Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- pretraining/mathematica/linear_algebra/multiply_w_steps/1095.txt +549 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/1159.txt +528 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/1226.txt +253 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/1239.txt +231 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/1285.txt +159 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/1485.txt +390 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/1567.txt +362 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/1633.txt +549 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/1703.txt +231 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/1934.txt +264 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/2027.txt +222 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/2119.txt +159 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/2230.txt +390 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/231.txt +390 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/2648.txt +549 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/2680.txt +231 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/2701.txt +253 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/274.txt +253 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/2741.txt +390 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/2863.txt +362 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/3051.txt +159 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/3179.txt +347 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/3347.txt +264 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/3354.txt +347 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/3426.txt +347 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/359.txt +231 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/3665.txt +253 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/3849.txt +253 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/3856.txt +375 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/39.txt +253 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/4014.txt +528 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/4161.txt +347 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/4599.txt +362 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/4613.txt +253 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/4661.txt +375 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/4856.txt +264 -0
- pretraining/mathematica/linear_algebra/multiply_w_steps/734.txt +253 -0
- pretraining/mathematica/number_theory/multiplicative_order/10331.txt +4 -0
- pretraining/mathematica/number_theory/multiplicative_order/10834.txt +4 -0
- pretraining/mathematica/number_theory/multiplicative_order/13083.txt +4 -0
- pretraining/mathematica/number_theory/multiplicative_order/13232.txt +4 -0
- pretraining/mathematica/number_theory/multiplicative_order/13795.txt +4 -0
- pretraining/mathematica/number_theory/multiplicative_order/16023.txt +4 -0
- pretraining/mathematica/number_theory/multiplicative_order/17927.txt +4 -0
- pretraining/mathematica/number_theory/multiplicative_order/17959.txt +4 -0
- pretraining/mathematica/number_theory/multiplicative_order/19243.txt +4 -0
- pretraining/mathematica/number_theory/multiplicative_order/21365.txt +4 -0
- pretraining/mathematica/number_theory/multiplicative_order/23015.txt +4 -0
- pretraining/mathematica/number_theory/multiplicative_order/25071.txt +4 -0
- pretraining/mathematica/number_theory/multiplicative_order/27174.txt +4 -0
pretraining/mathematica/linear_algebra/multiply_w_steps/1095.txt
ADDED
|
@@ -0,0 +1,549 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
-3 & -1 & -1 \\
|
| 6 |
+
-2 & 2 & 2 \\
|
| 7 |
+
-2 & 1 & -2 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{ccc}
|
| 12 |
+
-1 & -1 & -2 \\
|
| 13 |
+
0 & -1 & 1 \\
|
| 14 |
+
1 & -2 & 3 \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$.
|
| 17 |
+
Answer:
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
|
| 20 |
+
\begin{array}{l}
|
| 21 |
+
\text{Multiply the following matrices}: \\
|
| 22 |
+
\left(
|
| 23 |
+
\begin{array}{ccc}
|
| 24 |
+
-3 & -1 & -1 \\
|
| 25 |
+
-2 & 2 & 2 \\
|
| 26 |
+
-2 & 1 & -2 \\
|
| 27 |
+
\end{array}
|
| 28 |
+
\right).\left(
|
| 29 |
+
\begin{array}{ccc}
|
| 30 |
+
-1 & -1 & -2 \\
|
| 31 |
+
0 & -1 & 1 \\
|
| 32 |
+
1 & -2 & 3 \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\right) \\
|
| 35 |
+
\end{array}
|
| 36 |
+
\\
|
| 37 |
+
\hline
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
|
| 41 |
+
\begin{array}{l}
|
| 42 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 3. \\
|
| 43 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 3: \\
|
| 44 |
+
\end{array}
|
| 45 |
+
\\
|
| 46 |
+
\left(
|
| 47 |
+
\begin{array}{ccc}
|
| 48 |
+
-3 & -1 & -1 \\
|
| 49 |
+
-2 & 2 & 2 \\
|
| 50 |
+
-2 & 1 & -2 \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right).\left(
|
| 53 |
+
\begin{array}{ccc}
|
| 54 |
+
-1 & -1 & -2 \\
|
| 55 |
+
0 & -1 & 1 \\
|
| 56 |
+
1 & -2 & 3 \\
|
| 57 |
+
\end{array}
|
| 58 |
+
\right)=\left(
|
| 59 |
+
\begin{array}{ccc}
|
| 60 |
+
\_ & \_ & \_ \\
|
| 61 |
+
\_ & \_ & \_ \\
|
| 62 |
+
\_ & \_ & \_ \\
|
| 63 |
+
\end{array}
|
| 64 |
+
\right) \\
|
| 65 |
+
\end{array}
|
| 66 |
+
\\
|
| 67 |
+
|
| 68 |
+
\begin{array}{l}
|
| 69 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 70 |
+
\left(
|
| 71 |
+
\begin{array}{ccc}
|
| 72 |
+
-3 & -1 & -1 \\
|
| 73 |
+
-2 & 2 & 2 \\
|
| 74 |
+
-2 & 1 & -2 \\
|
| 75 |
+
\end{array}
|
| 76 |
+
\right).\left(
|
| 77 |
+
\begin{array}{ccc}
|
| 78 |
+
-1 & -1 & -2 \\
|
| 79 |
+
0 & -1 & 1 \\
|
| 80 |
+
1 & -2 & 3 \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right)=\left(
|
| 83 |
+
\begin{array}{ccc}
|
| 84 |
+
\_ & \_ & \_ \\
|
| 85 |
+
\_ & \_ & \_ \\
|
| 86 |
+
\_ & \_ & \_ \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\right) \\
|
| 89 |
+
\end{array}
|
| 90 |
+
\\
|
| 91 |
+
|
| 92 |
+
\begin{array}{l}
|
| 93 |
+
|
| 94 |
+
\begin{array}{l}
|
| 95 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, (-1)+(-1)\, \times \, 0+(-1)\, \times \, 1=2. \\
|
| 96 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\\
|
| 99 |
+
\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
-3 & -1 & -1 \\
|
| 102 |
+
-2 & 2 & 2 \\
|
| 103 |
+
-2 & 1 & -2 \\
|
| 104 |
+
\end{array}
|
| 105 |
+
\right).\left(
|
| 106 |
+
\begin{array}{ccc}
|
| 107 |
+
-1 & -1 & -2 \\
|
| 108 |
+
0 & -1 & 1 \\
|
| 109 |
+
1 & -2 & 3 \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\right)=\left(
|
| 112 |
+
\begin{array}{ccc}
|
| 113 |
+
\fbox{$2$} & \_ & \_ \\
|
| 114 |
+
\_ & \_ & \_ \\
|
| 115 |
+
\_ & \_ & \_ \\
|
| 116 |
+
\end{array}
|
| 117 |
+
\right) \\
|
| 118 |
+
\end{array}
|
| 119 |
+
\\
|
| 120 |
+
|
| 121 |
+
\begin{array}{l}
|
| 122 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 123 |
+
\left(
|
| 124 |
+
\begin{array}{ccc}
|
| 125 |
+
-3 & -1 & -1 \\
|
| 126 |
+
-2 & 2 & 2 \\
|
| 127 |
+
-2 & 1 & -2 \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right).\left(
|
| 130 |
+
\begin{array}{ccc}
|
| 131 |
+
-1 & -1 & -2 \\
|
| 132 |
+
0 & -1 & 1 \\
|
| 133 |
+
1 & -2 & 3 \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right)=\left(
|
| 136 |
+
\begin{array}{ccc}
|
| 137 |
+
2 & \_ & \_ \\
|
| 138 |
+
\_ & \_ & \_ \\
|
| 139 |
+
\_ & \_ & \_ \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right) \\
|
| 142 |
+
\end{array}
|
| 143 |
+
\\
|
| 144 |
+
|
| 145 |
+
\begin{array}{l}
|
| 146 |
+
|
| 147 |
+
\begin{array}{l}
|
| 148 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, (-1)+(-1)\, (-1)+(-1)\, (-2)=6. \\
|
| 149 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\\
|
| 152 |
+
\left(
|
| 153 |
+
\begin{array}{ccc}
|
| 154 |
+
-3 & -1 & -1 \\
|
| 155 |
+
-2 & 2 & 2 \\
|
| 156 |
+
-2 & 1 & -2 \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right).\left(
|
| 159 |
+
\begin{array}{ccc}
|
| 160 |
+
-1 & -1 & -2 \\
|
| 161 |
+
0 & -1 & 1 \\
|
| 162 |
+
1 & -2 & 3 \\
|
| 163 |
+
\end{array}
|
| 164 |
+
\right)=\left(
|
| 165 |
+
\begin{array}{ccc}
|
| 166 |
+
2 & \fbox{$6$} & \_ \\
|
| 167 |
+
\_ & \_ & \_ \\
|
| 168 |
+
\_ & \_ & \_ \\
|
| 169 |
+
\end{array}
|
| 170 |
+
\right) \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\\
|
| 173 |
+
|
| 174 |
+
\begin{array}{l}
|
| 175 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 176 |
+
\left(
|
| 177 |
+
\begin{array}{ccc}
|
| 178 |
+
-3 & -1 & -1 \\
|
| 179 |
+
-2 & 2 & 2 \\
|
| 180 |
+
-2 & 1 & -2 \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\right).\left(
|
| 183 |
+
\begin{array}{ccc}
|
| 184 |
+
-1 & -1 & -2 \\
|
| 185 |
+
0 & -1 & 1 \\
|
| 186 |
+
1 & -2 & 3 \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right)=\left(
|
| 189 |
+
\begin{array}{ccc}
|
| 190 |
+
2 & 6 & \_ \\
|
| 191 |
+
\_ & \_ & \_ \\
|
| 192 |
+
\_ & \_ & \_ \\
|
| 193 |
+
\end{array}
|
| 194 |
+
\right) \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
|
| 198 |
+
\begin{array}{l}
|
| 199 |
+
|
| 200 |
+
\begin{array}{l}
|
| 201 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, (-2)+(-1)\, \times \, 1+(-1)\, \times \, 3=2. \\
|
| 202 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 203 |
+
\end{array}
|
| 204 |
+
\\
|
| 205 |
+
\left(
|
| 206 |
+
\begin{array}{ccc}
|
| 207 |
+
-3 & -1 & -1 \\
|
| 208 |
+
-2 & 2 & 2 \\
|
| 209 |
+
-2 & 1 & -2 \\
|
| 210 |
+
\end{array}
|
| 211 |
+
\right).\left(
|
| 212 |
+
\begin{array}{ccc}
|
| 213 |
+
-1 & -1 & -2 \\
|
| 214 |
+
0 & -1 & 1 \\
|
| 215 |
+
1 & -2 & 3 \\
|
| 216 |
+
\end{array}
|
| 217 |
+
\right)=\left(
|
| 218 |
+
\begin{array}{ccc}
|
| 219 |
+
2 & 6 & \fbox{$2$} \\
|
| 220 |
+
\_ & \_ & \_ \\
|
| 221 |
+
\_ & \_ & \_ \\
|
| 222 |
+
\end{array}
|
| 223 |
+
\right) \\
|
| 224 |
+
\end{array}
|
| 225 |
+
\\
|
| 226 |
+
|
| 227 |
+
\begin{array}{l}
|
| 228 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 229 |
+
\left(
|
| 230 |
+
\begin{array}{ccc}
|
| 231 |
+
-3 & -1 & -1 \\
|
| 232 |
+
-2 & 2 & 2 \\
|
| 233 |
+
-2 & 1 & -2 \\
|
| 234 |
+
\end{array}
|
| 235 |
+
\right).\left(
|
| 236 |
+
\begin{array}{ccc}
|
| 237 |
+
-1 & -1 & -2 \\
|
| 238 |
+
0 & -1 & 1 \\
|
| 239 |
+
1 & -2 & 3 \\
|
| 240 |
+
\end{array}
|
| 241 |
+
\right)=\left(
|
| 242 |
+
\begin{array}{ccc}
|
| 243 |
+
2 & 6 & 2 \\
|
| 244 |
+
\_ & \_ & \_ \\
|
| 245 |
+
\_ & \_ & \_ \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\right) \\
|
| 248 |
+
\end{array}
|
| 249 |
+
\\
|
| 250 |
+
|
| 251 |
+
\begin{array}{l}
|
| 252 |
+
|
| 253 |
+
\begin{array}{l}
|
| 254 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-1)+2\ 0+2\ 1=4. \\
|
| 255 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 256 |
+
\end{array}
|
| 257 |
+
\\
|
| 258 |
+
\left(
|
| 259 |
+
\begin{array}{ccc}
|
| 260 |
+
-3 & -1 & -1 \\
|
| 261 |
+
-2 & 2 & 2 \\
|
| 262 |
+
-2 & 1 & -2 \\
|
| 263 |
+
\end{array}
|
| 264 |
+
\right).\left(
|
| 265 |
+
\begin{array}{ccc}
|
| 266 |
+
-1 & -1 & -2 \\
|
| 267 |
+
0 & -1 & 1 \\
|
| 268 |
+
1 & -2 & 3 \\
|
| 269 |
+
\end{array}
|
| 270 |
+
\right)=\left(
|
| 271 |
+
\begin{array}{ccc}
|
| 272 |
+
2 & 6 & 2 \\
|
| 273 |
+
\fbox{$4$} & \_ & \_ \\
|
| 274 |
+
\_ & \_ & \_ \\
|
| 275 |
+
\end{array}
|
| 276 |
+
\right) \\
|
| 277 |
+
\end{array}
|
| 278 |
+
\\
|
| 279 |
+
|
| 280 |
+
\begin{array}{l}
|
| 281 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 282 |
+
\left(
|
| 283 |
+
\begin{array}{ccc}
|
| 284 |
+
-3 & -1 & -1 \\
|
| 285 |
+
-2 & 2 & 2 \\
|
| 286 |
+
-2 & 1 & -2 \\
|
| 287 |
+
\end{array}
|
| 288 |
+
\right).\left(
|
| 289 |
+
\begin{array}{ccc}
|
| 290 |
+
-1 & -1 & -2 \\
|
| 291 |
+
0 & -1 & 1 \\
|
| 292 |
+
1 & -2 & 3 \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\right)=\left(
|
| 295 |
+
\begin{array}{ccc}
|
| 296 |
+
2 & 6 & 2 \\
|
| 297 |
+
4 & \_ & \_ \\
|
| 298 |
+
\_ & \_ & \_ \\
|
| 299 |
+
\end{array}
|
| 300 |
+
\right) \\
|
| 301 |
+
\end{array}
|
| 302 |
+
\\
|
| 303 |
+
|
| 304 |
+
\begin{array}{l}
|
| 305 |
+
|
| 306 |
+
\begin{array}{l}
|
| 307 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-1)+2 (-1)+2 (-2)=-4. \\
|
| 308 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 309 |
+
\end{array}
|
| 310 |
+
\\
|
| 311 |
+
\left(
|
| 312 |
+
\begin{array}{ccc}
|
| 313 |
+
-3 & -1 & -1 \\
|
| 314 |
+
-2 & 2 & 2 \\
|
| 315 |
+
-2 & 1 & -2 \\
|
| 316 |
+
\end{array}
|
| 317 |
+
\right).\left(
|
| 318 |
+
\begin{array}{ccc}
|
| 319 |
+
-1 & -1 & -2 \\
|
| 320 |
+
0 & -1 & 1 \\
|
| 321 |
+
1 & -2 & 3 \\
|
| 322 |
+
\end{array}
|
| 323 |
+
\right)=\left(
|
| 324 |
+
\begin{array}{ccc}
|
| 325 |
+
2 & 6 & 2 \\
|
| 326 |
+
4 & \fbox{$-4$} & \_ \\
|
| 327 |
+
\_ & \_ & \_ \\
|
| 328 |
+
\end{array}
|
| 329 |
+
\right) \\
|
| 330 |
+
\end{array}
|
| 331 |
+
\\
|
| 332 |
+
|
| 333 |
+
\begin{array}{l}
|
| 334 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 335 |
+
\left(
|
| 336 |
+
\begin{array}{ccc}
|
| 337 |
+
-3 & -1 & -1 \\
|
| 338 |
+
-2 & 2 & 2 \\
|
| 339 |
+
-2 & 1 & -2 \\
|
| 340 |
+
\end{array}
|
| 341 |
+
\right).\left(
|
| 342 |
+
\begin{array}{ccc}
|
| 343 |
+
-1 & -1 & -2 \\
|
| 344 |
+
0 & -1 & 1 \\
|
| 345 |
+
1 & -2 & 3 \\
|
| 346 |
+
\end{array}
|
| 347 |
+
\right)=\left(
|
| 348 |
+
\begin{array}{ccc}
|
| 349 |
+
2 & 6 & 2 \\
|
| 350 |
+
4 & -4 & \_ \\
|
| 351 |
+
\_ & \_ & \_ \\
|
| 352 |
+
\end{array}
|
| 353 |
+
\right) \\
|
| 354 |
+
\end{array}
|
| 355 |
+
\\
|
| 356 |
+
|
| 357 |
+
\begin{array}{l}
|
| 358 |
+
|
| 359 |
+
\begin{array}{l}
|
| 360 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-2)+2\ 1+2\ 3=12. \\
|
| 361 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 362 |
+
\end{array}
|
| 363 |
+
\\
|
| 364 |
+
\left(
|
| 365 |
+
\begin{array}{ccc}
|
| 366 |
+
-3 & -1 & -1 \\
|
| 367 |
+
-2 & 2 & 2 \\
|
| 368 |
+
-2 & 1 & -2 \\
|
| 369 |
+
\end{array}
|
| 370 |
+
\right).\left(
|
| 371 |
+
\begin{array}{ccc}
|
| 372 |
+
-1 & -1 & -2 \\
|
| 373 |
+
0 & -1 & 1 \\
|
| 374 |
+
1 & -2 & 3 \\
|
| 375 |
+
\end{array}
|
| 376 |
+
\right)=\left(
|
| 377 |
+
\begin{array}{ccc}
|
| 378 |
+
2 & 6 & 2 \\
|
| 379 |
+
4 & -4 & \fbox{$12$} \\
|
| 380 |
+
\_ & \_ & \_ \\
|
| 381 |
+
\end{array}
|
| 382 |
+
\right) \\
|
| 383 |
+
\end{array}
|
| 384 |
+
\\
|
| 385 |
+
|
| 386 |
+
\begin{array}{l}
|
| 387 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 388 |
+
\left(
|
| 389 |
+
\begin{array}{ccc}
|
| 390 |
+
-3 & -1 & -1 \\
|
| 391 |
+
-2 & 2 & 2 \\
|
| 392 |
+
-2 & 1 & -2 \\
|
| 393 |
+
\end{array}
|
| 394 |
+
\right).\left(
|
| 395 |
+
\begin{array}{ccc}
|
| 396 |
+
-1 & -1 & -2 \\
|
| 397 |
+
0 & -1 & 1 \\
|
| 398 |
+
1 & -2 & 3 \\
|
| 399 |
+
\end{array}
|
| 400 |
+
\right)=\left(
|
| 401 |
+
\begin{array}{ccc}
|
| 402 |
+
2 & 6 & 2 \\
|
| 403 |
+
4 & -4 & 12 \\
|
| 404 |
+
\_ & \_ & \_ \\
|
| 405 |
+
\end{array}
|
| 406 |
+
\right) \\
|
| 407 |
+
\end{array}
|
| 408 |
+
\\
|
| 409 |
+
|
| 410 |
+
\begin{array}{l}
|
| 411 |
+
|
| 412 |
+
\begin{array}{l}
|
| 413 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-1)+1\ 0+(-2)\, \times \, 1=0. \\
|
| 414 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 415 |
+
\end{array}
|
| 416 |
+
\\
|
| 417 |
+
\left(
|
| 418 |
+
\begin{array}{ccc}
|
| 419 |
+
-3 & -1 & -1 \\
|
| 420 |
+
-2 & 2 & 2 \\
|
| 421 |
+
-2 & 1 & -2 \\
|
| 422 |
+
\end{array}
|
| 423 |
+
\right).\left(
|
| 424 |
+
\begin{array}{ccc}
|
| 425 |
+
-1 & -1 & -2 \\
|
| 426 |
+
0 & -1 & 1 \\
|
| 427 |
+
1 & -2 & 3 \\
|
| 428 |
+
\end{array}
|
| 429 |
+
\right)=\left(
|
| 430 |
+
\begin{array}{ccc}
|
| 431 |
+
2 & 6 & 2 \\
|
| 432 |
+
4 & -4 & 12 \\
|
| 433 |
+
\fbox{$0$} & \_ & \_ \\
|
| 434 |
+
\end{array}
|
| 435 |
+
\right) \\
|
| 436 |
+
\end{array}
|
| 437 |
+
\\
|
| 438 |
+
|
| 439 |
+
\begin{array}{l}
|
| 440 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 441 |
+
\left(
|
| 442 |
+
\begin{array}{ccc}
|
| 443 |
+
-3 & -1 & -1 \\
|
| 444 |
+
-2 & 2 & 2 \\
|
| 445 |
+
-2 & 1 & -2 \\
|
| 446 |
+
\end{array}
|
| 447 |
+
\right).\left(
|
| 448 |
+
\begin{array}{ccc}
|
| 449 |
+
-1 & -1 & -2 \\
|
| 450 |
+
0 & -1 & 1 \\
|
| 451 |
+
1 & -2 & 3 \\
|
| 452 |
+
\end{array}
|
| 453 |
+
\right)=\left(
|
| 454 |
+
\begin{array}{ccc}
|
| 455 |
+
2 & 6 & 2 \\
|
| 456 |
+
4 & -4 & 12 \\
|
| 457 |
+
0 & \_ & \_ \\
|
| 458 |
+
\end{array}
|
| 459 |
+
\right) \\
|
| 460 |
+
\end{array}
|
| 461 |
+
\\
|
| 462 |
+
|
| 463 |
+
\begin{array}{l}
|
| 464 |
+
|
| 465 |
+
\begin{array}{l}
|
| 466 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-1)+1 (-1)+(-2)\, (-2)=5. \\
|
| 467 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 468 |
+
\end{array}
|
| 469 |
+
\\
|
| 470 |
+
\left(
|
| 471 |
+
\begin{array}{ccc}
|
| 472 |
+
-3 & -1 & -1 \\
|
| 473 |
+
-2 & 2 & 2 \\
|
| 474 |
+
-2 & 1 & -2 \\
|
| 475 |
+
\end{array}
|
| 476 |
+
\right).\left(
|
| 477 |
+
\begin{array}{ccc}
|
| 478 |
+
-1 & -1 & -2 \\
|
| 479 |
+
0 & -1 & 1 \\
|
| 480 |
+
1 & -2 & 3 \\
|
| 481 |
+
\end{array}
|
| 482 |
+
\right)=\left(
|
| 483 |
+
\begin{array}{ccc}
|
| 484 |
+
2 & 6 & 2 \\
|
| 485 |
+
4 & -4 & 12 \\
|
| 486 |
+
0 & \fbox{$5$} & \_ \\
|
| 487 |
+
\end{array}
|
| 488 |
+
\right) \\
|
| 489 |
+
\end{array}
|
| 490 |
+
\\
|
| 491 |
+
|
| 492 |
+
\begin{array}{l}
|
| 493 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 494 |
+
\left(
|
| 495 |
+
\begin{array}{ccc}
|
| 496 |
+
-3 & -1 & -1 \\
|
| 497 |
+
-2 & 2 & 2 \\
|
| 498 |
+
-2 & 1 & -2 \\
|
| 499 |
+
\end{array}
|
| 500 |
+
\right).\left(
|
| 501 |
+
\begin{array}{ccc}
|
| 502 |
+
-1 & -1 & -2 \\
|
| 503 |
+
0 & -1 & 1 \\
|
| 504 |
+
1 & -2 & 3 \\
|
| 505 |
+
\end{array}
|
| 506 |
+
\right)=\left(
|
| 507 |
+
\begin{array}{ccc}
|
| 508 |
+
2 & 6 & 2 \\
|
| 509 |
+
4 & -4 & 12 \\
|
| 510 |
+
0 & 5 & \_ \\
|
| 511 |
+
\end{array}
|
| 512 |
+
\right) \\
|
| 513 |
+
\end{array}
|
| 514 |
+
\\
|
| 515 |
+
|
| 516 |
+
\begin{array}{l}
|
| 517 |
+
|
| 518 |
+
\begin{array}{l}
|
| 519 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-2)+1\ 1+(-2)\, \times \, 3=-1. \\
|
| 520 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 521 |
+
\end{array}
|
| 522 |
+
\\
|
| 523 |
+
\fbox{$
|
| 524 |
+
\begin{array}{ll}
|
| 525 |
+
\text{Answer:} & \\
|
| 526 |
+
\text{} & \left(
|
| 527 |
+
\begin{array}{ccc}
|
| 528 |
+
-3 & -1 & -1 \\
|
| 529 |
+
-2 & 2 & 2 \\
|
| 530 |
+
-2 & 1 & -2 \\
|
| 531 |
+
\end{array}
|
| 532 |
+
\right).\left(
|
| 533 |
+
\begin{array}{ccc}
|
| 534 |
+
-1 & -1 & -2 \\
|
| 535 |
+
0 & -1 & 1 \\
|
| 536 |
+
1 & -2 & 3 \\
|
| 537 |
+
\end{array}
|
| 538 |
+
\right)=\left(
|
| 539 |
+
\begin{array}{ccc}
|
| 540 |
+
2 & 6 & 2 \\
|
| 541 |
+
4 & -4 & 12 \\
|
| 542 |
+
0 & 5 & \fbox{$-1$} \\
|
| 543 |
+
\end{array}
|
| 544 |
+
\right) \\
|
| 545 |
+
\end{array}
|
| 546 |
+
$} \\
|
| 547 |
+
\end{array}
|
| 548 |
+
\\
|
| 549 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/1159.txt
ADDED
|
@@ -0,0 +1,528 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
\frac{31}{16} & \frac{21}{8} \\
|
| 6 |
+
\frac{23}{8} & -\frac{39}{16} \\
|
| 7 |
+
\frac{9}{16} & \frac{3}{4} \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{ccc}
|
| 12 |
+
\frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
|
| 13 |
+
-\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$.
|
| 16 |
+
Answer:
|
| 17 |
+
\begin{array}{l}
|
| 18 |
+
|
| 19 |
+
\begin{array}{l}
|
| 20 |
+
\text{Multiply the following matrices}: \\
|
| 21 |
+
\left(
|
| 22 |
+
\begin{array}{cc}
|
| 23 |
+
\frac{31}{16} & \frac{21}{8} \\
|
| 24 |
+
\frac{23}{8} & -\frac{39}{16} \\
|
| 25 |
+
\frac{9}{16} & \frac{3}{4} \\
|
| 26 |
+
\end{array}
|
| 27 |
+
\right).\left(
|
| 28 |
+
\begin{array}{ccc}
|
| 29 |
+
\frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
|
| 30 |
+
-\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\right) \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\\
|
| 35 |
+
\hline
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 3. \\
|
| 41 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 3: \\
|
| 42 |
+
\end{array}
|
| 43 |
+
\\
|
| 44 |
+
\left(
|
| 45 |
+
\begin{array}{cc}
|
| 46 |
+
\frac{31}{16} & \frac{21}{8} \\
|
| 47 |
+
\frac{23}{8} & -\frac{39}{16} \\
|
| 48 |
+
\frac{9}{16} & \frac{3}{4} \\
|
| 49 |
+
\end{array}
|
| 50 |
+
\right).\left(
|
| 51 |
+
\begin{array}{ccc}
|
| 52 |
+
\frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
|
| 53 |
+
-\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
|
| 54 |
+
\end{array}
|
| 55 |
+
\right)=\left(
|
| 56 |
+
\begin{array}{ccc}
|
| 57 |
+
\_ & \_ & \_ \\
|
| 58 |
+
\_ & \_ & \_ \\
|
| 59 |
+
\_ & \_ & \_ \\
|
| 60 |
+
\end{array}
|
| 61 |
+
\right) \\
|
| 62 |
+
\end{array}
|
| 63 |
+
\\
|
| 64 |
+
|
| 65 |
+
\begin{array}{l}
|
| 66 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 67 |
+
\left(
|
| 68 |
+
\begin{array}{cc}
|
| 69 |
+
\frac{31}{16} & \frac{21}{8} \\
|
| 70 |
+
\frac{23}{8} & -\frac{39}{16} \\
|
| 71 |
+
\frac{9}{16} & \frac{3}{4} \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right).\left(
|
| 74 |
+
\begin{array}{ccc}
|
| 75 |
+
\frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
|
| 76 |
+
-\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right)=\left(
|
| 79 |
+
\begin{array}{ccc}
|
| 80 |
+
\_ & \_ & \_ \\
|
| 81 |
+
\_ & \_ & \_ \\
|
| 82 |
+
\_ & \_ & \_ \\
|
| 83 |
+
\end{array}
|
| 84 |
+
\right) \\
|
| 85 |
+
\end{array}
|
| 86 |
+
\\
|
| 87 |
+
|
| 88 |
+
\begin{array}{l}
|
| 89 |
+
|
| 90 |
+
\begin{array}{l}
|
| 91 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{31\ 15}{16\ 8}+\frac{21 (-43)}{8\ 16}=-\frac{219}{64}. \\
|
| 92 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\\
|
| 95 |
+
\left(
|
| 96 |
+
\begin{array}{cc}
|
| 97 |
+
\frac{31}{16} & \frac{21}{8} \\
|
| 98 |
+
\frac{23}{8} & -\frac{39}{16} \\
|
| 99 |
+
\frac{9}{16} & \frac{3}{4} \\
|
| 100 |
+
\end{array}
|
| 101 |
+
\right).\left(
|
| 102 |
+
\begin{array}{ccc}
|
| 103 |
+
\frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
|
| 104 |
+
-\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\right)=\left(
|
| 107 |
+
\begin{array}{ccc}
|
| 108 |
+
\fbox{$-\frac{219}{64}$} & \_ & \_ \\
|
| 109 |
+
\_ & \_ & \_ \\
|
| 110 |
+
\_ & \_ & \_ \\
|
| 111 |
+
\end{array}
|
| 112 |
+
\right) \\
|
| 113 |
+
\end{array}
|
| 114 |
+
\\
|
| 115 |
+
|
| 116 |
+
\begin{array}{l}
|
| 117 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 118 |
+
\left(
|
| 119 |
+
\begin{array}{cc}
|
| 120 |
+
\frac{31}{16} & \frac{21}{8} \\
|
| 121 |
+
\frac{23}{8} & -\frac{39}{16} \\
|
| 122 |
+
\frac{9}{16} & \frac{3}{4} \\
|
| 123 |
+
\end{array}
|
| 124 |
+
\right).\left(
|
| 125 |
+
\begin{array}{ccc}
|
| 126 |
+
\frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
|
| 127 |
+
-\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right)=\left(
|
| 130 |
+
\begin{array}{ccc}
|
| 131 |
+
-\frac{219}{64} & \_ & \_ \\
|
| 132 |
+
\_ & \_ & \_ \\
|
| 133 |
+
\_ & \_ & \_ \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right) \\
|
| 136 |
+
\end{array}
|
| 137 |
+
\\
|
| 138 |
+
|
| 139 |
+
\begin{array}{l}
|
| 140 |
+
|
| 141 |
+
\begin{array}{l}
|
| 142 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{31\ 45}{16\ 16}+\frac{21 (-25)}{8\ 16}=\frac{345}{256}. \\
|
| 143 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 144 |
+
\end{array}
|
| 145 |
+
\\
|
| 146 |
+
\left(
|
| 147 |
+
\begin{array}{cc}
|
| 148 |
+
\frac{31}{16} & \frac{21}{8} \\
|
| 149 |
+
\frac{23}{8} & -\frac{39}{16} \\
|
| 150 |
+
\frac{9}{16} & \frac{3}{4} \\
|
| 151 |
+
\end{array}
|
| 152 |
+
\right).\left(
|
| 153 |
+
\begin{array}{ccc}
|
| 154 |
+
\frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
|
| 155 |
+
-\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
|
| 156 |
+
\end{array}
|
| 157 |
+
\right)=\left(
|
| 158 |
+
\begin{array}{ccc}
|
| 159 |
+
-\frac{219}{64} & \fbox{$\frac{345}{256}$} & \_ \\
|
| 160 |
+
\_ & \_ & \_ \\
|
| 161 |
+
\_ & \_ & \_ \\
|
| 162 |
+
\end{array}
|
| 163 |
+
\right) \\
|
| 164 |
+
\end{array}
|
| 165 |
+
\\
|
| 166 |
+
|
| 167 |
+
\begin{array}{l}
|
| 168 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 169 |
+
\left(
|
| 170 |
+
\begin{array}{cc}
|
| 171 |
+
\frac{31}{16} & \frac{21}{8} \\
|
| 172 |
+
\frac{23}{8} & -\frac{39}{16} \\
|
| 173 |
+
\frac{9}{16} & \frac{3}{4} \\
|
| 174 |
+
\end{array}
|
| 175 |
+
\right).\left(
|
| 176 |
+
\begin{array}{ccc}
|
| 177 |
+
\frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
|
| 178 |
+
-\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
|
| 179 |
+
\end{array}
|
| 180 |
+
\right)=\left(
|
| 181 |
+
\begin{array}{ccc}
|
| 182 |
+
-\frac{219}{64} & \frac{345}{256} & \_ \\
|
| 183 |
+
\_ & \_ & \_ \\
|
| 184 |
+
\_ & \_ & \_ \\
|
| 185 |
+
\end{array}
|
| 186 |
+
\right) \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\\
|
| 189 |
+
|
| 190 |
+
\begin{array}{l}
|
| 191 |
+
|
| 192 |
+
\begin{array}{l}
|
| 193 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{31 (-31)}{16\ 16}+\frac{21 (-3)}{8\ 2}=-\frac{1969}{256}. \\
|
| 194 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
\left(
|
| 198 |
+
\begin{array}{cc}
|
| 199 |
+
\frac{31}{16} & \frac{21}{8} \\
|
| 200 |
+
\frac{23}{8} & -\frac{39}{16} \\
|
| 201 |
+
\frac{9}{16} & \frac{3}{4} \\
|
| 202 |
+
\end{array}
|
| 203 |
+
\right).\left(
|
| 204 |
+
\begin{array}{ccc}
|
| 205 |
+
\frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
|
| 206 |
+
-\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
|
| 207 |
+
\end{array}
|
| 208 |
+
\right)=\left(
|
| 209 |
+
\begin{array}{ccc}
|
| 210 |
+
-\frac{219}{64} & \frac{345}{256} & \fbox{$-\frac{1969}{256}$} \\
|
| 211 |
+
\_ & \_ & \_ \\
|
| 212 |
+
\_ & \_ & \_ \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right) \\
|
| 215 |
+
\end{array}
|
| 216 |
+
\\
|
| 217 |
+
|
| 218 |
+
\begin{array}{l}
|
| 219 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 220 |
+
\left(
|
| 221 |
+
\begin{array}{cc}
|
| 222 |
+
\frac{31}{16} & \frac{21}{8} \\
|
| 223 |
+
\frac{23}{8} & -\frac{39}{16} \\
|
| 224 |
+
\frac{9}{16} & \frac{3}{4} \\
|
| 225 |
+
\end{array}
|
| 226 |
+
\right).\left(
|
| 227 |
+
\begin{array}{ccc}
|
| 228 |
+
\frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
|
| 229 |
+
-\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
|
| 230 |
+
\end{array}
|
| 231 |
+
\right)=\left(
|
| 232 |
+
\begin{array}{ccc}
|
| 233 |
+
-\frac{219}{64} & \frac{345}{256} & -\frac{1969}{256} \\
|
| 234 |
+
\_ & \_ & \_ \\
|
| 235 |
+
\_ & \_ & \_ \\
|
| 236 |
+
\end{array}
|
| 237 |
+
\right) \\
|
| 238 |
+
\end{array}
|
| 239 |
+
\\
|
| 240 |
+
|
| 241 |
+
\begin{array}{l}
|
| 242 |
+
|
| 243 |
+
\begin{array}{l}
|
| 244 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{23\ 15}{8\ 8}+\left(-\frac{39}{16}\right)\, \left(-\frac{43}{16}\right)=\frac{3057}{256}. \\
|
| 245 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\\
|
| 248 |
+
\left(
|
| 249 |
+
\begin{array}{cc}
|
| 250 |
+
\frac{31}{16} & \frac{21}{8} \\
|
| 251 |
+
\frac{23}{8} & -\frac{39}{16} \\
|
| 252 |
+
\frac{9}{16} & \frac{3}{4} \\
|
| 253 |
+
\end{array}
|
| 254 |
+
\right).\left(
|
| 255 |
+
\begin{array}{ccc}
|
| 256 |
+
\frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
|
| 257 |
+
-\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
|
| 258 |
+
\end{array}
|
| 259 |
+
\right)=\left(
|
| 260 |
+
\begin{array}{ccc}
|
| 261 |
+
-\frac{219}{64} & \frac{345}{256} & -\frac{1969}{256} \\
|
| 262 |
+
\fbox{$\frac{3057}{256}$} & \_ & \_ \\
|
| 263 |
+
\_ & \_ & \_ \\
|
| 264 |
+
\end{array}
|
| 265 |
+
\right) \\
|
| 266 |
+
\end{array}
|
| 267 |
+
\\
|
| 268 |
+
|
| 269 |
+
\begin{array}{l}
|
| 270 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 271 |
+
\left(
|
| 272 |
+
\begin{array}{cc}
|
| 273 |
+
\frac{31}{16} & \frac{21}{8} \\
|
| 274 |
+
\frac{23}{8} & -\frac{39}{16} \\
|
| 275 |
+
\frac{9}{16} & \frac{3}{4} \\
|
| 276 |
+
\end{array}
|
| 277 |
+
\right).\left(
|
| 278 |
+
\begin{array}{ccc}
|
| 279 |
+
\frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
|
| 280 |
+
-\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
|
| 281 |
+
\end{array}
|
| 282 |
+
\right)=\left(
|
| 283 |
+
\begin{array}{ccc}
|
| 284 |
+
-\frac{219}{64} & \frac{345}{256} & -\frac{1969}{256} \\
|
| 285 |
+
\frac{3057}{256} & \_ & \_ \\
|
| 286 |
+
\_ & \_ & \_ \\
|
| 287 |
+
\end{array}
|
| 288 |
+
\right) \\
|
| 289 |
+
\end{array}
|
| 290 |
+
\\
|
| 291 |
+
|
| 292 |
+
\begin{array}{l}
|
| 293 |
+
|
| 294 |
+
\begin{array}{l}
|
| 295 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{23\ 45}{8\ 16}+\left(-\frac{39}{16}\right)\, \left(-\frac{25}{16}\right)=\frac{3045}{256}. \\
|
| 296 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 297 |
+
\end{array}
|
| 298 |
+
\\
|
| 299 |
+
\left(
|
| 300 |
+
\begin{array}{cc}
|
| 301 |
+
\frac{31}{16} & \frac{21}{8} \\
|
| 302 |
+
\frac{23}{8} & -\frac{39}{16} \\
|
| 303 |
+
\frac{9}{16} & \frac{3}{4} \\
|
| 304 |
+
\end{array}
|
| 305 |
+
\right).\left(
|
| 306 |
+
\begin{array}{ccc}
|
| 307 |
+
\frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
|
| 308 |
+
-\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
|
| 309 |
+
\end{array}
|
| 310 |
+
\right)=\left(
|
| 311 |
+
\begin{array}{ccc}
|
| 312 |
+
-\frac{219}{64} & \frac{345}{256} & -\frac{1969}{256} \\
|
| 313 |
+
\frac{3057}{256} & \fbox{$\frac{3045}{256}$} & \_ \\
|
| 314 |
+
\_ & \_ & \_ \\
|
| 315 |
+
\end{array}
|
| 316 |
+
\right) \\
|
| 317 |
+
\end{array}
|
| 318 |
+
\\
|
| 319 |
+
|
| 320 |
+
\begin{array}{l}
|
| 321 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 322 |
+
\left(
|
| 323 |
+
\begin{array}{cc}
|
| 324 |
+
\frac{31}{16} & \frac{21}{8} \\
|
| 325 |
+
\frac{23}{8} & -\frac{39}{16} \\
|
| 326 |
+
\frac{9}{16} & \frac{3}{4} \\
|
| 327 |
+
\end{array}
|
| 328 |
+
\right).\left(
|
| 329 |
+
\begin{array}{ccc}
|
| 330 |
+
\frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
|
| 331 |
+
-\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
|
| 332 |
+
\end{array}
|
| 333 |
+
\right)=\left(
|
| 334 |
+
\begin{array}{ccc}
|
| 335 |
+
-\frac{219}{64} & \frac{345}{256} & -\frac{1969}{256} \\
|
| 336 |
+
\frac{3057}{256} & \frac{3045}{256} & \_ \\
|
| 337 |
+
\_ & \_ & \_ \\
|
| 338 |
+
\end{array}
|
| 339 |
+
\right) \\
|
| 340 |
+
\end{array}
|
| 341 |
+
\\
|
| 342 |
+
|
| 343 |
+
\begin{array}{l}
|
| 344 |
+
|
| 345 |
+
\begin{array}{l}
|
| 346 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{23 (-31)}{8\ 16}+\left(-\frac{39}{16}\right)\, \left(-\frac{3}{2}\right)=-\frac{245}{128}. \\
|
| 347 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 348 |
+
\end{array}
|
| 349 |
+
\\
|
| 350 |
+
\left(
|
| 351 |
+
\begin{array}{cc}
|
| 352 |
+
\frac{31}{16} & \frac{21}{8} \\
|
| 353 |
+
\frac{23}{8} & -\frac{39}{16} \\
|
| 354 |
+
\frac{9}{16} & \frac{3}{4} \\
|
| 355 |
+
\end{array}
|
| 356 |
+
\right).\left(
|
| 357 |
+
\begin{array}{ccc}
|
| 358 |
+
\frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
|
| 359 |
+
-\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
|
| 360 |
+
\end{array}
|
| 361 |
+
\right)=\left(
|
| 362 |
+
\begin{array}{ccc}
|
| 363 |
+
-\frac{219}{64} & \frac{345}{256} & -\frac{1969}{256} \\
|
| 364 |
+
\frac{3057}{256} & \frac{3045}{256} & \fbox{$-\frac{245}{128}$} \\
|
| 365 |
+
\_ & \_ & \_ \\
|
| 366 |
+
\end{array}
|
| 367 |
+
\right) \\
|
| 368 |
+
\end{array}
|
| 369 |
+
\\
|
| 370 |
+
|
| 371 |
+
\begin{array}{l}
|
| 372 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 373 |
+
\left(
|
| 374 |
+
\begin{array}{cc}
|
| 375 |
+
\frac{31}{16} & \frac{21}{8} \\
|
| 376 |
+
\frac{23}{8} & -\frac{39}{16} \\
|
| 377 |
+
\frac{9}{16} & \frac{3}{4} \\
|
| 378 |
+
\end{array}
|
| 379 |
+
\right).\left(
|
| 380 |
+
\begin{array}{ccc}
|
| 381 |
+
\frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
|
| 382 |
+
-\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
|
| 383 |
+
\end{array}
|
| 384 |
+
\right)=\left(
|
| 385 |
+
\begin{array}{ccc}
|
| 386 |
+
-\frac{219}{64} & \frac{345}{256} & -\frac{1969}{256} \\
|
| 387 |
+
\frac{3057}{256} & \frac{3045}{256} & -\frac{245}{128} \\
|
| 388 |
+
\_ & \_ & \_ \\
|
| 389 |
+
\end{array}
|
| 390 |
+
\right) \\
|
| 391 |
+
\end{array}
|
| 392 |
+
\\
|
| 393 |
+
|
| 394 |
+
\begin{array}{l}
|
| 395 |
+
|
| 396 |
+
\begin{array}{l}
|
| 397 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{9\ 15}{16\ 8}+\frac{3 (-43)}{4\ 16}=-\frac{123}{128}. \\
|
| 398 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 399 |
+
\end{array}
|
| 400 |
+
\\
|
| 401 |
+
\left(
|
| 402 |
+
\begin{array}{cc}
|
| 403 |
+
\frac{31}{16} & \frac{21}{8} \\
|
| 404 |
+
\frac{23}{8} & -\frac{39}{16} \\
|
| 405 |
+
\frac{9}{16} & \frac{3}{4} \\
|
| 406 |
+
\end{array}
|
| 407 |
+
\right).\left(
|
| 408 |
+
\begin{array}{ccc}
|
| 409 |
+
\frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
|
| 410 |
+
-\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
|
| 411 |
+
\end{array}
|
| 412 |
+
\right)=\left(
|
| 413 |
+
\begin{array}{ccc}
|
| 414 |
+
-\frac{219}{64} & \frac{345}{256} & -\frac{1969}{256} \\
|
| 415 |
+
\frac{3057}{256} & \frac{3045}{256} & -\frac{245}{128} \\
|
| 416 |
+
\fbox{$-\frac{123}{128}$} & \_ & \_ \\
|
| 417 |
+
\end{array}
|
| 418 |
+
\right) \\
|
| 419 |
+
\end{array}
|
| 420 |
+
\\
|
| 421 |
+
|
| 422 |
+
\begin{array}{l}
|
| 423 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 424 |
+
\left(
|
| 425 |
+
\begin{array}{cc}
|
| 426 |
+
\frac{31}{16} & \frac{21}{8} \\
|
| 427 |
+
\frac{23}{8} & -\frac{39}{16} \\
|
| 428 |
+
\frac{9}{16} & \frac{3}{4} \\
|
| 429 |
+
\end{array}
|
| 430 |
+
\right).\left(
|
| 431 |
+
\begin{array}{ccc}
|
| 432 |
+
\frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
|
| 433 |
+
-\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
|
| 434 |
+
\end{array}
|
| 435 |
+
\right)=\left(
|
| 436 |
+
\begin{array}{ccc}
|
| 437 |
+
-\frac{219}{64} & \frac{345}{256} & -\frac{1969}{256} \\
|
| 438 |
+
\frac{3057}{256} & \frac{3045}{256} & -\frac{245}{128} \\
|
| 439 |
+
-\frac{123}{128} & \_ & \_ \\
|
| 440 |
+
\end{array}
|
| 441 |
+
\right) \\
|
| 442 |
+
\end{array}
|
| 443 |
+
\\
|
| 444 |
+
|
| 445 |
+
\begin{array}{l}
|
| 446 |
+
|
| 447 |
+
\begin{array}{l}
|
| 448 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{9\ 45}{16\ 16}+\frac{3 (-25)}{4\ 16}=\frac{105}{256}. \\
|
| 449 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 450 |
+
\end{array}
|
| 451 |
+
\\
|
| 452 |
+
\left(
|
| 453 |
+
\begin{array}{cc}
|
| 454 |
+
\frac{31}{16} & \frac{21}{8} \\
|
| 455 |
+
\frac{23}{8} & -\frac{39}{16} \\
|
| 456 |
+
\frac{9}{16} & \frac{3}{4} \\
|
| 457 |
+
\end{array}
|
| 458 |
+
\right).\left(
|
| 459 |
+
\begin{array}{ccc}
|
| 460 |
+
\frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
|
| 461 |
+
-\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
|
| 462 |
+
\end{array}
|
| 463 |
+
\right)=\left(
|
| 464 |
+
\begin{array}{ccc}
|
| 465 |
+
-\frac{219}{64} & \frac{345}{256} & -\frac{1969}{256} \\
|
| 466 |
+
\frac{3057}{256} & \frac{3045}{256} & -\frac{245}{128} \\
|
| 467 |
+
-\frac{123}{128} & \fbox{$\frac{105}{256}$} & \_ \\
|
| 468 |
+
\end{array}
|
| 469 |
+
\right) \\
|
| 470 |
+
\end{array}
|
| 471 |
+
\\
|
| 472 |
+
|
| 473 |
+
\begin{array}{l}
|
| 474 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 475 |
+
\left(
|
| 476 |
+
\begin{array}{cc}
|
| 477 |
+
\frac{31}{16} & \frac{21}{8} \\
|
| 478 |
+
\frac{23}{8} & -\frac{39}{16} \\
|
| 479 |
+
\frac{9}{16} & \frac{3}{4} \\
|
| 480 |
+
\end{array}
|
| 481 |
+
\right).\left(
|
| 482 |
+
\begin{array}{ccc}
|
| 483 |
+
\frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
|
| 484 |
+
-\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
|
| 485 |
+
\end{array}
|
| 486 |
+
\right)=\left(
|
| 487 |
+
\begin{array}{ccc}
|
| 488 |
+
-\frac{219}{64} & \frac{345}{256} & -\frac{1969}{256} \\
|
| 489 |
+
\frac{3057}{256} & \frac{3045}{256} & -\frac{245}{128} \\
|
| 490 |
+
-\frac{123}{128} & \frac{105}{256} & \_ \\
|
| 491 |
+
\end{array}
|
| 492 |
+
\right) \\
|
| 493 |
+
\end{array}
|
| 494 |
+
\\
|
| 495 |
+
|
| 496 |
+
\begin{array}{l}
|
| 497 |
+
|
| 498 |
+
\begin{array}{l}
|
| 499 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{9 (-31)}{16\ 16}+\frac{3 (-3)}{4\ 2}=-\frac{567}{256}. \\
|
| 500 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 501 |
+
\end{array}
|
| 502 |
+
\\
|
| 503 |
+
\fbox{$
|
| 504 |
+
\begin{array}{ll}
|
| 505 |
+
\text{Answer:} & \\
|
| 506 |
+
\text{} & \left(
|
| 507 |
+
\begin{array}{cc}
|
| 508 |
+
\frac{31}{16} & \frac{21}{8} \\
|
| 509 |
+
\frac{23}{8} & -\frac{39}{16} \\
|
| 510 |
+
\frac{9}{16} & \frac{3}{4} \\
|
| 511 |
+
\end{array}
|
| 512 |
+
\right).\left(
|
| 513 |
+
\begin{array}{ccc}
|
| 514 |
+
\frac{15}{8} & \frac{45}{16} & -\frac{31}{16} \\
|
| 515 |
+
-\frac{43}{16} & -\frac{25}{16} & -\frac{3}{2} \\
|
| 516 |
+
\end{array}
|
| 517 |
+
\right)=\left(
|
| 518 |
+
\begin{array}{ccc}
|
| 519 |
+
-\frac{219}{64} & \frac{345}{256} & -\frac{1969}{256} \\
|
| 520 |
+
\frac{3057}{256} & \frac{3045}{256} & -\frac{245}{128} \\
|
| 521 |
+
-\frac{123}{128} & \frac{105}{256} & \fbox{$-\frac{567}{256}$} \\
|
| 522 |
+
\end{array}
|
| 523 |
+
\right) \\
|
| 524 |
+
\end{array}
|
| 525 |
+
$} \\
|
| 526 |
+
\end{array}
|
| 527 |
+
\\
|
| 528 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/1226.txt
ADDED
|
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
2 & 2 \\
|
| 6 |
+
-2 & 1 \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{cc}
|
| 11 |
+
-1 & -1 \\
|
| 12 |
+
-2 & 3 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$.
|
| 15 |
+
Answer:
|
| 16 |
+
\begin{array}{l}
|
| 17 |
+
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
\text{Multiply the following matrices}: \\
|
| 20 |
+
\left(
|
| 21 |
+
\begin{array}{cc}
|
| 22 |
+
2 & 2 \\
|
| 23 |
+
-2 & 1 \\
|
| 24 |
+
\end{array}
|
| 25 |
+
\right).\left(
|
| 26 |
+
\begin{array}{cc}
|
| 27 |
+
-1 & -1 \\
|
| 28 |
+
-2 & 3 \\
|
| 29 |
+
\end{array}
|
| 30 |
+
\right) \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\\
|
| 33 |
+
\hline
|
| 34 |
+
|
| 35 |
+
\begin{array}{l}
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 2. \\
|
| 39 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 2: \\
|
| 40 |
+
\end{array}
|
| 41 |
+
\\
|
| 42 |
+
\left(
|
| 43 |
+
\begin{array}{cc}
|
| 44 |
+
2 & 2 \\
|
| 45 |
+
-2 & 1 \\
|
| 46 |
+
\end{array}
|
| 47 |
+
\right).\left(
|
| 48 |
+
\begin{array}{cc}
|
| 49 |
+
-1 & -1 \\
|
| 50 |
+
-2 & 3 \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right)=\left(
|
| 53 |
+
\begin{array}{cc}
|
| 54 |
+
\_ & \_ \\
|
| 55 |
+
\_ & \_ \\
|
| 56 |
+
\end{array}
|
| 57 |
+
\right) \\
|
| 58 |
+
\end{array}
|
| 59 |
+
\\
|
| 60 |
+
|
| 61 |
+
\begin{array}{l}
|
| 62 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 63 |
+
\left(
|
| 64 |
+
\begin{array}{cc}
|
| 65 |
+
2 & 2 \\
|
| 66 |
+
-2 & 1 \\
|
| 67 |
+
\end{array}
|
| 68 |
+
\right).\left(
|
| 69 |
+
\begin{array}{cc}
|
| 70 |
+
-1 & -1 \\
|
| 71 |
+
-2 & 3 \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right)=\left(
|
| 74 |
+
\begin{array}{cc}
|
| 75 |
+
\_ & \_ \\
|
| 76 |
+
\_ & \_ \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right) \\
|
| 79 |
+
\end{array}
|
| 80 |
+
\\
|
| 81 |
+
|
| 82 |
+
\begin{array}{l}
|
| 83 |
+
|
| 84 |
+
\begin{array}{l}
|
| 85 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2 (-1)+2 (-2)=-6. \\
|
| 86 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\\
|
| 89 |
+
\left(
|
| 90 |
+
\begin{array}{cc}
|
| 91 |
+
2 & 2 \\
|
| 92 |
+
-2 & 1 \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\right).\left(
|
| 95 |
+
\begin{array}{cc}
|
| 96 |
+
-1 & -1 \\
|
| 97 |
+
-2 & 3 \\
|
| 98 |
+
\end{array}
|
| 99 |
+
\right)=\left(
|
| 100 |
+
\begin{array}{cc}
|
| 101 |
+
\fbox{$-6$} & \_ \\
|
| 102 |
+
\_ & \_ \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right) \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\\
|
| 107 |
+
|
| 108 |
+
\begin{array}{l}
|
| 109 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 110 |
+
\left(
|
| 111 |
+
\begin{array}{cc}
|
| 112 |
+
2 & 2 \\
|
| 113 |
+
-2 & 1 \\
|
| 114 |
+
\end{array}
|
| 115 |
+
\right).\left(
|
| 116 |
+
\begin{array}{cc}
|
| 117 |
+
-1 & -1 \\
|
| 118 |
+
-2 & 3 \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right)=\left(
|
| 121 |
+
\begin{array}{cc}
|
| 122 |
+
-6 & \_ \\
|
| 123 |
+
\_ & \_ \\
|
| 124 |
+
\end{array}
|
| 125 |
+
\right) \\
|
| 126 |
+
\end{array}
|
| 127 |
+
\\
|
| 128 |
+
|
| 129 |
+
\begin{array}{l}
|
| 130 |
+
|
| 131 |
+
\begin{array}{l}
|
| 132 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2 (-1)+2\ 3=4. \\
|
| 133 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\\
|
| 136 |
+
\left(
|
| 137 |
+
\begin{array}{cc}
|
| 138 |
+
2 & 2 \\
|
| 139 |
+
-2 & 1 \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right).\left(
|
| 142 |
+
\begin{array}{cc}
|
| 143 |
+
-1 & -1 \\
|
| 144 |
+
-2 & 3 \\
|
| 145 |
+
\end{array}
|
| 146 |
+
\right)=\left(
|
| 147 |
+
\begin{array}{cc}
|
| 148 |
+
-6 & \fbox{$4$} \\
|
| 149 |
+
\_ & \_ \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\right) \\
|
| 152 |
+
\end{array}
|
| 153 |
+
\\
|
| 154 |
+
|
| 155 |
+
\begin{array}{l}
|
| 156 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 157 |
+
\left(
|
| 158 |
+
\begin{array}{cc}
|
| 159 |
+
2 & 2 \\
|
| 160 |
+
-2 & 1 \\
|
| 161 |
+
\end{array}
|
| 162 |
+
\right).\left(
|
| 163 |
+
\begin{array}{cc}
|
| 164 |
+
-1 & -1 \\
|
| 165 |
+
-2 & 3 \\
|
| 166 |
+
\end{array}
|
| 167 |
+
\right)=\left(
|
| 168 |
+
\begin{array}{cc}
|
| 169 |
+
-6 & 4 \\
|
| 170 |
+
\_ & \_ \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\right) \\
|
| 173 |
+
\end{array}
|
| 174 |
+
\\
|
| 175 |
+
|
| 176 |
+
\begin{array}{l}
|
| 177 |
+
|
| 178 |
+
\begin{array}{l}
|
| 179 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-1)+1 (-2)=0. \\
|
| 180 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\\
|
| 183 |
+
\left(
|
| 184 |
+
\begin{array}{cc}
|
| 185 |
+
2 & 2 \\
|
| 186 |
+
-2 & 1 \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right).\left(
|
| 189 |
+
\begin{array}{cc}
|
| 190 |
+
-1 & -1 \\
|
| 191 |
+
-2 & 3 \\
|
| 192 |
+
\end{array}
|
| 193 |
+
\right)=\left(
|
| 194 |
+
\begin{array}{cc}
|
| 195 |
+
-6 & 4 \\
|
| 196 |
+
\fbox{$0$} & \_ \\
|
| 197 |
+
\end{array}
|
| 198 |
+
\right) \\
|
| 199 |
+
\end{array}
|
| 200 |
+
\\
|
| 201 |
+
|
| 202 |
+
\begin{array}{l}
|
| 203 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 204 |
+
\left(
|
| 205 |
+
\begin{array}{cc}
|
| 206 |
+
2 & 2 \\
|
| 207 |
+
-2 & 1 \\
|
| 208 |
+
\end{array}
|
| 209 |
+
\right).\left(
|
| 210 |
+
\begin{array}{cc}
|
| 211 |
+
-1 & -1 \\
|
| 212 |
+
-2 & 3 \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right)=\left(
|
| 215 |
+
\begin{array}{cc}
|
| 216 |
+
-6 & 4 \\
|
| 217 |
+
0 & \_ \\
|
| 218 |
+
\end{array}
|
| 219 |
+
\right) \\
|
| 220 |
+
\end{array}
|
| 221 |
+
\\
|
| 222 |
+
|
| 223 |
+
\begin{array}{l}
|
| 224 |
+
|
| 225 |
+
\begin{array}{l}
|
| 226 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-1)+1\ 3=5. \\
|
| 227 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 228 |
+
\end{array}
|
| 229 |
+
\\
|
| 230 |
+
\fbox{$
|
| 231 |
+
\begin{array}{ll}
|
| 232 |
+
\text{Answer:} & \\
|
| 233 |
+
\text{} & \left(
|
| 234 |
+
\begin{array}{cc}
|
| 235 |
+
2 & 2 \\
|
| 236 |
+
-2 & 1 \\
|
| 237 |
+
\end{array}
|
| 238 |
+
\right).\left(
|
| 239 |
+
\begin{array}{cc}
|
| 240 |
+
-1 & -1 \\
|
| 241 |
+
-2 & 3 \\
|
| 242 |
+
\end{array}
|
| 243 |
+
\right)=\left(
|
| 244 |
+
\begin{array}{cc}
|
| 245 |
+
-6 & 4 \\
|
| 246 |
+
0 & \fbox{$5$} \\
|
| 247 |
+
\end{array}
|
| 248 |
+
\right) \\
|
| 249 |
+
\end{array}
|
| 250 |
+
$} \\
|
| 251 |
+
\end{array}
|
| 252 |
+
\\
|
| 253 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/1239.txt
ADDED
|
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
2 & 3 & 2 \\
|
| 6 |
+
2 & 0 & 1 \\
|
| 7 |
+
-2 & 2 & 0 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{c}
|
| 12 |
+
2 \\
|
| 13 |
+
1 \\
|
| 14 |
+
-2 \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$.
|
| 17 |
+
Answer:
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
|
| 20 |
+
\begin{array}{l}
|
| 21 |
+
\text{Multiply the following matrices}: \\
|
| 22 |
+
\left(
|
| 23 |
+
\begin{array}{ccc}
|
| 24 |
+
2 & 3 & 2 \\
|
| 25 |
+
2 & 0 & 1 \\
|
| 26 |
+
-2 & 2 & 0 \\
|
| 27 |
+
\end{array}
|
| 28 |
+
\right).\left(
|
| 29 |
+
\begin{array}{c}
|
| 30 |
+
2 \\
|
| 31 |
+
1 \\
|
| 32 |
+
-2 \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\right) \\
|
| 35 |
+
\end{array}
|
| 36 |
+
\\
|
| 37 |
+
\hline
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
|
| 41 |
+
\begin{array}{l}
|
| 42 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 1. \\
|
| 43 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 1: \\
|
| 44 |
+
\end{array}
|
| 45 |
+
\\
|
| 46 |
+
\left(
|
| 47 |
+
\begin{array}{ccc}
|
| 48 |
+
2 & 3 & 2 \\
|
| 49 |
+
2 & 0 & 1 \\
|
| 50 |
+
-2 & 2 & 0 \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right).\left(
|
| 53 |
+
\begin{array}{c}
|
| 54 |
+
2 \\
|
| 55 |
+
1 \\
|
| 56 |
+
-2 \\
|
| 57 |
+
\end{array}
|
| 58 |
+
\right)=\left(
|
| 59 |
+
\begin{array}{c}
|
| 60 |
+
\_ \\
|
| 61 |
+
\_ \\
|
| 62 |
+
\_ \\
|
| 63 |
+
\end{array}
|
| 64 |
+
\right) \\
|
| 65 |
+
\end{array}
|
| 66 |
+
\\
|
| 67 |
+
|
| 68 |
+
\begin{array}{l}
|
| 69 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 70 |
+
\left(
|
| 71 |
+
\begin{array}{ccc}
|
| 72 |
+
2 & 3 & 2 \\
|
| 73 |
+
2 & 0 & 1 \\
|
| 74 |
+
-2 & 2 & 0 \\
|
| 75 |
+
\end{array}
|
| 76 |
+
\right).\left(
|
| 77 |
+
\begin{array}{c}
|
| 78 |
+
2 \\
|
| 79 |
+
1 \\
|
| 80 |
+
-2 \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right)=\left(
|
| 83 |
+
\begin{array}{c}
|
| 84 |
+
\_ \\
|
| 85 |
+
\_ \\
|
| 86 |
+
\_ \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\right) \\
|
| 89 |
+
\end{array}
|
| 90 |
+
\\
|
| 91 |
+
|
| 92 |
+
\begin{array}{l}
|
| 93 |
+
|
| 94 |
+
\begin{array}{l}
|
| 95 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2\ 2+3\ 1+2 (-2)=3. \\
|
| 96 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\\
|
| 99 |
+
\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
2 & 3 & 2 \\
|
| 102 |
+
2 & 0 & 1 \\
|
| 103 |
+
-2 & 2 & 0 \\
|
| 104 |
+
\end{array}
|
| 105 |
+
\right).\left(
|
| 106 |
+
\begin{array}{c}
|
| 107 |
+
2 \\
|
| 108 |
+
1 \\
|
| 109 |
+
-2 \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\right)=\left(
|
| 112 |
+
\begin{array}{c}
|
| 113 |
+
\fbox{$3$} \\
|
| 114 |
+
\_ \\
|
| 115 |
+
\_ \\
|
| 116 |
+
\end{array}
|
| 117 |
+
\right) \\
|
| 118 |
+
\end{array}
|
| 119 |
+
\\
|
| 120 |
+
|
| 121 |
+
\begin{array}{l}
|
| 122 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 123 |
+
\left(
|
| 124 |
+
\begin{array}{ccc}
|
| 125 |
+
2 & 3 & 2 \\
|
| 126 |
+
2 & 0 & 1 \\
|
| 127 |
+
-2 & 2 & 0 \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right).\left(
|
| 130 |
+
\begin{array}{c}
|
| 131 |
+
2 \\
|
| 132 |
+
1 \\
|
| 133 |
+
-2 \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right)=\left(
|
| 136 |
+
\begin{array}{c}
|
| 137 |
+
3 \\
|
| 138 |
+
\_ \\
|
| 139 |
+
\_ \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right) \\
|
| 142 |
+
\end{array}
|
| 143 |
+
\\
|
| 144 |
+
|
| 145 |
+
\begin{array}{l}
|
| 146 |
+
|
| 147 |
+
\begin{array}{l}
|
| 148 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2\ 2+0\ 1+1 (-2)=2. \\
|
| 149 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\\
|
| 152 |
+
\left(
|
| 153 |
+
\begin{array}{ccc}
|
| 154 |
+
2 & 3 & 2 \\
|
| 155 |
+
2 & 0 & 1 \\
|
| 156 |
+
-2 & 2 & 0 \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right).\left(
|
| 159 |
+
\begin{array}{c}
|
| 160 |
+
2 \\
|
| 161 |
+
1 \\
|
| 162 |
+
-2 \\
|
| 163 |
+
\end{array}
|
| 164 |
+
\right)=\left(
|
| 165 |
+
\begin{array}{c}
|
| 166 |
+
3 \\
|
| 167 |
+
\fbox{$2$} \\
|
| 168 |
+
\_ \\
|
| 169 |
+
\end{array}
|
| 170 |
+
\right) \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\\
|
| 173 |
+
|
| 174 |
+
\begin{array}{l}
|
| 175 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 176 |
+
\left(
|
| 177 |
+
\begin{array}{ccc}
|
| 178 |
+
2 & 3 & 2 \\
|
| 179 |
+
2 & 0 & 1 \\
|
| 180 |
+
-2 & 2 & 0 \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\right).\left(
|
| 183 |
+
\begin{array}{c}
|
| 184 |
+
2 \\
|
| 185 |
+
1 \\
|
| 186 |
+
-2 \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right)=\left(
|
| 189 |
+
\begin{array}{c}
|
| 190 |
+
3 \\
|
| 191 |
+
2 \\
|
| 192 |
+
\_ \\
|
| 193 |
+
\end{array}
|
| 194 |
+
\right) \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
|
| 198 |
+
\begin{array}{l}
|
| 199 |
+
|
| 200 |
+
\begin{array}{l}
|
| 201 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, \times \, 2+2\ 1+0 (-2)=-2. \\
|
| 202 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 203 |
+
\end{array}
|
| 204 |
+
\\
|
| 205 |
+
\fbox{$
|
| 206 |
+
\begin{array}{ll}
|
| 207 |
+
\text{Answer:} & \\
|
| 208 |
+
\text{} & \left(
|
| 209 |
+
\begin{array}{ccc}
|
| 210 |
+
2 & 3 & 2 \\
|
| 211 |
+
2 & 0 & 1 \\
|
| 212 |
+
-2 & 2 & 0 \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right).\left(
|
| 215 |
+
\begin{array}{c}
|
| 216 |
+
2 \\
|
| 217 |
+
1 \\
|
| 218 |
+
-2 \\
|
| 219 |
+
\end{array}
|
| 220 |
+
\right)=\left(
|
| 221 |
+
\begin{array}{c}
|
| 222 |
+
3 \\
|
| 223 |
+
2 \\
|
| 224 |
+
\fbox{$-2$} \\
|
| 225 |
+
\end{array}
|
| 226 |
+
\right) \\
|
| 227 |
+
\end{array}
|
| 228 |
+
$} \\
|
| 229 |
+
\end{array}
|
| 230 |
+
\\
|
| 231 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/1285.txt
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
-1 & -3 \\
|
| 6 |
+
-1 & 2 \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{c}
|
| 11 |
+
1 \\
|
| 12 |
+
3 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$.
