259
+ \right)=\left(
260
+ \begin{array}{ccc}
261
+ \frac{10}{49} & \frac{32}{49} & -\frac{8}{49} \\
262
+ \fbox{$-\frac{190}{49}$} & \_ & \_ \\
263
+ \_ & \_ & \_ \\
264
+ \end{array}
265
+ \right) \\
266
+ \end{array}
267
+ \\
268
+
269
+ \begin{array}{l}
270
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
271
+ \left(
272
+ \begin{array}{cc}
273
+ -\frac{6}{7} & -\frac{4}{7} \\
274
+ \frac{18}{7} & -\frac{8}{7} \\
275
+ -\frac{19}{7} & \frac{20}{7} \\
276
+ \end{array}
277
+ \right).\left(
278
+ \begin{array}{ccc}
279
+ -1 & 0 & -\frac{12}{7} \\
280
+ \frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
281
+ \end{array}
282
+ \right)=\left(
283
+ \begin{array}{ccc}
284
+ \frac{10}{49} & \frac{32}{49} & -\frac{8}{49} \\
285
+ -\frac{190}{49} & \_ & \_ \\
286
+ \_ & \_ & \_ \\
287
+ \end{array}
288
+ \right) \\
289
+ \end{array}
290
+ \\
291
+
292
+ \begin{array}{l}
293
+
294
+ \begin{array}{l}
295
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{18\ 0}{7}+\left(-\frac{8}{7}\right)\, \left(-\frac{8}{7}\right)=\frac{64}{49}. \\
296
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
297
+ \end{array}
298
+ \\
299
+ \left(
300
+ \begin{array}{cc}
301
+ -\frac{6}{7} & -\frac{4}{7} \\
302
+ \frac{18}{7} & -\frac{8}{7} \\
303
+ -\frac{19}{7} & \frac{20}{7} \\
304
+ \end{array}
305
+ \right).\left(
306
+ \begin{array}{ccc}
307
+ -1 & 0 & -\frac{12}{7} \\
308
+ \frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
309
+ \end{array}
310
+ \right)=\left(
311
+ \begin{array}{ccc}
312
+ \frac{10}{49} & \frac{32}{49} & -\frac{8}{49} \\
313
+ -\frac{190}{49} & \fbox{$\frac{64}{49}$} & \_ \\
314
+ \_ & \_ & \_ \\
315
+ \end{array}
316
+ \right) \\
317
+ \end{array}
318
+ \\
319
+
320
+ \begin{array}{l}
321
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
322
+ \left(
323
+ \begin{array}{cc}
324
+ -\frac{6}{7} & -\frac{4}{7} \\
325
+ \frac{18}{7} & -\frac{8}{7} \\
326
+ -\frac{19}{7} & \frac{20}{7} \\
327
+ \end{array}
328
+ \right).\left(
329
+ \begin{array}{ccc}
330
+ -1 & 0 & -\frac{12}{7} \\
331
+ \frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
332
+ \end{array}
333
+ \right)=\left(
334
+ \begin{array}{ccc}
335
+ \frac{10}{49} & \frac{32}{49} & -\frac{8}{49} \\
336
+ -\frac{190}{49} & \frac{64}{49} & \_ \\
337
+ \_ & \_ & \_ \\
338
+ \end{array}
339
+ \right) \\
340
+ \end{array}
341
+ \\
342
+
343
+ \begin{array}{l}
344
+
345
+ \begin{array}{l}
346
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{18 (-12)}{7\ 7}+\left(-\frac{8}{7}\right)\, \times \, \frac{20}{7}=-\frac{376}{49}. \\
347
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
348
+ \end{array}
349
+ \\
350
+ \left(
351
+ \begin{array}{cc}
352
+ -\frac{6}{7} & -\frac{4}{7} \\
353
+ \frac{18}{7} & -\frac{8}{7} \\
354
+ -\frac{19}{7} & \frac{20}{7} \\
355
+ \end{array}
356
+ \right).\left(
357
+ \begin{array}{ccc}
358
+ -1 & 0 & -\frac{12}{7} \\
359
+ \frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
360
+ \end{array}
361
+ \right)=\left(
362
+ \begin{array}{ccc}
363
+ \frac{10}{49} & \frac{32}{49} & -\frac{8}{49} \\
364
+ -\frac{190}{49} & \frac{64}{49} & \fbox{$-\frac{376}{49}$} \\
365
+ \_ & \_ & \_ \\
366
+ \end{array}
367
+ \right) \\
368
+ \end{array}
369
+ \\
370
+
371
+ \begin{array}{l}
372
+ \text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
373
+ \left(
374
+ \begin{array}{cc}
375
+ -\frac{6}{7} & -\frac{4}{7} \\
376
+ \frac{18}{7} & -\frac{8}{7} \\
377
+ -\frac{19}{7} & \frac{20}{7} \\
378
+ \end{array}
379
+ \right).\left(
380
+ \begin{array}{ccc}
381
+ -1 & 0 & -\frac{12}{7} \\
382
+ \frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
383
+ \end{array}
384
+ \right)=\left(
385
+ \begin{array}{ccc}
386
+ \frac{10}{49} & \frac{32}{49} & -\frac{8}{49} \\
387
+ -\frac{190}{49} & \frac{64}{49} & -\frac{376}{49} \\
388
+ \_ & \_ & \_ \\
389
+ \end{array}
390
+ \right) \\
391
+ \end{array}
392
+ \\
393
+
394
+ \begin{array}{l}
395
+
396
+ \begin{array}{l}
397
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{19}{7}\right)\, (-1)+\frac{20\ 8}{7\ 7}=\frac{293}{49}. \\
398
+ \text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
399
+ \end{array}
400
+ \\
401
+ \left(
402
+ \begin{array}{cc}
403
+ -\frac{6}{7} & -\frac{4}{7} \\
404
+ \frac{18}{7} & -\frac{8}{7} \\
405
+ -\frac{19}{7} & \frac{20}{7} \\
406
+ \end{array}
407
+ \right).\left(
408
+ \begin{array}{ccc}
409
+ -1 & 0 & -\frac{12}{7} \\
410
+ \frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
411
+ \end{array}
412
+ \right)=\left(
413
+ \begin{array}{ccc}
414
+ \frac{10}{49} & \frac{32}{49} & -\frac{8}{49} \\
415
+ -\frac{190}{49} & \frac{64}{49} & -\frac{376}{49} \\
416
+ \fbox{$\frac{293}{49}$} & \_ & \_ \\
417
+ \end{array}
418
+ \right) \\
419
+ \end{array}
420
+ \\
421
+
422
+ \begin{array}{l}
423
+ \text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
424
+ \left(
425
+ \begin{array}{cc}
426
+ -\frac{6}{7} & -\frac{4}{7} \\
427
+ \frac{18}{7} & -\frac{8}{7} \\
428
+ -\frac{19}{7} & \frac{20}{7} \\
429
+ \end{array}
430
+ \right).\left(
431
+ \begin{array}{ccc}
432
+ -1 & 0 & -\frac{12}{7} \\
433
+ \frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
434
+ \end{array}
435
+ \right)=\left(
436
+ \begin{array}{ccc}
437
+ \frac{10}{49} & \frac{32}{49} & -\frac{8}{49} \\
438
+ -\frac{190}{49} & \frac{64}{49} & -\frac{376}{49} \\
439
+ \frac{293}{49} & \_ & \_ \\
440
+ \end{array}
441
+ \right) \\
442
+ \end{array}
443
+ \\
444
+
445
+ \begin{array}{l}
446
+
447
+ \begin{array}{l}
448
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{19}{7}\right)\, \times \, 0+\frac{20 (-8)}{7\ 7}=-\frac{160}{49}. \\
449
+ \text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
450
+ \end{array}
451
+ \\
452
+ \left(
453
+ \begin{array}{cc}
454
+ -\frac{6}{7} & -\frac{4}{7} \\
455
+ \frac{18}{7} & -\frac{8}{7} \\
456
+ -\frac{19}{7} & \frac{20}{7} \\
457
+ \end{array}
458
+ \right).\left(
459
+ \begin{array}{ccc}
460
+ -1 & 0 & -\frac{12}{7} \\
461
+ \frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
462
+ \end{array}
463
+ \right)=\left(
464
+ \begin{array}{ccc}
465
+ \frac{10}{49} & \frac{32}{49} & -\frac{8}{49} \\
466
+ -\frac{190}{49} & \frac{64}{49} & -\frac{376}{49} \\
467
+ \frac{293}{49} & \fbox{$-\frac{160}{49}$} & \_ \\
468
+ \end{array}
469
+ \right) \\
470
+ \end{array}
471
+ \\
472
+
473
+ \begin{array}{l}
474
+ \text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
475
+ \left(
476
+ \begin{array}{cc}
477
+ -\frac{6}{7} & -\frac{4}{7} \\
478
+ \frac{18}{7} & -\frac{8}{7} \\
479
+ -\frac{19}{7} & \frac{20}{7} \\
480
+ \end{array}
481
+ \right).\left(
482
+ \begin{array}{ccc}
483
+ -1 & 0 & -\frac{12}{7} \\
484
+ \frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
485
+ \end{array}
486
+ \right)=\left(
487
+ \begin{array}{ccc}
488
+ \frac{10}{49} & \frac{32}{49} & -\frac{8}{49} \\
489
+ -\frac{190}{49} & \frac{64}{49} & -\frac{376}{49} \\
490
+ \frac{293}{49} & -\frac{160}{49} & \_ \\
491
+ \end{array}
492
+ \right) \\
493
+ \end{array}
494
+ \\
495
+
496
+ \begin{array}{l}
497
+
498
+ \begin{array}{l}
499
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{19}{7}\right)\, \left(-\frac{12}{7}\right)+\frac{20\ 20}{7\ 7}=\frac{628}{49}. \\
500
+ \text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
501
+ \end{array}
502
+ \\
503
+ \fbox{$
504
+ \begin{array}{ll}
505
+ \text{Answer:} & \\
506
+ \text{} & \left(
507
+ \begin{array}{cc}
508
+ -\frac{6}{7} & -\frac{4}{7} \\
509
+ \frac{18}{7} & -\frac{8}{7} \\
510
+ -\frac{19}{7} & \frac{20}{7} \\
511
+ \end{array}
512
+ \right).\left(
513
+ \begin{array}{ccc}
514
+ -1 & 0 & -\frac{12}{7} \\
515
+ \frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
516
+ \end{array}
517
+ \right)=\left(
518
+ \begin{array}{ccc}
519
+ \frac{10}{49} & \frac{32}{49} & -\frac{8}{49} \\
520
+ -\frac{190}{49} & \frac{64}{49} & -\frac{376}{49} \\
521
+ \frac{293}{49} & -\frac{160}{49} & \fbox{$\frac{628}{49}$} \\
522
+ \end{array}
523
+ \right) \\
524
+ \end{array}
525
+ $} \\
526
+ \end{array}
527
+ \\
528
+ \end{array}
pretraining/mathematica/linear_algebra/multiply_w_steps/4161.txt ADDED
@@ -0,0 +1,347 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{cc}
5
+ -3 & 1 \\
6
+ 1 & -1 \\
7
+ \end{array}
8
+ \right)$ and
9
+ $\left(
10
+ \begin{array}{ccc}
11
+ 1 & 1 & 0 \\
12
+ -2 & -2 & -1 \\
13
+ \end{array}
14
+ \right)$.
