""" 2D Poisson equation dataset with mixed boundary conditions. Solves the boundary value problem: ∇²u = f(x,y) in Ω = [0, Lx] × [0, Ly] u(x,0) = g(x) on bottom boundary ∂u/∂y(x,Ly) = h(x) on top boundary Uses Dedalus spectral methods with Fourier(x) × Chebyshev(y) discretization. The forcing function f(x,y) is randomly generated using Gaussian processes to create diverse training samples. Physical applications: electrostatic potential, steady-state heat conduction, fluid stream functions. """ import numpy as np from torch.utils.data import IterableDataset import dedalus.public as d3 from functools import partial from sklearn.metrics.pairwise import rbf_kernel import logging logger = logging.getLogger(__name__) def sample_gp_prior(kernel, X, n_samples=1): """ Sample from Gaussian Process prior for generating smooth random fields. """ if X.ndim == 1: X = X.reshape(-1, 1) K = kernel(X, X) prior = np.random.multivariate_normal( mean=np.zeros(X.shape[0]), cov=K, size=n_samples, ) return prior def sample_gp_posterior(kernel, X, y, xt, n_samples=1): """Sample from Gaussian Process posterior for boundary conditions.""" if X.ndim == 1: X = X.reshape(-1, 1) if y.ndim == 1: y = y.reshape(-1, 1) if xt.ndim == 1: xt = xt.reshape(-1, 1) K = kernel(X, X) Kt = kernel(X, xt) Ktt = kernel(xt, xt) K_inv = np.linalg.inv(K) mu = Kt.T @ K_inv @ y cov = Ktt - Kt.T @ K_inv @ Kt mu = mu.ravel() # Ensure 1D array posterior = np.random.multivariate_normal( mean=mu, cov=cov, size=n_samples, ) return posterior class PoissonDataset(IterableDataset): """ Dataset for 2D Poisson equation with mixed boundary conditions. Generates random smooth forcing functions using Gaussian processes and solves: ∇²u = f(x,y) with u(x,0) = g(x) and ∂u/∂y(x,Ly) = h(x). """ def __init__( self, Lx=2*np.pi, # Domain length in x-direction Ly=np.pi, # Domain length in y-direction Nx=256, # Grid points in x-direction Ny=128, # Grid points in y-direction dtype=np.float64, ): """ Initialize 2D Poisson equation dataset. Args: Lx: Domain length in x-direction Ly: Domain length in y-direction Nx: Number of grid points in x-direction Ny: Number of grid points in y-direction dtype: Data type for computations """ super().__init__() # Store domain and grid parameters self.Lx = Lx self.Ly = Ly self.Nx = Nx self.Ny = Ny self.dtype = dtype # Setup Dedalus solver components self.coords = d3.CartesianCoordinates('x', 'y') self.dist = d3.Distributor(self.coords, dtype=dtype) self.xbasis = d3.RealFourier(self.coords['x'], size=Nx, bounds=(0, Lx)) self.ybasis = d3.Chebyshev(self.coords['y'], size=Ny, bounds=(0, Ly)) # Create coordinate grids self.x, self.y = self.dist.local_grids(self.xbasis, self.ybasis) # Setup fields self.u = self.dist.Field(name='u', bases=(self.xbasis, self.ybasis)) self.tau_1 = self.dist.Field(name='tau_1', bases=self.xbasis) self.tau_2 = self.dist.Field(name='tau_2', bases=self.xbasis) self.f = self.dist.Field(bases=(self.xbasis, self.ybasis)) self.g = self.dist.Field(bases=self.xbasis) self.h = self.dist.Field(bases=self.xbasis) # Setup operators and namespace for boundary value problem dy = lambda A: d3.Differentiate(A, self.coords['y']) lift_basis = self.ybasis.derivative_basis(2) lift = lambda A, n: d3.Lift(A, lift_basis, n) f = self.f g = self.g h = self.h u = self.u tau_1 = self.tau_1 tau_2 = self.tau_2 Ly = self.Ly self.problem = d3.LBVP([self.u, self.tau_1, self.tau_2], namespace=locals()) self.problem.add_equation("lap(u) + lift(tau_1,-1) + lift(tau_2,-2) = f") self.problem.add_equation("u(y=0) = g") self.problem.add_equation("dy(u)(y=Ly) = h") def __iter__(self): """Generate infinite samples from the dataset.""" while True: # Generate random forcing function using filtered noise self.f.fill_random('g', seed=np.random.randint(0, 2**31)) filter_x = np.random.randint(32, 128) filter_y = np.random.randint(16, 64) self.f.low_pass_filter(shape=(filter_x, filter_y)) # Generate random Dirichlet boundary condition using GP # Get x-coordinates for bottom boundary (1D array) x_boundary = self.dist.local_grid(self.xbasis) sigma_g = 0.2 * self.Lx gamma_g = 1 / (2 * sigma_g**2) g_sample = sample_gp_posterior( kernel=partial(rbf_kernel, gamma=gamma_g), X=np.array([0, self.Lx]), y=np.array([0, 0]), xt=x_boundary.ravel(), n_samples=1 )[0] self.g['g'] = (np.random.uniform(0.01, 0.1) * g_sample).reshape(-1, 1) # Generate random Neumann boundary condition using GP sigma_h = 0.3 * self.Lx gamma_h = 1 / (2 * sigma_h**2) h_sample = sample_gp_posterior( kernel=partial(rbf_kernel, gamma=gamma_h), X=np.array([0, self.Lx]), y=np.array([0, 0]), xt=x_boundary.ravel(), n_samples=1 )[0] self.h['g'] = (np.random.uniform(0.005, 0.05) * h_sample).reshape(-1, 1) yield self.solve() def solve(self): """ Solve the 2D Poisson boundary value problem. The forcing function and boundary conditions have already been set in __iter__. Returns: A dictionary containing the solution and related data. """ # Build and solve the LBVP solver = self.problem.build_solver() solver.solve() # Gather global data for return x_global = self.xbasis.global_grid(self.dist, scale=1) y_global = self.ybasis.global_grid(self.dist, scale=1) u_global = self.u.allgather_data('g') f_global = self.f.allgather_data('g') g_global = self.g.allgather_data('g') h_global = self.h.allgather_data('g') # Create coordinate meshgrids X, Y = np.meshgrid(x_global.ravel(), y_global.ravel(), indexing='ij') return { # Combined spatial coordinates "spatial_coordinates": np.array([X, Y]), # Shape: (2, Nx, Ny) # Solution field "solution_field": u_global, # Shape: (Nx, Ny) # Forcing function "forcing_function": f_global, # Shape: (Nx, Ny) # Boundary conditions "boundary_condition_bottom": g_global, # Shape: (Nx,) "boundary_condition_top_gradient": h_global, # Shape: (Nx,) }