|
| 15 |
+
Answer:
|
| 16 |
+
\begin{array}{l}
|
| 17 |
+
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
\text{Multiply the following matrices}: \\
|
| 20 |
+
\left(
|
| 21 |
+
\begin{array}{cc}
|
| 22 |
+
-1 & -3 \\
|
| 23 |
+
-1 & 2 \\
|
| 24 |
+
\end{array}
|
| 25 |
+
\right).\left(
|
| 26 |
+
\begin{array}{c}
|
| 27 |
+
1 \\
|
| 28 |
+
3 \\
|
| 29 |
+
\end{array}
|
| 30 |
+
\right) \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\\
|
| 33 |
+
\hline
|
| 34 |
+
|
| 35 |
+
\begin{array}{l}
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 1. \\
|
| 39 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 1: \\
|
| 40 |
+
\end{array}
|
| 41 |
+
\\
|
| 42 |
+
\left(
|
| 43 |
+
\begin{array}{cc}
|
| 44 |
+
-1 & -3 \\
|
| 45 |
+
-1 & 2 \\
|
| 46 |
+
\end{array}
|
| 47 |
+
\right).\left(
|
| 48 |
+
\begin{array}{c}
|
| 49 |
+
1 \\
|
| 50 |
+
3 \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right)=\left(
|
| 53 |
+
\begin{array}{c}
|
| 54 |
+
\_ \\
|
| 55 |
+
\_ \\
|
| 56 |
+
\end{array}
|
| 57 |
+
\right) \\
|
| 58 |
+
\end{array}
|
| 59 |
+
\\
|
| 60 |
+
|
| 61 |
+
\begin{array}{l}
|
| 62 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 63 |
+
\left(
|
| 64 |
+
\begin{array}{cc}
|
| 65 |
+
-1 & -3 \\
|
| 66 |
+
-1 & 2 \\
|
| 67 |
+
\end{array}
|
| 68 |
+
\right).\left(
|
| 69 |
+
\begin{array}{c}
|
| 70 |
+
1 \\
|
| 71 |
+
3 \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right)=\left(
|
| 74 |
+
\begin{array}{c}
|
| 75 |
+
\_ \\
|
| 76 |
+
\_ \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right) \\
|
| 79 |
+
\end{array}
|
| 80 |
+
\\
|
| 81 |
+
|
| 82 |
+
\begin{array}{l}
|
| 83 |
+
|
| 84 |
+
\begin{array}{l}
|
| 85 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-1)\, \times \, 1+(-3)\, \times \, 3=-10. \\
|
| 86 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\\
|
| 89 |
+
\left(
|
| 90 |
+
\begin{array}{cc}
|
| 91 |
+
-1 & -3 \\
|
| 92 |
+
-1 & 2 \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\right).\left(
|
| 95 |
+
\begin{array}{c}
|
| 96 |
+
1 \\
|
| 97 |
+
3 \\
|
| 98 |
+
\end{array}
|
| 99 |
+
\right)=\left(
|
| 100 |
+
\begin{array}{c}
|
| 101 |
+
\fbox{$-10$} \\
|
| 102 |
+
\_ \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right) \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\\
|
| 107 |
+
|
| 108 |
+
\begin{array}{l}
|
| 109 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 110 |
+
\left(
|
| 111 |
+
\begin{array}{cc}
|
| 112 |
+
-1 & -3 \\
|
| 113 |
+
-1 & 2 \\
|
| 114 |
+
\end{array}
|
| 115 |
+
\right).\left(
|
| 116 |
+
\begin{array}{c}
|
| 117 |
+
1 \\
|
| 118 |
+
3 \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right)=\left(
|
| 121 |
+
\begin{array}{c}
|
| 122 |
+
-10 \\
|
| 123 |
+
\_ \\
|
| 124 |
+
\end{array}
|
| 125 |
+
\right) \\
|
| 126 |
+
\end{array}
|
| 127 |
+
\\
|
| 128 |
+
|
| 129 |
+
\begin{array}{l}
|
| 130 |
+
|
| 131 |
+
\begin{array}{l}
|
| 132 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-1)\, \times \, 1+2\ 3=5. \\
|
| 133 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\\
|
| 136 |
+
\fbox{$
|
| 137 |
+
\begin{array}{ll}
|
| 138 |
+
\text{Answer:} & \\
|
| 139 |
+
\text{} & \left(
|
| 140 |
+
\begin{array}{cc}
|
| 141 |
+
-1 & -3 \\
|
| 142 |
+
-1 & 2 \\
|
| 143 |
+
\end{array}
|
| 144 |
+
\right).\left(
|
| 145 |
+
\begin{array}{c}
|
| 146 |
+
1 \\
|
| 147 |
+
3 \\
|
| 148 |
+
\end{array}
|
| 149 |
+
\right)=\left(
|
| 150 |
+
\begin{array}{c}
|
| 151 |
+
-10 \\
|
| 152 |
+
\fbox{$5$} \\
|
| 153 |
+
\end{array}
|
| 154 |
+
\right) \\
|
| 155 |
+
\end{array}
|
| 156 |
+
$} \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\\
|
| 159 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/1485.txt
ADDED
|
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
-\frac{15}{8} & \frac{19}{8} & -\frac{29}{16} \\
|
| 6 |
+
3 & \frac{17}{16} & -\frac{13}{8} \\
|
| 7 |
+
-2 & -\frac{13}{8} & -\frac{5}{4} \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{cc}
|
| 12 |
+
\frac{39}{16} & -\frac{7}{8} \\
|
| 13 |
+
\frac{19}{16} & \frac{13}{8} \\
|
| 14 |
+
-\frac{21}{8} & -\frac{3}{2} \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$.
|
| 17 |
+
Answer:
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
|
| 20 |
+
\begin{array}{l}
|
| 21 |
+
\text{Multiply the following matrices}: \\
|
| 22 |
+
\left(
|
| 23 |
+
\begin{array}{ccc}
|
| 24 |
+
-\frac{15}{8} & \frac{19}{8} & -\frac{29}{16} \\
|
| 25 |
+
3 & \frac{17}{16} & -\frac{13}{8} \\
|
| 26 |
+
-2 & -\frac{13}{8} & -\frac{5}{4} \\
|
| 27 |
+
\end{array}
|
| 28 |
+
\right).\left(
|
| 29 |
+
\begin{array}{cc}
|
| 30 |
+
\frac{39}{16} & -\frac{7}{8} \\
|
| 31 |
+
\frac{19}{16} & \frac{13}{8} \\
|
| 32 |
+
-\frac{21}{8} & -\frac{3}{2} \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\right) \\
|
| 35 |
+
\end{array}
|
| 36 |
+
\\
|
| 37 |
+
\hline
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
|
| 41 |
+
\begin{array}{l}
|
| 42 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 2. \\
|
| 43 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 2: \\
|
| 44 |
+
\end{array}
|
| 45 |
+
\\
|
| 46 |
+
\left(
|
| 47 |
+
\begin{array}{ccc}
|
| 48 |
+
-\frac{15}{8} & \frac{19}{8} & -\frac{29}{16} \\
|
| 49 |
+
3 & \frac{17}{16} & -\frac{13}{8} \\
|
| 50 |
+
-2 & -\frac{13}{8} & -\frac{5}{4} \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right).\left(
|
| 53 |
+
\begin{array}{cc}
|
| 54 |
+
\frac{39}{16} & -\frac{7}{8} \\
|
| 55 |
+
\frac{19}{16} & \frac{13}{8} \\
|
| 56 |
+
-\frac{21}{8} & -\frac{3}{2} \\
|
| 57 |
+
\end{array}
|
| 58 |
+
\right)=\left(
|
| 59 |
+
\begin{array}{cc}
|
| 60 |
+
\_ & \_ \\
|
| 61 |
+
\_ & \_ \\
|
| 62 |
+
\_ & \_ \\
|
| 63 |
+
\end{array}
|
| 64 |
+
\right) \\
|
| 65 |
+
\end{array}
|
| 66 |
+
\\
|
| 67 |
+
|
| 68 |
+
\begin{array}{l}
|
| 69 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 70 |
+
\left(
|
| 71 |
+
\begin{array}{ccc}
|
| 72 |
+
-\frac{15}{8} & \frac{19}{8} & -\frac{29}{16} \\
|
| 73 |
+
3 & \frac{17}{16} & -\frac{13}{8} \\
|
| 74 |
+
-2 & -\frac{13}{8} & -\frac{5}{4} \\
|
| 75 |
+
\end{array}
|
| 76 |
+
\right).\left(
|
| 77 |
+
\begin{array}{cc}
|
| 78 |
+
\frac{39}{16} & -\frac{7}{8} \\
|
| 79 |
+
\frac{19}{16} & \frac{13}{8} \\
|
| 80 |
+
-\frac{21}{8} & -\frac{3}{2} \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right)=\left(
|
| 83 |
+
\begin{array}{cc}
|
| 84 |
+
\_ & \_ \\
|
| 85 |
+
\_ & \_ \\
|
| 86 |
+
\_ & \_ \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\right) \\
|
| 89 |
+
\end{array}
|
| 90 |
+
\\
|
| 91 |
+
|
| 92 |
+
\begin{array}{l}
|
| 93 |
+
|
| 94 |
+
\begin{array}{l}
|
| 95 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{15}{8}\right)\, \times \, \frac{39}{16}+\frac{19\ 19}{8\ 16}+\left(-\frac{29}{16}\right)\, \left(-\frac{21}{8}\right)=\frac{385}{128}. \\
|
| 96 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\\
|
| 99 |
+
\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
-\frac{15}{8} & \frac{19}{8} & -\frac{29}{16} \\
|
| 102 |
+
3 & \frac{17}{16} & -\frac{13}{8} \\
|
| 103 |
+
-2 & -\frac{13}{8} & -\frac{5}{4} \\
|
| 104 |
+
\end{array}
|
| 105 |
+
\right).\left(
|
| 106 |
+
\begin{array}{cc}
|
| 107 |
+
\frac{39}{16} & -\frac{7}{8} \\
|
| 108 |
+
\frac{19}{16} & \frac{13}{8} \\
|
| 109 |
+
-\frac{21}{8} & -\frac{3}{2} \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\right)=\left(
|
| 112 |
+
\begin{array}{cc}
|
| 113 |
+
\fbox{$\frac{385}{128}$} & \_ \\
|
| 114 |
+
\_ & \_ \\
|
| 115 |
+
\_ & \_ \\
|
| 116 |
+
\end{array}
|
| 117 |
+
\right) \\
|
| 118 |
+
\end{array}
|
| 119 |
+
\\
|
| 120 |
+
|
| 121 |
+
\begin{array}{l}
|
| 122 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 123 |
+
\left(
|
| 124 |
+
\begin{array}{ccc}
|
| 125 |
+
-\frac{15}{8} & \frac{19}{8} & -\frac{29}{16} \\
|
| 126 |
+
3 & \frac{17}{16} & -\frac{13}{8} \\
|
| 127 |
+
-2 & -\frac{13}{8} & -\frac{5}{4} \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right).\left(
|
| 130 |
+
\begin{array}{cc}
|
| 131 |
+
\frac{39}{16} & -\frac{7}{8} \\
|
| 132 |
+
\frac{19}{16} & \frac{13}{8} \\
|
| 133 |
+
-\frac{21}{8} & -\frac{3}{2} \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right)=\left(
|
| 136 |
+
\begin{array}{cc}
|
| 137 |
+
\frac{385}{128} & \_ \\
|
| 138 |
+
\_ & \_ \\
|
| 139 |
+
\_ & \_ \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right) \\
|
| 142 |
+
\end{array}
|
| 143 |
+
\\
|
| 144 |
+
|
| 145 |
+
\begin{array}{l}
|
| 146 |
+
|
| 147 |
+
\begin{array}{l}
|
| 148 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{15}{8}\right)\, \left(-\frac{7}{8}\right)+\frac{19\ 13}{8\ 8}+\left(-\frac{29}{16}\right)\, \left(-\frac{3}{2}\right)=\frac{263}{32}. \\
|
| 149 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\\
|
| 152 |
+
\left(
|
| 153 |
+
\begin{array}{ccc}
|
| 154 |
+
-\frac{15}{8} & \frac{19}{8} & -\frac{29}{16} \\
|
| 155 |
+
3 & \frac{17}{16} & -\frac{13}{8} \\
|
| 156 |
+
-2 & -\frac{13}{8} & -\frac{5}{4} \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right).\left(
|
| 159 |
+
\begin{array}{cc}
|
| 160 |
+
\frac{39}{16} & -\frac{7}{8} \\
|
| 161 |
+
\frac{19}{16} & \frac{13}{8} \\
|
| 162 |
+
-\frac{21}{8} & -\frac{3}{2} \\
|
| 163 |
+
\end{array}
|
| 164 |
+
\right)=\left(
|
| 165 |
+
\begin{array}{cc}
|
| 166 |
+
\frac{385}{128} & \fbox{$\frac{263}{32}$} \\
|
| 167 |
+
\_ & \_ \\
|
| 168 |
+
\_ & \_ \\
|
| 169 |
+
\end{array}
|
| 170 |
+
\right) \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\\
|
| 173 |
+
|
| 174 |
+
\begin{array}{l}
|
| 175 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 176 |
+
\left(
|
| 177 |
+
\begin{array}{ccc}
|
| 178 |
+
-\frac{15}{8} & \frac{19}{8} & -\frac{29}{16} \\
|
| 179 |
+
3 & \frac{17}{16} & -\frac{13}{8} \\
|
| 180 |
+
-2 & -\frac{13}{8} & -\frac{5}{4} \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\right).\left(
|
| 183 |
+
\begin{array}{cc}
|
| 184 |
+
\frac{39}{16} & -\frac{7}{8} \\
|
| 185 |
+
\frac{19}{16} & \frac{13}{8} \\
|
| 186 |
+
-\frac{21}{8} & -\frac{3}{2} \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right)=\left(
|
| 189 |
+
\begin{array}{cc}
|
| 190 |
+
\frac{385}{128} & \frac{263}{32} \\
|
| 191 |
+
\_ & \_ \\
|
| 192 |
+
\_ & \_ \\
|
| 193 |
+
\end{array}
|
| 194 |
+
\right) \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
|
| 198 |
+
\begin{array}{l}
|
| 199 |
+
|
| 200 |
+
\begin{array}{l}
|
| 201 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{3\ 39}{16}+\frac{17\ 19}{16\ 16}+\left(-\frac{13}{8}\right)\, \left(-\frac{21}{8}\right)=\frac{3287}{256}. \\
|
| 202 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 203 |
+
\end{array}
|
| 204 |
+
\\
|
| 205 |
+
\left(
|
| 206 |
+
\begin{array}{ccc}
|
| 207 |
+
-\frac{15}{8} & \frac{19}{8} & -\frac{29}{16} \\
|
| 208 |
+
3 & \frac{17}{16} & -\frac{13}{8} \\
|
| 209 |
+
-2 & -\frac{13}{8} & -\frac{5}{4} \\
|
| 210 |
+
\end{array}
|
| 211 |
+
\right).\left(
|
| 212 |
+
\begin{array}{cc}
|
| 213 |
+
\frac{39}{16} & -\frac{7}{8} \\
|
| 214 |
+
\frac{19}{16} & \frac{13}{8} \\
|
| 215 |
+
-\frac{21}{8} & -\frac{3}{2} \\
|
| 216 |
+
\end{array}
|
| 217 |
+
\right)=\left(
|
| 218 |
+
\begin{array}{cc}
|
| 219 |
+
\frac{385}{128} & \frac{263}{32} \\
|
| 220 |
+
\fbox{$\frac{3287}{256}$} & \_ \\
|
| 221 |
+
\_ & \_ \\
|
| 222 |
+
\end{array}
|
| 223 |
+
\right) \\
|
| 224 |
+
\end{array}
|
| 225 |
+
\\
|
| 226 |
+
|
| 227 |
+
\begin{array}{l}
|
| 228 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 229 |
+
\left(
|
| 230 |
+
\begin{array}{ccc}
|
| 231 |
+
-\frac{15}{8} & \frac{19}{8} & -\frac{29}{16} \\
|
| 232 |
+
3 & \frac{17}{16} & -\frac{13}{8} \\
|
| 233 |
+
-2 & -\frac{13}{8} & -\frac{5}{4} \\
|
| 234 |
+
\end{array}
|
| 235 |
+
\right).\left(
|
| 236 |
+
\begin{array}{cc}
|
| 237 |
+
\frac{39}{16} & -\frac{7}{8} \\
|
| 238 |
+
\frac{19}{16} & \frac{13}{8} \\
|
| 239 |
+
-\frac{21}{8} & -\frac{3}{2} \\
|
| 240 |
+
\end{array}
|
| 241 |
+
\right)=\left(
|
| 242 |
+
\begin{array}{cc}
|
| 243 |
+
\frac{385}{128} & \frac{263}{32} \\
|
| 244 |
+
\frac{3287}{256} & \_ \\
|
| 245 |
+
\_ & \_ \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\right) \\
|
| 248 |
+
\end{array}
|
| 249 |
+
\\
|
| 250 |
+
|
| 251 |
+
\begin{array}{l}
|
| 252 |
+
|
| 253 |
+
\begin{array}{l}
|
| 254 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{3 (-7)}{8}+\frac{17\ 13}{16\ 8}+\left(-\frac{13}{8}\right)\, \left(-\frac{3}{2}\right)=\frac{197}{128}. \\
|
| 255 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 256 |
+
\end{array}
|
| 257 |
+
\\
|
| 258 |
+
\left(
|
| 259 |
+
\begin{array}{ccc}
|
| 260 |
+
-\frac{15}{8} & \frac{19}{8} & -\frac{29}{16} \\
|
| 261 |
+
3 & \frac{17}{16} & -\frac{13}{8} \\
|
| 262 |
+
-2 & -\frac{13}{8} & -\frac{5}{4} \\
|
| 263 |
+
\end{array}
|
| 264 |
+
\right).\left(
|
| 265 |
+
\begin{array}{cc}
|
| 266 |
+
\frac{39}{16} & -\frac{7}{8} \\
|
| 267 |
+
\frac{19}{16} & \frac{13}{8} \\
|
| 268 |
+
-\frac{21}{8} & -\frac{3}{2} \\
|
| 269 |
+
\end{array}
|
| 270 |
+
\right)=\left(
|
| 271 |
+
\begin{array}{cc}
|
| 272 |
+
\frac{385}{128} & \frac{263}{32} \\
|
| 273 |
+
\frac{3287}{256} & \fbox{$\frac{197}{128}$} \\
|
| 274 |
+
\_ & \_ \\
|
| 275 |
+
\end{array}
|
| 276 |
+
\right) \\
|
| 277 |
+
\end{array}
|
| 278 |
+
\\
|
| 279 |
+
|
| 280 |
+
\begin{array}{l}
|
| 281 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 282 |
+
\left(
|
| 283 |
+
\begin{array}{ccc}
|
| 284 |
+
-\frac{15}{8} & \frac{19}{8} & -\frac{29}{16} \\
|
| 285 |
+
3 & \frac{17}{16} & -\frac{13}{8} \\
|
| 286 |
+
-2 & -\frac{13}{8} & -\frac{5}{4} \\
|
| 287 |
+
\end{array}
|
| 288 |
+
\right).\left(
|
| 289 |
+
\begin{array}{cc}
|
| 290 |
+
\frac{39}{16} & -\frac{7}{8} \\
|
| 291 |
+
\frac{19}{16} & \frac{13}{8} \\
|
| 292 |
+
-\frac{21}{8} & -\frac{3}{2} \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\right)=\left(
|
| 295 |
+
\begin{array}{cc}
|
| 296 |
+
\frac{385}{128} & \frac{263}{32} \\
|
| 297 |
+
\frac{3287}{256} & \frac{197}{128} \\
|
| 298 |
+
\_ & \_ \\
|
| 299 |
+
\end{array}
|
| 300 |
+
\right) \\
|
| 301 |
+
\end{array}
|
| 302 |
+
\\
|
| 303 |
+
|
| 304 |
+
\begin{array}{l}
|
| 305 |
+
|
| 306 |
+
\begin{array}{l}
|
| 307 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, \times \, \frac{39}{16}+\left(-\frac{13}{8}\right)\, \times \, \frac{19}{16}+\left(-\frac{5}{4}\right)\, \left(-\frac{21}{8}\right)=-\frac{451}{128}. \\
|
| 308 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 309 |
+
\end{array}
|
| 310 |
+
\\
|
| 311 |
+
\left(
|
| 312 |
+
\begin{array}{ccc}
|
| 313 |
+
-\frac{15}{8} & \frac{19}{8} & -\frac{29}{16} \\
|
| 314 |
+
3 & \frac{17}{16} & -\frac{13}{8} \\
|
| 315 |
+
-2 & -\frac{13}{8} & -\frac{5}{4} \\
|
| 316 |
+
\end{array}
|
| 317 |
+
\right).\left(
|
| 318 |
+
\begin{array}{cc}
|
| 319 |
+
\frac{39}{16} & -\frac{7}{8} \\
|
| 320 |
+
\frac{19}{16} & \frac{13}{8} \\
|
| 321 |
+
-\frac{21}{8} & -\frac{3}{2} \\
|
| 322 |
+
\end{array}
|
| 323 |
+
\right)=\left(
|
| 324 |
+
\begin{array}{cc}
|
| 325 |
+
\frac{385}{128} & \frac{263}{32} \\
|
| 326 |
+
\frac{3287}{256} & \frac{197}{128} \\
|
| 327 |
+
\fbox{$-\frac{451}{128}$} & \_ \\
|
| 328 |
+
\end{array}
|
| 329 |
+
\right) \\
|
| 330 |
+
\end{array}
|
| 331 |
+
\\
|
| 332 |
+
|
| 333 |
+
\begin{array}{l}
|
| 334 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 335 |
+
\left(
|
| 336 |
+
\begin{array}{ccc}
|
| 337 |
+
-\frac{15}{8} & \frac{19}{8} & -\frac{29}{16} \\
|
| 338 |
+
3 & \frac{17}{16} & -\frac{13}{8} \\
|
| 339 |
+
-2 & -\frac{13}{8} & -\frac{5}{4} \\
|
| 340 |
+
\end{array}
|
| 341 |
+
\right).\left(
|
| 342 |
+
\begin{array}{cc}
|
| 343 |
+
\frac{39}{16} & -\frac{7}{8} \\
|
| 344 |
+
\frac{19}{16} & \frac{13}{8} \\
|
| 345 |
+
-\frac{21}{8} & -\frac{3}{2} \\
|
| 346 |
+
\end{array}
|
| 347 |
+
\right)=\left(
|
| 348 |
+
\begin{array}{cc}
|
| 349 |
+
\frac{385}{128} & \frac{263}{32} \\
|
| 350 |
+
\frac{3287}{256} & \frac{197}{128} \\
|
| 351 |
+
-\frac{451}{128} & \_ \\
|
| 352 |
+
\end{array}
|
| 353 |
+
\right) \\
|
| 354 |
+
\end{array}
|
| 355 |
+
\\
|
| 356 |
+
|
| 357 |
+
\begin{array}{l}
|
| 358 |
+
|
| 359 |
+
\begin{array}{l}
|
| 360 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, \left(-\frac{7}{8}\right)+\left(-\frac{13}{8}\right)\, \times \, \frac{13}{8}+\left(-\frac{5}{4}\right)\, \left(-\frac{3}{2}\right)=\frac{63}{64}. \\
|
| 361 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 362 |
+
\end{array}
|
| 363 |
+
\\
|
| 364 |
+
\fbox{$
|
| 365 |
+
\begin{array}{ll}
|
| 366 |
+
\text{Answer:} & \\
|
| 367 |
+
\text{} & \left(
|
| 368 |
+
\begin{array}{ccc}
|
| 369 |
+
-\frac{15}{8} & \frac{19}{8} & -\frac{29}{16} \\
|
| 370 |
+
3 & \frac{17}{16} & -\frac{13}{8} \\
|
| 371 |
+
-2 & -\frac{13}{8} & -\frac{5}{4} \\
|
| 372 |
+
\end{array}
|
| 373 |
+
\right).\left(
|
| 374 |
+
\begin{array}{cc}
|
| 375 |
+
\frac{39}{16} & -\frac{7}{8} \\
|
| 376 |
+
\frac{19}{16} & \frac{13}{8} \\
|
| 377 |
+
-\frac{21}{8} & -\frac{3}{2} \\
|
| 378 |
+
\end{array}
|
| 379 |
+
\right)=\left(
|
| 380 |
+
\begin{array}{cc}
|
| 381 |
+
\frac{385}{128} & \frac{263}{32} \\
|
| 382 |
+
\frac{3287}{256} & \frac{197}{128} \\
|
| 383 |
+
-\frac{451}{128} & \fbox{$\frac{63}{64}$} \\
|
| 384 |
+
\end{array}
|
| 385 |
+
\right) \\
|
| 386 |
+
\end{array}
|
| 387 |
+
$} \\
|
| 388 |
+
\end{array}
|
| 389 |
+
\\
|
| 390 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/1567.txt
ADDED
|
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
-\frac{7}{6} & \frac{8}{3} & -\frac{7}{3} \\
|
| 6 |
+
\frac{2}{3} & -\frac{3}{2} & 1 \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{ccc}
|
| 11 |
+
\frac{5}{2} & -\frac{7}{3} & -3 \\
|
| 12 |
+
3 & -\frac{3}{2} & -2 \\
|
| 13 |
+
\frac{11}{6} & -\frac{4}{3} & \frac{8}{3} \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$.
|
| 16 |
+
Answer:
|
| 17 |
+
\begin{array}{l}
|
| 18 |
+
|
| 19 |
+
\begin{array}{l}
|
| 20 |
+
\text{Multiply the following matrices}: \\
|
| 21 |
+
\left(
|
| 22 |
+
\begin{array}{ccc}
|
| 23 |
+
-\frac{7}{6} & \frac{8}{3} & -\frac{7}{3} \\
|
| 24 |
+
\frac{2}{3} & -\frac{3}{2} & 1 \\
|
| 25 |
+
\end{array}
|
| 26 |
+
\right).\left(
|
| 27 |
+
\begin{array}{ccc}
|
| 28 |
+
\frac{5}{2} & -\frac{7}{3} & -3 \\
|
| 29 |
+
3 & -\frac{3}{2} & -2 \\
|
| 30 |
+
\frac{11}{6} & -\frac{4}{3} & \frac{8}{3} \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\right) \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\\
|
| 35 |
+
\hline
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 3. \\
|
| 41 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 3: \\
|
| 42 |
+
\end{array}
|
| 43 |
+
\\
|
| 44 |
+
\left(
|
| 45 |
+
\begin{array}{ccc}
|
| 46 |
+
-\frac{7}{6} & \frac{8}{3} & -\frac{7}{3} \\
|
| 47 |
+
\frac{2}{3} & -\frac{3}{2} & 1 \\
|
| 48 |
+
\end{array}
|
| 49 |
+
\right).\left(
|
| 50 |
+
\begin{array}{ccc}
|
| 51 |
+
\frac{5}{2} & -\frac{7}{3} & -3 \\
|
| 52 |
+
3 & -\frac{3}{2} & -2 \\
|
| 53 |
+
\frac{11}{6} & -\frac{4}{3} & \frac{8}{3} \\
|
| 54 |
+
\end{array}
|
| 55 |
+
\right)=\left(
|
| 56 |
+
\begin{array}{ccc}
|
| 57 |
+
\_ & \_ & \_ \\
|
| 58 |
+
\_ & \_ & \_ \\
|
| 59 |
+
\end{array}
|
| 60 |
+
\right) \\
|
| 61 |
+
\end{array}
|
| 62 |
+
\\
|
| 63 |
+
|
| 64 |
+
\begin{array}{l}
|
| 65 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 66 |
+
\left(
|
| 67 |
+
\begin{array}{ccc}
|
| 68 |
+
-\frac{7}{6} & \frac{8}{3} & -\frac{7}{3} \\
|
| 69 |
+
\frac{2}{3} & -\frac{3}{2} & 1 \\
|
| 70 |
+
\end{array}
|
| 71 |
+
\right).\left(
|
| 72 |
+
\begin{array}{ccc}
|
| 73 |
+
\frac{5}{2} & -\frac{7}{3} & -3 \\
|
| 74 |
+
3 & -\frac{3}{2} & -2 \\
|
| 75 |
+
\frac{11}{6} & -\frac{4}{3} & \frac{8}{3} \\
|
| 76 |
+
\end{array}
|
| 77 |
+
\right)=\left(
|
| 78 |
+
\begin{array}{ccc}
|
| 79 |
+
\_ & \_ & \_ \\
|
| 80 |
+
\_ & \_ & \_ \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right) \\
|
| 83 |
+
\end{array}
|
| 84 |
+
\\
|
| 85 |
+
|
| 86 |
+
\begin{array}{l}
|
| 87 |
+
|
| 88 |
+
\begin{array}{l}
|
| 89 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{7}{6}\right)\, \times \, \frac{5}{2}+\frac{8\ 3}{3}+\left(-\frac{7}{3}\right)\, \times \, \frac{11}{6}=\frac{29}{36}. \\
|
| 90 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 91 |
+
\end{array}
|
| 92 |
+
\\
|
| 93 |
+
\left(
|
| 94 |
+
\begin{array}{ccc}
|
| 95 |
+
-\frac{7}{6} & \frac{8}{3} & -\frac{7}{3} \\
|
| 96 |
+
\frac{2}{3} & -\frac{3}{2} & 1 \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\right).\left(
|
| 99 |
+
\begin{array}{ccc}
|
| 100 |
+
\frac{5}{2} & -\frac{7}{3} & -3 \\
|
| 101 |
+
3 & -\frac{3}{2} & -2 \\
|
| 102 |
+
\frac{11}{6} & -\frac{4}{3} & \frac{8}{3} \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right)=\left(
|
| 105 |
+
\begin{array}{ccc}
|
| 106 |
+
\fbox{$\frac{29}{36}$} & \_ & \_ \\
|
| 107 |
+
\_ & \_ & \_ \\
|
| 108 |
+
\end{array}
|
| 109 |
+
\right) \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\\
|
| 112 |
+
|
| 113 |
+
\begin{array}{l}
|
| 114 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 115 |
+
\left(
|
| 116 |
+
\begin{array}{ccc}
|
| 117 |
+
-\frac{7}{6} & \frac{8}{3} & -\frac{7}{3} \\
|
| 118 |
+
\frac{2}{3} & -\frac{3}{2} & 1 \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right).\left(
|
| 121 |
+
\begin{array}{ccc}
|
| 122 |
+
\frac{5}{2} & -\frac{7}{3} & -3 \\
|
| 123 |
+
3 & -\frac{3}{2} & -2 \\
|
| 124 |
+
\frac{11}{6} & -\frac{4}{3} & \frac{8}{3} \\
|
| 125 |
+
\end{array}
|
| 126 |
+
\right)=\left(
|
| 127 |
+
\begin{array}{ccc}
|
| 128 |
+
\frac{29}{36} & \_ & \_ \\
|
| 129 |
+
\_ & \_ & \_ \\
|
| 130 |
+
\end{array}
|
| 131 |
+
\right) \\
|
| 132 |
+
\end{array}
|
| 133 |
+
\\
|
| 134 |
+
|
| 135 |
+
\begin{array}{l}
|
| 136 |
+
|
| 137 |
+
\begin{array}{l}
|
| 138 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{7}{6}\right)\, \left(-\frac{7}{3}\right)+\frac{8 (-3)}{3\ 2}+\left(-\frac{7}{3}\right)\, \left(-\frac{4}{3}\right)=\frac{11}{6}. \\
|
| 139 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\\
|
| 142 |
+
\left(
|
| 143 |
+
\begin{array}{ccc}
|
| 144 |
+
-\frac{7}{6} & \frac{8}{3} & -\frac{7}{3} \\
|
| 145 |
+
\frac{2}{3} & -\frac{3}{2} & 1 \\
|
| 146 |
+
\end{array}
|
| 147 |
+
\right).\left(
|
| 148 |
+
\begin{array}{ccc}
|
| 149 |
+
\frac{5}{2} & -\frac{7}{3} & -3 \\
|
| 150 |
+
3 & -\frac{3}{2} & -2 \\
|
| 151 |
+
\frac{11}{6} & -\frac{4}{3} & \frac{8}{3} \\
|
| 152 |
+
\end{array}
|
| 153 |
+
\right)=\left(
|
| 154 |
+
\begin{array}{ccc}
|
| 155 |
+
\frac{29}{36} & \fbox{$\frac{11}{6}$} & \_ \\
|
| 156 |
+
\_ & \_ & \_ \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right) \\
|
| 159 |
+
\end{array}
|
| 160 |
+
\\
|
| 161 |
+
|
| 162 |
+
\begin{array}{l}
|
| 163 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 164 |
+
\left(
|
| 165 |
+
\begin{array}{ccc}
|
| 166 |
+
-\frac{7}{6} & \frac{8}{3} & -\frac{7}{3} \\
|
| 167 |
+
\frac{2}{3} & -\frac{3}{2} & 1 \\
|
| 168 |
+
\end{array}
|
| 169 |
+
\right).\left(
|
| 170 |
+
\begin{array}{ccc}
|
| 171 |
+
\frac{5}{2} & -\frac{7}{3} & -3 \\
|
| 172 |
+
3 & -\frac{3}{2} & -2 \\
|
| 173 |
+
\frac{11}{6} & -\frac{4}{3} & \frac{8}{3} \\
|
| 174 |
+
\end{array}
|
| 175 |
+
\right)=\left(
|
| 176 |
+
\begin{array}{ccc}
|
| 177 |
+
\frac{29}{36} & \frac{11}{6} & \_ \\
|
| 178 |
+
\_ & \_ & \_ \\
|
| 179 |
+
\end{array}
|
| 180 |
+
\right) \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\\
|
| 183 |
+
|
| 184 |
+
\begin{array}{l}
|
| 185 |
+
|
| 186 |
+
\begin{array}{l}
|
| 187 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{7}{6}\right)\, (-3)+\frac{8 (-2)}{3}+\left(-\frac{7}{3}\right)\, \times \, \frac{8}{3}=-\frac{145}{18}. \\
|
| 188 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 189 |
+
\end{array}
|
| 190 |
+
\\
|
| 191 |
+
\left(
|
| 192 |
+
\begin{array}{ccc}
|
| 193 |
+
-\frac{7}{6} & \frac{8}{3} & -\frac{7}{3} \\
|
| 194 |
+
\frac{2}{3} & -\frac{3}{2} & 1 \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\right).\left(
|
| 197 |
+
\begin{array}{ccc}
|
| 198 |
+
\frac{5}{2} & -\frac{7}{3} & -3 \\
|
| 199 |
+
3 & -\frac{3}{2} & -2 \\
|
| 200 |
+
\frac{11}{6} & -\frac{4}{3} & \frac{8}{3} \\
|
| 201 |
+
\end{array}
|
| 202 |
+
\right)=\left(
|
| 203 |
+
\begin{array}{ccc}
|
| 204 |
+
\frac{29}{36} & \frac{11}{6} & \fbox{$-\frac{145}{18}$} \\
|
| 205 |
+
\_ & \_ & \_ \\
|
| 206 |
+
\end{array}
|
| 207 |
+
\right) \\
|
| 208 |
+
\end{array}
|
| 209 |
+
\\
|
| 210 |
+
|
| 211 |
+
\begin{array}{l}
|
| 212 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 213 |
+
\left(
|
| 214 |
+
\begin{array}{ccc}
|
| 215 |
+
-\frac{7}{6} & \frac{8}{3} & -\frac{7}{3} \\
|
| 216 |
+
\frac{2}{3} & -\frac{3}{2} & 1 \\
|
| 217 |
+
\end{array}
|
| 218 |
+
\right).\left(
|
| 219 |
+
\begin{array}{ccc}
|
| 220 |
+
\frac{5}{2} & -\frac{7}{3} & -3 \\
|
| 221 |
+
3 & -\frac{3}{2} & -2 \\
|
| 222 |
+
\frac{11}{6} & -\frac{4}{3} & \frac{8}{3} \\
|
| 223 |
+
\end{array}
|
| 224 |
+
\right)=\left(
|
| 225 |
+
\begin{array}{ccc}
|
| 226 |
+
\frac{29}{36} & \frac{11}{6} & -\frac{145}{18} \\
|
| 227 |
+
\_ & \_ & \_ \\
|
| 228 |
+
\end{array}
|
| 229 |
+
\right) \\
|
| 230 |
+
\end{array}
|
| 231 |
+
\\
|
| 232 |
+
|
| 233 |
+
\begin{array}{l}
|
| 234 |
+
|
| 235 |
+
\begin{array}{l}
|
| 236 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{2\ 5}{3\ 2}+\left(-\frac{3}{2}\right)\, \times \, 3+\frac{11}{6}=-1. \\
|
| 237 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 238 |
+
\end{array}
|
| 239 |
+
\\
|
| 240 |
+
\left(
|
| 241 |
+
\begin{array}{ccc}
|
| 242 |
+
-\frac{7}{6} & \frac{8}{3} & -\frac{7}{3} \\
|
| 243 |
+
\frac{2}{3} & -\frac{3}{2} & 1 \\
|
| 244 |
+
\end{array}
|
| 245 |
+
\right).\left(
|
| 246 |
+
\begin{array}{ccc}
|
| 247 |
+
\frac{5}{2} & -\frac{7}{3} & -3 \\
|
| 248 |
+
3 & -\frac{3}{2} & -2 \\
|
| 249 |
+
\frac{11}{6} & -\frac{4}{3} & \frac{8}{3} \\
|
| 250 |
+
\end{array}
|
| 251 |
+
\right)=\left(
|
| 252 |
+
\begin{array}{ccc}
|
| 253 |
+
\frac{29}{36} & \frac{11}{6} & -\frac{145}{18} \\
|
| 254 |
+
\fbox{$-1$} & \_ & \_ \\
|
| 255 |
+
\end{array}
|
| 256 |
+
\right) \\
|
| 257 |
+
\end{array}
|
| 258 |
+
\\
|
| 259 |
+
|
| 260 |
+
\begin{array}{l}
|
| 261 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 262 |
+
\left(
|
| 263 |
+
\begin{array}{ccc}
|
| 264 |
+
-\frac{7}{6} & \frac{8}{3} & -\frac{7}{3} \\
|
| 265 |
+
\frac{2}{3} & -\frac{3}{2} & 1 \\
|
| 266 |
+
\end{array}
|
| 267 |
+
\right).\left(
|
| 268 |
+
\begin{array}{ccc}
|
| 269 |
+
\frac{5}{2} & -\frac{7}{3} & -3 \\
|
| 270 |
+
3 & -\frac{3}{2} & -2 \\
|
| 271 |
+
\frac{11}{6} & -\frac{4}{3} & \frac{8}{3} \\
|
| 272 |
+
\end{array}
|
| 273 |
+
\right)=\left(
|
| 274 |
+
\begin{array}{ccc}
|
| 275 |
+
\frac{29}{36} & \frac{11}{6} & -\frac{145}{18} \\
|
| 276 |
+
-1 & \_ & \_ \\
|
| 277 |
+
\end{array}
|
| 278 |
+
\right) \\
|
| 279 |
+
\end{array}
|
| 280 |
+
\\
|
| 281 |
+
|
| 282 |
+
\begin{array}{l}
|
| 283 |
+
|
| 284 |
+
\begin{array}{l}
|
| 285 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{2 (-7)}{3\ 3}+\left(-\frac{3}{2}\right)\, \left(-\frac{3}{2}\right)-\frac{4}{3}=-\frac{23}{36}. \\
|
| 286 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 287 |
+
\end{array}
|
| 288 |
+
\\
|
| 289 |
+
\left(
|
| 290 |
+
\begin{array}{ccc}
|
| 291 |
+
-\frac{7}{6} & \frac{8}{3} & -\frac{7}{3} \\
|
| 292 |
+
\frac{2}{3} & -\frac{3}{2} & 1 \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\right).\left(
|
| 295 |
+
\begin{array}{ccc}
|
| 296 |
+
\frac{5}{2} & -\frac{7}{3} & -3 \\
|
| 297 |
+
3 & -\frac{3}{2} & -2 \\
|
| 298 |
+
\frac{11}{6} & -\frac{4}{3} & \frac{8}{3} \\
|
| 299 |
+
\end{array}
|
| 300 |
+
\right)=\left(
|
| 301 |
+
\begin{array}{ccc}
|
| 302 |
+
\frac{29}{36} & \frac{11}{6} & -\frac{145}{18} \\
|
| 303 |
+
-1 & \fbox{$-\frac{23}{36}$} & \_ \\
|
| 304 |
+
\end{array}
|
| 305 |
+
\right) \\
|
| 306 |
+
\end{array}
|
| 307 |
+
\\
|
| 308 |
+
|
| 309 |
+
\begin{array}{l}
|
| 310 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 311 |
+
\left(
|
| 312 |
+
\begin{array}{ccc}
|
| 313 |
+
-\frac{7}{6} & \frac{8}{3} & -\frac{7}{3} \\
|
| 314 |
+
\frac{2}{3} & -\frac{3}{2} & 1 \\
|
| 315 |
+
\end{array}
|
| 316 |
+
\right).\left(
|
| 317 |
+
\begin{array}{ccc}
|
| 318 |
+
\frac{5}{2} & -\frac{7}{3} & -3 \\
|
| 319 |
+
3 & -\frac{3}{2} & -2 \\
|
| 320 |
+
\frac{11}{6} & -\frac{4}{3} & \frac{8}{3} \\
|
| 321 |
+
\end{array}
|
| 322 |
+
\right)=\left(
|
| 323 |
+
\begin{array}{ccc}
|
| 324 |
+
\frac{29}{36} & \frac{11}{6} & -\frac{145}{18} \\
|
| 325 |
+
-1 & -\frac{23}{36} & \_ \\
|
| 326 |
+
\end{array}
|
| 327 |
+
\right) \\
|
| 328 |
+
\end{array}
|
| 329 |
+
\\
|
| 330 |
+
|
| 331 |
+
\begin{array}{l}
|
| 332 |
+
|
| 333 |
+
\begin{array}{l}
|
| 334 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{2 (-3)}{3}+\left(-\frac{3}{2}\right)\, (-2)+\frac{8}{3}=\frac{11}{3}. \\
|
| 335 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 336 |
+
\end{array}
|
| 337 |
+
\\
|
| 338 |
+
\fbox{$
|
| 339 |
+
\begin{array}{ll}
|
| 340 |
+
\text{Answer:} & \\
|
| 341 |
+
\text{} & \left(
|
| 342 |
+
\begin{array}{ccc}
|
| 343 |
+
-\frac{7}{6} & \frac{8}{3} & -\frac{7}{3} \\
|
| 344 |
+
\frac{2}{3} & -\frac{3}{2} & 1 \\
|
| 345 |
+
\end{array}
|
| 346 |
+
\right).\left(
|
| 347 |
+
\begin{array}{ccc}
|
| 348 |
+
\frac{5}{2} & -\frac{7}{3} & -3 \\
|
| 349 |
+
3 & -\frac{3}{2} & -2 \\
|
| 350 |
+
\frac{11}{6} & -\frac{4}{3} & \frac{8}{3} \\
|
| 351 |
+
\end{array}
|
| 352 |
+
\right)=\left(
|
| 353 |
+
\begin{array}{ccc}
|
| 354 |
+
\frac{29}{36} & \frac{11}{6} & -\frac{145}{18} \\
|
| 355 |
+
-1 & -\frac{23}{36} & \fbox{$\frac{11}{3}$} \\
|
| 356 |
+
\end{array}
|
| 357 |
+
\right) \\
|
| 358 |
+
\end{array}
|
| 359 |
+
$} \\
|
| 360 |
+
\end{array}
|
| 361 |
+
\\
|
| 362 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/1633.txt
ADDED
|
@@ -0,0 +1,549 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
2 & -1 & 2 \\
|
| 6 |
+
1 & -1 & 0 \\
|
| 7 |
+
2 & 2 & 0 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{ccc}
|
| 12 |
+
-1 & 3 & -2 \\
|
| 13 |
+
0 & 2 & 2 \\
|
| 14 |
+
3 & 1 & -2 \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$.
|
| 17 |
+
Answer:
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
|
| 20 |
+
\begin{array}{l}
|
| 21 |
+
\text{Multiply the following matrices}: \\
|
| 22 |
+
\left(
|
| 23 |
+
\begin{array}{ccc}
|
| 24 |
+
2 & -1 & 2 \\
|
| 25 |
+
1 & -1 & 0 \\
|
| 26 |
+
2 & 2 & 0 \\
|
| 27 |
+
\end{array}
|
| 28 |
+
\right).\left(
|
| 29 |
+
\begin{array}{ccc}
|
| 30 |
+
-1 & 3 & -2 \\
|
| 31 |
+
0 & 2 & 2 \\
|
| 32 |
+
3 & 1 & -2 \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\right) \\
|
| 35 |
+
\end{array}
|
| 36 |
+
\\
|
| 37 |
+
\hline
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
|
| 41 |
+
\begin{array}{l}
|
| 42 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 3. \\
|
| 43 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 3: \\
|
| 44 |
+
\end{array}
|
| 45 |
+
\\
|
| 46 |
+
\left(
|
| 47 |
+
\begin{array}{ccc}
|
| 48 |
+
2 & -1 & 2 \\
|
| 49 |
+
1 & -1 & 0 \\
|
| 50 |
+
2 & 2 & 0 \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right).\left(
|
| 53 |
+
\begin{array}{ccc}
|
| 54 |
+
-1 & 3 & -2 \\
|
| 55 |
+
0 & 2 & 2 \\
|
| 56 |
+
3 & 1 & -2 \\
|
| 57 |
+
\end{array}
|
| 58 |
+
\right)=\left(
|
| 59 |
+
\begin{array}{ccc}
|
| 60 |
+
\_ & \_ & \_ \\
|
| 61 |
+
\_ & \_ & \_ \\
|
| 62 |
+
\_ & \_ & \_ \\
|
| 63 |
+
\end{array}
|
| 64 |
+
\right) \\
|
| 65 |
+
\end{array}
|
| 66 |
+
\\
|
| 67 |
+
|
| 68 |
+
\begin{array}{l}
|
| 69 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 70 |
+
\left(
|
| 71 |
+
\begin{array}{ccc}
|
| 72 |
+
2 & -1 & 2 \\
|
| 73 |
+
1 & -1 & 0 \\
|
| 74 |
+
2 & 2 & 0 \\
|
| 75 |
+
\end{array}
|
| 76 |
+
\right).\left(
|
| 77 |
+
\begin{array}{ccc}
|
| 78 |
+
-1 & 3 & -2 \\
|
| 79 |
+
0 & 2 & 2 \\
|
| 80 |
+
3 & 1 & -2 \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right)=\left(
|
| 83 |
+
\begin{array}{ccc}
|
| 84 |
+
\_ & \_ & \_ \\
|
| 85 |
+
\_ & \_ & \_ \\
|
| 86 |
+
\_ & \_ & \_ \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\right) \\
|
| 89 |
+
\end{array}
|
| 90 |
+
\\
|
| 91 |
+
|
| 92 |
+
\begin{array}{l}
|
| 93 |
+
|
| 94 |
+
\begin{array}{l}
|
| 95 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2 (-1)+(-1)\, \times \, 0+2\ 3=4. \\
|
| 96 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\\
|
| 99 |
+
\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
2 & -1 & 2 \\
|
| 102 |
+
1 & -1 & 0 \\
|
| 103 |
+
2 & 2 & 0 \\
|
| 104 |
+
\end{array}
|
| 105 |
+
\right).\left(
|
| 106 |
+
\begin{array}{ccc}
|
| 107 |
+
-1 & 3 & -2 \\
|
| 108 |
+
0 & 2 & 2 \\
|
| 109 |
+
3 & 1 & -2 \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\right)=\left(
|
| 112 |
+
\begin{array}{ccc}
|
| 113 |
+
\fbox{$4$} & \_ & \_ \\
|
| 114 |
+
\_ & \_ & \_ \\
|
| 115 |
+
\_ & \_ & \_ \\
|
| 116 |
+
\end{array}
|
| 117 |
+
\right) \\
|
| 118 |
+
\end{array}
|
| 119 |
+
\\
|
| 120 |
+
|
| 121 |
+
\begin{array}{l}
|
| 122 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 123 |
+
\left(
|
| 124 |
+
\begin{array}{ccc}
|
| 125 |
+
2 & -1 & 2 \\
|
| 126 |
+
1 & -1 & 0 \\
|
| 127 |
+
2 & 2 & 0 \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right).\left(
|
| 130 |
+
\begin{array}{ccc}
|
| 131 |
+
-1 & 3 & -2 \\
|
| 132 |
+
0 & 2 & 2 \\
|
| 133 |
+
3 & 1 & -2 \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right)=\left(
|
| 136 |
+
\begin{array}{ccc}
|
| 137 |
+
4 & \_ & \_ \\
|
| 138 |
+
\_ & \_ & \_ \\
|
| 139 |
+
\_ & \_ & \_ \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right) \\
|
| 142 |
+
\end{array}
|
| 143 |
+
\\
|
| 144 |
+
|
| 145 |
+
\begin{array}{l}
|
| 146 |
+
|
| 147 |
+
\begin{array}{l}
|
| 148 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2\ 3+(-1)\, \times \, 2+2\ 1=6. \\
|
| 149 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\\
|
| 152 |
+
\left(
|
| 153 |
+
\begin{array}{ccc}
|
| 154 |
+
2 & -1 & 2 \\
|
| 155 |
+
1 & -1 & 0 \\
|
| 156 |
+
2 & 2 & 0 \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right).\left(
|
| 159 |
+
\begin{array}{ccc}
|
| 160 |
+
-1 & 3 & -2 \\
|
| 161 |
+
0 & 2 & 2 \\
|
| 162 |
+
3 & 1 & -2 \\
|
| 163 |
+
\end{array}
|
| 164 |
+
\right)=\left(
|
| 165 |
+
\begin{array}{ccc}
|
| 166 |
+
4 & \fbox{$6$} & \_ \\
|
| 167 |
+
\_ & \_ & \_ \\
|
| 168 |
+
\_ & \_ & \_ \\
|
| 169 |
+
\end{array}
|
| 170 |
+
\right) \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\\
|
| 173 |
+
|
| 174 |
+
\begin{array}{l}
|
| 175 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 176 |
+
\left(
|
| 177 |
+
\begin{array}{ccc}
|
| 178 |
+
2 & -1 & 2 \\
|
| 179 |
+
1 & -1 & 0 \\
|
| 180 |
+
2 & 2 & 0 \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\right).\left(
|
| 183 |
+
\begin{array}{ccc}
|
| 184 |
+
-1 & 3 & -2 \\
|
| 185 |
+
0 & 2 & 2 \\
|
| 186 |
+
3 & 1 & -2 \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right)=\left(
|
| 189 |
+
\begin{array}{ccc}
|
| 190 |
+
4 & 6 & \_ \\
|
| 191 |
+
\_ & \_ & \_ \\
|
| 192 |
+
\_ & \_ & \_ \\
|
| 193 |
+
\end{array}
|
| 194 |
+
\right) \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
|
| 198 |
+
\begin{array}{l}
|
| 199 |
+
|
| 200 |
+
\begin{array}{l}
|
| 201 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2 (-2)+(-1)\, \times \, 2+2 (-2)=-10. \\
|
| 202 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 203 |
+
\end{array}
|
| 204 |
+
\\
|
| 205 |
+
\left(
|
| 206 |
+
\begin{array}{ccc}
|
| 207 |
+
2 & -1 & 2 \\
|
| 208 |
+
1 & -1 & 0 \\
|
| 209 |
+
2 & 2 & 0 \\
|
| 210 |
+
\end{array}
|
| 211 |
+
\right).\left(
|
| 212 |
+
\begin{array}{ccc}
|
| 213 |
+
-1 & 3 & -2 \\
|
| 214 |
+
0 & 2 & 2 \\
|
| 215 |
+
3 & 1 & -2 \\
|
| 216 |
+
\end{array}
|
| 217 |
+
\right)=\left(
|
| 218 |
+
\begin{array}{ccc}
|
| 219 |
+
4 & 6 & \fbox{$-10$} \\
|
| 220 |
+
\_ & \_ & \_ \\
|
| 221 |
+
\_ & \_ & \_ \\
|
| 222 |
+
\end{array}
|
| 223 |
+
\right) \\
|
| 224 |
+
\end{array}
|
| 225 |
+
\\
|
| 226 |
+
|
| 227 |
+
\begin{array}{l}
|
| 228 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 229 |
+
\left(
|
| 230 |
+
\begin{array}{ccc}
|
| 231 |
+
2 & -1 & 2 \\
|
| 232 |
+
1 & -1 & 0 \\
|
| 233 |
+
2 & 2 & 0 \\
|
| 234 |
+
\end{array}
|
| 235 |
+
\right).\left(
|
| 236 |
+
\begin{array}{ccc}
|
| 237 |
+
-1 & 3 & -2 \\
|
| 238 |
+
0 & 2 & 2 \\
|
| 239 |
+
3 & 1 & -2 \\
|
| 240 |
+
\end{array}
|
| 241 |
+
\right)=\left(
|
| 242 |
+
\begin{array}{ccc}
|
| 243 |
+
4 & 6 & -10 \\
|
| 244 |
+
\_ & \_ & \_ \\
|
| 245 |
+
\_ & \_ & \_ \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\right) \\
|
| 248 |
+
\end{array}
|
| 249 |
+
\\
|
| 250 |
+
|
| 251 |
+
\begin{array}{l}
|
| 252 |
+
|
| 253 |
+
\begin{array}{l}
|
| 254 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1 (-1)+(-1)\, \times \, 0+0\ 3=-1. \\
|
| 255 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 256 |
+
\end{array}
|
| 257 |
+
\\
|
| 258 |
+
\left(
|
| 259 |
+
\begin{array}{ccc}
|
| 260 |
+
2 & -1 & 2 \\
|
| 261 |
+
1 & -1 & 0 \\
|
| 262 |
+
2 & 2 & 0 \\
|
| 263 |
+
\end{array}
|
| 264 |
+
\right).\left(
|
| 265 |
+
\begin{array}{ccc}
|
| 266 |
+
-1 & 3 & -2 \\
|
| 267 |
+
0 & 2 & 2 \\
|
| 268 |
+
3 & 1 & -2 \\
|
| 269 |
+
\end{array}
|
| 270 |
+
\right)=\left(
|
| 271 |
+
\begin{array}{ccc}
|
| 272 |
+
4 & 6 & -10 \\
|
| 273 |
+
\fbox{$-1$} & \_ & \_ \\
|
| 274 |
+
\_ & \_ & \_ \\
|
| 275 |
+
\end{array}
|
| 276 |
+
\right) \\
|
| 277 |
+
\end{array}
|
| 278 |
+
\\
|
| 279 |
+
|
| 280 |
+
\begin{array}{l}
|
| 281 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 282 |
+
\left(
|
| 283 |
+
\begin{array}{ccc}
|
| 284 |
+
2 & -1 & 2 \\
|
| 285 |
+
1 & -1 & 0 \\
|
| 286 |
+
2 & 2 & 0 \\
|
| 287 |
+
\end{array}
|
| 288 |
+
\right).\left(
|
| 289 |
+
\begin{array}{ccc}
|
| 290 |
+
-1 & 3 & -2 \\
|
| 291 |
+
0 & 2 & 2 \\
|
| 292 |
+
3 & 1 & -2 \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\right)=\left(
|
| 295 |
+
\begin{array}{ccc}
|
| 296 |
+
4 & 6 & -10 \\
|
| 297 |
+
-1 & \_ & \_ \\
|
| 298 |
+
\_ & \_ & \_ \\
|
| 299 |
+
\end{array}
|
| 300 |
+
\right) \\
|
| 301 |
+
\end{array}
|
| 302 |
+
\\
|
| 303 |
+
|
| 304 |
+
\begin{array}{l}
|
| 305 |
+
|
| 306 |
+
\begin{array}{l}
|
| 307 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1\ 3+(-1)\, \times \, 2+0\ 1=1. \\
|
| 308 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 309 |
+
\end{array}
|
| 310 |
+
\\
|
| 311 |
+
\left(
|
| 312 |
+
\begin{array}{ccc}
|
| 313 |
+
2 & -1 & 2 \\
|
| 314 |
+
1 & -1 & 0 \\
|
| 315 |
+
2 & 2 & 0 \\
|
| 316 |
+
\end{array}
|
| 317 |
+
\right).\left(
|
| 318 |
+
\begin{array}{ccc}
|
| 319 |
+
-1 & 3 & -2 \\
|
| 320 |
+
0 & 2 & 2 \\
|
| 321 |
+
3 & 1 & -2 \\
|
| 322 |
+
\end{array}
|
| 323 |
+
\right)=\left(
|
| 324 |
+
\begin{array}{ccc}
|
| 325 |
+
4 & 6 & -10 \\
|
| 326 |
+
-1 & \fbox{$1$} & \_ \\
|
| 327 |
+
\_ & \_ & \_ \\
|
| 328 |
+
\end{array}
|
| 329 |
+
\right) \\
|
| 330 |
+
\end{array}
|
| 331 |
+
\\
|
| 332 |
+
|
| 333 |
+
\begin{array}{l}
|
| 334 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 335 |
+
\left(
|
| 336 |
+
\begin{array}{ccc}
|
| 337 |
+
2 & -1 & 2 \\
|
| 338 |
+
1 & -1 & 0 \\
|
| 339 |
+
2 & 2 & 0 \\
|
| 340 |
+
\end{array}
|
| 341 |
+
\right).\left(
|
| 342 |
+
\begin{array}{ccc}
|
| 343 |
+
-1 & 3 & -2 \\
|
| 344 |
+
0 & 2 & 2 \\
|
| 345 |
+
3 & 1 & -2 \\
|
| 346 |
+
\end{array}
|
| 347 |
+
\right)=\left(
|
| 348 |
+
\begin{array}{ccc}
|
| 349 |
+
4 & 6 & -10 \\
|
| 350 |
+
-1 & 1 & \_ \\
|
| 351 |
+
\_ & \_ & \_ \\
|
| 352 |
+
\end{array}
|
| 353 |
+
\right) \\
|
| 354 |
+
\end{array}
|
| 355 |
+
\\
|
| 356 |
+
|
| 357 |
+
\begin{array}{l}
|
| 358 |
+
|
| 359 |
+
\begin{array}{l}
|
| 360 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1 (-2)+(-1)\, \times \, 2+0 (-2)=-4. \\
|
| 361 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 362 |
+
\end{array}
|
| 363 |
+
\\
|
| 364 |
+
\left(
|
| 365 |
+
\begin{array}{ccc}
|
| 366 |
+
2 & -1 & 2 \\
|
| 367 |
+
1 & -1 & 0 \\
|
| 368 |
+
2 & 2 & 0 \\
|
| 369 |
+
\end{array}
|
| 370 |
+
\right).\left(
|
| 371 |
+
\begin{array}{ccc}
|
| 372 |
+
-1 & 3 & -2 \\
|
| 373 |
+
0 & 2 & 2 \\
|
| 374 |
+
3 & 1 & -2 \\
|
| 375 |
+
\end{array}
|
| 376 |
+
\right)=\left(
|
| 377 |
+
\begin{array}{ccc}
|
| 378 |
+
4 & 6 & -10 \\
|
| 379 |
+
-1 & 1 & \fbox{$-4$} \\
|
| 380 |
+
\_ & \_ & \_ \\
|
| 381 |
+
\end{array}
|
| 382 |
+
\right) \\
|
| 383 |
+
\end{array}
|
| 384 |
+
\\
|
| 385 |
+
|
| 386 |
+
\begin{array}{l}
|
| 387 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 388 |
+
\left(
|
| 389 |
+
\begin{array}{ccc}
|
| 390 |
+
2 & -1 & 2 \\
|
| 391 |
+
1 & -1 & 0 \\
|
| 392 |
+
2 & 2 & 0 \\
|
| 393 |
+
\end{array}
|
| 394 |
+
\right).\left(
|
| 395 |
+
\begin{array}{ccc}
|
| 396 |
+
-1 & 3 & -2 \\
|
| 397 |
+
0 & 2 & 2 \\
|
| 398 |
+
3 & 1 & -2 \\
|
| 399 |
+
\end{array}
|
| 400 |
+
\right)=\left(
|
| 401 |
+
\begin{array}{ccc}
|
| 402 |
+
4 & 6 & -10 \\
|
| 403 |
+
-1 & 1 & -4 \\
|
| 404 |
+
\_ & \_ & \_ \\
|
| 405 |
+
\end{array}
|
| 406 |
+
\right) \\
|
| 407 |
+
\end{array}
|
| 408 |
+
\\
|
| 409 |
+
|
| 410 |
+
\begin{array}{l}
|
| 411 |
+
|
| 412 |
+
\begin{array}{l}
|
| 413 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2 (-1)+2\ 0+0\ 3=-2. \\
|
| 414 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 415 |
+
\end{array}
|
| 416 |
+
\\
|
| 417 |
+
\left(
|
| 418 |
+
\begin{array}{ccc}
|
| 419 |
+
2 & -1 & 2 \\
|
| 420 |
+
1 & -1 & 0 \\
|
| 421 |
+
2 & 2 & 0 \\
|
| 422 |
+
\end{array}
|
| 423 |
+
\right).\left(
|
| 424 |
+
\begin{array}{ccc}
|
| 425 |
+
-1 & 3 & -2 \\
|
| 426 |
+
0 & 2 & 2 \\
|
| 427 |
+
3 & 1 & -2 \\
|
| 428 |
+
\end{array}
|
| 429 |
+
\right)=\left(
|
| 430 |
+
\begin{array}{ccc}
|
| 431 |
+
4 & 6 & -10 \\
|
| 432 |
+
-1 & 1 & -4 \\
|
| 433 |
+
\fbox{$-2$} & \_ & \_ \\
|
| 434 |
+
\end{array}
|
| 435 |
+
\right) \\
|
| 436 |
+
\end{array}
|
| 437 |
+
\\
|
| 438 |
+
|
| 439 |
+
\begin{array}{l}
|
| 440 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 441 |
+
\left(
|
| 442 |
+
\begin{array}{ccc}
|
| 443 |
+
2 & -1 & 2 \\
|
| 444 |
+
1 & -1 & 0 \\
|
| 445 |
+
2 & 2 & 0 \\
|
| 446 |
+
\end{array}
|
| 447 |
+
\right).\left(
|
| 448 |
+
\begin{array}{ccc}
|
| 449 |
+
-1 & 3 & -2 \\
|
| 450 |
+
0 & 2 & 2 \\
|
| 451 |
+
3 & 1 & -2 \\
|
| 452 |
+
\end{array}
|
| 453 |
+
\right)=\left(
|
| 454 |
+
\begin{array}{ccc}
|
| 455 |
+
4 & 6 & -10 \\
|
| 456 |
+
-1 & 1 & -4 \\
|
| 457 |
+
-2 & \_ & \_ \\
|
| 458 |
+
\end{array}
|
| 459 |
+
\right) \\
|
| 460 |
+
\end{array}
|
| 461 |
+
\\
|
| 462 |
+
|
| 463 |
+
\begin{array}{l}
|
| 464 |
+
|
| 465 |
+
\begin{array}{l}
|
| 466 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2\ 3+2\ 2+0\ 1=10. \\
|
| 467 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 468 |
+
\end{array}
|
| 469 |
+
\\
|
| 470 |
+
\left(
|
| 471 |
+
\begin{array}{ccc}
|
| 472 |
+
2 & -1 & 2 \\
|
| 473 |
+
1 & -1 & 0 \\
|
| 474 |
+
2 & 2 & 0 \\
|
| 475 |
+
\end{array}
|
| 476 |
+
\right).\left(
|
| 477 |
+
\begin{array}{ccc}
|
| 478 |
+
-1 & 3 & -2 \\
|
| 479 |
+
0 & 2 & 2 \\
|
| 480 |
+
3 & 1 & -2 \\
|
| 481 |
+
\end{array}
|
| 482 |
+
\right)=\left(
|
| 483 |
+
\begin{array}{ccc}
|
| 484 |
+
4 & 6 & -10 \\
|
| 485 |
+
-1 & 1 & -4 \\
|
| 486 |
+
-2 & \fbox{$10$} & \_ \\
|
| 487 |
+
\end{array}
|
| 488 |
+
\right) \\
|
| 489 |
+
\end{array}
|
| 490 |
+
\\
|
| 491 |
+
|
| 492 |
+
\begin{array}{l}
|
| 493 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 494 |
+
\left(
|
| 495 |
+
\begin{array}{ccc}
|
| 496 |
+
2 & -1 & 2 \\
|
| 497 |
+
1 & -1 & 0 \\
|
| 498 |
+
2 & 2 & 0 \\
|
| 499 |
+
\end{array}
|
| 500 |
+
\right).\left(
|
| 501 |
+
\begin{array}{ccc}
|
| 502 |
+
-1 & 3 & -2 \\
|
| 503 |
+
0 & 2 & 2 \\
|
| 504 |
+
3 & 1 & -2 \\
|
| 505 |
+
\end{array}
|
| 506 |
+
\right)=\left(
|
| 507 |
+
\begin{array}{ccc}
|
| 508 |
+
4 & 6 & -10 \\
|
| 509 |
+
-1 & 1 & -4 \\
|
| 510 |
+
-2 & 10 & \_ \\
|
| 511 |
+
\end{array}
|
| 512 |
+
\right) \\
|
| 513 |
+
\end{array}
|
| 514 |
+
\\
|
| 515 |
+
|
| 516 |
+
\begin{array}{l}
|
| 517 |
+
|
| 518 |
+
\begin{array}{l}
|
| 519 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2 (-2)+2\ 2+0 (-2)=0. \\
|
| 520 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 521 |
+
\end{array}
|
| 522 |
+
\\
|
| 523 |
+
\fbox{$
|
| 524 |
+
\begin{array}{ll}
|
| 525 |
+
\text{Answer:} & \\
|
| 526 |
+
\text{} & \left(
|
| 527 |
+
\begin{array}{ccc}
|
| 528 |
+
2 & -1 & 2 \\
|
| 529 |
+
1 & -1 & 0 \\
|
| 530 |
+
2 & 2 & 0 \\
|
| 531 |
+
\end{array}
|
| 532 |
+
\right).\left(
|
| 533 |
+
\begin{array}{ccc}
|
| 534 |
+
-1 & 3 & -2 \\
|
| 535 |
+
0 & 2 & 2 \\
|
| 536 |
+
3 & 1 & -2 \\
|
| 537 |
+
\end{array}
|
| 538 |
+
\right)=\left(
|
| 539 |
+
\begin{array}{ccc}
|
| 540 |
+
4 & 6 & -10 \\
|
| 541 |
+
-1 & 1 & -4 \\
|
| 542 |
+
-2 & 10 & \fbox{$0$} \\
|
| 543 |
+
\end{array}
|
| 544 |
+
\right) \\
|
| 545 |
+
\end{array}
|
| 546 |
+
$} \\
|
| 547 |
+
\end{array}
|
| 548 |
+
\\
|
| 549 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/1703.txt
ADDED
|
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
-\frac{5}{2} & \frac{1}{2} & -\frac{5}{2} \\
|
| 6 |
+
1 & \frac{3}{2} & 1 \\
|
| 7 |
+
-\frac{5}{4} & \frac{1}{2} & \frac{9}{4} \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{c}
|
| 12 |
+
-\frac{3}{4} \\
|
| 13 |
+
\frac{1}{2} \\
|
| 14 |
+
\frac{1}{2} \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$.