15
+ Answer:
16
+ \begin{array}{l}
17
+
18
+ \begin{array}{l}
19
+ \text{Multiply the following matrices}: \\
20
+ \left(
21
+ \begin{array}{cc}
22
+ -3 & 1 \\
23
+ 1 & -1 \\
24
+ \end{array}
25
+ \right).\left(
26
+ \begin{array}{ccc}
27
+ 1 & 1 & 0 \\
28
+ -2 & -2 & -1 \\
29
+ \end{array}
30
+ \right) \\
31
+ \end{array}
32
+ \\
33
+ \hline
34
+
35
+ \begin{array}{l}
36
+
37
+ \begin{array}{l}
38
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 3. \\
39
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 3: \\
40
+ \end{array}
41
+ \\
42
+ \left(
43
+ \begin{array}{cc}
44
+ -3 & 1 \\
45
+ 1 & -1 \\
46
+ \end{array}
47
+ \right).\left(
48
+ \begin{array}{ccc}
49
+ 1 & 1 & 0 \\
50
+ -2 & -2 & -1 \\
51
+ \end{array}
52
+ \right)=\left(
53
+ \begin{array}{ccc}
54
+ \_ & \_ & \_ \\
55
+ \_ & \_ & \_ \\
56
+ \end{array}
57
+ \right) \\
58
+ \end{array}
59
+ \\
60
+
61
+ \begin{array}{l}
62
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
63
+ \left(
64
+ \begin{array}{cc}
65
+ -3 & 1 \\
66
+ 1 & -1 \\
67
+ \end{array}
68
+ \right).\left(
69
+ \begin{array}{ccc}
70
+ 1 & 1 & 0 \\
71
+ -2 & -2 & -1 \\
72
+ \end{array}
73
+ \right)=\left(
74
+ \begin{array}{ccc}
75
+ \_ & \_ & \_ \\
76
+ \_ & \_ & \_ \\
77
+ \end{array}
78
+ \right) \\
79
+ \end{array}
80
+ \\
81
+
82
+ \begin{array}{l}
83
+
84
+ \begin{array}{l}
85
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, \times \, 1+1 (-2)=-5. \\
86
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
87
+ \end{array}
88
+ \\
89
+ \left(
90
+ \begin{array}{cc}
91
+ -3 & 1 \\
92
+ 1 & -1 \\
93
+ \end{array}
94
+ \right).\left(
95
+ \begin{array}{ccc}
96
+ 1 & 1 & 0 \\
97
+ -2 & -2 & -1 \\
98
+ \end{array}
99
+ \right)=\left(
100
+ \begin{array}{ccc}
101
+ \fbox{$-5$} & \_ & \_ \\
102
+ \_ & \_ & \_ \\
103
+ \end{array}
104
+ \right) \\
105
+ \end{array}
106
+ \\
107
+
108
+ \begin{array}{l}
109
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
110
+ \left(
111
+ \begin{array}{cc}
112
+ -3 & 1 \\
113
+ 1 & -1 \\
114
+ \end{array}
115
+ \right).\left(
116
+ \begin{array}{ccc}
117
+ 1 & 1 & 0 \\
118
+ -2 & -2 & -1 \\
119
+ \end{array}
120
+ \right)=\left(
121
+ \begin{array}{ccc}
122
+ -5 & \_ & \_ \\
123
+ \_ & \_ & \_ \\
124
+ \end{array}
125
+ \right) \\
126
+ \end{array}
127
+ \\
128
+
129
+ \begin{array}{l}
130
+
131
+ \begin{array}{l}
132
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, \times \, 1+1 (-2)=-5. \\
133
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
134
+ \end{array}
135
+ \\
136
+ \left(
137
+ \begin{array}{cc}
138
+ -3 & 1 \\
139
+ 1 & -1 \\
140
+ \end{array}
141
+ \right).\left(
142
+ \begin{array}{ccc}
143
+ 1 & 1 & 0 \\
144
+ -2 & -2 & -1 \\
145
+ \end{array}
146
+ \right)=\left(
147
+ \begin{array}{ccc}
148
+ -5 & \fbox{$-5$} & \_ \\
149
+ \_ & \_ & \_ \\
150
+ \end{array}
151
+ \right) \\
152
+ \end{array}
153
+ \\
154
+
155
+ \begin{array}{l}
156
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
157
+ \left(
158
+ \begin{array}{cc}
159
+ -3 & 1 \\
160
+ 1 & -1 \\
161
+ \end{array}
162
+ \right).\left(
163
+ \begin{array}{ccc}
164
+ 1 & 1 & 0 \\
165
+ -2 & -2 & -1 \\
166
+ \end{array}
167
+ \right)=\left(
168
+ \begin{array}{ccc}
169
+ -5 & -5 & \_ \\
170
+ \_ & \_ & \_ \\
171
+ \end{array}
172
+ \right) \\
173
+ \end{array}
174
+ \\
175
+
176
+ \begin{array}{l}
177
+
178
+ \begin{array}{l}
179
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, \times \, 0+1 (-1)=-1. \\
180
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
181
+ \end{array}
182
+ \\
183
+ \left(
184
+ \begin{array}{cc}
185
+ -3 & 1 \\
186
+ 1 & -1 \\
187
+ \end{array}
188
+ \right).\left(
189
+ \begin{array}{ccc}
190
+ 1 & 1 & 0 \\
191
+ -2 & -2 & -1 \\
192
+ \end{array}
193
+ \right)=\left(
194
+ \begin{array}{ccc}
195
+ -5 & -5 & \fbox{$-1$} \\
196
+ \_ & \_ & \_ \\
197
+ \end{array}
198
+ \right) \\
199
+ \end{array}
200
+ \\
201
+
202
+ \begin{array}{l}
203
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
204
+ \left(
205
+ \begin{array}{cc}
206
+ -3 & 1 \\
207
+ 1 & -1 \\
208
+ \end{array}
209
+ \right).\left(
210
+ \begin{array}{ccc}
211
+ 1 & 1 & 0 \\
212
+ -2 & -2 & -1 \\
213
+ \end{array}
214
+ \right)=\left(
215
+ \begin{array}{ccc}
216
+ -5 & -5 & -1 \\
217
+ \_ & \_ & \_ \\
218
+ \end{array}
219
+ \right) \\
220
+ \end{array}
221
+ \\
222
+
223
+ \begin{array}{l}
224
+
225
+ \begin{array}{l}
226
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1\ 1+(-1)\, (-2)=3. \\
227
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
228
+ \end{array}
229
+ \\
230
+ \left(
231
+ \begin{array}{cc}
232
+ -3 & 1 \\
233
+ 1 & -1 \\
234
+ \end{array}
235
+ \right).\left(
236
+ \begin{array}{ccc}
237
+ 1 & 1 & 0 \\
238
+ -2 & -2 & -1 \\
239
+ \end{array}
240
+ \right)=\left(
241
+ \begin{array}{ccc}
242
+ -5 & -5 & -1 \\
243
+ \fbox{$3$} & \_ & \_ \\
244
+ \end{array}
245
+ \right) \\
246
+ \end{array}
247
+ \\
248
+
249
+ \begin{array}{l}
250
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
251
+ \left(
252
+ \begin{array}{cc}
253
+ -3 & 1 \\
254
+ 1 & -1 \\
255
+ \end{array}
256
+ \right).\left(
257
+ \begin{array}{ccc}
258
+ 1 & 1 & 0 \\
259
+ -2 & -2 & -1 \\
260
+ \end{array}
261
+ \right)=\left(
262
+ \begin{array}{ccc}
263
+ -5 & -5 & -1 \\
264
+ 3 & \_ & \_ \\
265
+ \end{array}
266
+ \right) \\
267
+ \end{array}
268
+ \\
269
+
270
+ \begin{array}{l}
271
+
272
+ \begin{array}{l}
273
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1\ 1+(-1)\, (-2)=3. \\
274
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
275
+ \end{array}
276
+ \\
277
+ \left(
278
+ \begin{array}{cc}
279
+ -3 & 1 \\
280
+ 1 & -1 \\
281
+ \end{array}
282
+ \right).\left(
283
+ \begin{array}{ccc}
284
+ 1 & 1 & 0 \\
285
+ -2 & -2 & -1 \\
286
+ \end{array}
287
+ \right)=\left(
288
+ \begin{array}{ccc}
289
+ -5 & -5 & -1 \\
290
+ 3 & \fbox{$3$} & \_ \\
291
+ \end{array}
292
+ \right) \\
293
+ \end{array}
294
+ \\
295
+
296
+ \begin{array}{l}
297
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
298
+ \left(
299
+ \begin{array}{cc}
300
+ -3 & 1 \\
301
+ 1 & -1 \\
302
+ \end{array}
303
+ \right).\left(
304
+ \begin{array}{ccc}
305
+ 1 & 1 & 0 \\
306
+ -2 & -2 & -1 \\
307
+ \end{array}
308
+ \right)=\left(
309
+ \begin{array}{ccc}
310
+ -5 & -5 & -1 \\
311
+ 3 & 3 & \_ \\
312
+ \end{array}
313
+ \right) \\
314
+ \end{array}
315
+ \\
316
+
317
+ \begin{array}{l}
318
+
319
+ \begin{array}{l}
320
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1\ 0+(-1)\, (-1)=1. \\
321
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
322
+ \end{array}
323
+ \\
324
+ \fbox{$
325
+ \begin{array}{ll}
326
+ \text{Answer:} & \\
327
+ \text{} & \left(
328
+ \begin{array}{cc}
329
+ -3 & 1 \\
330
+ 1 & -1 \\
331
+ \end{array}
332
+ \right).\left(
333
+ \begin{array}{ccc}
334
+ 1 & 1 & 0 \\
335
+ -2 & -2 & -1 \\
336
+ \end{array}
337
+ \right)=\left(
338
+ \begin{array}{ccc}
339
+ -5 & -5 & -1 \\
340
+ 3 & 3 & \fbox{$1$} \\
341
+ \end{array}
342
+ \right) \\
343
+ \end{array}
344
+ $} \\
345
+ \end{array}
346
+ \\
347
+ \end{array}
pretraining/mathematica/linear_algebra/multiply_w_steps/4599.txt ADDED
@@ -0,0 +1,362 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{ccc}
5
+ -\frac{7}{4} & -\frac{5}{2} & \frac{1}{4} \\
6
+ -3 & -2 & -\frac{5}{2} \\
7
+ \end{array}
8
+ \right)$ and
9
+ $\left(
10
+ \begin{array}{ccc}
11
+ -\frac{1}{4} & \frac{11}{4} & -\frac{11}{4} \\
12
+ -\frac{7}{4} & 1 & -\frac{3}{2} \\
13
+ \frac{5}{4} & -\frac{5}{2} & -\frac{5}{2} \\
14
+ \end{array}
15
+ \right)$.
16
+ Answer:
17
+ \begin{array}{l}
18
+
19
+ \begin{array}{l}
20
+ \text{Multiply the following matrices}: \\
21
+ \left(
22
+ \begin{array}{ccc}
23
+ -\frac{7}{4} & -\frac{5}{2} & \frac{1}{4} \\
24
+ -3 & -2 & -\frac{5}{2} \\
25
+ \end{array}
26
+ \right).\left(
27
+ \begin{array}{ccc}
28
+ -\frac{1}{4} & \frac{11}{4} & -\frac{11}{4} \\
29
+ -\frac{7}{4} & 1 & -\frac{3}{2} \\
30
+ \frac{5}{4} & -\frac{5}{2} & -\frac{5}{2} \\
31
+ \end{array}
32
+ \right) \\
33
+ \end{array}
34
+ \\
35
+ \hline
36
+
37
+ \begin{array}{l}
38
+
39
+ \begin{array}{l}
40
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 3. \\
41
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 3: \\
42
+ \end{array}
43
+ \\
44
+ \left(
45
+ \begin{array}{ccc}
46
+ -\frac{7}{4} & -\frac{5}{2} & \frac{1}{4} \\
47
+ -3 & -2 & -\frac{5}{2} \\
48
+ \end{array}
49
+ \right).\left(
50
+ \begin{array}{ccc}
51
+ -\frac{1}{4} & \frac{11}{4} & -\frac{11}{4} \\
52
+ -\frac{7}{4} & 1 & -\frac{3}{2} \\
53
+ \frac{5}{4} & -\frac{5}{2} & -\frac{5}{2} \\
54
+ \end{array}
55
+ \right)=\left(
56
+ \begin{array}{ccc}
57
+ \_ & \_ & \_ \\
58
+ \_ & \_ & \_ \\
59
+ \end{array}
60
+ \right) \\
61
+ \end{array}
62
+ \\
63
+
64
+ \begin{array}{l}
65
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
66
+ \left(
67
+ \begin{array}{ccc}
68
+ -\frac{7}{4} & -\frac{5}{2} & \frac{1}{4} \\
69
+ -3 & -2 & -\frac{5}{2} \\
70
+ \end{array}
71
+ \right).\left(
72
+ \begin{array}{ccc}
73
+ -\frac{1}{4} & \frac{11}{4} & -\frac{11}{4} \\
74
+ -\frac{7}{4} & 1 & -\frac{3}{2} \\
75
+ \frac{5}{4} & -\frac{5}{2} & -\frac{5}{2} \\
76
+ \end{array}
77
+ \right)=\left(
78
+ \begin{array}{ccc}
79
+ \_ & \_ & \_ \\
80
+ \_ & \_ & \_ \\
81
+ \end{array}
82
+ \right) \\
83
+ \end{array}
84
+ \\
85
+
86
+ \begin{array}{l}
87
+
88
+ \begin{array}{l}
89
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{7}{4\ 4}+\left(-\frac{5}{2}\right)\, \left(-\frac{7}{4}\right)+\frac{5}{4\ 4}=\frac{41}{8}. \\
90
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
91
+ \end{array}
92
+ \\
93
+ \left(
94
+ \begin{array}{ccc}
95
+ -\frac{7}{4} & -\frac{5}{2} & \frac{1}{4} \\
96
+ -3 & -2 & -\frac{5}{2} \\
97
+ \end{array}
98
+ \right).\left(
99
+ \begin{array}{ccc}
100
+ -\frac{1}{4} & \frac{11}{4} & -\frac{11}{4} \\
101
+ -\frac{7}{4} & 1 & -\frac{3}{2} \\
102
+ \frac{5}{4} & -\frac{5}{2} & -\frac{5}{2} \\
103
+ \end{array}
104
+ \right)=\left(
105
+ \begin{array}{ccc}
106
+ \fbox{$\frac{41}{8}$} & \_ & \_ \\
107
+ \_ & \_ & \_ \\
108
+ \end{array}
109
+ \right) \\
110
+ \end{array}
111
+ \\
112
+
113
+ \begin{array}{l}
114
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
115
+ \left(
116
+ \begin{array}{ccc}
117
+ -\frac{7}{4} & -\frac{5}{2} & \frac{1}{4} \\
118
+ -3 & -2 & -\frac{5}{2} \\
119
+ \end{array}
120
+ \right).\left(
121
+ \begin{array}{ccc}
122
+ -\frac{1}{4} & \frac{11}{4} & -\frac{11}{4} \\
123
+ -\frac{7}{4} & 1 & -\frac{3}{2} \\
124
+ \frac{5}{4} & -\frac{5}{2} & -\frac{5}{2} \\
125
+ \end{array}
126
+ \right)=\left(
127
+ \begin{array}{ccc}
128
+ \frac{41}{8} & \_ & \_ \\
129
+ \_ & \_ & \_ \\
130
+ \end{array}
131
+ \right) \\
132
+ \end{array}
133
+ \\
134
+
135
+ \begin{array}{l}
136
+
137
+ \begin{array}{l}
138
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{7}{4}\right)\, \times \, \frac{11}{4}+\left(-\frac{5}{2}\right)\, \times \, 1-\frac{5}{4\ 2}=-\frac{127}{16}. \\
139
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
140
+ \end{array}
141
+ \\
142
+ \left(
143
+ \begin{array}{ccc}
144
+ -\frac{7}{4} & -\frac{5}{2} & \frac{1}{4} \\
145
+ -3 & -2 & -\frac{5}{2} \\
146
+ \end{array}
147
+ \right).\left(
148
+ \begin{array}{ccc}
149
+ -\frac{1}{4} & \frac{11}{4} & -\frac{11}{4} \\
150
+ -\frac{7}{4} & 1 & -\frac{3}{2} \\
151
+ \frac{5}{4} & -\frac{5}{2} & -\frac{5}{2} \\
152
+ \end{array}
153
+ \right)=\left(
154
+ \begin{array}{ccc}
155
+ \frac{41}{8} & \fbox{$-\frac{127}{16}$} & \_ \\
156
+ \_ & \_ & \_ \\
157
+ \end{array}
158
+ \right) \\
159
+ \end{array}
160
+ \\
161
+
162
+ \begin{array}{l}
163
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
164
+ \left(
165
+ \begin{array}{ccc}
166
+ -\frac{7}{4} & -\frac{5}{2} & \frac{1}{4} \\
167
+ -3 & -2 & -\frac{5}{2} \\
168
+ \end{array}
169
+ \right).\left(
170
+ \begin{array}{ccc}
171
+ -\frac{1}{4} & \frac{11}{4} & -\frac{11}{4} \\
172
+ -\frac{7}{4} & 1 & -\frac{3}{2} \\
173
+ \frac{5}{4} & -\frac{5}{2} & -\frac{5}{2} \\
174
+ \end{array}
175
+ \right)=\left(
176
+ \begin{array}{ccc}
177
+ \frac{41}{8} & -\frac{127}{16} & \_ \\
178
+ \_ & \_ & \_ \\
179
+ \end{array}
180
+ \right) \\
181
+ \end{array}
182
+ \\
183
+
184
+ \begin{array}{l}
185
+
186
+ \begin{array}{l}
187
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{7}{4}\right)\, \left(-\frac{11}{4}\right)+\left(-\frac{5}{2}\right)\, \left(-\frac{3}{2}\right)-\frac{5}{4\ 2}=\frac{127}{16}. \\
188
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
189
+ \end{array}
190
+ \\
191
+ \left(
192
+ \begin{array}{ccc}
193
+ -\frac{7}{4} & -\frac{5}{2} & \frac{1}{4} \\
194
+ -3 & -2 & -\frac{5}{2} \\
195
+ \end{array}
196
+ \right).\left(
197
+ \begin{array}{ccc}
198
+ -\frac{1}{4} & \frac{11}{4} & -\frac{11}{4} \\
199
+ -\frac{7}{4} & 1 & -\frac{3}{2} \\
200