|
| 17 |
+
Answer:
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
|
| 20 |
+
\begin{array}{l}
|
| 21 |
+
\text{Multiply the following matrices}: \\
|
| 22 |
+
\left(
|
| 23 |
+
\begin{array}{ccc}
|
| 24 |
+
-\frac{5}{2} & \frac{1}{2} & -\frac{5}{2} \\
|
| 25 |
+
1 & \frac{3}{2} & 1 \\
|
| 26 |
+
-\frac{5}{4} & \frac{1}{2} & \frac{9}{4} \\
|
| 27 |
+
\end{array}
|
| 28 |
+
\right).\left(
|
| 29 |
+
\begin{array}{c}
|
| 30 |
+
-\frac{3}{4} \\
|
| 31 |
+
\frac{1}{2} \\
|
| 32 |
+
\frac{1}{2} \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\right) \\
|
| 35 |
+
\end{array}
|
| 36 |
+
\\
|
| 37 |
+
\hline
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
|
| 41 |
+
\begin{array}{l}
|
| 42 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 1. \\
|
| 43 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 1: \\
|
| 44 |
+
\end{array}
|
| 45 |
+
\\
|
| 46 |
+
\left(
|
| 47 |
+
\begin{array}{ccc}
|
| 48 |
+
-\frac{5}{2} & \frac{1}{2} & -\frac{5}{2} \\
|
| 49 |
+
1 & \frac{3}{2} & 1 \\
|
| 50 |
+
-\frac{5}{4} & \frac{1}{2} & \frac{9}{4} \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right).\left(
|
| 53 |
+
\begin{array}{c}
|
| 54 |
+
-\frac{3}{4} \\
|
| 55 |
+
\frac{1}{2} \\
|
| 56 |
+
\frac{1}{2} \\
|
| 57 |
+
\end{array}
|
| 58 |
+
\right)=\left(
|
| 59 |
+
\begin{array}{c}
|
| 60 |
+
\_ \\
|
| 61 |
+
\_ \\
|
| 62 |
+
\_ \\
|
| 63 |
+
\end{array}
|
| 64 |
+
\right) \\
|
| 65 |
+
\end{array}
|
| 66 |
+
\\
|
| 67 |
+
|
| 68 |
+
\begin{array}{l}
|
| 69 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 70 |
+
\left(
|
| 71 |
+
\begin{array}{ccc}
|
| 72 |
+
-\frac{5}{2} & \frac{1}{2} & -\frac{5}{2} \\
|
| 73 |
+
1 & \frac{3}{2} & 1 \\
|
| 74 |
+
-\frac{5}{4} & \frac{1}{2} & \frac{9}{4} \\
|
| 75 |
+
\end{array}
|
| 76 |
+
\right).\left(
|
| 77 |
+
\begin{array}{c}
|
| 78 |
+
-\frac{3}{4} \\
|
| 79 |
+
\frac{1}{2} \\
|
| 80 |
+
\frac{1}{2} \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right)=\left(
|
| 83 |
+
\begin{array}{c}
|
| 84 |
+
\_ \\
|
| 85 |
+
\_ \\
|
| 86 |
+
\_ \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\right) \\
|
| 89 |
+
\end{array}
|
| 90 |
+
\\
|
| 91 |
+
|
| 92 |
+
\begin{array}{l}
|
| 93 |
+
|
| 94 |
+
\begin{array}{l}
|
| 95 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{5}{2}\right)\, \left(-\frac{3}{4}\right)+\frac{1}{2\ 2}+\left(-\frac{5}{2}\right)\, \times \, \frac{1}{2}=\frac{7}{8}. \\
|
| 96 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\\
|
| 99 |
+
\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
-\frac{5}{2} & \frac{1}{2} & -\frac{5}{2} \\
|
| 102 |
+
1 & \frac{3}{2} & 1 \\
|
| 103 |
+
-\frac{5}{4} & \frac{1}{2} & \frac{9}{4} \\
|
| 104 |
+
\end{array}
|
| 105 |
+
\right).\left(
|
| 106 |
+
\begin{array}{c}
|
| 107 |
+
-\frac{3}{4} \\
|
| 108 |
+
\frac{1}{2} \\
|
| 109 |
+
\frac{1}{2} \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\right)=\left(
|
| 112 |
+
\begin{array}{c}
|
| 113 |
+
\fbox{$\frac{7}{8}$} \\
|
| 114 |
+
\_ \\
|
| 115 |
+
\_ \\
|
| 116 |
+
\end{array}
|
| 117 |
+
\right) \\
|
| 118 |
+
\end{array}
|
| 119 |
+
\\
|
| 120 |
+
|
| 121 |
+
\begin{array}{l}
|
| 122 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 123 |
+
\left(
|
| 124 |
+
\begin{array}{ccc}
|
| 125 |
+
-\frac{5}{2} & \frac{1}{2} & -\frac{5}{2} \\
|
| 126 |
+
1 & \frac{3}{2} & 1 \\
|
| 127 |
+
-\frac{5}{4} & \frac{1}{2} & \frac{9}{4} \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right).\left(
|
| 130 |
+
\begin{array}{c}
|
| 131 |
+
-\frac{3}{4} \\
|
| 132 |
+
\frac{1}{2} \\
|
| 133 |
+
\frac{1}{2} \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right)=\left(
|
| 136 |
+
\begin{array}{c}
|
| 137 |
+
\frac{7}{8} \\
|
| 138 |
+
\_ \\
|
| 139 |
+
\_ \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right) \\
|
| 142 |
+
\end{array}
|
| 143 |
+
\\
|
| 144 |
+
|
| 145 |
+
\begin{array}{l}
|
| 146 |
+
|
| 147 |
+
\begin{array}{l}
|
| 148 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }-\frac{3}{4}+\frac{3}{2\ 2}+\frac{1}{2}=\frac{1}{2}. \\
|
| 149 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\\
|
| 152 |
+
\left(
|
| 153 |
+
\begin{array}{ccc}
|
| 154 |
+
-\frac{5}{2} & \frac{1}{2} & -\frac{5}{2} \\
|
| 155 |
+
1 & \frac{3}{2} & 1 \\
|
| 156 |
+
-\frac{5}{4} & \frac{1}{2} & \frac{9}{4} \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right).\left(
|
| 159 |
+
\begin{array}{c}
|
| 160 |
+
-\frac{3}{4} \\
|
| 161 |
+
\frac{1}{2} \\
|
| 162 |
+
\frac{1}{2} \\
|
| 163 |
+
\end{array}
|
| 164 |
+
\right)=\left(
|
| 165 |
+
\begin{array}{c}
|
| 166 |
+
\frac{7}{8} \\
|
| 167 |
+
\fbox{$\frac{1}{2}$} \\
|
| 168 |
+
\_ \\
|
| 169 |
+
\end{array}
|
| 170 |
+
\right) \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\\
|
| 173 |
+
|
| 174 |
+
\begin{array}{l}
|
| 175 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 176 |
+
\left(
|
| 177 |
+
\begin{array}{ccc}
|
| 178 |
+
-\frac{5}{2} & \frac{1}{2} & -\frac{5}{2} \\
|
| 179 |
+
1 & \frac{3}{2} & 1 \\
|
| 180 |
+
-\frac{5}{4} & \frac{1}{2} & \frac{9}{4} \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\right).\left(
|
| 183 |
+
\begin{array}{c}
|
| 184 |
+
-\frac{3}{4} \\
|
| 185 |
+
\frac{1}{2} \\
|
| 186 |
+
\frac{1}{2} \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right)=\left(
|
| 189 |
+
\begin{array}{c}
|
| 190 |
+
\frac{7}{8} \\
|
| 191 |
+
\frac{1}{2} \\
|
| 192 |
+
\_ \\
|
| 193 |
+
\end{array}
|
| 194 |
+
\right) \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
|
| 198 |
+
\begin{array}{l}
|
| 199 |
+
|
| 200 |
+
\begin{array}{l}
|
| 201 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{5}{4}\right)\, \left(-\frac{3}{4}\right)+\frac{1}{2\ 2}+\frac{9}{4\ 2}=\frac{37}{16}. \\
|
| 202 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 203 |
+
\end{array}
|
| 204 |
+
\\
|
| 205 |
+
\fbox{$
|
| 206 |
+
\begin{array}{ll}
|
| 207 |
+
\text{Answer:} & \\
|
| 208 |
+
\text{} & \left(
|
| 209 |
+
\begin{array}{ccc}
|
| 210 |
+
-\frac{5}{2} & \frac{1}{2} & -\frac{5}{2} \\
|
| 211 |
+
1 & \frac{3}{2} & 1 \\
|
| 212 |
+
-\frac{5}{4} & \frac{1}{2} & \frac{9}{4} \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right).\left(
|
| 215 |
+
\begin{array}{c}
|
| 216 |
+
-\frac{3}{4} \\
|
| 217 |
+
\frac{1}{2} \\
|
| 218 |
+
\frac{1}{2} \\
|
| 219 |
+
\end{array}
|
| 220 |
+
\right)=\left(
|
| 221 |
+
\begin{array}{c}
|
| 222 |
+
\frac{7}{8} \\
|
| 223 |
+
\frac{1}{2} \\
|
| 224 |
+
\fbox{$\frac{37}{16}$} \\
|
| 225 |
+
\end{array}
|
| 226 |
+
\right) \\
|
| 227 |
+
\end{array}
|
| 228 |
+
$} \\
|
| 229 |
+
\end{array}
|
| 230 |
+
\\
|
| 231 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/1934.txt
ADDED
|
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
0 & 1 & 2 \\
|
| 6 |
+
-3 & -2 & -2 \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{cc}
|
| 11 |
+
-3 & -1 \\
|
| 12 |
+
1 & -1 \\
|
| 13 |
+
2 & -2 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$.
|
| 16 |
+
Answer:
|
| 17 |
+
\begin{array}{l}
|
| 18 |
+
|
| 19 |
+
\begin{array}{l}
|
| 20 |
+
\text{Multiply the following matrices}: \\
|
| 21 |
+
\left(
|
| 22 |
+
\begin{array}{ccc}
|
| 23 |
+
0 & 1 & 2 \\
|
| 24 |
+
-3 & -2 & -2 \\
|
| 25 |
+
\end{array}
|
| 26 |
+
\right).\left(
|
| 27 |
+
\begin{array}{cc}
|
| 28 |
+
-3 & -1 \\
|
| 29 |
+
1 & -1 \\
|
| 30 |
+
2 & -2 \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\right) \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\\
|
| 35 |
+
\hline
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 2. \\
|
| 41 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 2: \\
|
| 42 |
+
\end{array}
|
| 43 |
+
\\
|
| 44 |
+
\left(
|
| 45 |
+
\begin{array}{ccc}
|
| 46 |
+
0 & 1 & 2 \\
|
| 47 |
+
-3 & -2 & -2 \\
|
| 48 |
+
\end{array}
|
| 49 |
+
\right).\left(
|
| 50 |
+
\begin{array}{cc}
|
| 51 |
+
-3 & -1 \\
|
| 52 |
+
1 & -1 \\
|
| 53 |
+
2 & -2 \\
|
| 54 |
+
\end{array}
|
| 55 |
+
\right)=\left(
|
| 56 |
+
\begin{array}{cc}
|
| 57 |
+
\_ & \_ \\
|
| 58 |
+
\_ & \_ \\
|
| 59 |
+
\end{array}
|
| 60 |
+
\right) \\
|
| 61 |
+
\end{array}
|
| 62 |
+
\\
|
| 63 |
+
|
| 64 |
+
\begin{array}{l}
|
| 65 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 66 |
+
\left(
|
| 67 |
+
\begin{array}{ccc}
|
| 68 |
+
0 & 1 & 2 \\
|
| 69 |
+
-3 & -2 & -2 \\
|
| 70 |
+
\end{array}
|
| 71 |
+
\right).\left(
|
| 72 |
+
\begin{array}{cc}
|
| 73 |
+
-3 & -1 \\
|
| 74 |
+
1 & -1 \\
|
| 75 |
+
2 & -2 \\
|
| 76 |
+
\end{array}
|
| 77 |
+
\right)=\left(
|
| 78 |
+
\begin{array}{cc}
|
| 79 |
+
\_ & \_ \\
|
| 80 |
+
\_ & \_ \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right) \\
|
| 83 |
+
\end{array}
|
| 84 |
+
\\
|
| 85 |
+
|
| 86 |
+
\begin{array}{l}
|
| 87 |
+
|
| 88 |
+
\begin{array}{l}
|
| 89 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }0 (-3)+1\ 1+2\ 2=5. \\
|
| 90 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 91 |
+
\end{array}
|
| 92 |
+
\\
|
| 93 |
+
\left(
|
| 94 |
+
\begin{array}{ccc}
|
| 95 |
+
0 & 1 & 2 \\
|
| 96 |
+
-3 & -2 & -2 \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\right).\left(
|
| 99 |
+
\begin{array}{cc}
|
| 100 |
+
-3 & -1 \\
|
| 101 |
+
1 & -1 \\
|
| 102 |
+
2 & -2 \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right)=\left(
|
| 105 |
+
\begin{array}{cc}
|
| 106 |
+
\fbox{$5$} & \_ \\
|
| 107 |
+
\_ & \_ \\
|
| 108 |
+
\end{array}
|
| 109 |
+
\right) \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\\
|
| 112 |
+
|
| 113 |
+
\begin{array}{l}
|
| 114 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 115 |
+
\left(
|
| 116 |
+
\begin{array}{ccc}
|
| 117 |
+
0 & 1 & 2 \\
|
| 118 |
+
-3 & -2 & -2 \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right).\left(
|
| 121 |
+
\begin{array}{cc}
|
| 122 |
+
-3 & -1 \\
|
| 123 |
+
1 & -1 \\
|
| 124 |
+
2 & -2 \\
|
| 125 |
+
\end{array}
|
| 126 |
+
\right)=\left(
|
| 127 |
+
\begin{array}{cc}
|
| 128 |
+
5 & \_ \\
|
| 129 |
+
\_ & \_ \\
|
| 130 |
+
\end{array}
|
| 131 |
+
\right) \\
|
| 132 |
+
\end{array}
|
| 133 |
+
\\
|
| 134 |
+
|
| 135 |
+
\begin{array}{l}
|
| 136 |
+
|
| 137 |
+
\begin{array}{l}
|
| 138 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }0 (-1)+1 (-1)+2 (-2)=-5. \\
|
| 139 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\\
|
| 142 |
+
\left(
|
| 143 |
+
\begin{array}{ccc}
|
| 144 |
+
0 & 1 & 2 \\
|
| 145 |
+
-3 & -2 & -2 \\
|
| 146 |
+
\end{array}
|
| 147 |
+
\right).\left(
|
| 148 |
+
\begin{array}{cc}
|
| 149 |
+
-3 & -1 \\
|
| 150 |
+
1 & -1 \\
|
| 151 |
+
2 & -2 \\
|
| 152 |
+
\end{array}
|
| 153 |
+
\right)=\left(
|
| 154 |
+
\begin{array}{cc}
|
| 155 |
+
5 & \fbox{$-5$} \\
|
| 156 |
+
\_ & \_ \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right) \\
|
| 159 |
+
\end{array}
|
| 160 |
+
\\
|
| 161 |
+
|
| 162 |
+
\begin{array}{l}
|
| 163 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 164 |
+
\left(
|
| 165 |
+
\begin{array}{ccc}
|
| 166 |
+
0 & 1 & 2 \\
|
| 167 |
+
-3 & -2 & -2 \\
|
| 168 |
+
\end{array}
|
| 169 |
+
\right).\left(
|
| 170 |
+
\begin{array}{cc}
|
| 171 |
+
-3 & -1 \\
|
| 172 |
+
1 & -1 \\
|
| 173 |
+
2 & -2 \\
|
| 174 |
+
\end{array}
|
| 175 |
+
\right)=\left(
|
| 176 |
+
\begin{array}{cc}
|
| 177 |
+
5 & -5 \\
|
| 178 |
+
\_ & \_ \\
|
| 179 |
+
\end{array}
|
| 180 |
+
\right) \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\\
|
| 183 |
+
|
| 184 |
+
\begin{array}{l}
|
| 185 |
+
|
| 186 |
+
\begin{array}{l}
|
| 187 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, (-3)+(-2)\, \times \, 1+(-2)\, \times \, 2=3. \\
|
| 188 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 189 |
+
\end{array}
|
| 190 |
+
\\
|
| 191 |
+
\left(
|
| 192 |
+
\begin{array}{ccc}
|
| 193 |
+
0 & 1 & 2 \\
|
| 194 |
+
-3 & -2 & -2 \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\right).\left(
|
| 197 |
+
\begin{array}{cc}
|
| 198 |
+
-3 & -1 \\
|
| 199 |
+
1 & -1 \\
|
| 200 |
+
2 & -2 \\
|
| 201 |
+
\end{array}
|
| 202 |
+
\right)=\left(
|
| 203 |
+
\begin{array}{cc}
|
| 204 |
+
5 & -5 \\
|
| 205 |
+
\fbox{$3$} & \_ \\
|
| 206 |
+
\end{array}
|
| 207 |
+
\right) \\
|
| 208 |
+
\end{array}
|
| 209 |
+
\\
|
| 210 |
+
|
| 211 |
+
\begin{array}{l}
|
| 212 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 213 |
+
\left(
|
| 214 |
+
\begin{array}{ccc}
|
| 215 |
+
0 & 1 & 2 \\
|
| 216 |
+
-3 & -2 & -2 \\
|
| 217 |
+
\end{array}
|
| 218 |
+
\right).\left(
|
| 219 |
+
\begin{array}{cc}
|
| 220 |
+
-3 & -1 \\
|
| 221 |
+
1 & -1 \\
|
| 222 |
+
2 & -2 \\
|
| 223 |
+
\end{array}
|
| 224 |
+
\right)=\left(
|
| 225 |
+
\begin{array}{cc}
|
| 226 |
+
5 & -5 \\
|
| 227 |
+
3 & \_ \\
|
| 228 |
+
\end{array}
|
| 229 |
+
\right) \\
|
| 230 |
+
\end{array}
|
| 231 |
+
\\
|
| 232 |
+
|
| 233 |
+
\begin{array}{l}
|
| 234 |
+
|
| 235 |
+
\begin{array}{l}
|
| 236 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, (-1)+(-2)\, (-1)+(-2)\, (-2)=9. \\
|
| 237 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 238 |
+
\end{array}
|
| 239 |
+
\\
|
| 240 |
+
\fbox{$
|
| 241 |
+
\begin{array}{ll}
|
| 242 |
+
\text{Answer:} & \\
|
| 243 |
+
\text{} & \left(
|
| 244 |
+
\begin{array}{ccc}
|
| 245 |
+
0 & 1 & 2 \\
|
| 246 |
+
-3 & -2 & -2 \\
|
| 247 |
+
\end{array}
|
| 248 |
+
\right).\left(
|
| 249 |
+
\begin{array}{cc}
|
| 250 |
+
-3 & -1 \\
|
| 251 |
+
1 & -1 \\
|
| 252 |
+
2 & -2 \\
|
| 253 |
+
\end{array}
|
| 254 |
+
\right)=\left(
|
| 255 |
+
\begin{array}{cc}
|
| 256 |
+
5 & -5 \\
|
| 257 |
+
3 & \fbox{$9$} \\
|
| 258 |
+
\end{array}
|
| 259 |
+
\right) \\
|
| 260 |
+
\end{array}
|
| 261 |
+
$} \\
|
| 262 |
+
\end{array}
|
| 263 |
+
\\
|
| 264 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/2027.txt
ADDED
|
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
\frac{9}{16} & -\frac{3}{8} \\
|
| 6 |
+
\frac{1}{16} & \frac{35}{16} \\
|
| 7 |
+
\frac{5}{8} & \frac{7}{8} \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{c}
|
| 12 |
+
\frac{3}{8} \\
|
| 13 |
+
-\frac{13}{8} \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$.
|
| 16 |
+
Answer:
|
| 17 |
+
\begin{array}{l}
|
| 18 |
+
|
| 19 |
+
\begin{array}{l}
|
| 20 |
+
\text{Multiply the following matrices}: \\
|
| 21 |
+
\left(
|
| 22 |
+
\begin{array}{cc}
|
| 23 |
+
\frac{9}{16} & -\frac{3}{8} \\
|
| 24 |
+
\frac{1}{16} & \frac{35}{16} \\
|
| 25 |
+
\frac{5}{8} & \frac{7}{8} \\
|
| 26 |
+
\end{array}
|
| 27 |
+
\right).\left(
|
| 28 |
+
\begin{array}{c}
|
| 29 |
+
\frac{3}{8} \\
|
| 30 |
+
-\frac{13}{8} \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\right) \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\\
|
| 35 |
+
\hline
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 1. \\
|
| 41 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 1: \\
|
| 42 |
+
\end{array}
|
| 43 |
+
\\
|
| 44 |
+
\left(
|
| 45 |
+
\begin{array}{cc}
|
| 46 |
+
\frac{9}{16} & -\frac{3}{8} \\
|
| 47 |
+
\frac{1}{16} & \frac{35}{16} \\
|
| 48 |
+
\frac{5}{8} & \frac{7}{8} \\
|
| 49 |
+
\end{array}
|
| 50 |
+
\right).\left(
|
| 51 |
+
\begin{array}{c}
|
| 52 |
+
\frac{3}{8} \\
|
| 53 |
+
-\frac{13}{8} \\
|
| 54 |
+
\end{array}
|
| 55 |
+
\right)=\left(
|
| 56 |
+
\begin{array}{c}
|
| 57 |
+
\_ \\
|
| 58 |
+
\_ \\
|
| 59 |
+
\_ \\
|
| 60 |
+
\end{array}
|
| 61 |
+
\right) \\
|
| 62 |
+
\end{array}
|
| 63 |
+
\\
|
| 64 |
+
|
| 65 |
+
\begin{array}{l}
|
| 66 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 67 |
+
\left(
|
| 68 |
+
\begin{array}{cc}
|
| 69 |
+
\frac{9}{16} & -\frac{3}{8} \\
|
| 70 |
+
\frac{1}{16} & \frac{35}{16} \\
|
| 71 |
+
\frac{5}{8} & \frac{7}{8} \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right).\left(
|
| 74 |
+
\begin{array}{c}
|
| 75 |
+
\frac{3}{8} \\
|
| 76 |
+
-\frac{13}{8} \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right)=\left(
|
| 79 |
+
\begin{array}{c}
|
| 80 |
+
\_ \\
|
| 81 |
+
\_ \\
|
| 82 |
+
\_ \\
|
| 83 |
+
\end{array}
|
| 84 |
+
\right) \\
|
| 85 |
+
\end{array}
|
| 86 |
+
\\
|
| 87 |
+
|
| 88 |
+
\begin{array}{l}
|
| 89 |
+
|
| 90 |
+
\begin{array}{l}
|
| 91 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{9\ 3}{16\ 8}+\left(-\frac{3}{8}\right)\, \left(-\frac{13}{8}\right)=\frac{105}{128}. \\
|
| 92 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\\
|
| 95 |
+
\left(
|
| 96 |
+
\begin{array}{cc}
|
| 97 |
+
\frac{9}{16} & -\frac{3}{8} \\
|
| 98 |
+
\frac{1}{16} & \frac{35}{16} \\
|
| 99 |
+
\frac{5}{8} & \frac{7}{8} \\
|
| 100 |
+
\end{array}
|
| 101 |
+
\right).\left(
|
| 102 |
+
\begin{array}{c}
|
| 103 |
+
\frac{3}{8} \\
|
| 104 |
+
-\frac{13}{8} \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\right)=\left(
|
| 107 |
+
\begin{array}{c}
|
| 108 |
+
\fbox{$\frac{105}{128}$} \\
|
| 109 |
+
\_ \\
|
| 110 |
+
\_ \\
|
| 111 |
+
\end{array}
|
| 112 |
+
\right) \\
|
| 113 |
+
\end{array}
|
| 114 |
+
\\
|
| 115 |
+
|
| 116 |
+
\begin{array}{l}
|
| 117 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 118 |
+
\left(
|
| 119 |
+
\begin{array}{cc}
|
| 120 |
+
\frac{9}{16} & -\frac{3}{8} \\
|
| 121 |
+
\frac{1}{16} & \frac{35}{16} \\
|
| 122 |
+
\frac{5}{8} & \frac{7}{8} \\
|
| 123 |
+
\end{array}
|
| 124 |
+
\right).\left(
|
| 125 |
+
\begin{array}{c}
|
| 126 |
+
\frac{3}{8} \\
|
| 127 |
+
-\frac{13}{8} \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right)=\left(
|
| 130 |
+
\begin{array}{c}
|
| 131 |
+
\frac{105}{128} \\
|
| 132 |
+
\_ \\
|
| 133 |
+
\_ \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right) \\
|
| 136 |
+
\end{array}
|
| 137 |
+
\\
|
| 138 |
+
|
| 139 |
+
\begin{array}{l}
|
| 140 |
+
|
| 141 |
+
\begin{array}{l}
|
| 142 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{3}{16\ 8}+\frac{35 (-13)}{16\ 8}=-\frac{113}{32}. \\
|
| 143 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 144 |
+
\end{array}
|
| 145 |
+
\\
|
| 146 |
+
\left(
|
| 147 |
+
\begin{array}{cc}
|
| 148 |
+
\frac{9}{16} & -\frac{3}{8} \\
|
| 149 |
+
\frac{1}{16} & \frac{35}{16} \\
|
| 150 |
+
\frac{5}{8} & \frac{7}{8} \\
|
| 151 |
+
\end{array}
|
| 152 |
+
\right).\left(
|
| 153 |
+
\begin{array}{c}
|
| 154 |
+
\frac{3}{8} \\
|
| 155 |
+
-\frac{13}{8} \\
|
| 156 |
+
\end{array}
|
| 157 |
+
\right)=\left(
|
| 158 |
+
\begin{array}{c}
|
| 159 |
+
\frac{105}{128} \\
|
| 160 |
+
\fbox{$-\frac{113}{32}$} \\
|
| 161 |
+
\_ \\
|
| 162 |
+
\end{array}
|
| 163 |
+
\right) \\
|
| 164 |
+
\end{array}
|
| 165 |
+
\\
|
| 166 |
+
|
| 167 |
+
\begin{array}{l}
|
| 168 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 169 |
+
\left(
|
| 170 |
+
\begin{array}{cc}
|
| 171 |
+
\frac{9}{16} & -\frac{3}{8} \\
|
| 172 |
+
\frac{1}{16} & \frac{35}{16} \\
|
| 173 |
+
\frac{5}{8} & \frac{7}{8} \\
|
| 174 |
+
\end{array}
|
| 175 |
+
\right).\left(
|
| 176 |
+
\begin{array}{c}
|
| 177 |
+
\frac{3}{8} \\
|
| 178 |
+
-\frac{13}{8} \\
|
| 179 |
+
\end{array}
|
| 180 |
+
\right)=\left(
|
| 181 |
+
\begin{array}{c}
|
| 182 |
+
\frac{105}{128} \\
|
| 183 |
+
-\frac{113}{32} \\
|
| 184 |
+
\_ \\
|
| 185 |
+
\end{array}
|
| 186 |
+
\right) \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\\
|
| 189 |
+
|
| 190 |
+
\begin{array}{l}
|
| 191 |
+
|
| 192 |
+
\begin{array}{l}
|
| 193 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{5\ 3}{8\ 8}+\frac{7 (-13)}{8\ 8}=-\frac{19}{16}. \\
|
| 194 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
\fbox{$
|
| 198 |
+
\begin{array}{ll}
|
| 199 |
+
\text{Answer:} & \\
|
| 200 |
+
\text{} & \left(
|
| 201 |
+
\begin{array}{cc}
|
| 202 |
+
\frac{9}{16} & -\frac{3}{8} \\
|
| 203 |
+
\frac{1}{16} & \frac{35}{16} \\
|
| 204 |
+
\frac{5}{8} & \frac{7}{8} \\
|
| 205 |
+
\end{array}
|
| 206 |
+
\right).\left(
|
| 207 |
+
\begin{array}{c}
|
| 208 |
+
\frac{3}{8} \\
|
| 209 |
+
-\frac{13}{8} \\
|
| 210 |
+
\end{array}
|
| 211 |
+
\right)=\left(
|
| 212 |
+
\begin{array}{c}
|
| 213 |
+
\frac{105}{128} \\
|
| 214 |
+
-\frac{113}{32} \\
|
| 215 |
+
\fbox{$-\frac{19}{16}$} \\
|
| 216 |
+
\end{array}
|
| 217 |
+
\right) \\
|
| 218 |
+
\end{array}
|
| 219 |
+
$} \\
|
| 220 |
+
\end{array}
|
| 221 |
+
\\
|
| 222 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/2119.txt
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
-1 & 1 \\
|
| 6 |
+
1 & 2 \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{c}
|
| 11 |
+
3 \\
|
| 12 |
+
1 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$.
|
| 15 |
+
Answer:
|
| 16 |
+
\begin{array}{l}
|
| 17 |
+
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
\text{Multiply the following matrices}: \\
|
| 20 |
+
\left(
|
| 21 |
+
\begin{array}{cc}
|
| 22 |
+
-1 & 1 \\
|
| 23 |
+
1 & 2 \\
|
| 24 |
+
\end{array}
|
| 25 |
+
\right).\left(
|
| 26 |
+
\begin{array}{c}
|
| 27 |
+
3 \\
|
| 28 |
+
1 \\
|
| 29 |
+
\end{array}
|
| 30 |
+
\right) \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\\
|
| 33 |
+
\hline
|
| 34 |
+
|
| 35 |
+
\begin{array}{l}
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 1. \\
|
| 39 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 1: \\
|
| 40 |
+
\end{array}
|
| 41 |
+
\\
|
| 42 |
+
\left(
|
| 43 |
+
\begin{array}{cc}
|
| 44 |
+
-1 & 1 \\
|
| 45 |
+
1 & 2 \\
|
| 46 |
+
\end{array}
|
| 47 |
+
\right).\left(
|
| 48 |
+
\begin{array}{c}
|
| 49 |
+
3 \\
|
| 50 |
+
1 \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right)=\left(
|
| 53 |
+
\begin{array}{c}
|
| 54 |
+
\_ \\
|
| 55 |
+
\_ \\
|
| 56 |
+
\end{array}
|
| 57 |
+
\right) \\
|
| 58 |
+
\end{array}
|
| 59 |
+
\\
|
| 60 |
+
|
| 61 |
+
\begin{array}{l}
|
| 62 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 63 |
+
\left(
|
| 64 |
+
\begin{array}{cc}
|
| 65 |
+
-1 & 1 \\
|
| 66 |
+
1 & 2 \\
|
| 67 |
+
\end{array}
|
| 68 |
+
\right).\left(
|
| 69 |
+
\begin{array}{c}
|
| 70 |
+
3 \\
|
| 71 |
+
1 \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right)=\left(
|
| 74 |
+
\begin{array}{c}
|
| 75 |
+
\_ \\
|
| 76 |
+
\_ \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right) \\
|
| 79 |
+
\end{array}
|
| 80 |
+
\\
|
| 81 |
+
|
| 82 |
+
\begin{array}{l}
|
| 83 |
+
|
| 84 |
+
\begin{array}{l}
|
| 85 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-1)\, \times \, 3+1\ 1=-2. \\
|
| 86 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\\
|
| 89 |
+
\left(
|
| 90 |
+
\begin{array}{cc}
|
| 91 |
+
-1 & 1 \\
|
| 92 |
+
1 & 2 \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\right).\left(
|
| 95 |
+
\begin{array}{c}
|
| 96 |
+
3 \\
|
| 97 |
+
1 \\
|
| 98 |
+
\end{array}
|
| 99 |
+
\right)=\left(
|
| 100 |
+
\begin{array}{c}
|
| 101 |
+
\fbox{$-2$} \\
|
| 102 |
+
\_ \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right) \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\\
|
| 107 |
+
|
| 108 |
+
\begin{array}{l}
|
| 109 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 110 |
+
\left(
|
| 111 |
+
\begin{array}{cc}
|
| 112 |
+
-1 & 1 \\
|
| 113 |
+
1 & 2 \\
|
| 114 |
+
\end{array}
|
| 115 |
+
\right).\left(
|
| 116 |
+
\begin{array}{c}
|
| 117 |
+
3 \\
|
| 118 |
+
1 \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right)=\left(
|
| 121 |
+
\begin{array}{c}
|
| 122 |
+
-2 \\
|
| 123 |
+
\_ \\
|
| 124 |
+
\end{array}
|
| 125 |
+
\right) \\
|
| 126 |
+
\end{array}
|
| 127 |
+
\\
|
| 128 |
+
|
| 129 |
+
\begin{array}{l}
|
| 130 |
+
|
| 131 |
+
\begin{array}{l}
|
| 132 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1\ 3+2\ 1=5. \\
|
| 133 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\\
|
| 136 |
+
\fbox{$
|
| 137 |
+
\begin{array}{ll}
|
| 138 |
+
\text{Answer:} & \\
|
| 139 |
+
\text{} & \left(
|
| 140 |
+
\begin{array}{cc}
|
| 141 |
+
-1 & 1 \\
|
| 142 |
+
1 & 2 \\
|
| 143 |
+
\end{array}
|
| 144 |
+
\right).\left(
|
| 145 |
+
\begin{array}{c}
|
| 146 |
+
3 \\
|
| 147 |
+
1 \\
|
| 148 |
+
\end{array}
|
| 149 |
+
\right)=\left(
|
| 150 |
+
\begin{array}{c}
|
| 151 |
+
-2 \\
|
| 152 |
+
\fbox{$5$} \\
|
| 153 |
+
\end{array}
|
| 154 |
+
\right) \\
|
| 155 |
+
\end{array}
|
| 156 |
+
$} \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\\
|
| 159 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/2230.txt
ADDED
|
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
-\frac{9}{8} & \frac{3}{2} & \frac{29}{16} \\
|
| 6 |
+
\frac{33}{16} & \frac{1}{8} & \frac{23}{16} \\
|
| 7 |
+
-\frac{5}{2} & \frac{19}{8} & \frac{5}{4} \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{cc}
|
| 12 |
+
-\frac{27}{16} & \frac{19}{16} \\
|
| 13 |
+
\frac{3}{2} & \frac{43}{16} \\
|
| 14 |
+
\frac{27}{16} & \frac{3}{2} \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$.
|
| 17 |
+
Answer:
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
|
| 20 |
+
\begin{array}{l}
|
| 21 |
+
\text{Multiply the following matrices}: \\
|
| 22 |
+
\left(
|
| 23 |
+
\begin{array}{ccc}
|
| 24 |
+
-\frac{9}{8} & \frac{3}{2} & \frac{29}{16} \\
|
| 25 |
+
\frac{33}{16} & \frac{1}{8} & \frac{23}{16} \\
|
| 26 |
+
-\frac{5}{2} & \frac{19}{8} & \frac{5}{4} \\
|
| 27 |
+
\end{array}
|
| 28 |
+
\right).\left(
|
| 29 |
+
\begin{array}{cc}
|
| 30 |
+
-\frac{27}{16} & \frac{19}{16} \\
|
| 31 |
+
\frac{3}{2} & \frac{43}{16} \\
|
| 32 |
+
\frac{27}{16} & \frac{3}{2} \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\right) \\
|
| 35 |
+
\end{array}
|
| 36 |
+
\\
|
| 37 |
+
\hline
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
|
| 41 |
+
\begin{array}{l}
|
| 42 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 2. \\
|
| 43 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 2: \\
|
| 44 |
+
\end{array}
|
| 45 |
+
\\
|
| 46 |
+
\left(
|
| 47 |
+
\begin{array}{ccc}
|
| 48 |
+
-\frac{9}{8} & \frac{3}{2} & \frac{29}{16} \\
|
| 49 |
+
\frac{33}{16} & \frac{1}{8} & \frac{23}{16} \\
|
| 50 |
+
-\frac{5}{2} & \frac{19}{8} & \frac{5}{4} \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right).\left(
|
| 53 |
+
\begin{array}{cc}
|
| 54 |
+
-\frac{27}{16} & \frac{19}{16} \\
|
| 55 |
+
\frac{3}{2} & \frac{43}{16} \\
|
| 56 |
+
\frac{27}{16} & \frac{3}{2} \\
|
| 57 |
+
\end{array}
|
| 58 |
+
\right)=\left(
|
| 59 |
+
\begin{array}{cc}
|
| 60 |
+
\_ & \_ \\
|
| 61 |
+
\_ & \_ \\
|
| 62 |
+
\_ & \_ \\
|
| 63 |
+
\end{array}
|
| 64 |
+
\right) \\
|
| 65 |
+
\end{array}
|
| 66 |
+
\\
|
| 67 |
+
|
| 68 |
+
\begin{array}{l}
|
| 69 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 70 |
+
\left(
|
| 71 |
+
\begin{array}{ccc}
|
| 72 |
+
-\frac{9}{8} & \frac{3}{2} & \frac{29}{16} \\
|
| 73 |
+
\frac{33}{16} & \frac{1}{8} & \frac{23}{16} \\
|
| 74 |
+
-\frac{5}{2} & \frac{19}{8} & \frac{5}{4} \\
|
| 75 |
+
\end{array}
|
| 76 |
+
\right).\left(
|
| 77 |
+
\begin{array}{cc}
|
| 78 |
+
-\frac{27}{16} & \frac{19}{16} \\
|
| 79 |
+
\frac{3}{2} & \frac{43}{16} \\
|
| 80 |
+
\frac{27}{16} & \frac{3}{2} \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right)=\left(
|
| 83 |
+
\begin{array}{cc}
|
| 84 |
+
\_ & \_ \\
|
| 85 |
+
\_ & \_ \\
|
| 86 |
+
\_ & \_ \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\right) \\
|
| 89 |
+
\end{array}
|
| 90 |
+
\\
|
| 91 |
+
|
| 92 |
+
\begin{array}{l}
|
| 93 |
+
|
| 94 |
+
\begin{array}{l}
|
| 95 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{9}{8}\right)\, \left(-\frac{27}{16}\right)+\frac{3\ 3}{2\ 2}+\frac{29\ 27}{16\ 16}=\frac{1845}{256}. \\
|
| 96 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\\
|
| 99 |
+
\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
-\frac{9}{8} & \frac{3}{2} & \frac{29}{16} \\
|
| 102 |
+
\frac{33}{16} & \frac{1}{8} & \frac{23}{16} \\
|
| 103 |
+
-\frac{5}{2} & \frac{19}{8} & \frac{5}{4} \\
|
| 104 |
+
\end{array}
|
| 105 |
+
\right).\left(
|
| 106 |
+
\begin{array}{cc}
|
| 107 |
+
-\frac{27}{16} & \frac{19}{16} \\
|
| 108 |
+
\frac{3}{2} & \frac{43}{16} \\
|
| 109 |
+
\frac{27}{16} & \frac{3}{2} \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\right)=\left(
|
| 112 |
+
\begin{array}{cc}
|
| 113 |
+
\fbox{$\frac{1845}{256}$} & \_ \\
|
| 114 |
+
\_ & \_ \\
|
| 115 |
+
\_ & \_ \\
|
| 116 |
+
\end{array}
|
| 117 |
+
\right) \\
|
| 118 |
+
\end{array}
|
| 119 |
+
\\
|
| 120 |
+
|
| 121 |
+
\begin{array}{l}
|
| 122 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 123 |
+
\left(
|
| 124 |
+
\begin{array}{ccc}
|
| 125 |
+
-\frac{9}{8} & \frac{3}{2} & \frac{29}{16} \\
|
| 126 |
+
\frac{33}{16} & \frac{1}{8} & \frac{23}{16} \\
|
| 127 |
+
-\frac{5}{2} & \frac{19}{8} & \frac{5}{4} \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right).\left(
|
| 130 |
+
\begin{array}{cc}
|
| 131 |
+
-\frac{27}{16} & \frac{19}{16} \\
|
| 132 |
+
\frac{3}{2} & \frac{43}{16} \\
|
| 133 |
+
\frac{27}{16} & \frac{3}{2} \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right)=\left(
|
| 136 |
+
\begin{array}{cc}
|
| 137 |
+
\frac{1845}{256} & \_ \\
|
| 138 |
+
\_ & \_ \\
|
| 139 |
+
\_ & \_ \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right) \\
|
| 142 |
+
\end{array}
|
| 143 |
+
\\
|
| 144 |
+
|
| 145 |
+
\begin{array}{l}
|
| 146 |
+
|
| 147 |
+
\begin{array}{l}
|
| 148 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{9}{8}\right)\, \times \, \frac{19}{16}+\frac{3\ 43}{2\ 16}+\frac{29\ 3}{16\ 2}=\frac{693}{128}. \\
|
| 149 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\\
|
| 152 |
+
\left(
|
| 153 |
+
\begin{array}{ccc}
|
| 154 |
+
-\frac{9}{8} & \frac{3}{2} & \frac{29}{16} \\
|
| 155 |
+
\frac{33}{16} & \frac{1}{8} & \frac{23}{16} \\
|
| 156 |
+
-\frac{5}{2} & \frac{19}{8} & \frac{5}{4} \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right).\left(
|
| 159 |
+
\begin{array}{cc}
|
| 160 |
+
-\frac{27}{16} & \frac{19}{16} \\
|
| 161 |
+
\frac{3}{2} & \frac{43}{16} \\
|
| 162 |
+
\frac{27}{16} & \frac{3}{2} \\
|
| 163 |
+
\end{array}
|
| 164 |
+
\right)=\left(
|
| 165 |
+
\begin{array}{cc}
|
| 166 |
+
\frac{1845}{256} & \fbox{$\frac{693}{128}$} \\
|
| 167 |
+
\_ & \_ \\
|
| 168 |
+
\_ & \_ \\
|
| 169 |
+
\end{array}
|
| 170 |
+
\right) \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\\
|
| 173 |
+
|
| 174 |
+
\begin{array}{l}
|
| 175 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 176 |
+
\left(
|
| 177 |
+
\begin{array}{ccc}
|
| 178 |
+
-\frac{9}{8} & \frac{3}{2} & \frac{29}{16} \\
|
| 179 |
+
\frac{33}{16} & \frac{1}{8} & \frac{23}{16} \\
|
| 180 |
+
-\frac{5}{2} & \frac{19}{8} & \frac{5}{4} \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\right).\left(
|
| 183 |
+
\begin{array}{cc}
|
| 184 |
+
-\frac{27}{16} & \frac{19}{16} \\
|
| 185 |
+
\frac{3}{2} & \frac{43}{16} \\
|
| 186 |
+
\frac{27}{16} & \frac{3}{2} \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right)=\left(
|
| 189 |
+
\begin{array}{cc}
|
| 190 |
+
\frac{1845}{256} & \frac{693}{128} \\
|
| 191 |
+
\_ & \_ \\
|
| 192 |
+
\_ & \_ \\
|
| 193 |
+
\end{array}
|
| 194 |
+
\right) \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
|
| 198 |
+
\begin{array}{l}
|
| 199 |
+
|
| 200 |
+
\begin{array}{l}
|
| 201 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{33 (-27)}{16\ 16}+\frac{3}{8\ 2}+\frac{23\ 27}{16\ 16}=-\frac{111}{128}. \\
|
| 202 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 203 |
+
\end{array}
|
| 204 |
+
\\
|
| 205 |
+
\left(
|
| 206 |
+
\begin{array}{ccc}
|
| 207 |
+
-\frac{9}{8} & \frac{3}{2} & \frac{29}{16} \\
|
| 208 |
+
\frac{33}{16} & \frac{1}{8} & \frac{23}{16} \\
|
| 209 |
+
-\frac{5}{2} & \frac{19}{8} & \frac{5}{4} \\
|
| 210 |
+
\end{array}
|
| 211 |
+
\right).\left(
|
| 212 |
+
\begin{array}{cc}
|
| 213 |
+
-\frac{27}{16} & \frac{19}{16} \\
|
| 214 |
+
\frac{3}{2} & \frac{43}{16} \\
|
| 215 |
+
\frac{27}{16} & \frac{3}{2} \\
|
| 216 |
+
\end{array}
|
| 217 |
+
\right)=\left(
|
| 218 |
+
\begin{array}{cc}
|
| 219 |
+
\frac{1845}{256} & \frac{693}{128} \\
|
| 220 |
+
\fbox{$-\frac{111}{128}$} & \_ \\
|
| 221 |
+
\_ & \_ \\
|
| 222 |
+
\end{array}
|
| 223 |
+
\right) \\
|
| 224 |
+
\end{array}
|
| 225 |
+
\\
|
| 226 |
+
|
| 227 |
+
\begin{array}{l}
|
| 228 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 229 |
+
\left(
|
| 230 |
+
\begin{array}{ccc}
|
| 231 |
+
-\frac{9}{8} & \frac{3}{2} & \frac{29}{16} \\
|
| 232 |
+
\frac{33}{16} & \frac{1}{8} & \frac{23}{16} \\
|
| 233 |
+
-\frac{5}{2} & \frac{19}{8} & \frac{5}{4} \\
|
| 234 |
+
\end{array}
|
| 235 |
+
\right).\left(
|
| 236 |
+
\begin{array}{cc}
|
| 237 |
+
-\frac{27}{16} & \frac{19}{16} \\
|
| 238 |
+
\frac{3}{2} & \frac{43}{16} \\
|
| 239 |
+
\frac{27}{16} & \frac{3}{2} \\
|
| 240 |
+
\end{array}
|
| 241 |
+
\right)=\left(
|
| 242 |
+
\begin{array}{cc}
|
| 243 |
+
\frac{1845}{256} & \frac{693}{128} \\
|
| 244 |
+
-\frac{111}{128} & \_ \\
|
| 245 |
+
\_ & \_ \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\right) \\
|
| 248 |
+
\end{array}
|
| 249 |
+
\\
|
| 250 |
+
|
| 251 |
+
\begin{array}{l}
|
| 252 |
+
|
| 253 |
+
\begin{array}{l}
|
| 254 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{33\ 19}{16\ 16}+\frac{43}{8\ 16}+\frac{23\ 3}{16\ 2}=\frac{1265}{256}. \\
|
| 255 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 256 |
+
\end{array}
|
| 257 |
+
\\
|
| 258 |
+
\left(
|
| 259 |
+
\begin{array}{ccc}
|
| 260 |
+
-\frac{9}{8} & \frac{3}{2} & \frac{29}{16} \\
|
| 261 |
+
\frac{33}{16} & \frac{1}{8} & \frac{23}{16} \\
|
| 262 |
+
-\frac{5}{2} & \frac{19}{8} & \frac{5}{4} \\
|
| 263 |
+
\end{array}
|
| 264 |
+
\right).\left(
|
| 265 |
+
\begin{array}{cc}
|
| 266 |
+
-\frac{27}{16} & \frac{19}{16} \\
|
| 267 |
+
\frac{3}{2} & \frac{43}{16} \\
|
| 268 |
+
\frac{27}{16} & \frac{3}{2} \\
|
| 269 |
+
\end{array}
|
| 270 |
+
\right)=\left(
|
| 271 |
+
\begin{array}{cc}
|
| 272 |
+
\frac{1845}{256} & \frac{693}{128} \\
|
| 273 |
+
-\frac{111}{128} & \fbox{$\frac{1265}{256}$} \\
|
| 274 |
+
\_ & \_ \\
|
| 275 |
+
\end{array}
|
| 276 |
+
\right) \\
|
| 277 |
+
\end{array}
|
| 278 |
+
\\
|
| 279 |
+
|
| 280 |
+
\begin{array}{l}
|
| 281 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 282 |
+
\left(
|
| 283 |
+
\begin{array}{ccc}
|
| 284 |
+
-\frac{9}{8} & \frac{3}{2} & \frac{29}{16} \\
|
| 285 |
+
\frac{33}{16} & \frac{1}{8} & \frac{23}{16} \\
|
| 286 |
+
-\frac{5}{2} & \frac{19}{8} & \frac{5}{4} \\
|
| 287 |
+
\end{array}
|
| 288 |
+
\right).\left(
|
| 289 |
+
\begin{array}{cc}
|
| 290 |
+
-\frac{27}{16} & \frac{19}{16} \\
|
| 291 |
+
\frac{3}{2} & \frac{43}{16} \\
|
| 292 |
+
\frac{27}{16} & \frac{3}{2} \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\right)=\left(
|
| 295 |
+
\begin{array}{cc}
|
| 296 |
+
\frac{1845}{256} & \frac{693}{128} \\
|
| 297 |
+
-\frac{111}{128} & \frac{1265}{256} \\
|
| 298 |
+
\_ & \_ \\
|
| 299 |
+
\end{array}
|
| 300 |
+
\right) \\
|
| 301 |
+
\end{array}
|
| 302 |
+
\\
|
| 303 |
+
|
| 304 |
+
\begin{array}{l}
|
| 305 |
+
|
| 306 |
+
\begin{array}{l}
|
| 307 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{5}{2}\right)\, \left(-\frac{27}{16}\right)+\frac{19\ 3}{8\ 2}+\frac{5\ 27}{4\ 16}=\frac{633}{64}. \\
|
| 308 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 309 |
+
\end{array}
|
| 310 |
+
\\
|
| 311 |
+
\left(
|
| 312 |
+
\begin{array}{ccc}
|
| 313 |
+
-\frac{9}{8} & \frac{3}{2} & \frac{29}{16} \\
|
| 314 |
+
\frac{33}{16} & \frac{1}{8} & \frac{23}{16} \\
|
| 315 |
+
-\frac{5}{2} & \frac{19}{8} & \frac{5}{4} \\
|
| 316 |
+
\end{array}
|
| 317 |
+
\right).\left(
|
| 318 |
+
\begin{array}{cc}
|
| 319 |
+
-\frac{27}{16} & \frac{19}{16} \\
|
| 320 |
+
\frac{3}{2} & \frac{43}{16} \\
|
| 321 |
+
\frac{27}{16} & \frac{3}{2} \\
|
| 322 |
+
\end{array}
|
| 323 |
+
\right)=\left(
|
| 324 |
+
\begin{array}{cc}
|
| 325 |
+
\frac{1845}{256} & \frac{693}{128} \\
|
| 326 |
+
-\frac{111}{128} & \frac{1265}{256} \\
|
| 327 |
+
\fbox{$\frac{633}{64}$} & \_ \\
|
| 328 |
+
\end{array}
|
| 329 |
+
\right) \\
|
| 330 |
+
\end{array}
|
| 331 |
+
\\
|
| 332 |
+
|
| 333 |
+
\begin{array}{l}
|
| 334 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 335 |
+
\left(
|
| 336 |
+
\begin{array}{ccc}
|
| 337 |
+
-\frac{9}{8} & \frac{3}{2} & \frac{29}{16} \\
|
| 338 |
+
\frac{33}{16} & \frac{1}{8} & \frac{23}{16} \\
|
| 339 |
+
-\frac{5}{2} & \frac{19}{8} & \frac{5}{4} \\
|
| 340 |
+
\end{array}
|
| 341 |
+
\right).\left(
|
| 342 |
+
\begin{array}{cc}
|
| 343 |
+
-\frac{27}{16} & \frac{19}{16} \\
|
| 344 |
+
\frac{3}{2} & \frac{43}{16} \\
|
| 345 |
+
\frac{27}{16} & \frac{3}{2} \\
|
| 346 |
+
\end{array}
|
| 347 |
+
\right)=\left(
|
| 348 |
+
\begin{array}{cc}
|
| 349 |
+
\frac{1845}{256} & \frac{693}{128} \\
|
| 350 |
+
-\frac{111}{128} & \frac{1265}{256} \\
|
| 351 |
+
\frac{633}{64} & \_ \\
|
| 352 |
+
\end{array}
|
| 353 |
+
\right) \\
|
| 354 |
+
\end{array}
|
| 355 |
+
\\
|
| 356 |
+
|
| 357 |
+
\begin{array}{l}
|
| 358 |
+
|
| 359 |
+
\begin{array}{l}
|
| 360 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{5}{2}\right)\, \times \, \frac{19}{16}+\frac{19\ 43}{8\ 16}+\frac{5\ 3}{4\ 2}=\frac{677}{128}. \\
|
| 361 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 362 |
+
\end{array}
|
| 363 |
+
\\
|
| 364 |
+
\fbox{$
|
| 365 |
+
\begin{array}{ll}
|
| 366 |
+
\text{Answer:} & \\
|
| 367 |
+
\text{} & \left(
|
| 368 |
+
\begin{array}{ccc}
|
| 369 |
+
-\frac{9}{8} & \frac{3}{2} & \frac{29}{16} \\
|
| 370 |
+
\frac{33}{16} & \frac{1}{8} & \frac{23}{16} \\
|
| 371 |
+
-\frac{5}{2} & \frac{19}{8} & \frac{5}{4} \\
|
| 372 |
+
\end{array}
|
| 373 |
+
\right).\left(
|
| 374 |
+
\begin{array}{cc}
|
| 375 |
+
-\frac{27}{16} & \frac{19}{16} \\
|
| 376 |
+
\frac{3}{2} & \frac{43}{16} \\
|
| 377 |
+
\frac{27}{16} & \frac{3}{2} \\
|
| 378 |
+
\end{array}
|
| 379 |
+
\right)=\left(
|
| 380 |
+
\begin{array}{cc}
|
| 381 |
+
\frac{1845}{256} & \frac{693}{128} \\
|
| 382 |
+
-\frac{111}{128} & \frac{1265}{256} \\
|
| 383 |
+
\frac{633}{64} & \fbox{$\frac{677}{128}$} \\
|
| 384 |
+
\end{array}
|
| 385 |
+
\right) \\
|
| 386 |
+
\end{array}
|
| 387 |
+
$} \\
|
| 388 |
+
\end{array}
|
| 389 |
+
\\
|
| 390 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/231.txt
ADDED
|
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
-2 & -2 & -3 \\
|
| 6 |
+
-1 & 1 & 0 \\
|
| 7 |
+
-2 & 2 & -1 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{cc}
|
| 12 |
+
-2 & 0 \\
|
| 13 |
+
2 & 0 \\
|
| 14 |
+
2 & 0 \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$.
|
| 17 |
+
Answer:
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
|
| 20 |
+
\begin{array}{l}
|
| 21 |
+
\text{Multiply the following matrices}: \\
|
| 22 |
+
\left(
|
| 23 |
+
\begin{array}{ccc}
|
| 24 |
+
-2 & -2 & -3 \\
|
| 25 |
+
-1 & 1 & 0 \\
|
| 26 |
+
-2 & 2 & -1 \\
|
| 27 |
+
\end{array}
|
| 28 |
+
\right).\left(
|
| 29 |
+
\begin{array}{cc}
|
| 30 |
+
-2 & 0 \\
|
| 31 |
+
2 & 0 \\
|
| 32 |
+
2 & 0 \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\right) \\
|
| 35 |
+
\end{array}
|
| 36 |
+
\\
|
| 37 |
+
\hline
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
|
| 41 |
+
\begin{array}{l}
|
| 42 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 2. \\
|
| 43 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 2: \\
|
| 44 |
+
\end{array}
|
| 45 |
+
\\
|
| 46 |
+
\left(
|
| 47 |
+
\begin{array}{ccc}
|
| 48 |
+
-2 & -2 & -3 \\
|
| 49 |
+
-1 & 1 & 0 \\
|
| 50 |
+
-2 & 2 & -1 \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right).\left(
|
| 53 |
+
\begin{array}{cc}
|
| 54 |
+
-2 & 0 \\
|
| 55 |
+
2 & 0 \\
|
| 56 |
+
2 & 0 \\
|
| 57 |
+
\end{array}
|
| 58 |
+
\right)=\left(
|
| 59 |
+
\begin{array}{cc}
|
| 60 |
+
\_ & \_ \\
|
| 61 |
+
\_ & \_ \\
|
| 62 |
+
\_ & \_ \\
|
| 63 |
+
\end{array}
|
| 64 |
+
\right) \\
|
| 65 |
+
\end{array}
|
| 66 |
+
\\
|
| 67 |
+
|
| 68 |
+
\begin{array}{l}
|
| 69 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 70 |
+
\left(
|
| 71 |
+
\begin{array}{ccc}
|
| 72 |
+
-2 & -2 & -3 \\
|
| 73 |
+
-1 & 1 & 0 \\
|
| 74 |
+
-2 & 2 & -1 \\
|
| 75 |
+
\end{array}
|
| 76 |
+
\right).\left(
|
| 77 |
+
\begin{array}{cc}
|
| 78 |
+
-2 & 0 \\
|
| 79 |
+
2 & 0 \\
|
| 80 |
+
2 & 0 \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right)=\left(
|
| 83 |
+
\begin{array}{cc}
|
| 84 |
+
\_ & \_ \\
|
| 85 |
+
\_ & \_ \\
|
| 86 |
+
\_ & \_ \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\right) \\
|
| 89 |
+
\end{array}
|
| 90 |
+
\\
|
| 91 |
+
|
| 92 |
+
\begin{array}{l}
|
| 93 |
+
|
| 94 |
+
\begin{array}{l}
|
| 95 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-2)+(-2)\, \times \, 2+(-3)\, \times \, 2=-6. \\
|
| 96 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\\
|
| 99 |
+
\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
-2 & -2 & -3 \\
|
| 102 |
+
-1 & 1 & 0 \\
|
| 103 |
+
-2 & 2 & -1 \\
|
| 104 |
+
\end{array}
|
| 105 |
+
\right).\left(
|
| 106 |
+
\begin{array}{cc}
|
| 107 |
+
-2 & 0 \\
|
| 108 |
+
2 & 0 \\
|
| 109 |
+
2 & 0 \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\right)=\left(
|
| 112 |
+
\begin{array}{cc}
|
| 113 |
+
\fbox{$-6$} & \_ \\
|
| 114 |
+
\_ & \_ \\
|
| 115 |
+
\_ & \_ \\
|
| 116 |
+
\end{array}
|
| 117 |
+
\right) \\
|
| 118 |
+
\end{array}
|
| 119 |
+
\\
|
| 120 |
+
|
| 121 |
+
\begin{array}{l}
|
| 122 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 123 |
+
\left(
|
| 124 |
+
\begin{array}{ccc}
|
| 125 |
+
-2 & -2 & -3 \\
|
| 126 |
+
-1 & 1 & 0 \\
|
| 127 |
+
-2 & 2 & -1 \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right).\left(
|
| 130 |
+
\begin{array}{cc}
|
| 131 |
+
-2 & 0 \\
|
| 132 |
+
2 & 0 \\
|
| 133 |
+
2 & 0 \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right)=\left(
|
| 136 |
+
\begin{array}{cc}
|
| 137 |
+
-6 & \_ \\
|
| 138 |
+
\_ & \_ \\
|
| 139 |
+
\_ & \_ \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right) \\
|
| 142 |
+
\end{array}
|
| 143 |
+
\\
|
| 144 |
+
|
| 145 |
+
\begin{array}{l}
|
| 146 |
+
|
| 147 |
+
\begin{array}{l}
|
| 148 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, \times \, 0+(-2)\, \times \, 0+(-3)\, \times \, 0=0. \\
|
| 149 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\\
|
| 152 |
+
\left(
|
| 153 |
+
\begin{array}{ccc}
|
| 154 |
+
-2 & -2 & -3 \\
|
| 155 |
+
-1 & 1 & 0 \\
|
| 156 |
+
-2 & 2 & -1 \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right).\left(
|
| 159 |
+
\begin{array}{cc}
|
| 160 |
+
-2 & 0 \\
|
| 161 |
+
2 & 0 \\
|
| 162 |
+
2 & 0 \\
|
| 163 |
+
\end{array}
|
| 164 |
+
\right)=\left(
|
| 165 |
+
\begin{array}{cc}
|
| 166 |
+
-6 & \fbox{$0$} \\
|
| 167 |
+
\_ & \_ \\
|
| 168 |
+
\_ & \_ \\
|
| 169 |
+
\end{array}
|
| 170 |
+
\right) \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\\
|
| 173 |
+
|
| 174 |
+
\begin{array}{l}
|
| 175 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 176 |
+
\left(
|
| 177 |
+
\begin{array}{ccc}
|
| 178 |
+
-2 & -2 & -3 \\
|
| 179 |
+
-1 & 1 & 0 \\
|
| 180 |
+
-2 & 2 & -1 \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\right).\left(
|
| 183 |
+
\begin{array}{cc}
|
| 184 |
+
-2 & 0 \\
|
| 185 |
+
2 & 0 \\
|
| 186 |
+
2 & 0 \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right)=\left(
|
| 189 |
+
\begin{array}{cc}
|
| 190 |
+
-6 & 0 \\
|
| 191 |
+
\_ & \_ \\
|
| 192 |
+
\_ & \_ \\
|
| 193 |
+
\end{array}
|
| 194 |
+
\right) \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
|
| 198 |
+
\begin{array}{l}
|
| 199 |
+
|
| 200 |
+
\begin{array}{l}
|
| 201 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-1)\, (-2)+1\ 2+0\ 2=4. \\
|
| 202 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 203 |
+
\end{array}
|
| 204 |
+
\\
|
| 205 |
+
\left(
|
| 206 |
+
\begin{array}{ccc}
|
| 207 |
+
-2 & -2 & -3 \\
|
| 208 |
+
-1 & 1 & 0 \\
|
| 209 |
+
-2 & 2 & -1 \\
|
| 210 |
+
\end{array}
|
| 211 |
+
\right).\left(
|
| 212 |
+
\begin{array}{cc}
|
| 213 |
+
-2 & 0 \\
|
| 214 |
+
2 & 0 \\
|
| 215 |
+
2 & 0 \\
|
| 216 |
+
\end{array}
|
| 217 |
+
\right)=\left(
|
| 218 |
+
\begin{array}{cc}
|
| 219 |
+
-6 & 0 \\
|
| 220 |
+
\fbox{$4$} & \_ \\
|
| 221 |
+
\_ & \_ \\
|
| 222 |
+
\end{array}
|
| 223 |
+
\right) \\
|
| 224 |
+
\end{array}
|
| 225 |
+
\\
|
| 226 |
+
|
| 227 |
+
\begin{array}{l}
|
| 228 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 229 |
+
\left(
|
| 230 |
+
\begin{array}{ccc}
|
| 231 |
+
-2 & -2 & -3 \\
|
| 232 |
+
-1 & 1 & 0 \\
|
| 233 |
+
-2 & 2 & -1 \\
|
| 234 |
+
\end{array}
|
| 235 |
+
\right).\left(
|
| 236 |
+
\begin{array}{cc}
|
| 237 |
+
-2 & 0 \\
|
| 238 |
+
2 & 0 \\
|
| 239 |
+
2 & 0 \\
|
| 240 |
+
\end{array}
|
| 241 |
+
\right)=\left(
|
| 242 |
+
\begin{array}{cc}
|
| 243 |
+
-6 & 0 \\
|
| 244 |
+
4 & \_ \\
|
| 245 |
+
\_ & \_ \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\right) \\
|
| 248 |
+
\end{array}
|
| 249 |
+
\\
|
| 250 |
+
|
| 251 |
+
\begin{array}{l}
|
| 252 |
+
|
| 253 |
+
\begin{array}{l}
|
| 254 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-1)\, \times \, 0+1\ 0+0\ 0=0. \\
|
| 255 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 256 |
+
\end{array}
|
| 257 |
+
\\
|
| 258 |
+
\left(
|
| 259 |
+
\begin{array}{ccc}
|
| 260 |
+
-2 & -2 & -3 \\
|
| 261 |
+
-1 & 1 & 0 \\
|
| 262 |
+
-2 & 2 & -1 \\
|
| 263 |
+
\end{array}
|
| 264 |
+
\right).\left(
|
| 265 |
+
\begin{array}{cc}
|
| 266 |
+
-2 & 0 \\
|
| 267 |
+
2 & 0 \\
|
| 268 |
+
2 & 0 \\
|
| 269 |
+
\end{array}
|
| 270 |
+
\right)=\left(
|
| 271 |
+
\begin{array}{cc}
|
| 272 |
+
-6 & 0 \\
|
| 273 |
+
4 & \fbox{$0$} \\
|
| 274 |
+
\_ & \_ \\
|
| 275 |
+
\end{array}
|
| 276 |
+
\right) \\
|
| 277 |
+
\end{array}
|
| 278 |
+
\\
|
| 279 |
+
|
| 280 |
+
\begin{array}{l}
|
| 281 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 282 |
+
\left(
|
| 283 |
+
\begin{array}{ccc}
|
| 284 |
+
-2 & -2 & -3 \\
|
| 285 |
+
-1 & 1 & 0 \\
|
| 286 |
+
-2 & 2 & -1 \\
|
| 287 |
+
\end{array}
|
| 288 |
+
\right).\left(
|
| 289 |
+
\begin{array}{cc}
|
| 290 |
+
-2 & 0 \\
|
| 291 |
+
2 & 0 \\
|
| 292 |
+
2 & 0 \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\right)=\left(
|
| 295 |
+
\begin{array}{cc}
|
| 296 |
+
-6 & 0 \\
|
| 297 |
+
4 & 0 \\
|
| 298 |
+
\_ & \_ \\
|
| 299 |
+
\end{array}
|
| 300 |
+
\right) \\
|
| 301 |
+
\end{array}
|
| 302 |
+
\\
|
| 303 |
+
|
| 304 |
+
\begin{array}{l}
|
| 305 |
+
|
| 306 |
+
\begin{array}{l}
|
| 307 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-2)+2\ 2+(-1)\, \times \, 2=6. \\
|
| 308 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 309 |
+
\end{array}
|
| 310 |
+
\\
|
| 311 |
+
\left(
|
| 312 |
+
\begin{array}{ccc}
|
| 313 |
+
-2 & -2 & -3 \\
|
| 314 |
+
-1 & 1 & 0 \\
|
| 315 |
+
-2 & 2 & -1 \\
|
| 316 |
+
\end{array}
|
| 317 |
+
\right).\left(
|
| 318 |
+
\begin{array}{cc}
|
| 319 |
+
-2 & 0 \\
|
| 320 |
+
2 & 0 \\
|
| 321 |
+
2 & 0 \\
|
| 322 |
+
\end{array}
|
| 323 |
+
\right)=\left(
|
| 324 |
+
\begin{array}{cc}
|
| 325 |
+
-6 & 0 \\
|
| 326 |
+
4 & 0 \\
|
| 327 |
+
\fbox{$6$} & \_ \\
|
| 328 |
+
\end{array}
|
| 329 |
+
\right) \\
|
| 330 |
+
\end{array}
|
| 331 |
+
\\
|
| 332 |
+
|
| 333 |
+
\begin{array}{l}
|
| 334 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 335 |
+
\left(
|
| 336 |
+
\begin{array}{ccc}
|
| 337 |
+
-2 & -2 & -3 \\
|
| 338 |
+
-1 & 1 & 0 \\
|
| 339 |
+
-2 & 2 & -1 \\
|
| 340 |
+
\end{array}
|
| 341 |
+
\right).\left(
|
| 342 |
+
\begin{array}{cc}
|
| 343 |
+
-2 & 0 \\
|
| 344 |
+
2 & 0 \\
|
| 345 |
+
2 & 0 \\
|
| 346 |
+
\end{array}
|
| 347 |
+
\right)=\left(
|
| 348 |
+
\begin{array}{cc}
|
| 349 |
+
-6 & 0 \\
|
| 350 |
+
4 & 0 \\
|
| 351 |
+
6 & \_ \\
|
| 352 |
+
\end{array}
|
| 353 |
+
\right) \\
|
| 354 |
+
\end{array}
|
| 355 |
+
\\
|
| 356 |
+
|
| 357 |
+
\begin{array}{l}
|
| 358 |
+
|
| 359 |
+
\begin{array}{l}
|
| 360 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, \times \, 0+2\ 0+(-1)\, \times \, 0=0. \\
|
| 361 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 362 |
+
\end{array}
|
| 363 |
+
\\
|
| 364 |
+
\fbox{$
|
| 365 |
+
\begin{array}{ll}
|
| 366 |
+
\text{Answer:} & \\
|
| 367 |
+
\text{} & \left(
|
| 368 |
+
\begin{array}{ccc}
|
| 369 |
+
-2 & -2 & -3 \\
|
| 370 |
+
-1 & 1 & 0 \\
|
| 371 |
+
-2 & 2 & -1 \\
|
| 372 |
+
\end{array}
|
| 373 |
+
\right).\left(
|
| 374 |
+
\begin{array}{cc}
|
| 375 |
+
-2 & 0 \\
|
| 376 |
+
2 & 0 \\
|
| 377 |
+
2 & 0 \\
|
| 378 |
+
\end{array}
|
| 379 |
+
\right)=\left(
|
| 380 |
+
\begin{array}{cc}
|
| 381 |
+
-6 & 0 \\
|
| 382 |
+
4 & 0 \\
|
| 383 |
+
6 & \fbox{$0$} \\
|
| 384 |
+
\end{array}
|
| 385 |
+
\right) \\
|
| 386 |
+
\end{array}
|
| 387 |
+
$} \\
|
| 388 |
+
\end{array}
|
| 389 |
+
\\
|
| 390 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/2648.txt
ADDED
|
@@ -0,0 +1,549 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
0 & 2 & -1 \\
|
| 6 |
+
-3 & 0 & -1 \\
|
| 7 |
+
3 & -1 & 1 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{ccc}
|
| 12 |
+
0 & 2 & 1 \\
|
| 13 |
+
0 & -1 & -1 \\
|
| 14 |
+
0 & -1 & 0 \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$.
|
| 17 |
+
Answer:
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
|
| 20 |
+
\begin{array}{l}
|
| 21 |
+
\text{Multiply the following matrices}: \\
|
| 22 |
+
\left(
|
| 23 |
+
\begin{array}{ccc}
|
| 24 |
+
0 & 2 & -1 \\
|
| 25 |
+
-3 & 0 & -1 \\
|
| 26 |
+
3 & -1 & 1 \\
|
| 27 |
+
\end{array}
|
| 28 |
+
\right).\left(
|
| 29 |
+
\begin{array}{ccc}
|
| 30 |
+
0 & 2 & 1 \\
|
| 31 |
+
0 & -1 & -1 \\
|
| 32 |
+
0 & -1 & 0 \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\right) \\
|
| 35 |
+
\end{array}
|
| 36 |
+
\\
|
| 37 |
+
\hline
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
|
| 41 |
+
\begin{array}{l}
|
| 42 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 3. \\
|
| 43 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 3: \\
|
| 44 |
+
\end{array}
|
| 45 |
+
\\
|
| 46 |
+
\left(
|
| 47 |
+
\begin{array}{ccc}
|
| 48 |
+
0 & 2 & -1 \\
|
| 49 |
+
-3 & 0 & -1 \\
|
| 50 |
+
3 & -1 & 1 \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right).\left(
|
| 53 |
+
\begin{array}{ccc}
|
| 54 |
+
0 & 2 & 1 \\
|
| 55 |
+
0 & -1 & -1 \\
|
| 56 |
+
0 & -1 & 0 \\
|
| 57 |
+
\end{array}
|
| 58 |
+
\right)=\left(
|
| 59 |
+
\begin{array}{ccc}
|
| 60 |
+
\_ & \_ & \_ \\
|
| 61 |
+
\_ & \_ & \_ \\
|
| 62 |
+
\_ & \_ & \_ \\
|
| 63 |
+
\end{array}
|
| 64 |
+
\right) \\
|
| 65 |
+
\end{array}
|
| 66 |
+
\\
|
| 67 |
+
|
| 68 |
+
\begin{array}{l}
|
| 69 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 70 |
+
\left(
|
| 71 |
+
\begin{array}{ccc}
|
| 72 |
+
0 & 2 & -1 \\
|
| 73 |
+
-3 & 0 & -1 \\
|
| 74 |
+
3 & -1 & 1 \\
|
| 75 |
+
\end{array}
|
| 76 |
+
\right).\left(
|
| 77 |
+
\begin{array}{ccc}
|
| 78 |
+
0 & 2 & 1 \\
|
| 79 |
+
0 & -1 & -1 \\
|
| 80 |
+
0 & -1 & 0 \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right)=\left(
|
| 83 |
+
\begin{array}{ccc}
|
| 84 |
+
\_ & \_ & \_ \\
|
| 85 |
+
\_ & \_ & \_ \\
|
| 86 |
+
\_ & \_ & \_ \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\right) \\
|
| 89 |
+
\end{array}
|
| 90 |
+
\\
|
| 91 |
+
|
| 92 |
+
\begin{array}{l}
|
| 93 |
+
|
| 94 |
+
\begin{array}{l}
|
| 95 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }0\ 0+2\ 0+(-1)\, \times \, 0=0. \\
|
| 96 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\\
|
| 99 |
+
\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
0 & 2 & -1 \\
|
| 102 |
+
-3 & 0 & -1 \\
|
| 103 |
+
3 & -1 & 1 \\
|
| 104 |
+
\end{array}
|
| 105 |
+
\right).\left(
|
| 106 |
+
\begin{array}{ccc}
|
| 107 |
+
0 & 2 & 1 \\
|
| 108 |
+
0 & -1 & -1 \\
|
| 109 |
+
0 & -1 & 0 \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\right)=\left(
|
| 112 |
+
\begin{array}{ccc}
|
| 113 |
+
\fbox{$0$} & \_ & \_ \\
|
| 114 |
+
\_ & \_ & \_ \\
|
| 115 |
+
\_ & \_ & \_ \\
|
| 116 |
+
\end{array}
|
| 117 |
+
\right) \\
|
| 118 |
+
\end{array}
|
| 119 |
+
\\
|
| 120 |
+
|
| 121 |
+
\begin{array}{l}
|
| 122 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 123 |
+
\left(
|
| 124 |
+
\begin{array}{ccc}
|
| 125 |
+
0 & 2 & -1 \\
|
| 126 |
+
-3 & 0 & -1 \\
|
| 127 |
+
3 & -1 & 1 \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right).\left(
|
| 130 |
+
\begin{array}{ccc}
|
| 131 |
+
0 & 2 & 1 \\
|
| 132 |
+
0 & -1 & -1 \\
|
| 133 |
+
0 & -1 & 0 \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right)=\left(
|
| 136 |
+
\begin{array}{ccc}
|
| 137 |
+
0 & \_ & \_ \\
|
| 138 |
+
\_ & \_ & \_ \\
|
| 139 |
+
\_ & \_ & \_ \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right) \\
|
| 142 |
+
\end{array}
|
| 143 |
+
\\
|
| 144 |
+
|
| 145 |
+
\begin{array}{l}
|
| 146 |
+
|
| 147 |
+
\begin{array}{l}
|
| 148 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }0\ 2+2 (-1)+(-1)\, (-1)=-1. \\
|
| 149 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\\
|
| 152 |
+
\left(
|
| 153 |
+
\begin{array}{ccc}
|
| 154 |
+
0 & 2 & -1 \\
|
| 155 |
+
-3 & 0 & -1 \\
|
| 156 |
+
3 & -1 & 1 \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right).\left(
|
| 159 |
+
\begin{array}{ccc}
|
| 160 |
+
0 & 2 & 1 \\
|
| 161 |
+
0 & -1 & -1 \\
|
| 162 |
+
0 & -1 & 0 \\
|
| 163 |
+
\end{array}
|
| 164 |
+
\right)=\left(
|
| 165 |
+
\begin{array}{ccc}
|
| 166 |
+
0 & \fbox{$-1$} & \_ \\
|
| 167 |
+
\_ & \_ & \_ \\
|
| 168 |
+
\_ & \_ & \_ \\
|
| 169 |
+
\end{array}
|
| 170 |
+
\right) \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\\
|
| 173 |
+
|
| 174 |
+
\begin{array}{l}
|
| 175 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 176 |
+
\left(
|
| 177 |
+
\begin{array}{ccc}
|
| 178 |
+
0 & 2 & -1 \\
|
| 179 |
+
-3 & 0 & -1 \\
|
| 180 |
+
3 & -1 & 1 \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\right).\left(
|
| 183 |
+
\begin{array}{ccc}
|
| 184 |
+
0 & 2 & 1 \\
|
| 185 |
+
0 & -1 & -1 \\
|
| 186 |
+
0 & -1 & 0 \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right)=\left(
|
| 189 |
+
\begin{array}{ccc}
|
| 190 |
+
0 & -1 & \_ \\
|
| 191 |
+
\_ & \_ & \_ \\
|
| 192 |
+
\_ & \_ & \_ \\
|
| 193 |
+
\end{array}
|
| 194 |
+
\right) \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
|
| 198 |
+
\begin{array}{l}
|
| 199 |
+
|
| 200 |
+
\begin{array}{l}
|
| 201 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }0\ 1+2 (-1)+(-1)\, \times \, 0=-2. \\
|
| 202 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 203 |
+
\end{array}
|
| 204 |
+
\\
|
| 205 |
+
\left(
|
| 206 |
+
\begin{array}{ccc}
|
| 207 |
+
0 & 2 & -1 \\
|
| 208 |
+
-3 & 0 & -1 \\
|
| 209 |
+
3 & -1 & 1 \\
|
| 210 |
+
\end{array}
|
| 211 |
+
\right).\left(
|
| 212 |
+
\begin{array}{ccc}
|
| 213 |
+
0 & 2 & 1 \\
|
| 214 |
+
0 & -1 & -1 \\
|
| 215 |
+
0 & -1 & 0 \\
|
| 216 |
+
\end{array}
|
| 217 |
+
\right)=\left(
|
| 218 |
+
\begin{array}{ccc}
|
| 219 |
+
0 & -1 & \fbox{$-2$} \\
|
| 220 |
+
\_ & \_ & \_ \\
|
| 221 |
+
\_ & \_ & \_ \\
|
| 222 |
+
\end{array}
|
| 223 |
+
\right) \\
|
| 224 |
+
\end{array}
|
| 225 |
+
\\
|
| 226 |
+
|
| 227 |
+
\begin{array}{l}
|
| 228 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 229 |
+
\left(
|
| 230 |
+
\begin{array}{ccc}
|
| 231 |
+
0 & 2 & -1 \\
|
| 232 |
+
-3 & 0 & -1 \\
|
| 233 |
+
3 & -1 & 1 \\
|
| 234 |
+
\end{array}
|
| 235 |
+
\right).\left(
|
| 236 |
+
\begin{array}{ccc}
|
| 237 |
+
0 & 2 & 1 \\
|
| 238 |
+
0 & -1 & -1 \\
|
| 239 |
+
0 & -1 & 0 \\
|
| 240 |
+
\end{array}
|
| 241 |
+
\right)=\left(
|
| 242 |
+
\begin{array}{ccc}
|
| 243 |
+
0 & -1 & -2 \\
|
| 244 |
+
\_ & \_ & \_ \\
|
| 245 |
+
\_ & \_ & \_ \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\right) \\
|
| 248 |
+
\end{array}
|
| 249 |
+
\\
|
| 250 |
+
|
| 251 |
+
\begin{array}{l}
|
| 252 |
+
|
| 253 |
+
\begin{array}{l}
|
| 254 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, \times \, 0+0\ 0+(-1)\, \times \, 0=0. \\
|
| 255 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 256 |
+
\end{array}
|
| 257 |
+
\\
|
| 258 |
+
\left(
|
| 259 |
+
\begin{array}{ccc}
|
| 260 |
+
0 & 2 & -1 \\
|
| 261 |
+
-3 & 0 & -1 \\
|
| 262 |
+
3 & -1 & 1 \\
|
| 263 |
+
\end{array}
|
| 264 |
+
\right).\left(
|
| 265 |
+
\begin{array}{ccc}
|
| 266 |
+
0 & 2 & 1 \\
|
| 267 |
+
0 & -1 & -1 \\
|
| 268 |
+
0 & -1 & 0 \\
|
| 269 |
+
\end{array}
|
| 270 |
+
\right)=\left(
|
| 271 |
+
\begin{array}{ccc}
|
| 272 |
+
0 & -1 & -2 \\
|
| 273 |
+
\fbox{$0$} & \_ & \_ \\
|
| 274 |
+
\_ & \_ & \_ \\
|
| 275 |
+
\end{array}
|
| 276 |
+
\right) \\
|
| 277 |
+
\end{array}
|
| 278 |
+
\\
|
| 279 |
+
|
| 280 |
+
\begin{array}{l}
|
| 281 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 282 |
+
\left(
|
| 283 |
+
\begin{array}{ccc}
|
| 284 |
+
0 & 2 & -1 \\
|
| 285 |
+
-3 & 0 & -1 \\
|
| 286 |
+
3 & -1 & 1 \\
|
| 287 |
+
\end{array}
|
| 288 |
+
\right).\left(
|
| 289 |
+
\begin{array}{ccc}
|
| 290 |
+
0 & 2 & 1 \\
|
| 291 |
+
0 & -1 & -1 \\
|
| 292 |
+
0 & -1 & 0 \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\right)=\left(
|
| 295 |
+
\begin{array}{ccc}
|
| 296 |
+
0 & -1 & -2 \\
|
| 297 |
+
0 & \_ & \_ \\
|
| 298 |
+
\_ & \_ & \_ \\
|
| 299 |
+
\end{array}
|
| 300 |
+
\right) \\
|
| 301 |
+
\end{array}
|
| 302 |
+
\\
|
| 303 |
+
|
| 304 |
+
\begin{array}{l}
|
| 305 |
+
|
| 306 |
+
\begin{array}{l}
|
| 307 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, \times \, 2+0 (-1)+(-1)\, (-1)=-5. \\
|
| 308 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 309 |
+
\end{array}
|
| 310 |
+
\\
|
| 311 |
+
\left(
|
| 312 |
+
\begin{array}{ccc}
|
| 313 |
+
0 & 2 & -1 \\
|
| 314 |
+
-3 & 0 & -1 \\
|
| 315 |
+
3 & -1 & 1 \\
|
| 316 |
+
\end{array}
|
| 317 |
+
\right).\left(
|
| 318 |
+
\begin{array}{ccc}
|
| 319 |
+
0 & 2 & 1 \\
|
| 320 |
+
0 & -1 & -1 \\
|
| 321 |
+
0 & -1 & 0 \\
|
| 322 |
+
\end{array}
|
| 323 |
+
\right)=\left(
|
| 324 |
+
\begin{array}{ccc}
|
| 325 |
+
0 & -1 & -2 \\
|
| 326 |
+
0 & \fbox{$-5$} & \_ \\
|
| 327 |
+
\_ & \_ & \_ \\
|
| 328 |
+
\end{array}
|
| 329 |
+
\right) \\
|
| 330 |
+
\end{array}
|
| 331 |
+
\\
|
| 332 |
+
|
| 333 |
+
\begin{array}{l}
|
| 334 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 335 |
+
\left(
|
| 336 |
+
\begin{array}{ccc}
|
| 337 |
+
0 & 2 & -1 \\
|
| 338 |
+
-3 & 0 & -1 \\
|
| 339 |
+
3 & -1 & 1 \\
|
| 340 |
+
\end{array}
|
| 341 |
+
\right).\left(
|
| 342 |
+
\begin{array}{ccc}
|
| 343 |
+
0 & 2 & 1 \\
|
| 344 |
+
0 & -1 & -1 \\
|
| 345 |
+
0 & -1 & 0 \\
|
| 346 |
+
\end{array}
|
| 347 |
+
\right)=\left(
|
| 348 |
+
\begin{array}{ccc}
|
| 349 |
+
0 & -1 & -2 \\
|
| 350 |
+
0 & -5 & \_ \\
|
| 351 |
+
\_ & \_ & \_ \\
|
| 352 |
+
\end{array}
|
| 353 |
+
\right) \\
|
| 354 |
+
\end{array}
|
| 355 |
+
\\
|
| 356 |
+
|
| 357 |
+
\begin{array}{l}
|
| 358 |
+
|
| 359 |
+
\begin{array}{l}
|
| 360 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, \times \, 1+0 (-1)+(-1)\, \times \, 0=-3. \\
|
| 361 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 362 |
+
\end{array}
|
| 363 |
+
\\
|
| 364 |
+
\left(
|
| 365 |
+
\begin{array}{ccc}
|
| 366 |
+
0 & 2 & -1 \\
|
| 367 |
+
-3 & 0 & -1 \\
|
| 368 |
+
3 & -1 & 1 \\
|
| 369 |
+
\end{array}
|
| 370 |
+
\right).\left(
|
| 371 |
+
\begin{array}{ccc}
|
| 372 |
+
0 & 2 & 1 \\
|
| 373 |
+
0 & -1 & -1 \\
|
| 374 |
+
0 & -1 & 0 \\
|
| 375 |
+
\end{array}
|
| 376 |
+
\right)=\left(
|
| 377 |
+
\begin{array}{ccc}
|
| 378 |
+
0 & -1 & -2 \\
|
| 379 |
+
0 & -5 & \fbox{$-3$} \\
|
| 380 |
+
\_ & \_ & \_ \\
|
| 381 |
+
\end{array}
|
| 382 |
+
\right) \\
|
| 383 |
+
\end{array}
|
| 384 |
+
\\
|
| 385 |
+
|
| 386 |
+
\begin{array}{l}
|
| 387 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 388 |
+
\left(
|
| 389 |
+
\begin{array}{ccc}
|
| 390 |
+
0 & 2 & -1 \\
|
| 391 |
+
-3 & 0 & -1 \\
|
| 392 |
+
3 & -1 & 1 \\
|
| 393 |
+
\end{array}
|
| 394 |
+
\right).\left(
|
| 395 |
+
\begin{array}{ccc}
|
| 396 |
+
0 & 2 & 1 \\
|
| 397 |
+
0 & -1 & -1 \\
|
| 398 |
+
0 & -1 & 0 \\
|
| 399 |
+
\end{array}
|
| 400 |
+
\right)=\left(
|
| 401 |
+
\begin{array}{ccc}
|
| 402 |
+
0 & -1 & -2 \\
|
| 403 |
+
0 & -5 & -3 \\
|
| 404 |
+
\_ & \_ & \_ \\
|
| 405 |
+
\end{array}
|
| 406 |
+
\right) \\
|
| 407 |
+
\end{array}
|
| 408 |
+
\\
|
| 409 |
+
|
| 410 |
+
\begin{array}{l}
|
| 411 |
+
|
| 412 |
+
\begin{array}{l}
|
| 413 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }3\ 0+(-1)\, \times \, 0+1\ 0=0. \\
|
| 414 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 415 |
+
\end{array}
|
| 416 |
+
\\
|
| 417 |
+
\left(
|
| 418 |
+
\begin{array}{ccc}
|
| 419 |
+
0 & 2 & -1 \\
|
| 420 |
+
-3 & 0 & -1 \\
|
| 421 |
+
3 & -1 & 1 \\
|
| 422 |
+
\end{array}
|
| 423 |
+
\right).\left(
|
| 424 |
+
\begin{array}{ccc}
|
| 425 |
+
0 & 2 & 1 \\
|
| 426 |
+
0 & -1 & -1 \\
|
| 427 |
+
0 & -1 & 0 \\
|
| 428 |
+
\end{array}
|
| 429 |
+
\right)=\left(
|
| 430 |
+
\begin{array}{ccc}
|
| 431 |
+
0 & -1 & -2 \\
|
| 432 |
+
0 & -5 & -3 \\
|
| 433 |
+
\fbox{$0$} & \_ & \_ \\
|
| 434 |
+
\end{array}
|
| 435 |
+
\right) \\
|
| 436 |
+
\end{array}
|
| 437 |
+
\\
|
| 438 |
+
|
| 439 |
+
\begin{array}{l}
|
| 440 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 441 |
+
\left(
|
| 442 |
+
\begin{array}{ccc}
|
| 443 |
+
0 & 2 & -1 \\
|
| 444 |
+
-3 & 0 & -1 \\
|
| 445 |
+
3 & -1 & 1 \\
|
| 446 |
+
\end{array}
|
| 447 |
+
\right).\left(
|
| 448 |
+
\begin{array}{ccc}
|
| 449 |
+
0 & 2 & 1 \\
|
| 450 |
+
0 & -1 & -1 \\
|
| 451 |
+
0 & -1 & 0 \\
|
| 452 |
+
\end{array}
|
| 453 |
+
\right)=\left(
|
| 454 |
+
\begin{array}{ccc}
|
| 455 |
+
0 & -1 & -2 \\
|
| 456 |
+
0 & -5 & -3 \\
|
| 457 |
+
0 & \_ & \_ \\
|
| 458 |
+
\end{array}
|
| 459 |
+
\right) \\
|
| 460 |
+
\end{array}
|
| 461 |
+
\\
|
| 462 |
+
|
| 463 |
+
\begin{array}{l}
|
| 464 |
+
|
| 465 |
+
\begin{array}{l}
|
| 466 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }3\ 2+(-1)\, (-1)+1 (-1)=6. \\
|
| 467 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 468 |
+
\end{array}
|
| 469 |
+
\\
|
| 470 |
+
\left(
|
| 471 |
+
\begin{array}{ccc}
|
| 472 |
+
0 & 2 & -1 \\
|
| 473 |
+
-3 & 0 & -1 \\
|
| 474 |
+
3 & -1 & 1 \\
|
| 475 |
+
\end{array}
|
| 476 |
+
\right).\left(
|
| 477 |
+
\begin{array}{ccc}
|
| 478 |
+
0 & 2 & 1 \\
|
| 479 |
+
0 & -1 & -1 \\
|
| 480 |
+
0 & -1 & 0 \\
|
| 481 |
+
\end{array}
|
| 482 |
+
\right)=\left(
|
| 483 |
+
\begin{array}{ccc}
|
| 484 |
+
0 & -1 & -2 \\
|
| 485 |
+
0 & -5 & -3 \\
|
| 486 |
+
0 & \fbox{$6$} & \_ \\
|
| 487 |
+
\end{array}
|
| 488 |
+
\right) \\
|
| 489 |
+
\end{array}
|
| 490 |
+
\\
|
| 491 |
+
|
| 492 |
+
\begin{array}{l}
|
| 493 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 494 |
+
\left(
|
| 495 |
+
\begin{array}{ccc}
|
| 496 |
+
0 & 2 & -1 \\
|
| 497 |
+
-3 & 0 & -1 \\
|
| 498 |
+
3 & -1 & 1 \\
|
| 499 |
+
\end{array}
|
| 500 |
+
\right).\left(
|
| 501 |
+
\begin{array}{ccc}
|
| 502 |
+
0 & 2 & 1 \\
|
| 503 |
+
0 & -1 & -1 \\
|
| 504 |
+
0 & -1 & 0 \\
|
| 505 |
+
\end{array}
|
| 506 |
+
\right)=\left(
|
| 507 |
+
\begin{array}{ccc}
|
| 508 |
+
0 & -1 & -2 \\
|
| 509 |
+
0 & -5 & -3 \\
|
| 510 |
+
0 & 6 & \_ \\
|
| 511 |
+
\end{array}
|
| 512 |
+
\right) \\
|
| 513 |
+
\end{array}
|
| 514 |
+
\\
|
| 515 |
+
|
| 516 |
+
\begin{array}{l}
|
| 517 |
+
|
| 518 |
+
\begin{array}{l}
|
| 519 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }3\ 1+(-1)\, (-1)+1\ 0=4. \\
|
| 520 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 521 |
+
\end{array}
|
| 522 |
+
\\
|
| 523 |
+
\fbox{$
|
| 524 |
+
\begin{array}{ll}
|
| 525 |
+
\text{Answer:} & \\
|
| 526 |
+
\text{} & \left(
|
| 527 |
+
\begin{array}{ccc}
|
| 528 |
+
0 & 2 & -1 \\
|
| 529 |
+
-3 & 0 & -1 \\
|
| 530 |
+
3 & -1 & 1 \\
|
| 531 |
+
\end{array}
|
| 532 |
+
\right).\left(
|
| 533 |
+
\begin{array}{ccc}
|
| 534 |
+
0 & 2 & 1 \\
|
| 535 |
+
0 & -1 & -1 \\
|
| 536 |
+
0 & -1 & 0 \\
|
| 537 |
+
\end{array}
|
| 538 |
+
\right)=\left(
|
| 539 |
+
\begin{array}{ccc}
|
| 540 |
+
0 & -1 & -2 \\
|
| 541 |
+
0 & -5 & -3 \\
|
| 542 |
+
0 & 6 & \fbox{$4$} \\
|
| 543 |
+
\end{array}
|
| 544 |
+
\right) \\
|
| 545 |
+
\end{array}
|
| 546 |
+
$} \\
|
| 547 |
+
\end{array}
|
| 548 |
+
\\
|
| 549 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/2680.txt
ADDED
|
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
3 & -2 & -1 \\
|
| 6 |
+
-2 & 3 & -3 \\
|
| 7 |
+
-2 & 1 & -1 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{c}
|
| 12 |
+
2 \\
|
| 13 |
+
0 \\
|
| 14 |
+
-2 \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$.
|
| 17 |
+
Answer:
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
|
| 20 |
+
\begin{array}{l}
|
| 21 |
+
\text{Multiply the following matrices}: \\
|
| 22 |
+
\left(
|
| 23 |
+
\begin{array}{ccc}
|
| 24 |
+
3 & -2 & -1 \\
|
| 25 |
+
-2 & 3 & -3 \\
|
| 26 |
+
-2 & 1 & -1 \\
|
| 27 |
+
\end{array}
|
| 28 |
+
\right).\left(
|
| 29 |
+
\begin{array}{c}
|
| 30 |
+
2 \\
|
| 31 |
+
0 \\
|
| 32 |
+
-2 \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\right) \\
|
| 35 |
+
\end{array}
|
| 36 |
+
\\
|
| 37 |
+
\hline
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
|
| 41 |
+
\begin{array}{l}
|
| 42 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 1. \\
|
| 43 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 1: \\
|
| 44 |
+
\end{array}
|
| 45 |
+
\\
|
| 46 |
+
\left(
|
| 47 |
+
\begin{array}{ccc}
|
| 48 |
+
3 & -2 & -1 \\
|
| 49 |
+
-2 & 3 & -3 \\
|
| 50 |
+
-2 & 1 & -1 \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right).\left(
|
| 53 |
+
\begin{array}{c}
|
| 54 |
+
2 \\
|
| 55 |
+
0 \\
|
| 56 |
+
-2 \\
|
| 57 |
+
\end{array}
|
| 58 |
+
\right)=\left(
|
| 59 |
+
\begin{array}{c}
|
| 60 |
+
\_ \\
|
| 61 |
+
\_ \\
|
| 62 |
+
\_ \\
|
| 63 |
+
\end{array}
|
| 64 |
+
\right) \\
|
| 65 |
+
\end{array}
|
| 66 |
+
\\
|
| 67 |
+
|
| 68 |
+
\begin{array}{l}
|
| 69 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 70 |
+
\left(
|
| 71 |
+
\begin{array}{ccc}
|
| 72 |
+
3 & -2 & -1 \\
|
| 73 |
+
-2 & 3 & -3 \\
|
| 74 |
+
-2 & 1 & -1 \\
|
| 75 |
+
\end{array}
|
| 76 |
+
\right).\left(
|
| 77 |
+
\begin{array}{c}
|
| 78 |
+
2 \\
|
| 79 |
+
0 \\
|
| 80 |
+
-2 \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right)=\left(
|
| 83 |
+
\begin{array}{c}
|
| 84 |
+
\_ \\
|
| 85 |
+
\_ \\
|
| 86 |
+
\_ \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\right) \\
|
| 89 |
+
\end{array}
|
| 90 |
+
\\
|
| 91 |
+
|
| 92 |
+
\begin{array}{l}
|
| 93 |
+
|
| 94 |
+
\begin{array}{l}
|
| 95 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }3\ 2+(-2)\, \times \, 0+(-1)\, (-2)=8. \\
|
| 96 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\\
|
| 99 |
+
\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
3 & -2 & -1 \\
|
| 102 |
+
-2 & 3 & -3 \\
|
| 103 |
+
-2 & 1 & -1 \\
|
| 104 |
+
\end{array}
|
| 105 |
+
\right).\left(
|
| 106 |
+
\begin{array}{c}
|
| 107 |
+
2 \\
|
| 108 |
+
0 \\
|
| 109 |
+
-2 \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\right)=\left(
|
| 112 |
+
\begin{array}{c}
|
| 113 |
+
\fbox{$8$} \\
|
| 114 |
+
\_ \\
|
| 115 |
+
\_ \\
|
| 116 |
+
\end{array}
|
| 117 |
+
\right) \\
|
| 118 |
+
\end{array}
|
| 119 |
+
\\
|
| 120 |
+
|
| 121 |
+
\begin{array}{l}
|
| 122 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 123 |
+
\left(
|
| 124 |
+
\begin{array}{ccc}
|
| 125 |
+
3 & -2 & -1 \\
|
| 126 |
+
-2 & 3 & -3 \\
|
| 127 |
+
-2 & 1 & -1 \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right).\left(
|
| 130 |
+
\begin{array}{c}
|
| 131 |
+
2 \\
|
| 132 |
+
0 \\
|
| 133 |
+
-2 \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right)=\left(
|
| 136 |
+
\begin{array}{c}
|
| 137 |
+
8 \\
|
| 138 |
+
\_ \\
|
| 139 |
+
\_ \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right) \\
|
| 142 |
+
\end{array}
|
| 143 |
+
\\
|
| 144 |
+
|
| 145 |
+
\begin{array}{l}
|
| 146 |
+
|
| 147 |
+
\begin{array}{l}
|
| 148 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, \times \, 2+3\ 0+(-3)\, (-2)=2. \\
|
| 149 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\\
|
| 152 |
+
\left(
|
| 153 |
+
\begin{array}{ccc}
|
| 154 |
+
3 & -2 & -1 \\
|
| 155 |
+
-2 & 3 & -3 \\
|
| 156 |
+
-2 & 1 & -1 \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right).\left(
|
| 159 |
+
\begin{array}{c}
|
| 160 |
+
2 \\
|
| 161 |
+
0 \\
|
| 162 |
+
-2 \\
|
| 163 |
+
\end{array}
|
| 164 |
+
\right)=\left(
|
| 165 |
+
\begin{array}{c}
|
| 166 |
+
8 \\
|
| 167 |
+
\fbox{$2$} \\
|
| 168 |
+
\_ \\
|
| 169 |
+
\end{array}
|
| 170 |
+
\right) \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\\
|
| 173 |
+
|
| 174 |
+
\begin{array}{l}
|
| 175 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 176 |
+
\left(
|
| 177 |
+
\begin{array}{ccc}
|
| 178 |
+
3 & -2 & -1 \\
|
| 179 |
+
-2 & 3 & -3 \\
|
| 180 |
+
-2 & 1 & -1 \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\right).\left(
|
| 183 |
+
\begin{array}{c}
|
| 184 |
+
2 \\
|
| 185 |
+
0 \\
|
| 186 |
+
-2 \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right)=\left(
|
| 189 |
+
\begin{array}{c}
|
| 190 |
+
8 \\
|
| 191 |
+
2 \\
|
| 192 |
+
\_ \\
|
| 193 |
+
\end{array}
|
| 194 |
+
\right) \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
|
| 198 |
+
\begin{array}{l}
|
| 199 |
+
|
| 200 |
+
\begin{array}{l}
|
| 201 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, \times \, 2+1\ 0+(-1)\, (-2)=-2. \\
|
| 202 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 203 |
+
\end{array}
|
| 204 |
+
\\
|
| 205 |
+
\fbox{$
|
| 206 |
+
\begin{array}{ll}
|
| 207 |
+
\text{Answer:} & \\
|
| 208 |
+
\text{} & \left(
|
| 209 |
+
\begin{array}{ccc}
|
| 210 |
+
3 & -2 & -1 \\
|
| 211 |
+
-2 & 3 & -3 \\
|
| 212 |
+
-2 & 1 & -1 \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right).\left(
|
| 215 |
+
\begin{array}{c}
|
| 216 |
+
2 \\
|
| 217 |
+
0 \\
|
| 218 |
+
-2 \\
|
| 219 |
+
\end{array}
|
| 220 |
+
\right)=\left(
|
| 221 |
+
\begin{array}{c}
|
| 222 |
+
8 \\
|
| 223 |
+
2 \\
|
| 224 |
+
\fbox{$-2$} \\
|
| 225 |
+
\end{array}
|
| 226 |
+
\right) \\
|
| 227 |
+
\end{array}
|
| 228 |
+
$} \\
|
| 229 |
+
\end{array}
|
| 230 |
+
\\
|
| 231 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/2701.txt
ADDED
|
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
1 & -2 \\
|
| 6 |
+
-2 & 3 \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{cc}
|
| 11 |
+
1 & 0 \\
|
| 12 |
+
2 & -3 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$.
|
| 15 |
+
Answer:
|
| 16 |
+
\begin{array}{l}
|
| 17 |
+
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
\text{Multiply the following matrices}: \\
|
| 20 |
+
\left(
|
| 21 |
+
\begin{array}{cc}
|
| 22 |
+
1 & -2 \\
|
| 23 |
+
-2 & 3 \\
|
| 24 |
+
\end{array}
|
| 25 |
+
\right).\left(
|
| 26 |
+
\begin{array}{cc}
|
| 27 |
+
1 & 0 \\
|
| 28 |
+
2 & -3 \\
|
| 29 |
+
\end{array}
|
| 30 |
+
\right) \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\\
|
| 33 |
+
\hline
|
| 34 |
+
|
| 35 |
+
\begin{array}{l}
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 2. \\
|
| 39 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 2: \\
|
| 40 |
+
\end{array}
|
| 41 |
+
\\
|
| 42 |
+
\left(
|
| 43 |
+
\begin{array}{cc}
|
| 44 |
+
1 & -2 \\
|
| 45 |
+
-2 & 3 \\
|
| 46 |
+
\end{array}
|
| 47 |
+
\right).\left(
|
| 48 |
+
\begin{array}{cc}
|
| 49 |
+
1 & 0 \\
|
| 50 |
+
2 & -3 \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right)=\left(
|
| 53 |
+
\begin{array}{cc}
|
| 54 |
+
\_ & \_ \\
|
| 55 |
+
\_ & \_ \\
|
| 56 |
+
\end{array}
|
| 57 |
+
\right) \\
|
| 58 |
+
\end{array}
|
| 59 |
+
\\
|
| 60 |
+
|
| 61 |
+
\begin{array}{l}
|
| 62 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 63 |
+
\left(
|
| 64 |
+
\begin{array}{cc}
|
| 65 |
+
1 & -2 \\
|
| 66 |
+
-2 & 3 \\
|
| 67 |
+
\end{array}
|
| 68 |
+
\right).\left(
|
| 69 |
+
\begin{array}{cc}
|
| 70 |
+
1 & 0 \\
|
| 71 |
+
2 & -3 \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right)=\left(
|
| 74 |
+
\begin{array}{cc}
|
| 75 |
+
\_ & \_ \\
|
| 76 |
+
\_ & \_ \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right) \\
|
| 79 |
+
\end{array}
|
| 80 |
+
\\
|
| 81 |
+
|
| 82 |
+
\begin{array}{l}
|
| 83 |
+
|
| 84 |
+
\begin{array}{l}
|
| 85 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1\ 1+(-2)\, \times \, 2=-3. \\
|
| 86 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\\
|
| 89 |
+
\left(
|
| 90 |
+
\begin{array}{cc}
|
| 91 |
+
1 & -2 \\
|
| 92 |
+
-2 & 3 \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\right).\left(
|
| 95 |
+
\begin{array}{cc}
|
| 96 |
+
1 & 0 \\
|
| 97 |
+
2 & -3 \\
|
| 98 |
+
\end{array}
|
| 99 |
+
\right)=\left(
|
| 100 |
+
\begin{array}{cc}
|
| 101 |
+
\fbox{$-3$} & \_ \\
|
| 102 |
+
\_ & \_ \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right) \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\\
|
| 107 |
+
|
| 108 |
+
\begin{array}{l}
|
| 109 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 110 |
+
\left(
|
| 111 |
+
\begin{array}{cc}
|
| 112 |
+
1 & -2 \\
|
| 113 |
+
-2 & 3 \\
|
| 114 |
+
\end{array}
|
| 115 |
+
\right).\left(
|
| 116 |
+
\begin{array}{cc}
|
| 117 |
+
1 & 0 \\
|
| 118 |
+
2 & -3 \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right)=\left(
|
| 121 |
+
\begin{array}{cc}
|
| 122 |
+
-3 & \_ \\
|
| 123 |
+
\_ & \_ \\
|
| 124 |
+
\end{array}
|
| 125 |
+
\right) \\
|
| 126 |
+
\end{array}
|
| 127 |
+
\\
|
| 128 |
+
|
| 129 |
+
\begin{array}{l}
|
| 130 |
+
|
| 131 |
+
\begin{array}{l}
|
| 132 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1\ 0+(-2)\, (-3)=6. \\
|
| 133 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\\
|
| 136 |
+
\left(
|
| 137 |
+
\begin{array}{cc}
|
| 138 |
+
1 & -2 \\
|
| 139 |
+
-2 & 3 \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right).\left(
|
| 142 |
+
\begin{array}{cc}
|
| 143 |
+
1 & 0 \\
|
| 144 |
+
2 & -3 \\
|
| 145 |
+
\end{array}
|
| 146 |
+
\right)=\left(
|
| 147 |
+
\begin{array}{cc}
|
| 148 |
+
-3 & \fbox{$6$} \\
|
| 149 |
+
\_ & \_ \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\right) \\
|
| 152 |
+
\end{array}
|
| 153 |
+
\\
|
| 154 |
+
|
| 155 |
+
\begin{array}{l}
|
| 156 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 157 |
+
\left(
|
| 158 |
+
\begin{array}{cc}
|
| 159 |
+
1 & -2 \\
|
| 160 |
+
-2 & 3 \\
|
| 161 |
+
\end{array}
|
| 162 |
+
\right).\left(
|
| 163 |
+
\begin{array}{cc}
|
| 164 |
+
1 & 0 \\
|
| 165 |
+
2 & -3 \\
|
| 166 |
+
\end{array}
|
| 167 |
+
\right)=\left(
|
| 168 |
+
\begin{array}{cc}
|
| 169 |
+
-3 & 6 \\
|
| 170 |
+
\_ & \_ \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\right) \\
|
| 173 |
+
\end{array}
|
| 174 |
+
\\
|
| 175 |
+
|
| 176 |
+
\begin{array}{l}
|
| 177 |
+
|
| 178 |
+
\begin{array}{l}
|
| 179 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, \times \, 1+3\ 2=4. \\
|
| 180 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\\
|
| 183 |
+
\left(
|
| 184 |
+
\begin{array}{cc}
|
| 185 |
+
1 & -2 \\
|
| 186 |
+
-2 & 3 \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right).\left(
|
| 189 |
+
\begin{array}{cc}
|
| 190 |
+
1 & 0 \\
|
| 191 |
+
2 & -3 \\
|
| 192 |
+
\end{array}
|
| 193 |
+
\right)=\left(
|
| 194 |
+
\begin{array}{cc}
|
| 195 |
+
-3 & 6 \\
|
| 196 |
+
\fbox{$4$} & \_ \\
|
| 197 |
+
\end{array}
|
| 198 |
+
\right) \\
|
| 199 |
+
\end{array}
|
| 200 |
+
\\
|
| 201 |
+
|
| 202 |
+
\begin{array}{l}
|
| 203 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 204 |
+
\left(
|
| 205 |
+
\begin{array}{cc}
|
| 206 |
+
1 & -2 \\
|
| 207 |
+
-2 & 3 \\
|
| 208 |
+
\end{array}
|
| 209 |
+
\right).\left(
|
| 210 |
+
\begin{array}{cc}
|
| 211 |
+
1 & 0 \\
|
| 212 |
+
2 & -3 \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right)=\left(
|
| 215 |
+
\begin{array}{cc}
|
| 216 |
+
-3 & 6 \\
|
| 217 |
+
4 & \_ \\
|
| 218 |
+
\end{array}
|
| 219 |
+
\right) \\
|
| 220 |
+
\end{array}
|
| 221 |
+
\\
|
| 222 |
+
|
| 223 |
+
\begin{array}{l}
|
| 224 |
+
|
| 225 |
+
\begin{array}{l}
|
| 226 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, \times \, 0+3 (-3)=-9. \\
|
| 227 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 228 |
+
\end{array}
|
| 229 |
+
\\
|
| 230 |
+
\fbox{$
|
| 231 |
+
\begin{array}{ll}
|
| 232 |
+
\text{Answer:} & \\
|
| 233 |
+
\text{} & \left(
|
| 234 |
+
\begin{array}{cc}
|
| 235 |
+
1 & -2 \\
|
| 236 |
+
-2 & 3 \\
|
| 237 |
+
\end{array}
|
| 238 |
+
\right).\left(
|
| 239 |
+
\begin{array}{cc}
|
| 240 |
+
1 & 0 \\
|
| 241 |
+
2 & -3 \\
|
| 242 |
+
\end{array}
|
| 243 |
+
\right)=\left(
|
| 244 |
+
\begin{array}{cc}
|
| 245 |
+
-3 & 6 \\
|
| 246 |
+
4 & \fbox{$-9$} \\
|
| 247 |
+
\end{array}
|
| 248 |
+
\right) \\
|
| 249 |
+
\end{array}
|
| 250 |
+
$} \\
|
| 251 |
+
\end{array}
|
| 252 |
+
\\
|
| 253 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/274.txt
ADDED
|
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
\frac{3}{2} & -\frac{1}{4} \\
|
| 6 |
+
\frac{7}{4} & -\frac{9}{4} \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{cc}
|
| 11 |
+
-\frac{11}{4} & -\frac{1}{4} \\
|
| 12 |
+
-\frac{9}{4} & -1 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$.
|
| 15 |
+
Answer:
|
| 16 |
+
\begin{array}{l}
|
| 17 |
+
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
\text{Multiply the following matrices}: \\
|
| 20 |
+
\left(
|
| 21 |
+
\begin{array}{cc}
|
| 22 |
+
\frac{3}{2} & -\frac{1}{4} \\
|
| 23 |
+
\frac{7}{4} & -\frac{9}{4} \\
|
| 24 |
+
\end{array}
|
| 25 |
+
\right).\left(
|
| 26 |
+
\begin{array}{cc}
|
| 27 |
+
-\frac{11}{4} & -\frac{1}{4} \\
|
| 28 |
+
-\frac{9}{4} & -1 \\
|
| 29 |
+
\end{array}
|
| 30 |
+
\right) \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\\
|
| 33 |
+
\hline
|
| 34 |
+
|
| 35 |
+
\begin{array}{l}
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 2. \\
|
| 39 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 2: \\
|
| 40 |
+
\end{array}
|
| 41 |
+
\\
|
| 42 |
+
\left(
|
| 43 |
+
\begin{array}{cc}
|
| 44 |
+
\frac{3}{2} & -\frac{1}{4} \\
|
| 45 |
+
\frac{7}{4} & -\frac{9}{4} \\
|
| 46 |
+
\end{array}
|
| 47 |
+
\right).\left(
|
| 48 |
+
\begin{array}{cc}
|
| 49 |
+
-\frac{11}{4} & -\frac{1}{4} \\
|
| 50 |
+
-\frac{9}{4} & -1 \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right)=\left(
|
| 53 |
+
\begin{array}{cc}
|
| 54 |
+
\_ & \_ \\
|
| 55 |
+
\_ & \_ \\
|
| 56 |
+
\end{array}
|
| 57 |
+
\right) \\
|
| 58 |
+
\end{array}
|
| 59 |
+
\\
|
| 60 |
+
|
| 61 |
+
\begin{array}{l}
|
| 62 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 63 |
+
\left(
|
| 64 |
+
\begin{array}{cc}
|
| 65 |
+
\frac{3}{2} & -\frac{1}{4} \\
|
| 66 |
+
\frac{7}{4} & -\frac{9}{4} \\
|
| 67 |
+
\end{array}
|
| 68 |
+
\right).\left(
|
| 69 |
+
\begin{array}{cc}
|
| 70 |
+
-\frac{11}{4} & -\frac{1}{4} \\
|
| 71 |
+
-\frac{9}{4} & -1 \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right)=\left(
|
| 74 |
+
\begin{array}{cc}
|
| 75 |
+
\_ & \_ \\
|
| 76 |
+
\_ & \_ \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right) \\
|
| 79 |
+
\end{array}
|
| 80 |
+
\\
|
| 81 |
+
|
| 82 |
+
\begin{array}{l}
|
| 83 |
+
|
| 84 |
+
\begin{array}{l}
|
| 85 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{3 (-11)}{2\ 4}+\frac{9}{4\ 4}=-\frac{57}{16}. \\
|
| 86 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\\
|
| 89 |
+
\left(
|
| 90 |
+
\begin{array}{cc}
|
| 91 |
+
\frac{3}{2} & -\frac{1}{4} \\
|
| 92 |
+
\frac{7}{4} & -\frac{9}{4} \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\right).\left(
|
| 95 |
+
\begin{array}{cc}
|
| 96 |
+
-\frac{11}{4} & -\frac{1}{4} \\
|
| 97 |
+
-\frac{9}{4} & -1 \\
|
| 98 |
+
\end{array}
|
| 99 |
+
\right)=\left(
|
| 100 |
+
\begin{array}{cc}
|
| 101 |
+
\fbox{$-\frac{57}{16}$} & \_ \\
|
| 102 |
+
\_ & \_ \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right) \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\\
|
| 107 |
+
|
| 108 |
+
\begin{array}{l}
|
| 109 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 110 |
+
\left(
|
| 111 |
+
\begin{array}{cc}
|
| 112 |
+
\frac{3}{2} & -\frac{1}{4} \\
|
| 113 |
+
\frac{7}{4} & -\frac{9}{4} \\
|
| 114 |
+
\end{array}
|
| 115 |
+
\right).\left(
|
| 116 |
+
\begin{array}{cc}
|
| 117 |
+
-\frac{11}{4} & -\frac{1}{4} \\
|
| 118 |
+
-\frac{9}{4} & -1 \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right)=\left(
|
| 121 |
+
\begin{array}{cc}
|
| 122 |
+
-\frac{57}{16} & \_ \\
|
| 123 |
+
\_ & \_ \\
|
| 124 |
+
\end{array}
|
| 125 |
+
\right) \\
|
| 126 |
+
\end{array}
|
| 127 |
+
\\
|
| 128 |
+
|
| 129 |
+
\begin{array}{l}
|
| 130 |
+
|
| 131 |
+
\begin{array}{l}
|
| 132 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{1}{4} \left(-\frac{3}{2}\right)+\frac{1}{4}=-\frac{1}{8}. \\
|
| 133 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\\
|
| 136 |
+
\left(
|
| 137 |
+
\begin{array}{cc}
|
| 138 |
+
\frac{3}{2} & -\frac{1}{4} \\
|
| 139 |
+
\frac{7}{4} & -\frac{9}{4} \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right).\left(
|
| 142 |
+
\begin{array}{cc}
|
| 143 |
+
-\frac{11}{4} & -\frac{1}{4} \\
|
| 144 |
+
-\frac{9}{4} & -1 \\
|
| 145 |
+
\end{array}
|
| 146 |
+
\right)=\left(
|
| 147 |
+
\begin{array}{cc}
|
| 148 |
+
-\frac{57}{16} & \fbox{$-\frac{1}{8}$} \\
|
| 149 |
+
\_ & \_ \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\right) \\
|
| 152 |
+
\end{array}
|
| 153 |
+
\\
|
| 154 |
+
|
| 155 |
+
\begin{array}{l}
|
| 156 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 157 |
+
\left(
|
| 158 |
+
\begin{array}{cc}
|
| 159 |
+
\frac{3}{2} & -\frac{1}{4} \\
|
| 160 |
+
\frac{7}{4} & -\frac{9}{4} \\
|
| 161 |
+
\end{array}
|
| 162 |
+
\right).\left(
|
| 163 |
+
\begin{array}{cc}
|
| 164 |
+
-\frac{11}{4} & -\frac{1}{4} \\
|
| 165 |
+
-\frac{9}{4} & -1 \\
|
| 166 |
+
\end{array}
|
| 167 |
+
\right)=\left(
|
| 168 |
+
\begin{array}{cc}
|
| 169 |
+
-\frac{57}{16} & -\frac{1}{8} \\
|
| 170 |
+
\_ & \_ \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\right) \\
|
| 173 |
+
\end{array}
|
| 174 |
+
\\
|
| 175 |
+
|
| 176 |
+
\begin{array}{l}
|
| 177 |
+
|
| 178 |
+
\begin{array}{l}
|
| 179 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{7 (-11)}{4\ 4}+\left(-\frac{9}{4}\right)\, \left(-\frac{9}{4}\right)=\frac{1}{4}. \\
|
| 180 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\\
|
| 183 |
+
\left(
|
| 184 |
+
\begin{array}{cc}
|
| 185 |
+
\frac{3}{2} & -\frac{1}{4} \\
|
| 186 |
+
\frac{7}{4} & -\frac{9}{4} \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right).\left(
|
| 189 |
+
\begin{array}{cc}
|
| 190 |
+
-\frac{11}{4} & -\frac{1}{4} \\
|
| 191 |
+
-\frac{9}{4} & -1 \\
|
| 192 |
+
\end{array}
|
| 193 |
+
\right)=\left(
|
| 194 |
+
\begin{array}{cc}
|
| 195 |
+
-\frac{57}{16} & -\frac{1}{8} \\
|
| 196 |
+
\fbox{$\frac{1}{4}$} & \_ \\
|
| 197 |
+
\end{array}
|
| 198 |
+
\right) \\
|
| 199 |
+
\end{array}
|
| 200 |
+
\\
|
| 201 |
+
|
| 202 |
+
\begin{array}{l}
|
| 203 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 204 |
+
\left(
|
| 205 |
+
\begin{array}{cc}
|
| 206 |
+
\frac{3}{2} & -\frac{1}{4} \\
|
| 207 |
+
\frac{7}{4} & -\frac{9}{4} \\
|
| 208 |
+
\end{array}
|
| 209 |
+
\right).\left(
|
| 210 |
+
\begin{array}{cc}
|
| 211 |
+
-\frac{11}{4} & -\frac{1}{4} \\
|
| 212 |
+
-\frac{9}{4} & -1 \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right)=\left(
|
| 215 |
+
\begin{array}{cc}
|
| 216 |
+
-\frac{57}{16} & -\frac{1}{8} \\
|
| 217 |
+
\frac{1}{4} & \_ \\
|
| 218 |
+
\end{array}
|
| 219 |
+
\right) \\
|
| 220 |
+
\end{array}
|
| 221 |
+
\\
|
| 222 |
+
|
| 223 |
+
\begin{array}{l}
|
| 224 |
+
|
| 225 |
+
\begin{array}{l}
|
| 226 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{1}{4} \left(-\frac{7}{4}\right)+\left(-\frac{9}{4}\right)\, (-1)=\frac{29}{16}. \\
|
| 227 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 228 |
+
\end{array}
|
| 229 |
+
\\
|
| 230 |
+
\fbox{$
|
| 231 |
+
\begin{array}{ll}
|
| 232 |
+
\text{Answer:} & \\
|
| 233 |
+
\text{} & \left(
|
| 234 |
+
\begin{array}{cc}
|
| 235 |
+
\frac{3}{2} & -\frac{1}{4} \\
|
| 236 |
+
\frac{7}{4} & -\frac{9}{4} \\
|
| 237 |
+
\end{array}
|
| 238 |
+
\right).\left(
|
| 239 |
+
\begin{array}{cc}
|
| 240 |
+
-\frac{11}{4} & -\frac{1}{4} \\
|
| 241 |
+
-\frac{9}{4} & -1 \\
|
| 242 |
+
\end{array}
|
| 243 |
+
\right)=\left(
|
| 244 |
+
\begin{array}{cc}
|
| 245 |
+
-\frac{57}{16} & -\frac{1}{8} \\
|
| 246 |
+
\frac{1}{4} & \fbox{$\frac{29}{16}$} \\
|
| 247 |
+
\end{array}
|
| 248 |
+
\right) \\
|
| 249 |
+
\end{array}
|
| 250 |
+
$} \\
|
| 251 |
+
\end{array}
|
| 252 |
+
\\
|
| 253 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/2741.txt
ADDED
|
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
2 & -1 & 1 \\
|
| 6 |
+
-1 & 3 & -1 \\
|
| 7 |
+
-1 & 1 & 3 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{cc}
|
| 12 |
+
1 & -2 \\
|
| 13 |
+
0 & 0 \\
|
| 14 |
+
-2 & 1 \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$.