+ \frac{5}{4} & -\frac{5}{2} & -\frac{5}{2} \\
201
+ \end{array}
202
+ \right)=\left(
203
+ \begin{array}{ccc}
204
+ \frac{41}{8} & -\frac{127}{16} & \fbox{$\frac{127}{16}$} \\
205
+ \_ & \_ & \_ \\
206
+ \end{array}
207
+ \right) \\
208
+ \end{array}
209
+ \\
210
+
211
+ \begin{array}{l}
212
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
213
+ \left(
214
+ \begin{array}{ccc}
215
+ -\frac{7}{4} & -\frac{5}{2} & \frac{1}{4} \\
216
+ -3 & -2 & -\frac{5}{2} \\
217
+ \end{array}
218
+ \right).\left(
219
+ \begin{array}{ccc}
220
+ -\frac{1}{4} & \frac{11}{4} & -\frac{11}{4} \\
221
+ -\frac{7}{4} & 1 & -\frac{3}{2} \\
222
+ \frac{5}{4} & -\frac{5}{2} & -\frac{5}{2} \\
223
+ \end{array}
224
+ \right)=\left(
225
+ \begin{array}{ccc}
226
+ \frac{41}{8} & -\frac{127}{16} & \frac{127}{16} \\
227
+ \_ & \_ & \_ \\
228
+ \end{array}
229
+ \right) \\
230
+ \end{array}
231
+ \\
232
+
233
+ \begin{array}{l}
234
+
235
+ \begin{array}{l}
236
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{3}{4}+(-2)\, \left(-\frac{7}{4}\right)+\left(-\frac{5}{2}\right)\, \times \, \frac{5}{4}=\frac{9}{8}. \\
237
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
238
+ \end{array}
239
+ \\
240
+ \left(
241
+ \begin{array}{ccc}
242
+ -\frac{7}{4} & -\frac{5}{2} & \frac{1}{4} \\
243
+ -3 & -2 & -\frac{5}{2} \\
244
+ \end{array}
245
+ \right).\left(
246
+ \begin{array}{ccc}
247
+ -\frac{1}{4} & \frac{11}{4} & -\frac{11}{4} \\
248
+ -\frac{7}{4} & 1 & -\frac{3}{2} \\
249
+ \frac{5}{4} & -\frac{5}{2} & -\frac{5}{2} \\
250
+ \end{array}
251
+ \right)=\left(
252
+ \begin{array}{ccc}
253
+ \frac{41}{8} & -\frac{127}{16} & \frac{127}{16} \\
254
+ \fbox{$\frac{9}{8}$} & \_ & \_ \\
255
+ \end{array}
256
+ \right) \\
257
+ \end{array}
258
+ \\
259
+
260
+ \begin{array}{l}
261
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
262
+ \left(
263
+ \begin{array}{ccc}
264
+ -\frac{7}{4} & -\frac{5}{2} & \frac{1}{4} \\
265
+ -3 & -2 & -\frac{5}{2} \\
266
+ \end{array}
267
+ \right).\left(
268
+ \begin{array}{ccc}
269
+ -\frac{1}{4} & \frac{11}{4} & -\frac{11}{4} \\
270
+ -\frac{7}{4} & 1 & -\frac{3}{2} \\
271
+ \frac{5}{4} & -\frac{5}{2} & -\frac{5}{2} \\
272
+ \end{array}
273
+ \right)=\left(
274
+ \begin{array}{ccc}
275
+ \frac{41}{8} & -\frac{127}{16} & \frac{127}{16} \\
276
+ \frac{9}{8} & \_ & \_ \\
277
+ \end{array}
278
+ \right) \\
279
+ \end{array}
280
+ \\
281
+
282
+ \begin{array}{l}
283
+
284
+ \begin{array}{l}
285
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, \times \, \frac{11}{4}+(-2)\, \times \, 1+\left(-\frac{5}{2}\right)\, \left(-\frac{5}{2}\right)=-4. \\
286
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
287
+ \end{array}
288
+ \\
289
+ \left(
290
+ \begin{array}{ccc}
291
+ -\frac{7}{4} & -\frac{5}{2} & \frac{1}{4} \\
292
+ -3 & -2 & -\frac{5}{2} \\
293
+ \end{array}
294
+ \right).\left(
295
+ \begin{array}{ccc}
296
+ -\frac{1}{4} & \frac{11}{4} & -\frac{11}{4} \\
297
+ -\frac{7}{4} & 1 & -\frac{3}{2} \\
298
+ \frac{5}{4} & -\frac{5}{2} & -\frac{5}{2} \\
299
+ \end{array}
300
+ \right)=\left(
301
+ \begin{array}{ccc}
302
+ \frac{41}{8} & -\frac{127}{16} & \frac{127}{16} \\
303
+ \frac{9}{8} & \fbox{$-4$} & \_ \\
304
+ \end{array}
305
+ \right) \\
306
+ \end{array}
307
+ \\
308
+
309
+ \begin{array}{l}
310
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
311
+ \left(
312
+ \begin{array}{ccc}
313
+ -\frac{7}{4} & -\frac{5}{2} & \frac{1}{4} \\
314
+ -3 & -2 & -\frac{5}{2} \\
315
+ \end{array}
316
+ \right).\left(
317
+ \begin{array}{ccc}
318
+ -\frac{1}{4} & \frac{11}{4} & -\frac{11}{4} \\
319
+ -\frac{7}{4} & 1 & -\frac{3}{2} \\
320
+ \frac{5}{4} & -\frac{5}{2} & -\frac{5}{2} \\
321
+ \end{array}
322
+ \right)=\left(
323
+ \begin{array}{ccc}
324
+ \frac{41}{8} & -\frac{127}{16} & \frac{127}{16} \\
325
+ \frac{9}{8} & -4 & \_ \\
326
+ \end{array}
327
+ \right) \\
328
+ \end{array}
329
+ \\
330
+
331
+ \begin{array}{l}
332
+
333
+ \begin{array}{l}
334
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, \left(-\frac{11}{4}\right)+(-2)\, \left(-\frac{3}{2}\right)+\left(-\frac{5}{2}\right)\, \left(-\frac{5}{2}\right)=\frac{35}{2}. \\
335
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
336
+ \end{array}
337
+ \\
338
+ \fbox{$
339
+ \begin{array}{ll}
340
+ \text{Answer:} & \\
341
+ \text{} & \left(
342
+ \begin{array}{ccc}
343
+ -\frac{7}{4} & -\frac{5}{2} & \frac{1}{4} \\
344
+ -3 & -2 & -\frac{5}{2} \\
345
+ \end{array}
346
+ \right).\left(
347
+ \begin{array}{ccc}
348
+ -\frac{1}{4} & \frac{11}{4} & -\frac{11}{4} \\
349
+ -\frac{7}{4} & 1 & -\frac{3}{2} \\
350
+ \frac{5}{4} & -\frac{5}{2} & -\frac{5}{2} \\
351
+ \end{array}
352
+ \right)=\left(
353
+ \begin{array}{ccc}
354
+ \frac{41}{8} & -\frac{127}{16} & \frac{127}{16} \\
355
+ \frac{9}{8} & -4 & \fbox{$\frac{35}{2}$} \\
356
+ \end{array}
357
+ \right) \\
358
+ \end{array}
359
+ $} \\
360
+ \end{array}
361
+ \\
362
+ \end{array}
pretraining/mathematica/linear_algebra/multiply_w_steps/4613.txt ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{cc}
5
+ \frac{25}{16} & -\frac{5}{16} \\
6
+ \frac{1}{2} & -\frac{7}{4} \\
7
+ \end{array}
8
+ \right)$ and
9
+ $\left(
10
+ \begin{array}{cc}
11
+ 2 & 2 \\
12
+ -\frac{21}{16} & \frac{9}{8} \\
13
+ \end{array}
14
+ \right)$.
15
+ Answer:
16
+ \begin{array}{l}
17
+
18
+ \begin{array}{l}
19
+ \text{Multiply the following matrices}: \\
20
+ \left(
21
+ \begin{array}{cc}
22
+ \frac{25}{16} & -\frac{5}{16} \\
23
+ \frac{1}{2} & -\frac{7}{4} \\
24
+ \end{array}
25
+ \right).\left(
26
+ \begin{array}{cc}
27
+ 2 & 2 \\
28
+ -\frac{21}{16} & \frac{9}{8} \\
29
+ \end{array}
30
+ \right) \\
31
+ \end{array}
32
+ \\
33
+ \hline
34
+
35
+ \begin{array}{l}
36
+
37
+ \begin{array}{l}
38
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 2. \\
39
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 2: \\
40
+ \end{array}
41
+ \\
42
+ \left(
43
+ \begin{array}{cc}
44
+ \frac{25}{16} & -\frac{5}{16} \\
45
+ \frac{1}{2} & -\frac{7}{4} \\
46
+ \end{array}
47
+ \right).\left(
48
+ \begin{array}{cc}
49
+ 2 & 2 \\
50
+ -\frac{21}{16} & \frac{9}{8} \\
51
+ \end{array}
52
+ \right)=\left(
53
+ \begin{array}{cc}
54
+ \_ & \_ \\
55
+ \_ & \_ \\
56
+ \end{array}
57
+ \right) \\
58
+ \end{array}
59
+ \\
60
+
61
+ \begin{array}{l}
62
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
63
+ \left(
64
+ \begin{array}{cc}
65
+ \frac{25}{16} & -\frac{5}{16} \\
66
+ \frac{1}{2} & -\frac{7}{4} \\
67
+ \end{array}
68
+ \right).\left(
69
+ \begin{array}{cc}
70
+ 2 & 2 \\
71
+ -\frac{21}{16} & \frac{9}{8} \\
72
+ \end{array}
73
+ \right)=\left(
74
+ \begin{array}{cc}
75
+ \_ & \_ \\
76
+ \_ & \_ \\
77
+ \end{array}
78
+ \right) \\
79
+ \end{array}
80
+ \\
81
+
82
+ \begin{array}{l}
83
+
84
+ \begin{array}{l}
85
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{25\ 2}{16}+\left(-\frac{5}{16}\right)\, \left(-\frac{21}{16}\right)=\frac{905}{256}. \\
86
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
87
+ \end{array}
88
+ \\
89
+ \left(
90
+ \begin{array}{cc}
91
+ \frac{25}{16} & -\frac{5}{16} \\
92
+ \frac{1}{2} & -\frac{7}{4} \\
93
+ \end{array}
94
+ \right).\left(
95
+ \begin{array}{cc}
96
+ 2 & 2 \\
97
+ -\frac{21}{16} & \frac{9}{8} \\
98
+ \end{array}
99
+ \right)=\left(
100
+ \begin{array}{cc}
101
+ \fbox{$\frac{905}{256}$} & \_ \\
102
+ \_ & \_ \\
103
+ \end{array}
104
+ \right) \\
105
+ \end{array}
106
+ \\
107
+
108
+ \begin{array}{l}
109
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
110
+ \left(
111
+ \begin{array}{cc}
112
+ \frac{25}{16} & -\frac{5}{16} \\
113
+ \frac{1}{2} & -\frac{7}{4} \\
114
+ \end{array}
115
+ \right).\left(
116
+ \begin{array}{cc}
117
+ 2 & 2 \\
118
+ -\frac{21}{16} & \frac{9}{8} \\
119
+ \end{array}
120
+ \right)=\left(
121
+ \begin{array}{cc}
122
+ \frac{905}{256} & \_ \\
123
+ \_ & \_ \\
124
+ \end{array}
125
+ \right) \\
126
+ \end{array}
127
+ \\
128
+
129
+ \begin{array}{l}
130
+
131
+ \begin{array}{l}
132
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{25\ 2}{16}+\left(-\frac{5}{16}\right)\, \times \, \frac{9}{8}=\frac{355}{128}. \\
133
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
134
+ \end{array}
135
+ \\
136
+ \left(
137
+ \begin{array}{cc}
138
+ \frac{25}{16} & -\frac{5}{16} \\
139
+ \frac{1}{2} & -\frac{7}{4} \\
140
+ \end{array}
141
+ \right).\left(
142
+ \begin{array}{cc}
143
+ 2 & 2 \\
144
+ -\frac{21}{16} & \frac{9}{8} \\
145
+ \end{array}
146
+ \right)=\left(
147
+ \begin{array}{cc}
148
+ \frac{905}{256} & \fbox{$\frac{355}{128}$} \\
149
+ \_ & \_ \\
150
+ \end{array}
151
+ \right) \\
152
+ \end{array}
153
+ \\
154
+
155
+ \begin{array}{l}
156
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
157
+ \left(
158
+ \begin{array}{cc}
159
+ \frac{25}{16} & -\frac{5}{16} \\
160
+ \frac{1}{2} & -\frac{7}{4} \\
161
+ \end{array}
162
+ \right).\left(
163
+ \begin{array}{cc}
164
+ 2 & 2 \\
165
+ -\frac{21}{16} & \frac{9}{8} \\
166
+ \end{array}
167
+ \right)=\left(
168
+ \begin{array}{cc}
169
+ \frac{905}{256} & \frac{355}{128} \\
170
+ \_ & \_ \\
171
+ \end{array}
172
+ \right) \\
173
+ \end{array}
174
+ \\
175
+
176
+ \begin{array}{l}
177
+
178
+ \begin{array}{l}
179
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{2}{2}+\left(-\frac{7}{4}\right)\, \left(-\frac{21}{16}\right)=\frac{211}{64}. \\
180
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
181
+ \end{array}
182
+ \\
183
+ \left(
184
+ \begin{array}{cc}
185
+ \frac{25}{16} & -\frac{5}{16} \\
186
+ \frac{1}{2} & -\frac{7}{4} \\
187
+ \end{array}
188
+ \right).\left(
189
+ \begin{array}{cc}
190
+ 2 & 2 \\
191
+ -\frac{21}{16} & \frac{9}{8} \\
192
+ \end{array}
193
+ \right)=\left(
194
+ \begin{array}{cc}
195
+ \frac{905}{256} & \frac{355}{128} \\
196
+ \fbox{$\frac{211}{64}$} & \_ \\
197
+ \end{array}
198
+ \right) \\
199
+ \end{array}
200
+ \\
201
+
202
+ \begin{array}{l}
203
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
204
+ \left(
205
+ \begin{array}{cc}
206
+ \frac{25}{16} & -\frac{5}{16} \\
207
+ \frac{1}{2} & -\frac{7}{4} \\
208
+ \end{array}
209
+ \right).\left(
210
+ \begin{array}{cc}
211
+ 2 & 2 \\
212
+ -\frac{21}{16} & \frac{9}{8} \\
213
+ \end{array}
214
+ \right)=\left(
215
+ \begin{array}{cc}
216
+ \frac{905}{256} & \frac{355}{128} \\
217
+ \frac{211}{64} & \_ \\
218
+ \end{array}
219
+ \right) \\
220
+ \end{array}
221
+ \\
222
+
223
+ \begin{array}{l}
224
+
225
+ \begin{array}{l}
226
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{2}{2}+\left(-\frac{7}{4}\right)\, \times \, \frac{9}{8}=-\frac{31}{32}. \\
227
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
228
+ \end{array}
229
+ \\
230
+ \fbox{$
231
+ \begin{array}{ll}
232
+ \text{Answer:} & \\
233
+ \text{} & \left(
234
+ \begin{array}{cc}
235
+ \frac{25}{16} & -\frac{5}{16} \\
236
+ \frac{1}{2} & -\frac{7}{4} \\
237
+ \end{array}
238
+ \right).\left(
239
+ \begin{array}{cc}
240
+ 2 & 2 \\
241
+ -\frac{21}{16} & \frac{9}{8} \\
242
+ \end{array}
243
+ \right)=\left(
244
+ \begin{array}{cc}
245
+ \frac{905}{256} & \frac{355}{128} \\
246
+ \frac{211}{64} & \fbox{$-\frac{31}{32}$} \\
247
+ \end{array}
248
+ \right) \\
249
+ \end{array}
250
+ $} \\
251
+ \end{array}
252
+ \\
253
+ \end{array}
pretraining/mathematica/linear_algebra/multiply_w_steps/4661.txt ADDED
@@ -0,0 +1,375 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{cc}
5
+ -\frac{35}{16} & -\frac{5}{16} \\
6
+ \frac{13}{16} & \frac{13}{16} \\
7
+ -\frac{47}{16} & -\frac{37}{16} \\
8
+ \end{array}
9
+ \right)$ and
10
+ $\left(
11
+ \begin{array}{cc}
12
+ \frac{23}{16} & \frac{1}{2} \\
13
+ \frac{21}{8} & \frac{3}{2} \\
14
+ \end{array}
15
+ \right)$.