|
| 17 |
+
Answer:
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
|
| 20 |
+
\begin{array}{l}
|
| 21 |
+
\text{Multiply the following matrices}: \\
|
| 22 |
+
\left(
|
| 23 |
+
\begin{array}{ccc}
|
| 24 |
+
2 & -1 & 1 \\
|
| 25 |
+
-1 & 3 & -1 \\
|
| 26 |
+
-1 & 1 & 3 \\
|
| 27 |
+
\end{array}
|
| 28 |
+
\right).\left(
|
| 29 |
+
\begin{array}{cc}
|
| 30 |
+
1 & -2 \\
|
| 31 |
+
0 & 0 \\
|
| 32 |
+
-2 & 1 \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\right) \\
|
| 35 |
+
\end{array}
|
| 36 |
+
\\
|
| 37 |
+
\hline
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
|
| 41 |
+
\begin{array}{l}
|
| 42 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 2. \\
|
| 43 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 2: \\
|
| 44 |
+
\end{array}
|
| 45 |
+
\\
|
| 46 |
+
\left(
|
| 47 |
+
\begin{array}{ccc}
|
| 48 |
+
2 & -1 & 1 \\
|
| 49 |
+
-1 & 3 & -1 \\
|
| 50 |
+
-1 & 1 & 3 \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right).\left(
|
| 53 |
+
\begin{array}{cc}
|
| 54 |
+
1 & -2 \\
|
| 55 |
+
0 & 0 \\
|
| 56 |
+
-2 & 1 \\
|
| 57 |
+
\end{array}
|
| 58 |
+
\right)=\left(
|
| 59 |
+
\begin{array}{cc}
|
| 60 |
+
\_ & \_ \\
|
| 61 |
+
\_ & \_ \\
|
| 62 |
+
\_ & \_ \\
|
| 63 |
+
\end{array}
|
| 64 |
+
\right) \\
|
| 65 |
+
\end{array}
|
| 66 |
+
\\
|
| 67 |
+
|
| 68 |
+
\begin{array}{l}
|
| 69 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 70 |
+
\left(
|
| 71 |
+
\begin{array}{ccc}
|
| 72 |
+
2 & -1 & 1 \\
|
| 73 |
+
-1 & 3 & -1 \\
|
| 74 |
+
-1 & 1 & 3 \\
|
| 75 |
+
\end{array}
|
| 76 |
+
\right).\left(
|
| 77 |
+
\begin{array}{cc}
|
| 78 |
+
1 & -2 \\
|
| 79 |
+
0 & 0 \\
|
| 80 |
+
-2 & 1 \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right)=\left(
|
| 83 |
+
\begin{array}{cc}
|
| 84 |
+
\_ & \_ \\
|
| 85 |
+
\_ & \_ \\
|
| 86 |
+
\_ & \_ \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\right) \\
|
| 89 |
+
\end{array}
|
| 90 |
+
\\
|
| 91 |
+
|
| 92 |
+
\begin{array}{l}
|
| 93 |
+
|
| 94 |
+
\begin{array}{l}
|
| 95 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2\ 1+(-1)\, \times \, 0+1 (-2)=0. \\
|
| 96 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\\
|
| 99 |
+
\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
2 & -1 & 1 \\
|
| 102 |
+
-1 & 3 & -1 \\
|
| 103 |
+
-1 & 1 & 3 \\
|
| 104 |
+
\end{array}
|
| 105 |
+
\right).\left(
|
| 106 |
+
\begin{array}{cc}
|
| 107 |
+
1 & -2 \\
|
| 108 |
+
0 & 0 \\
|
| 109 |
+
-2 & 1 \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\right)=\left(
|
| 112 |
+
\begin{array}{cc}
|
| 113 |
+
\fbox{$0$} & \_ \\
|
| 114 |
+
\_ & \_ \\
|
| 115 |
+
\_ & \_ \\
|
| 116 |
+
\end{array}
|
| 117 |
+
\right) \\
|
| 118 |
+
\end{array}
|
| 119 |
+
\\
|
| 120 |
+
|
| 121 |
+
\begin{array}{l}
|
| 122 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 123 |
+
\left(
|
| 124 |
+
\begin{array}{ccc}
|
| 125 |
+
2 & -1 & 1 \\
|
| 126 |
+
-1 & 3 & -1 \\
|
| 127 |
+
-1 & 1 & 3 \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right).\left(
|
| 130 |
+
\begin{array}{cc}
|
| 131 |
+
1 & -2 \\
|
| 132 |
+
0 & 0 \\
|
| 133 |
+
-2 & 1 \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right)=\left(
|
| 136 |
+
\begin{array}{cc}
|
| 137 |
+
0 & \_ \\
|
| 138 |
+
\_ & \_ \\
|
| 139 |
+
\_ & \_ \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right) \\
|
| 142 |
+
\end{array}
|
| 143 |
+
\\
|
| 144 |
+
|
| 145 |
+
\begin{array}{l}
|
| 146 |
+
|
| 147 |
+
\begin{array}{l}
|
| 148 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2 (-2)+(-1)\, \times \, 0+1\ 1=-3. \\
|
| 149 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\\
|
| 152 |
+
\left(
|
| 153 |
+
\begin{array}{ccc}
|
| 154 |
+
2 & -1 & 1 \\
|
| 155 |
+
-1 & 3 & -1 \\
|
| 156 |
+
-1 & 1 & 3 \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right).\left(
|
| 159 |
+
\begin{array}{cc}
|
| 160 |
+
1 & -2 \\
|
| 161 |
+
0 & 0 \\
|
| 162 |
+
-2 & 1 \\
|
| 163 |
+
\end{array}
|
| 164 |
+
\right)=\left(
|
| 165 |
+
\begin{array}{cc}
|
| 166 |
+
0 & \fbox{$-3$} \\
|
| 167 |
+
\_ & \_ \\
|
| 168 |
+
\_ & \_ \\
|
| 169 |
+
\end{array}
|
| 170 |
+
\right) \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\\
|
| 173 |
+
|
| 174 |
+
\begin{array}{l}
|
| 175 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 176 |
+
\left(
|
| 177 |
+
\begin{array}{ccc}
|
| 178 |
+
2 & -1 & 1 \\
|
| 179 |
+
-1 & 3 & -1 \\
|
| 180 |
+
-1 & 1 & 3 \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\right).\left(
|
| 183 |
+
\begin{array}{cc}
|
| 184 |
+
1 & -2 \\
|
| 185 |
+
0 & 0 \\
|
| 186 |
+
-2 & 1 \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right)=\left(
|
| 189 |
+
\begin{array}{cc}
|
| 190 |
+
0 & -3 \\
|
| 191 |
+
\_ & \_ \\
|
| 192 |
+
\_ & \_ \\
|
| 193 |
+
\end{array}
|
| 194 |
+
\right) \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
|
| 198 |
+
\begin{array}{l}
|
| 199 |
+
|
| 200 |
+
\begin{array}{l}
|
| 201 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-1)\, \times \, 1+3\ 0+(-1)\, (-2)=1. \\
|
| 202 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 203 |
+
\end{array}
|
| 204 |
+
\\
|
| 205 |
+
\left(
|
| 206 |
+
\begin{array}{ccc}
|
| 207 |
+
2 & -1 & 1 \\
|
| 208 |
+
-1 & 3 & -1 \\
|
| 209 |
+
-1 & 1 & 3 \\
|
| 210 |
+
\end{array}
|
| 211 |
+
\right).\left(
|
| 212 |
+
\begin{array}{cc}
|
| 213 |
+
1 & -2 \\
|
| 214 |
+
0 & 0 \\
|
| 215 |
+
-2 & 1 \\
|
| 216 |
+
\end{array}
|
| 217 |
+
\right)=\left(
|
| 218 |
+
\begin{array}{cc}
|
| 219 |
+
0 & -3 \\
|
| 220 |
+
\fbox{$1$} & \_ \\
|
| 221 |
+
\_ & \_ \\
|
| 222 |
+
\end{array}
|
| 223 |
+
\right) \\
|
| 224 |
+
\end{array}
|
| 225 |
+
\\
|
| 226 |
+
|
| 227 |
+
\begin{array}{l}
|
| 228 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 229 |
+
\left(
|
| 230 |
+
\begin{array}{ccc}
|
| 231 |
+
2 & -1 & 1 \\
|
| 232 |
+
-1 & 3 & -1 \\
|
| 233 |
+
-1 & 1 & 3 \\
|
| 234 |
+
\end{array}
|
| 235 |
+
\right).\left(
|
| 236 |
+
\begin{array}{cc}
|
| 237 |
+
1 & -2 \\
|
| 238 |
+
0 & 0 \\
|
| 239 |
+
-2 & 1 \\
|
| 240 |
+
\end{array}
|
| 241 |
+
\right)=\left(
|
| 242 |
+
\begin{array}{cc}
|
| 243 |
+
0 & -3 \\
|
| 244 |
+
1 & \_ \\
|
| 245 |
+
\_ & \_ \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\right) \\
|
| 248 |
+
\end{array}
|
| 249 |
+
\\
|
| 250 |
+
|
| 251 |
+
\begin{array}{l}
|
| 252 |
+
|
| 253 |
+
\begin{array}{l}
|
| 254 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-1)\, (-2)+3\ 0+(-1)\, \times \, 1=1. \\
|
| 255 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 256 |
+
\end{array}
|
| 257 |
+
\\
|
| 258 |
+
\left(
|
| 259 |
+
\begin{array}{ccc}
|
| 260 |
+
2 & -1 & 1 \\
|
| 261 |
+
-1 & 3 & -1 \\
|
| 262 |
+
-1 & 1 & 3 \\
|
| 263 |
+
\end{array}
|
| 264 |
+
\right).\left(
|
| 265 |
+
\begin{array}{cc}
|
| 266 |
+
1 & -2 \\
|
| 267 |
+
0 & 0 \\
|
| 268 |
+
-2 & 1 \\
|
| 269 |
+
\end{array}
|
| 270 |
+
\right)=\left(
|
| 271 |
+
\begin{array}{cc}
|
| 272 |
+
0 & -3 \\
|
| 273 |
+
1 & \fbox{$1$} \\
|
| 274 |
+
\_ & \_ \\
|
| 275 |
+
\end{array}
|
| 276 |
+
\right) \\
|
| 277 |
+
\end{array}
|
| 278 |
+
\\
|
| 279 |
+
|
| 280 |
+
\begin{array}{l}
|
| 281 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 282 |
+
\left(
|
| 283 |
+
\begin{array}{ccc}
|
| 284 |
+
2 & -1 & 1 \\
|
| 285 |
+
-1 & 3 & -1 \\
|
| 286 |
+
-1 & 1 & 3 \\
|
| 287 |
+
\end{array}
|
| 288 |
+
\right).\left(
|
| 289 |
+
\begin{array}{cc}
|
| 290 |
+
1 & -2 \\
|
| 291 |
+
0 & 0 \\
|
| 292 |
+
-2 & 1 \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\right)=\left(
|
| 295 |
+
\begin{array}{cc}
|
| 296 |
+
0 & -3 \\
|
| 297 |
+
1 & 1 \\
|
| 298 |
+
\_ & \_ \\
|
| 299 |
+
\end{array}
|
| 300 |
+
\right) \\
|
| 301 |
+
\end{array}
|
| 302 |
+
\\
|
| 303 |
+
|
| 304 |
+
\begin{array}{l}
|
| 305 |
+
|
| 306 |
+
\begin{array}{l}
|
| 307 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-1)\, \times \, 1+1\ 0+3 (-2)=-7. \\
|
| 308 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 309 |
+
\end{array}
|
| 310 |
+
\\
|
| 311 |
+
\left(
|
| 312 |
+
\begin{array}{ccc}
|
| 313 |
+
2 & -1 & 1 \\
|
| 314 |
+
-1 & 3 & -1 \\
|
| 315 |
+
-1 & 1 & 3 \\
|
| 316 |
+
\end{array}
|
| 317 |
+
\right).\left(
|
| 318 |
+
\begin{array}{cc}
|
| 319 |
+
1 & -2 \\
|
| 320 |
+
0 & 0 \\
|
| 321 |
+
-2 & 1 \\
|
| 322 |
+
\end{array}
|
| 323 |
+
\right)=\left(
|
| 324 |
+
\begin{array}{cc}
|
| 325 |
+
0 & -3 \\
|
| 326 |
+
1 & 1 \\
|
| 327 |
+
\fbox{$-7$} & \_ \\
|
| 328 |
+
\end{array}
|
| 329 |
+
\right) \\
|
| 330 |
+
\end{array}
|
| 331 |
+
\\
|
| 332 |
+
|
| 333 |
+
\begin{array}{l}
|
| 334 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 335 |
+
\left(
|
| 336 |
+
\begin{array}{ccc}
|
| 337 |
+
2 & -1 & 1 \\
|
| 338 |
+
-1 & 3 & -1 \\
|
| 339 |
+
-1 & 1 & 3 \\
|
| 340 |
+
\end{array}
|
| 341 |
+
\right).\left(
|
| 342 |
+
\begin{array}{cc}
|
| 343 |
+
1 & -2 \\
|
| 344 |
+
0 & 0 \\
|
| 345 |
+
-2 & 1 \\
|
| 346 |
+
\end{array}
|
| 347 |
+
\right)=\left(
|
| 348 |
+
\begin{array}{cc}
|
| 349 |
+
0 & -3 \\
|
| 350 |
+
1 & 1 \\
|
| 351 |
+
-7 & \_ \\
|
| 352 |
+
\end{array}
|
| 353 |
+
\right) \\
|
| 354 |
+
\end{array}
|
| 355 |
+
\\
|
| 356 |
+
|
| 357 |
+
\begin{array}{l}
|
| 358 |
+
|
| 359 |
+
\begin{array}{l}
|
| 360 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-1)\, (-2)+1\ 0+3\ 1=5. \\
|
| 361 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 362 |
+
\end{array}
|
| 363 |
+
\\
|
| 364 |
+
\fbox{$
|
| 365 |
+
\begin{array}{ll}
|
| 366 |
+
\text{Answer:} & \\
|
| 367 |
+
\text{} & \left(
|
| 368 |
+
\begin{array}{ccc}
|
| 369 |
+
2 & -1 & 1 \\
|
| 370 |
+
-1 & 3 & -1 \\
|
| 371 |
+
-1 & 1 & 3 \\
|
| 372 |
+
\end{array}
|
| 373 |
+
\right).\left(
|
| 374 |
+
\begin{array}{cc}
|
| 375 |
+
1 & -2 \\
|
| 376 |
+
0 & 0 \\
|
| 377 |
+
-2 & 1 \\
|
| 378 |
+
\end{array}
|
| 379 |
+
\right)=\left(
|
| 380 |
+
\begin{array}{cc}
|
| 381 |
+
0 & -3 \\
|
| 382 |
+
1 & 1 \\
|
| 383 |
+
-7 & \fbox{$5$} \\
|
| 384 |
+
\end{array}
|
| 385 |
+
\right) \\
|
| 386 |
+
\end{array}
|
| 387 |
+
$} \\
|
| 388 |
+
\end{array}
|
| 389 |
+
\\
|
| 390 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/2863.txt
ADDED
|
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
2 & -3 & 0 \\
|
| 6 |
+
-2 & 2 & 0 \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{ccc}
|
| 11 |
+
-2 & 1 & -2 \\
|
| 12 |
+
3 & -2 & 1 \\
|
| 13 |
+
-1 & -1 & -2 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$.
|
| 16 |
+
Answer:
|
| 17 |
+
\begin{array}{l}
|
| 18 |
+
|
| 19 |
+
\begin{array}{l}
|
| 20 |
+
\text{Multiply the following matrices}: \\
|
| 21 |
+
\left(
|
| 22 |
+
\begin{array}{ccc}
|
| 23 |
+
2 & -3 & 0 \\
|
| 24 |
+
-2 & 2 & 0 \\
|
| 25 |
+
\end{array}
|
| 26 |
+
\right).\left(
|
| 27 |
+
\begin{array}{ccc}
|
| 28 |
+
-2 & 1 & -2 \\
|
| 29 |
+
3 & -2 & 1 \\
|
| 30 |
+
-1 & -1 & -2 \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\right) \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\\
|
| 35 |
+
\hline
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 3. \\
|
| 41 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 3: \\
|
| 42 |
+
\end{array}
|
| 43 |
+
\\
|
| 44 |
+
\left(
|
| 45 |
+
\begin{array}{ccc}
|
| 46 |
+
2 & -3 & 0 \\
|
| 47 |
+
-2 & 2 & 0 \\
|
| 48 |
+
\end{array}
|
| 49 |
+
\right).\left(
|
| 50 |
+
\begin{array}{ccc}
|
| 51 |
+
-2 & 1 & -2 \\
|
| 52 |
+
3 & -2 & 1 \\
|
| 53 |
+
-1 & -1 & -2 \\
|
| 54 |
+
\end{array}
|
| 55 |
+
\right)=\left(
|
| 56 |
+
\begin{array}{ccc}
|
| 57 |
+
\_ & \_ & \_ \\
|
| 58 |
+
\_ & \_ & \_ \\
|
| 59 |
+
\end{array}
|
| 60 |
+
\right) \\
|
| 61 |
+
\end{array}
|
| 62 |
+
\\
|
| 63 |
+
|
| 64 |
+
\begin{array}{l}
|
| 65 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 66 |
+
\left(
|
| 67 |
+
\begin{array}{ccc}
|
| 68 |
+
2 & -3 & 0 \\
|
| 69 |
+
-2 & 2 & 0 \\
|
| 70 |
+
\end{array}
|
| 71 |
+
\right).\left(
|
| 72 |
+
\begin{array}{ccc}
|
| 73 |
+
-2 & 1 & -2 \\
|
| 74 |
+
3 & -2 & 1 \\
|
| 75 |
+
-1 & -1 & -2 \\
|
| 76 |
+
\end{array}
|
| 77 |
+
\right)=\left(
|
| 78 |
+
\begin{array}{ccc}
|
| 79 |
+
\_ & \_ & \_ \\
|
| 80 |
+
\_ & \_ & \_ \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right) \\
|
| 83 |
+
\end{array}
|
| 84 |
+
\\
|
| 85 |
+
|
| 86 |
+
\begin{array}{l}
|
| 87 |
+
|
| 88 |
+
\begin{array}{l}
|
| 89 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2 (-2)+(-3)\, \times \, 3+0 (-1)=-13. \\
|
| 90 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 91 |
+
\end{array}
|
| 92 |
+
\\
|
| 93 |
+
\left(
|
| 94 |
+
\begin{array}{ccc}
|
| 95 |
+
2 & -3 & 0 \\
|
| 96 |
+
-2 & 2 & 0 \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\right).\left(
|
| 99 |
+
\begin{array}{ccc}
|
| 100 |
+
-2 & 1 & -2 \\
|
| 101 |
+
3 & -2 & 1 \\
|
| 102 |
+
-1 & -1 & -2 \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right)=\left(
|
| 105 |
+
\begin{array}{ccc}
|
| 106 |
+
\fbox{$-13$} & \_ & \_ \\
|
| 107 |
+
\_ & \_ & \_ \\
|
| 108 |
+
\end{array}
|
| 109 |
+
\right) \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\\
|
| 112 |
+
|
| 113 |
+
\begin{array}{l}
|
| 114 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 115 |
+
\left(
|
| 116 |
+
\begin{array}{ccc}
|
| 117 |
+
2 & -3 & 0 \\
|
| 118 |
+
-2 & 2 & 0 \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right).\left(
|
| 121 |
+
\begin{array}{ccc}
|
| 122 |
+
-2 & 1 & -2 \\
|
| 123 |
+
3 & -2 & 1 \\
|
| 124 |
+
-1 & -1 & -2 \\
|
| 125 |
+
\end{array}
|
| 126 |
+
\right)=\left(
|
| 127 |
+
\begin{array}{ccc}
|
| 128 |
+
-13 & \_ & \_ \\
|
| 129 |
+
\_ & \_ & \_ \\
|
| 130 |
+
\end{array}
|
| 131 |
+
\right) \\
|
| 132 |
+
\end{array}
|
| 133 |
+
\\
|
| 134 |
+
|
| 135 |
+
\begin{array}{l}
|
| 136 |
+
|
| 137 |
+
\begin{array}{l}
|
| 138 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2\ 1+(-3)\, (-2)+0 (-1)=8. \\
|
| 139 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\\
|
| 142 |
+
\left(
|
| 143 |
+
\begin{array}{ccc}
|
| 144 |
+
2 & -3 & 0 \\
|
| 145 |
+
-2 & 2 & 0 \\
|
| 146 |
+
\end{array}
|
| 147 |
+
\right).\left(
|
| 148 |
+
\begin{array}{ccc}
|
| 149 |
+
-2 & 1 & -2 \\
|
| 150 |
+
3 & -2 & 1 \\
|
| 151 |
+
-1 & -1 & -2 \\
|
| 152 |
+
\end{array}
|
| 153 |
+
\right)=\left(
|
| 154 |
+
\begin{array}{ccc}
|
| 155 |
+
-13 & \fbox{$8$} & \_ \\
|
| 156 |
+
\_ & \_ & \_ \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right) \\
|
| 159 |
+
\end{array}
|
| 160 |
+
\\
|
| 161 |
+
|
| 162 |
+
\begin{array}{l}
|
| 163 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 164 |
+
\left(
|
| 165 |
+
\begin{array}{ccc}
|
| 166 |
+
2 & -3 & 0 \\
|
| 167 |
+
-2 & 2 & 0 \\
|
| 168 |
+
\end{array}
|
| 169 |
+
\right).\left(
|
| 170 |
+
\begin{array}{ccc}
|
| 171 |
+
-2 & 1 & -2 \\
|
| 172 |
+
3 & -2 & 1 \\
|
| 173 |
+
-1 & -1 & -2 \\
|
| 174 |
+
\end{array}
|
| 175 |
+
\right)=\left(
|
| 176 |
+
\begin{array}{ccc}
|
| 177 |
+
-13 & 8 & \_ \\
|
| 178 |
+
\_ & \_ & \_ \\
|
| 179 |
+
\end{array}
|
| 180 |
+
\right) \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\\
|
| 183 |
+
|
| 184 |
+
\begin{array}{l}
|
| 185 |
+
|
| 186 |
+
\begin{array}{l}
|
| 187 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2 (-2)+(-3)\, \times \, 1+0 (-2)=-7. \\
|
| 188 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 189 |
+
\end{array}
|
| 190 |
+
\\
|
| 191 |
+
\left(
|
| 192 |
+
\begin{array}{ccc}
|
| 193 |
+
2 & -3 & 0 \\
|
| 194 |
+
-2 & 2 & 0 \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\right).\left(
|
| 197 |
+
\begin{array}{ccc}
|
| 198 |
+
-2 & 1 & -2 \\
|
| 199 |
+
3 & -2 & 1 \\
|
| 200 |
+
-1 & -1 & -2 \\
|
| 201 |
+
\end{array}
|
| 202 |
+
\right)=\left(
|
| 203 |
+
\begin{array}{ccc}
|
| 204 |
+
-13 & 8 & \fbox{$-7$} \\
|
| 205 |
+
\_ & \_ & \_ \\
|
| 206 |
+
\end{array}
|
| 207 |
+
\right) \\
|
| 208 |
+
\end{array}
|
| 209 |
+
\\
|
| 210 |
+
|
| 211 |
+
\begin{array}{l}
|
| 212 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 213 |
+
\left(
|
| 214 |
+
\begin{array}{ccc}
|
| 215 |
+
2 & -3 & 0 \\
|
| 216 |
+
-2 & 2 & 0 \\
|
| 217 |
+
\end{array}
|
| 218 |
+
\right).\left(
|
| 219 |
+
\begin{array}{ccc}
|
| 220 |
+
-2 & 1 & -2 \\
|
| 221 |
+
3 & -2 & 1 \\
|
| 222 |
+
-1 & -1 & -2 \\
|
| 223 |
+
\end{array}
|
| 224 |
+
\right)=\left(
|
| 225 |
+
\begin{array}{ccc}
|
| 226 |
+
-13 & 8 & -7 \\
|
| 227 |
+
\_ & \_ & \_ \\
|
| 228 |
+
\end{array}
|
| 229 |
+
\right) \\
|
| 230 |
+
\end{array}
|
| 231 |
+
\\
|
| 232 |
+
|
| 233 |
+
\begin{array}{l}
|
| 234 |
+
|
| 235 |
+
\begin{array}{l}
|
| 236 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-2)+2\ 3+0 (-1)=10. \\
|
| 237 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 238 |
+
\end{array}
|
| 239 |
+
\\
|
| 240 |
+
\left(
|
| 241 |
+
\begin{array}{ccc}
|
| 242 |
+
2 & -3 & 0 \\
|
| 243 |
+
-2 & 2 & 0 \\
|
| 244 |
+
\end{array}
|
| 245 |
+
\right).\left(
|
| 246 |
+
\begin{array}{ccc}
|
| 247 |
+
-2 & 1 & -2 \\
|
| 248 |
+
3 & -2 & 1 \\
|
| 249 |
+
-1 & -1 & -2 \\
|
| 250 |
+
\end{array}
|
| 251 |
+
\right)=\left(
|
| 252 |
+
\begin{array}{ccc}
|
| 253 |
+
-13 & 8 & -7 \\
|
| 254 |
+
\fbox{$10$} & \_ & \_ \\
|
| 255 |
+
\end{array}
|
| 256 |
+
\right) \\
|
| 257 |
+
\end{array}
|
| 258 |
+
\\
|
| 259 |
+
|
| 260 |
+
\begin{array}{l}
|
| 261 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 262 |
+
\left(
|
| 263 |
+
\begin{array}{ccc}
|
| 264 |
+
2 & -3 & 0 \\
|
| 265 |
+
-2 & 2 & 0 \\
|
| 266 |
+
\end{array}
|
| 267 |
+
\right).\left(
|
| 268 |
+
\begin{array}{ccc}
|
| 269 |
+
-2 & 1 & -2 \\
|
| 270 |
+
3 & -2 & 1 \\
|
| 271 |
+
-1 & -1 & -2 \\
|
| 272 |
+
\end{array}
|
| 273 |
+
\right)=\left(
|
| 274 |
+
\begin{array}{ccc}
|
| 275 |
+
-13 & 8 & -7 \\
|
| 276 |
+
10 & \_ & \_ \\
|
| 277 |
+
\end{array}
|
| 278 |
+
\right) \\
|
| 279 |
+
\end{array}
|
| 280 |
+
\\
|
| 281 |
+
|
| 282 |
+
\begin{array}{l}
|
| 283 |
+
|
| 284 |
+
\begin{array}{l}
|
| 285 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, \times \, 1+2 (-2)+0 (-1)=-6. \\
|
| 286 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 287 |
+
\end{array}
|
| 288 |
+
\\
|
| 289 |
+
\left(
|
| 290 |
+
\begin{array}{ccc}
|
| 291 |
+
2 & -3 & 0 \\
|
| 292 |
+
-2 & 2 & 0 \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\right).\left(
|
| 295 |
+
\begin{array}{ccc}
|
| 296 |
+
-2 & 1 & -2 \\
|
| 297 |
+
3 & -2 & 1 \\
|
| 298 |
+
-1 & -1 & -2 \\
|
| 299 |
+
\end{array}
|
| 300 |
+
\right)=\left(
|
| 301 |
+
\begin{array}{ccc}
|
| 302 |
+
-13 & 8 & -7 \\
|
| 303 |
+
10 & \fbox{$-6$} & \_ \\
|
| 304 |
+
\end{array}
|
| 305 |
+
\right) \\
|
| 306 |
+
\end{array}
|
| 307 |
+
\\
|
| 308 |
+
|
| 309 |
+
\begin{array}{l}
|
| 310 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 311 |
+
\left(
|
| 312 |
+
\begin{array}{ccc}
|
| 313 |
+
2 & -3 & 0 \\
|
| 314 |
+
-2 & 2 & 0 \\
|
| 315 |
+
\end{array}
|
| 316 |
+
\right).\left(
|
| 317 |
+
\begin{array}{ccc}
|
| 318 |
+
-2 & 1 & -2 \\
|
| 319 |
+
3 & -2 & 1 \\
|
| 320 |
+
-1 & -1 & -2 \\
|
| 321 |
+
\end{array}
|
| 322 |
+
\right)=\left(
|
| 323 |
+
\begin{array}{ccc}
|
| 324 |
+
-13 & 8 & -7 \\
|
| 325 |
+
10 & -6 & \_ \\
|
| 326 |
+
\end{array}
|
| 327 |
+
\right) \\
|
| 328 |
+
\end{array}
|
| 329 |
+
\\
|
| 330 |
+
|
| 331 |
+
\begin{array}{l}
|
| 332 |
+
|
| 333 |
+
\begin{array}{l}
|
| 334 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-2)+2\ 1+0 (-2)=6. \\
|
| 335 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 336 |
+
\end{array}
|
| 337 |
+
\\
|
| 338 |
+
\fbox{$
|
| 339 |
+
\begin{array}{ll}
|
| 340 |
+
\text{Answer:} & \\
|
| 341 |
+
\text{} & \left(
|
| 342 |
+
\begin{array}{ccc}
|
| 343 |
+
2 & -3 & 0 \\
|
| 344 |
+
-2 & 2 & 0 \\
|
| 345 |
+
\end{array}
|
| 346 |
+
\right).\left(
|
| 347 |
+
\begin{array}{ccc}
|
| 348 |
+
-2 & 1 & -2 \\
|
| 349 |
+
3 & -2 & 1 \\
|
| 350 |
+
-1 & -1 & -2 \\
|
| 351 |
+
\end{array}
|
| 352 |
+
\right)=\left(
|
| 353 |
+
\begin{array}{ccc}
|
| 354 |
+
-13 & 8 & -7 \\
|
| 355 |
+
10 & -6 & \fbox{$6$} \\
|
| 356 |
+
\end{array}
|
| 357 |
+
\right) \\
|
| 358 |
+
\end{array}
|
| 359 |
+
$} \\
|
| 360 |
+
\end{array}
|
| 361 |
+
\\
|
| 362 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/3051.txt
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
1 & 2 \\
|
| 6 |
+
1 & -2 \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{c}
|
| 11 |
+
-1 \\
|
| 12 |
+
3 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$.
|
| 15 |
+
Answer:
|
| 16 |
+
\begin{array}{l}
|
| 17 |
+
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
\text{Multiply the following matrices}: \\
|
| 20 |
+
\left(
|
| 21 |
+
\begin{array}{cc}
|
| 22 |
+
1 & 2 \\
|
| 23 |
+
1 & -2 \\
|
| 24 |
+
\end{array}
|
| 25 |
+
\right).\left(
|
| 26 |
+
\begin{array}{c}
|
| 27 |
+
-1 \\
|
| 28 |
+
3 \\
|
| 29 |
+
\end{array}
|
| 30 |
+
\right) \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\\
|
| 33 |
+
\hline
|
| 34 |
+
|
| 35 |
+
\begin{array}{l}
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 1. \\
|
| 39 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 1: \\
|
| 40 |
+
\end{array}
|
| 41 |
+
\\
|
| 42 |
+
\left(
|
| 43 |
+
\begin{array}{cc}
|
| 44 |
+
1 & 2 \\
|
| 45 |
+
1 & -2 \\
|
| 46 |
+
\end{array}
|
| 47 |
+
\right).\left(
|
| 48 |
+
\begin{array}{c}
|
| 49 |
+
-1 \\
|
| 50 |
+
3 \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right)=\left(
|
| 53 |
+
\begin{array}{c}
|
| 54 |
+
\_ \\
|
| 55 |
+
\_ \\
|
| 56 |
+
\end{array}
|
| 57 |
+
\right) \\
|
| 58 |
+
\end{array}
|
| 59 |
+
\\
|
| 60 |
+
|
| 61 |
+
\begin{array}{l}
|
| 62 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 63 |
+
\left(
|
| 64 |
+
\begin{array}{cc}
|
| 65 |
+
1 & 2 \\
|
| 66 |
+
1 & -2 \\
|
| 67 |
+
\end{array}
|
| 68 |
+
\right).\left(
|
| 69 |
+
\begin{array}{c}
|
| 70 |
+
-1 \\
|
| 71 |
+
3 \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right)=\left(
|
| 74 |
+
\begin{array}{c}
|
| 75 |
+
\_ \\
|
| 76 |
+
\_ \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right) \\
|
| 79 |
+
\end{array}
|
| 80 |
+
\\
|
| 81 |
+
|
| 82 |
+
\begin{array}{l}
|
| 83 |
+
|
| 84 |
+
\begin{array}{l}
|
| 85 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1 (-1)+2\ 3=5. \\
|
| 86 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\\
|
| 89 |
+
\left(
|
| 90 |
+
\begin{array}{cc}
|
| 91 |
+
1 & 2 \\
|
| 92 |
+
1 & -2 \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\right).\left(
|
| 95 |
+
\begin{array}{c}
|
| 96 |
+
-1 \\
|
| 97 |
+
3 \\
|
| 98 |
+
\end{array}
|
| 99 |
+
\right)=\left(
|
| 100 |
+
\begin{array}{c}
|
| 101 |
+
\fbox{$5$} \\
|
| 102 |
+
\_ \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right) \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\\
|
| 107 |
+
|
| 108 |
+
\begin{array}{l}
|
| 109 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 110 |
+
\left(
|
| 111 |
+
\begin{array}{cc}
|
| 112 |
+
1 & 2 \\
|
| 113 |
+
1 & -2 \\
|
| 114 |
+
\end{array}
|
| 115 |
+
\right).\left(
|
| 116 |
+
\begin{array}{c}
|
| 117 |
+
-1 \\
|
| 118 |
+
3 \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right)=\left(
|
| 121 |
+
\begin{array}{c}
|
| 122 |
+
5 \\
|
| 123 |
+
\_ \\
|
| 124 |
+
\end{array}
|
| 125 |
+
\right) \\
|
| 126 |
+
\end{array}
|
| 127 |
+
\\
|
| 128 |
+
|
| 129 |
+
\begin{array}{l}
|
| 130 |
+
|
| 131 |
+
\begin{array}{l}
|
| 132 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1 (-1)+(-2)\, \times \, 3=-7. \\
|
| 133 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\\
|
| 136 |
+
\fbox{$
|
| 137 |
+
\begin{array}{ll}
|
| 138 |
+
\text{Answer:} & \\
|
| 139 |
+
\text{} & \left(
|
| 140 |
+
\begin{array}{cc}
|
| 141 |
+
1 & 2 \\
|
| 142 |
+
1 & -2 \\
|
| 143 |
+
\end{array}
|
| 144 |
+
\right).\left(
|
| 145 |
+
\begin{array}{c}
|
| 146 |
+
-1 \\
|
| 147 |
+
3 \\
|
| 148 |
+
\end{array}
|
| 149 |
+
\right)=\left(
|
| 150 |
+
\begin{array}{c}
|
| 151 |
+
5 \\
|
| 152 |
+
\fbox{$-7$} \\
|
| 153 |
+
\end{array}
|
| 154 |
+
\right) \\
|
| 155 |
+
\end{array}
|
| 156 |
+
$} \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\\
|
| 159 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/3179.txt
ADDED
|
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
\frac{43}{16} & \frac{3}{2} \\
|
| 6 |
+
-\frac{45}{16} & \frac{11}{4} \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{ccc}
|
| 11 |
+
-\frac{3}{4} & -\frac{41}{16} & \frac{7}{8} \\
|
| 12 |
+
-\frac{7}{4} & -\frac{23}{8} & \frac{23}{16} \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$.
|
| 15 |
+
Answer:
|
| 16 |
+
\begin{array}{l}
|
| 17 |
+
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
\text{Multiply the following matrices}: \\
|
| 20 |
+
\left(
|
| 21 |
+
\begin{array}{cc}
|
| 22 |
+
\frac{43}{16} & \frac{3}{2} \\
|
| 23 |
+
-\frac{45}{16} & \frac{11}{4} \\
|
| 24 |
+
\end{array}
|
| 25 |
+
\right).\left(
|
| 26 |
+
\begin{array}{ccc}
|
| 27 |
+
-\frac{3}{4} & -\frac{41}{16} & \frac{7}{8} \\
|
| 28 |
+
-\frac{7}{4} & -\frac{23}{8} & \frac{23}{16} \\
|
| 29 |
+
\end{array}
|
| 30 |
+
\right) \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\\
|
| 33 |
+
\hline
|
| 34 |
+
|
| 35 |
+
\begin{array}{l}
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 3. \\
|
| 39 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 3: \\
|
| 40 |
+
\end{array}
|
| 41 |
+
\\
|
| 42 |
+
\left(
|
| 43 |
+
\begin{array}{cc}
|
| 44 |
+
\frac{43}{16} & \frac{3}{2} \\
|
| 45 |
+
-\frac{45}{16} & \frac{11}{4} \\
|
| 46 |
+
\end{array}
|
| 47 |
+
\right).\left(
|
| 48 |
+
\begin{array}{ccc}
|
| 49 |
+
-\frac{3}{4} & -\frac{41}{16} & \frac{7}{8} \\
|
| 50 |
+
-\frac{7}{4} & -\frac{23}{8} & \frac{23}{16} \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right)=\left(
|
| 53 |
+
\begin{array}{ccc}
|
| 54 |
+
\_ & \_ & \_ \\
|
| 55 |
+
\_ & \_ & \_ \\
|
| 56 |
+
\end{array}
|
| 57 |
+
\right) \\
|
| 58 |
+
\end{array}
|
| 59 |
+
\\
|
| 60 |
+
|
| 61 |
+
\begin{array}{l}
|
| 62 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 63 |
+
\left(
|
| 64 |
+
\begin{array}{cc}
|
| 65 |
+
\frac{43}{16} & \frac{3}{2} \\
|
| 66 |
+
-\frac{45}{16} & \frac{11}{4} \\
|
| 67 |
+
\end{array}
|
| 68 |
+
\right).\left(
|
| 69 |
+
\begin{array}{ccc}
|
| 70 |
+
-\frac{3}{4} & -\frac{41}{16} & \frac{7}{8} \\
|
| 71 |
+
-\frac{7}{4} & -\frac{23}{8} & \frac{23}{16} \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right)=\left(
|
| 74 |
+
\begin{array}{ccc}
|
| 75 |
+
\_ & \_ & \_ \\
|
| 76 |
+
\_ & \_ & \_ \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right) \\
|
| 79 |
+
\end{array}
|
| 80 |
+
\\
|
| 81 |
+
|
| 82 |
+
\begin{array}{l}
|
| 83 |
+
|
| 84 |
+
\begin{array}{l}
|
| 85 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{43 (-3)}{16\ 4}+\frac{3 (-7)}{2\ 4}=-\frac{297}{64}. \\
|
| 86 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\\
|
| 89 |
+
\left(
|
| 90 |
+
\begin{array}{cc}
|
| 91 |
+
\frac{43}{16} & \frac{3}{2} \\
|
| 92 |
+
-\frac{45}{16} & \frac{11}{4} \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\right).\left(
|
| 95 |
+
\begin{array}{ccc}
|
| 96 |
+
-\frac{3}{4} & -\frac{41}{16} & \frac{7}{8} \\
|
| 97 |
+
-\frac{7}{4} & -\frac{23}{8} & \frac{23}{16} \\
|
| 98 |
+
\end{array}
|
| 99 |
+
\right)=\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
\fbox{$-\frac{297}{64}$} & \_ & \_ \\
|
| 102 |
+
\_ & \_ & \_ \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right) \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\\
|
| 107 |
+
|
| 108 |
+
\begin{array}{l}
|
| 109 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 110 |
+
\left(
|
| 111 |
+
\begin{array}{cc}
|
| 112 |
+
\frac{43}{16} & \frac{3}{2} \\
|
| 113 |
+
-\frac{45}{16} & \frac{11}{4} \\
|
| 114 |
+
\end{array}
|
| 115 |
+
\right).\left(
|
| 116 |
+
\begin{array}{ccc}
|
| 117 |
+
-\frac{3}{4} & -\frac{41}{16} & \frac{7}{8} \\
|
| 118 |
+
-\frac{7}{4} & -\frac{23}{8} & \frac{23}{16} \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right)=\left(
|
| 121 |
+
\begin{array}{ccc}
|
| 122 |
+
-\frac{297}{64} & \_ & \_ \\
|
| 123 |
+
\_ & \_ & \_ \\
|
| 124 |
+
\end{array}
|
| 125 |
+
\right) \\
|
| 126 |
+
\end{array}
|
| 127 |
+
\\
|
| 128 |
+
|
| 129 |
+
\begin{array}{l}
|
| 130 |
+
|
| 131 |
+
\begin{array}{l}
|
| 132 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{43 (-41)}{16\ 16}+\frac{3 (-23)}{2\ 8}=-\frac{2867}{256}. \\
|
| 133 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\\
|
| 136 |
+
\left(
|
| 137 |
+
\begin{array}{cc}
|
| 138 |
+
\frac{43}{16} & \frac{3}{2} \\
|
| 139 |
+
-\frac{45}{16} & \frac{11}{4} \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right).\left(
|
| 142 |
+
\begin{array}{ccc}
|
| 143 |
+
-\frac{3}{4} & -\frac{41}{16} & \frac{7}{8} \\
|
| 144 |
+
-\frac{7}{4} & -\frac{23}{8} & \frac{23}{16} \\
|
| 145 |
+
\end{array}
|
| 146 |
+
\right)=\left(
|
| 147 |
+
\begin{array}{ccc}
|
| 148 |
+
-\frac{297}{64} & \fbox{$-\frac{2867}{256}$} & \_ \\
|
| 149 |
+
\_ & \_ & \_ \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\right) \\
|
| 152 |
+
\end{array}
|
| 153 |
+
\\
|
| 154 |
+
|
| 155 |
+
\begin{array}{l}
|
| 156 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 157 |
+
\left(
|
| 158 |
+
\begin{array}{cc}
|
| 159 |
+
\frac{43}{16} & \frac{3}{2} \\
|
| 160 |
+
-\frac{45}{16} & \frac{11}{4} \\
|
| 161 |
+
\end{array}
|
| 162 |
+
\right).\left(
|
| 163 |
+
\begin{array}{ccc}
|
| 164 |
+
-\frac{3}{4} & -\frac{41}{16} & \frac{7}{8} \\
|
| 165 |
+
-\frac{7}{4} & -\frac{23}{8} & \frac{23}{16} \\
|
| 166 |
+
\end{array}
|
| 167 |
+
\right)=\left(
|
| 168 |
+
\begin{array}{ccc}
|
| 169 |
+
-\frac{297}{64} & -\frac{2867}{256} & \_ \\
|
| 170 |
+
\_ & \_ & \_ \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\right) \\
|
| 173 |
+
\end{array}
|
| 174 |
+
\\
|
| 175 |
+
|
| 176 |
+
\begin{array}{l}
|
| 177 |
+
|
| 178 |
+
\begin{array}{l}
|
| 179 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{43\ 7}{16\ 8}+\frac{3\ 23}{2\ 16}=\frac{577}{128}. \\
|
| 180 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\\
|
| 183 |
+
\left(
|
| 184 |
+
\begin{array}{cc}
|
| 185 |
+
\frac{43}{16} & \frac{3}{2} \\
|
| 186 |
+
-\frac{45}{16} & \frac{11}{4} \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right).\left(
|
| 189 |
+
\begin{array}{ccc}
|
| 190 |
+
-\frac{3}{4} & -\frac{41}{16} & \frac{7}{8} \\
|
| 191 |
+
-\frac{7}{4} & -\frac{23}{8} & \frac{23}{16} \\
|
| 192 |
+
\end{array}
|
| 193 |
+
\right)=\left(
|
| 194 |
+
\begin{array}{ccc}
|
| 195 |
+
-\frac{297}{64} & -\frac{2867}{256} & \fbox{$\frac{577}{128}$} \\
|
| 196 |
+
\_ & \_ & \_ \\
|
| 197 |
+
\end{array}
|
| 198 |
+
\right) \\
|
| 199 |
+
\end{array}
|
| 200 |
+
\\
|
| 201 |
+
|
| 202 |
+
\begin{array}{l}
|
| 203 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 204 |
+
\left(
|
| 205 |
+
\begin{array}{cc}
|
| 206 |
+
\frac{43}{16} & \frac{3}{2} \\
|
| 207 |
+
-\frac{45}{16} & \frac{11}{4} \\
|
| 208 |
+
\end{array}
|
| 209 |
+
\right).\left(
|
| 210 |
+
\begin{array}{ccc}
|
| 211 |
+
-\frac{3}{4} & -\frac{41}{16} & \frac{7}{8} \\
|
| 212 |
+
-\frac{7}{4} & -\frac{23}{8} & \frac{23}{16} \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right)=\left(
|
| 215 |
+
\begin{array}{ccc}
|
| 216 |
+
-\frac{297}{64} & -\frac{2867}{256} & \frac{577}{128} \\
|
| 217 |
+
\_ & \_ & \_ \\
|
| 218 |
+
\end{array}
|
| 219 |
+
\right) \\
|
| 220 |
+
\end{array}
|
| 221 |
+
\\
|
| 222 |
+
|
| 223 |
+
\begin{array}{l}
|
| 224 |
+
|
| 225 |
+
\begin{array}{l}
|
| 226 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{45}{16}\right)\, \left(-\frac{3}{4}\right)+\frac{11 (-7)}{4\ 4}=-\frac{173}{64}. \\
|
| 227 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 228 |
+
\end{array}
|
| 229 |
+
\\
|
| 230 |
+
\left(
|
| 231 |
+
\begin{array}{cc}
|
| 232 |
+
\frac{43}{16} & \frac{3}{2} \\
|
| 233 |
+
-\frac{45}{16} & \frac{11}{4} \\
|
| 234 |
+
\end{array}
|
| 235 |
+
\right).\left(
|
| 236 |
+
\begin{array}{ccc}
|
| 237 |
+
-\frac{3}{4} & -\frac{41}{16} & \frac{7}{8} \\
|
| 238 |
+
-\frac{7}{4} & -\frac{23}{8} & \frac{23}{16} \\
|
| 239 |
+
\end{array}
|
| 240 |
+
\right)=\left(
|
| 241 |
+
\begin{array}{ccc}
|
| 242 |
+
-\frac{297}{64} & -\frac{2867}{256} & \frac{577}{128} \\
|
| 243 |
+
\fbox{$-\frac{173}{64}$} & \_ & \_ \\
|
| 244 |
+
\end{array}
|
| 245 |
+
\right) \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\\
|
| 248 |
+
|
| 249 |
+
\begin{array}{l}
|
| 250 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 251 |
+
\left(
|
| 252 |
+
\begin{array}{cc}
|
| 253 |
+
\frac{43}{16} & \frac{3}{2} \\
|
| 254 |
+
-\frac{45}{16} & \frac{11}{4} \\
|
| 255 |
+
\end{array}
|
| 256 |
+
\right).\left(
|
| 257 |
+
\begin{array}{ccc}
|
| 258 |
+
-\frac{3}{4} & -\frac{41}{16} & \frac{7}{8} \\
|
| 259 |
+
-\frac{7}{4} & -\frac{23}{8} & \frac{23}{16} \\
|
| 260 |
+
\end{array}
|
| 261 |
+
\right)=\left(
|
| 262 |
+
\begin{array}{ccc}
|
| 263 |
+
-\frac{297}{64} & -\frac{2867}{256} & \frac{577}{128} \\
|
| 264 |
+
-\frac{173}{64} & \_ & \_ \\
|
| 265 |
+
\end{array}
|
| 266 |
+
\right) \\
|
| 267 |
+
\end{array}
|
| 268 |
+
\\
|
| 269 |
+
|
| 270 |
+
\begin{array}{l}
|
| 271 |
+
|
| 272 |
+
\begin{array}{l}
|
| 273 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{45}{16}\right)\, \left(-\frac{41}{16}\right)+\frac{11 (-23)}{4\ 8}=-\frac{179}{256}. \\
|
| 274 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 275 |
+
\end{array}
|
| 276 |
+
\\
|
| 277 |
+
\left(
|
| 278 |
+
\begin{array}{cc}
|
| 279 |
+
\frac{43}{16} & \frac{3}{2} \\
|
| 280 |
+
-\frac{45}{16} & \frac{11}{4} \\
|
| 281 |
+
\end{array}
|
| 282 |
+
\right).\left(
|
| 283 |
+
\begin{array}{ccc}
|
| 284 |
+
-\frac{3}{4} & -\frac{41}{16} & \frac{7}{8} \\
|
| 285 |
+
-\frac{7}{4} & -\frac{23}{8} & \frac{23}{16} \\
|
| 286 |
+
\end{array}
|
| 287 |
+
\right)=\left(
|
| 288 |
+
\begin{array}{ccc}
|
| 289 |
+
-\frac{297}{64} & -\frac{2867}{256} & \frac{577}{128} \\
|
| 290 |
+
-\frac{173}{64} & \fbox{$-\frac{179}{256}$} & \_ \\
|
| 291 |
+
\end{array}
|
| 292 |
+
\right) \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\\
|
| 295 |
+
|
| 296 |
+
\begin{array}{l}
|
| 297 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 298 |
+
\left(
|
| 299 |
+
\begin{array}{cc}
|
| 300 |
+
\frac{43}{16} & \frac{3}{2} \\
|
| 301 |
+
-\frac{45}{16} & \frac{11}{4} \\
|
| 302 |
+
\end{array}
|
| 303 |
+
\right).\left(
|
| 304 |
+
\begin{array}{ccc}
|
| 305 |
+
-\frac{3}{4} & -\frac{41}{16} & \frac{7}{8} \\
|
| 306 |
+
-\frac{7}{4} & -\frac{23}{8} & \frac{23}{16} \\
|
| 307 |
+
\end{array}
|
| 308 |
+
\right)=\left(
|
| 309 |
+
\begin{array}{ccc}
|
| 310 |
+
-\frac{297}{64} & -\frac{2867}{256} & \frac{577}{128} \\
|
| 311 |
+
-\frac{173}{64} & -\frac{179}{256} & \_ \\
|
| 312 |
+
\end{array}
|
| 313 |
+
\right) \\
|
| 314 |
+
\end{array}
|
| 315 |
+
\\
|
| 316 |
+
|
| 317 |
+
\begin{array}{l}
|
| 318 |
+
|
| 319 |
+
\begin{array}{l}
|
| 320 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{45}{16}\right)\, \times \, \frac{7}{8}+\frac{11\ 23}{4\ 16}=\frac{191}{128}. \\
|
| 321 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 322 |
+
\end{array}
|
| 323 |
+
\\
|
| 324 |
+
\fbox{$
|
| 325 |
+
\begin{array}{ll}
|
| 326 |
+
\text{Answer:} & \\
|
| 327 |
+
\text{} & \left(
|
| 328 |
+
\begin{array}{cc}
|
| 329 |
+
\frac{43}{16} & \frac{3}{2} \\
|
| 330 |
+
-\frac{45}{16} & \frac{11}{4} \\
|
| 331 |
+
\end{array}
|
| 332 |
+
\right).\left(
|
| 333 |
+
\begin{array}{ccc}
|
| 334 |
+
-\frac{3}{4} & -\frac{41}{16} & \frac{7}{8} \\
|
| 335 |
+
-\frac{7}{4} & -\frac{23}{8} & \frac{23}{16} \\
|
| 336 |
+
\end{array}
|
| 337 |
+
\right)=\left(
|
| 338 |
+
\begin{array}{ccc}
|
| 339 |
+
-\frac{297}{64} & -\frac{2867}{256} & \frac{577}{128} \\
|
| 340 |
+
-\frac{173}{64} & -\frac{179}{256} & \fbox{$\frac{191}{128}$} \\
|
| 341 |
+
\end{array}
|
| 342 |
+
\right) \\
|
| 343 |
+
\end{array}
|
| 344 |
+
$} \\
|
| 345 |
+
\end{array}
|
| 346 |
+
\\
|
| 347 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/3347.txt
ADDED
|
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
-\frac{7}{6} & -\frac{8}{3} & \frac{1}{2} \\
|
| 6 |
+
-\frac{1}{6} & \frac{1}{3} & \frac{1}{6} \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{cc}
|
| 11 |
+
2 & -\frac{5}{6} \\
|
| 12 |
+
-\frac{7}{6} & -2 \\
|
| 13 |
+
\frac{4}{3} & -\frac{5}{3} \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$.
|
| 16 |
+
Answer:
|
| 17 |
+
\begin{array}{l}
|
| 18 |
+
|
| 19 |
+
\begin{array}{l}
|
| 20 |
+
\text{Multiply the following matrices}: \\
|
| 21 |
+
\left(
|
| 22 |
+
\begin{array}{ccc}
|
| 23 |
+
-\frac{7}{6} & -\frac{8}{3} & \frac{1}{2} \\
|
| 24 |
+
-\frac{1}{6} & \frac{1}{3} & \frac{1}{6} \\
|
| 25 |
+
\end{array}
|
| 26 |
+
\right).\left(
|
| 27 |
+
\begin{array}{cc}
|
| 28 |
+
2 & -\frac{5}{6} \\
|
| 29 |
+
-\frac{7}{6} & -2 \\
|
| 30 |
+
\frac{4}{3} & -\frac{5}{3} \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\right) \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\\
|
| 35 |
+
\hline
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 2. \\
|
| 41 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 2: \\
|
| 42 |
+
\end{array}
|
| 43 |
+
\\
|
| 44 |
+
\left(
|
| 45 |
+
\begin{array}{ccc}
|
| 46 |
+
-\frac{7}{6} & -\frac{8}{3} & \frac{1}{2} \\
|
| 47 |
+
-\frac{1}{6} & \frac{1}{3} & \frac{1}{6} \\
|
| 48 |
+
\end{array}
|
| 49 |
+
\right).\left(
|
| 50 |
+
\begin{array}{cc}
|
| 51 |
+
2 & -\frac{5}{6} \\
|
| 52 |
+
-\frac{7}{6} & -2 \\
|
| 53 |
+
\frac{4}{3} & -\frac{5}{3} \\
|
| 54 |
+
\end{array}
|
| 55 |
+
\right)=\left(
|
| 56 |
+
\begin{array}{cc}
|
| 57 |
+
\_ & \_ \\
|
| 58 |
+
\_ & \_ \\
|
| 59 |
+
\end{array}
|
| 60 |
+
\right) \\
|
| 61 |
+
\end{array}
|
| 62 |
+
\\
|
| 63 |
+
|
| 64 |
+
\begin{array}{l}
|
| 65 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 66 |
+
\left(
|
| 67 |
+
\begin{array}{ccc}
|
| 68 |
+
-\frac{7}{6} & -\frac{8}{3} & \frac{1}{2} \\
|
| 69 |
+
-\frac{1}{6} & \frac{1}{3} & \frac{1}{6} \\
|
| 70 |
+
\end{array}
|
| 71 |
+
\right).\left(
|
| 72 |
+
\begin{array}{cc}
|
| 73 |
+
2 & -\frac{5}{6} \\
|
| 74 |
+
-\frac{7}{6} & -2 \\
|
| 75 |
+
\frac{4}{3} & -\frac{5}{3} \\
|
| 76 |
+
\end{array}
|
| 77 |
+
\right)=\left(
|
| 78 |
+
\begin{array}{cc}
|
| 79 |
+
\_ & \_ \\
|
| 80 |
+
\_ & \_ \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right) \\
|
| 83 |
+
\end{array}
|
| 84 |
+
\\
|
| 85 |
+
|
| 86 |
+
\begin{array}{l}
|
| 87 |
+
|
| 88 |
+
\begin{array}{l}
|
| 89 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{7}{6}\right)\, \times \, 2+\left(-\frac{8}{3}\right)\, \left(-\frac{7}{6}\right)+\frac{4}{2\ 3}=\frac{13}{9}. \\
|
| 90 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 91 |
+
\end{array}
|
| 92 |
+
\\
|
| 93 |
+
\left(
|
| 94 |
+
\begin{array}{ccc}
|
| 95 |
+
-\frac{7}{6} & -\frac{8}{3} & \frac{1}{2} \\
|
| 96 |
+
-\frac{1}{6} & \frac{1}{3} & \frac{1}{6} \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\right).\left(
|
| 99 |
+
\begin{array}{cc}
|
| 100 |
+
2 & -\frac{5}{6} \\
|
| 101 |
+
-\frac{7}{6} & -2 \\
|
| 102 |
+
\frac{4}{3} & -\frac{5}{3} \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right)=\left(
|
| 105 |
+
\begin{array}{cc}
|
| 106 |
+
\fbox{$\frac{13}{9}$} & \_ \\
|
| 107 |
+
\_ & \_ \\
|
| 108 |
+
\end{array}
|
| 109 |
+
\right) \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\\
|
| 112 |
+
|
| 113 |
+
\begin{array}{l}
|
| 114 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 115 |
+
\left(
|
| 116 |
+
\begin{array}{ccc}
|
| 117 |
+
-\frac{7}{6} & -\frac{8}{3} & \frac{1}{2} \\
|
| 118 |
+
-\frac{1}{6} & \frac{1}{3} & \frac{1}{6} \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right).\left(
|
| 121 |
+
\begin{array}{cc}
|
| 122 |
+
2 & -\frac{5}{6} \\
|
| 123 |
+
-\frac{7}{6} & -2 \\
|
| 124 |
+
\frac{4}{3} & -\frac{5}{3} \\
|
| 125 |
+
\end{array}
|
| 126 |
+
\right)=\left(
|
| 127 |
+
\begin{array}{cc}
|
| 128 |
+
\frac{13}{9} & \_ \\
|
| 129 |
+
\_ & \_ \\
|
| 130 |
+
\end{array}
|
| 131 |
+
\right) \\
|
| 132 |
+
\end{array}
|
| 133 |
+
\\
|
| 134 |
+
|
| 135 |
+
\begin{array}{l}
|
| 136 |
+
|
| 137 |
+
\begin{array}{l}
|
| 138 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{7}{6}\right)\, \left(-\frac{5}{6}\right)+\left(-\frac{8}{3}\right)\, (-2)-\frac{5}{2\ 3}=\frac{197}{36}. \\
|
| 139 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\\
|
| 142 |
+
\left(
|
| 143 |
+
\begin{array}{ccc}
|
| 144 |
+
-\frac{7}{6} & -\frac{8}{3} & \frac{1}{2} \\
|
| 145 |
+
-\frac{1}{6} & \frac{1}{3} & \frac{1}{6} \\
|
| 146 |
+
\end{array}
|
| 147 |
+
\right).\left(
|
| 148 |
+
\begin{array}{cc}
|
| 149 |
+
2 & -\frac{5}{6} \\
|
| 150 |
+
-\frac{7}{6} & -2 \\
|
| 151 |
+
\frac{4}{3} & -\frac{5}{3} \\
|
| 152 |
+
\end{array}
|
| 153 |
+
\right)=\left(
|
| 154 |
+
\begin{array}{cc}
|
| 155 |
+
\frac{13}{9} & \fbox{$\frac{197}{36}$} \\
|
| 156 |
+
\_ & \_ \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right) \\
|
| 159 |
+
\end{array}
|
| 160 |
+
\\
|
| 161 |
+
|
| 162 |
+
\begin{array}{l}
|
| 163 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 164 |
+
\left(
|
| 165 |
+
\begin{array}{ccc}
|
| 166 |
+
-\frac{7}{6} & -\frac{8}{3} & \frac{1}{2} \\
|
| 167 |
+
-\frac{1}{6} & \frac{1}{3} & \frac{1}{6} \\
|
| 168 |
+
\end{array}
|
| 169 |
+
\right).\left(
|
| 170 |
+
\begin{array}{cc}
|
| 171 |
+
2 & -\frac{5}{6} \\
|
| 172 |
+
-\frac{7}{6} & -2 \\
|
| 173 |
+
\frac{4}{3} & -\frac{5}{3} \\
|
| 174 |
+
\end{array}
|
| 175 |
+
\right)=\left(
|
| 176 |
+
\begin{array}{cc}
|
| 177 |
+
\frac{13}{9} & \frac{197}{36} \\
|
| 178 |
+
\_ & \_ \\
|
| 179 |
+
\end{array}
|
| 180 |
+
\right) \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\\
|
| 183 |
+
|
| 184 |
+
\begin{array}{l}
|
| 185 |
+
|
| 186 |
+
\begin{array}{l}
|
| 187 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{1}{6} (-2)-\frac{7}{3\ 6}+\frac{4}{6\ 3}=-\frac{1}{2}. \\
|
| 188 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 189 |
+
\end{array}
|
| 190 |
+
\\
|
| 191 |
+
\left(
|
| 192 |
+
\begin{array}{ccc}
|
| 193 |
+
-\frac{7}{6} & -\frac{8}{3} & \frac{1}{2} \\
|
| 194 |
+
-\frac{1}{6} & \frac{1}{3} & \frac{1}{6} \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\right).\left(
|
| 197 |
+
\begin{array}{cc}
|
| 198 |
+
2 & -\frac{5}{6} \\
|
| 199 |
+
-\frac{7}{6} & -2 \\
|
| 200 |
+
\frac{4}{3} & -\frac{5}{3} \\
|
| 201 |
+
\end{array}
|
| 202 |
+
\right)=\left(
|
| 203 |
+
\begin{array}{cc}
|
| 204 |
+
\frac{13}{9} & \frac{197}{36} \\
|
| 205 |
+
\fbox{$-\frac{1}{2}$} & \_ \\
|
| 206 |
+
\end{array}
|
| 207 |
+
\right) \\
|
| 208 |
+
\end{array}
|
| 209 |
+
\\
|
| 210 |
+
|
| 211 |
+
\begin{array}{l}
|
| 212 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 213 |
+
\left(
|
| 214 |
+
\begin{array}{ccc}
|
| 215 |
+
-\frac{7}{6} & -\frac{8}{3} & \frac{1}{2} \\
|
| 216 |
+
-\frac{1}{6} & \frac{1}{3} & \frac{1}{6} \\
|
| 217 |
+
\end{array}
|
| 218 |
+
\right).\left(
|
| 219 |
+
\begin{array}{cc}
|
| 220 |
+
2 & -\frac{5}{6} \\
|
| 221 |
+
-\frac{7}{6} & -2 \\
|
| 222 |
+
\frac{4}{3} & -\frac{5}{3} \\
|
| 223 |
+
\end{array}
|
| 224 |
+
\right)=\left(
|
| 225 |
+
\begin{array}{cc}
|
| 226 |
+
\frac{13}{9} & \frac{197}{36} \\
|
| 227 |
+
-\frac{1}{2} & \_ \\
|
| 228 |
+
\end{array}
|
| 229 |
+
\right) \\
|
| 230 |
+
\end{array}
|
| 231 |
+
\\
|
| 232 |
+
|
| 233 |
+
\begin{array}{l}
|
| 234 |
+
|
| 235 |
+
\begin{array}{l}
|
| 236 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{5}{6\ 6}-\frac{2}{3}-\frac{5}{6\ 3}=-\frac{29}{36}. \\
|
| 237 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 238 |
+
\end{array}
|
| 239 |
+
\\
|
| 240 |
+
\fbox{$
|
| 241 |
+
\begin{array}{ll}
|
| 242 |
+
\text{Answer:} & \\
|
| 243 |
+
\text{} & \left(
|
| 244 |
+
\begin{array}{ccc}
|
| 245 |
+
-\frac{7}{6} & -\frac{8}{3} & \frac{1}{2} \\
|
| 246 |
+
-\frac{1}{6} & \frac{1}{3} & \frac{1}{6} \\
|
| 247 |
+
\end{array}
|
| 248 |
+
\right).\left(
|
| 249 |
+
\begin{array}{cc}
|
| 250 |
+
2 & -\frac{5}{6} \\
|
| 251 |
+
-\frac{7}{6} & -2 \\
|
| 252 |
+
\frac{4}{3} & -\frac{5}{3} \\
|
| 253 |
+
\end{array}
|
| 254 |
+
\right)=\left(
|
| 255 |
+
\begin{array}{cc}
|
| 256 |
+
\frac{13}{9} & \frac{197}{36} \\
|
| 257 |
+
-\frac{1}{2} & \fbox{$-\frac{29}{36}$} \\
|
| 258 |
+
\end{array}
|
| 259 |
+
\right) \\
|
| 260 |
+
\end{array}
|
| 261 |
+
$} \\
|
| 262 |
+
\end{array}
|
| 263 |
+
\\
|
| 264 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/3354.txt
ADDED
|
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
2 & 1 \\
|
| 6 |
+
-2 & -1 \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{ccc}
|
| 11 |
+
-1 & 1 & -1 \\
|
| 12 |
+
1 & 1 & 1 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$.