16
+ Answer:
17
+ \begin{array}{l}
18
+
19
+ \begin{array}{l}
20
+ \text{Multiply the following matrices}: \\
21
+ \left(
22
+ \begin{array}{cc}
23
+ -\frac{35}{16} & -\frac{5}{16} \\
24
+ \frac{13}{16} & \frac{13}{16} \\
25
+ -\frac{47}{16} & -\frac{37}{16} \\
26
+ \end{array}
27
+ \right).\left(
28
+ \begin{array}{cc}
29
+ \frac{23}{16} & \frac{1}{2} \\
30
+ \frac{21}{8} & \frac{3}{2} \\
31
+ \end{array}
32
+ \right) \\
33
+ \end{array}
34
+ \\
35
+ \hline
36
+
37
+ \begin{array}{l}
38
+
39
+ \begin{array}{l}
40
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 2. \\
41
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 2: \\
42
+ \end{array}
43
+ \\
44
+ \left(
45
+ \begin{array}{cc}
46
+ -\frac{35}{16} & -\frac{5}{16} \\
47
+ \frac{13}{16} & \frac{13}{16} \\
48
+ -\frac{47}{16} & -\frac{37}{16} \\
49
+ \end{array}
50
+ \right).\left(
51
+ \begin{array}{cc}
52
+ \frac{23}{16} & \frac{1}{2} \\
53
+ \frac{21}{8} & \frac{3}{2} \\
54
+ \end{array}
55
+ \right)=\left(
56
+ \begin{array}{cc}
57
+ \_ & \_ \\
58
+ \_ & \_ \\
59
+ \_ & \_ \\
60
+ \end{array}
61
+ \right) \\
62
+ \end{array}
63
+ \\
64
+
65
+ \begin{array}{l}
66
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
67
+ \left(
68
+ \begin{array}{cc}
69
+ -\frac{35}{16} & -\frac{5}{16} \\
70
+ \frac{13}{16} & \frac{13}{16} \\
71
+ -\frac{47}{16} & -\frac{37}{16} \\
72
+ \end{array}
73
+ \right).\left(
74
+ \begin{array}{cc}
75
+ \frac{23}{16} & \frac{1}{2} \\
76
+ \frac{21}{8} & \frac{3}{2} \\
77
+ \end{array}
78
+ \right)=\left(
79
+ \begin{array}{cc}
80
+ \_ & \_ \\
81
+ \_ & \_ \\
82
+ \_ & \_ \\
83
+ \end{array}
84
+ \right) \\
85
+ \end{array}
86
+ \\
87
+
88
+ \begin{array}{l}
89
+
90
+ \begin{array}{l}
91
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{35}{16}\right)\, \times \, \frac{23}{16}+\left(-\frac{5}{16}\right)\, \times \, \frac{21}{8}=-\frac{1015}{256}. \\
92
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
93
+ \end{array}
94
+ \\
95
+ \left(
96
+ \begin{array}{cc}
97
+ -\frac{35}{16} & -\frac{5}{16} \\
98
+ \frac{13}{16} & \frac{13}{16} \\
99
+ -\frac{47}{16} & -\frac{37}{16} \\
100
+ \end{array}
101
+ \right).\left(
102
+ \begin{array}{cc}
103
+ \frac{23}{16} & \frac{1}{2} \\
104
+ \frac{21}{8} & \frac{3}{2} \\
105
+ \end{array}
106
+ \right)=\left(
107
+ \begin{array}{cc}
108
+ \fbox{$-\frac{1015}{256}$} & \_ \\
109
+ \_ & \_ \\
110
+ \_ & \_ \\
111
+ \end{array}
112
+ \right) \\
113
+ \end{array}
114
+ \\
115
+
116
+ \begin{array}{l}
117
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
118
+ \left(
119
+ \begin{array}{cc}
120
+ -\frac{35}{16} & -\frac{5}{16} \\
121
+ \frac{13}{16} & \frac{13}{16} \\
122
+ -\frac{47}{16} & -\frac{37}{16} \\
123
+ \end{array}
124
+ \right).\left(
125
+ \begin{array}{cc}
126
+ \frac{23}{16} & \frac{1}{2} \\
127
+ \frac{21}{8} & \frac{3}{2} \\
128
+ \end{array}
129
+ \right)=\left(
130
+ \begin{array}{cc}
131
+ -\frac{1015}{256} & \_ \\
132
+ \_ & \_ \\
133
+ \_ & \_ \\
134
+ \end{array}
135
+ \right) \\
136
+ \end{array}
137
+ \\
138
+
139
+ \begin{array}{l}
140
+
141
+ \begin{array}{l}
142
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{35}{16}\right)\, \times \, \frac{1}{2}+\left(-\frac{5}{16}\right)\, \times \, \frac{3}{2}=-\frac{25}{16}. \\
143
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
144
+ \end{array}
145
+ \\
146
+ \left(
147
+ \begin{array}{cc}
148
+ -\frac{35}{16} & -\frac{5}{16} \\
149
+ \frac{13}{16} & \frac{13}{16} \\
150
+ -\frac{47}{16} & -\frac{37}{16} \\
151
+ \end{array}
152
+ \right).\left(
153
+ \begin{array}{cc}
154
+ \frac{23}{16} & \frac{1}{2} \\
155
+ \frac{21}{8} & \frac{3}{2} \\
156
+ \end{array}
157
+ \right)=\left(
158
+ \begin{array}{cc}
159
+ -\frac{1015}{256} & \fbox{$-\frac{25}{16}$} \\
160
+ \_ & \_ \\
161
+ \_ & \_ \\
162
+ \end{array}
163
+ \right) \\
164
+ \end{array}
165
+ \\
166
+
167
+ \begin{array}{l}
168
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
169
+ \left(
170
+ \begin{array}{cc}
171
+ -\frac{35}{16} & -\frac{5}{16} \\
172
+ \frac{13}{16} & \frac{13}{16} \\
173
+ -\frac{47}{16} & -\frac{37}{16} \\
174
+ \end{array}
175
+ \right).\left(
176
+ \begin{array}{cc}
177
+ \frac{23}{16} & \frac{1}{2} \\
178
+ \frac{21}{8} & \frac{3}{2} \\
179
+ \end{array}
180
+ \right)=\left(
181
+ \begin{array}{cc}
182
+ -\frac{1015}{256} & -\frac{25}{16} \\
183
+ \_ & \_ \\
184
+ \_ & \_ \\
185
+ \end{array}
186
+ \right) \\
187
+ \end{array}
188
+ \\
189
+
190
+ \begin{array}{l}
191
+
192
+ \begin{array}{l}
193
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{13\ 23}{16\ 16}+\frac{13\ 21}{16\ 8}=\frac{845}{256}. \\
194
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
195
+ \end{array}
196
+ \\
197
+ \left(
198
+ \begin{array}{cc}
199
+ -\frac{35}{16} & -\frac{5}{16} \\
200
+ \frac{13}{16} & \frac{13}{16} \\
201
+ -\frac{47}{16} & -\frac{37}{16} \\
202
+ \end{array}
203
+ \right).\left(
204
+ \begin{array}{cc}
205
+ \frac{23}{16} & \frac{1}{2} \\
206
+ \frac{21}{8} & \frac{3}{2} \\
207
+ \end{array}
208
+ \right)=\left(
209
+ \begin{array}{cc}
210
+ -\frac{1015}{256} & -\frac{25}{16} \\
211
+ \fbox{$\frac{845}{256}$} & \_ \\
212
+ \_ & \_ \\
213
+ \end{array}
214
+ \right) \\
215
+ \end{array}
216
+ \\
217
+
218
+ \begin{array}{l}
219
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
220
+ \left(
221
+ \begin{array}{cc}
222
+ -\frac{35}{16} & -\frac{5}{16} \\
223
+ \frac{13}{16} & \frac{13}{16} \\
224
+ -\frac{47}{16} & -\frac{37}{16} \\
225
+ \end{array}
226
+ \right).\left(
227
+ \begin{array}{cc}
228
+ \frac{23}{16} & \frac{1}{2} \\
229
+ \frac{21}{8} & \frac{3}{2} \\
230
+ \end{array}
231
+ \right)=\left(
232
+ \begin{array}{cc}
233
+ -\frac{1015}{256} & -\frac{25}{16} \\
234
+ \frac{845}{256} & \_ \\
235
+ \_ & \_ \\
236
+ \end{array}
237
+ \right) \\
238
+ \end{array}
239
+ \\
240
+
241
+ \begin{array}{l}
242
+
243
+ \begin{array}{l}
244
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{13}{16\ 2}+\frac{13\ 3}{16\ 2}=\frac{13}{8}. \\
245
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
246
+ \end{array}
247
+ \\
248
+ \left(
249
+ \begin{array}{cc}
250
+ -\frac{35}{16} & -\frac{5}{16} \\
251
+ \frac{13}{16} & \frac{13}{16} \\
252
+ -\frac{47}{16} & -\frac{37}{16} \\
253
+ \end{array}
254
+ \right).\left(
255
+ \begin{array}{cc}
256
+ \frac{23}{16} & \frac{1}{2} \\
257
+ \frac{21}{8} & \frac{3}{2} \\
258
+ \end{array}
259
+ \right)=\left(
260
+ \begin{array}{cc}
261
+ -\frac{1015}{256} & -\frac{25}{16} \\
262
+ \frac{845}{256} & \fbox{$\frac{13}{8}$} \\
263
+ \_ & \_ \\
264
+ \end{array}
265
+ \right) \\
266
+ \end{array}
267
+ \\
268
+
269
+ \begin{array}{l}
270
+ \text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
271
+ \left(
272
+ \begin{array}{cc}
273
+ -\frac{35}{16} & -\frac{5}{16} \\
274
+ \frac{13}{16} & \frac{13}{16} \\
275
+ -\frac{47}{16} & -\frac{37}{16} \\
276
+ \end{array}
277
+ \right).\left(
278
+ \begin{array}{cc}
279
+ \frac{23}{16} & \frac{1}{2} \\
280
+ \frac{21}{8} & \frac{3}{2} \\
281
+ \end{array}
282
+ \right)=\left(
283
+ \begin{array}{cc}
284
+ -\frac{1015}{256} & -\frac{25}{16} \\
285
+ \frac{845}{256} & \frac{13}{8} \\
286
+ \_ & \_ \\
287
+ \end{array}
288
+ \right) \\
289
+ \end{array}
290
+ \\
291
+
292
+ \begin{array}{l}
293
+
294
+ \begin{array}{l}
295
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{47}{16}\right)\, \times \, \frac{23}{16}+\left(-\frac{37}{16}\right)\, \times \, \frac{21}{8}=-\frac{2635}{256}. \\
296
+ \text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
297
+ \end{array}
298
+ \\
299
+ \left(
300
+ \begin{array}{cc}
301
+ -\frac{35}{16} & -\frac{5}{16} \\
302
+ \frac{13}{16} & \frac{13}{16} \\
303
+ -\frac{47}{16} & -\frac{37}{16} \\
304
+ \end{array}
305
+ \right).\left(
306
+ \begin{array}{cc}
307
+ \frac{23}{16} & \frac{1}{2} \\
308
+ \frac{21}{8} & \frac{3}{2} \\
309
+ \end{array}
310
+ \right)=\left(
311
+ \begin{array}{cc}
312
+ -\frac{1015}{256} & -\frac{25}{16} \\
313
+ \frac{845}{256} & \frac{13}{8} \\
314
+ \fbox{$-\frac{2635}{256}$} & \_ \\
315
+ \end{array}
316
+ \right) \\
317
+ \end{array}
318
+ \\
319
+
320
+ \begin{array}{l}
321
+ \text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
322
+ \left(
323
+ \begin{array}{cc}
324
+ -\frac{35}{16} & -\frac{5}{16} \\
325
+ \frac{13}{16} & \frac{13}{16} \\
326
+ -\frac{47}{16} & -\frac{37}{16} \\
327
+ \end{array}
328
+ \right).\left(
329
+ \begin{array}{cc}
330
+ \frac{23}{16} & \frac{1}{2} \\
331
+ \frac{21}{8} & \frac{3}{2} \\
332
+ \end{array}
333
+ \right)=\left(
334
+ \begin{array}{cc}
335
+ -\frac{1015}{256} & -\frac{25}{16} \\
336
+ \frac{845}{256} & \frac{13}{8} \\
337
+ -\frac{2635}{256} & \_ \\
338
+ \end{array}
339
+ \right) \\
340
+ \end{array}
341
+ \\
342
+
343
+ \begin{array}{l}
344
+
345
+ \begin{array}{l}
346
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{47}{16}\right)\, \times \, \frac{1}{2}+\left(-\frac{37}{16}\right)\, \times \, \frac{3}{2}=-\frac{79}{16}. \\
347
+ \text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
348
+ \end{array}
349
+ \\
350
+ \fbox{$
351
+ \begin{array}{ll}
352
+ \text{Answer:} & \\
353
+ \text{} & \left(
354
+ \begin{array}{cc}
355
+ -\frac{35}{16} & -\frac{5}{16} \\
356
+ \frac{13}{16} & \frac{13}{16} \\
357
+ -\frac{47}{16} & -\frac{37}{16} \\
358
+ \end{array}
359
+ \right).\left(
360
+ \begin{array}{cc}
361
+ \frac{23}{16} & \frac{1}{2} \\
362
+ \frac{21}{8} & \frac{3}{2} \\
363
+ \end{array}
364
+ \right)=\left(
365
+ \begin{array}{cc}
366
+ -\frac{1015}{256} & -\frac{25}{16} \\
367
+ \frac{845}{256} & \frac{13}{8} \\
368
+ -\frac{2635}{256} & \fbox{$-\frac{79}{16}$} \\
369
+ \end{array}
370
+ \right) \\
371
+ \end{array}
372
+ $} \\
373
+ \end{array}
374
+ \\
375
+ \end{array}
pretraining/mathematica/linear_algebra/multiply_w_steps/4856.txt ADDED
@@ -0,0 +1,264 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{ccc}
5
+ 0 & -3 & 0 \\
6
+ 0 & 0 & -1 \\
7
+ \end{array}
8
+ \right)$ and
9
+ $\left(
10
+ \begin{array}{cc}
11
+ 0 & 1 \\
12
+ -3 & -2 \\
13
+ 0 & 1 \\
14
+ \end{array}
15
+ \right)$.
16
+ Answer:
17
+ \begin{array}{l}
18
+
19
+ \begin{array}{l}
20
+ \text{Multiply the following matrices}: \\
21
+ \left(
22
+ \begin{array}{ccc}
23
+ 0 & -3 & 0 \\
24
+ 0 & 0 & -1 \\
25
+ \end{array}
26
+ \right).\left(
27
+ \begin{array}{cc}
28
+ 0 & 1 \\
29
+ -3 & -2 \\
30
+ 0 & 1 \\
31
+ \end{array}
32
+ \right) \\
33
+ \end{array}
34
+ \\
35
+ \hline
36
+
37
+ \begin{array}{l}
38
+
39
+ \begin{array}{l}
40
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 2. \\
41
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 2: \\
42
+ \end{array}
43
+ \\
44
+ \left(
45
+ \begin{array}{ccc}
46
+ 0 & -3 & 0 \\
47
+ 0 & 0 & -1 \\
48
+ \end{array}
49
+ \right).\left(
50
+ \begin{array}{cc}
51
+ 0 & 1 \\
52
+ -3 & -2 \\
53
+ 0 & 1 \\
54
+ \end{array}
55
+ \right)=\left(
56
+ \begin{array}{cc}
57
+ \_ & \_ \\
58
+ \_ & \_ \\
59
+ \end{array}
60
+ \right) \\
61
+ \end{array}
62
+ \\
63
+
64
+ \begin{array}{l}
65
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
66
+ \left(
67
+ \begin{array}{ccc}
68
+ 0 & -3 & 0 \\
69
+ 0 & 0 & -1 \\
70
+ \end{array}
71
+ \right).\left(
72
+ \begin{array}{cc}
73
+ 0 & 1 \\
74
+ -3 & -2 \\
75
+ 0 & 1 \\
76
+ \end{array}
77
+ \right)=\left(
78
+ \begin{array}{cc}
79
+ \_ & \_ \\
80
+ \_ & \_ \\
81
+ \end{array}
82
+ \right) \\
83
+ \end{array}
84
+ \\
85
+
86
+ \begin{array}{l}
87
+
88
+ \begin{array}{l}
89
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }0\ 0+(-3)\, (-3)+0\ 0=9. \\
90
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
91
+ \end{array}
92
+ \\
93
+ \left(
94
+ \begin{array}{ccc}
95
+ 0 & -3 & 0 \\
96
+ 0 & 0 & -1 \\
97
+ \end{array}
98
+ \right).\left(
99
+ \begin{array}{cc}
100
+ 0 & 1 \\
101
+ -3 & -2 \\
102
+ 0 & 1 \\
103
+ \end{array}
104
+ \right)=\left(
105
+ \begin{array}{cc}
106
+ \fbox{$9$} & \_ \\
107
+ \_ & \_ \\
108
+ \end{array}
109
+ \right) \\
110
+ \end{array}
111
+ \\
112
+
113
+ \begin{array}{l}
114
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
115
+ \left(
116
+ \begin{array}{ccc}
117
+ 0 & -3 & 0 \\
118
+ 0 & 0 & -1 \\
119
+ \end{array}
120
+ \right).\left(
121
+ \begin{array}{cc}
122
+ 0 & 1 \\
123
+ -3 & -2 \\
124
+ 0 & 1 \\
125
+ \end{array}
126
+ \right)=\left(
127
+ \begin{array}{cc}
128
+ 9 & \_ \\
129
+ \_ & \_ \\
130
+ \end{array}
131
+ \right) \\
132
+ \end{array}
133
+ \\
134
+
135
+ \begin{array}{l}
136
+
137
+ \begin{array}{l}
138
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }0\ 1+(-3)\, (-2)+0\ 1=6. \\
139
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
140
+ \end{array}
141
+ \\
142
+ \left(
143
+ \begin{array}{ccc}
144
+ 0 & -3 & 0 \\
145
+ 0 & 0 & -1 \\
146
+ \end{array}
147
+ \right).\left(
148
+ \begin{array}{cc}
149
+ 0 & 1 \\
150
+ -3 & -2 \\
151
+ 0 & 1 \\
152
+ \end{array}
153
+ \right)=\left(
154
+ \begin{array}{cc}
155
+ 9 & \fbox{$6$} \\
156
+ \_ & \_ \\
157
+ \end{array}
158
+ \right) \\
159
+ \end{array}
160
+ \\
161
+
162
+ \begin{array}{l}
163
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
164
+ \left(
165
+ \begin{array}{ccc}
166
+ 0 & -3 & 0 \\
167
+ 0 & 0 & -1 \\
168
+ \end{array}
169
+ \right).\left(
170
+ \begin{array}{cc}
171
+ 0 & 1 \\
172
+ -3 & -2 \\
173
+ 0 & 1 \\
174
+ \end{array}
175
+ \right)=\left(
176
+ \begin{array}{cc}
177
+ 9 & 6 \\
178
+ \_ & \_ \\
179
+ \end{array}
180
+ \right) \\
181
+ \end{array}
182
+ \\
183
+
184
+ \begin{array}{l}
185
+
186
+ \begin{array}{l}
187
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }0\ 0+0 (-3)+(-1)\, \times \, 0=0. \\
188
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
189
+ \end{array}
190
+ \\
191
+ \left(
192
+ \begin{array}{ccc}
193
+ 0 & -3 & 0 \\
194
+ 0 & 0 & -1 \\
195
+ \end{array}
196
+ \right).\left(
197
+ \begin{array}{cc}
198
+ 0 & 1 \\
199
+ -3 & -2 \\
200
+ 0 & 1 \\
201
+ \end{array}
202
+ \right)=\left(
203
+ \begin{array}{cc}
204
+ 9 & 6 \\
205
+ \fbox{$0$} & \_ \\
206
+ \end{array}
207
+ \right) \\
208
+ \end{array}
209
+ \\
210
+
211
+ \begin{array}{l}
212
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
213
+ \left(
214
+ \begin{array}{ccc}
215
+ 0 & -3 & 0 \\
216
+ 0 & 0 & -1 \\
217
+ \end{array}
218
+ \right).\left(
219
+ \begin{array}{cc}
220
+ 0 & 1 \\
221
+ -3 & -2 \\
222
+ 0 & 1 \\
223
+ \end{array}
224
+ \right)=\left(
225
+ \begin{array}{cc}
226
+ 9 & 6 \\
227
+ 0 & \_ \\
228
+ \end{array}
229
+ \right) \\
230
+ \end{array}
231
+ \\
232
+
233
+ \begin{array}{l}
234
+
235
+ \begin{array}{l}
236
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }0\ 1+0 (-2)+(-1)\, \times \, 1=-1. \\
237
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
238
+ \end{array}
239
+ \\
240
+ \fbox{$
241
+ \begin{array}{ll}
242
+ \text{Answer:} & \\
243
+ \text{} & \left(
244
+ \begin{array}{ccc}
245
+ 0 & -3 & 0 \\
246
+ 0 & 0 & -1 \\
247
+ \end{array}
248
+ \right).\left(
249
+ \begin{array}{cc}
250
+ 0 & 1 \\
251
+ -3 & -2 \\
252
+ 0 & 1 \\
253
+ \end{array}
254
+ \right)=\left(
255
+ \begin{array}{cc}
256
+ 9 & 6 \\
257
+ 0 & \fbox{$-1$} \\
258
+ \end{array}
259
+ \right) \\
260
+ \end{array}
261
+ $} \\
262
+ \end{array}
263
+ \\
264
+ \end{array}
pretraining/mathematica/linear_algebra/multiply_w_steps/734.txt ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Problem:
2
+ Multiply
3
+ $\left(
4
+ \begin{array}{cc}
5
+ 0 & -1 \\
6
+ 3 & 1 \\
7
+ \end{array}
8
+ \right)$ and
9
+ $\left(
10
+ \begin{array}{cc}
11
+ 0 & 3 \\
12
+ 2 & -2 \\
13
+ \end{array}
14
+ \right)$.