|
| 15 |
+
Answer:
|
| 16 |
+
\begin{array}{l}
|
| 17 |
+
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
\text{Multiply the following matrices}: \\
|
| 20 |
+
\left(
|
| 21 |
+
\begin{array}{cc}
|
| 22 |
+
2 & 1 \\
|
| 23 |
+
-2 & -1 \\
|
| 24 |
+
\end{array}
|
| 25 |
+
\right).\left(
|
| 26 |
+
\begin{array}{ccc}
|
| 27 |
+
-1 & 1 & -1 \\
|
| 28 |
+
1 & 1 & 1 \\
|
| 29 |
+
\end{array}
|
| 30 |
+
\right) \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\\
|
| 33 |
+
\hline
|
| 34 |
+
|
| 35 |
+
\begin{array}{l}
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 3. \\
|
| 39 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 3: \\
|
| 40 |
+
\end{array}
|
| 41 |
+
\\
|
| 42 |
+
\left(
|
| 43 |
+
\begin{array}{cc}
|
| 44 |
+
2 & 1 \\
|
| 45 |
+
-2 & -1 \\
|
| 46 |
+
\end{array}
|
| 47 |
+
\right).\left(
|
| 48 |
+
\begin{array}{ccc}
|
| 49 |
+
-1 & 1 & -1 \\
|
| 50 |
+
1 & 1 & 1 \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right)=\left(
|
| 53 |
+
\begin{array}{ccc}
|
| 54 |
+
\_ & \_ & \_ \\
|
| 55 |
+
\_ & \_ & \_ \\
|
| 56 |
+
\end{array}
|
| 57 |
+
\right) \\
|
| 58 |
+
\end{array}
|
| 59 |
+
\\
|
| 60 |
+
|
| 61 |
+
\begin{array}{l}
|
| 62 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 63 |
+
\left(
|
| 64 |
+
\begin{array}{cc}
|
| 65 |
+
2 & 1 \\
|
| 66 |
+
-2 & -1 \\
|
| 67 |
+
\end{array}
|
| 68 |
+
\right).\left(
|
| 69 |
+
\begin{array}{ccc}
|
| 70 |
+
-1 & 1 & -1 \\
|
| 71 |
+
1 & 1 & 1 \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right)=\left(
|
| 74 |
+
\begin{array}{ccc}
|
| 75 |
+
\_ & \_ & \_ \\
|
| 76 |
+
\_ & \_ & \_ \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right) \\
|
| 79 |
+
\end{array}
|
| 80 |
+
\\
|
| 81 |
+
|
| 82 |
+
\begin{array}{l}
|
| 83 |
+
|
| 84 |
+
\begin{array}{l}
|
| 85 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2 (-1)+1\ 1=-1. \\
|
| 86 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\\
|
| 89 |
+
\left(
|
| 90 |
+
\begin{array}{cc}
|
| 91 |
+
2 & 1 \\
|
| 92 |
+
-2 & -1 \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\right).\left(
|
| 95 |
+
\begin{array}{ccc}
|
| 96 |
+
-1 & 1 & -1 \\
|
| 97 |
+
1 & 1 & 1 \\
|
| 98 |
+
\end{array}
|
| 99 |
+
\right)=\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
\fbox{$-1$} & \_ & \_ \\
|
| 102 |
+
\_ & \_ & \_ \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right) \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\\
|
| 107 |
+
|
| 108 |
+
\begin{array}{l}
|
| 109 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 110 |
+
\left(
|
| 111 |
+
\begin{array}{cc}
|
| 112 |
+
2 & 1 \\
|
| 113 |
+
-2 & -1 \\
|
| 114 |
+
\end{array}
|
| 115 |
+
\right).\left(
|
| 116 |
+
\begin{array}{ccc}
|
| 117 |
+
-1 & 1 & -1 \\
|
| 118 |
+
1 & 1 & 1 \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right)=\left(
|
| 121 |
+
\begin{array}{ccc}
|
| 122 |
+
-1 & \_ & \_ \\
|
| 123 |
+
\_ & \_ & \_ \\
|
| 124 |
+
\end{array}
|
| 125 |
+
\right) \\
|
| 126 |
+
\end{array}
|
| 127 |
+
\\
|
| 128 |
+
|
| 129 |
+
\begin{array}{l}
|
| 130 |
+
|
| 131 |
+
\begin{array}{l}
|
| 132 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2\ 1+1\ 1=3. \\
|
| 133 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\\
|
| 136 |
+
\left(
|
| 137 |
+
\begin{array}{cc}
|
| 138 |
+
2 & 1 \\
|
| 139 |
+
-2 & -1 \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right).\left(
|
| 142 |
+
\begin{array}{ccc}
|
| 143 |
+
-1 & 1 & -1 \\
|
| 144 |
+
1 & 1 & 1 \\
|
| 145 |
+
\end{array}
|
| 146 |
+
\right)=\left(
|
| 147 |
+
\begin{array}{ccc}
|
| 148 |
+
-1 & \fbox{$3$} & \_ \\
|
| 149 |
+
\_ & \_ & \_ \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\right) \\
|
| 152 |
+
\end{array}
|
| 153 |
+
\\
|
| 154 |
+
|
| 155 |
+
\begin{array}{l}
|
| 156 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 157 |
+
\left(
|
| 158 |
+
\begin{array}{cc}
|
| 159 |
+
2 & 1 \\
|
| 160 |
+
-2 & -1 \\
|
| 161 |
+
\end{array}
|
| 162 |
+
\right).\left(
|
| 163 |
+
\begin{array}{ccc}
|
| 164 |
+
-1 & 1 & -1 \\
|
| 165 |
+
1 & 1 & 1 \\
|
| 166 |
+
\end{array}
|
| 167 |
+
\right)=\left(
|
| 168 |
+
\begin{array}{ccc}
|
| 169 |
+
-1 & 3 & \_ \\
|
| 170 |
+
\_ & \_ & \_ \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\right) \\
|
| 173 |
+
\end{array}
|
| 174 |
+
\\
|
| 175 |
+
|
| 176 |
+
\begin{array}{l}
|
| 177 |
+
|
| 178 |
+
\begin{array}{l}
|
| 179 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2 (-1)+1\ 1=-1. \\
|
| 180 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\\
|
| 183 |
+
\left(
|
| 184 |
+
\begin{array}{cc}
|
| 185 |
+
2 & 1 \\
|
| 186 |
+
-2 & -1 \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right).\left(
|
| 189 |
+
\begin{array}{ccc}
|
| 190 |
+
-1 & 1 & -1 \\
|
| 191 |
+
1 & 1 & 1 \\
|
| 192 |
+
\end{array}
|
| 193 |
+
\right)=\left(
|
| 194 |
+
\begin{array}{ccc}
|
| 195 |
+
-1 & 3 & \fbox{$-1$} \\
|
| 196 |
+
\_ & \_ & \_ \\
|
| 197 |
+
\end{array}
|
| 198 |
+
\right) \\
|
| 199 |
+
\end{array}
|
| 200 |
+
\\
|
| 201 |
+
|
| 202 |
+
\begin{array}{l}
|
| 203 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 204 |
+
\left(
|
| 205 |
+
\begin{array}{cc}
|
| 206 |
+
2 & 1 \\
|
| 207 |
+
-2 & -1 \\
|
| 208 |
+
\end{array}
|
| 209 |
+
\right).\left(
|
| 210 |
+
\begin{array}{ccc}
|
| 211 |
+
-1 & 1 & -1 \\
|
| 212 |
+
1 & 1 & 1 \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right)=\left(
|
| 215 |
+
\begin{array}{ccc}
|
| 216 |
+
-1 & 3 & -1 \\
|
| 217 |
+
\_ & \_ & \_ \\
|
| 218 |
+
\end{array}
|
| 219 |
+
\right) \\
|
| 220 |
+
\end{array}
|
| 221 |
+
\\
|
| 222 |
+
|
| 223 |
+
\begin{array}{l}
|
| 224 |
+
|
| 225 |
+
\begin{array}{l}
|
| 226 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-1)+(-1)\, \times \, 1=1. \\
|
| 227 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 228 |
+
\end{array}
|
| 229 |
+
\\
|
| 230 |
+
\left(
|
| 231 |
+
\begin{array}{cc}
|
| 232 |
+
2 & 1 \\
|
| 233 |
+
-2 & -1 \\
|
| 234 |
+
\end{array}
|
| 235 |
+
\right).\left(
|
| 236 |
+
\begin{array}{ccc}
|
| 237 |
+
-1 & 1 & -1 \\
|
| 238 |
+
1 & 1 & 1 \\
|
| 239 |
+
\end{array}
|
| 240 |
+
\right)=\left(
|
| 241 |
+
\begin{array}{ccc}
|
| 242 |
+
-1 & 3 & -1 \\
|
| 243 |
+
\fbox{$1$} & \_ & \_ \\
|
| 244 |
+
\end{array}
|
| 245 |
+
\right) \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\\
|
| 248 |
+
|
| 249 |
+
\begin{array}{l}
|
| 250 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 251 |
+
\left(
|
| 252 |
+
\begin{array}{cc}
|
| 253 |
+
2 & 1 \\
|
| 254 |
+
-2 & -1 \\
|
| 255 |
+
\end{array}
|
| 256 |
+
\right).\left(
|
| 257 |
+
\begin{array}{ccc}
|
| 258 |
+
-1 & 1 & -1 \\
|
| 259 |
+
1 & 1 & 1 \\
|
| 260 |
+
\end{array}
|
| 261 |
+
\right)=\left(
|
| 262 |
+
\begin{array}{ccc}
|
| 263 |
+
-1 & 3 & -1 \\
|
| 264 |
+
1 & \_ & \_ \\
|
| 265 |
+
\end{array}
|
| 266 |
+
\right) \\
|
| 267 |
+
\end{array}
|
| 268 |
+
\\
|
| 269 |
+
|
| 270 |
+
\begin{array}{l}
|
| 271 |
+
|
| 272 |
+
\begin{array}{l}
|
| 273 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, \times \, 1+(-1)\, \times \, 1=-3. \\
|
| 274 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 275 |
+
\end{array}
|
| 276 |
+
\\
|
| 277 |
+
\left(
|
| 278 |
+
\begin{array}{cc}
|
| 279 |
+
2 & 1 \\
|
| 280 |
+
-2 & -1 \\
|
| 281 |
+
\end{array}
|
| 282 |
+
\right).\left(
|
| 283 |
+
\begin{array}{ccc}
|
| 284 |
+
-1 & 1 & -1 \\
|
| 285 |
+
1 & 1 & 1 \\
|
| 286 |
+
\end{array}
|
| 287 |
+
\right)=\left(
|
| 288 |
+
\begin{array}{ccc}
|
| 289 |
+
-1 & 3 & -1 \\
|
| 290 |
+
1 & \fbox{$-3$} & \_ \\
|
| 291 |
+
\end{array}
|
| 292 |
+
\right) \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\\
|
| 295 |
+
|
| 296 |
+
\begin{array}{l}
|
| 297 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 298 |
+
\left(
|
| 299 |
+
\begin{array}{cc}
|
| 300 |
+
2 & 1 \\
|
| 301 |
+
-2 & -1 \\
|
| 302 |
+
\end{array}
|
| 303 |
+
\right).\left(
|
| 304 |
+
\begin{array}{ccc}
|
| 305 |
+
-1 & 1 & -1 \\
|
| 306 |
+
1 & 1 & 1 \\
|
| 307 |
+
\end{array}
|
| 308 |
+
\right)=\left(
|
| 309 |
+
\begin{array}{ccc}
|
| 310 |
+
-1 & 3 & -1 \\
|
| 311 |
+
1 & -3 & \_ \\
|
| 312 |
+
\end{array}
|
| 313 |
+
\right) \\
|
| 314 |
+
\end{array}
|
| 315 |
+
\\
|
| 316 |
+
|
| 317 |
+
\begin{array}{l}
|
| 318 |
+
|
| 319 |
+
\begin{array}{l}
|
| 320 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-1)+(-1)\, \times \, 1=1. \\
|
| 321 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 322 |
+
\end{array}
|
| 323 |
+
\\
|
| 324 |
+
\fbox{$
|
| 325 |
+
\begin{array}{ll}
|
| 326 |
+
\text{Answer:} & \\
|
| 327 |
+
\text{} & \left(
|
| 328 |
+
\begin{array}{cc}
|
| 329 |
+
2 & 1 \\
|
| 330 |
+
-2 & -1 \\
|
| 331 |
+
\end{array}
|
| 332 |
+
\right).\left(
|
| 333 |
+
\begin{array}{ccc}
|
| 334 |
+
-1 & 1 & -1 \\
|
| 335 |
+
1 & 1 & 1 \\
|
| 336 |
+
\end{array}
|
| 337 |
+
\right)=\left(
|
| 338 |
+
\begin{array}{ccc}
|
| 339 |
+
-1 & 3 & -1 \\
|
| 340 |
+
1 & -3 & \fbox{$1$} \\
|
| 341 |
+
\end{array}
|
| 342 |
+
\right) \\
|
| 343 |
+
\end{array}
|
| 344 |
+
$} \\
|
| 345 |
+
\end{array}
|
| 346 |
+
\\
|
| 347 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/3426.txt
ADDED
|
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
\frac{4}{3} & \frac{2}{3} \\
|
| 6 |
+
-\frac{7}{3} & 1 \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{ccc}
|
| 11 |
+
-\frac{2}{3} & -2 & \frac{7}{3} \\
|
| 12 |
+
-2 & 3 & -\frac{2}{3} \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$.
|
| 15 |
+
Answer:
|
| 16 |
+
\begin{array}{l}
|
| 17 |
+
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
\text{Multiply the following matrices}: \\
|
| 20 |
+
\left(
|
| 21 |
+
\begin{array}{cc}
|
| 22 |
+
\frac{4}{3} & \frac{2}{3} \\
|
| 23 |
+
-\frac{7}{3} & 1 \\
|
| 24 |
+
\end{array}
|
| 25 |
+
\right).\left(
|
| 26 |
+
\begin{array}{ccc}
|
| 27 |
+
-\frac{2}{3} & -2 & \frac{7}{3} \\
|
| 28 |
+
-2 & 3 & -\frac{2}{3} \\
|
| 29 |
+
\end{array}
|
| 30 |
+
\right) \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\\
|
| 33 |
+
\hline
|
| 34 |
+
|
| 35 |
+
\begin{array}{l}
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 3. \\
|
| 39 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 3: \\
|
| 40 |
+
\end{array}
|
| 41 |
+
\\
|
| 42 |
+
\left(
|
| 43 |
+
\begin{array}{cc}
|
| 44 |
+
\frac{4}{3} & \frac{2}{3} \\
|
| 45 |
+
-\frac{7}{3} & 1 \\
|
| 46 |
+
\end{array}
|
| 47 |
+
\right).\left(
|
| 48 |
+
\begin{array}{ccc}
|
| 49 |
+
-\frac{2}{3} & -2 & \frac{7}{3} \\
|
| 50 |
+
-2 & 3 & -\frac{2}{3} \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right)=\left(
|
| 53 |
+
\begin{array}{ccc}
|
| 54 |
+
\_ & \_ & \_ \\
|
| 55 |
+
\_ & \_ & \_ \\
|
| 56 |
+
\end{array}
|
| 57 |
+
\right) \\
|
| 58 |
+
\end{array}
|
| 59 |
+
\\
|
| 60 |
+
|
| 61 |
+
\begin{array}{l}
|
| 62 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 63 |
+
\left(
|
| 64 |
+
\begin{array}{cc}
|
| 65 |
+
\frac{4}{3} & \frac{2}{3} \\
|
| 66 |
+
-\frac{7}{3} & 1 \\
|
| 67 |
+
\end{array}
|
| 68 |
+
\right).\left(
|
| 69 |
+
\begin{array}{ccc}
|
| 70 |
+
-\frac{2}{3} & -2 & \frac{7}{3} \\
|
| 71 |
+
-2 & 3 & -\frac{2}{3} \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right)=\left(
|
| 74 |
+
\begin{array}{ccc}
|
| 75 |
+
\_ & \_ & \_ \\
|
| 76 |
+
\_ & \_ & \_ \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right) \\
|
| 79 |
+
\end{array}
|
| 80 |
+
\\
|
| 81 |
+
|
| 82 |
+
\begin{array}{l}
|
| 83 |
+
|
| 84 |
+
\begin{array}{l}
|
| 85 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{4 (-2)}{3\ 3}+\frac{2 (-2)}{3}=-\frac{20}{9}. \\
|
| 86 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\\
|
| 89 |
+
\left(
|
| 90 |
+
\begin{array}{cc}
|
| 91 |
+
\frac{4}{3} & \frac{2}{3} \\
|
| 92 |
+
-\frac{7}{3} & 1 \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\right).\left(
|
| 95 |
+
\begin{array}{ccc}
|
| 96 |
+
-\frac{2}{3} & -2 & \frac{7}{3} \\
|
| 97 |
+
-2 & 3 & -\frac{2}{3} \\
|
| 98 |
+
\end{array}
|
| 99 |
+
\right)=\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
\fbox{$-\frac{20}{9}$} & \_ & \_ \\
|
| 102 |
+
\_ & \_ & \_ \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right) \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\\
|
| 107 |
+
|
| 108 |
+
\begin{array}{l}
|
| 109 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 110 |
+
\left(
|
| 111 |
+
\begin{array}{cc}
|
| 112 |
+
\frac{4}{3} & \frac{2}{3} \\
|
| 113 |
+
-\frac{7}{3} & 1 \\
|
| 114 |
+
\end{array}
|
| 115 |
+
\right).\left(
|
| 116 |
+
\begin{array}{ccc}
|
| 117 |
+
-\frac{2}{3} & -2 & \frac{7}{3} \\
|
| 118 |
+
-2 & 3 & -\frac{2}{3} \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right)=\left(
|
| 121 |
+
\begin{array}{ccc}
|
| 122 |
+
-\frac{20}{9} & \_ & \_ \\
|
| 123 |
+
\_ & \_ & \_ \\
|
| 124 |
+
\end{array}
|
| 125 |
+
\right) \\
|
| 126 |
+
\end{array}
|
| 127 |
+
\\
|
| 128 |
+
|
| 129 |
+
\begin{array}{l}
|
| 130 |
+
|
| 131 |
+
\begin{array}{l}
|
| 132 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{4 (-2)}{3}+\frac{2\ 3}{3}=-\frac{2}{3}. \\
|
| 133 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\\
|
| 136 |
+
\left(
|
| 137 |
+
\begin{array}{cc}
|
| 138 |
+
\frac{4}{3} & \frac{2}{3} \\
|
| 139 |
+
-\frac{7}{3} & 1 \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right).\left(
|
| 142 |
+
\begin{array}{ccc}
|
| 143 |
+
-\frac{2}{3} & -2 & \frac{7}{3} \\
|
| 144 |
+
-2 & 3 & -\frac{2}{3} \\
|
| 145 |
+
\end{array}
|
| 146 |
+
\right)=\left(
|
| 147 |
+
\begin{array}{ccc}
|
| 148 |
+
-\frac{20}{9} & \fbox{$-\frac{2}{3}$} & \_ \\
|
| 149 |
+
\_ & \_ & \_ \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\right) \\
|
| 152 |
+
\end{array}
|
| 153 |
+
\\
|
| 154 |
+
|
| 155 |
+
\begin{array}{l}
|
| 156 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 157 |
+
\left(
|
| 158 |
+
\begin{array}{cc}
|
| 159 |
+
\frac{4}{3} & \frac{2}{3} \\
|
| 160 |
+
-\frac{7}{3} & 1 \\
|
| 161 |
+
\end{array}
|
| 162 |
+
\right).\left(
|
| 163 |
+
\begin{array}{ccc}
|
| 164 |
+
-\frac{2}{3} & -2 & \frac{7}{3} \\
|
| 165 |
+
-2 & 3 & -\frac{2}{3} \\
|
| 166 |
+
\end{array}
|
| 167 |
+
\right)=\left(
|
| 168 |
+
\begin{array}{ccc}
|
| 169 |
+
-\frac{20}{9} & -\frac{2}{3} & \_ \\
|
| 170 |
+
\_ & \_ & \_ \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\right) \\
|
| 173 |
+
\end{array}
|
| 174 |
+
\\
|
| 175 |
+
|
| 176 |
+
\begin{array}{l}
|
| 177 |
+
|
| 178 |
+
\begin{array}{l}
|
| 179 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{4\ 7}{3\ 3}+\frac{2 (-2)}{3\ 3}=\frac{8}{3}. \\
|
| 180 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\\
|
| 183 |
+
\left(
|
| 184 |
+
\begin{array}{cc}
|
| 185 |
+
\frac{4}{3} & \frac{2}{3} \\
|
| 186 |
+
-\frac{7}{3} & 1 \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right).\left(
|
| 189 |
+
\begin{array}{ccc}
|
| 190 |
+
-\frac{2}{3} & -2 & \frac{7}{3} \\
|
| 191 |
+
-2 & 3 & -\frac{2}{3} \\
|
| 192 |
+
\end{array}
|
| 193 |
+
\right)=\left(
|
| 194 |
+
\begin{array}{ccc}
|
| 195 |
+
-\frac{20}{9} & -\frac{2}{3} & \fbox{$\frac{8}{3}$} \\
|
| 196 |
+
\_ & \_ & \_ \\
|
| 197 |
+
\end{array}
|
| 198 |
+
\right) \\
|
| 199 |
+
\end{array}
|
| 200 |
+
\\
|
| 201 |
+
|
| 202 |
+
\begin{array}{l}
|
| 203 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 204 |
+
\left(
|
| 205 |
+
\begin{array}{cc}
|
| 206 |
+
\frac{4}{3} & \frac{2}{3} \\
|
| 207 |
+
-\frac{7}{3} & 1 \\
|
| 208 |
+
\end{array}
|
| 209 |
+
\right).\left(
|
| 210 |
+
\begin{array}{ccc}
|
| 211 |
+
-\frac{2}{3} & -2 & \frac{7}{3} \\
|
| 212 |
+
-2 & 3 & -\frac{2}{3} \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right)=\left(
|
| 215 |
+
\begin{array}{ccc}
|
| 216 |
+
-\frac{20}{9} & -\frac{2}{3} & \frac{8}{3} \\
|
| 217 |
+
\_ & \_ & \_ \\
|
| 218 |
+
\end{array}
|
| 219 |
+
\right) \\
|
| 220 |
+
\end{array}
|
| 221 |
+
\\
|
| 222 |
+
|
| 223 |
+
\begin{array}{l}
|
| 224 |
+
|
| 225 |
+
\begin{array}{l}
|
| 226 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{7}{3}\right)\, \left(-\frac{2}{3}\right)+1 (-2)=-\frac{4}{9}. \\
|
| 227 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 228 |
+
\end{array}
|
| 229 |
+
\\
|
| 230 |
+
\left(
|
| 231 |
+
\begin{array}{cc}
|
| 232 |
+
\frac{4}{3} & \frac{2}{3} \\
|
| 233 |
+
-\frac{7}{3} & 1 \\
|
| 234 |
+
\end{array}
|
| 235 |
+
\right).\left(
|
| 236 |
+
\begin{array}{ccc}
|
| 237 |
+
-\frac{2}{3} & -2 & \frac{7}{3} \\
|
| 238 |
+
-2 & 3 & -\frac{2}{3} \\
|
| 239 |
+
\end{array}
|
| 240 |
+
\right)=\left(
|
| 241 |
+
\begin{array}{ccc}
|
| 242 |
+
-\frac{20}{9} & -\frac{2}{3} & \frac{8}{3} \\
|
| 243 |
+
\fbox{$-\frac{4}{9}$} & \_ & \_ \\
|
| 244 |
+
\end{array}
|
| 245 |
+
\right) \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\\
|
| 248 |
+
|
| 249 |
+
\begin{array}{l}
|
| 250 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 251 |
+
\left(
|
| 252 |
+
\begin{array}{cc}
|
| 253 |
+
\frac{4}{3} & \frac{2}{3} \\
|
| 254 |
+
-\frac{7}{3} & 1 \\
|
| 255 |
+
\end{array}
|
| 256 |
+
\right).\left(
|
| 257 |
+
\begin{array}{ccc}
|
| 258 |
+
-\frac{2}{3} & -2 & \frac{7}{3} \\
|
| 259 |
+
-2 & 3 & -\frac{2}{3} \\
|
| 260 |
+
\end{array}
|
| 261 |
+
\right)=\left(
|
| 262 |
+
\begin{array}{ccc}
|
| 263 |
+
-\frac{20}{9} & -\frac{2}{3} & \frac{8}{3} \\
|
| 264 |
+
-\frac{4}{9} & \_ & \_ \\
|
| 265 |
+
\end{array}
|
| 266 |
+
\right) \\
|
| 267 |
+
\end{array}
|
| 268 |
+
\\
|
| 269 |
+
|
| 270 |
+
\begin{array}{l}
|
| 271 |
+
|
| 272 |
+
\begin{array}{l}
|
| 273 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{7}{3}\right)\, (-2)+1\ 3=\frac{23}{3}. \\
|
| 274 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 275 |
+
\end{array}
|
| 276 |
+
\\
|
| 277 |
+
\left(
|
| 278 |
+
\begin{array}{cc}
|
| 279 |
+
\frac{4}{3} & \frac{2}{3} \\
|
| 280 |
+
-\frac{7}{3} & 1 \\
|
| 281 |
+
\end{array}
|
| 282 |
+
\right).\left(
|
| 283 |
+
\begin{array}{ccc}
|
| 284 |
+
-\frac{2}{3} & -2 & \frac{7}{3} \\
|
| 285 |
+
-2 & 3 & -\frac{2}{3} \\
|
| 286 |
+
\end{array}
|
| 287 |
+
\right)=\left(
|
| 288 |
+
\begin{array}{ccc}
|
| 289 |
+
-\frac{20}{9} & -\frac{2}{3} & \frac{8}{3} \\
|
| 290 |
+
-\frac{4}{9} & \fbox{$\frac{23}{3}$} & \_ \\
|
| 291 |
+
\end{array}
|
| 292 |
+
\right) \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\\
|
| 295 |
+
|
| 296 |
+
\begin{array}{l}
|
| 297 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 298 |
+
\left(
|
| 299 |
+
\begin{array}{cc}
|
| 300 |
+
\frac{4}{3} & \frac{2}{3} \\
|
| 301 |
+
-\frac{7}{3} & 1 \\
|
| 302 |
+
\end{array}
|
| 303 |
+
\right).\left(
|
| 304 |
+
\begin{array}{ccc}
|
| 305 |
+
-\frac{2}{3} & -2 & \frac{7}{3} \\
|
| 306 |
+
-2 & 3 & -\frac{2}{3} \\
|
| 307 |
+
\end{array}
|
| 308 |
+
\right)=\left(
|
| 309 |
+
\begin{array}{ccc}
|
| 310 |
+
-\frac{20}{9} & -\frac{2}{3} & \frac{8}{3} \\
|
| 311 |
+
-\frac{4}{9} & \frac{23}{3} & \_ \\
|
| 312 |
+
\end{array}
|
| 313 |
+
\right) \\
|
| 314 |
+
\end{array}
|
| 315 |
+
\\
|
| 316 |
+
|
| 317 |
+
\begin{array}{l}
|
| 318 |
+
|
| 319 |
+
\begin{array}{l}
|
| 320 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{7}{3}\right)\, \times \, \frac{7}{3}-\frac{2}{3}=-\frac{55}{9}. \\
|
| 321 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 322 |
+
\end{array}
|
| 323 |
+
\\
|
| 324 |
+
\fbox{$
|
| 325 |
+
\begin{array}{ll}
|
| 326 |
+
\text{Answer:} & \\
|
| 327 |
+
\text{} & \left(
|
| 328 |
+
\begin{array}{cc}
|
| 329 |
+
\frac{4}{3} & \frac{2}{3} \\
|
| 330 |
+
-\frac{7}{3} & 1 \\
|
| 331 |
+
\end{array}
|
| 332 |
+
\right).\left(
|
| 333 |
+
\begin{array}{ccc}
|
| 334 |
+
-\frac{2}{3} & -2 & \frac{7}{3} \\
|
| 335 |
+
-2 & 3 & -\frac{2}{3} \\
|
| 336 |
+
\end{array}
|
| 337 |
+
\right)=\left(
|
| 338 |
+
\begin{array}{ccc}
|
| 339 |
+
-\frac{20}{9} & -\frac{2}{3} & \frac{8}{3} \\
|
| 340 |
+
-\frac{4}{9} & \frac{23}{3} & \fbox{$-\frac{55}{9}$} \\
|
| 341 |
+
\end{array}
|
| 342 |
+
\right) \\
|
| 343 |
+
\end{array}
|
| 344 |
+
$} \\
|
| 345 |
+
\end{array}
|
| 346 |
+
\\
|
| 347 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/359.txt
ADDED
|
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
-\frac{1}{2} & -\frac{3}{2} & 0 \\
|
| 6 |
+
3 & 3 & -2 \\
|
| 7 |
+
0 & -\frac{5}{2} & -1 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{c}
|
| 12 |
+
0 \\
|
| 13 |
+
-\frac{1}{2} \\
|
| 14 |
+
0 \\
|
| 15 |
+
\end{array}
|
| 16 |
+
\right)$.
|
| 17 |
+
Answer:
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
|
| 20 |
+
\begin{array}{l}
|
| 21 |
+
\text{Multiply the following matrices}: \\
|
| 22 |
+
\left(
|
| 23 |
+
\begin{array}{ccc}
|
| 24 |
+
-\frac{1}{2} & -\frac{3}{2} & 0 \\
|
| 25 |
+
3 & 3 & -2 \\
|
| 26 |
+
0 & -\frac{5}{2} & -1 \\
|
| 27 |
+
\end{array}
|
| 28 |
+
\right).\left(
|
| 29 |
+
\begin{array}{c}
|
| 30 |
+
0 \\
|
| 31 |
+
-\frac{1}{2} \\
|
| 32 |
+
0 \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\right) \\
|
| 35 |
+
\end{array}
|
| 36 |
+
\\
|
| 37 |
+
\hline
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
|
| 41 |
+
\begin{array}{l}
|
| 42 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 1. \\
|
| 43 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 1: \\
|
| 44 |
+
\end{array}
|
| 45 |
+
\\
|
| 46 |
+
\left(
|
| 47 |
+
\begin{array}{ccc}
|
| 48 |
+
-\frac{1}{2} & -\frac{3}{2} & 0 \\
|
| 49 |
+
3 & 3 & -2 \\
|
| 50 |
+
0 & -\frac{5}{2} & -1 \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right).\left(
|
| 53 |
+
\begin{array}{c}
|
| 54 |
+
0 \\
|
| 55 |
+
-\frac{1}{2} \\
|
| 56 |
+
0 \\
|
| 57 |
+
\end{array}
|
| 58 |
+
\right)=\left(
|
| 59 |
+
\begin{array}{c}
|
| 60 |
+
\_ \\
|
| 61 |
+
\_ \\
|
| 62 |
+
\_ \\
|
| 63 |
+
\end{array}
|
| 64 |
+
\right) \\
|
| 65 |
+
\end{array}
|
| 66 |
+
\\
|
| 67 |
+
|
| 68 |
+
\begin{array}{l}
|
| 69 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 70 |
+
\left(
|
| 71 |
+
\begin{array}{ccc}
|
| 72 |
+
-\frac{1}{2} & -\frac{3}{2} & 0 \\
|
| 73 |
+
3 & 3 & -2 \\
|
| 74 |
+
0 & -\frac{5}{2} & -1 \\
|
| 75 |
+
\end{array}
|
| 76 |
+
\right).\left(
|
| 77 |
+
\begin{array}{c}
|
| 78 |
+
0 \\
|
| 79 |
+
-\frac{1}{2} \\
|
| 80 |
+
0 \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right)=\left(
|
| 83 |
+
\begin{array}{c}
|
| 84 |
+
\_ \\
|
| 85 |
+
\_ \\
|
| 86 |
+
\_ \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\right) \\
|
| 89 |
+
\end{array}
|
| 90 |
+
\\
|
| 91 |
+
|
| 92 |
+
\begin{array}{l}
|
| 93 |
+
|
| 94 |
+
\begin{array}{l}
|
| 95 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{1}{2} (-0)+\frac{3}{2\ 2}+0\ 0=\frac{3}{4}. \\
|
| 96 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\\
|
| 99 |
+
\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
-\frac{1}{2} & -\frac{3}{2} & 0 \\
|
| 102 |
+
3 & 3 & -2 \\
|
| 103 |
+
0 & -\frac{5}{2} & -1 \\
|
| 104 |
+
\end{array}
|
| 105 |
+
\right).\left(
|
| 106 |
+
\begin{array}{c}
|
| 107 |
+
0 \\
|
| 108 |
+
-\frac{1}{2} \\
|
| 109 |
+
0 \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\right)=\left(
|
| 112 |
+
\begin{array}{c}
|
| 113 |
+
\fbox{$\frac{3}{4}$} \\
|
| 114 |
+
\_ \\
|
| 115 |
+
\_ \\
|
| 116 |
+
\end{array}
|
| 117 |
+
\right) \\
|
| 118 |
+
\end{array}
|
| 119 |
+
\\
|
| 120 |
+
|
| 121 |
+
\begin{array}{l}
|
| 122 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 123 |
+
\left(
|
| 124 |
+
\begin{array}{ccc}
|
| 125 |
+
-\frac{1}{2} & -\frac{3}{2} & 0 \\
|
| 126 |
+
3 & 3 & -2 \\
|
| 127 |
+
0 & -\frac{5}{2} & -1 \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right).\left(
|
| 130 |
+
\begin{array}{c}
|
| 131 |
+
0 \\
|
| 132 |
+
-\frac{1}{2} \\
|
| 133 |
+
0 \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right)=\left(
|
| 136 |
+
\begin{array}{c}
|
| 137 |
+
\frac{3}{4} \\
|
| 138 |
+
\_ \\
|
| 139 |
+
\_ \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right) \\
|
| 142 |
+
\end{array}
|
| 143 |
+
\\
|
| 144 |
+
|
| 145 |
+
\begin{array}{l}
|
| 146 |
+
|
| 147 |
+
\begin{array}{l}
|
| 148 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }3\ 0+\frac{1}{2} (-3)+(-2)\, \times \, 0=-\frac{3}{2}. \\
|
| 149 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\\
|
| 152 |
+
\left(
|
| 153 |
+
\begin{array}{ccc}
|
| 154 |
+
-\frac{1}{2} & -\frac{3}{2} & 0 \\
|
| 155 |
+
3 & 3 & -2 \\
|
| 156 |
+
0 & -\frac{5}{2} & -1 \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right).\left(
|
| 159 |
+
\begin{array}{c}
|
| 160 |
+
0 \\
|
| 161 |
+
-\frac{1}{2} \\
|
| 162 |
+
0 \\
|
| 163 |
+
\end{array}
|
| 164 |
+
\right)=\left(
|
| 165 |
+
\begin{array}{c}
|
| 166 |
+
\frac{3}{4} \\
|
| 167 |
+
\fbox{$-\frac{3}{2}$} \\
|
| 168 |
+
\_ \\
|
| 169 |
+
\end{array}
|
| 170 |
+
\right) \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\\
|
| 173 |
+
|
| 174 |
+
\begin{array}{l}
|
| 175 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 176 |
+
\left(
|
| 177 |
+
\begin{array}{ccc}
|
| 178 |
+
-\frac{1}{2} & -\frac{3}{2} & 0 \\
|
| 179 |
+
3 & 3 & -2 \\
|
| 180 |
+
0 & -\frac{5}{2} & -1 \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\right).\left(
|
| 183 |
+
\begin{array}{c}
|
| 184 |
+
0 \\
|
| 185 |
+
-\frac{1}{2} \\
|
| 186 |
+
0 \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right)=\left(
|
| 189 |
+
\begin{array}{c}
|
| 190 |
+
\frac{3}{4} \\
|
| 191 |
+
-\frac{3}{2} \\
|
| 192 |
+
\_ \\
|
| 193 |
+
\end{array}
|
| 194 |
+
\right) \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
|
| 198 |
+
\begin{array}{l}
|
| 199 |
+
|
| 200 |
+
\begin{array}{l}
|
| 201 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }0\ 0+\frac{5}{2\ 2}+(-1)\, \times \, 0=\frac{5}{4}. \\
|
| 202 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 203 |
+
\end{array}
|
| 204 |
+
\\
|
| 205 |
+
\fbox{$
|
| 206 |
+
\begin{array}{ll}
|
| 207 |
+
\text{Answer:} & \\
|
| 208 |
+
\text{} & \left(
|
| 209 |
+
\begin{array}{ccc}
|
| 210 |
+
-\frac{1}{2} & -\frac{3}{2} & 0 \\
|
| 211 |
+
3 & 3 & -2 \\
|
| 212 |
+
0 & -\frac{5}{2} & -1 \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right).\left(
|
| 215 |
+
\begin{array}{c}
|
| 216 |
+
0 \\
|
| 217 |
+
-\frac{1}{2} \\
|
| 218 |
+
0 \\
|
| 219 |
+
\end{array}
|
| 220 |
+
\right)=\left(
|
| 221 |
+
\begin{array}{c}
|
| 222 |
+
\frac{3}{4} \\
|
| 223 |
+
-\frac{3}{2} \\
|
| 224 |
+
\fbox{$\frac{5}{4}$} \\
|
| 225 |
+
\end{array}
|
| 226 |
+
\right) \\
|
| 227 |
+
\end{array}
|
| 228 |
+
$} \\
|
| 229 |
+
\end{array}
|
| 230 |
+
\\
|
| 231 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/3665.txt
ADDED
|
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
\frac{13}{5} & \frac{12}{5} \\
|
| 6 |
+
\frac{7}{5} & -\frac{11}{5} \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{cc}
|
| 11 |
+
\frac{2}{5} & 2 \\
|
| 12 |
+
-\frac{4}{5} & \frac{12}{5} \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$.
|
| 15 |
+
Answer:
|
| 16 |
+
\begin{array}{l}
|
| 17 |
+
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
\text{Multiply the following matrices}: \\
|
| 20 |
+
\left(
|
| 21 |
+
\begin{array}{cc}
|
| 22 |
+
\frac{13}{5} & \frac{12}{5} \\
|
| 23 |
+
\frac{7}{5} & -\frac{11}{5} \\
|
| 24 |
+
\end{array}
|
| 25 |
+
\right).\left(
|
| 26 |
+
\begin{array}{cc}
|
| 27 |
+
\frac{2}{5} & 2 \\
|
| 28 |
+
-\frac{4}{5} & \frac{12}{5} \\
|
| 29 |
+
\end{array}
|
| 30 |
+
\right) \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\\
|
| 33 |
+
\hline
|
| 34 |
+
|
| 35 |
+
\begin{array}{l}
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 2. \\
|
| 39 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 2: \\
|
| 40 |
+
\end{array}
|
| 41 |
+
\\
|
| 42 |
+
\left(
|
| 43 |
+
\begin{array}{cc}
|
| 44 |
+
\frac{13}{5} & \frac{12}{5} \\
|
| 45 |
+
\frac{7}{5} & -\frac{11}{5} \\
|
| 46 |
+
\end{array}
|
| 47 |
+
\right).\left(
|
| 48 |
+
\begin{array}{cc}
|
| 49 |
+
\frac{2}{5} & 2 \\
|
| 50 |
+
-\frac{4}{5} & \frac{12}{5} \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right)=\left(
|
| 53 |
+
\begin{array}{cc}
|
| 54 |
+
\_ & \_ \\
|
| 55 |
+
\_ & \_ \\
|
| 56 |
+
\end{array}
|
| 57 |
+
\right) \\
|
| 58 |
+
\end{array}
|
| 59 |
+
\\
|
| 60 |
+
|
| 61 |
+
\begin{array}{l}
|
| 62 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 63 |
+
\left(
|
| 64 |
+
\begin{array}{cc}
|
| 65 |
+
\frac{13}{5} & \frac{12}{5} \\
|
| 66 |
+
\frac{7}{5} & -\frac{11}{5} \\
|
| 67 |
+
\end{array}
|
| 68 |
+
\right).\left(
|
| 69 |
+
\begin{array}{cc}
|
| 70 |
+
\frac{2}{5} & 2 \\
|
| 71 |
+
-\frac{4}{5} & \frac{12}{5} \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right)=\left(
|
| 74 |
+
\begin{array}{cc}
|
| 75 |
+
\_ & \_ \\
|
| 76 |
+
\_ & \_ \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right) \\
|
| 79 |
+
\end{array}
|
| 80 |
+
\\
|
| 81 |
+
|
| 82 |
+
\begin{array}{l}
|
| 83 |
+
|
| 84 |
+
\begin{array}{l}
|
| 85 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{13\ 2}{5\ 5}+\frac{12 (-4)}{5\ 5}=-\frac{22}{25}. \\
|
| 86 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\\
|
| 89 |
+
\left(
|
| 90 |
+
\begin{array}{cc}
|
| 91 |
+
\frac{13}{5} & \frac{12}{5} \\
|
| 92 |
+
\frac{7}{5} & -\frac{11}{5} \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\right).\left(
|
| 95 |
+
\begin{array}{cc}
|
| 96 |
+
\frac{2}{5} & 2 \\
|
| 97 |
+
-\frac{4}{5} & \frac{12}{5} \\
|
| 98 |
+
\end{array}
|
| 99 |
+
\right)=\left(
|
| 100 |
+
\begin{array}{cc}
|
| 101 |
+
\fbox{$-\frac{22}{25}$} & \_ \\
|
| 102 |
+
\_ & \_ \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right) \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\\
|
| 107 |
+
|
| 108 |
+
\begin{array}{l}
|
| 109 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 110 |
+
\left(
|
| 111 |
+
\begin{array}{cc}
|
| 112 |
+
\frac{13}{5} & \frac{12}{5} \\
|
| 113 |
+
\frac{7}{5} & -\frac{11}{5} \\
|
| 114 |
+
\end{array}
|
| 115 |
+
\right).\left(
|
| 116 |
+
\begin{array}{cc}
|
| 117 |
+
\frac{2}{5} & 2 \\
|
| 118 |
+
-\frac{4}{5} & \frac{12}{5} \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right)=\left(
|
| 121 |
+
\begin{array}{cc}
|
| 122 |
+
-\frac{22}{25} & \_ \\
|
| 123 |
+
\_ & \_ \\
|
| 124 |
+
\end{array}
|
| 125 |
+
\right) \\
|
| 126 |
+
\end{array}
|
| 127 |
+
\\
|
| 128 |
+
|
| 129 |
+
\begin{array}{l}
|
| 130 |
+
|
| 131 |
+
\begin{array}{l}
|
| 132 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{13\ 2}{5}+\frac{12\ 12}{5\ 5}=\frac{274}{25}. \\
|
| 133 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\\
|
| 136 |
+
\left(
|
| 137 |
+
\begin{array}{cc}
|
| 138 |
+
\frac{13}{5} & \frac{12}{5} \\
|
| 139 |
+
\frac{7}{5} & -\frac{11}{5} \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right).\left(
|
| 142 |
+
\begin{array}{cc}
|
| 143 |
+
\frac{2}{5} & 2 \\
|
| 144 |
+
-\frac{4}{5} & \frac{12}{5} \\
|
| 145 |
+
\end{array}
|
| 146 |
+
\right)=\left(
|
| 147 |
+
\begin{array}{cc}
|
| 148 |
+
-\frac{22}{25} & \fbox{$\frac{274}{25}$} \\
|
| 149 |
+
\_ & \_ \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\right) \\
|
| 152 |
+
\end{array}
|
| 153 |
+
\\
|
| 154 |
+
|
| 155 |
+
\begin{array}{l}
|
| 156 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 157 |
+
\left(
|
| 158 |
+
\begin{array}{cc}
|
| 159 |
+
\frac{13}{5} & \frac{12}{5} \\
|
| 160 |
+
\frac{7}{5} & -\frac{11}{5} \\
|
| 161 |
+
\end{array}
|
| 162 |
+
\right).\left(
|
| 163 |
+
\begin{array}{cc}
|
| 164 |
+
\frac{2}{5} & 2 \\
|
| 165 |
+
-\frac{4}{5} & \frac{12}{5} \\
|
| 166 |
+
\end{array}
|
| 167 |
+
\right)=\left(
|
| 168 |
+
\begin{array}{cc}
|
| 169 |
+
-\frac{22}{25} & \frac{274}{25} \\
|
| 170 |
+
\_ & \_ \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\right) \\
|
| 173 |
+
\end{array}
|
| 174 |
+
\\
|
| 175 |
+
|
| 176 |
+
\begin{array}{l}
|
| 177 |
+
|
| 178 |
+
\begin{array}{l}
|
| 179 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{7\ 2}{5\ 5}+\left(-\frac{11}{5}\right)\, \left(-\frac{4}{5}\right)=\frac{58}{25}. \\
|
| 180 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\\
|
| 183 |
+
\left(
|
| 184 |
+
\begin{array}{cc}
|
| 185 |
+
\frac{13}{5} & \frac{12}{5} \\
|
| 186 |
+
\frac{7}{5} & -\frac{11}{5} \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right).\left(
|
| 189 |
+
\begin{array}{cc}
|
| 190 |
+
\frac{2}{5} & 2 \\
|
| 191 |
+
-\frac{4}{5} & \frac{12}{5} \\
|
| 192 |
+
\end{array}
|
| 193 |
+
\right)=\left(
|
| 194 |
+
\begin{array}{cc}
|
| 195 |
+
-\frac{22}{25} & \frac{274}{25} \\
|
| 196 |
+
\fbox{$\frac{58}{25}$} & \_ \\
|
| 197 |
+
\end{array}
|
| 198 |
+
\right) \\
|
| 199 |
+
\end{array}
|
| 200 |
+
\\
|
| 201 |
+
|
| 202 |
+
\begin{array}{l}
|
| 203 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 204 |
+
\left(
|
| 205 |
+
\begin{array}{cc}
|
| 206 |
+
\frac{13}{5} & \frac{12}{5} \\
|
| 207 |
+
\frac{7}{5} & -\frac{11}{5} \\
|
| 208 |
+
\end{array}
|
| 209 |
+
\right).\left(
|
| 210 |
+
\begin{array}{cc}
|
| 211 |
+
\frac{2}{5} & 2 \\
|
| 212 |
+
-\frac{4}{5} & \frac{12}{5} \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right)=\left(
|
| 215 |
+
\begin{array}{cc}
|
| 216 |
+
-\frac{22}{25} & \frac{274}{25} \\
|
| 217 |
+
\frac{58}{25} & \_ \\
|
| 218 |
+
\end{array}
|
| 219 |
+
\right) \\
|
| 220 |
+
\end{array}
|
| 221 |
+
\\
|
| 222 |
+
|
| 223 |
+
\begin{array}{l}
|
| 224 |
+
|
| 225 |
+
\begin{array}{l}
|
| 226 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{7\ 2}{5}+\left(-\frac{11}{5}\right)\, \times \, \frac{12}{5}=-\frac{62}{25}. \\
|
| 227 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 228 |
+
\end{array}
|
| 229 |
+
\\
|
| 230 |
+
\fbox{$
|
| 231 |
+
\begin{array}{ll}
|
| 232 |
+
\text{Answer:} & \\
|
| 233 |
+
\text{} & \left(
|
| 234 |
+
\begin{array}{cc}
|
| 235 |
+
\frac{13}{5} & \frac{12}{5} \\
|
| 236 |
+
\frac{7}{5} & -\frac{11}{5} \\
|
| 237 |
+
\end{array}
|
| 238 |
+
\right).\left(
|
| 239 |
+
\begin{array}{cc}
|
| 240 |
+
\frac{2}{5} & 2 \\
|
| 241 |
+
-\frac{4}{5} & \frac{12}{5} \\
|
| 242 |
+
\end{array}
|
| 243 |
+
\right)=\left(
|
| 244 |
+
\begin{array}{cc}
|
| 245 |
+
-\frac{22}{25} & \frac{274}{25} \\
|
| 246 |
+
\frac{58}{25} & \fbox{$-\frac{62}{25}$} \\
|
| 247 |
+
\end{array}
|
| 248 |
+
\right) \\
|
| 249 |
+
\end{array}
|
| 250 |
+
$} \\
|
| 251 |
+
\end{array}
|
| 252 |
+
\\
|
| 253 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/3849.txt
ADDED
|
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
-1 & 2 \\
|
| 6 |
+
1 & 3 \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{cc}
|
| 11 |
+
2 & 2 \\
|
| 12 |
+
0 & -2 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$.
|
| 15 |
+
Answer:
|
| 16 |
+
\begin{array}{l}
|
| 17 |
+
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
\text{Multiply the following matrices}: \\
|
| 20 |
+
\left(
|
| 21 |
+
\begin{array}{cc}
|
| 22 |
+
-1 & 2 \\
|
| 23 |
+
1 & 3 \\
|
| 24 |
+
\end{array}
|
| 25 |
+
\right).\left(
|
| 26 |
+
\begin{array}{cc}
|
| 27 |
+
2 & 2 \\
|
| 28 |
+
0 & -2 \\
|
| 29 |
+
\end{array}
|
| 30 |
+
\right) \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\\
|
| 33 |
+
\hline
|
| 34 |
+
|
| 35 |
+
\begin{array}{l}
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 2. \\
|
| 39 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 2: \\
|
| 40 |
+
\end{array}
|
| 41 |
+
\\
|
| 42 |
+
\left(
|
| 43 |
+
\begin{array}{cc}
|
| 44 |
+
-1 & 2 \\
|
| 45 |
+
1 & 3 \\
|
| 46 |
+
\end{array}
|
| 47 |
+
\right).\left(
|
| 48 |
+
\begin{array}{cc}
|
| 49 |
+
2 & 2 \\
|
| 50 |
+
0 & -2 \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right)=\left(
|
| 53 |
+
\begin{array}{cc}
|
| 54 |
+
\_ & \_ \\
|
| 55 |
+
\_ & \_ \\
|
| 56 |
+
\end{array}
|
| 57 |
+
\right) \\
|
| 58 |
+
\end{array}
|
| 59 |
+
\\
|
| 60 |
+
|
| 61 |
+
\begin{array}{l}
|
| 62 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 63 |
+
\left(
|
| 64 |
+
\begin{array}{cc}
|
| 65 |
+
-1 & 2 \\
|
| 66 |
+
1 & 3 \\
|
| 67 |
+
\end{array}
|
| 68 |
+
\right).\left(
|
| 69 |
+
\begin{array}{cc}
|
| 70 |
+
2 & 2 \\
|
| 71 |
+
0 & -2 \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right)=\left(
|
| 74 |
+
\begin{array}{cc}
|
| 75 |
+
\_ & \_ \\
|
| 76 |
+
\_ & \_ \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right) \\
|
| 79 |
+
\end{array}
|
| 80 |
+
\\
|
| 81 |
+
|
| 82 |
+
\begin{array}{l}
|
| 83 |
+
|
| 84 |
+
\begin{array}{l}
|
| 85 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-1)\, \times \, 2+2\ 0=-2. \\
|
| 86 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\\
|
| 89 |
+
\left(
|
| 90 |
+
\begin{array}{cc}
|
| 91 |
+
-1 & 2 \\
|
| 92 |
+
1 & 3 \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\right).\left(
|
| 95 |
+
\begin{array}{cc}
|
| 96 |
+
2 & 2 \\
|
| 97 |
+
0 & -2 \\
|
| 98 |
+
\end{array}
|
| 99 |
+
\right)=\left(
|
| 100 |
+
\begin{array}{cc}
|
| 101 |
+
\fbox{$-2$} & \_ \\
|
| 102 |
+
\_ & \_ \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right) \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\\
|
| 107 |
+
|
| 108 |
+
\begin{array}{l}
|
| 109 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 110 |
+
\left(
|
| 111 |
+
\begin{array}{cc}
|
| 112 |
+
-1 & 2 \\
|
| 113 |
+
1 & 3 \\
|
| 114 |
+
\end{array}
|
| 115 |
+
\right).\left(
|
| 116 |
+
\begin{array}{cc}
|
| 117 |
+
2 & 2 \\
|
| 118 |
+
0 & -2 \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right)=\left(
|
| 121 |
+
\begin{array}{cc}
|
| 122 |
+
-2 & \_ \\
|
| 123 |
+
\_ & \_ \\
|
| 124 |
+
\end{array}
|
| 125 |
+
\right) \\
|
| 126 |
+
\end{array}
|
| 127 |
+
\\
|
| 128 |
+
|
| 129 |
+
\begin{array}{l}
|
| 130 |
+
|
| 131 |
+
\begin{array}{l}
|
| 132 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-1)\, \times \, 2+2 (-2)=-6. \\
|
| 133 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\\
|
| 136 |
+
\left(
|
| 137 |
+
\begin{array}{cc}
|
| 138 |
+
-1 & 2 \\
|
| 139 |
+
1 & 3 \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right).\left(
|
| 142 |
+
\begin{array}{cc}
|
| 143 |
+
2 & 2 \\
|
| 144 |
+
0 & -2 \\
|
| 145 |
+
\end{array}
|
| 146 |
+
\right)=\left(
|
| 147 |
+
\begin{array}{cc}
|
| 148 |
+
-2 & \fbox{$-6$} \\
|
| 149 |
+
\_ & \_ \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\right) \\
|
| 152 |
+
\end{array}
|
| 153 |
+
\\
|
| 154 |
+
|
| 155 |
+
\begin{array}{l}
|
| 156 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 157 |
+
\left(
|
| 158 |
+
\begin{array}{cc}
|
| 159 |
+
-1 & 2 \\
|
| 160 |
+
1 & 3 \\
|
| 161 |
+
\end{array}
|
| 162 |
+
\right).\left(
|
| 163 |
+
\begin{array}{cc}
|
| 164 |
+
2 & 2 \\
|
| 165 |
+
0 & -2 \\
|
| 166 |
+
\end{array}
|
| 167 |
+
\right)=\left(
|
| 168 |
+
\begin{array}{cc}
|
| 169 |
+
-2 & -6 \\
|
| 170 |
+
\_ & \_ \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\right) \\
|
| 173 |
+
\end{array}
|
| 174 |
+
\\
|
| 175 |
+
|
| 176 |
+
\begin{array}{l}
|
| 177 |
+
|
| 178 |
+
\begin{array}{l}
|
| 179 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1\ 2+3\ 0=2. \\
|
| 180 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\\
|
| 183 |
+
\left(
|
| 184 |
+
\begin{array}{cc}
|
| 185 |
+
-1 & 2 \\
|
| 186 |
+
1 & 3 \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right).\left(
|
| 189 |
+
\begin{array}{cc}
|
| 190 |
+
2 & 2 \\
|
| 191 |
+
0 & -2 \\
|
| 192 |
+
\end{array}
|
| 193 |
+
\right)=\left(
|
| 194 |
+
\begin{array}{cc}
|
| 195 |
+
-2 & -6 \\
|
| 196 |
+
\fbox{$2$} & \_ \\
|
| 197 |
+
\end{array}
|
| 198 |
+
\right) \\
|
| 199 |
+
\end{array}
|
| 200 |
+
\\
|
| 201 |
+
|
| 202 |
+
\begin{array}{l}
|
| 203 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 204 |
+
\left(
|
| 205 |
+
\begin{array}{cc}
|
| 206 |
+
-1 & 2 \\
|
| 207 |
+
1 & 3 \\
|
| 208 |
+
\end{array}
|
| 209 |
+
\right).\left(
|
| 210 |
+
\begin{array}{cc}
|
| 211 |
+
2 & 2 \\
|
| 212 |
+
0 & -2 \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right)=\left(
|
| 215 |
+
\begin{array}{cc}
|
| 216 |
+
-2 & -6 \\
|
| 217 |
+
2 & \_ \\
|
| 218 |
+
\end{array}
|
| 219 |
+
\right) \\
|
| 220 |
+
\end{array}
|
| 221 |
+
\\
|
| 222 |
+
|
| 223 |
+
\begin{array}{l}
|
| 224 |
+
|
| 225 |
+
\begin{array}{l}
|
| 226 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1\ 2+3 (-2)=-4. \\
|
| 227 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 228 |
+
\end{array}
|
| 229 |
+
\\
|
| 230 |
+
\fbox{$
|
| 231 |
+
\begin{array}{ll}
|
| 232 |
+
\text{Answer:} & \\
|
| 233 |
+
\text{} & \left(
|
| 234 |
+
\begin{array}{cc}
|
| 235 |
+
-1 & 2 \\
|
| 236 |
+
1 & 3 \\
|
| 237 |
+
\end{array}
|
| 238 |
+
\right).\left(
|
| 239 |
+
\begin{array}{cc}
|
| 240 |
+
2 & 2 \\
|
| 241 |
+
0 & -2 \\
|
| 242 |
+
\end{array}
|
| 243 |
+
\right)=\left(
|
| 244 |
+
\begin{array}{cc}
|
| 245 |
+
-2 & -6 \\
|
| 246 |
+
2 & \fbox{$-4$} \\
|
| 247 |
+
\end{array}
|
| 248 |
+
\right) \\
|
| 249 |
+
\end{array}
|
| 250 |
+
$} \\
|
| 251 |
+
\end{array}
|
| 252 |
+
\\
|
| 253 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/3856.txt
ADDED
|
@@ -0,0 +1,375 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
-2 & 0 \\
|
| 6 |
+
1 & 1 \\
|
| 7 |
+
-2 & 0 \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{cc}
|
| 12 |
+
-1 & -2 \\
|
| 13 |
+
2 & -2 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$.
|
| 16 |
+
Answer:
|
| 17 |
+
\begin{array}{l}
|
| 18 |
+
|
| 19 |
+
\begin{array}{l}
|
| 20 |
+
\text{Multiply the following matrices}: \\
|
| 21 |
+
\left(
|
| 22 |
+
\begin{array}{cc}
|
| 23 |
+
-2 & 0 \\
|
| 24 |
+
1 & 1 \\
|
| 25 |
+
-2 & 0 \\
|
| 26 |
+
\end{array}
|
| 27 |
+
\right).\left(
|
| 28 |
+
\begin{array}{cc}
|
| 29 |
+
-1 & -2 \\
|
| 30 |
+
2 & -2 \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\right) \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\\
|
| 35 |
+
\hline
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 2. \\
|
| 41 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 2: \\
|
| 42 |
+
\end{array}
|
| 43 |
+
\\
|
| 44 |
+
\left(
|
| 45 |
+
\begin{array}{cc}
|
| 46 |
+
-2 & 0 \\
|
| 47 |
+
1 & 1 \\
|
| 48 |
+
-2 & 0 \\
|
| 49 |
+
\end{array}
|
| 50 |
+
\right).\left(
|
| 51 |
+
\begin{array}{cc}
|
| 52 |
+
-1 & -2 \\
|
| 53 |
+
2 & -2 \\
|
| 54 |
+
\end{array}
|
| 55 |
+
\right)=\left(
|
| 56 |
+
\begin{array}{cc}
|
| 57 |
+
\_ & \_ \\
|
| 58 |
+
\_ & \_ \\
|
| 59 |
+
\_ & \_ \\
|
| 60 |
+
\end{array}
|
| 61 |
+
\right) \\
|
| 62 |
+
\end{array}
|
| 63 |
+
\\
|
| 64 |
+
|
| 65 |
+
\begin{array}{l}
|
| 66 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 67 |
+
\left(
|
| 68 |
+
\begin{array}{cc}
|
| 69 |
+
-2 & 0 \\
|
| 70 |
+
1 & 1 \\
|
| 71 |
+
-2 & 0 \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right).\left(
|
| 74 |
+
\begin{array}{cc}
|
| 75 |
+
-1 & -2 \\
|
| 76 |
+
2 & -2 \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right)=\left(
|
| 79 |
+
\begin{array}{cc}
|
| 80 |
+
\_ & \_ \\
|
| 81 |
+
\_ & \_ \\
|
| 82 |
+
\_ & \_ \\
|
| 83 |
+
\end{array}
|
| 84 |
+
\right) \\
|
| 85 |
+
\end{array}
|
| 86 |
+
\\
|
| 87 |
+
|
| 88 |
+
\begin{array}{l}
|
| 89 |
+
|
| 90 |
+
\begin{array}{l}
|
| 91 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-1)+0\ 2=2. \\
|
| 92 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\\
|
| 95 |
+
\left(
|
| 96 |
+
\begin{array}{cc}
|
| 97 |
+
-2 & 0 \\
|
| 98 |
+
1 & 1 \\
|
| 99 |
+
-2 & 0 \\
|
| 100 |
+
\end{array}
|
| 101 |
+
\right).\left(
|
| 102 |
+
\begin{array}{cc}
|
| 103 |
+
-1 & -2 \\
|
| 104 |
+
2 & -2 \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\right)=\left(
|
| 107 |
+
\begin{array}{cc}
|
| 108 |
+
\fbox{$2$} & \_ \\
|
| 109 |
+
\_ & \_ \\
|
| 110 |
+
\_ & \_ \\
|
| 111 |
+
\end{array}
|
| 112 |
+
\right) \\
|
| 113 |
+
\end{array}
|
| 114 |
+
\\
|
| 115 |
+
|
| 116 |
+
\begin{array}{l}
|
| 117 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 118 |
+
\left(
|
| 119 |
+
\begin{array}{cc}
|
| 120 |
+
-2 & 0 \\
|
| 121 |
+
1 & 1 \\
|
| 122 |
+
-2 & 0 \\
|
| 123 |
+
\end{array}
|
| 124 |
+
\right).\left(
|
| 125 |
+
\begin{array}{cc}
|
| 126 |
+
-1 & -2 \\
|
| 127 |
+
2 & -2 \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right)=\left(
|
| 130 |
+
\begin{array}{cc}
|
| 131 |
+
2 & \_ \\
|
| 132 |
+
\_ & \_ \\
|
| 133 |
+
\_ & \_ \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right) \\
|
| 136 |
+
\end{array}
|
| 137 |
+
\\
|
| 138 |
+
|
| 139 |
+
\begin{array}{l}
|
| 140 |
+
|
| 141 |
+
\begin{array}{l}
|
| 142 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-2)+0 (-2)=4. \\
|
| 143 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 144 |
+
\end{array}
|
| 145 |
+
\\
|
| 146 |
+
\left(
|
| 147 |
+
\begin{array}{cc}
|
| 148 |
+
-2 & 0 \\
|
| 149 |
+
1 & 1 \\
|
| 150 |
+
-2 & 0 \\
|
| 151 |
+
\end{array}
|
| 152 |
+
\right).\left(
|
| 153 |
+
\begin{array}{cc}
|
| 154 |
+
-1 & -2 \\
|
| 155 |
+
2 & -2 \\
|
| 156 |
+
\end{array}
|
| 157 |
+
\right)=\left(
|
| 158 |
+
\begin{array}{cc}
|
| 159 |
+
2 & \fbox{$4$} \\
|
| 160 |
+
\_ & \_ \\
|
| 161 |
+
\_ & \_ \\
|
| 162 |
+
\end{array}
|
| 163 |
+
\right) \\
|
| 164 |
+
\end{array}
|
| 165 |
+
\\
|
| 166 |
+
|
| 167 |
+
\begin{array}{l}
|
| 168 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 169 |
+
\left(
|
| 170 |
+
\begin{array}{cc}
|
| 171 |
+
-2 & 0 \\
|
| 172 |
+
1 & 1 \\
|
| 173 |
+
-2 & 0 \\
|
| 174 |
+
\end{array}
|
| 175 |
+
\right).\left(
|
| 176 |
+
\begin{array}{cc}
|
| 177 |
+
-1 & -2 \\
|
| 178 |
+
2 & -2 \\
|
| 179 |
+
\end{array}
|
| 180 |
+
\right)=\left(
|
| 181 |
+
\begin{array}{cc}
|
| 182 |
+
2 & 4 \\
|
| 183 |
+
\_ & \_ \\
|
| 184 |
+
\_ & \_ \\
|
| 185 |
+
\end{array}
|
| 186 |
+
\right) \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\\
|
| 189 |
+
|
| 190 |
+
\begin{array}{l}
|
| 191 |
+
|
| 192 |
+
\begin{array}{l}
|
| 193 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1 (-1)+1\ 2=1. \\
|
| 194 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
\left(
|
| 198 |
+
\begin{array}{cc}
|
| 199 |
+
-2 & 0 \\
|
| 200 |
+
1 & 1 \\
|
| 201 |
+
-2 & 0 \\
|
| 202 |
+
\end{array}
|
| 203 |
+
\right).\left(
|
| 204 |
+
\begin{array}{cc}
|
| 205 |
+
-1 & -2 \\
|
| 206 |
+
2 & -2 \\
|
| 207 |
+
\end{array}
|
| 208 |
+
\right)=\left(
|
| 209 |
+
\begin{array}{cc}
|
| 210 |
+
2 & 4 \\
|
| 211 |
+
\fbox{$1$} & \_ \\
|
| 212 |
+
\_ & \_ \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right) \\
|
| 215 |
+
\end{array}
|
| 216 |
+
\\
|
| 217 |
+
|
| 218 |
+
\begin{array}{l}
|
| 219 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 220 |
+
\left(
|
| 221 |
+
\begin{array}{cc}
|
| 222 |
+
-2 & 0 \\
|
| 223 |
+
1 & 1 \\
|
| 224 |
+
-2 & 0 \\
|
| 225 |
+
\end{array}
|
| 226 |
+
\right).\left(
|
| 227 |
+
\begin{array}{cc}
|
| 228 |
+
-1 & -2 \\
|
| 229 |
+
2 & -2 \\
|
| 230 |
+
\end{array}
|
| 231 |
+
\right)=\left(
|
| 232 |
+
\begin{array}{cc}
|
| 233 |
+
2 & 4 \\
|
| 234 |
+
1 & \_ \\
|
| 235 |
+
\_ & \_ \\
|
| 236 |
+
\end{array}
|
| 237 |
+
\right) \\
|
| 238 |
+
\end{array}
|
| 239 |
+
\\
|
| 240 |
+
|
| 241 |
+
\begin{array}{l}
|
| 242 |
+
|
| 243 |
+
\begin{array}{l}
|
| 244 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1 (-2)+1 (-2)=-4. \\
|
| 245 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\\
|
| 248 |
+
\left(
|
| 249 |
+
\begin{array}{cc}
|
| 250 |
+
-2 & 0 \\
|
| 251 |
+
1 & 1 \\
|
| 252 |
+
-2 & 0 \\
|
| 253 |
+
\end{array}
|
| 254 |
+
\right).\left(
|
| 255 |
+
\begin{array}{cc}
|
| 256 |
+
-1 & -2 \\
|
| 257 |
+
2 & -2 \\
|
| 258 |
+
\end{array}
|
| 259 |
+
\right)=\left(
|
| 260 |
+
\begin{array}{cc}
|
| 261 |
+
2 & 4 \\
|
| 262 |
+
1 & \fbox{$-4$} \\
|
| 263 |
+
\_ & \_ \\
|
| 264 |
+
\end{array}
|
| 265 |
+
\right) \\
|
| 266 |
+
\end{array}
|
| 267 |
+
\\
|
| 268 |
+
|
| 269 |
+
\begin{array}{l}
|
| 270 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 271 |
+
\left(
|
| 272 |
+
\begin{array}{cc}
|
| 273 |
+
-2 & 0 \\
|
| 274 |
+
1 & 1 \\
|
| 275 |
+
-2 & 0 \\
|
| 276 |
+
\end{array}
|
| 277 |
+
\right).\left(
|
| 278 |
+
\begin{array}{cc}
|
| 279 |
+
-1 & -2 \\
|
| 280 |
+
2 & -2 \\
|
| 281 |
+
\end{array}
|
| 282 |
+
\right)=\left(
|
| 283 |
+
\begin{array}{cc}
|
| 284 |
+
2 & 4 \\
|
| 285 |
+
1 & -4 \\
|
| 286 |
+
\_ & \_ \\
|
| 287 |
+
\end{array}
|
| 288 |
+
\right) \\
|
| 289 |
+
\end{array}
|
| 290 |
+
\\
|
| 291 |
+
|
| 292 |
+
\begin{array}{l}
|
| 293 |
+
|
| 294 |
+
\begin{array}{l}
|
| 295 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-1)+0\ 2=2. \\
|
| 296 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 297 |
+
\end{array}
|
| 298 |
+
\\
|
| 299 |
+
\left(
|
| 300 |
+
\begin{array}{cc}
|
| 301 |
+
-2 & 0 \\
|
| 302 |
+
1 & 1 \\
|
| 303 |
+
-2 & 0 \\
|
| 304 |
+
\end{array}
|
| 305 |
+
\right).\left(
|
| 306 |
+
\begin{array}{cc}
|
| 307 |
+
-1 & -2 \\
|
| 308 |
+
2 & -2 \\
|
| 309 |
+
\end{array}
|
| 310 |
+
\right)=\left(
|
| 311 |
+
\begin{array}{cc}
|
| 312 |
+
2 & 4 \\
|
| 313 |
+
1 & -4 \\
|
| 314 |
+
\fbox{$2$} & \_ \\
|
| 315 |
+
\end{array}
|
| 316 |
+
\right) \\
|
| 317 |
+
\end{array}
|
| 318 |
+
\\
|
| 319 |
+
|
| 320 |
+
\begin{array}{l}
|
| 321 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 322 |
+
\left(
|
| 323 |
+
\begin{array}{cc}
|
| 324 |
+
-2 & 0 \\
|
| 325 |
+
1 & 1 \\
|
| 326 |
+
-2 & 0 \\
|
| 327 |
+
\end{array}
|
| 328 |
+
\right).\left(
|
| 329 |
+
\begin{array}{cc}
|
| 330 |
+
-1 & -2 \\
|
| 331 |
+
2 & -2 \\
|
| 332 |
+
\end{array}
|
| 333 |
+
\right)=\left(
|
| 334 |
+
\begin{array}{cc}
|
| 335 |
+
2 & 4 \\
|
| 336 |
+
1 & -4 \\
|
| 337 |
+
2 & \_ \\
|
| 338 |
+
\end{array}
|
| 339 |
+
\right) \\
|
| 340 |
+
\end{array}
|
| 341 |
+
\\
|
| 342 |
+
|
| 343 |
+
\begin{array}{l}
|
| 344 |
+
|
| 345 |
+
\begin{array}{l}
|
| 346 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-2)+0 (-2)=4. \\
|
| 347 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 348 |
+
\end{array}
|
| 349 |
+
\\
|
| 350 |
+
\fbox{$
|
| 351 |
+
\begin{array}{ll}
|
| 352 |
+
\text{Answer:} & \\
|
| 353 |
+
\text{} & \left(
|
| 354 |
+
\begin{array}{cc}
|
| 355 |
+
-2 & 0 \\
|
| 356 |
+
1 & 1 \\
|
| 357 |
+
-2 & 0 \\
|
| 358 |
+
\end{array}
|
| 359 |
+
\right).\left(
|
| 360 |
+
\begin{array}{cc}
|
| 361 |
+
-1 & -2 \\
|
| 362 |
+
2 & -2 \\
|
| 363 |
+
\end{array}
|
| 364 |
+
\right)=\left(
|
| 365 |
+
\begin{array}{cc}
|
| 366 |
+
2 & 4 \\
|
| 367 |
+
1 & -4 \\
|
| 368 |
+
2 & \fbox{$4$} \\
|
| 369 |
+
\end{array}
|
| 370 |
+
\right) \\
|
| 371 |
+
\end{array}
|
| 372 |
+
$} \\
|
| 373 |
+
\end{array}
|
| 374 |
+
\\
|
| 375 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/39.txt
ADDED
|
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
-2 & -2 \\
|
| 6 |
+
2 & 3 \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{cc}
|
| 11 |
+
-1 & -2 \\
|
| 12 |
+
3 & 3 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$.