15
+ Answer:
16
+ \begin{array}{l}
17
+
18
+ \begin{array}{l}
19
+ \text{Multiply the following matrices}: \\
20
+ \left(
21
+ \begin{array}{cc}
22
+ 0 & -1 \\
23
+ 3 & 1 \\
24
+ \end{array}
25
+ \right).\left(
26
+ \begin{array}{cc}
27
+ 0 & 3 \\
28
+ 2 & -2 \\
29
+ \end{array}
30
+ \right) \\
31
+ \end{array}
32
+ \\
33
+ \hline
34
+
35
+ \begin{array}{l}
36
+
37
+ \begin{array}{l}
38
+ \text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 2. \\
39
+ \text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 2: \\
40
+ \end{array}
41
+ \\
42
+ \left(
43
+ \begin{array}{cc}
44
+ 0 & -1 \\
45
+ 3 & 1 \\
46
+ \end{array}
47
+ \right).\left(
48
+ \begin{array}{cc}
49
+ 0 & 3 \\
50
+ 2 & -2 \\
51
+ \end{array}
52
+ \right)=\left(
53
+ \begin{array}{cc}
54
+ \_ & \_ \\
55
+ \_ & \_ \\
56
+ \end{array}
57
+ \right) \\
58
+ \end{array}
59
+ \\
60
+
61
+ \begin{array}{l}
62
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
63
+ \left(
64
+ \begin{array}{cc}
65
+ 0 & -1 \\
66
+ 3 & 1 \\
67
+ \end{array}
68
+ \right).\left(
69
+ \begin{array}{cc}
70
+ 0 & 3 \\
71
+ 2 & -2 \\
72
+ \end{array}
73
+ \right)=\left(
74
+ \begin{array}{cc}
75
+ \_ & \_ \\
76
+ \_ & \_ \\
77
+ \end{array}
78
+ \right) \\
79
+ \end{array}
80
+ \\
81
+
82
+ \begin{array}{l}
83
+
84
+ \begin{array}{l}
85
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }0\ 0+(-1)\, \times \, 2=-2. \\
86
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
87
+ \end{array}
88
+ \\
89
+ \left(
90
+ \begin{array}{cc}
91
+ 0 & -1 \\
92
+ 3 & 1 \\
93
+ \end{array}
94
+ \right).\left(
95
+ \begin{array}{cc}
96
+ 0 & 3 \\
97
+ 2 & -2 \\
98
+ \end{array}
99
+ \right)=\left(
100
+ \begin{array}{cc}
101
+ \fbox{$-2$} & \_ \\
102
+ \_ & \_ \\
103
+ \end{array}
104
+ \right) \\
105
+ \end{array}
106
+ \\
107
+
108
+ \begin{array}{l}
109
+ \text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
110
+ \left(
111
+ \begin{array}{cc}
112
+ 0 & -1 \\
113
+ 3 & 1 \\
114
+ \end{array}
115
+ \right).\left(
116
+ \begin{array}{cc}
117
+ 0 & 3 \\
118
+ 2 & -2 \\
119
+ \end{array}
120
+ \right)=\left(
121
+ \begin{array}{cc}
122
+ -2 & \_ \\
123
+ \_ & \_ \\
124
+ \end{array}
125
+ \right) \\
126
+ \end{array}
127
+ \\
128
+
129
+ \begin{array}{l}
130
+
131
+ \begin{array}{l}
132
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }0\ 3+(-1)\, (-2)=2. \\
133
+ \text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
134
+ \end{array}
135
+ \\
136
+ \left(
137
+ \begin{array}{cc}
138
+ 0 & -1 \\
139
+ 3 & 1 \\
140
+ \end{array}
141
+ \right).\left(
142
+ \begin{array}{cc}
143
+ 0 & 3 \\
144
+ 2 & -2 \\
145
+ \end{array}
146
+ \right)=\left(
147
+ \begin{array}{cc}
148
+ -2 & \fbox{$2$} \\
149
+ \_ & \_ \\
150
+ \end{array}
151
+ \right) \\
152
+ \end{array}
153
+ \\
154
+
155
+ \begin{array}{l}
156
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
157
+ \left(
158
+ \begin{array}{cc}
159
+ 0 & -1 \\
160
+ 3 & 1 \\
161
+ \end{array}
162
+ \right).\left(
163
+ \begin{array}{cc}
164
+ 0 & 3 \\
165
+ 2 & -2 \\
166
+ \end{array}
167
+ \right)=\left(
168
+ \begin{array}{cc}
169
+ -2 & 2 \\
170
+ \_ & \_ \\
171
+ \end{array}
172
+ \right) \\
173
+ \end{array}
174
+ \\
175
+
176
+ \begin{array}{l}
177
+
178
+ \begin{array}{l}
179
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }3\ 0+1\ 2=2. \\
180
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
181
+ \end{array}
182
+ \\
183
+ \left(
184
+ \begin{array}{cc}
185
+ 0 & -1 \\
186
+ 3 & 1 \\
187
+ \end{array}
188
+ \right).\left(
189
+ \begin{array}{cc}
190
+ 0 & 3 \\
191
+ 2 & -2 \\
192
+ \end{array}
193
+ \right)=\left(
194
+ \begin{array}{cc}
195
+ -2 & 2 \\
196
+ \fbox{$2$} & \_ \\
197
+ \end{array}
198
+ \right) \\
199
+ \end{array}
200
+ \\
201
+
202
+ \begin{array}{l}
203
+ \text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
204
+ \left(
205
+ \begin{array}{cc}
206
+ 0 & -1 \\
207
+ 3 & 1 \\
208
+ \end{array}
209
+ \right).\left(
210
+ \begin{array}{cc}
211
+ 0 & 3 \\
212
+ 2 & -2 \\
213
+ \end{array}
214
+ \right)=\left(
215
+ \begin{array}{cc}
216
+ -2 & 2 \\
217
+ 2 & \_ \\
218
+ \end{array}
219
+ \right) \\
220
+ \end{array}
221
+ \\
222
+
223
+ \begin{array}{l}
224
+
225
+ \begin{array}{l}
226
+ \text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }3\ 3+1 (-2)=7. \\
227
+ \text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
228
+ \end{array}
229
+ \\
230
+ \fbox{$
231
+ \begin{array}{ll}
232
+ \text{Answer:} & \\
233
+ \text{} & \left(
234
+ \begin{array}{cc}
235
+ 0 & -1 \\
236
+ 3 & 1 \\
237
+ \end{array}
238
+ \right).\left(
239
+ \begin{array}{cc}
240
+ 0 & 3 \\
241
+ 2 & -2 \\
242
+ \end{array}
243
+ \right)=\left(
244
+ \begin{array}{cc}
245
+ -2 & 2 \\
246
+ 2 & \fbox{$7$} \\
247
+ \end{array}
248
+ \right) \\
249
+ \end{array}
250
+ $} \\
251
+ \end{array}
252
+ \\
253
+ \end{array}
pretraining/mathematica/number_theory/multiplicative_order/10331.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Problem:
2
+ Find the smallest integer $m$ such that $36^m \equiv 1 \pmod{335}$.
3
+ Answer:
4
+ $33$
pretraining/mathematica/number_theory/multiplicative_order/10834.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Problem:
2
+ Find the smallest integer $m$ such that $938^m \equiv 1 \pmod{951}$.
3
+ Answer:
4
+ $316$
pretraining/mathematica/number_theory/multiplicative_order/13083.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Problem:
2
+ Find the smallest integer $m$ such that $219^m \equiv 1 \pmod{380}$.
3
+ Answer:
4
+ $18$
pretraining/mathematica/number_theory/multiplicative_order/13232.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Problem:
2
+ Find the smallest integer $m$ such that $242^m \equiv 1 \pmod{335}$.
3
+ Answer:
4
+ $132$
pretraining/mathematica/number_theory/multiplicative_order/13795.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Problem:
2
+ Find the smallest integer $m$ such that $34^m \equiv 1 \pmod{135}$.
3
+ Answer:
4
+ $18$
pretraining/mathematica/number_theory/multiplicative_order/16023.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Problem:
2
+ Find the smallest integer $m$ such that $391^m \equiv 1 \pmod{655}$.
3
+ Answer:
4
+ $65$
pretraining/mathematica/number_theory/multiplicative_order/17927.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Problem:
2
+ Find the smallest integer $m$ such that $212^m \equiv 1 \pmod{721}$.
3
+ Answer:
4
+ $102$
pretraining/mathematica/number_theory/multiplicative_order/17959.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Problem:
2
+ Find the smallest integer $m$ such that $262^m \equiv 1 \pmod{867}$.
3
+ Answer:
4
+ $272$
pretraining/mathematica/number_theory/multiplicative_order/19243.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Problem:
2
+ Find the smallest integer $m$ such that $311^m \equiv 1 \pmod{826}$.
3
+ Answer:
4
+ $174$
pretraining/mathematica/number_theory/multiplicative_order/21365.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Problem:
2
+ Find the smallest integer $m$ such that $325^m \equiv 1 \pmod{682}$.
3
+ Answer:
4
+ $10$
pretraining/mathematica/number_theory/multiplicative_order/23015.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Problem:
2
+ Find the smallest integer $m$ such that $248^m \equiv 1 \pmod{349}$.
3
+ Answer:
4
+ $116$
pretraining/mathematica/number_theory/multiplicative_order/25071.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Problem:
2
+ Find the smallest integer $m$ such that $669^m \equiv 1 \pmod{778}$.
3
+ Answer:
4
+ $388$
pretraining/mathematica/number_theory/multiplicative_order/27174.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Problem:
2
+ Find the smallest integer $m$ such that $111^m \equiv 1 \pmod{986}$.
3
+ Answer:
4
+ $56$