|
| 15 |
+
Answer:
|
| 16 |
+
\begin{array}{l}
|
| 17 |
+
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
\text{Multiply the following matrices}: \\
|
| 20 |
+
\left(
|
| 21 |
+
\begin{array}{cc}
|
| 22 |
+
-2 & -2 \\
|
| 23 |
+
2 & 3 \\
|
| 24 |
+
\end{array}
|
| 25 |
+
\right).\left(
|
| 26 |
+
\begin{array}{cc}
|
| 27 |
+
-1 & -2 \\
|
| 28 |
+
3 & 3 \\
|
| 29 |
+
\end{array}
|
| 30 |
+
\right) \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\\
|
| 33 |
+
\hline
|
| 34 |
+
|
| 35 |
+
\begin{array}{l}
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 2. \\
|
| 39 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 2: \\
|
| 40 |
+
\end{array}
|
| 41 |
+
\\
|
| 42 |
+
\left(
|
| 43 |
+
\begin{array}{cc}
|
| 44 |
+
-2 & -2 \\
|
| 45 |
+
2 & 3 \\
|
| 46 |
+
\end{array}
|
| 47 |
+
\right).\left(
|
| 48 |
+
\begin{array}{cc}
|
| 49 |
+
-1 & -2 \\
|
| 50 |
+
3 & 3 \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right)=\left(
|
| 53 |
+
\begin{array}{cc}
|
| 54 |
+
\_ & \_ \\
|
| 55 |
+
\_ & \_ \\
|
| 56 |
+
\end{array}
|
| 57 |
+
\right) \\
|
| 58 |
+
\end{array}
|
| 59 |
+
\\
|
| 60 |
+
|
| 61 |
+
\begin{array}{l}
|
| 62 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 63 |
+
\left(
|
| 64 |
+
\begin{array}{cc}
|
| 65 |
+
-2 & -2 \\
|
| 66 |
+
2 & 3 \\
|
| 67 |
+
\end{array}
|
| 68 |
+
\right).\left(
|
| 69 |
+
\begin{array}{cc}
|
| 70 |
+
-1 & -2 \\
|
| 71 |
+
3 & 3 \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right)=\left(
|
| 74 |
+
\begin{array}{cc}
|
| 75 |
+
\_ & \_ \\
|
| 76 |
+
\_ & \_ \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right) \\
|
| 79 |
+
\end{array}
|
| 80 |
+
\\
|
| 81 |
+
|
| 82 |
+
\begin{array}{l}
|
| 83 |
+
|
| 84 |
+
\begin{array}{l}
|
| 85 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-1)+(-2)\, \times \, 3=-4. \\
|
| 86 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\\
|
| 89 |
+
\left(
|
| 90 |
+
\begin{array}{cc}
|
| 91 |
+
-2 & -2 \\
|
| 92 |
+
2 & 3 \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\right).\left(
|
| 95 |
+
\begin{array}{cc}
|
| 96 |
+
-1 & -2 \\
|
| 97 |
+
3 & 3 \\
|
| 98 |
+
\end{array}
|
| 99 |
+
\right)=\left(
|
| 100 |
+
\begin{array}{cc}
|
| 101 |
+
\fbox{$-4$} & \_ \\
|
| 102 |
+
\_ & \_ \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right) \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\\
|
| 107 |
+
|
| 108 |
+
\begin{array}{l}
|
| 109 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 110 |
+
\left(
|
| 111 |
+
\begin{array}{cc}
|
| 112 |
+
-2 & -2 \\
|
| 113 |
+
2 & 3 \\
|
| 114 |
+
\end{array}
|
| 115 |
+
\right).\left(
|
| 116 |
+
\begin{array}{cc}
|
| 117 |
+
-1 & -2 \\
|
| 118 |
+
3 & 3 \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right)=\left(
|
| 121 |
+
\begin{array}{cc}
|
| 122 |
+
-4 & \_ \\
|
| 123 |
+
\_ & \_ \\
|
| 124 |
+
\end{array}
|
| 125 |
+
\right) \\
|
| 126 |
+
\end{array}
|
| 127 |
+
\\
|
| 128 |
+
|
| 129 |
+
\begin{array}{l}
|
| 130 |
+
|
| 131 |
+
\begin{array}{l}
|
| 132 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-2)\, (-2)+(-2)\, \times \, 3=-2. \\
|
| 133 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\\
|
| 136 |
+
\left(
|
| 137 |
+
\begin{array}{cc}
|
| 138 |
+
-2 & -2 \\
|
| 139 |
+
2 & 3 \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right).\left(
|
| 142 |
+
\begin{array}{cc}
|
| 143 |
+
-1 & -2 \\
|
| 144 |
+
3 & 3 \\
|
| 145 |
+
\end{array}
|
| 146 |
+
\right)=\left(
|
| 147 |
+
\begin{array}{cc}
|
| 148 |
+
-4 & \fbox{$-2$} \\
|
| 149 |
+
\_ & \_ \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\right) \\
|
| 152 |
+
\end{array}
|
| 153 |
+
\\
|
| 154 |
+
|
| 155 |
+
\begin{array}{l}
|
| 156 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 157 |
+
\left(
|
| 158 |
+
\begin{array}{cc}
|
| 159 |
+
-2 & -2 \\
|
| 160 |
+
2 & 3 \\
|
| 161 |
+
\end{array}
|
| 162 |
+
\right).\left(
|
| 163 |
+
\begin{array}{cc}
|
| 164 |
+
-1 & -2 \\
|
| 165 |
+
3 & 3 \\
|
| 166 |
+
\end{array}
|
| 167 |
+
\right)=\left(
|
| 168 |
+
\begin{array}{cc}
|
| 169 |
+
-4 & -2 \\
|
| 170 |
+
\_ & \_ \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\right) \\
|
| 173 |
+
\end{array}
|
| 174 |
+
\\
|
| 175 |
+
|
| 176 |
+
\begin{array}{l}
|
| 177 |
+
|
| 178 |
+
\begin{array}{l}
|
| 179 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2 (-1)+3\ 3=7. \\
|
| 180 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\\
|
| 183 |
+
\left(
|
| 184 |
+
\begin{array}{cc}
|
| 185 |
+
-2 & -2 \\
|
| 186 |
+
2 & 3 \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right).\left(
|
| 189 |
+
\begin{array}{cc}
|
| 190 |
+
-1 & -2 \\
|
| 191 |
+
3 & 3 \\
|
| 192 |
+
\end{array}
|
| 193 |
+
\right)=\left(
|
| 194 |
+
\begin{array}{cc}
|
| 195 |
+
-4 & -2 \\
|
| 196 |
+
\fbox{$7$} & \_ \\
|
| 197 |
+
\end{array}
|
| 198 |
+
\right) \\
|
| 199 |
+
\end{array}
|
| 200 |
+
\\
|
| 201 |
+
|
| 202 |
+
\begin{array}{l}
|
| 203 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 204 |
+
\left(
|
| 205 |
+
\begin{array}{cc}
|
| 206 |
+
-2 & -2 \\
|
| 207 |
+
2 & 3 \\
|
| 208 |
+
\end{array}
|
| 209 |
+
\right).\left(
|
| 210 |
+
\begin{array}{cc}
|
| 211 |
+
-1 & -2 \\
|
| 212 |
+
3 & 3 \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right)=\left(
|
| 215 |
+
\begin{array}{cc}
|
| 216 |
+
-4 & -2 \\
|
| 217 |
+
7 & \_ \\
|
| 218 |
+
\end{array}
|
| 219 |
+
\right) \\
|
| 220 |
+
\end{array}
|
| 221 |
+
\\
|
| 222 |
+
|
| 223 |
+
\begin{array}{l}
|
| 224 |
+
|
| 225 |
+
\begin{array}{l}
|
| 226 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }2 (-2)+3\ 3=5. \\
|
| 227 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 228 |
+
\end{array}
|
| 229 |
+
\\
|
| 230 |
+
\fbox{$
|
| 231 |
+
\begin{array}{ll}
|
| 232 |
+
\text{Answer:} & \\
|
| 233 |
+
\text{} & \left(
|
| 234 |
+
\begin{array}{cc}
|
| 235 |
+
-2 & -2 \\
|
| 236 |
+
2 & 3 \\
|
| 237 |
+
\end{array}
|
| 238 |
+
\right).\left(
|
| 239 |
+
\begin{array}{cc}
|
| 240 |
+
-1 & -2 \\
|
| 241 |
+
3 & 3 \\
|
| 242 |
+
\end{array}
|
| 243 |
+
\right)=\left(
|
| 244 |
+
\begin{array}{cc}
|
| 245 |
+
-4 & -2 \\
|
| 246 |
+
7 & \fbox{$5$} \\
|
| 247 |
+
\end{array}
|
| 248 |
+
\right) \\
|
| 249 |
+
\end{array}
|
| 250 |
+
$} \\
|
| 251 |
+
\end{array}
|
| 252 |
+
\\
|
| 253 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/4014.txt
ADDED
|
@@ -0,0 +1,528 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
-\frac{6}{7} & -\frac{4}{7} \\
|
| 6 |
+
\frac{18}{7} & -\frac{8}{7} \\
|
| 7 |
+
-\frac{19}{7} & \frac{20}{7} \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{ccc}
|
| 12 |
+
-1 & 0 & -\frac{12}{7} \\
|
| 13 |
+
\frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$.
|
| 16 |
+
Answer:
|
| 17 |
+
\begin{array}{l}
|
| 18 |
+
|
| 19 |
+
\begin{array}{l}
|
| 20 |
+
\text{Multiply the following matrices}: \\
|
| 21 |
+
\left(
|
| 22 |
+
\begin{array}{cc}
|
| 23 |
+
-\frac{6}{7} & -\frac{4}{7} \\
|
| 24 |
+
\frac{18}{7} & -\frac{8}{7} \\
|
| 25 |
+
-\frac{19}{7} & \frac{20}{7} \\
|
| 26 |
+
\end{array}
|
| 27 |
+
\right).\left(
|
| 28 |
+
\begin{array}{ccc}
|
| 29 |
+
-1 & 0 & -\frac{12}{7} \\
|
| 30 |
+
\frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\right) \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\\
|
| 35 |
+
\hline
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 3. \\
|
| 41 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 3: \\
|
| 42 |
+
\end{array}
|
| 43 |
+
\\
|
| 44 |
+
\left(
|
| 45 |
+
\begin{array}{cc}
|
| 46 |
+
-\frac{6}{7} & -\frac{4}{7} \\
|
| 47 |
+
\frac{18}{7} & -\frac{8}{7} \\
|
| 48 |
+
-\frac{19}{7} & \frac{20}{7} \\
|
| 49 |
+
\end{array}
|
| 50 |
+
\right).\left(
|
| 51 |
+
\begin{array}{ccc}
|
| 52 |
+
-1 & 0 & -\frac{12}{7} \\
|
| 53 |
+
\frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
|
| 54 |
+
\end{array}
|
| 55 |
+
\right)=\left(
|
| 56 |
+
\begin{array}{ccc}
|
| 57 |
+
\_ & \_ & \_ \\
|
| 58 |
+
\_ & \_ & \_ \\
|
| 59 |
+
\_ & \_ & \_ \\
|
| 60 |
+
\end{array}
|
| 61 |
+
\right) \\
|
| 62 |
+
\end{array}
|
| 63 |
+
\\
|
| 64 |
+
|
| 65 |
+
\begin{array}{l}
|
| 66 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 67 |
+
\left(
|
| 68 |
+
\begin{array}{cc}
|
| 69 |
+
-\frac{6}{7} & -\frac{4}{7} \\
|
| 70 |
+
\frac{18}{7} & -\frac{8}{7} \\
|
| 71 |
+
-\frac{19}{7} & \frac{20}{7} \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right).\left(
|
| 74 |
+
\begin{array}{ccc}
|
| 75 |
+
-1 & 0 & -\frac{12}{7} \\
|
| 76 |
+
\frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right)=\left(
|
| 79 |
+
\begin{array}{ccc}
|
| 80 |
+
\_ & \_ & \_ \\
|
| 81 |
+
\_ & \_ & \_ \\
|
| 82 |
+
\_ & \_ & \_ \\
|
| 83 |
+
\end{array}
|
| 84 |
+
\right) \\
|
| 85 |
+
\end{array}
|
| 86 |
+
\\
|
| 87 |
+
|
| 88 |
+
\begin{array}{l}
|
| 89 |
+
|
| 90 |
+
\begin{array}{l}
|
| 91 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{6}{7}\right)\, (-1)+\left(-\frac{4}{7}\right)\, \times \, \frac{8}{7}=\frac{10}{49}. \\
|
| 92 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\\
|
| 95 |
+
\left(
|
| 96 |
+
\begin{array}{cc}
|
| 97 |
+
-\frac{6}{7} & -\frac{4}{7} \\
|
| 98 |
+
\frac{18}{7} & -\frac{8}{7} \\
|
| 99 |
+
-\frac{19}{7} & \frac{20}{7} \\
|
| 100 |
+
\end{array}
|
| 101 |
+
\right).\left(
|
| 102 |
+
\begin{array}{ccc}
|
| 103 |
+
-1 & 0 & -\frac{12}{7} \\
|
| 104 |
+
\frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\right)=\left(
|
| 107 |
+
\begin{array}{ccc}
|
| 108 |
+
\fbox{$\frac{10}{49}$} & \_ & \_ \\
|
| 109 |
+
\_ & \_ & \_ \\
|
| 110 |
+
\_ & \_ & \_ \\
|
| 111 |
+
\end{array}
|
| 112 |
+
\right) \\
|
| 113 |
+
\end{array}
|
| 114 |
+
\\
|
| 115 |
+
|
| 116 |
+
\begin{array}{l}
|
| 117 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 118 |
+
\left(
|
| 119 |
+
\begin{array}{cc}
|
| 120 |
+
-\frac{6}{7} & -\frac{4}{7} \\
|
| 121 |
+
\frac{18}{7} & -\frac{8}{7} \\
|
| 122 |
+
-\frac{19}{7} & \frac{20}{7} \\
|
| 123 |
+
\end{array}
|
| 124 |
+
\right).\left(
|
| 125 |
+
\begin{array}{ccc}
|
| 126 |
+
-1 & 0 & -\frac{12}{7} \\
|
| 127 |
+
\frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right)=\left(
|
| 130 |
+
\begin{array}{ccc}
|
| 131 |
+
\frac{10}{49} & \_ & \_ \\
|
| 132 |
+
\_ & \_ & \_ \\
|
| 133 |
+
\_ & \_ & \_ \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right) \\
|
| 136 |
+
\end{array}
|
| 137 |
+
\\
|
| 138 |
+
|
| 139 |
+
\begin{array}{l}
|
| 140 |
+
|
| 141 |
+
\begin{array}{l}
|
| 142 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{6}{7}\right)\, \times \, 0+\left(-\frac{4}{7}\right)\, \left(-\frac{8}{7}\right)=\frac{32}{49}. \\
|
| 143 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 144 |
+
\end{array}
|
| 145 |
+
\\
|
| 146 |
+
\left(
|
| 147 |
+
\begin{array}{cc}
|
| 148 |
+
-\frac{6}{7} & -\frac{4}{7} \\
|
| 149 |
+
\frac{18}{7} & -\frac{8}{7} \\
|
| 150 |
+
-\frac{19}{7} & \frac{20}{7} \\
|
| 151 |
+
\end{array}
|
| 152 |
+
\right).\left(
|
| 153 |
+
\begin{array}{ccc}
|
| 154 |
+
-1 & 0 & -\frac{12}{7} \\
|
| 155 |
+
\frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
|
| 156 |
+
\end{array}
|
| 157 |
+
\right)=\left(
|
| 158 |
+
\begin{array}{ccc}
|
| 159 |
+
\frac{10}{49} & \fbox{$\frac{32}{49}$} & \_ \\
|
| 160 |
+
\_ & \_ & \_ \\
|
| 161 |
+
\_ & \_ & \_ \\
|
| 162 |
+
\end{array}
|
| 163 |
+
\right) \\
|
| 164 |
+
\end{array}
|
| 165 |
+
\\
|
| 166 |
+
|
| 167 |
+
\begin{array}{l}
|
| 168 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 169 |
+
\left(
|
| 170 |
+
\begin{array}{cc}
|
| 171 |
+
-\frac{6}{7} & -\frac{4}{7} \\
|
| 172 |
+
\frac{18}{7} & -\frac{8}{7} \\
|
| 173 |
+
-\frac{19}{7} & \frac{20}{7} \\
|
| 174 |
+
\end{array}
|
| 175 |
+
\right).\left(
|
| 176 |
+
\begin{array}{ccc}
|
| 177 |
+
-1 & 0 & -\frac{12}{7} \\
|
| 178 |
+
\frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
|
| 179 |
+
\end{array}
|
| 180 |
+
\right)=\left(
|
| 181 |
+
\begin{array}{ccc}
|
| 182 |
+
\frac{10}{49} & \frac{32}{49} & \_ \\
|
| 183 |
+
\_ & \_ & \_ \\
|
| 184 |
+
\_ & \_ & \_ \\
|
| 185 |
+
\end{array}
|
| 186 |
+
\right) \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\\
|
| 189 |
+
|
| 190 |
+
\begin{array}{l}
|
| 191 |
+
|
| 192 |
+
\begin{array}{l}
|
| 193 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{6}{7}\right)\, \left(-\frac{12}{7}\right)+\left(-\frac{4}{7}\right)\, \times \, \frac{20}{7}=-\frac{8}{49}. \\
|
| 194 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
\left(
|
| 198 |
+
\begin{array}{cc}
|
| 199 |
+
-\frac{6}{7} & -\frac{4}{7} \\
|
| 200 |
+
\frac{18}{7} & -\frac{8}{7} \\
|
| 201 |
+
-\frac{19}{7} & \frac{20}{7} \\
|
| 202 |
+
\end{array}
|
| 203 |
+
\right).\left(
|
| 204 |
+
\begin{array}{ccc}
|
| 205 |
+
-1 & 0 & -\frac{12}{7} \\
|
| 206 |
+
\frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
|
| 207 |
+
\end{array}
|
| 208 |
+
\right)=\left(
|
| 209 |
+
\begin{array}{ccc}
|
| 210 |
+
\frac{10}{49} & \frac{32}{49} & \fbox{$-\frac{8}{49}$} \\
|
| 211 |
+
\_ & \_ & \_ \\
|
| 212 |
+
\_ & \_ & \_ \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right) \\
|
| 215 |
+
\end{array}
|
| 216 |
+
\\
|
| 217 |
+
|
| 218 |
+
\begin{array}{l}
|
| 219 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 220 |
+
\left(
|
| 221 |
+
\begin{array}{cc}
|
| 222 |
+
-\frac{6}{7} & -\frac{4}{7} \\
|
| 223 |
+
\frac{18}{7} & -\frac{8}{7} \\
|
| 224 |
+
-\frac{19}{7} & \frac{20}{7} \\
|
| 225 |
+
\end{array}
|
| 226 |
+
\right).\left(
|
| 227 |
+
\begin{array}{ccc}
|
| 228 |
+
-1 & 0 & -\frac{12}{7} \\
|
| 229 |
+
\frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
|
| 230 |
+
\end{array}
|
| 231 |
+
\right)=\left(
|
| 232 |
+
\begin{array}{ccc}
|
| 233 |
+
\frac{10}{49} & \frac{32}{49} & -\frac{8}{49} \\
|
| 234 |
+
\_ & \_ & \_ \\
|
| 235 |
+
\_ & \_ & \_ \\
|
| 236 |
+
\end{array}
|
| 237 |
+
\right) \\
|
| 238 |
+
\end{array}
|
| 239 |
+
\\
|
| 240 |
+
|
| 241 |
+
\begin{array}{l}
|
| 242 |
+
|
| 243 |
+
\begin{array}{l}
|
| 244 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{18 (-1)}{7}+\left(-\frac{8}{7}\right)\, \times \, \frac{8}{7}=-\frac{190}{49}. \\
|
| 245 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\\
|
| 248 |
+
\left(
|
| 249 |
+
\begin{array}{cc}
|
| 250 |
+
-\frac{6}{7} & -\frac{4}{7} \\
|
| 251 |
+
\frac{18}{7} & -\frac{8}{7} \\
|
| 252 |
+
-\frac{19}{7} & \frac{20}{7} \\
|
| 253 |
+
\end{array}
|
| 254 |
+
\right).\left(
|
| 255 |
+
\begin{array}{ccc}
|
| 256 |
+
-1 & 0 & -\frac{12}{7} \\
|
| 257 |
+
\frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
|
| 258 |
+
\end{array}
|
| 259 |
+
\right)=\left(
|
| 260 |
+
\begin{array}{ccc}
|
| 261 |
+
\frac{10}{49} & \frac{32}{49} & -\frac{8}{49} \\
|
| 262 |
+
\fbox{$-\frac{190}{49}$} & \_ & \_ \\
|
| 263 |
+
\_ & \_ & \_ \\
|
| 264 |
+
\end{array}
|
| 265 |
+
\right) \\
|
| 266 |
+
\end{array}
|
| 267 |
+
\\
|
| 268 |
+
|
| 269 |
+
\begin{array}{l}
|
| 270 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 271 |
+
\left(
|
| 272 |
+
\begin{array}{cc}
|
| 273 |
+
-\frac{6}{7} & -\frac{4}{7} \\
|
| 274 |
+
\frac{18}{7} & -\frac{8}{7} \\
|
| 275 |
+
-\frac{19}{7} & \frac{20}{7} \\
|
| 276 |
+
\end{array}
|
| 277 |
+
\right).\left(
|
| 278 |
+
\begin{array}{ccc}
|
| 279 |
+
-1 & 0 & -\frac{12}{7} \\
|
| 280 |
+
\frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
|
| 281 |
+
\end{array}
|
| 282 |
+
\right)=\left(
|
| 283 |
+
\begin{array}{ccc}
|
| 284 |
+
\frac{10}{49} & \frac{32}{49} & -\frac{8}{49} \\
|
| 285 |
+
-\frac{190}{49} & \_ & \_ \\
|
| 286 |
+
\_ & \_ & \_ \\
|
| 287 |
+
\end{array}
|
| 288 |
+
\right) \\
|
| 289 |
+
\end{array}
|
| 290 |
+
\\
|
| 291 |
+
|
| 292 |
+
\begin{array}{l}
|
| 293 |
+
|
| 294 |
+
\begin{array}{l}
|
| 295 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{18\ 0}{7}+\left(-\frac{8}{7}\right)\, \left(-\frac{8}{7}\right)=\frac{64}{49}. \\
|
| 296 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 297 |
+
\end{array}
|
| 298 |
+
\\
|
| 299 |
+
\left(
|
| 300 |
+
\begin{array}{cc}
|
| 301 |
+
-\frac{6}{7} & -\frac{4}{7} \\
|
| 302 |
+
\frac{18}{7} & -\frac{8}{7} \\
|
| 303 |
+
-\frac{19}{7} & \frac{20}{7} \\
|
| 304 |
+
\end{array}
|
| 305 |
+
\right).\left(
|
| 306 |
+
\begin{array}{ccc}
|
| 307 |
+
-1 & 0 & -\frac{12}{7} \\
|
| 308 |
+
\frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
|
| 309 |
+
\end{array}
|
| 310 |
+
\right)=\left(
|
| 311 |
+
\begin{array}{ccc}
|
| 312 |
+
\frac{10}{49} & \frac{32}{49} & -\frac{8}{49} \\
|
| 313 |
+
-\frac{190}{49} & \fbox{$\frac{64}{49}$} & \_ \\
|
| 314 |
+
\_ & \_ & \_ \\
|
| 315 |
+
\end{array}
|
| 316 |
+
\right) \\
|
| 317 |
+
\end{array}
|
| 318 |
+
\\
|
| 319 |
+
|
| 320 |
+
\begin{array}{l}
|
| 321 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 322 |
+
\left(
|
| 323 |
+
\begin{array}{cc}
|
| 324 |
+
-\frac{6}{7} & -\frac{4}{7} \\
|
| 325 |
+
\frac{18}{7} & -\frac{8}{7} \\
|
| 326 |
+
-\frac{19}{7} & \frac{20}{7} \\
|
| 327 |
+
\end{array}
|
| 328 |
+
\right).\left(
|
| 329 |
+
\begin{array}{ccc}
|
| 330 |
+
-1 & 0 & -\frac{12}{7} \\
|
| 331 |
+
\frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
|
| 332 |
+
\end{array}
|
| 333 |
+
\right)=\left(
|
| 334 |
+
\begin{array}{ccc}
|
| 335 |
+
\frac{10}{49} & \frac{32}{49} & -\frac{8}{49} \\
|
| 336 |
+
-\frac{190}{49} & \frac{64}{49} & \_ \\
|
| 337 |
+
\_ & \_ & \_ \\
|
| 338 |
+
\end{array}
|
| 339 |
+
\right) \\
|
| 340 |
+
\end{array}
|
| 341 |
+
\\
|
| 342 |
+
|
| 343 |
+
\begin{array}{l}
|
| 344 |
+
|
| 345 |
+
\begin{array}{l}
|
| 346 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{18 (-12)}{7\ 7}+\left(-\frac{8}{7}\right)\, \times \, \frac{20}{7}=-\frac{376}{49}. \\
|
| 347 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 348 |
+
\end{array}
|
| 349 |
+
\\
|
| 350 |
+
\left(
|
| 351 |
+
\begin{array}{cc}
|
| 352 |
+
-\frac{6}{7} & -\frac{4}{7} \\
|
| 353 |
+
\frac{18}{7} & -\frac{8}{7} \\
|
| 354 |
+
-\frac{19}{7} & \frac{20}{7} \\
|
| 355 |
+
\end{array}
|
| 356 |
+
\right).\left(
|
| 357 |
+
\begin{array}{ccc}
|
| 358 |
+
-1 & 0 & -\frac{12}{7} \\
|
| 359 |
+
\frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
|
| 360 |
+
\end{array}
|
| 361 |
+
\right)=\left(
|
| 362 |
+
\begin{array}{ccc}
|
| 363 |
+
\frac{10}{49} & \frac{32}{49} & -\frac{8}{49} \\
|
| 364 |
+
-\frac{190}{49} & \frac{64}{49} & \fbox{$-\frac{376}{49}$} \\
|
| 365 |
+
\_ & \_ & \_ \\
|
| 366 |
+
\end{array}
|
| 367 |
+
\right) \\
|
| 368 |
+
\end{array}
|
| 369 |
+
\\
|
| 370 |
+
|
| 371 |
+
\begin{array}{l}
|
| 372 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 373 |
+
\left(
|
| 374 |
+
\begin{array}{cc}
|
| 375 |
+
-\frac{6}{7} & -\frac{4}{7} \\
|
| 376 |
+
\frac{18}{7} & -\frac{8}{7} \\
|
| 377 |
+
-\frac{19}{7} & \frac{20}{7} \\
|
| 378 |
+
\end{array}
|
| 379 |
+
\right).\left(
|
| 380 |
+
\begin{array}{ccc}
|
| 381 |
+
-1 & 0 & -\frac{12}{7} \\
|
| 382 |
+
\frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
|
| 383 |
+
\end{array}
|
| 384 |
+
\right)=\left(
|
| 385 |
+
\begin{array}{ccc}
|
| 386 |
+
\frac{10}{49} & \frac{32}{49} & -\frac{8}{49} \\
|
| 387 |
+
-\frac{190}{49} & \frac{64}{49} & -\frac{376}{49} \\
|
| 388 |
+
\_ & \_ & \_ \\
|
| 389 |
+
\end{array}
|
| 390 |
+
\right) \\
|
| 391 |
+
\end{array}
|
| 392 |
+
\\
|
| 393 |
+
|
| 394 |
+
\begin{array}{l}
|
| 395 |
+
|
| 396 |
+
\begin{array}{l}
|
| 397 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{19}{7}\right)\, (-1)+\frac{20\ 8}{7\ 7}=\frac{293}{49}. \\
|
| 398 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 399 |
+
\end{array}
|
| 400 |
+
\\
|
| 401 |
+
\left(
|
| 402 |
+
\begin{array}{cc}
|
| 403 |
+
-\frac{6}{7} & -\frac{4}{7} \\
|
| 404 |
+
\frac{18}{7} & -\frac{8}{7} \\
|
| 405 |
+
-\frac{19}{7} & \frac{20}{7} \\
|
| 406 |
+
\end{array}
|
| 407 |
+
\right).\left(
|
| 408 |
+
\begin{array}{ccc}
|
| 409 |
+
-1 & 0 & -\frac{12}{7} \\
|
| 410 |
+
\frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
|
| 411 |
+
\end{array}
|
| 412 |
+
\right)=\left(
|
| 413 |
+
\begin{array}{ccc}
|
| 414 |
+
\frac{10}{49} & \frac{32}{49} & -\frac{8}{49} \\
|
| 415 |
+
-\frac{190}{49} & \frac{64}{49} & -\frac{376}{49} \\
|
| 416 |
+
\fbox{$\frac{293}{49}$} & \_ & \_ \\
|
| 417 |
+
\end{array}
|
| 418 |
+
\right) \\
|
| 419 |
+
\end{array}
|
| 420 |
+
\\
|
| 421 |
+
|
| 422 |
+
\begin{array}{l}
|
| 423 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 424 |
+
\left(
|
| 425 |
+
\begin{array}{cc}
|
| 426 |
+
-\frac{6}{7} & -\frac{4}{7} \\
|
| 427 |
+
\frac{18}{7} & -\frac{8}{7} \\
|
| 428 |
+
-\frac{19}{7} & \frac{20}{7} \\
|
| 429 |
+
\end{array}
|
| 430 |
+
\right).\left(
|
| 431 |
+
\begin{array}{ccc}
|
| 432 |
+
-1 & 0 & -\frac{12}{7} \\
|
| 433 |
+
\frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
|
| 434 |
+
\end{array}
|
| 435 |
+
\right)=\left(
|
| 436 |
+
\begin{array}{ccc}
|
| 437 |
+
\frac{10}{49} & \frac{32}{49} & -\frac{8}{49} \\
|
| 438 |
+
-\frac{190}{49} & \frac{64}{49} & -\frac{376}{49} \\
|
| 439 |
+
\frac{293}{49} & \_ & \_ \\
|
| 440 |
+
\end{array}
|
| 441 |
+
\right) \\
|
| 442 |
+
\end{array}
|
| 443 |
+
\\
|
| 444 |
+
|
| 445 |
+
\begin{array}{l}
|
| 446 |
+
|
| 447 |
+
\begin{array}{l}
|
| 448 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{19}{7}\right)\, \times \, 0+\frac{20 (-8)}{7\ 7}=-\frac{160}{49}. \\
|
| 449 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 450 |
+
\end{array}
|
| 451 |
+
\\
|
| 452 |
+
\left(
|
| 453 |
+
\begin{array}{cc}
|
| 454 |
+
-\frac{6}{7} & -\frac{4}{7} \\
|
| 455 |
+
\frac{18}{7} & -\frac{8}{7} \\
|
| 456 |
+
-\frac{19}{7} & \frac{20}{7} \\
|
| 457 |
+
\end{array}
|
| 458 |
+
\right).\left(
|
| 459 |
+
\begin{array}{ccc}
|
| 460 |
+
-1 & 0 & -\frac{12}{7} \\
|
| 461 |
+
\frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
|
| 462 |
+
\end{array}
|
| 463 |
+
\right)=\left(
|
| 464 |
+
\begin{array}{ccc}
|
| 465 |
+
\frac{10}{49} & \frac{32}{49} & -\frac{8}{49} \\
|
| 466 |
+
-\frac{190}{49} & \frac{64}{49} & -\frac{376}{49} \\
|
| 467 |
+
\frac{293}{49} & \fbox{$-\frac{160}{49}$} & \_ \\
|
| 468 |
+
\end{array}
|
| 469 |
+
\right) \\
|
| 470 |
+
\end{array}
|
| 471 |
+
\\
|
| 472 |
+
|
| 473 |
+
\begin{array}{l}
|
| 474 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 475 |
+
\left(
|
| 476 |
+
\begin{array}{cc}
|
| 477 |
+
-\frac{6}{7} & -\frac{4}{7} \\
|
| 478 |
+
\frac{18}{7} & -\frac{8}{7} \\
|
| 479 |
+
-\frac{19}{7} & \frac{20}{7} \\
|
| 480 |
+
\end{array}
|
| 481 |
+
\right).\left(
|
| 482 |
+
\begin{array}{ccc}
|
| 483 |
+
-1 & 0 & -\frac{12}{7} \\
|
| 484 |
+
\frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
|
| 485 |
+
\end{array}
|
| 486 |
+
\right)=\left(
|
| 487 |
+
\begin{array}{ccc}
|
| 488 |
+
\frac{10}{49} & \frac{32}{49} & -\frac{8}{49} \\
|
| 489 |
+
-\frac{190}{49} & \frac{64}{49} & -\frac{376}{49} \\
|
| 490 |
+
\frac{293}{49} & -\frac{160}{49} & \_ \\
|
| 491 |
+
\end{array}
|
| 492 |
+
\right) \\
|
| 493 |
+
\end{array}
|
| 494 |
+
\\
|
| 495 |
+
|
| 496 |
+
\begin{array}{l}
|
| 497 |
+
|
| 498 |
+
\begin{array}{l}
|
| 499 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{19}{7}\right)\, \left(-\frac{12}{7}\right)+\frac{20\ 20}{7\ 7}=\frac{628}{49}. \\
|
| 500 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 501 |
+
\end{array}
|
| 502 |
+
\\
|
| 503 |
+
\fbox{$
|
| 504 |
+
\begin{array}{ll}
|
| 505 |
+
\text{Answer:} & \\
|
| 506 |
+
\text{} & \left(
|
| 507 |
+
\begin{array}{cc}
|
| 508 |
+
-\frac{6}{7} & -\frac{4}{7} \\
|
| 509 |
+
\frac{18}{7} & -\frac{8}{7} \\
|
| 510 |
+
-\frac{19}{7} & \frac{20}{7} \\
|
| 511 |
+
\end{array}
|
| 512 |
+
\right).\left(
|
| 513 |
+
\begin{array}{ccc}
|
| 514 |
+
-1 & 0 & -\frac{12}{7} \\
|
| 515 |
+
\frac{8}{7} & -\frac{8}{7} & \frac{20}{7} \\
|
| 516 |
+
\end{array}
|
| 517 |
+
\right)=\left(
|
| 518 |
+
\begin{array}{ccc}
|
| 519 |
+
\frac{10}{49} & \frac{32}{49} & -\frac{8}{49} \\
|
| 520 |
+
-\frac{190}{49} & \frac{64}{49} & -\frac{376}{49} \\
|
| 521 |
+
\frac{293}{49} & -\frac{160}{49} & \fbox{$\frac{628}{49}$} \\
|
| 522 |
+
\end{array}
|
| 523 |
+
\right) \\
|
| 524 |
+
\end{array}
|
| 525 |
+
$} \\
|
| 526 |
+
\end{array}
|
| 527 |
+
\\
|
| 528 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/4161.txt
ADDED
|
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
-3 & 1 \\
|
| 6 |
+
1 & -1 \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{ccc}
|
| 11 |
+
1 & 1 & 0 \\
|
| 12 |
+
-2 & -2 & -1 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$.
|
| 15 |
+
Answer:
|
| 16 |
+
\begin{array}{l}
|
| 17 |
+
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
\text{Multiply the following matrices}: \\
|
| 20 |
+
\left(
|
| 21 |
+
\begin{array}{cc}
|
| 22 |
+
-3 & 1 \\
|
| 23 |
+
1 & -1 \\
|
| 24 |
+
\end{array}
|
| 25 |
+
\right).\left(
|
| 26 |
+
\begin{array}{ccc}
|
| 27 |
+
1 & 1 & 0 \\
|
| 28 |
+
-2 & -2 & -1 \\
|
| 29 |
+
\end{array}
|
| 30 |
+
\right) \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\\
|
| 33 |
+
\hline
|
| 34 |
+
|
| 35 |
+
\begin{array}{l}
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 3. \\
|
| 39 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 3: \\
|
| 40 |
+
\end{array}
|
| 41 |
+
\\
|
| 42 |
+
\left(
|
| 43 |
+
\begin{array}{cc}
|
| 44 |
+
-3 & 1 \\
|
| 45 |
+
1 & -1 \\
|
| 46 |
+
\end{array}
|
| 47 |
+
\right).\left(
|
| 48 |
+
\begin{array}{ccc}
|
| 49 |
+
1 & 1 & 0 \\
|
| 50 |
+
-2 & -2 & -1 \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right)=\left(
|
| 53 |
+
\begin{array}{ccc}
|
| 54 |
+
\_ & \_ & \_ \\
|
| 55 |
+
\_ & \_ & \_ \\
|
| 56 |
+
\end{array}
|
| 57 |
+
\right) \\
|
| 58 |
+
\end{array}
|
| 59 |
+
\\
|
| 60 |
+
|
| 61 |
+
\begin{array}{l}
|
| 62 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 63 |
+
\left(
|
| 64 |
+
\begin{array}{cc}
|
| 65 |
+
-3 & 1 \\
|
| 66 |
+
1 & -1 \\
|
| 67 |
+
\end{array}
|
| 68 |
+
\right).\left(
|
| 69 |
+
\begin{array}{ccc}
|
| 70 |
+
1 & 1 & 0 \\
|
| 71 |
+
-2 & -2 & -1 \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right)=\left(
|
| 74 |
+
\begin{array}{ccc}
|
| 75 |
+
\_ & \_ & \_ \\
|
| 76 |
+
\_ & \_ & \_ \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right) \\
|
| 79 |
+
\end{array}
|
| 80 |
+
\\
|
| 81 |
+
|
| 82 |
+
\begin{array}{l}
|
| 83 |
+
|
| 84 |
+
\begin{array}{l}
|
| 85 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, \times \, 1+1 (-2)=-5. \\
|
| 86 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\\
|
| 89 |
+
\left(
|
| 90 |
+
\begin{array}{cc}
|
| 91 |
+
-3 & 1 \\
|
| 92 |
+
1 & -1 \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\right).\left(
|
| 95 |
+
\begin{array}{ccc}
|
| 96 |
+
1 & 1 & 0 \\
|
| 97 |
+
-2 & -2 & -1 \\
|
| 98 |
+
\end{array}
|
| 99 |
+
\right)=\left(
|
| 100 |
+
\begin{array}{ccc}
|
| 101 |
+
\fbox{$-5$} & \_ & \_ \\
|
| 102 |
+
\_ & \_ & \_ \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right) \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\\
|
| 107 |
+
|
| 108 |
+
\begin{array}{l}
|
| 109 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 110 |
+
\left(
|
| 111 |
+
\begin{array}{cc}
|
| 112 |
+
-3 & 1 \\
|
| 113 |
+
1 & -1 \\
|
| 114 |
+
\end{array}
|
| 115 |
+
\right).\left(
|
| 116 |
+
\begin{array}{ccc}
|
| 117 |
+
1 & 1 & 0 \\
|
| 118 |
+
-2 & -2 & -1 \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right)=\left(
|
| 121 |
+
\begin{array}{ccc}
|
| 122 |
+
-5 & \_ & \_ \\
|
| 123 |
+
\_ & \_ & \_ \\
|
| 124 |
+
\end{array}
|
| 125 |
+
\right) \\
|
| 126 |
+
\end{array}
|
| 127 |
+
\\
|
| 128 |
+
|
| 129 |
+
\begin{array}{l}
|
| 130 |
+
|
| 131 |
+
\begin{array}{l}
|
| 132 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, \times \, 1+1 (-2)=-5. \\
|
| 133 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\\
|
| 136 |
+
\left(
|
| 137 |
+
\begin{array}{cc}
|
| 138 |
+
-3 & 1 \\
|
| 139 |
+
1 & -1 \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right).\left(
|
| 142 |
+
\begin{array}{ccc}
|
| 143 |
+
1 & 1 & 0 \\
|
| 144 |
+
-2 & -2 & -1 \\
|
| 145 |
+
\end{array}
|
| 146 |
+
\right)=\left(
|
| 147 |
+
\begin{array}{ccc}
|
| 148 |
+
-5 & \fbox{$-5$} & \_ \\
|
| 149 |
+
\_ & \_ & \_ \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\right) \\
|
| 152 |
+
\end{array}
|
| 153 |
+
\\
|
| 154 |
+
|
| 155 |
+
\begin{array}{l}
|
| 156 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 157 |
+
\left(
|
| 158 |
+
\begin{array}{cc}
|
| 159 |
+
-3 & 1 \\
|
| 160 |
+
1 & -1 \\
|
| 161 |
+
\end{array}
|
| 162 |
+
\right).\left(
|
| 163 |
+
\begin{array}{ccc}
|
| 164 |
+
1 & 1 & 0 \\
|
| 165 |
+
-2 & -2 & -1 \\
|
| 166 |
+
\end{array}
|
| 167 |
+
\right)=\left(
|
| 168 |
+
\begin{array}{ccc}
|
| 169 |
+
-5 & -5 & \_ \\
|
| 170 |
+
\_ & \_ & \_ \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\right) \\
|
| 173 |
+
\end{array}
|
| 174 |
+
\\
|
| 175 |
+
|
| 176 |
+
\begin{array}{l}
|
| 177 |
+
|
| 178 |
+
\begin{array}{l}
|
| 179 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, \times \, 0+1 (-1)=-1. \\
|
| 180 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\\
|
| 183 |
+
\left(
|
| 184 |
+
\begin{array}{cc}
|
| 185 |
+
-3 & 1 \\
|
| 186 |
+
1 & -1 \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right).\left(
|
| 189 |
+
\begin{array}{ccc}
|
| 190 |
+
1 & 1 & 0 \\
|
| 191 |
+
-2 & -2 & -1 \\
|
| 192 |
+
\end{array}
|
| 193 |
+
\right)=\left(
|
| 194 |
+
\begin{array}{ccc}
|
| 195 |
+
-5 & -5 & \fbox{$-1$} \\
|
| 196 |
+
\_ & \_ & \_ \\
|
| 197 |
+
\end{array}
|
| 198 |
+
\right) \\
|
| 199 |
+
\end{array}
|
| 200 |
+
\\
|
| 201 |
+
|
| 202 |
+
\begin{array}{l}
|
| 203 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 204 |
+
\left(
|
| 205 |
+
\begin{array}{cc}
|
| 206 |
+
-3 & 1 \\
|
| 207 |
+
1 & -1 \\
|
| 208 |
+
\end{array}
|
| 209 |
+
\right).\left(
|
| 210 |
+
\begin{array}{ccc}
|
| 211 |
+
1 & 1 & 0 \\
|
| 212 |
+
-2 & -2 & -1 \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right)=\left(
|
| 215 |
+
\begin{array}{ccc}
|
| 216 |
+
-5 & -5 & -1 \\
|
| 217 |
+
\_ & \_ & \_ \\
|
| 218 |
+
\end{array}
|
| 219 |
+
\right) \\
|
| 220 |
+
\end{array}
|
| 221 |
+
\\
|
| 222 |
+
|
| 223 |
+
\begin{array}{l}
|
| 224 |
+
|
| 225 |
+
\begin{array}{l}
|
| 226 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1\ 1+(-1)\, (-2)=3. \\
|
| 227 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 228 |
+
\end{array}
|
| 229 |
+
\\
|
| 230 |
+
\left(
|
| 231 |
+
\begin{array}{cc}
|
| 232 |
+
-3 & 1 \\
|
| 233 |
+
1 & -1 \\
|
| 234 |
+
\end{array}
|
| 235 |
+
\right).\left(
|
| 236 |
+
\begin{array}{ccc}
|
| 237 |
+
1 & 1 & 0 \\
|
| 238 |
+
-2 & -2 & -1 \\
|
| 239 |
+
\end{array}
|
| 240 |
+
\right)=\left(
|
| 241 |
+
\begin{array}{ccc}
|
| 242 |
+
-5 & -5 & -1 \\
|
| 243 |
+
\fbox{$3$} & \_ & \_ \\
|
| 244 |
+
\end{array}
|
| 245 |
+
\right) \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\\
|
| 248 |
+
|
| 249 |
+
\begin{array}{l}
|
| 250 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 251 |
+
\left(
|
| 252 |
+
\begin{array}{cc}
|
| 253 |
+
-3 & 1 \\
|
| 254 |
+
1 & -1 \\
|
| 255 |
+
\end{array}
|
| 256 |
+
\right).\left(
|
| 257 |
+
\begin{array}{ccc}
|
| 258 |
+
1 & 1 & 0 \\
|
| 259 |
+
-2 & -2 & -1 \\
|
| 260 |
+
\end{array}
|
| 261 |
+
\right)=\left(
|
| 262 |
+
\begin{array}{ccc}
|
| 263 |
+
-5 & -5 & -1 \\
|
| 264 |
+
3 & \_ & \_ \\
|
| 265 |
+
\end{array}
|
| 266 |
+
\right) \\
|
| 267 |
+
\end{array}
|
| 268 |
+
\\
|
| 269 |
+
|
| 270 |
+
\begin{array}{l}
|
| 271 |
+
|
| 272 |
+
\begin{array}{l}
|
| 273 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1\ 1+(-1)\, (-2)=3. \\
|
| 274 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 275 |
+
\end{array}
|
| 276 |
+
\\
|
| 277 |
+
\left(
|
| 278 |
+
\begin{array}{cc}
|
| 279 |
+
-3 & 1 \\
|
| 280 |
+
1 & -1 \\
|
| 281 |
+
\end{array}
|
| 282 |
+
\right).\left(
|
| 283 |
+
\begin{array}{ccc}
|
| 284 |
+
1 & 1 & 0 \\
|
| 285 |
+
-2 & -2 & -1 \\
|
| 286 |
+
\end{array}
|
| 287 |
+
\right)=\left(
|
| 288 |
+
\begin{array}{ccc}
|
| 289 |
+
-5 & -5 & -1 \\
|
| 290 |
+
3 & \fbox{$3$} & \_ \\
|
| 291 |
+
\end{array}
|
| 292 |
+
\right) \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\\
|
| 295 |
+
|
| 296 |
+
\begin{array}{l}
|
| 297 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 298 |
+
\left(
|
| 299 |
+
\begin{array}{cc}
|
| 300 |
+
-3 & 1 \\
|
| 301 |
+
1 & -1 \\
|
| 302 |
+
\end{array}
|
| 303 |
+
\right).\left(
|
| 304 |
+
\begin{array}{ccc}
|
| 305 |
+
1 & 1 & 0 \\
|
| 306 |
+
-2 & -2 & -1 \\
|
| 307 |
+
\end{array}
|
| 308 |
+
\right)=\left(
|
| 309 |
+
\begin{array}{ccc}
|
| 310 |
+
-5 & -5 & -1 \\
|
| 311 |
+
3 & 3 & \_ \\
|
| 312 |
+
\end{array}
|
| 313 |
+
\right) \\
|
| 314 |
+
\end{array}
|
| 315 |
+
\\
|
| 316 |
+
|
| 317 |
+
\begin{array}{l}
|
| 318 |
+
|
| 319 |
+
\begin{array}{l}
|
| 320 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }1\ 0+(-1)\, (-1)=1. \\
|
| 321 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 322 |
+
\end{array}
|
| 323 |
+
\\
|
| 324 |
+
\fbox{$
|
| 325 |
+
\begin{array}{ll}
|
| 326 |
+
\text{Answer:} & \\
|
| 327 |
+
\text{} & \left(
|
| 328 |
+
\begin{array}{cc}
|
| 329 |
+
-3 & 1 \\
|
| 330 |
+
1 & -1 \\
|
| 331 |
+
\end{array}
|
| 332 |
+
\right).\left(
|
| 333 |
+
\begin{array}{ccc}
|
| 334 |
+
1 & 1 & 0 \\
|
| 335 |
+
-2 & -2 & -1 \\
|
| 336 |
+
\end{array}
|
| 337 |
+
\right)=\left(
|
| 338 |
+
\begin{array}{ccc}
|
| 339 |
+
-5 & -5 & -1 \\
|
| 340 |
+
3 & 3 & \fbox{$1$} \\
|
| 341 |
+
\end{array}
|
| 342 |
+
\right) \\
|
| 343 |
+
\end{array}
|
| 344 |
+
$} \\
|
| 345 |
+
\end{array}
|
| 346 |
+
\\
|
| 347 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/4599.txt
ADDED
|
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
-\frac{7}{4} & -\frac{5}{2} & \frac{1}{4} \\
|
| 6 |
+
-3 & -2 & -\frac{5}{2} \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{ccc}
|
| 11 |
+
-\frac{1}{4} & \frac{11}{4} & -\frac{11}{4} \\
|
| 12 |
+
-\frac{7}{4} & 1 & -\frac{3}{2} \\
|
| 13 |
+
\frac{5}{4} & -\frac{5}{2} & -\frac{5}{2} \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$.
|
| 16 |
+
Answer:
|
| 17 |
+
\begin{array}{l}
|
| 18 |
+
|
| 19 |
+
\begin{array}{l}
|
| 20 |
+
\text{Multiply the following matrices}: \\
|
| 21 |
+
\left(
|
| 22 |
+
\begin{array}{ccc}
|
| 23 |
+
-\frac{7}{4} & -\frac{5}{2} & \frac{1}{4} \\
|
| 24 |
+
-3 & -2 & -\frac{5}{2} \\
|
| 25 |
+
\end{array}
|
| 26 |
+
\right).\left(
|
| 27 |
+
\begin{array}{ccc}
|
| 28 |
+
-\frac{1}{4} & \frac{11}{4} & -\frac{11}{4} \\
|
| 29 |
+
-\frac{7}{4} & 1 & -\frac{3}{2} \\
|
| 30 |
+
\frac{5}{4} & -\frac{5}{2} & -\frac{5}{2} \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\right) \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\\
|
| 35 |
+
\hline
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 3. \\
|
| 41 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 3: \\
|
| 42 |
+
\end{array}
|
| 43 |
+
\\
|
| 44 |
+
\left(
|
| 45 |
+
\begin{array}{ccc}
|
| 46 |
+
-\frac{7}{4} & -\frac{5}{2} & \frac{1}{4} \\
|
| 47 |
+
-3 & -2 & -\frac{5}{2} \\
|
| 48 |
+
\end{array}
|
| 49 |
+
\right).\left(
|
| 50 |
+
\begin{array}{ccc}
|
| 51 |
+
-\frac{1}{4} & \frac{11}{4} & -\frac{11}{4} \\
|
| 52 |
+
-\frac{7}{4} & 1 & -\frac{3}{2} \\
|
| 53 |
+
\frac{5}{4} & -\frac{5}{2} & -\frac{5}{2} \\
|
| 54 |
+
\end{array}
|
| 55 |
+
\right)=\left(
|
| 56 |
+
\begin{array}{ccc}
|
| 57 |
+
\_ & \_ & \_ \\
|
| 58 |
+
\_ & \_ & \_ \\
|
| 59 |
+
\end{array}
|
| 60 |
+
\right) \\
|
| 61 |
+
\end{array}
|
| 62 |
+
\\
|
| 63 |
+
|
| 64 |
+
\begin{array}{l}
|
| 65 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 66 |
+
\left(
|
| 67 |
+
\begin{array}{ccc}
|
| 68 |
+
-\frac{7}{4} & -\frac{5}{2} & \frac{1}{4} \\
|
| 69 |
+
-3 & -2 & -\frac{5}{2} \\
|
| 70 |
+
\end{array}
|
| 71 |
+
\right).\left(
|
| 72 |
+
\begin{array}{ccc}
|
| 73 |
+
-\frac{1}{4} & \frac{11}{4} & -\frac{11}{4} \\
|
| 74 |
+
-\frac{7}{4} & 1 & -\frac{3}{2} \\
|
| 75 |
+
\frac{5}{4} & -\frac{5}{2} & -\frac{5}{2} \\
|
| 76 |
+
\end{array}
|
| 77 |
+
\right)=\left(
|
| 78 |
+
\begin{array}{ccc}
|
| 79 |
+
\_ & \_ & \_ \\
|
| 80 |
+
\_ & \_ & \_ \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right) \\
|
| 83 |
+
\end{array}
|
| 84 |
+
\\
|
| 85 |
+
|
| 86 |
+
\begin{array}{l}
|
| 87 |
+
|
| 88 |
+
\begin{array}{l}
|
| 89 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{7}{4\ 4}+\left(-\frac{5}{2}\right)\, \left(-\frac{7}{4}\right)+\frac{5}{4\ 4}=\frac{41}{8}. \\
|
| 90 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 91 |
+
\end{array}
|
| 92 |
+
\\
|
| 93 |
+
\left(
|
| 94 |
+
\begin{array}{ccc}
|
| 95 |
+
-\frac{7}{4} & -\frac{5}{2} & \frac{1}{4} \\
|
| 96 |
+
-3 & -2 & -\frac{5}{2} \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\right).\left(
|
| 99 |
+
\begin{array}{ccc}
|
| 100 |
+
-\frac{1}{4} & \frac{11}{4} & -\frac{11}{4} \\
|
| 101 |
+
-\frac{7}{4} & 1 & -\frac{3}{2} \\
|
| 102 |
+
\frac{5}{4} & -\frac{5}{2} & -\frac{5}{2} \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right)=\left(
|
| 105 |
+
\begin{array}{ccc}
|
| 106 |
+
\fbox{$\frac{41}{8}$} & \_ & \_ \\
|
| 107 |
+
\_ & \_ & \_ \\
|
| 108 |
+
\end{array}
|
| 109 |
+
\right) \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\\
|
| 112 |
+
|
| 113 |
+
\begin{array}{l}
|
| 114 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 115 |
+
\left(
|
| 116 |
+
\begin{array}{ccc}
|
| 117 |
+
-\frac{7}{4} & -\frac{5}{2} & \frac{1}{4} \\
|
| 118 |
+
-3 & -2 & -\frac{5}{2} \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right).\left(
|
| 121 |
+
\begin{array}{ccc}
|
| 122 |
+
-\frac{1}{4} & \frac{11}{4} & -\frac{11}{4} \\
|
| 123 |
+
-\frac{7}{4} & 1 & -\frac{3}{2} \\
|
| 124 |
+
\frac{5}{4} & -\frac{5}{2} & -\frac{5}{2} \\
|
| 125 |
+
\end{array}
|
| 126 |
+
\right)=\left(
|
| 127 |
+
\begin{array}{ccc}
|
| 128 |
+
\frac{41}{8} & \_ & \_ \\
|
| 129 |
+
\_ & \_ & \_ \\
|
| 130 |
+
\end{array}
|
| 131 |
+
\right) \\
|
| 132 |
+
\end{array}
|
| 133 |
+
\\
|
| 134 |
+
|
| 135 |
+
\begin{array}{l}
|
| 136 |
+
|
| 137 |
+
\begin{array}{l}
|
| 138 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{7}{4}\right)\, \times \, \frac{11}{4}+\left(-\frac{5}{2}\right)\, \times \, 1-\frac{5}{4\ 2}=-\frac{127}{16}. \\
|
| 139 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\\
|
| 142 |
+
\left(
|
| 143 |
+
\begin{array}{ccc}
|
| 144 |
+
-\frac{7}{4} & -\frac{5}{2} & \frac{1}{4} \\
|
| 145 |
+
-3 & -2 & -\frac{5}{2} \\
|
| 146 |
+
\end{array}
|
| 147 |
+
\right).\left(
|
| 148 |
+
\begin{array}{ccc}
|
| 149 |
+
-\frac{1}{4} & \frac{11}{4} & -\frac{11}{4} \\
|
| 150 |
+
-\frac{7}{4} & 1 & -\frac{3}{2} \\
|
| 151 |
+
\frac{5}{4} & -\frac{5}{2} & -\frac{5}{2} \\
|
| 152 |
+
\end{array}
|
| 153 |
+
\right)=\left(
|
| 154 |
+
\begin{array}{ccc}
|
| 155 |
+
\frac{41}{8} & \fbox{$-\frac{127}{16}$} & \_ \\
|
| 156 |
+
\_ & \_ & \_ \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right) \\
|
| 159 |
+
\end{array}
|
| 160 |
+
\\
|
| 161 |
+
|
| 162 |
+
\begin{array}{l}
|
| 163 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 164 |
+
\left(
|
| 165 |
+
\begin{array}{ccc}
|
| 166 |
+
-\frac{7}{4} & -\frac{5}{2} & \frac{1}{4} \\
|
| 167 |
+
-3 & -2 & -\frac{5}{2} \\
|
| 168 |
+
\end{array}
|
| 169 |
+
\right).\left(
|
| 170 |
+
\begin{array}{ccc}
|
| 171 |
+
-\frac{1}{4} & \frac{11}{4} & -\frac{11}{4} \\
|
| 172 |
+
-\frac{7}{4} & 1 & -\frac{3}{2} \\
|
| 173 |
+
\frac{5}{4} & -\frac{5}{2} & -\frac{5}{2} \\
|
| 174 |
+
\end{array}
|
| 175 |
+
\right)=\left(
|
| 176 |
+
\begin{array}{ccc}
|
| 177 |
+
\frac{41}{8} & -\frac{127}{16} & \_ \\
|
| 178 |
+
\_ & \_ & \_ \\
|
| 179 |
+
\end{array}
|
| 180 |
+
\right) \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\\
|
| 183 |
+
|
| 184 |
+
\begin{array}{l}
|
| 185 |
+
|
| 186 |
+
\begin{array}{l}
|
| 187 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{7}{4}\right)\, \left(-\frac{11}{4}\right)+\left(-\frac{5}{2}\right)\, \left(-\frac{3}{2}\right)-\frac{5}{4\ 2}=\frac{127}{16}. \\
|
| 188 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 189 |
+
\end{array}
|
| 190 |
+
\\
|
| 191 |
+
\left(
|
| 192 |
+
\begin{array}{ccc}
|
| 193 |
+
-\frac{7}{4} & -\frac{5}{2} & \frac{1}{4} \\
|
| 194 |
+
-3 & -2 & -\frac{5}{2} \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\right).\left(
|
| 197 |
+
\begin{array}{ccc}
|
| 198 |
+
-\frac{1}{4} & \frac{11}{4} & -\frac{11}{4} \\
|
| 199 |
+
-\frac{7}{4} & 1 & -\frac{3}{2} \\
|
| 200 |
+
\frac{5}{4} & -\frac{5}{2} & -\frac{5}{2} \\
|
| 201 |
+
\end{array}
|
| 202 |
+
\right)=\left(
|
| 203 |
+
\begin{array}{ccc}
|
| 204 |
+
\frac{41}{8} & -\frac{127}{16} & \fbox{$\frac{127}{16}$} \\
|
| 205 |
+
\_ & \_ & \_ \\
|
| 206 |
+
\end{array}
|
| 207 |
+
\right) \\
|
| 208 |
+
\end{array}
|
| 209 |
+
\\
|
| 210 |
+
|
| 211 |
+
\begin{array}{l}
|
| 212 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 213 |
+
\left(
|
| 214 |
+
\begin{array}{ccc}
|
| 215 |
+
-\frac{7}{4} & -\frac{5}{2} & \frac{1}{4} \\
|
| 216 |
+
-3 & -2 & -\frac{5}{2} \\
|
| 217 |
+
\end{array}
|
| 218 |
+
\right).\left(
|
| 219 |
+
\begin{array}{ccc}
|
| 220 |
+
-\frac{1}{4} & \frac{11}{4} & -\frac{11}{4} \\
|
| 221 |
+
-\frac{7}{4} & 1 & -\frac{3}{2} \\
|
| 222 |
+
\frac{5}{4} & -\frac{5}{2} & -\frac{5}{2} \\
|
| 223 |
+
\end{array}
|
| 224 |
+
\right)=\left(
|
| 225 |
+
\begin{array}{ccc}
|
| 226 |
+
\frac{41}{8} & -\frac{127}{16} & \frac{127}{16} \\
|
| 227 |
+
\_ & \_ & \_ \\
|
| 228 |
+
\end{array}
|
| 229 |
+
\right) \\
|
| 230 |
+
\end{array}
|
| 231 |
+
\\
|
| 232 |
+
|
| 233 |
+
\begin{array}{l}
|
| 234 |
+
|
| 235 |
+
\begin{array}{l}
|
| 236 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{3}{4}+(-2)\, \left(-\frac{7}{4}\right)+\left(-\frac{5}{2}\right)\, \times \, \frac{5}{4}=\frac{9}{8}. \\
|
| 237 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 238 |
+
\end{array}
|
| 239 |
+
\\
|
| 240 |
+
\left(
|
| 241 |
+
\begin{array}{ccc}
|
| 242 |
+
-\frac{7}{4} & -\frac{5}{2} & \frac{1}{4} \\
|
| 243 |
+
-3 & -2 & -\frac{5}{2} \\
|
| 244 |
+
\end{array}
|
| 245 |
+
\right).\left(
|
| 246 |
+
\begin{array}{ccc}
|
| 247 |
+
-\frac{1}{4} & \frac{11}{4} & -\frac{11}{4} \\
|
| 248 |
+
-\frac{7}{4} & 1 & -\frac{3}{2} \\
|
| 249 |
+
\frac{5}{4} & -\frac{5}{2} & -\frac{5}{2} \\
|
| 250 |
+
\end{array}
|
| 251 |
+
\right)=\left(
|
| 252 |
+
\begin{array}{ccc}
|
| 253 |
+
\frac{41}{8} & -\frac{127}{16} & \frac{127}{16} \\
|
| 254 |
+
\fbox{$\frac{9}{8}$} & \_ & \_ \\
|
| 255 |
+
\end{array}
|
| 256 |
+
\right) \\
|
| 257 |
+
\end{array}
|
| 258 |
+
\\
|
| 259 |
+
|
| 260 |
+
\begin{array}{l}
|
| 261 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 262 |
+
\left(
|
| 263 |
+
\begin{array}{ccc}
|
| 264 |
+
-\frac{7}{4} & -\frac{5}{2} & \frac{1}{4} \\
|
| 265 |
+
-3 & -2 & -\frac{5}{2} \\
|
| 266 |
+
\end{array}
|
| 267 |
+
\right).\left(
|
| 268 |
+
\begin{array}{ccc}
|
| 269 |
+
-\frac{1}{4} & \frac{11}{4} & -\frac{11}{4} \\
|
| 270 |
+
-\frac{7}{4} & 1 & -\frac{3}{2} \\
|
| 271 |
+
\frac{5}{4} & -\frac{5}{2} & -\frac{5}{2} \\
|
| 272 |
+
\end{array}
|
| 273 |
+
\right)=\left(
|
| 274 |
+
\begin{array}{ccc}
|
| 275 |
+
\frac{41}{8} & -\frac{127}{16} & \frac{127}{16} \\
|
| 276 |
+
\frac{9}{8} & \_ & \_ \\
|
| 277 |
+
\end{array}
|
| 278 |
+
\right) \\
|
| 279 |
+
\end{array}
|
| 280 |
+
\\
|
| 281 |
+
|
| 282 |
+
\begin{array}{l}
|
| 283 |
+
|
| 284 |
+
\begin{array}{l}
|
| 285 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, \times \, \frac{11}{4}+(-2)\, \times \, 1+\left(-\frac{5}{2}\right)\, \left(-\frac{5}{2}\right)=-4. \\
|
| 286 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 287 |
+
\end{array}
|
| 288 |
+
\\
|
| 289 |
+
\left(
|
| 290 |
+
\begin{array}{ccc}
|
| 291 |
+
-\frac{7}{4} & -\frac{5}{2} & \frac{1}{4} \\
|
| 292 |
+
-3 & -2 & -\frac{5}{2} \\
|
| 293 |
+
\end{array}
|
| 294 |
+
\right).\left(
|
| 295 |
+
\begin{array}{ccc}
|
| 296 |
+
-\frac{1}{4} & \frac{11}{4} & -\frac{11}{4} \\
|
| 297 |
+
-\frac{7}{4} & 1 & -\frac{3}{2} \\
|
| 298 |
+
\frac{5}{4} & -\frac{5}{2} & -\frac{5}{2} \\
|
| 299 |
+
\end{array}
|
| 300 |
+
\right)=\left(
|
| 301 |
+
\begin{array}{ccc}
|
| 302 |
+
\frac{41}{8} & -\frac{127}{16} & \frac{127}{16} \\
|
| 303 |
+
\frac{9}{8} & \fbox{$-4$} & \_ \\
|
| 304 |
+
\end{array}
|
| 305 |
+
\right) \\
|
| 306 |
+
\end{array}
|
| 307 |
+
\\
|
| 308 |
+
|
| 309 |
+
\begin{array}{l}
|
| 310 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }3^{\text{rd}} \text{column}: \\
|
| 311 |
+
\left(
|
| 312 |
+
\begin{array}{ccc}
|
| 313 |
+
-\frac{7}{4} & -\frac{5}{2} & \frac{1}{4} \\
|
| 314 |
+
-3 & -2 & -\frac{5}{2} \\
|
| 315 |
+
\end{array}
|
| 316 |
+
\right).\left(
|
| 317 |
+
\begin{array}{ccc}
|
| 318 |
+
-\frac{1}{4} & \frac{11}{4} & -\frac{11}{4} \\
|
| 319 |
+
-\frac{7}{4} & 1 & -\frac{3}{2} \\
|
| 320 |
+
\frac{5}{4} & -\frac{5}{2} & -\frac{5}{2} \\
|
| 321 |
+
\end{array}
|
| 322 |
+
\right)=\left(
|
| 323 |
+
\begin{array}{ccc}
|
| 324 |
+
\frac{41}{8} & -\frac{127}{16} & \frac{127}{16} \\
|
| 325 |
+
\frac{9}{8} & -4 & \_ \\
|
| 326 |
+
\end{array}
|
| 327 |
+
\right) \\
|
| 328 |
+
\end{array}
|
| 329 |
+
\\
|
| 330 |
+
|
| 331 |
+
\begin{array}{l}
|
| 332 |
+
|
| 333 |
+
\begin{array}{l}
|
| 334 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }(-3)\, \left(-\frac{11}{4}\right)+(-2)\, \left(-\frac{3}{2}\right)+\left(-\frac{5}{2}\right)\, \left(-\frac{5}{2}\right)=\frac{35}{2}. \\
|
| 335 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }3^{\text{rd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 336 |
+
\end{array}
|
| 337 |
+
\\
|
| 338 |
+
\fbox{$
|
| 339 |
+
\begin{array}{ll}
|
| 340 |
+
\text{Answer:} & \\
|
| 341 |
+
\text{} & \left(
|
| 342 |
+
\begin{array}{ccc}
|
| 343 |
+
-\frac{7}{4} & -\frac{5}{2} & \frac{1}{4} \\
|
| 344 |
+
-3 & -2 & -\frac{5}{2} \\
|
| 345 |
+
\end{array}
|
| 346 |
+
\right).\left(
|
| 347 |
+
\begin{array}{ccc}
|
| 348 |
+
-\frac{1}{4} & \frac{11}{4} & -\frac{11}{4} \\
|
| 349 |
+
-\frac{7}{4} & 1 & -\frac{3}{2} \\
|
| 350 |
+
\frac{5}{4} & -\frac{5}{2} & -\frac{5}{2} \\
|
| 351 |
+
\end{array}
|
| 352 |
+
\right)=\left(
|
| 353 |
+
\begin{array}{ccc}
|
| 354 |
+
\frac{41}{8} & -\frac{127}{16} & \frac{127}{16} \\
|
| 355 |
+
\frac{9}{8} & -4 & \fbox{$\frac{35}{2}$} \\
|
| 356 |
+
\end{array}
|
| 357 |
+
\right) \\
|
| 358 |
+
\end{array}
|
| 359 |
+
$} \\
|
| 360 |
+
\end{array}
|
| 361 |
+
\\
|
| 362 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/4613.txt
ADDED
|
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
\frac{25}{16} & -\frac{5}{16} \\
|
| 6 |
+
\frac{1}{2} & -\frac{7}{4} \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{cc}
|
| 11 |
+
2 & 2 \\
|
| 12 |
+
-\frac{21}{16} & \frac{9}{8} \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$.
|
| 15 |
+
Answer:
|
| 16 |
+
\begin{array}{l}
|
| 17 |
+
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
\text{Multiply the following matrices}: \\
|
| 20 |
+
\left(
|
| 21 |
+
\begin{array}{cc}
|
| 22 |
+
\frac{25}{16} & -\frac{5}{16} \\
|
| 23 |
+
\frac{1}{2} & -\frac{7}{4} \\
|
| 24 |
+
\end{array}
|
| 25 |
+
\right).\left(
|
| 26 |
+
\begin{array}{cc}
|
| 27 |
+
2 & 2 \\
|
| 28 |
+
-\frac{21}{16} & \frac{9}{8} \\
|
| 29 |
+
\end{array}
|
| 30 |
+
\right) \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\\
|
| 33 |
+
\hline
|
| 34 |
+
|
| 35 |
+
\begin{array}{l}
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 2. \\
|
| 39 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 2: \\
|
| 40 |
+
\end{array}
|
| 41 |
+
\\
|
| 42 |
+
\left(
|
| 43 |
+
\begin{array}{cc}
|
| 44 |
+
\frac{25}{16} & -\frac{5}{16} \\
|
| 45 |
+
\frac{1}{2} & -\frac{7}{4} \\
|
| 46 |
+
\end{array}
|
| 47 |
+
\right).\left(
|
| 48 |
+
\begin{array}{cc}
|
| 49 |
+
2 & 2 \\
|
| 50 |
+
-\frac{21}{16} & \frac{9}{8} \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right)=\left(
|
| 53 |
+
\begin{array}{cc}
|
| 54 |
+
\_ & \_ \\
|
| 55 |
+
\_ & \_ \\
|
| 56 |
+
\end{array}
|
| 57 |
+
\right) \\
|
| 58 |
+
\end{array}
|
| 59 |
+
\\
|
| 60 |
+
|
| 61 |
+
\begin{array}{l}
|
| 62 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 63 |
+
\left(
|
| 64 |
+
\begin{array}{cc}
|
| 65 |
+
\frac{25}{16} & -\frac{5}{16} \\
|
| 66 |
+
\frac{1}{2} & -\frac{7}{4} \\
|
| 67 |
+
\end{array}
|
| 68 |
+
\right).\left(
|
| 69 |
+
\begin{array}{cc}
|
| 70 |
+
2 & 2 \\
|
| 71 |
+
-\frac{21}{16} & \frac{9}{8} \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right)=\left(
|
| 74 |
+
\begin{array}{cc}
|
| 75 |
+
\_ & \_ \\
|
| 76 |
+
\_ & \_ \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right) \\
|
| 79 |
+
\end{array}
|
| 80 |
+
\\
|
| 81 |
+
|
| 82 |
+
\begin{array}{l}
|
| 83 |
+
|
| 84 |
+
\begin{array}{l}
|
| 85 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{25\ 2}{16}+\left(-\frac{5}{16}\right)\, \left(-\frac{21}{16}\right)=\frac{905}{256}. \\
|
| 86 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\\
|
| 89 |
+
\left(
|
| 90 |
+
\begin{array}{cc}
|
| 91 |
+
\frac{25}{16} & -\frac{5}{16} \\
|
| 92 |
+
\frac{1}{2} & -\frac{7}{4} \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\right).\left(
|
| 95 |
+
\begin{array}{cc}
|
| 96 |
+
2 & 2 \\
|
| 97 |
+
-\frac{21}{16} & \frac{9}{8} \\
|
| 98 |
+
\end{array}
|
| 99 |
+
\right)=\left(
|
| 100 |
+
\begin{array}{cc}
|
| 101 |
+
\fbox{$\frac{905}{256}$} & \_ \\
|
| 102 |
+
\_ & \_ \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right) \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\\
|
| 107 |
+
|
| 108 |
+
\begin{array}{l}
|
| 109 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 110 |
+
\left(
|
| 111 |
+
\begin{array}{cc}
|
| 112 |
+
\frac{25}{16} & -\frac{5}{16} \\
|
| 113 |
+
\frac{1}{2} & -\frac{7}{4} \\
|
| 114 |
+
\end{array}
|
| 115 |
+
\right).\left(
|
| 116 |
+
\begin{array}{cc}
|
| 117 |
+
2 & 2 \\
|
| 118 |
+
-\frac{21}{16} & \frac{9}{8} \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right)=\left(
|
| 121 |
+
\begin{array}{cc}
|
| 122 |
+
\frac{905}{256} & \_ \\
|
| 123 |
+
\_ & \_ \\
|
| 124 |
+
\end{array}
|
| 125 |
+
\right) \\
|
| 126 |
+
\end{array}
|
| 127 |
+
\\
|
| 128 |
+
|
| 129 |
+
\begin{array}{l}
|
| 130 |
+
|
| 131 |
+
\begin{array}{l}
|
| 132 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{25\ 2}{16}+\left(-\frac{5}{16}\right)\, \times \, \frac{9}{8}=\frac{355}{128}. \\
|
| 133 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\\
|
| 136 |
+
\left(
|
| 137 |
+
\begin{array}{cc}
|
| 138 |
+
\frac{25}{16} & -\frac{5}{16} \\
|
| 139 |
+
\frac{1}{2} & -\frac{7}{4} \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right).\left(
|
| 142 |
+
\begin{array}{cc}
|
| 143 |
+
2 & 2 \\
|
| 144 |
+
-\frac{21}{16} & \frac{9}{8} \\
|
| 145 |
+
\end{array}
|
| 146 |
+
\right)=\left(
|
| 147 |
+
\begin{array}{cc}
|
| 148 |
+
\frac{905}{256} & \fbox{$\frac{355}{128}$} \\
|
| 149 |
+
\_ & \_ \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\right) \\
|
| 152 |
+
\end{array}
|
| 153 |
+
\\
|
| 154 |
+
|
| 155 |
+
\begin{array}{l}
|
| 156 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 157 |
+
\left(
|
| 158 |
+
\begin{array}{cc}
|
| 159 |
+
\frac{25}{16} & -\frac{5}{16} \\
|
| 160 |
+
\frac{1}{2} & -\frac{7}{4} \\
|
| 161 |
+
\end{array}
|
| 162 |
+
\right).\left(
|
| 163 |
+
\begin{array}{cc}
|
| 164 |
+
2 & 2 \\
|
| 165 |
+
-\frac{21}{16} & \frac{9}{8} \\
|
| 166 |
+
\end{array}
|
| 167 |
+
\right)=\left(
|
| 168 |
+
\begin{array}{cc}
|
| 169 |
+
\frac{905}{256} & \frac{355}{128} \\
|
| 170 |
+
\_ & \_ \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\right) \\
|
| 173 |
+
\end{array}
|
| 174 |
+
\\
|
| 175 |
+
|
| 176 |
+
\begin{array}{l}
|
| 177 |
+
|
| 178 |
+
\begin{array}{l}
|
| 179 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{2}{2}+\left(-\frac{7}{4}\right)\, \left(-\frac{21}{16}\right)=\frac{211}{64}. \\
|
| 180 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\\
|
| 183 |
+
\left(
|
| 184 |
+
\begin{array}{cc}
|
| 185 |
+
\frac{25}{16} & -\frac{5}{16} \\
|
| 186 |
+
\frac{1}{2} & -\frac{7}{4} \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right).\left(
|
| 189 |
+
\begin{array}{cc}
|
| 190 |
+
2 & 2 \\
|
| 191 |
+
-\frac{21}{16} & \frac{9}{8} \\
|
| 192 |
+
\end{array}
|
| 193 |
+
\right)=\left(
|
| 194 |
+
\begin{array}{cc}
|
| 195 |
+
\frac{905}{256} & \frac{355}{128} \\
|
| 196 |
+
\fbox{$\frac{211}{64}$} & \_ \\
|
| 197 |
+
\end{array}
|
| 198 |
+
\right) \\
|
| 199 |
+
\end{array}
|
| 200 |
+
\\
|
| 201 |
+
|
| 202 |
+
\begin{array}{l}
|
| 203 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 204 |
+
\left(
|
| 205 |
+
\begin{array}{cc}
|
| 206 |
+
\frac{25}{16} & -\frac{5}{16} \\
|
| 207 |
+
\frac{1}{2} & -\frac{7}{4} \\
|
| 208 |
+
\end{array}
|
| 209 |
+
\right).\left(
|
| 210 |
+
\begin{array}{cc}
|
| 211 |
+
2 & 2 \\
|
| 212 |
+
-\frac{21}{16} & \frac{9}{8} \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right)=\left(
|
| 215 |
+
\begin{array}{cc}
|
| 216 |
+
\frac{905}{256} & \frac{355}{128} \\
|
| 217 |
+
\frac{211}{64} & \_ \\
|
| 218 |
+
\end{array}
|
| 219 |
+
\right) \\
|
| 220 |
+
\end{array}
|
| 221 |
+
\\
|
| 222 |
+
|
| 223 |
+
\begin{array}{l}
|
| 224 |
+
|
| 225 |
+
\begin{array}{l}
|
| 226 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{2}{2}+\left(-\frac{7}{4}\right)\, \times \, \frac{9}{8}=-\frac{31}{32}. \\
|
| 227 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 228 |
+
\end{array}
|
| 229 |
+
\\
|
| 230 |
+
\fbox{$
|
| 231 |
+
\begin{array}{ll}
|
| 232 |
+
\text{Answer:} & \\
|
| 233 |
+
\text{} & \left(
|
| 234 |
+
\begin{array}{cc}
|
| 235 |
+
\frac{25}{16} & -\frac{5}{16} \\
|
| 236 |
+
\frac{1}{2} & -\frac{7}{4} \\
|
| 237 |
+
\end{array}
|
| 238 |
+
\right).\left(
|
| 239 |
+
\begin{array}{cc}
|
| 240 |
+
2 & 2 \\
|
| 241 |
+
-\frac{21}{16} & \frac{9}{8} \\
|
| 242 |
+
\end{array}
|
| 243 |
+
\right)=\left(
|
| 244 |
+
\begin{array}{cc}
|
| 245 |
+
\frac{905}{256} & \frac{355}{128} \\
|
| 246 |
+
\frac{211}{64} & \fbox{$-\frac{31}{32}$} \\
|
| 247 |
+
\end{array}
|
| 248 |
+
\right) \\
|
| 249 |
+
\end{array}
|
| 250 |
+
$} \\
|
| 251 |
+
\end{array}
|
| 252 |
+
\\
|
| 253 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/4661.txt
ADDED
|
@@ -0,0 +1,375 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
-\frac{35}{16} & -\frac{5}{16} \\
|
| 6 |
+
\frac{13}{16} & \frac{13}{16} \\
|
| 7 |
+
-\frac{47}{16} & -\frac{37}{16} \\
|
| 8 |
+
\end{array}
|
| 9 |
+
\right)$ and
|
| 10 |
+
$\left(
|
| 11 |
+
\begin{array}{cc}
|
| 12 |
+
\frac{23}{16} & \frac{1}{2} \\
|
| 13 |
+
\frac{21}{8} & \frac{3}{2} \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$.
|
| 16 |
+
Answer:
|
| 17 |
+
\begin{array}{l}
|
| 18 |
+
|
| 19 |
+
\begin{array}{l}
|
| 20 |
+
\text{Multiply the following matrices}: \\
|
| 21 |
+
\left(
|
| 22 |
+
\begin{array}{cc}
|
| 23 |
+
-\frac{35}{16} & -\frac{5}{16} \\
|
| 24 |
+
\frac{13}{16} & \frac{13}{16} \\
|
| 25 |
+
-\frac{47}{16} & -\frac{37}{16} \\
|
| 26 |
+
\end{array}
|
| 27 |
+
\right).\left(
|
| 28 |
+
\begin{array}{cc}
|
| 29 |
+
\frac{23}{16} & \frac{1}{2} \\
|
| 30 |
+
\frac{21}{8} & \frac{3}{2} \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\right) \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\\
|
| 35 |
+
\hline
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }3\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 2. \\
|
| 41 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }3\times 2: \\
|
| 42 |
+
\end{array}
|
| 43 |
+
\\
|
| 44 |
+
\left(
|
| 45 |
+
\begin{array}{cc}
|
| 46 |
+
-\frac{35}{16} & -\frac{5}{16} \\
|
| 47 |
+
\frac{13}{16} & \frac{13}{16} \\
|
| 48 |
+
-\frac{47}{16} & -\frac{37}{16} \\
|
| 49 |
+
\end{array}
|
| 50 |
+
\right).\left(
|
| 51 |
+
\begin{array}{cc}
|
| 52 |
+
\frac{23}{16} & \frac{1}{2} \\
|
| 53 |
+
\frac{21}{8} & \frac{3}{2} \\
|
| 54 |
+
\end{array}
|
| 55 |
+
\right)=\left(
|
| 56 |
+
\begin{array}{cc}
|
| 57 |
+
\_ & \_ \\
|
| 58 |
+
\_ & \_ \\
|
| 59 |
+
\_ & \_ \\
|
| 60 |
+
\end{array}
|
| 61 |
+
\right) \\
|
| 62 |
+
\end{array}
|
| 63 |
+
\\
|
| 64 |
+
|
| 65 |
+
\begin{array}{l}
|
| 66 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 67 |
+
\left(
|
| 68 |
+
\begin{array}{cc}
|
| 69 |
+
-\frac{35}{16} & -\frac{5}{16} \\
|
| 70 |
+
\frac{13}{16} & \frac{13}{16} \\
|
| 71 |
+
-\frac{47}{16} & -\frac{37}{16} \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right).\left(
|
| 74 |
+
\begin{array}{cc}
|
| 75 |
+
\frac{23}{16} & \frac{1}{2} \\
|
| 76 |
+
\frac{21}{8} & \frac{3}{2} \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right)=\left(
|
| 79 |
+
\begin{array}{cc}
|
| 80 |
+
\_ & \_ \\
|
| 81 |
+
\_ & \_ \\
|
| 82 |
+
\_ & \_ \\
|
| 83 |
+
\end{array}
|
| 84 |
+
\right) \\
|
| 85 |
+
\end{array}
|
| 86 |
+
\\
|
| 87 |
+
|
| 88 |
+
\begin{array}{l}
|
| 89 |
+
|
| 90 |
+
\begin{array}{l}
|
| 91 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{35}{16}\right)\, \times \, \frac{23}{16}+\left(-\frac{5}{16}\right)\, \times \, \frac{21}{8}=-\frac{1015}{256}. \\
|
| 92 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\\
|
| 95 |
+
\left(
|
| 96 |
+
\begin{array}{cc}
|
| 97 |
+
-\frac{35}{16} & -\frac{5}{16} \\
|
| 98 |
+
\frac{13}{16} & \frac{13}{16} \\
|
| 99 |
+
-\frac{47}{16} & -\frac{37}{16} \\
|
| 100 |
+
\end{array}
|
| 101 |
+
\right).\left(
|
| 102 |
+
\begin{array}{cc}
|
| 103 |
+
\frac{23}{16} & \frac{1}{2} \\
|
| 104 |
+
\frac{21}{8} & \frac{3}{2} \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\right)=\left(
|
| 107 |
+
\begin{array}{cc}
|
| 108 |
+
\fbox{$-\frac{1015}{256}$} & \_ \\
|
| 109 |
+
\_ & \_ \\
|
| 110 |
+
\_ & \_ \\
|
| 111 |
+
\end{array}
|
| 112 |
+
\right) \\
|
| 113 |
+
\end{array}
|
| 114 |
+
\\
|
| 115 |
+
|
| 116 |
+
\begin{array}{l}
|
| 117 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 118 |
+
\left(
|
| 119 |
+
\begin{array}{cc}
|
| 120 |
+
-\frac{35}{16} & -\frac{5}{16} \\
|
| 121 |
+
\frac{13}{16} & \frac{13}{16} \\
|
| 122 |
+
-\frac{47}{16} & -\frac{37}{16} \\
|
| 123 |
+
\end{array}
|
| 124 |
+
\right).\left(
|
| 125 |
+
\begin{array}{cc}
|
| 126 |
+
\frac{23}{16} & \frac{1}{2} \\
|
| 127 |
+
\frac{21}{8} & \frac{3}{2} \\
|
| 128 |
+
\end{array}
|
| 129 |
+
\right)=\left(
|
| 130 |
+
\begin{array}{cc}
|
| 131 |
+
-\frac{1015}{256} & \_ \\
|
| 132 |
+
\_ & \_ \\
|
| 133 |
+
\_ & \_ \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\right) \\
|
| 136 |
+
\end{array}
|
| 137 |
+
\\
|
| 138 |
+
|
| 139 |
+
\begin{array}{l}
|
| 140 |
+
|
| 141 |
+
\begin{array}{l}
|
| 142 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{35}{16}\right)\, \times \, \frac{1}{2}+\left(-\frac{5}{16}\right)\, \times \, \frac{3}{2}=-\frac{25}{16}. \\
|
| 143 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 144 |
+
\end{array}
|
| 145 |
+
\\
|
| 146 |
+
\left(
|
| 147 |
+
\begin{array}{cc}
|
| 148 |
+
-\frac{35}{16} & -\frac{5}{16} \\
|
| 149 |
+
\frac{13}{16} & \frac{13}{16} \\
|
| 150 |
+
-\frac{47}{16} & -\frac{37}{16} \\
|
| 151 |
+
\end{array}
|
| 152 |
+
\right).\left(
|
| 153 |
+
\begin{array}{cc}
|
| 154 |
+
\frac{23}{16} & \frac{1}{2} \\
|
| 155 |
+
\frac{21}{8} & \frac{3}{2} \\
|
| 156 |
+
\end{array}
|
| 157 |
+
\right)=\left(
|
| 158 |
+
\begin{array}{cc}
|
| 159 |
+
-\frac{1015}{256} & \fbox{$-\frac{25}{16}$} \\
|
| 160 |
+
\_ & \_ \\
|
| 161 |
+
\_ & \_ \\
|
| 162 |
+
\end{array}
|
| 163 |
+
\right) \\
|
| 164 |
+
\end{array}
|
| 165 |
+
\\
|
| 166 |
+
|
| 167 |
+
\begin{array}{l}
|
| 168 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 169 |
+
\left(
|
| 170 |
+
\begin{array}{cc}
|
| 171 |
+
-\frac{35}{16} & -\frac{5}{16} \\
|
| 172 |
+
\frac{13}{16} & \frac{13}{16} \\
|
| 173 |
+
-\frac{47}{16} & -\frac{37}{16} \\
|
| 174 |
+
\end{array}
|
| 175 |
+
\right).\left(
|
| 176 |
+
\begin{array}{cc}
|
| 177 |
+
\frac{23}{16} & \frac{1}{2} \\
|
| 178 |
+
\frac{21}{8} & \frac{3}{2} \\
|
| 179 |
+
\end{array}
|
| 180 |
+
\right)=\left(
|
| 181 |
+
\begin{array}{cc}
|
| 182 |
+
-\frac{1015}{256} & -\frac{25}{16} \\
|
| 183 |
+
\_ & \_ \\
|
| 184 |
+
\_ & \_ \\
|
| 185 |
+
\end{array}
|
| 186 |
+
\right) \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\\
|
| 189 |
+
|
| 190 |
+
\begin{array}{l}
|
| 191 |
+
|
| 192 |
+
\begin{array}{l}
|
| 193 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{13\ 23}{16\ 16}+\frac{13\ 21}{16\ 8}=\frac{845}{256}. \\
|
| 194 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\\
|
| 197 |
+
\left(
|
| 198 |
+
\begin{array}{cc}
|
| 199 |
+
-\frac{35}{16} & -\frac{5}{16} \\
|
| 200 |
+
\frac{13}{16} & \frac{13}{16} \\
|
| 201 |
+
-\frac{47}{16} & -\frac{37}{16} \\
|
| 202 |
+
\end{array}
|
| 203 |
+
\right).\left(
|
| 204 |
+
\begin{array}{cc}
|
| 205 |
+
\frac{23}{16} & \frac{1}{2} \\
|
| 206 |
+
\frac{21}{8} & \frac{3}{2} \\
|
| 207 |
+
\end{array}
|
| 208 |
+
\right)=\left(
|
| 209 |
+
\begin{array}{cc}
|
| 210 |
+
-\frac{1015}{256} & -\frac{25}{16} \\
|
| 211 |
+
\fbox{$\frac{845}{256}$} & \_ \\
|
| 212 |
+
\_ & \_ \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right) \\
|
| 215 |
+
\end{array}
|
| 216 |
+
\\
|
| 217 |
+
|
| 218 |
+
\begin{array}{l}
|
| 219 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 220 |
+
\left(
|
| 221 |
+
\begin{array}{cc}
|
| 222 |
+
-\frac{35}{16} & -\frac{5}{16} \\
|
| 223 |
+
\frac{13}{16} & \frac{13}{16} \\
|
| 224 |
+
-\frac{47}{16} & -\frac{37}{16} \\
|
| 225 |
+
\end{array}
|
| 226 |
+
\right).\left(
|
| 227 |
+
\begin{array}{cc}
|
| 228 |
+
\frac{23}{16} & \frac{1}{2} \\
|
| 229 |
+
\frac{21}{8} & \frac{3}{2} \\
|
| 230 |
+
\end{array}
|
| 231 |
+
\right)=\left(
|
| 232 |
+
\begin{array}{cc}
|
| 233 |
+
-\frac{1015}{256} & -\frac{25}{16} \\
|
| 234 |
+
\frac{845}{256} & \_ \\
|
| 235 |
+
\_ & \_ \\
|
| 236 |
+
\end{array}
|
| 237 |
+
\right) \\
|
| 238 |
+
\end{array}
|
| 239 |
+
\\
|
| 240 |
+
|
| 241 |
+
\begin{array}{l}
|
| 242 |
+
|
| 243 |
+
\begin{array}{l}
|
| 244 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\frac{13}{16\ 2}+\frac{13\ 3}{16\ 2}=\frac{13}{8}. \\
|
| 245 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 246 |
+
\end{array}
|
| 247 |
+
\\
|
| 248 |
+
\left(
|
| 249 |
+
\begin{array}{cc}
|
| 250 |
+
-\frac{35}{16} & -\frac{5}{16} \\
|
| 251 |
+
\frac{13}{16} & \frac{13}{16} \\
|
| 252 |
+
-\frac{47}{16} & -\frac{37}{16} \\
|
| 253 |
+
\end{array}
|
| 254 |
+
\right).\left(
|
| 255 |
+
\begin{array}{cc}
|
| 256 |
+
\frac{23}{16} & \frac{1}{2} \\
|
| 257 |
+
\frac{21}{8} & \frac{3}{2} \\
|
| 258 |
+
\end{array}
|
| 259 |
+
\right)=\left(
|
| 260 |
+
\begin{array}{cc}
|
| 261 |
+
-\frac{1015}{256} & -\frac{25}{16} \\
|
| 262 |
+
\frac{845}{256} & \fbox{$\frac{13}{8}$} \\
|
| 263 |
+
\_ & \_ \\
|
| 264 |
+
\end{array}
|
| 265 |
+
\right) \\
|
| 266 |
+
\end{array}
|
| 267 |
+
\\
|
| 268 |
+
|
| 269 |
+
\begin{array}{l}
|
| 270 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 271 |
+
\left(
|
| 272 |
+
\begin{array}{cc}
|
| 273 |
+
-\frac{35}{16} & -\frac{5}{16} \\
|
| 274 |
+
\frac{13}{16} & \frac{13}{16} \\
|
| 275 |
+
-\frac{47}{16} & -\frac{37}{16} \\
|
| 276 |
+
\end{array}
|
| 277 |
+
\right).\left(
|
| 278 |
+
\begin{array}{cc}
|
| 279 |
+
\frac{23}{16} & \frac{1}{2} \\
|
| 280 |
+
\frac{21}{8} & \frac{3}{2} \\
|
| 281 |
+
\end{array}
|
| 282 |
+
\right)=\left(
|
| 283 |
+
\begin{array}{cc}
|
| 284 |
+
-\frac{1015}{256} & -\frac{25}{16} \\
|
| 285 |
+
\frac{845}{256} & \frac{13}{8} \\
|
| 286 |
+
\_ & \_ \\
|
| 287 |
+
\end{array}
|
| 288 |
+
\right) \\
|
| 289 |
+
\end{array}
|
| 290 |
+
\\
|
| 291 |
+
|
| 292 |
+
\begin{array}{l}
|
| 293 |
+
|
| 294 |
+
\begin{array}{l}
|
| 295 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{47}{16}\right)\, \times \, \frac{23}{16}+\left(-\frac{37}{16}\right)\, \times \, \frac{21}{8}=-\frac{2635}{256}. \\
|
| 296 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 297 |
+
\end{array}
|
| 298 |
+
\\
|
| 299 |
+
\left(
|
| 300 |
+
\begin{array}{cc}
|
| 301 |
+
-\frac{35}{16} & -\frac{5}{16} \\
|
| 302 |
+
\frac{13}{16} & \frac{13}{16} \\
|
| 303 |
+
-\frac{47}{16} & -\frac{37}{16} \\
|
| 304 |
+
\end{array}
|
| 305 |
+
\right).\left(
|
| 306 |
+
\begin{array}{cc}
|
| 307 |
+
\frac{23}{16} & \frac{1}{2} \\
|
| 308 |
+
\frac{21}{8} & \frac{3}{2} \\
|
| 309 |
+
\end{array}
|
| 310 |
+
\right)=\left(
|
| 311 |
+
\begin{array}{cc}
|
| 312 |
+
-\frac{1015}{256} & -\frac{25}{16} \\
|
| 313 |
+
\frac{845}{256} & \frac{13}{8} \\
|
| 314 |
+
\fbox{$-\frac{2635}{256}$} & \_ \\
|
| 315 |
+
\end{array}
|
| 316 |
+
\right) \\
|
| 317 |
+
\end{array}
|
| 318 |
+
\\
|
| 319 |
+
|
| 320 |
+
\begin{array}{l}
|
| 321 |
+
\text{Highlight }\text{the }3^{\text{rd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 322 |
+
\left(
|
| 323 |
+
\begin{array}{cc}
|
| 324 |
+
-\frac{35}{16} & -\frac{5}{16} \\
|
| 325 |
+
\frac{13}{16} & \frac{13}{16} \\
|
| 326 |
+
-\frac{47}{16} & -\frac{37}{16} \\
|
| 327 |
+
\end{array}
|
| 328 |
+
\right).\left(
|
| 329 |
+
\begin{array}{cc}
|
| 330 |
+
\frac{23}{16} & \frac{1}{2} \\
|
| 331 |
+
\frac{21}{8} & \frac{3}{2} \\
|
| 332 |
+
\end{array}
|
| 333 |
+
\right)=\left(
|
| 334 |
+
\begin{array}{cc}
|
| 335 |
+
-\frac{1015}{256} & -\frac{25}{16} \\
|
| 336 |
+
\frac{845}{256} & \frac{13}{8} \\
|
| 337 |
+
-\frac{2635}{256} & \_ \\
|
| 338 |
+
\end{array}
|
| 339 |
+
\right) \\
|
| 340 |
+
\end{array}
|
| 341 |
+
\\
|
| 342 |
+
|
| 343 |
+
\begin{array}{l}
|
| 344 |
+
|
| 345 |
+
\begin{array}{l}
|
| 346 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }\left(-\frac{47}{16}\right)\, \times \, \frac{1}{2}+\left(-\frac{37}{16}\right)\, \times \, \frac{3}{2}=-\frac{79}{16}. \\
|
| 347 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }3^{\text{rd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 348 |
+
\end{array}
|
| 349 |
+
\\
|
| 350 |
+
\fbox{$
|
| 351 |
+
\begin{array}{ll}
|
| 352 |
+
\text{Answer:} & \\
|
| 353 |
+
\text{} & \left(
|
| 354 |
+
\begin{array}{cc}
|
| 355 |
+
-\frac{35}{16} & -\frac{5}{16} \\
|
| 356 |
+
\frac{13}{16} & \frac{13}{16} \\
|
| 357 |
+
-\frac{47}{16} & -\frac{37}{16} \\
|
| 358 |
+
\end{array}
|
| 359 |
+
\right).\left(
|
| 360 |
+
\begin{array}{cc}
|
| 361 |
+
\frac{23}{16} & \frac{1}{2} \\
|
| 362 |
+
\frac{21}{8} & \frac{3}{2} \\
|
| 363 |
+
\end{array}
|
| 364 |
+
\right)=\left(
|
| 365 |
+
\begin{array}{cc}
|
| 366 |
+
-\frac{1015}{256} & -\frac{25}{16} \\
|
| 367 |
+
\frac{845}{256} & \frac{13}{8} \\
|
| 368 |
+
-\frac{2635}{256} & \fbox{$-\frac{79}{16}$} \\
|
| 369 |
+
\end{array}
|
| 370 |
+
\right) \\
|
| 371 |
+
\end{array}
|
| 372 |
+
$} \\
|
| 373 |
+
\end{array}
|
| 374 |
+
\\
|
| 375 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/4856.txt
ADDED
|
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{ccc}
|
| 5 |
+
0 & -3 & 0 \\
|
| 6 |
+
0 & 0 & -1 \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{cc}
|
| 11 |
+
0 & 1 \\
|
| 12 |
+
-3 & -2 \\
|
| 13 |
+
0 & 1 \\
|
| 14 |
+
\end{array}
|
| 15 |
+
\right)$.
|
| 16 |
+
Answer:
|
| 17 |
+
\begin{array}{l}
|
| 18 |
+
|
| 19 |
+
\begin{array}{l}
|
| 20 |
+
\text{Multiply the following matrices}: \\
|
| 21 |
+
\left(
|
| 22 |
+
\begin{array}{ccc}
|
| 23 |
+
0 & -3 & 0 \\
|
| 24 |
+
0 & 0 & -1 \\
|
| 25 |
+
\end{array}
|
| 26 |
+
\right).\left(
|
| 27 |
+
\begin{array}{cc}
|
| 28 |
+
0 & 1 \\
|
| 29 |
+
-3 & -2 \\
|
| 30 |
+
0 & 1 \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\right) \\
|
| 33 |
+
\end{array}
|
| 34 |
+
\\
|
| 35 |
+
\hline
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
|
| 39 |
+
\begin{array}{l}
|
| 40 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 3 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }3\times 2. \\
|
| 41 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 2: \\
|
| 42 |
+
\end{array}
|
| 43 |
+
\\
|
| 44 |
+
\left(
|
| 45 |
+
\begin{array}{ccc}
|
| 46 |
+
0 & -3 & 0 \\
|
| 47 |
+
0 & 0 & -1 \\
|
| 48 |
+
\end{array}
|
| 49 |
+
\right).\left(
|
| 50 |
+
\begin{array}{cc}
|
| 51 |
+
0 & 1 \\
|
| 52 |
+
-3 & -2 \\
|
| 53 |
+
0 & 1 \\
|
| 54 |
+
\end{array}
|
| 55 |
+
\right)=\left(
|
| 56 |
+
\begin{array}{cc}
|
| 57 |
+
\_ & \_ \\
|
| 58 |
+
\_ & \_ \\
|
| 59 |
+
\end{array}
|
| 60 |
+
\right) \\
|
| 61 |
+
\end{array}
|
| 62 |
+
\\
|
| 63 |
+
|
| 64 |
+
\begin{array}{l}
|
| 65 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 66 |
+
\left(
|
| 67 |
+
\begin{array}{ccc}
|
| 68 |
+
0 & -3 & 0 \\
|
| 69 |
+
0 & 0 & -1 \\
|
| 70 |
+
\end{array}
|
| 71 |
+
\right).\left(
|
| 72 |
+
\begin{array}{cc}
|
| 73 |
+
0 & 1 \\
|
| 74 |
+
-3 & -2 \\
|
| 75 |
+
0 & 1 \\
|
| 76 |
+
\end{array}
|
| 77 |
+
\right)=\left(
|
| 78 |
+
\begin{array}{cc}
|
| 79 |
+
\_ & \_ \\
|
| 80 |
+
\_ & \_ \\
|
| 81 |
+
\end{array}
|
| 82 |
+
\right) \\
|
| 83 |
+
\end{array}
|
| 84 |
+
\\
|
| 85 |
+
|
| 86 |
+
\begin{array}{l}
|
| 87 |
+
|
| 88 |
+
\begin{array}{l}
|
| 89 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }0\ 0+(-3)\, (-3)+0\ 0=9. \\
|
| 90 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 91 |
+
\end{array}
|
| 92 |
+
\\
|
| 93 |
+
\left(
|
| 94 |
+
\begin{array}{ccc}
|
| 95 |
+
0 & -3 & 0 \\
|
| 96 |
+
0 & 0 & -1 \\
|
| 97 |
+
\end{array}
|
| 98 |
+
\right).\left(
|
| 99 |
+
\begin{array}{cc}
|
| 100 |
+
0 & 1 \\
|
| 101 |
+
-3 & -2 \\
|
| 102 |
+
0 & 1 \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right)=\left(
|
| 105 |
+
\begin{array}{cc}
|
| 106 |
+
\fbox{$9$} & \_ \\
|
| 107 |
+
\_ & \_ \\
|
| 108 |
+
\end{array}
|
| 109 |
+
\right) \\
|
| 110 |
+
\end{array}
|
| 111 |
+
\\
|
| 112 |
+
|
| 113 |
+
\begin{array}{l}
|
| 114 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 115 |
+
\left(
|
| 116 |
+
\begin{array}{ccc}
|
| 117 |
+
0 & -3 & 0 \\
|
| 118 |
+
0 & 0 & -1 \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right).\left(
|
| 121 |
+
\begin{array}{cc}
|
| 122 |
+
0 & 1 \\
|
| 123 |
+
-3 & -2 \\
|
| 124 |
+
0 & 1 \\
|
| 125 |
+
\end{array}
|
| 126 |
+
\right)=\left(
|
| 127 |
+
\begin{array}{cc}
|
| 128 |
+
9 & \_ \\
|
| 129 |
+
\_ & \_ \\
|
| 130 |
+
\end{array}
|
| 131 |
+
\right) \\
|
| 132 |
+
\end{array}
|
| 133 |
+
\\
|
| 134 |
+
|
| 135 |
+
\begin{array}{l}
|
| 136 |
+
|
| 137 |
+
\begin{array}{l}
|
| 138 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }0\ 1+(-3)\, (-2)+0\ 1=6. \\
|
| 139 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\\
|
| 142 |
+
\left(
|
| 143 |
+
\begin{array}{ccc}
|
| 144 |
+
0 & -3 & 0 \\
|
| 145 |
+
0 & 0 & -1 \\
|
| 146 |
+
\end{array}
|
| 147 |
+
\right).\left(
|
| 148 |
+
\begin{array}{cc}
|
| 149 |
+
0 & 1 \\
|
| 150 |
+
-3 & -2 \\
|
| 151 |
+
0 & 1 \\
|
| 152 |
+
\end{array}
|
| 153 |
+
\right)=\left(
|
| 154 |
+
\begin{array}{cc}
|
| 155 |
+
9 & \fbox{$6$} \\
|
| 156 |
+
\_ & \_ \\
|
| 157 |
+
\end{array}
|
| 158 |
+
\right) \\
|
| 159 |
+
\end{array}
|
| 160 |
+
\\
|
| 161 |
+
|
| 162 |
+
\begin{array}{l}
|
| 163 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 164 |
+
\left(
|
| 165 |
+
\begin{array}{ccc}
|
| 166 |
+
0 & -3 & 0 \\
|
| 167 |
+
0 & 0 & -1 \\
|
| 168 |
+
\end{array}
|
| 169 |
+
\right).\left(
|
| 170 |
+
\begin{array}{cc}
|
| 171 |
+
0 & 1 \\
|
| 172 |
+
-3 & -2 \\
|
| 173 |
+
0 & 1 \\
|
| 174 |
+
\end{array}
|
| 175 |
+
\right)=\left(
|
| 176 |
+
\begin{array}{cc}
|
| 177 |
+
9 & 6 \\
|
| 178 |
+
\_ & \_ \\
|
| 179 |
+
\end{array}
|
| 180 |
+
\right) \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\\
|
| 183 |
+
|
| 184 |
+
\begin{array}{l}
|
| 185 |
+
|
| 186 |
+
\begin{array}{l}
|
| 187 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }0\ 0+0 (-3)+(-1)\, \times \, 0=0. \\
|
| 188 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 189 |
+
\end{array}
|
| 190 |
+
\\
|
| 191 |
+
\left(
|
| 192 |
+
\begin{array}{ccc}
|
| 193 |
+
0 & -3 & 0 \\
|
| 194 |
+
0 & 0 & -1 \\
|
| 195 |
+
\end{array}
|
| 196 |
+
\right).\left(
|
| 197 |
+
\begin{array}{cc}
|
| 198 |
+
0 & 1 \\
|
| 199 |
+
-3 & -2 \\
|
| 200 |
+
0 & 1 \\
|
| 201 |
+
\end{array}
|
| 202 |
+
\right)=\left(
|
| 203 |
+
\begin{array}{cc}
|
| 204 |
+
9 & 6 \\
|
| 205 |
+
\fbox{$0$} & \_ \\
|
| 206 |
+
\end{array}
|
| 207 |
+
\right) \\
|
| 208 |
+
\end{array}
|
| 209 |
+
\\
|
| 210 |
+
|
| 211 |
+
\begin{array}{l}
|
| 212 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 213 |
+
\left(
|
| 214 |
+
\begin{array}{ccc}
|
| 215 |
+
0 & -3 & 0 \\
|
| 216 |
+
0 & 0 & -1 \\
|
| 217 |
+
\end{array}
|
| 218 |
+
\right).\left(
|
| 219 |
+
\begin{array}{cc}
|
| 220 |
+
0 & 1 \\
|
| 221 |
+
-3 & -2 \\
|
| 222 |
+
0 & 1 \\
|
| 223 |
+
\end{array}
|
| 224 |
+
\right)=\left(
|
| 225 |
+
\begin{array}{cc}
|
| 226 |
+
9 & 6 \\
|
| 227 |
+
0 & \_ \\
|
| 228 |
+
\end{array}
|
| 229 |
+
\right) \\
|
| 230 |
+
\end{array}
|
| 231 |
+
\\
|
| 232 |
+
|
| 233 |
+
\begin{array}{l}
|
| 234 |
+
|
| 235 |
+
\begin{array}{l}
|
| 236 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }0\ 1+0 (-2)+(-1)\, \times \, 1=-1. \\
|
| 237 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 238 |
+
\end{array}
|
| 239 |
+
\\
|
| 240 |
+
\fbox{$
|
| 241 |
+
\begin{array}{ll}
|
| 242 |
+
\text{Answer:} & \\
|
| 243 |
+
\text{} & \left(
|
| 244 |
+
\begin{array}{ccc}
|
| 245 |
+
0 & -3 & 0 \\
|
| 246 |
+
0 & 0 & -1 \\
|
| 247 |
+
\end{array}
|
| 248 |
+
\right).\left(
|
| 249 |
+
\begin{array}{cc}
|
| 250 |
+
0 & 1 \\
|
| 251 |
+
-3 & -2 \\
|
| 252 |
+
0 & 1 \\
|
| 253 |
+
\end{array}
|
| 254 |
+
\right)=\left(
|
| 255 |
+
\begin{array}{cc}
|
| 256 |
+
9 & 6 \\
|
| 257 |
+
0 & \fbox{$-1$} \\
|
| 258 |
+
\end{array}
|
| 259 |
+
\right) \\
|
| 260 |
+
\end{array}
|
| 261 |
+
$} \\
|
| 262 |
+
\end{array}
|
| 263 |
+
\\
|
| 264 |
+
\end{array}
|
pretraining/mathematica/linear_algebra/multiply_w_steps/734.txt
ADDED
|
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Multiply
|
| 3 |
+
$\left(
|
| 4 |
+
\begin{array}{cc}
|
| 5 |
+
0 & -1 \\
|
| 6 |
+
3 & 1 \\
|
| 7 |
+
\end{array}
|
| 8 |
+
\right)$ and
|
| 9 |
+
$\left(
|
| 10 |
+
\begin{array}{cc}
|
| 11 |
+
0 & 3 \\
|
| 12 |
+
2 & -2 \\
|
| 13 |
+
\end{array}
|
| 14 |
+
\right)$.
|
| 15 |
+
Answer:
|
| 16 |
+
\begin{array}{l}
|
| 17 |
+
|
| 18 |
+
\begin{array}{l}
|
| 19 |
+
\text{Multiply the following matrices}: \\
|
| 20 |
+
\left(
|
| 21 |
+
\begin{array}{cc}
|
| 22 |
+
0 & -1 \\
|
| 23 |
+
3 & 1 \\
|
| 24 |
+
\end{array}
|
| 25 |
+
\right).\left(
|
| 26 |
+
\begin{array}{cc}
|
| 27 |
+
0 & 3 \\
|
| 28 |
+
2 & -2 \\
|
| 29 |
+
\end{array}
|
| 30 |
+
\right) \\
|
| 31 |
+
\end{array}
|
| 32 |
+
\\
|
| 33 |
+
\hline
|
| 34 |
+
|
| 35 |
+
\begin{array}{l}
|
| 36 |
+
|
| 37 |
+
\begin{array}{l}
|
| 38 |
+
\text{The }\text{dimensions }\text{of }\text{the }\text{first }\text{matrix }\text{are }2\times 2 \text{and }\text{the }\text{dimensions }\text{of }\text{the }\text{second }\text{matrix }\text{are }2\times 2. \\
|
| 39 |
+
\text{This }\text{means }\text{the }\text{dimensions }\text{of }\text{the }\text{product }\text{are }2\times 2: \\
|
| 40 |
+
\end{array}
|
| 41 |
+
\\
|
| 42 |
+
\left(
|
| 43 |
+
\begin{array}{cc}
|
| 44 |
+
0 & -1 \\
|
| 45 |
+
3 & 1 \\
|
| 46 |
+
\end{array}
|
| 47 |
+
\right).\left(
|
| 48 |
+
\begin{array}{cc}
|
| 49 |
+
0 & 3 \\
|
| 50 |
+
2 & -2 \\
|
| 51 |
+
\end{array}
|
| 52 |
+
\right)=\left(
|
| 53 |
+
\begin{array}{cc}
|
| 54 |
+
\_ & \_ \\
|
| 55 |
+
\_ & \_ \\
|
| 56 |
+
\end{array}
|
| 57 |
+
\right) \\
|
| 58 |
+
\end{array}
|
| 59 |
+
\\
|
| 60 |
+
|
| 61 |
+
\begin{array}{l}
|
| 62 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 63 |
+
\left(
|
| 64 |
+
\begin{array}{cc}
|
| 65 |
+
0 & -1 \\
|
| 66 |
+
3 & 1 \\
|
| 67 |
+
\end{array}
|
| 68 |
+
\right).\left(
|
| 69 |
+
\begin{array}{cc}
|
| 70 |
+
0 & 3 \\
|
| 71 |
+
2 & -2 \\
|
| 72 |
+
\end{array}
|
| 73 |
+
\right)=\left(
|
| 74 |
+
\begin{array}{cc}
|
| 75 |
+
\_ & \_ \\
|
| 76 |
+
\_ & \_ \\
|
| 77 |
+
\end{array}
|
| 78 |
+
\right) \\
|
| 79 |
+
\end{array}
|
| 80 |
+
\\
|
| 81 |
+
|
| 82 |
+
\begin{array}{l}
|
| 83 |
+
|
| 84 |
+
\begin{array}{l}
|
| 85 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }0\ 0+(-1)\, \times \, 2=-2. \\
|
| 86 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 87 |
+
\end{array}
|
| 88 |
+
\\
|
| 89 |
+
\left(
|
| 90 |
+
\begin{array}{cc}
|
| 91 |
+
0 & -1 \\
|
| 92 |
+
3 & 1 \\
|
| 93 |
+
\end{array}
|
| 94 |
+
\right).\left(
|
| 95 |
+
\begin{array}{cc}
|
| 96 |
+
0 & 3 \\
|
| 97 |
+
2 & -2 \\
|
| 98 |
+
\end{array}
|
| 99 |
+
\right)=\left(
|
| 100 |
+
\begin{array}{cc}
|
| 101 |
+
\fbox{$-2$} & \_ \\
|
| 102 |
+
\_ & \_ \\
|
| 103 |
+
\end{array}
|
| 104 |
+
\right) \\
|
| 105 |
+
\end{array}
|
| 106 |
+
\\
|
| 107 |
+
|
| 108 |
+
\begin{array}{l}
|
| 109 |
+
\text{Highlight }\text{the }1^{\text{st}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 110 |
+
\left(
|
| 111 |
+
\begin{array}{cc}
|
| 112 |
+
0 & -1 \\
|
| 113 |
+
3 & 1 \\
|
| 114 |
+
\end{array}
|
| 115 |
+
\right).\left(
|
| 116 |
+
\begin{array}{cc}
|
| 117 |
+
0 & 3 \\
|
| 118 |
+
2 & -2 \\
|
| 119 |
+
\end{array}
|
| 120 |
+
\right)=\left(
|
| 121 |
+
\begin{array}{cc}
|
| 122 |
+
-2 & \_ \\
|
| 123 |
+
\_ & \_ \\
|
| 124 |
+
\end{array}
|
| 125 |
+
\right) \\
|
| 126 |
+
\end{array}
|
| 127 |
+
\\
|
| 128 |
+
|
| 129 |
+
\begin{array}{l}
|
| 130 |
+
|
| 131 |
+
\begin{array}{l}
|
| 132 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }0\ 3+(-1)\, (-2)=2. \\
|
| 133 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }1^{\text{st}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 134 |
+
\end{array}
|
| 135 |
+
\\
|
| 136 |
+
\left(
|
| 137 |
+
\begin{array}{cc}
|
| 138 |
+
0 & -1 \\
|
| 139 |
+
3 & 1 \\
|
| 140 |
+
\end{array}
|
| 141 |
+
\right).\left(
|
| 142 |
+
\begin{array}{cc}
|
| 143 |
+
0 & 3 \\
|
| 144 |
+
2 & -2 \\
|
| 145 |
+
\end{array}
|
| 146 |
+
\right)=\left(
|
| 147 |
+
\begin{array}{cc}
|
| 148 |
+
-2 & \fbox{$2$} \\
|
| 149 |
+
\_ & \_ \\
|
| 150 |
+
\end{array}
|
| 151 |
+
\right) \\
|
| 152 |
+
\end{array}
|
| 153 |
+
\\
|
| 154 |
+
|
| 155 |
+
\begin{array}{l}
|
| 156 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }1^{\text{st}} \text{column}: \\
|
| 157 |
+
\left(
|
| 158 |
+
\begin{array}{cc}
|
| 159 |
+
0 & -1 \\
|
| 160 |
+
3 & 1 \\
|
| 161 |
+
\end{array}
|
| 162 |
+
\right).\left(
|
| 163 |
+
\begin{array}{cc}
|
| 164 |
+
0 & 3 \\
|
| 165 |
+
2 & -2 \\
|
| 166 |
+
\end{array}
|
| 167 |
+
\right)=\left(
|
| 168 |
+
\begin{array}{cc}
|
| 169 |
+
-2 & 2 \\
|
| 170 |
+
\_ & \_ \\
|
| 171 |
+
\end{array}
|
| 172 |
+
\right) \\
|
| 173 |
+
\end{array}
|
| 174 |
+
\\
|
| 175 |
+
|
| 176 |
+
\begin{array}{l}
|
| 177 |
+
|
| 178 |
+
\begin{array}{l}
|
| 179 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }3\ 0+1\ 2=2. \\
|
| 180 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }1^{\text{st}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 181 |
+
\end{array}
|
| 182 |
+
\\
|
| 183 |
+
\left(
|
| 184 |
+
\begin{array}{cc}
|
| 185 |
+
0 & -1 \\
|
| 186 |
+
3 & 1 \\
|
| 187 |
+
\end{array}
|
| 188 |
+
\right).\left(
|
| 189 |
+
\begin{array}{cc}
|
| 190 |
+
0 & 3 \\
|
| 191 |
+
2 & -2 \\
|
| 192 |
+
\end{array}
|
| 193 |
+
\right)=\left(
|
| 194 |
+
\begin{array}{cc}
|
| 195 |
+
-2 & 2 \\
|
| 196 |
+
\fbox{$2$} & \_ \\
|
| 197 |
+
\end{array}
|
| 198 |
+
\right) \\
|
| 199 |
+
\end{array}
|
| 200 |
+
\\
|
| 201 |
+
|
| 202 |
+
\begin{array}{l}
|
| 203 |
+
\text{Highlight }\text{the }2^{\text{nd}} \text{row }\text{and }\text{the }2^{\text{nd}} \text{column}: \\
|
| 204 |
+
\left(
|
| 205 |
+
\begin{array}{cc}
|
| 206 |
+
0 & -1 \\
|
| 207 |
+
3 & 1 \\
|
| 208 |
+
\end{array}
|
| 209 |
+
\right).\left(
|
| 210 |
+
\begin{array}{cc}
|
| 211 |
+
0 & 3 \\
|
| 212 |
+
2 & -2 \\
|
| 213 |
+
\end{array}
|
| 214 |
+
\right)=\left(
|
| 215 |
+
\begin{array}{cc}
|
| 216 |
+
-2 & 2 \\
|
| 217 |
+
2 & \_ \\
|
| 218 |
+
\end{array}
|
| 219 |
+
\right) \\
|
| 220 |
+
\end{array}
|
| 221 |
+
\\
|
| 222 |
+
|
| 223 |
+
\begin{array}{l}
|
| 224 |
+
|
| 225 |
+
\begin{array}{l}
|
| 226 |
+
\text{Multiply }\text{corresponding }\text{components }\text{and }\text{add: }3\ 3+1 (-2)=7. \\
|
| 227 |
+
\text{Place }\text{this }\text{number }\text{into }\text{the }2^{\text{nd}} \text{row }\text{and }2^{\text{nd}} \text{column }\text{of }\text{the }\text{product}: \\
|
| 228 |
+
\end{array}
|
| 229 |
+
\\
|
| 230 |
+
\fbox{$
|
| 231 |
+
\begin{array}{ll}
|
| 232 |
+
\text{Answer:} & \\
|
| 233 |
+
\text{} & \left(
|
| 234 |
+
\begin{array}{cc}
|
| 235 |
+
0 & -1 \\
|
| 236 |
+
3 & 1 \\
|
| 237 |
+
\end{array}
|
| 238 |
+
\right).\left(
|
| 239 |
+
\begin{array}{cc}
|
| 240 |
+
0 & 3 \\
|
| 241 |
+
2 & -2 \\
|
| 242 |
+
\end{array}
|
| 243 |
+
\right)=\left(
|
| 244 |
+
\begin{array}{cc}
|
| 245 |
+
-2 & 2 \\
|
| 246 |
+
2 & \fbox{$7$} \\
|
| 247 |
+
\end{array}
|
| 248 |
+
\right) \\
|
| 249 |
+
\end{array}
|
| 250 |
+
$} \\
|
| 251 |
+
\end{array}
|
| 252 |
+
\\
|
| 253 |
+
\end{array}
|
pretraining/mathematica/number_theory/multiplicative_order/10331.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Find the smallest integer $m$ such that $36^m \equiv 1 \pmod{335}$.
|
| 3 |
+
Answer:
|
| 4 |
+
$33$
|
pretraining/mathematica/number_theory/multiplicative_order/10834.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Find the smallest integer $m$ such that $938^m \equiv 1 \pmod{951}$.
|
| 3 |
+
Answer:
|
| 4 |
+
$316$
|
pretraining/mathematica/number_theory/multiplicative_order/13083.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Find the smallest integer $m$ such that $219^m \equiv 1 \pmod{380}$.
|
| 3 |
+
Answer:
|
| 4 |
+
$18$
|
pretraining/mathematica/number_theory/multiplicative_order/13232.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Find the smallest integer $m$ such that $242^m \equiv 1 \pmod{335}$.
|
| 3 |
+
Answer:
|
| 4 |
+
$132$
|
pretraining/mathematica/number_theory/multiplicative_order/13795.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Find the smallest integer $m$ such that $34^m \equiv 1 \pmod{135}$.
|
| 3 |
+
Answer:
|
| 4 |
+
$18$
|
pretraining/mathematica/number_theory/multiplicative_order/16023.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Find the smallest integer $m$ such that $391^m \equiv 1 \pmod{655}$.
|
| 3 |
+
Answer:
|
| 4 |
+
$65$
|
pretraining/mathematica/number_theory/multiplicative_order/17927.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Find the smallest integer $m$ such that $212^m \equiv 1 \pmod{721}$.
|
| 3 |
+
Answer:
|
| 4 |
+
$102$
|
pretraining/mathematica/number_theory/multiplicative_order/17959.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Find the smallest integer $m$ such that $262^m \equiv 1 \pmod{867}$.
|
| 3 |
+
Answer:
|
| 4 |
+
$272$
|
pretraining/mathematica/number_theory/multiplicative_order/19243.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Find the smallest integer $m$ such that $311^m \equiv 1 \pmod{826}$.
|
| 3 |
+
Answer:
|
| 4 |
+
$174$
|
pretraining/mathematica/number_theory/multiplicative_order/21365.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Find the smallest integer $m$ such that $325^m \equiv 1 \pmod{682}$.
|
| 3 |
+
Answer:
|
| 4 |
+
$10$
|
pretraining/mathematica/number_theory/multiplicative_order/23015.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Find the smallest integer $m$ such that $248^m \equiv 1 \pmod{349}$.
|
| 3 |
+
Answer:
|
| 4 |
+
$116$
|
pretraining/mathematica/number_theory/multiplicative_order/25071.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Find the smallest integer $m$ such that $669^m \equiv 1 \pmod{778}$.
|
| 3 |
+
Answer:
|
| 4 |
+
$388$
|
pretraining/mathematica/number_theory/multiplicative_order/27174.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Problem:
|
| 2 |
+
Find the smallest integer $m$ such that $111^m \equiv 1 \pmod{986}$.
|
| 3 |
+
Answer:
|
| 4 |
+
$56$
|